DSpace Repository

Machine Learning-based DDoS Attacks mitigation

Show simple item record

dc.contributor.author BEKKOUCHE, Noussaiba
dc.date.accessioned 2022-02-20T11:11:21Z
dc.date.available 2022-02-20T11:11:21Z
dc.date.issued 2019
dc.identifier.uri https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/731
dc.description.abstract Distributed Denial of Service (DDoS) attacks appears in a great significant on the network level, and since the most common users of the network frequently are the institutions and centers to communicate with the other side who is the user, hence that they vulnerable to this attack increasing the number of users and the occurrence phenomenon of the flood that affected the server. This leads to disabling and lack of communication between the users in the network. This causes of malfunction divided into two parts : the first is the normal user, and the second is the attacker It leads to numerous losses, both economic, temporal and Physical. Our study is about the attack that is the biggest cause of this problem, we applied this study to the data site of the University of Ghardaia where it launched an attack type HTTP flood which stopped for a period of time until been relieved. We have proposed a modern technique helps to study the attack and detection it using algorithms is Kmeans algorithms, the result obtained showed with approximate 70% of the cluster that contains the amount of use of the methods of requests, which deduced 34% of the error rate on the dataset. تظهر هجمات "رفض الخدمة الموزعة (DDoS" (بشكل كبير على مستوى الشبكة ، وبما أن أكثر مستخدمي الشبكة شيو ًعا هم المؤسسات والمراكز التي تتواصل مع الجانب اآلخر وهو المستخدم ، وبالتالي فهي عرضة لهذا الهجوم زيادة عدد المستخدمين وظاهرة حدوث الفيضان التي أثرت على الخادم. هذا يؤدي إلى تعطيل وعدم وجود اتصال بين المستخدمين في الشبكة. تنقسم أسباب الخلل هذه إلى قسمين: األول هو المستخدم العادي ، والثاني هو المهاجم وهو يؤدي إلى خسائر عديدة ، اقتصادية ووقتية ومادية. تدور دراستنا حول الهجوم الذي يعد أكبر سبب لهذه المشكلة ، قمنا بتطبيق هذه الدراسة على موقع بيانات جامعة غرداية حيث أطلقت فيضان HTTP من نوع الهجوم الذي توقف لفترة من الوقت حتى تم التخفيف منه. لقد اقترحنا تقنية حديثة تساعد في دراسة الهجوم واكتشافه باستخدام خوارزميات هي خوارزميات Kmeans ، والنتيجة التي تم الحصول عليها أظهرت بنسبة تقريبية 07 ٪من الكتلة التي تحتوي على مقدار استخدام طرق الطلبات ، والتي استنتجت 43 ٪ من معدل الخطأ على مجموعة البيانات. EN_en
dc.publisher جامعة غرداية EN_en
dc.subject DDoS, Attacks Mitigation, Machine Learning EN_en
dc.title Machine Learning-based DDoS Attacks mitigation EN_en
dc.type Thesis EN_en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account