عرض سجل المادة البسيط

dc.contributor.author Zita, Kaoutar
dc.date.accessioned 2024-12-09T09:13:15Z
dc.date.available 2024-12-09T09:13:15Z
dc.date.issued 2024
dc.identifier.uri https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/8924
dc.description.abstract Community detection is crucial for uncovering cohesive substructures within com- plex systems. These communities provide insights into clusters of interconnected enti- ties, which can be particularly valuable in various domains such as social network anal- ysis, information retrieval, and bibliometrics. In this study, we propose a taxonomy of community detection methods based on graph autoencoders (GAEs), categorizing them into simple encoder and dual encoder models. We conduct a comparative analy- sis of these two categories, focusing on the type of encoder architecture and assessing their performance on real networks. For a more precise evaluation, we use NMI, ARI, and F1-measure as evaluation metrics. Additionally, we examine the running time efficiency of each model based on epochs. The findings indicate that dual encoder models, especially those with attention mechanisms, generally exhibit superior per- formance, particularly in complex datasets, despite higher computational demands. These results underscore the potential of dual encoder models in advanced network analysis tasks. Future recommendations include examining more advanced neural net- work designs and the impact of modeling and data preparation factors on community detection across various domains. EN_en
dc.language.iso en EN_en
dc.publisher université Ghardaia EN_en
dc.subject Community detection, Graph Autoencoder, Attributed networks, Simple encoder, Dual encoder. EN_en
dc.subject Détection de communautés, Autoencodeur de graphe, Réseaux at- tribués, Encodeurs simples, Encodeurs doubles. EN_en
dc.title Autoencoder Based Community Detection EN_en
dc.type Thesis EN_en


الملفات في هذه المادة

هذه المادة تظهر في الحاويات التالية

عرض سجل المادة البسيط

بحث دي سبيس


بحث متقدم

استعرض

حسابي