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MINISTÉRE DE L’ENSEIGNEMENT SUPÉRIEUR
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UNIVERSITÉ DE GHARDAÏA
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Spécialité: Analyse Fonctionnelle et Applications

Thème

Predator-Prey System with
the Beddington-DeAngelis Functional Response

Soutenu publiquement le 02/07/2019 par

BAHAMED Aicha

Devant le Jury composé de:
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 ملخص :

دي أنجٌلٌس نموذجا دٌنامٌكٌا ٌصف واحدا من -الفرٌسة  مع إستجابة وظٌفٌة من نوع بدنجتون-تعتبر جملة المفترس

دي أنجٌلٌس مماثلة لإستجابة -الإستجابة الوظٌفٌة  لبدنجتون. التفاعلات الحاصلة فٌما بٌن المجموعات السكانٌة السكانٌة

.هولٌنج من النوع الثانً و لكنها ٌحتوي على طرف ٌصف التدخل المتبادل من قبل الحٌوانات المفترسة  

الفرٌسة مع -ٌهدف هذا العمل  إلى تقدٌم دراسة الحدود و الإستقرار الشامل عن السلوك النوعً لفئة من نماذج المفترس

دي أنجٌلٌس، حٌث تشتمل على نتائج حول حدود الحلول، وجود مجموعة جاذبة، و -إستجابة وظٌفٌة من نوع بدنجتون

.الإستقرار المحلً و الشامل للتوازن، و تم تعٌٌن معاٌٌر الإستقرار من أنظمة هولٌنج من النوع الثانً  

إستقرار  نقطة التوازن، الإستجابة  دي أنجٌلٌس الوظٌفٌة، -الفرٌسة، إستجابة بدنجتون-نموذج المفترس :الكلمات المفتاحية

.الوظٌفٌة لهولٌنج من النوع الثانً  

Résumé : 

Système Prédateur-Proie avec  réponse fonctionnelle de Beddington-DeAngelis est un 

modèle dynamique décrivant  l’un de types d’interaction entre populations. La réponse 

fonctionnelle de Beddington-DeAngelis est similaire à la réponse fonctionnelle de Holling 

type-II, sauf qu’elle contient un terme décrivant les interférences mutuelles des prédateurs. 

Notre travail  vise présenter une étude de la bornitude et la stabilité globale sur le 

comportement qualitatif d’une classe de modèles de  prédateurs-proies de type Beddington-

DeAngelis réponse fonctionnelle. Les résultats incluent  sur la bornitude des solutions, 

l’existence d’un ensemble attractif et la stabilité locale et globale des points d’équilibres. Les 

critères de stabilité sont définis des systèmes de Holling-II. 

Mots clés : modèle prédateur-proie, réponse fonctionnelle de type Beddington-DeAngelis, 

stabilité globale du point d’équilibre, réponse fonctionnelle de Holling de type-II. 

Abstract : 

  Predator-Prey model with Beddington-DeAngelis-type functional response is considered, it 

is a dynamic model for the interaction of the population. The functional response of 

Beddington-DeAngelis is similar to the Holling type-II functional response, but it contains a 

term describing the mutual  interference of predators. The  work aims to present a study 

boundedness and global stability on the qualitative behavior of a class of predator-prey 

models with Beddington-DeAngelis type functional response. Including results the 

boundedness of solutions, existence of an attracting set and local and global stability of 

equilibria. Stability criteria are set from Holling-II systems. 

Keywords    predator-prey model, Beddington-DeAngelis type functional response, global 

stability of equilibria point, Holling type-II functional response.  

 

  



Introduction

Mathematical modeling in biology and ecology involves using mathematics to de-
scribe or explain phenomenons and the dynamics of a population in the real world,
it has having several applications in various fields.
The modeling process requires a good inderstanding of the factors governing the
evolution of population over time such as available recources, populations in inter-
action, thretening dangers...

In this memory, we are interested in studing the work of W. Khellaf and N.
Hamri [11] and contribute to explaining and analyzing this work.
Predator-Prey interaction is that relationship between organisms occupying the
same environment, where the prey is a (principal) source of food for predators.
Within animals (sharks and fish) or animals and plants (rabbits and plants) or
viruses and cells (HIV virus attacks immune system cells).

