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ڲــــڪــــٌـــۘ

ً ؇༟ިނ٭ ଫ܋ا اܳފྟص ܋ިَ۬ .؇ڣأ ؇༥ఈః༟ ጥஓ୷  ࣁࣖرຬ มݱ ཏܝಾ اݪޚݠاب ި۱ (DA) اஓ୷؇۱ෑෂݠ ਵਦض
ይዧٺأ ஓ୷ܝ݆ ཚورة. واܳྥލۛ٭ݧ ୍ଲٴৎا ا܋ྥލ؇ف ຬأܭ ؇ᆙᆘ ،ቕረ؇اܳأ ۋިل اෛங؇ص ඔ൹لఈః݁ আॻ༟ لޝߜߵ ڣ؆َ۬ ࠵࠹ݠف،
اܳأ݄ܭ، ۱ڍا ሒᇭ .୍ଲٴৎا ૰ۛ٭ݱ۬ ሒᇭ ܾዝ๎ะ ؇ᆙᆘ اৎݠض، ዛኞڍا اৎݠਊಾޚ۰ اܳأڎࢴࣖة اஓ؇ط ا܋ྥލ؇ف ሒᇭ ༟؇૭ڎ أن اܳأ݄٭ݑ
واܳݯأژ (DA) اஓ୷؇۱ෑෂݠ ਵਦض ڣ٪؇ت ሌᇿإ ཏ؞ٷ؇ޗৎا ඔ൹َීෂا ݬިر ܳٺݱྡྷ٭ژ ঌॻل اܳٺۜި اܳٷگܭ ّأ لگ۰ ޗݠ ૭ٺ༱ڎم
91GGV و 61GGV ஓިذج اݿٺ༱ڎام ఈః༠ل ݆݁ (NC)ً ؇ভإدرا ඔ൹݄اܳފܹ٭ واෛங؇ص (ICM) اܳྟފ٭ޔ ሒᆞدراا
݁؊ۊިذة ل؇دّ۬ وز ؇۳݄ ّگܹ٭ܭ ቕቆ ਃಸ؇َ؇ت ༟ިᆇ؇ت اݿٺ༱ڎام ቕቆ teNegamI. ਃಸ؇َ؇ت ۰༟ިᆇ আॻ༟ً ݁ފٴگ؇ ؇ዛᚬࣁࣖر ቕቆ มฆܳا
ዛኡ۠ٷ؇ أݿڰݠ ູ؇رب. أرًؕ إරජاء ሌᇿإ أدى ؇ᆙᆘ اܳڰ٪؇ت، ّިازن ༟ڎم ᄭႍၽ݁ލ ݆݁ ይዧٺۛڰ٭ژ INDA ਃಸ؇َ؇ت ۰༟ިᆇ ݆݁
اܳٴ٭؇َ؇ت আॻ༟ اৎڎرب 91GGV ஓިذج ۋگݑ ۋ٭ت ،99٪ .95 ሌᇿإ 89٪ .41 ݆݁ ଫଐّاوح ༟؇ܳ٭۰ دڢ۰ ݁أڎت ݆

ارًأ۰. اࡺࢦ؇ذج ඔ൹ً أداء আॻ༟أ ܾ፳፞༕ا ا௰௯௫ڰݯ۰
اܳٺڰ؇ڣ٭۰، اܳأݱྟ٭۰ اܳލٴႤၽت اࠍݠف، ،ঌॻل اܳٺۜި اܳٷگܭ ّأ اܳأ݄٭ݑ، اܳٺأ اஓ୷؇۱ෑෂݠ، ਵਦض ڲءոؼמ١: ոஈ྾ت

.ཏ؞ٷ؇ޗৎا ඔ൹َීෂ؇ً اܳٺݱިߌߵ GGV،



Abstract

Alzheimer’s Disease (AD) is a progressive and irreversible neurodegenerative disor-
der. Being the most common cause of dementia, it affects millions of people around
the world, making early detection and diagnosis a necessity. Deep learning can help
detect the numerous patterns associated with this disease, aiding in its early diag-
nosis. In this work, we employ a transfer learning approach to classify MRI images
into Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), and Cognitively
Normal (CN) classes by leveraging VGG16 and VGG19 models pre-trained on Im-
ageNet. The datasets used for training are down-sampled and up-sampled datasets
sampled from the ADNI dataset to mitigate the class imbalance issue, resulting in
four experiments. Our approach yielded high accuracy rates ranging from 98.14%
to 99.59%, with VGG19 trained on down-sampled data achieving the highest per-
formance among the four models.

Keywords: Alzheimer’s Disease, Deep learning, Transfer learning, Dementia,
Convolutional Neural Networks, VGG, MRI.



Résumé

La maladie d’Alzheimer (AD) est un trouble neurodégénératif progressif et ir-
réversible. Étant la cause la plus courante de démence, elle affecte des millions
de personnes dans le monde, rendant la détection et le diagnostic précoces essen-
tiels. L’apprentissage profond peut aider à détecter les nombreux motifs associés
à cette maladie, facilitant ainsi son diagnostic précoce. Dans ce travail, nous em-
ployons une approche d’apprentissage par transfert pour classer les images IRM en
trois catégories : maladie d’Alzheimer (AD), déficit cognitif léger (MCI) et per-
sonnes cognitivement normales (CN), en utilisant les modèles VGG16 et VGG19
pré-entraînés sur ImageNet. Les ensembles de données utilisés pour l’entraînement
sont des ensembles réduits et augmentés, échantillonnés à partir de la base de don-
nées ADNI pour atténuer le problème de déséquilibre des classes, aboutissant à
quatre expériences. Notre approche a donné des taux de précision élevés allant de
98,14% à 99,59%, le modèle VGG19 entraîné sur les données réduites ayant obtenu
les meilleures performances parmi les quatre modèles.

Mots clés: La maladie d’Alzheimer, Apprentissage profond, Apprentissage
par transfert, démence, réseaux neuronaux convolutifs, VGG, IRM.
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Introduction

According to the World Health Organization (WHO)1, the number of peo-
ple with dementia worldwide is expected to rise from 55 million in 2019 to 139
million by 2050. The economic burden of dementia is projected to increase signifi-
cantly, from US$ 1.3 trillion annually in 2019 to an estimated $2.8 trillion by 2030.
Alzheimer’s Disease (AD), the most common cause of dementia, currently has no
effective treatment to stop or reverse its progression, though treatments exist to
improve symptoms (Kumar et al. (2023)).

Diagnosing AD is challenging due to the brain’s complexity and the potential
confusion with other diseases. Additionally, AD symptoms typically do not man-
ifest in the early stages. This underscores the critical need for early detection to
anticipate and prevent the progression of AD, ensuring that affected individuals
and their caregivers enjoy a better quality of life. To this end, various deep learning
techniques have been explored for early detection and recognition of AD stages using
modalities such as imaging, clinical tests, and genetic data to assist physicians in
diagnosis. These techniques include Convolutional Neural Networks (CNN) (Raju
et al. (2021), Ebrahimi et al. (2021)), Recurrent Neural Networks (RNN) (Wang et
al. (2018) and Aqeel et al. (2022)), Transfer Learning, as in Hon & Khan (2017)
and Aderghal et al. (2018), and generative models (S. Saravanakumar (2022) and
Sampath et al. (2023)), among others. While these approaches have shown promis-
ing results, the need for larger labeled datasets that offer class balance is constantly
present, especially in specialized fields.

In this work, we employ transfer learning techniques to classify MRI images into
three categories: Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), and
Cognitively Normal (CN). We leverage the VGG16 and VGG19 models from the
VGG architecture (Simonyan & Zisserman (2015)), pre-trained on ImageNet. To
address class imbalance, we train on both down-sampled and up-sampled datasets
extracted from the ADNI dataset.

The rest of this thesis is organized as follows. Chapter 1 is devoted to the defini-
tion of concepts that are essential for the understanding of this work. In Chapter 2,
we review key contributions in machine learning and deep learning for AD research.
Chapter 3 details our data collection, preprocessing, and model training processes,
and presents and discusses the results. Finally, we conclude by summarizing the
addressed problem, the implementation steps, the results, the limitations, and the
future perspectives.

1https://www.who.int/news-room/facts-in-pictures/detail/dementia
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Chapter 1

Basic Concepts

1.1 Alzheimer Disease

In 1901, Dr. Alois Alzheimer, a German psychiatrist with expertise in neu-
ropathology, treated a 51-year-old patient named Auguste Deter, who exhibited
symptoms of memory loss, psychological changes, and disorientation. After she
died in 1906, Alzheimer performed an autopsy and he discovered two brain ab-
normalities: plaques and tangles, which are now known as beta-amyloid plaques
and tau tangles. This marked the beginning of our understanding of Alzheimer’s
Disease as a brain disorder that required medical treatment. Alzheimer’s Disease
(AD) is a progressive neurodegenerative disorder that affects the brain, leading to
cognitive decline, memory loss, and changes in behavior and personality, It is the
most common cause of dementia, affecting millions of people around the world.

