المستودع الرقمي في جامعة غرداية

Sequence Models: Deep Learning Approach _ Case Speech Recognition _

عرض سجل المادة البسيط

dc.contributor.author DJEBRIT, Aida
dc.contributor.author RAHMANI, Maroua
dc.date.accessioned 2022-02-08T08:45:17Z
dc.date.available 2022-02-08T08:45:17Z
dc.date.issued 2019
dc.identifier.uri https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/606
dc.description.abstract Our era is characterized by the existence of huge amount of data. Perhaps sequence data is among the important data types. It is used, mainly, in bioinformatics and natural language processing applications. Consequently, a great deal of research has been devoted to sequence data. Sequence modelling is used to analyze intelligently sequence data. Recent studies use deep learning approach to ameliorate the performance of sequence modelling. The present thesis deals with speech recognition systems. Hence, we process audio data as sequences. We first study in general artificial neural networks, and in particular recurrent neural networks (RNN). RNN are able to handle audio data in efficient way. To make the studied theoretical concept in practice. We conduct experimental study on English speech using the deepSpeech2 architecture with LibriSpeech data set. Although the limited hardware environment, the result (character error rate=27%) reveal that DeepSpeech2 perform well with audio data especially if we use more sophisticated hardware environment and if we tune the hyper parameter of the system. ..يتميز عصرنا بوجود كمية هائلة من البيانات. ربما تكون بيانات التسلسل من بين أنواع البيانات المهمة. يتم استخدامها بشكل أساسي في المعلوماتية الحيوية و تطبيقات معالجة اللغة الطبيعية. وبالتالي، تم تخصيص قدر كبير من البحث في البيانات المتسلسلة. يتم استخدام نمذجة التسلسل لتحليل البيانات المتسلسلة بذكاء. تستخدم الدراسات الحديثة نهج التعلم العميق لتحسين أداء نمذجة التسلسل. تتناول المذكرة الحالية أنظمة التعرف على الكالم. وبالتالي نعالج البيانات الصوتية كتسلسالت. بدأنا الدراسة في الشبكة العصبية االصطناعية على العموم، وخاصة الشبكة العصبية المتكررة(RNN. ( الشبكة العصبية المتكررة قادرة على التعامل مع البيانات الصوتية بطريقة فعالة. لتطبيق الدراسة النظرية, نجري دراسة تجريبية على خطاب اللغة اإلنجليزية باستخدام بنية DeepSpeech2 مع مجموعة بياناتLibriSpeechh . على الرغم من أن بيئة األجهزة محدودة ، إال أن النتيجة )معدل خطأ الحرف = 27 )٪تكشف أن . إذا استخدمنا بيئة أكثر تطوراً 3DeepSpeech2يعمل بشكل جيد مع بيانات الصوت خاصة EN_en
dc.publisher جامعة غرداية EN_en
dc.subject Artificial Neural Networks, Deep Learning, Recurrent Neural Networks, Sequence Models, Speech Recognition. EN_en
dc.subject الشبكات العصبية االصطناعية، التعلم العميق، الشبكات العصبية المتكررة، نمادج التسلسل، التعرف على الكالم. EN_en
dc.title Sequence Models: Deep Learning Approach _ Case Speech Recognition _ EN_en
dc.type Thesis EN_en


الملفات في هذه المادة

هذه المادة تظهر في الحاويات التالية

عرض سجل المادة البسيط

بحث دي سبيس


بحث متقدم

استعرض

حسابي