The model that describes the dynamics populations of predator-prey over time
is of the form 

dX

dτ
= f(X)X − g(X, Y )Y,

dY

dτ
= h(X, Y )Y,

(1)

in model (1) X(τ) and Y (τ) represent respectively the population densities (or
biomasses) of the prey and predator at the τ moment. This model is based on the

assumption thut functions: g(X, Y ) and h(X, Y ) satisfy
∂g

∂Y
≥ 0,

∂h

∂X
≥ 0. One

well known Predator-Prey model is the Lotka-Volterra system ([12], [17])
dx

dt
= ax− bxy,

dy

dt
= cxy − dy,

with a, b, c, d > 0, which imposes a per capita rate of predation depends on prey
numbers only [18].
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The Beddington-DeAngelis response can be generated by a number of natural
mechanisms [2], [6], and because it admits rich but biologically reasonable dynamics
[4], it is worthy for us to further study the Beddington- DeAngelis model.

more presesily, the following predator-prey model with the Beddington-DeAngelis
is considered

dX

dτ
=

(
a1 − b1X −

m1Y

α1X + β1Y + γ1

)
X,

dY

dτ
=

(
a2 −

m2Y

X + k1

)
Y,

(2)

with the initial valuesX(0) ≥ 0 and Y (0) ≥ 0. The constants a1, a2, b1,m1,m2, α1, β1, γ1,
and k1 are the parameters of model and are assumed to be positive.
These parameters are defined as follows: a1 (resp., a2) describes the growth rate of
prey (resp., of predator), b1 measures the strength of competition among individu-
als of prey’s species, m1 is the maximum value which per capita reduction rate of
prey can attain, γ1 (resp., k1) measures the extent to which environment provides
protection to prey (resp., to predator), and m2 has a similar meaning to m1. The
functional response in (2) was introduced by Beddington [2] and DeAnglis et al.
[7]. It is similar to the well-known Holling type-II functional response [2] but has
an extra term β1Y in the first right term equation modeling mutual interference
among predators. Hence this kind of type functional response given in (2) is af-
fected by both predator and prey.

A simpler Beddington-DeAngelis predator-prey model is obtained by change for
parameters of system (2), τ = a1t,X(τ) = x(t)/(b1/a1), Y (τ) = y(t)/(m2b1/a1a2)

hence for
dX

dτ
,

dX

dτ
=

(
a1 − b1X −

m1Y

α1X + β1Y + γ1

)
X,

dx(t)/(b1/a1)

dt/a1

=

(
a1 − b1(x(t)/(b1/a1))− m1y(t)/(m2b1/a1a2)

α1x(t)/(b1/a1) + β1y(t)/(m2b1/a1a2) + γ1

)
x(t)

(b1/a1)
,

dx(t)

dt
=

(
a1 − a1x(t)− ((m1b1)/a1)y(t)

α1(m2/a2)x(t) + β1(a2/m2)y(t) + γ1(b1/a1)2(m2/a2)

)
x(t)

a1

.
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and for
dY

dτ
,

dY

dτ
=

(
a2 −

m2Y

X + k1

)
Y,

dy

dt
.

a1

(m2b1/a1a2)
=

a2 −
m2

(
y(t)

(m2b1/a1a2)

)
x(t)

(b1/a1)
+ k1

 y(t)

(m2b1/a1a2)
,

dy

dt
=

a2 −
m2

(
y(t)

(m2b1/a1a2)

)
x(t)

(b1/a1)
+ k1

 y(t)

(m2b1/a1a2)
.
(m2b1/a1a2)

a1

,

dy

dt
=

1

a1

(
a2 −

y(t)/(b1/a1a2)

(x+ k1(b1/a1))/(b1/a1)

)
y(t),

dy

dt
=

1

a1

(
a2 − a2

y

x+ k1(b1/a1)

)

.

We have by placing (*) a = (m1b1)/a1, b = a2/a1, α = α1(a1m2)/a2), β =
β1(a1a2)/m2, γ = γ1((b1/a1)2(m2a1/a2), and k = k1(b1/a1).

dx

dt
= x(1− x)− axy

αx+ βy + γ
,

dy

dt
= b

(
1− y

x+ k

)
y,

So, the study of our model prompted us to organize this work in five chapters.
Chapter 1 is devoted to recalling some basic concepts on differential equations and
inequalities. Such as semiflows and invariant sets, limit sets and comparison lemma.
In addition, we have stated some elementary results for studying equilibrium points
and their stability to determine their nature. We also present other necessary math-
ematical results at the end of the chapter.