Alzheimer’s disease progresses from subtle cognitive changes to severe stages
in memory loss, thinking, and the ability to perform daily activities. Typically,
Alzheimer’s progresses gradually, starting with preclinical (no noticeable symptoms,
but brain changes start to occur). The next stage is mild cognitive impairment
(MCI) with slight memory problems. The middle stage (Moderate Alzheimer’s
Disease) comes with symptoms such as cognitive decline and behavioral changes.
The late stage (Severe Alzheimer’s Disease) is characterized by severe cognitive and
physical deterioration that requires full-time care. It is important to note that it can
be challenging to assign a person with Alzheimer’s to a specific stage, as symptoms
and progression often overlap. Diagnosing Alzheimer’s Disease and then treating
it is not easy. Generally, early diagnosing is more straightforward when treating
the disease in the advanced stages. Early diagnosis of Alzheimer’s allows for timely
medical intervention to slow the progression of symptoms, which can contribute
to a longer life. It informs individuals and their families to make decisions about
future care and living arrangements, like engaging in mental and physical activities,
to improve the life quality for both patients and caregivers. Also, early diagnosis of
patients provides the opportunity to treat using clinical trials. However, Diagnosing
Alzheimer’s is still challenging due to the overlap with normal aging symptoms, such
as mild memory loss, stress, and depression. Additionally, some comorbidities, such
as thyroid issues, can mask or mimic Alzheimer’s symptoms, making it difficult
to distinguish between them, especially with a lack of a single definitive test. In
addition, Stigma and denial often surrounding AD diagnosis can significantly delay

2



Chapter 1. Basic Concepts

proper treatment and support.

1.2 Neuroimaging

Neuroimaging is a branch of medical imaging that specifically focuses on the
brain. As a clinical specialty, it employs non-invasive techniques to produce detailed
images. These images are used then for visualizing the structure and function of
the brain, It is necessary for diagnosing and studying gross injury and intracranial
diseases such as Alzheimer’s disease. Neuroimaging has various modalities includ-
ing MRI, PET, SPECT, and others, each modality addresses specific diagnostic
needs due to the brain’s complexity, and their combination usage provides unique
perspectives and insights to understanding a patient’s condition.

1.3 Imaging Modalities

Medical Diagnosis often requires information beyond what physical examina-
tion can offer. Image modalities act as windows into the human body, providing
various techniques to visualize the body and its internal structures and functions.
These techniques employ different technologies and physical principles and pro-
vide detailed images of anatomical structures and physiological functions. The
variety of image modalities allows doctors and professionals to choose appropriate
methods for specific diagnostic needs, and each technique shows different distinct
advantages and insights. Some modalities capture detailed anatomical structures,
while others are better suited for visualizing functional or tracking brain activity.
The complexity of human anatomy and physiology makes it difficult to provide
all the necessary information with a single imaging technique for a comprehen-
sive diagnosis. Multiple modalities can make more accurate diagnoses and develop
more effective treatment plans. We will explore several imaging modalities that
are used in diagnostic Alzheimer’s disease, including Computed Tomography (CT),
Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI),
highlighting their specific uses, benefits, and the dataset and their advantages and
disadvantages.

1.3.1 Computerized Tomography (CT)

Computed Tomography (CT) is a diagnostic imaging technique that uses X-
ray technology to produce detailed cross-sectional images of the body, including the
bones, organs, and blood vessels. It combines X-rays taken from different angles
with computer processing to create these images, which provide more detailed infor-
mation than standard X-rays. CT scans can be used to identify diseases, injuries,
and other medical conditions in various parts of the body, making them valuable
for diagnosis, treatment planning, and screening purposes.

The benefits of CT scans include their ability to provide detailed information for
diagnosing and planning treatment for a wide range of medical conditions. They are
particularly well-suited for quickly examining people who may have internal injuries

3



Chapter 1. Basic Concepts

Figure 1.1: An example of a CT scan

from accidents or trauma. CT scans can also be used for fluid or tissue biopsies
or as part of preparation for surgery or treatment. However, there are some risks
associated with CT scans. The primary concern is exposure to ionizing radiation,
which may cause a small increase in a person’s lifetime risk of developing cancer.
Additionally, there is a possible risk of reaction to the intravenous contrast agent or
dye, which is used to improve visualization in some CT scans. Despite these risks,
when used appropriately, the benefits of a CT scan far exceed the risks.

1.3.2 Positron Emission Tomography (PET)

Positron Emission Tomography (PET) is a medical imaging technique that
uses a radioactive tracer to visualize metabolic activity in the body. PET scans
are used to diagnose and monitor various medical conditions, including cancer,
heart disease, and neurological disorders. PET imaging is increasingly being used
in machine learning and deep learning applications. The benefits of PET imaging
include its ability to detect metabolic changes in the body, which can help diagnose
and monitor medical conditions. However, PET imaging also carries some risks,
including exposure to radiation and potential allergic reactions to the tracer. There
are several open datasets available for use in machine learning and deep learning
applications, including the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset 1, which includes PET scans of patients with Alzheimer’s Disease.

1Official website: adni.loni.usc.edu

4
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Chapter 1. Basic Concepts

Figure 1.2: An example of a PET scan

1.3.3 Fluorodeoxyglucose Positron Emission Tomography

FDG-PET stands for [F18] Fluorodeoxyglucose Positron Emission Tomogra-
phy. It is a medical imaging technique that combines positron emission tomog-
raphy (PET) with a radioactive glucose tracer called fluorodeoxyglucose (FDG)
to highlight metabolic activity in the body, including the brain. FDG is a ra-
dioactive form of glucose, a type of sugar that cells in the body use for energy.
FDG-PET is commonly used in oncology to detect and locate tumors, evaluate the
extent of disease, and assess treatment response, Nabi & Zubeldia (2002). In the
context of Alzheimer’s Disease detection, FDG-PET plays a crucial role by cap-
turing patterns of glucose uptake, revealing areas of altered metabolism associated
with the disease. In this diagnostic approach, FDG-PET data is integrated with
machine learning algorithms, deep learning models in particular, to analyze and in-
terpret subtle changes in glucose metabolism patterns. It’s important to note that
while these approaches show promise, the interpretation of FDG-PET findings in
Alzheimer’s Disease remains complex, and integration with other diagnostic tools
is often necessary. Drawbacks include exposure to ionizing radiation, cost consid-
erations, and potential interpretational challenges. In addition, these models are
research tools and should be used in conjunction with clinical experience.

1.3.4 SPECT images

Single-photon emission computed tomography (SPECT) is a nuclear medicine
imaging technique that provides three-dimensional information about the distribu-
tion of radioactive tracers in a patient’s body. The process begins with the injection
of a small amount of radioactive tracer into the patient. As the radiotracer circu-
lates through the body, it accumulates in the target tissues. A gamma camera then
rotates around the patient, detecting the radiotracer’s distribution and creating de-

5



Chapter 1. Basic Concepts

Figure 1.3: An example of an PET-FDG scan

tailed images of organs, bones, and tissues. This imaging technique offers clinicians
valuable insights into the perfusion and functionality of specific tissues, helping to
identify variations in brain activity associated with Alzheimer’s disease and other
neurological disorders. The radioactive tracer generally does not cause side effects
and typically leaves the body within 24 hours. Although SPECT is considered safe,
there are potential side effects, such as bleeding, pain, swelling at the injection site,
and allergic reactions to the tracer, particularly in patients with pre-existing condi-
tions or allergies. Healthcare providers must carefully manage the radiation dosage.
The use of SPECT imaging in scientific research and clinical studies is supported by
various datasets, such as OASIS 2 and PPMI. However, these datasets are generally
not publicly available.

1.3.5 Magnetic Resonance Imaging (MRI): sMRI, fMRI

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging tech-
nique that uses a strong magnetic field and radio waves to produce detailed two
and three-dimensional anatomical images of the body, such as bones, muscles, blood
vessels, and the brain. It provides better soft tissue contrast than CT scans and
does not use ionizing radiation, making it a safer imaging option. MRI can be
used to diagnose a variety of conditions, including anomalies of the brain and spinal
cord, tumors, joint injuries, heart problems, and diseases of the liver and other ab-
dominal organs. Specifically, structural MRI (sMRI) offers detailed images of brain
anatomy, allowing for the detection of subtle changes like brain atrophy, a hallmark
of Alzheimer’s disease. Functional MRI (fMRI) measures brain activity by detecting
blood flow changes, providing insights into functional alterations and connectivity
patterns in the brain. While MRI carries minimal risks, they may include the need
for patients to remain very still during the procedure, the potential for sedation or

2Official website: sites.wustl.edu/oasisbrains
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Figure 1.4: An example of a SPECT scan

anesthesia in some cases, and unique safety hazards for patients with implants or
external medical devices. Regarding the availability of Alzheimer’s disease (AD)
MRI data in open datasets, ADNI and OASIS are commonly used in AD research
employing machine learning and deep learning techniques.