In the second chapter, we talk about mathematical modeling we give some basic
models.

In chapter 3, we show the boundedness of solutions and existence attracting set
in the first quadrant. we prove positive invariance and ultimate boundedness of
solutions.

Then in chapter 4, we determine trivial and interior equilibrias and we study
their stability, recarding the interior equilibria we discuss global asymptotic stability
as well finally in Chapter 5, We mention the definitions we use to get permanence,
we study uniform permanence.

VI



Remark 0.1. In [11] we find: a = (a2/a1)(m1/m2), b = a2/a1, α = α1, β =
β1(a2/m2), γ = γ1(b1/a1), and k = k1(b1/a1). which is different from the conclution
we are lead to in (*).
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Chapter 1

Preliminaries

In this chapter, we give some necessary mathematical definitions that are used in the
studying Beddington-DeAngelis predator-prey model. Let us consider a dynamical
system of the form {

ẋ(t) = f(x(t))
x(0) = x0

(1.1)

where x(t) ∈ Rn, f : D ⊆ Rn −→ Rn is a locally Lipschitz in x and is piecewise
continuous in t.

1.1 Generalities on differential equations and in-

equality

1.1.1 Existence and uniqueness

Theorem 1.1. [1] If the system 1.1 satisfy

‖ f(t, x)− f(t, y) ‖≤ L ‖ x− y ‖

∀x, y ∈ B(x0, r) = {x ∈ Rn|‖x − x0‖ ≤ r}, ∀t ∈ [t0, t1]. Then there exists some
δ > 0 such that the state equation

ẋ = f(t, x)

with x(t0) = x0 has a unique solution over [t0, t0 + δ].

1.1.2 Semiflow and Invariant set

Definition 1.1 (Semiflow). [8] Let Ω be a subset of a complete metric space Υ,
and let R = (−∞,∞) and R+ = [0,+∞[. A mapping σ : Ω× [0,+∞[−→ Ω, is said
to be semiflow on Ω, if

1



1. σ(u, 0) = u, for all u ∈ Ω.

2. σ(0, t), is defined for all t ∈ R.

3. The semi-groupe proprety holds, i.e., σt(σs(u)) = σt+s(u), for all u ∈ Ω and
t, s ∈ R+.

4. The mapping σ : Ω× [0,+∞[−→ Ω is continuous.

Remark 1.1. If the mapping u −→ σ(u, t) is not linear, then the semiflow (
nonlinear semigroup) is the form σ(u, t) = S(t)u. In the case S(t) : Ω −→ Ω, with
a continuous inverse S(t)−1, such that S(−t) = S(t)−1 means that flow (nonlinear
groupe).

Let σ be a semiflow on Ω ⊂ Υ. For any u ∈ Ω the (positive) trajectory through
u is defined as the set

γ+(u) = S(t)u : t ≥ 0

If σ is a flow on Ω, then the trajectory through u is the set

γ(u) = {S(t)u : t ∈ R} .

Definition 1.2 (Invariant set). [8] A set A ⊂ Ω is said to be positively invariant
if S(t)A ⊂ A, for all t ≥ 0, and A is said to be an invariant set if S(t)A = A, for
all t ≥ 0, and the trajectories through A are given by

γ+(A) = {S(t)u : u ∈ A, t ≥ 0}

Definition 1.3 (Forward invariant). A set is called forward invariant if it is in-
variant for all t ∈ R+.

1.1.3 Limit sets

Definition 1.4. [8] The limit sets of a semiflow namely the omega limit set. The
ω-limit set of a point u is defined as

ω(u) = ∩T≥0

⋃
t≥T

S(t)u.

We define the ω-limit set of ∂Υ0 (the boundary of Υ0) as as follows:

ω(∂Υ0) = ∩T≥0

⋃
t≥T

S(t)∂Υ0,

where
S(t)∂Υ0 =

⋃
u∈∂Υ0

S(t)u.

Definition 1.5. The semigroup S(t) is said to be point dissipative in Υ if there is
a bounded nonempty set B in Υ such that, for any u ∈ Υ there is a t0 = t0(Υ, B)
such that S(t)u ∈ B for t ≥ t0.