1.3.6 Diffusion Tensor (DTI)

Diffusion Tensor Imaging (DTI) is a medical imaging technique that uses mag-
netic resonance imaging (MRI) to visualize the movement of water molecules in
the brain’s white matter tracts. DTI can also be used to track changes in white
matter at different points in time, providing new insights into the progression of
AD. However, there are some risks associated with DTI, such as the potential for
the strong magnetic field to attract magnetic objects and the possibility of claus-
trophobia for some patients. As for the availability of AD-related DTI data, several
publicly available datasets include DTI imaging data for AD research. For example,
the AI4AD and ADNI datasets.

1.4 Deep learning

1.4.1 Introduction

Deep learning is a subfield of machine learning that is characterized by using
deep artificial neural networks (ANN) that vaguely mimic the human brain. These
neural networks consist of interconnected nodes called neurons. Organized in layers,
they receive input and apply a series of nonlinear transformations to produce an
output to learn complex representations from the data. Another core concept is
activation functions, which are functions that determine the outputs of neurons
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Figure 1.5: An example of an MRI scan

Figure 1.6: An example of an DTI scan

and add non-linearity to the network, which enables it to learn complex patterns
from the data.

Deep learning surpasses traditional machine learning in various tasks, particu-
larly complex ones like image labeling, speech recognition, and language translation.
This is due to its use of neural networks, which provide multiple layers of abstraction
to learn complex relationships in the data Dubey & Rasool (n.d.). Deep learning
models automatically extract and learn relevant features without human-led feature
engineering, uncovering hidden features and leading to increasing accuracy. Addi-
tionally, deep learning’s capability to handle and learn from large datasets gives it
an edge over traditional methods, especially in the era of big data, where it can
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fully leverage its potential Jan et al. (2017). These advantages make deep learning
superior to traditional machine learning approaches to complex tasks.

Using deep learning in the healthcare sector has seen increasing interest, as
deep learning models have shown significant promise when exploited to perform
various health-related tasks such as disease detection, diagnosis, and prediction,
as well as classification and tissue segmentation. Deep learning models have also
been used to analyze neuroimaging data to diagnose and predict AD due to their
ability to handle high-dimensional data such as MRI and PET scans as well as
identifying the intricate patterns in the brain and using them to distinguish between
the different cases in the data such as CN, MCI, and AD, subsequently achieving
high performances.

1.4.2 Deep Learning Architectures

Many neural network architectures have been proposed for deep learning. In
addition to ANNs, Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) as well as generative models are among the most widely used
architectures. While most of these architectures have been used in AD-related
research, each responds to specific types of tasks and challenges.

• Convolutional Neural Networks (CNNs): CNNs LeCun et al. (2015)
are deep learning architectures that are well suited for image processing tasks.
Their main highlight is convolutional layers, which consist of filters that apply
to the input image to extract relevant features and patterns through convo-
lution. The weights of these filters are learnable and are updated by an
optimization algorithm (typically, a back propagation algorithm LeCun et al.
(1989)). CNNs also feature pooling layers, which are layers that downsam-
ple the feature maps obtained from convolutional layers, capturing essential
representations regardless of their position, orientation, and scale within the
image. Typically, the deeper these layers are in the network, the more ab-
stract and high-level the features they capture become. In the context of AD,
convolutional and pooling layers allow for the recognition of the various in-
tricate patterns that reflect the changes in the brain, leading to the accurate
recognition and classification of the different AD cases and phases, Ebrahimi
et al. (2021), Helaly et al. (2021).

• Recurrent Neural Networks (RNNs): RNNs are known for being de-
signed to handle sequential data, such as time series and natural language,
by introducing recurrent connections that they use to maintain an internal
stateMinsky & Papert (1988), Rumelhart et al. (1986). This hidden state is
updated by processing current input data along with the hidden state from
the previous step, which allows context to persist over time. Using this mech-
anism, these networks are able to model temporal dependencies and capture
patterns in sequential dataAlsubaie et al. (2024). RNNs have been devel-
oped to mitigate some issues with the original architecture, like vanishing
gradients. LSTM and GRU are examples of such developments. These archi-
tectures have been used in AD research to analyze longitudinal neuroimaging
data captured over time and predict AD progression. They were also used
to handle multimodality, such as combining neuroimaging with clinical and
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Figure 1.7: VGG 16 Architecture

genetic data, capturing both structural and functional changes in the brain,
as well as clinical aspects of AD. Alsubaie et al. (2024).

• Generative Models: Generative models such as Generative Adversarial Net-
works (GANs) Goodfellow et al. (2014) and Variational Autoencoders (VAEs)
Kingma & Welling (2013) are networks that aim to generate synthetic data
that resemble the characteristics and distribution of input data. They are
mainly used in AD research for data augmentation and handling missing data,
Sampath et al. (2023), S. Saravanakumar (2022), Bai et al. (2022).

1.4.3 VGG Architecture

The Visual Geometry Group (VGG) architecture, developed by Simonyan &
Zisserman (2015), is a CNN-based model known for its depth and straightforward
design. It has two variants, VGG16 and VGG19, comprising 16 and 19 layers, re-
spectively. A notable feature of VGG is its use of 3×3 convolution kernels, the
smallest size for capturing the basic directions of top, bottom, left, and right. This
was a significant deviation from the larger kernels (e.g., 5×5, 11×11) commonly
used at the time. The VGG models were trained for several weeks on a subset of
the ImageNet dataset Deng et al. (2009), containing 1.2 million images, for the 2014
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) Russakovsky et al.
(2015). VGG achieved a top accuracy of 92.7% in the classification+localization
task. The authors have made VGG16 and VGG19 publicly available, and these
models are now accessible as pre-trained models in deep learning frameworks like
TensorFlow and PyTorch. VGG’s high image recognition capabilities have made it
widely used in Alzheimer’s Disease (AD) research for early detection and classifica-
tion of different AD stages, as demonstrated by its performance on ImageNet Hon
& Khan (2017), Helaly et al. (2021).
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Chapter 2

State Of The Art

2.1 Introduction

As the research in machine learning and deep learning techniques progresses,
these methods are being increasingly utilized in order to optimize processes and
tackle challenges across various domains including medical and healthcare sectors.
This chapter contains a review of significant contributions in machine learning and
deep learning methods for detection and classification of AD. These contributions
span a diverse selection of algorithms and methods, and utilize varying modalities
and data sources. To summarize these contributions, we included recapitulating
tables that describe the method, data source, modalities, classification type, classi-
fication targets, and results.

2.2 Classic Approaches

Chaves et al. (2013) utilized method that integrates discretization and associ-
ation rule (AR)-based classification for early Alzheimer’s disease (AD) detection.
The problem addressed is the need for early diagnosis using neuroimaging data, par-
ticularly Single Photon Emission Computed Tomography (SPECT) and Positron
Emission Tomography (PET) .The SPECT database used included imaging stud-
ies from subjects referred by neurologists at the Virgen de las Nieves hospital in
Granada, Spain. While the PET data was sourced from the ADNI database. The
proposed Computer Aided Diagnosis (CAD) system uses intensity-based discretiza-
tion of 3D voxel features to select regions of interest (ROIs). AR mining is then
applied to identify relationships among brain areas in control subjects, with a fo-
cus on identifying distinctive patterns for AD. The system achieved high accuracy,
with 96.91% for SPECT and 92% for PET. Metrics like sensitivity (up to 94.64%
for SPECT) and specificity (up to 100%) underscore the system’s effectiveness.
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2.3 Machine Learning-based Approaches

2.3.1 Bayesian Classifier

Bayesian classifiers represent uncomplicated probabilistic classification models
that assume feature independence. Grounded in Bayes’ theorem, these classifiers
produce a classification as a probability based on the input features Shanthamallu
et al. (2017).

López et al. (2009) proposed a Computer-Aided Diagnosis (CAD) system for
the diagnosis of AD based on multivariate approaches such as Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA). These techniques were
utilized to reduce high dimensionality and extract relevant features from the used
SPECT and PET datasets, which were obtained from the “Virgen de las Nieves”
Hospital in Granada, Spain, and the “Clinica PET Cartuja” in Seville, Spain, respec-
tively. Both datasets contained labeled normal control and AD cases. A Bayesian
classifier was used for the classification task. It was evaluated using Leave-One-Out
cross-validation, which yielded accuracy rates of 98.33% and 93.41% for PET and
SPECT images, respectively.

Seixas et al. (2014) proposed a Bayesian Network (BN) decision model for sup-
porting the diagnosis of dementia, Alzheimer’s disease (AD), and Mild Cognitive
Impairment (MCI). The BN model was built using a combination of expert knowl-
edge and data-oriented modeling. The structure of the network is based on current
diagnostic criteria and input from domain experts. The parameters of the network
were estimated using a supervised learning algorithm from a dataset of real clinical
cases, which consists of patients and normal controls from two institutions: CERAD
(Consortium to Establish a Registry for Alzheimer’s Disease) and CAD (Center for
Alzheimer’s Disease and Related Disorders). The dataset includes attributes such
as neuropsychological test results, patient demographic data, symptoms, and signs.
The proposed BN network scored an F1 score of 0.65 on the CERAD dataset and
0.82 on the CAD dataset in AD diagnosis. Limitations of the study include the use
of a limited dataset and the absence of certain relevant neuropsychological tests in
the dataset.