2



1.1.4 Comparison lemma

Definition 1.6. (Absolute Continuity)[19] A function f : [a, b] −→ R, where [a, b]
is a finite closed intervale, is said absolutely continuous on [a, b] if for every ε > 0
there exists δ > 0 such that for any finite collection of pairwise disjoint inter-
vals {[ak, bk] : k = 1, ..., n} conteined in [a, b] with

∑n
k=1(bk − ak) < δ, we have∑n

k=1 |f(bk)− f(ak)| < ε.

Lemma 1. [?] Let φ be an absolutely-continuous function satisfying the differential
inequality

dφ(t)

dt
+ α1φ(t) 6 α2, t ≥ 0 (1.2)

where (α1, α2) ∈ R2;α1 6= 0, then

∀t ≥ T̄ : φ(t) 6
α2

α1

−
(
α2

α1

− φ
(
T̄
))

e−α1(t−T̄ ). (1.3)

Proof : Multiply both sides of (1.2) by eα1t to get

(
dφ(t)

dt
+ α1φ(t)

)
eα1t 6 α2e

α1t.

Then (
dφ(t)

dt
+ α1φ(t)− α2

)
eα1t 6 0.

which is equivalent to

d

dt

((
φ(t)− α2

α1

)
eα1t

)
6 0.

Thus the function (
φ(t)− α2

α1

)
eα1t,

has a non-positive derivative and so is non-increasing for t ≥ 0. Therefore, for all
t ≥ T̄ ≥ 0, (

φ(t)− α2

α1

)
eα1t 6

(
φ(T̄ )− α2

α1

)
eα1T̄ ,

and hence,

φ(t) 6
α2

α1

−
(
α2

α1

− φ(T̄ )

)
e−α1(t−T̄ ).
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Lemma 2. Let x(t) be a continuous function{
dx

dt
= f(t, x),

x(t) = x0,

where f(t, x) is continuous in t and locally Lipschitz in x, for all t ∈ [t0, T ) and
x ∈ J ∈ R. Let [t0, T ) (T can be ∞) be the maximal interval of existence of the
solution x(t) ∈ J. And the upper right-hand derivative

D+y(t) = lim sup
h−→0+

y(t+ h)− y(t)

h
.

Let y(t) be a continuous function that satisfies

D+y(t) 6 f(t, y),

y(t0) 6 x0,

with y(t) ∈ J for all t ∈ [t0, T ), then

y(t) 6 x(t), [t0, T ).

1.2 Equilibrium points and stability

1.2.1 Equilibrium points

The general n-dimensional autonomuous of the system (1.1), if t does not appear
explicitly can be written as

ẋ = f(x) (1.4)

and has the form

dx1

dt
= f1(x1(t), x2(t), ..., xn(t)),

dx2

dt
= f2(x1(t), x2(t), ..., xn(t)),

... =
...

dxn
dt

= fn(x1(t), x2(t), ..., xn(t)),

where fi, 0 6 i 6 n are the functions of x1, x2, ..., xn. The solutions f(x) = 0Rn are
called equilibrium points of the system (1.4).

4



Consider two-dimensional systems of the form

{
ẋ = f(x, y),
ẏ = g(x, y).

(1.5)

The intersection point (x∗, y∗) of the curves{
f(x, y) = 0,
g(x, y) = 0,

is the equilibrium point of the system (1.5). Then the constant functions

x(t) = x∗, y(t) = y∗,

are a solutions of (1.5).

Definition 1.7. (Liapunov stability)[15] Let x∗(t) be the solution of the system
(1.1) wich starts in x∗(t0) = x∗0. If for every ε > 0, there exists δ(ε, t0) such that

‖ x0 − x∗0 ‖< δ ⇒‖ x(t)− x∗(t) ‖< ε for all t > t0,

then the solution x(t) is called Liapunov stable for t ≥ t0. Otherwise it is called
Liapunov unstable.

Definition 1.8. (Uniform stability)[15] If the solution is stable for t ≥ t0 and the
δ is independent of t0, then it is uniformly stable.

Definition 1.9. (Asymptotic stability)[15] If the solution is stable for t ≥ t0 and

lim
t−→∞

‖ x(t)− x∗(t) ‖= 0,

then it is called asymptotically stable

1.2.2 Types of Equilibrium Points

Definition 1.10. [15] Let C be a path of the system (1.5) and the solution (x(t), y(t))
of (1.5) which represents C parametrically, and the critical point (x∗, y∗) of this sys-
tem. Thus we have the path C approaches the (x∗, y∗) as t −→ +∞ if

lim
t−→+∞

x(t) = x∗, lim
t−→+∞

y(t) = y∗.