2.3.2 Support Vector Machines

Support Vector Machine (SVM) is a machine learning algorithm that was first
introduced in the 1990s by Vladimir N. Vapnik and his colleagues and used for both
regression and classification problems. Most previous biomarker studies focused
on one specific biomarker or compared the sensitivity and specificity of different
single biomarkers. Some researchers have proposed that multi-view neuroimaging
biomarkers can get better performance than single-view in the detection of AD, as
demonstrated by the study of (Hinrichs et al. (2009), Zhang et al. (2011)) which
found that using inter-cluster biomarker always get the best result.

Dukart et al. (2013) suggested using SVM on combined information from mul-
tiple biomarkers to improve the detection and differentiation of AD and frontotem-
poral lobar degeneration. The methods involved pre-processing and classification
algorithms applied to two different datasets: the Cognitive Neurology Clinic at the
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University of Leipzig and the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. The data types used were FDG-PET and MRI scans as well, and the
preprocessing algorithm was designed to facilitate the combination of different im-
age modalities. The method achieved an accuracy of 90%, specificity of 87.8%,
and sensitivity of 91.8% on both magnetic resonance images and PET. This sug-
gests that machine learning techniques, particularly when combining FDG-PET
and MRI data, can achieve high accuracy in Alzheimer’s detection.

Another study (Kruthika et al. (2018)) proposed a method for classifying
Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) and Normal Con-
trol (NC) on MRI data using volumetric measurements of brain structures relevant
to the diagnosis of AD. These measures include the hippocampus, medial temporal
lobe, ventricles, amygdala as well as whole brain volume. These measures were
extracted from the images using FreeSurfer software 1. The images were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. The volume
measurements were then considered as features for the SVM classifier. The authors
chose the AUC (Area Under the Curve) as the evaluation metric in this study,
claiming that it is less sensitive to differences in the class distribution within the
data, which makes it more robust in dealing with skewed data compared to accu-
racy. The results showed that the hippocampal volume measurement is the best
performing feature for AD/NC, AD/MCI, NC/MCI classification scoring an AUC
value of 95.75%, 79.13%, and 64.09% respectively.

2.3.3 Logistic Regression

Logistic regression is one of the simplest classification machine learning mod-
els. It fits a sigmoid function to the data and outputs probabilistic class predictions
for new inputs according to that function. Logistic regression has been used for
Alzheimer’s classification in several studies, usually in conjunction with other meth-
ods that handle image processing and feature extraction Ruyi Xiao (2021), Johnson
et al. (2014).

Ruyi Xiao (2021) proposed a method for the early diagnosis of Alzheimer’s
disease using a sparse logistic regression model with the generalized elastic net.
The researchers aim to accurately predict individuals at high risk of developing
Alzheimer’s disease for future treatment. The high-dimensional small sample char-
acteristics of Alzheimer’s disease data pose challenges for logistic regression, which
the elastic net solves by selecting only the most discriminant features. The param-
eters of the regularization were tuned using ten-fold cross-validation and evaluated
using accuracy, sensitivity, and specificity. The proposed model performed better
than other methods including SVM, Random Forest, CNN, and RNN trained on 197
subjects from the baseline MRI data of ADNI, achieving an accuracy score of 95.61%
for AD vs. HC (healthy controls), 84.67%, for MCI (mild cognitive impairment) vs.
HC, and 75.87% for cMCI (converters) vs. sMCI (stable).

Johnson et al. (2014) combined a genetic algorithm (GA) with logistic regres-
sion to predict healthy controls (HC) conversion to MCI/AD and MCI to AD after
36 months. The data used in this study is a set of neuropsychological and mood rat-
ing scales including the Mini-Mental State Examination (MMSE), Clock Drawing

1FreeSurfer (harvard.edu)
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Test (CDT), and Clinical Dementia Rating scale (CDR) among others, of individ-
uals aged 60 years or older, categorized as either cognitively healthy or meeting
clinical criteria for mild cognitive impairment (MCI) or Alzheimer’s disease (AD).
This data was obtained from the AIBL study. The genetic algorithm was used
to search for the most significant combination of features which were represented
using strings of binary values, each combination (population individual) was used
for the training of a logistic regression model, of which the AUC score was used
as the fitness score. Then, through crossover and mutation, the search space was
probed for the fittest combination of features to be considered for the final model.
After running the GA 50 times, it selected different combinations of features for
predicting progression from HC to MCI/AD that has achieved AUC of 0.90% and
progression from MCI to AD with AUC of 0.86%, highlighting the superiority of
using combinations of features over individual ones.

2.3.4 K-means

K-means Forgy (1965) is an unsupervised learning technique that is applied to
classify unlabeled data points into a specific number of groups or clusters. This is
achieved by assigning each data point to the nearest mean. The number of clusters
is either defined based on the nature of the data or based on clustering validity
measures.

In Escudero et al. (2011), the authors addressed the pressing need for objective
means to detect Alzheimer’s disease (AD) early, allowing for targeted interventions
and treatment monitoring. The study proposed the creation of a Bioprofile of AD,
aiming to reveal key disease patterns in subjects’ biodata. The study utilizes the
ADNI database, incorporating modalities such as demographic, clinical, MRI, and
CSF data from CN, MCI, and AD subjects. K-means clustering is applied to data
features to divide subjects into pathologic and non-pathologic groups in five clinical
scenarios. The preliminary results confirm the presence of an important AD pattern
in the biodata of controls, AD, and Mild Cognitive Impairment (MCI) patients.
Furthermore, the Bioprofile shows potential for early detection of AD at the MCI
stage by dividing MCI subjects into groups with different rates of conversion to
AD. The results are measured using clustering rates, with statistical significance
assessed using the Mann-Whitney U test. The limitations of the study include the
need for further validation and the potential impact of variable weighting on the
assignment of subjects to the Bioprofile of AD.

Olle Olle et al. (2024) Proposed two approaches for classification of Alzheimer’s
disease to CN and AD. the dataset provided from ADNI including 602 MRI images.
The Kmeans approach using CNN architecture for training achieved an AUC 0.887,
and accuracy of 82.0%. In the second approach, Principal Component Analysis PCA
was used in feature reduction while using ANN architecture for training, reporting
an AUC of 0.941 and an accuracy of 91.0%.

The study Paul & Hoque (2010) applied the algorithm of k-Means-Mode on
the dataset of the University of California at Irvine (UCI) Machine Learning Repos-
itory and a diabetes dataset, and reported an accuracy about of 95%. while other
algorithms like K-Means and K-Mode showed accuracies lower than 65%. This in-
dicates that the K-Means-Mode is better than others in clustering the data and will
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be helpful in data analysis.

2.3.5 Multi-layer Perceptron

Raju et al. (2021) presented a multi-class classification algorithm for the detec-
tion of Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), and Normal
Control (NC). The data used in this study was 465 sMRI images, including 132
AD, 181 MCI, and 152 NC images from the ADNI dataset. Each one of these
images was partitioned into 27 overlapping patches and fed into a 3D CNN for
feature extraction, which then got concatenated into a feature vector. A multi-
layer perceptron was then trained on the resulting features. The results indicated
an accuracy of 96.66% in the ternary classification task. A heatmap of the main
affected brain regions relating to AD and MCI was also generated using Gradient
Weighted Class Activation Mapping (Grad-CAM) being the medial temporal lobe’s
subcortical structures such as the hippocampus, entorhinal cortex, amygdala, and
Para hippocampus, confirming previous research in the field.

Qiu et al. (2020) proposed an interpretable deep learning framework for the
classification of AD using multi-modal MRI, age, gender, and Mini-Mental State
Examination score data from the ADNI dataset. The framework consists of a fully
convolutional network (FCN) trained on MRI patches for each individual. It gen-
erates probability maps of AD status for local brain regions and three multilayer
perceptron (MLP) models. The first MLP was trained on the probability maps gen-
erated by the FCN, the second MLP model was trained on age, gender, and MMSE
score, and the third model was trained on combined modalities. The models’ per-
formance was compared against an international group of practicing neurologists on
a randomly sampled cohort of ADNI participants having all the modalities (MRI,
MMSE score, age, and gender) provided. The performance of the neurologists varied
due to different clinical practices. The deep learning model that was trained on only
MRI data (MRI model) reached an accuracy of 0.834 ± 0.020, and outperformed the
average neurologist (accuracy: 0.823 ± 0.094). When age, gender, and MMSE in-
formation were added to the model, the performance increased significantly (fusion
model; accuracy: 0.968 ± 0.014.

2.4 Deep Learning-based Approaches

2.4.1 Transfer Learning (TL) approaches

Aderghal et al. (2018) proposed a cross-modal transfer learning approach.
Specifically, from structural MRI to Diffusion Tensor Imaging (DTI) modality, for
NC, AD, and MCI classification. Their motivation was the lack of large datasets
in both modalities, which led to overfitting. With data obtained from the ADNI
database, the authors applied data augmentation to increase the number of samples
both for training and validation sets. Then, they pre-trained a set of CNN models
on the augmented data, classifying AD vs. NC, NC vs. MCI, and MCI vs. AD
on the Sagittal, Axial, and Coronal projections, from which they selected the best,
using a majority vote. The model is then fine-tuned on Mean Diffusivity (MD)
data extracted from DTI by initializing it with the parameters obtained from the
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pre-training. The final model achieved classification accuracies of 92.5% for AD vs.
NC, 85.0% for AD vs. MCI, and 80.0% for MCI vs. NC.