Definition 1.11. [15] Let C be a path which approaches the equilibrium point
(x∗, y∗) of the system (1.5) as t −→ +∞, and the solution (x(t), y(t)) of this system
represents C. We say that C enters the critical point (x∗, y∗) as t −→ +∞ if

lim
t−→+∞

y(t)

x(t)

exists.

5



Definition 1.12. (Isolated equilibrium Point)[14] A equilibrium point (x∗, y∗) of
(1.5) is called an isolated equilibrium point if there exists a neighborhood of (x∗, y∗)
containing no other equilibrium points.

Definition 1.13. (Center)[15] The isolated equilibrium point (x∗, y∗) is called a
center if there exists a neighborhood of (x∗, y∗) which contains a countably infinite
number of closed paths each of which contains (x∗, y∗) in its interior.

Definition 1.14. (Saddle Point)[15] The isolated equilibrium point (x∗, y∗) is called
a saddle point if there exists a neighborhood of (x∗, y∗) in which the following two
conditions holds:

1. There exist two paths which approach and enter (x∗, y∗) from a pair of opposite
directions as t −→ +∞ and there exist two paths which approach and enter
(x∗, y∗) from a different pair of opposite directions as t −→ −∞.

2. In each of the four domains between any two of the four directions in 1, there
are infinitely many paths which are arbitrarily close to (x∗, y∗) but do not
approach (x∗, y∗) either as t −→ +∞ or as t −→ −∞.

Definition 1.15. (Spiral)[15] The isolated equilibrium point (x∗, y∗) is called a
spiral point (or focus) if there exists a neighborhood of (x∗, y∗) such that every path
P in this neighborhood has the following properties:

1. P is defined for all t > t0 (or for all t < t0) for some number t0.

2. P approaches (x∗, y∗) as t −→ +∞ (or as t −→ −∞).

3. P approaches (x∗, y∗) in a spiral-like manner, winding around (x∗, y∗) an
infinite number of times as t −→ +∞ (or as t −→ −∞).

Definition 1.16. (Node)[15] The isolated equilibrium point (x∗, y∗) is called a node
if there exists a neighborhood of (x∗, y∗) such that every path P in this neighborhood
has the following properties:

1. P is defined for all t > t0 (or for all t < t0) for some number t0.

2. P approaches (x∗, y∗) as t −→ +∞ (or as t −→ −∞).

3. P enters (x∗, y∗) as t −→ +∞ (or as t −→ −∞).

1.2.3 Stability

In order to study the stability of eqilibria of problem (1.1). It suffices to study
stability of system

ẋ = f(t, x) + A(t)x− A(t)x

= A(t)x+ (f(t, x)− A(t)x)

6



and hence
ẋ = Ax+ g(t, x), (1.6)

assume that the Jacobian matrix A =
∂g

∂x
(t, x), is an n × n constant matrix and

g(t, x) = (g1(t, x), g2(t, x), ..., gn(t, x) satisfies

(i) g(t, x) is continuos for ‖ x ‖< a, 0 6 t <∞,

(ii) lim‖x‖−→0 ‖ g(t, x) ‖ / ‖ x ‖= 0 uniformly with respect to t, that is ‖
g(t, x) ‖= o(‖ x ‖) uniformly in t as ‖ x ‖ approaches as zero.

Theorem 1.2. If A is an n×n constant matrix whose characteristic matrix polyno-
mial has all its roots have negatives real part, and function g(t, x) satisfies conditions
(i) and (ii) above, then the solution x(t) ≡ 0 of the system (1.6) is asymptotically
stable.

Definition 1.17. (Stability of Non-linear systems) Consider the system (1.6) such
that

dxi
dt

= f(xi) ≈ f(x∗i ) +
df

dx
(x∗i )(xi − x∗i ) + o(h(xi)).

Thus

dxi
dt

≈ df

dx
(x∗i )(xi − x∗i ). (1.7)

Jacobien matrix of f at x∗ is given by

J =

(
∂fi
∂xj

(x∗)

)
.