In Hon & Khan (2017), the authors applied transfer learning on two proven
models, VGG16 and Inception V4 with weights pre-trained on ImageNet to detect
AD. The data consists of MRI scans from 100 health controls (HC) and 100 AD
subjects from the OASIS dataset. An entropy-based selection mechanism was used
to select the most informative 32 slices from the 3D scans, resulting in a total of
6,400 images. After training the models using 5-fold cross-validation, the average
accuracy achieved by the fine-tuned VGG16 and Inception V4 models was 92.3%
and 96.25%, respectively, which was comparable to the five state-of-the-art methods
that the authors included for comparison.

2.4.2 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a type of neural network that is par-
ticularly effective in image recognition and classification tasks. CNNs are composed
of multiple layers, including convolutional layers and activation layers. These layers
work together to extract features and then make predictions based on these features.
CNNs are designed to automatically and adaptively learn, but the training process
involves feeding a large dataset. In the context of Alzheimer’s disease detection,
CNNs can be trained to analyze brain images, such as MRI scans, and identify
patterns or abnormalities that are indicative of the disease.

In the study of Ebrahimi et al. (2021), the authors explore the effectiveness of
CNNs in detecting Alzheimer’s disease using MRI images, by comparing different
CNN architectures including 2D and 3D CNNs. The main contribution of the study
is the introduction of transfer learning from a 2D to 3D data set. For this purpose,
they proposed two approaches: the first utilizes 2D convolutional neural networks
(CNNs) to extract AD-related features from individual image slices, while the sec-
ond combines 2D CNNs with long short-term memory (LSTM) to capture spatial
connections in the 2D image slices. The performance of the proposed approaches is
evaluated using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.
The results show that Multi-view ResNet-18 using transfer learning had 84.38%
accuracy, and Multi-view SqueezeNet using transfer learning had 90.62% accuracy.
The same performance was achieved by SqueezeNet + LSTM. The research high-
lights training 3D CNNs. In addition, the 3D voxel-based method with transfer
learning outperforms the other methods with accuracy 96. 88%, sensitivity 100%
and specificity 94. 12%. This indicates the potential of deep learning models and
transfer learning in improving the precision of AD detection using MRI images.

Helaly et al. (2021) proposes a system that includes three fundamental stages:
feature extraction, feature reduction, and classification. CNN is used to combine
these stages. The other method used is VGG19. The dataset is collected from ADNI
and consists of 300 patients divided into four classes: Alzheimer’s disease (AD),
early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI),
and normal controls (NC), with a total of 4800 MRI images. The results show that
the CNN architectures achieved very promising accuracies, with 93.61% and 95.17%
for 2D and 3D multi-class AD stage classifications, respectively. Additionally, the
VGG19 pre-trained model achieved a precision of 97%. Under the circumstances
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imposed by the Covid-19 pandemic, The authors also established a web service
based on the proposed CNN architectures that is aimed to predict the AD stage of
MRI scans uploaded by patients and doctors.

2.4.3 Recurrent Neural Networks

Recurrent Neural Network (RNN) is a type of artificial neural network designed
to handling the sequential data by preserving a memory of the input, unlike other
neural networks. RNNs have revolutionized various fields, like his receiving interest
in domain of Alzheimer’s disease.

The study of Wang et al. (2018) confirms effectiveness of RNN architectures,
especially Long Short Term Memory (LSTM) RNN model, in solving the problem
of predicting Alzheimer’s disease (AD) progression. Dataset used from the National
Alzheimer’s Coordinating Center (NACC) includes 5432 patients with probable AD
from August 31, 2005, to May 25, 2017. The study focus on training the LSTM
RNN model on predicting the progress of AD in next medical visit for any patient.
Although, the numbers of different visits and uneven intervals for each patient, the
results show that the proposed model can predict the patient’s AD progression for
the next visit with achieving an accuracy of 99

In Aqeel et al. (2022), the authors proposed a framework of RNN architecture
with LSTM and fully connected layers to predict Alzheimer’s disease (AD). The
data included MRI biomarkers for 805 subjects from the ADNI dataset. The pro-
posed model predicts biomarkers of patients after 6, 12, 21 18, 24, and 36 months,
specifically targeting two classes: MCI and AD. This framework achieved an accu-
racy of 88.24%.

2.4.4 Generative Adversarial Networks

GAN stands for Generative Adversarial Network. It is a specific type of deep
learning architecture that involves discovering and learning regularities or patterns
in input data in such a way that the model can be used to create new examples that
can be extracted from the original data set. The fundamental idea behind GANs is
to train two neural networks that automatically discover and learn the patterns in
input data, known as a generator and a discriminator, which compete against each
other in a game-like setting in a kind of adversarial fashion. The generator creates
synthetic data samples, such as images or text, while the discriminator evaluates
the generated data and compares it with real data without knowing which is the
real data. The goal of GANs is to train the generator network to produce realistic
and high-quality samples that are indistinguishable from real data, which is useful
in augmenting data when they have a lack.

Sampath et al. (2023) proposed a model called Whale-Optimized Deep Gener-
ative Adversarial Network (WODGAN), which uses a generator and a discriminator
to detect AD stages based on 3D MRI brain neuroimaging. The discriminator is
trained using real images, while the generator creates synthetic images using noise
and random selection. The WODGAN model is trained and tested using 3D MRIs
from the ADNI dataset, which includes 3 Tesla T1-weighted MRI scans. The paper
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also discusses the limitations of existing AD detection systems and the importance
of early AD identification. The Whale Optimizer (WO) is used during training to
improve network efficiency and lower prediction errors. The results and metrics
have shown a high accuracy rate of 99.93% in AD stage recognition, highlighting
the effectiveness of the WODGAN model in addressing the limitations of existing
AD detection systems.

S. Saravanakumar (2022) presents a novel deep learning framework for the
early detection of Alzheimer’s disease by distinguishing between multiple classes
(e.g., normal, mild cognitive impairment, and Alzheimer’s disease). The proposed
methodology involves several key steps, including noise removal, segmentation using
the U-Net model, and feature extraction through a convolutional neural network
(CNN). The study focuses on the use of a semi-supervised generative adversarial net-
work (GAN) to automatically detect the presence of Alzheimer’s disease in magnetic
resonance imaging (MRI) data. The dataset used in the study is the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset, The article mentions the use of
1000 images for evaluation, with 700 images used for training. The proposed model
achieved a prediction accuracy of up to 77% (AUC = 0.85) for the transformation
of mild cognitive impairment (MCI) to Alzheimer’s disease when using individual
data.

Bai et al. (2022) presents a novel approach to Alzheimer’s disease detection
using generative adversarial networks (GANs) for brain slice image enhancement.
The study proposes a three-round learning strategy based on 3D deep convolutional
GANs for Alzheimer’s disease staging, aiming to address the overfitting problem
caused by the lack of labeled training samples. The proposed BSGAN-ADD model
is evaluated on two real-world datasets, comprises 818 structural MRI (sMRI) sam-
ples from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database and
416 subjects from the Open Access Series of Imaging Studies (OASIS) database.
The study results demonstrate that the new feature extraction process used in
BSGAN-ADD can extract more representative high-level brain features to achieve
a significant diagnosis performance gain compared with several typical methods.

2.4.5 Transformer-Based Approaches

Hoang et al. (2023) propose a Vision Transformers (ViT) architecture for the
classification of MCI to AD progression using sMRI data of 598 MCI subjects from
the ADNI database. The method achieved 83.27%, 85.07% and 81.48% in terms
of accuracy, specificity, and sensitivity. For interpretability of the proposed model,
the authors also visualized the most contributing brain regions to the prediction
of MCI progression, with the findings including the thalamus, medial frontal, and
occipital.

Liu et al. (2023) present Multi-Modal Mixing Transformer (3MT), a disease
classification transformer for AD and Cognitively Normal (CN) classification and
mild cognitive impairment (MCI) conversion prediction to progressive MCI (pMCI)
or stable MCI (sMCI). The proposed network leverages multi-modal data. It uses
a Cascaded Modality Transformers architecture with cross-attention to mix 12 dif-
ferent feature types including age, gender, education years, APOE4 genotyping,
MMSE score, and MRI from the ADNI database. Missing data scenarios were han-
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dled using a modality dropout mechanism, ensuring modality independence and
full data utilization. The model achieved an accuracy score of 99.4%, a specificity
score of 98.9%, and a sensitivity score of 100% on the AD classification task with-
out missing data while it scored 96.3%, 90.3%, and 97.5% in terms of classification
accuracy, specificity, and sensitivity, respectively when tested on missing data from
the AIBL database.

Sarraf et al. (2023) proposed an optimized Vision Transformer for AD classifi-
cation (OViTAD) using fMRI and sMRI data from the ADNI database. The main
objective was a multi-class prediction of AD, MCI, and HC while aiming to improve
the efficiency of the model by reducing the input dimension and the number of
heads in the multi-head attention layer to decrease the complexity and trainable
parameters of the network. The average performance of the proposed architecture
across three repetitions (random data splits) was 97% ± 0.0 and 99.55% ± 0.39 for
the two modalities for the multi-class classification experiments. In terms of inter-
pretability, the last fully connected (FC) layer feature vector was multiplied and
then summed with each pixel from fMRI brain slices. They were then normalized
to obtain color maps.

2.5 Conclusion

In this chapter, we reviewed a wide selection of machine learning and deep learn-
ing methods that have been employed for AD classification, such as Bayesian Clas-
sifiers, Support Vector Machines (SVM), Logistic Regression, Genetic Algorithms
(GA), K-means clustering, 3D Convolutional Neural Networks (CNN), and Fully
Connected Networks (FCN). Each method has demonstrated varying degrees of
success based on the data source and methodology employed. Diverse data sources
like ADNI, OASIS, and AIBL have been utilized, with ADNI being the most ex-
tensively used, possibly due to its diversity in terms of the data modalities it offers,
this high interest in ADNI highlights the importance of comprehensive datasets in
encouraging research in AD. The modalities were used to capture relevant patterns
to AD. In their research, the authors heavily relied on MRI data, possibly, due to
its high availability in most of the sources. Furthermore, several deep learning tech-
niques were employed, including Transfer Learning, Convolutional Neural Networks
(CNN), Generative Adversarial Networks (GANs), and Vision Transformers (ViT).
These techniques showed promising results across both binary and multi-class clas-
sification tasks, generally surpassing machine learning methods.
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Authors Method Dataset Modality ClassificationTargets Results
Seixas et al.
(2014)

Bayesian Classi-
fier

CERAD
+ CAD

Neuropsychological
test results
+ demo-
graphic
data +
symptoms
+ signs

Multi class Dementia
vs. AD
vs. MCI

F1 score 0.65
(CERAD data),
0.82 (CAD data)

López et al.
(2009)

PCA +
Bayesian Classi-
fier

Private
hospital
data

PET +
SPECT
images

Binary
class

AD vs.
Non-AD

Accuracy 98.33%
and 93.41%

Dukart et al.
(2013)

SVM ADNI +
Univer-
sity of
Leipzig

MRI +
PET

Binary
class

AD vs.
Non-AD

Accuracy 90%,
specificity 87.8%,
sensitivity 91.8%

Kruthika et al.
(2018)

SVM ADNI MRI Binary
class

AD vs.
NC, AD
vs. MCI,
MCI vs.
NC

AUC 95.75% ,
79.13% , 64.09%

Ruyi Xiao
(2021)

Logistic Regres-
sion + General-
ized Elastic Net

ADNI MRI Binary
class

AD vs.
HC, MCI
vs. HC,
cMCI vs.
sMCI

Accuracy 95.61% ,
84.67% , 75.87%

Johnson et al.
(2014)

Genetic Algo-
rithm (GA) +
Logistic Regres-
sion

AIBL Binary
class

HC vs.
MCI, HC
vs. AD,
MCI vs.
AD

AUC 90%, AUC
90%, AUC 86%

Escudero et al.
(2011)

Bioprofile K-
means

ADNI Demographic
+ clinical
+ MRI +
CSF

Binary
class

AD vs.
Non-AD

Olle Olle et al.
(2024)

Kmeans + CNN ADNI MRI Binary
class

AD vs.
CN

Accuracy 82%,
AUC 88.7%

Olle Olle et al.
(2024)

PCA + ANN ADNI MRI Binary
class

AD vs.
CN

Accuracy 91%,
AUC 94.1%

Paul & Hoque
(2010)

K-Means-Mode University
of Cal-
ifornia
at Irvine
(UCI)

Accuracy 95%

Paul & Hoque
(2010)

K-Means-Mode University
of Cal-
ifornia
at Irvine
(UCI)

Accuracy lower
than 65%

Raju et al.
(2021)

3D CNN +
MLP

ADNI sMRI Binary
class

NC vs.
MCI vs.
AD

Accuracy 96.66%

Qiu et al. (2020) FCN + MLP ADNI MRI + age
+ gender +
MMSE

Binary
class

AD vs.
NC

Accuracy 83.4%
(MRI only), 96.8%
(fusion model)

Table 2.1: Recapitulating table of machine learning contributions to AD classifica-
tion
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Authors Method Dataset Modality ClassificationTargets Results
Aderghal et al.
(2018)

Transfer Learn-
ing from MRI to
DTI

ADNI MRI + DTI Multi class AD vs.
NC AD
vs. MCI
MCI vs.
NC

92.5% 85.0% 80.0%
(accuracy)

Hon & Khan
(2017)

Transfer learn-
ing on VGG16

OASIS MRI Binary
class

AD vs HC 92.3% (accuracy)

Hon & Khan
(2017)

Transfer learn-
ing on Inception
V4

OASIS MRI Binary
class

AD vs HC 96.25% (accuracy)

Ebrahimi et al.
(2021)

CNN: Multi-
view ResNet-18
with Transfer
learning

ADNI MRI Binary
class

AD vs HC 84.38% accuracy,
87.5% sensitivity,
and 81.25%
specificity

Ebrahimi et al.
(2021)

CNN:
Multi-view
SqueezeNet
with Transfer
learning and
SqueezeNet +
LSTM

ADNI MRI Binary
class

AD vs HC 90.62% accuracy,
81.25% sensitivity,
100% specificity

Ebrahimi et al.
(2021)

CNN: 3D voxel-
based with
Transfer learn-
ing

ADNI MRI Binary
class

AD vs HC 96.88% accuracy,
100% sensitivity,
94.12% specificity.

Helaly et al.
(2021)

2D CNN ADNI MRI Multi class AD vs
EMCI vs
LMCI vs
NC

accuracy 93.61%

Helaly et al.
(2021)

3D CNN ADNI MRI Multi class AD vs
EMCI vs
LMCI vs
NC

accuracy 95.17%

Helaly et al.
(2021)

Transfer Learn-
ing + VGG19

ADNI MRI Multi class AD vs
EMCI vs
LMCI vs
NC

accuracy 97%

Sampath et al.
(2023)

Whale Op-
timized
Deep GAN
(WODGAN)

ADNI +
AIBL +
OASIS +
MIRIAD

3D MRI Multi class AD vs
MCI vs
SMC vs
CN

accuracy 99.93%

S. Saravanaku-
mar (2022)

GAN ADNI MRI Multi class HC vs
MCI vs
AD

accuracy 70%

Bai et al. (2022) GANs + CNN ADNI +
OASIS

sMRI / / /

Hoang et al.
(2023)

Vision Trans-
former (ViT)

ADNI sMRI Binary
class

MCI vs
AD

accuracy 83.27%,
specificity 85.07%,
sensitivity 81.48%

Liu et al. (2023) Multi-Modality
Mixing Trans-
former (3MT)

ADNI +
AIBL

age, gen-
der, educa-
tion years,
APOE4,
MMSE
score, and
MRI with-
out missing
data

Multi class AD vs CN
vs MCI vs
to pMCI
or sMCI

accuracy 99.4%,
specificity 98.9%,
sensitivity 100%

Liu et al. (2023) Multi-Modality
Mixing Trans-
former (3MT)

AIBL MRI with
missing
data

Multi class AD vs CN
vs MCI vs
to pMCI
or sMCI

accuracy 96.3%,
specificity 90.3%,
sensitivity 97.5%

Sarraf et al.
(2023)

Optimized ViT
(OViTAD)

ADNI fMRI +
sMRI

Multi class AD vs HC
vs MC

accuracy 97% for
fMRI and 99.55%
for sMRI

Table 2.2: Recapitulating table of deep learning contributions to AD classification

21



Chapter 3

Implementation and Experiments

3.1 Introduction

In this work, we investigate the application of transfer learning for the clas-
sification of multi-class Alzheimer’s disease MRI images. This approach leverages
models pre-trained on similar tasks to develop our models, subsequently fine-tuning
them with our specific data. This method enhances the predictive accuracy of our
models and reduces training time. We selected the VGG16 and VGG19 variants of
the VGG architecture as our base models for transfer learning Simonyan & Zisser-
man (2015). These architectures are deep convolutional networks consisting of 16
and 19 layers, respectively, noted for their depth and straightforward design. The
VGG models gained prominence after winning the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2014 Russakovsky et al. (2015).

3.2 Data

The data used in this work were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database 1. Launched in 2003 as a public-private
partnership led by Principal Investigator Michael W. Weiner, MD, ADNI aims
to determine whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD) 2. Specifically, we utilized the
ADNI1: Complete 3Yr 3T and ADNI1: Complete 3Yr 1.5T standardized MRI
datasets Wyman et al. (2013). These datasets include scans that have undergone
preprocessing steps such as gradient inhomogeneity correction (Gradwarp) and B1
correction. The subjects in the 3-year set include individuals with scans taken at
screening at 6 months, 1 year, 18 months (MCI only), 2 years, and 3 years (normal
and MCI only). We selected this dataset to expose our models to diverse data,
allowing them to learn the different changes in the brain over three years for the
three classes: cognitively normal (CN), AD, and MCI.

1Official website: adni.loni.usc.edu
2For up-to-date information, see www.adni-info.org
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3.3 Preprocessing

The 3D scans we obtained required a preprocessing pipeline to convert them
into 2D slices suitable for training. This pipeline begins with a preselection phase
to filter out duplicate scans. Duplicates are identified based on having the same
subject ID and date, and those with fewer standardization steps are discarded.
Additionally, only MPRAGE scans are retained to maintain data consistency. After
this phase, the data remained imbalanced across the subject groups (AD, CN, and
MCI). To address this imbalance, we employed two strategies: down-sampling and
up-sampling. In the down-sampling approach, we aligned the scan count to the
class with the fewest scans, which was AD with 135 scans. The other classes were
down-sampled to 135 scans each. To minimize the loss of scan diversity at the
subject level, we prioritized selecting subjects with more visits, ensuring greater
scan diversity per subject. In the up-sampling approach, we matched the scan
count to the class with the most scans, which was MCI with 248 scans. The other
classes were up-sampled to 248 scans each by randomly selecting and repeating
scans from these classes. This process resulted in two datasets: a down-sampled
dataset and an up-sampled dataset, to be used in the training experiments.

The selected scans are forwarded into the main preprocessing step. In this
phase, the scans go through four processing steps:

1. Reorientation. The scans were reoriented by applying 90, 180, or 270-
degree rotations on the different axes as necessary to match the orientation
of a standard template image.

2. Cropping. As the scans comprise the whole head and neck, it was necessary
to crop them to contain only the upper head.

3. Brain Extraction. Skull-stripping and extracting only brain tissues and
omitting any non-brain tissues helps in retaining only the relevant parts of
Alzheimer’s disease.

4. Atlas Affine Registration. Due to variations in brain size and dimensions
among subjects, as well as potential inconsistencies in repeated scans of the
same subject. Registration of the scans to a reference template is essential.
This alignment ensures that every voxel consistently corresponds to the same
anatomical location in the brain across all scans.

5. Intensity Normalization. The intensity values of the scans were rescaled
to the range [-1, 1] to facilitate training. This normalization ensures that the
pixel values remain within a smaller numerical range, which is beneficial for
neural network-based models during the training.

6. Central Slice Cropping. From each scan, only 30 slices were taken from
the center along the z-axis in an effort to balance capturing the most relevant
information to the diagnosis of AD and reducing computational costs.

This pipeline produces 30 2D images (slices) per scan, resulting in a total of
12,150 images (4,050 images per class) in the down-sampled dataset and 22,320
images in the up-sampled dataset (7,440 images per class). Most of the steps in this
phase were executed using the FSL Neuroimaging tool. The implementation of this
pipeline is available here.
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3.4 Experiments

In the context of training deep learning (DL) models, transfer learning plays a
remarkable role in enhancing performance and efficiency by leveraging knowledge
gained from one domain to improve performance in a different but related task.

The experimentation setup includes two convolutional neural network models,
each utilizing a pre-trained VGG architecture (VGG16 and VGG19) as the base
model. Both models are trained on the up-sampled and down-sampled datasets
described earlier, resulting in four experiments. The pre-trained models act as
feature extractors, capturing intricate patterns from the input images. The VGG16
and VGG19 models were originally trained on the ImageNet dataset, which contains
over 1.4 million images across 1,000 different classes.

3.4.1 Architecture

The proposed models use VGG16 and VGG19 as the base architectures. The
VGG16 architecture comprises 13 convolutional layers and 3 fully connected layers,
while the VGG19 architecture includes 16 convolutional layers and 3 fully connected
layers. We adjusted the dimensions of the input images to be compatible with
the dataset. Both models use weights pre-trained on the ImageNet dataset and
exclude the top (fully connected) layers. To retain the learned features and prevent
them from being updated during training, all layers of the base model were frozen,
allowing weight updates only on the top model, which has the following architecture:

• Flatten Layer: Converts the 3D output from previous layer into a 1D vector.

• Dense Layer: A fully connected layer with 256 units and ReLU activation.

• Dense Layer: Another fully connected layer with 128 units and ReLU acti-
vation

• Output Layer: The last Dense layer with 3 units, using softmax activation
for classification.

• Batch Normalization layers are added after each fully connected (Dense)
layer. Batch normalization helps stabilize the training process and improves
model performance.

• Dropout layers are added after each fully connected layer with a dropout
rate of 0.5 to reduce overfitting.

3.4.2 Metrics Used in Evaluation

To thoroughly evaluate the performance of our models, we used various metrics
that provide a comprehensive view of model effectiveness. These metrics include
accuracy, precision, recall, F1-score, and the receiver operating characteristic curve
(ROC) as well as the area under the receiver operating characteristic curve (AUC
ROC).
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• Accuracy is the proportion of correctly predicted instances out of the total
instances. It is a simple yet effective measure of overall model performance.

Accuracy =
True Positives+True Negatives

Total Number of Predictions

• Loss quantifies the difference between the predicted values and the actual
values. In classification tasks, loss is typically measured using cross-entropy
loss, which provides a measure of how well the predicted probabilities match
the actual class labels.

• Precision measures the accuracy of the positive predictions. It is the ratio
of true positive predictions to the sum of true positive and false positive
predictions.

Precision =
True Positives

True Positives+ False Positives

• Recall assesses the model’s ability to identify all relevant instances. It is
the ratio of true positive predictions to the sum of true positives and false
negatives.

Recall = True Positives
True Positives+ False Negatives

• F1-Score is the harmonic mean of precision and recall, providing a single
metric that balances both concerns. It is particularly useful when dealing
with imbalanced datasets.

F1-score = 2 × Precision×Recall
Precision+Recall

• ROC AUC is the area under the receiver operating characteristic curve (ROC
AUC) that measures the model’s ability to distinguish between classes. It pro-
vides an aggregate measure of performance across all classification thresholds.

ROC AUC =
∫ 1

0
TPR(t) dFPR(t)

3.4.3 Experimental results

In this section, we present a comprehensive evaluation of the models across
the four experiments mentioned above. By assessing these models on differently
sampled datasets, we aim to highlight the impact of data sampling techniques and
pre-trained models on model accuracy, generalization, and training stability. Our
analysis provides insights into how these architectures perform under varying data
conditions and demonstrates the robustness and adaptability of transfer learning in
enhancing Alzheimer’s disease detection.
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3.4.3.1 Training on down-sampled data

VGG16 was trained with a batch size of 64 and a learning rate of 0.001 for 100
epochs. The validation loss closely followed the training loss, showing a downward
trend with occasional fluctuations but stabilizing at the end, as shown in Figure 3.1.
The model achieved an overall accuracy of 99.18% and F1-scores of 99.13%, 99.39%,
and 99.01% for the AD, CN, and MCI classes, respectively. Although the model
showed slightly higher error rates in detecting the AD class (as indicated by recall),
it achieved the best precision among all classes, as illustrated in Figure 3.2. Table 3.1
gives more details on the testing performance for each class.

Precision Recall F1-score Support
MCI 0.9889 0.9914 0.9901 810
AD 0.9975 0.9852 0.9913 810
CN 0.9890 0.9988 0.9939 810
macro avg 0.9918 0.9918 0.9918 2430

Table 3.1: Classification Report of VGG16 trained on down-sampled data

VGG19 was trained with a batch size of 32 and a learning rate of 0.001 for
100 epochs. The learning curve exhibited occasional fluctuations but demonstrated
more stability towards the end, as shown in Figure 3.4. The model achieved a high
accuracy of 99.59%, with an F1-score of 99.57% for AD and CN, and 99.63% for
MCI. It showed a lower error rate in detecting the CN class compared to the AD
class while maintaining high precision in all three classes. The classification report
in Table 3.2 and confusion matrix in Figure 3.5 provide more details of the model’s
testing performances.

3.4.3.2 Training on up-sampled data

Next, we examine the results of our VGG16 and VGG19 models after training
and testing on the up-sampled dataset. This analysis enables us to understand
the impact of increased data quantity on the models’ accuracy and generalization
abilities.

With this dataset, VGG16 was trained for 100 epochs with the default batch
size and learning rate. Both training and validation losses show a downward trend
with occasional fluctuations, which decrease in range over the epochs as shown in
Figure 3.7. As detailed in Table 3.3, the model achieved an accuracy of 98.49%,
with an F1-score of 99%, 98.35% and 98.15% for AD, CN and MCI, respectively.
The precision is nearly equal in all classes, as illustrated in Figure 3.8.

Precision Recall F1-score Support
MCI 0.9975 0.9951 0.9963 810
AD 0.9963 0.9951 0.9957 810
CN 0.9938 0.9975 0.9957 810
macro avg 0.9959 0.9959 0.9959 2430

Table 3.2: Classification Report of VGG19 trained on down-sampled data
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Figure 3.1: Training and validation loss of VGG16 trained on down-sampled data

Figure 3.2: Confusion matrix of VGG16 trained on down-sampled data

Figure 3.3: Receiver Operating Characteristic curve of VGG16 trained on down-
sampled data
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Figure 3.4: Training and validation loss of VGG19 trained on down-sampled data

Figure 3.5: Confusion matrix of VGG19 trained on down-sampled data

Figure 3.6: Receiver Operating Characteristic curve of VGG19 trained on down-
sampled data
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Figure 3.7: Training and validation loss of VGG16 model trained on up-sampled
data

Figure 3.8: Confusion Matrix of VGG16 on up-sampled data

Figure 3.9: Receiver Operating Characteristic curve of VGG16 trained on up-
sampled data 29
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Precision Recall F1-score Support
MCI 0.9851 0.9778 0.9815 1488
AD 0.9847 0.9953 0.9900 1488
CN 0.9852 0.9819 0.9835 1488
macro avg 0.9850 0.9850 0.9850 4464

Table 3.3: Classification Report of VGG16 trained on up-sampled data

For VGG19, the batch size was set to 32 with a default learning rate of 0.001,
the training was carried out for 100 epochs. Despite some fluctuations, the vali-
dation loss generally improved and stabilized towards the later epochs, as shown
in Figure 3.10. The model achieved an accuracy score of 98.14%, and an F1-score
of 98.7%, 97.56%, and 98.15% in AD, CN, and MCI, respectively. The model’s
highest error was misclassifying CN images as AD and MCI, resulting in a low CN
recall of 95.50%. However, the AD class achieved a high recall of 99.32%, as shown
in Figure 3.11. More details regarding the testing performance for each class are
provided in Table 3.4.

Precision Recall F1-score Support
MCI 0.9674 0.9960 0.9815 1488
AD 0.9808 0.9933 0.9870 1488
CN 0.9972 0.9550 0.9756 1488
macro avg 0.9818 0.9814 0.9814 4464

Table 3.4: Classification Report of VGG19 trained on up-sampled data

3.4.4 Discussion

When reviewing the performance of the models trained so far, namely, VGG16
and VGG19 architectures on the down-sampled and up-sampled datasets, we ob-
serve that all the models performed reasonably well. However, as shown in Table 3.5
and Figure 3.13, the VGG19 model trained on down-sampled data stands out as
the most promising in terms of accuracy, AUC ROC, average precision, recall, and
F1-score over the classes. The VGG16 model trained on down-sampled data follows
closely behind, indicating an advantage for models trained on down-sampled data
over those trained on up-sampled data. However, Figure 3.14 shows that models
trained on up-sampled data perform better in some instances. For example, the
VGG16 and VGG19 models trained on up-sampled data exhibit higher AD recall
rates (99.53% and 99.33%, respectively) compared to 98.52% and 99.51% achieved
by the same models trained on down-sampled data. Since detecting all AD subjects
is crucial, AD recall is a particularly important metric. Additionally, the VGG19
trained on up-sampled data achieved the highest MCI recall (99.6%) despite having
the worst CN recall (95.5%). This indicates that models trained on up-sampled
data tend to have inconsistent classification performance overall.

Table 3.6 shows a comparison of various Transfer Learning (TL) approaches for
classifying AD used in recent studies, including our proposed approach, highlight-
ing the performance of pre-trained models. The comparison include Models such
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Figure 3.10: Training and validation loss of VGG19 trained on up-sampled data

Figure 3.11: Confusion matrix of VGG19 trained on up-sampled data

Figure 3.12: Receiver Operating Characteristic curve of VGG19 trained on up-
sampled data
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Metrics
Data Model Accuracy Precision Recall F1-score AUC ROC Support

down-sampled VGG16 0.9918 0.9918 0.9918 0.9918 0.9938 2430
VGG19 0.9959 0.9959 0.9959 0.9959 0.9969 2430

up-sampled VGG16 0.9850 0.9850 0.9850 0.9850 0.9887 4464
VGG19 0.9814 0.9818 0.9814 0.9814 0.9861 4464

Table 3.5: Model Performance Summary.

as VGG, Densenet, SqueezeNet, and other, were evaluated using different datasets
and images modalities, with classifications task being either binary or multi-class.
The metrics used in evaluation is accuracy and Area Under the Curve (AUC). By
looking at the table, we can see the accuracy ranging from 69% to 99%, where our
approach showed higher accuracy of (98% to 99%). When comparing between the
pre-trained models VGG16 and VGG19 that trained with different datasets, we
observe that VGG16 and VGG19 of the previous study achieved an Accuracies of
93.75%, 95.35% respectively, while in our approach VGG16 achieved accuracy of
99.18%, and VGG19 has achieved 99.59% with down-sampled data, which outper-
form other models.

TL-Approaches Modality Classification Accuracy AUC ROC
VGG-19 PET+MRI (ADNI) Multi-class (3) 95.35% None
3D-ResNet MRI (ADNI) Binary 79.40% 86.3%
CNN SMRI, DTI (ADNI) Binary 96.70% None
AlexNet fMRI (OASIS) Multi-class (5) 94.97% 95%
DenseNet CT Multi-class (3) 87.36% None
SqueezeNet MRI (OASIS) Multi-class (4) 82.53% None
VGG-19 MRI (Kaggle) Multi-class (4) 77.60% 81%
CNN+ResNet-18 MRI (ADNI) Multi-class (3) 69.10% None
ResNet101 MRI (ADNI, OASIS) Multi-class (4) 93.33% 93%
Efficient Net Model MRI (ADNI) Binary 91.36% 83%
Custom-CNN MRI Binary 94.7% None
MobileNet MRI (ADNI+OASIS) Multi-class (4) 83.97% None
CNN+SVM MRI (OASIS) Binary 94.44% None
VGG16 SMRI+FDG-PET Multi-class (3) 93.75% None
DenseNet121 MRI (Kaggle) Multi-class (3) 92.48% 96%
DenseNet169 MRI (Kaggle) Multi-class (3) 93.00% 97%
DenseNet201 MRI (Kaggle) Multi-class (3) 96.05% 99%

Proposed
VGG-16 MRI (ADNI) (down-sampled data) Multi-class (3) 99.18% 99.38%
VGG-19 99.59% 99.69%
VGG-16 MRI (ADNI) (up-sampled data) Multi-class (3) 98.50% 98.87%
VGG-19 98.14% 98.61%

Table 3.6: Comparison of the recent studies with proposed approach
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Figure 3.13: Comparison of models performance across all metrics

Figure 3.14: Comparison of model’s recall by class.

Figure 3.15: Comparison of models F1-score by class

3.5 Conclusion

We have applied transfer learning on multi-class MRI image classification task,
by employing VGG16 and VGG19 models pre-trained on ImageNet and training
them on two datasets sampled from ADNI to address class imbalance, a down-
sampled and an up-sampled dataset, The results indicate that the models performed
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generally well in distinguishing between CN, MCI, and AD. with the models trained
on down-sampled data having a slight edge in performance over those trained on
up-sampled data. Although, we can observe that models trained on up-sampled
data achieve better AD recall rates. This might be related to the fact that in the
up-sampled dataset, the class with the most repeated scans is AD, which makes the
models trained on this data more likely to predict AD than other classes.
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Conclusion and Perspectives

Diagnosing Alzheimer’s Disease (AD) involves a lengthy process of neurocogni-
tive tests and interviews to identify the patterns associated with the disease, which
are also similar to other conditions, requiring a high level of accuracy. Addition-
ally, the lack of symptoms in the initial stages makes early detection of AD both
challenging and crucial for slowing down its progression. In this work, we employed
transfer learning to perform multi-class classification on MRI images by leveraging
the VGG models and training them on two datasets sampled from ADNI. The re-
sults demonstrate the efficacy of this approach in distinguishing between healthy,
MCI, and AD subjects, achieving up to 99.59% accuracy. These findings high-
light the potential of transfer learning to advance AD research and broaden our
understanding of this disease, ultimately improving the quality of life for affected
individuals and their caregivers. While this work primarily utilized the VGG ar-
chitecture and ADNI data, focus on these specific resources allowed for a detailed
and controlled investigation. Although other pre-trained models and data sources
were not explored, the approach laid a strong foundation for future research. Addi-
tionally, while the data augmentation was limited to up-sampling the ADNI data,
exploring other augmentation methods may lead to even better results and further
validate the robustness of our approach.

Future work should experiment with additional pre-trained models to compare
their performance and incorporate different data sources to curate diverse training
datasets and to cover the disease progression more comprehensively. It should also
employ data augmentation techniques to enrich the training data and enhance model
robustness. Additionally, hyperparameter tuning and optimization techniques, such
as Grid Search and Bayesian Optimization, could be applied to improve accuracy.
Also, using an external dataset when validating the model’s performance will pro-
vide a better indication of the model’s robustness, making the models more suitable
for deployment in clinical settings. These models could, potentially, become part
of a larger system, where they can assist practicing physicians with predictive di-
agnostics.
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