Then
dx

dt
= J(x∗)(x− x∗),

is the linearized system

Remark 1.2. Suppose that the system (1.1) has an equilibrium point x∗ ∈ D, i.e.,
f(x∗) = 0. We would like to characterize if the equilibrium point x∗ is stable. We
can always apply a change of variables to ξ = x− x∗ to obtain

ẋ = ξ̇ = f(ξ + x∗)

and hence

ξ̇ = f(ξ + x∗)

= f(x∗) + Jξ + o(h(ξ))

= Jξ + o(h(ξ))

then study the stability of the new system with respect to ξ = 0, the origin.
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Theorem 1.3. (Stability of Linear systems)[14] Let ẋ = Ax be an n-dimensional
linear system and A is an n × n constant matrix. Suppose that λi, i = 1, ..., n are
the eigenvalues of A.

(i) All solutions of the system are asymptotically stable if Re(λi) < 0, i = 1, 2, ..., n.

(ii) If all solutions of the system are stable, then Re(λi) 6 0, i = 1, 2, ..., n.

(iii) The solution is unstable if Re(λi) > 0, i = 1, 2, ..., n.

Definition 1.18. If A is an 2× 2 constant matrix and λ is eigenvalues of A, then
classification of equilibrium points as follow

• both eigenvalues are negative means the equilibrium points are stable,

• both eigenvalues are positive means the equilibrium points are unstable,

• eigenvalues have different sign means the equilibrium ponts are saddle.

1.2.4 Lyapunov function

Definition 1.19. Let V : D −→ R be a continuously differentiable function defined
on the domain D ⊂ Rn that contains the origin [1]. The rate of change of V along
the trajectories of (1.1) is given by

V̇ (x(t)) =
∑n

i=1

∂V

∂xi

d

dt
xi

=

[
∂V

∂x1

∂V

∂x2

· · · ∂V

∂xn

]
ẋ =

∂V

∂x
f(x).

(1.8)

Theorem 1.4 (Direct Method). [1] Let the origin x = 0 ∈ D ⊂ Rn be an
equilibrium point for ẋ = f(x). Let V : D −→ R be a continuously differentiable
function such that

V (0) = 0 and V (x) > 0, ∀x ∈ D \ {0}
V̇ (x) 6 0, ∀x ∈ D (1.9)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0, ∀x ∈ D \ {0}

then x = 0 is asymptotically stable.

Remark 1.3. If V (x) > 0,∀x ∈ D \ {0} , then V is called locally positive definite.
If V (x) ≥ 0,∀x ∈ D\{0} , then V is locally positive semi-definite. If the conditions
(1.9) are met, then V is called a Lyapunov function for the system ẋ = f(x).

8



Exemple 1. [1] Consider the nonlinear system

ẋ = f(x) =

[
f1(x)
f2(x)

]
=

[
−x1 + 2x2

1x2

−x2

]
and the candidate Lyapunov function

V (x) = λ1x
2
1 + λ2x

2
2

with λ1, λ2 > 0. The derivative of the Lyapunov function candidate was given
by

V̇ (x) = 2λ1x1(−x1 + 2x2
1x2) + 2λ2x2(−x2) = −2λ1x

2
1 − 2λ2x

2
2 + 4λ1x

3
1x2

For simplicity, assume that λ1 = λ2 = 1. Then

V̇ (x) = −2x2
2 − 2x2

1g(x) < 0

where g(x) = −1 + 2x1x2. V̇ < 0 will be invariant, or equivalently when g(x) > 0,
i.e., when x1x2 < 1/2. So we conclude that the origin is locally asymptotically stable.

Theorem 1.5. Let x = 0 be an equilibrium point of the system (1.1).
Let V : Rn −→ R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0, ∀x 6= 0 (1.10)

‖ x ‖ −→ ∞ =⇒ V (x) −→∞, (1.11)

V̇ (x) < 0, ∀x 6= 0, (1.12)

then the origin is globally asymptotically stable.

Remark 1.4. If the function V satisfies the condition (1.11), then it is said to be
radially unbounded.

1.3 Cardan’s method

Cardan’s method [13] used for solve a cubic equation. Suppose this equation

x3 + ax2 + bx+ c = 0,

with a, b, c ∈ R. Making the substitution y = x+
a

3
, the equation becomes:

y3 + (b− a2

3
)y + c− ab

3
+

2a3

27
= 0,

9



which is of the form
y3 + py + q = 0. (1.13)

Letting y = u+ v, we obtain

u3 + v3 + (u+ v)(3uv + p) + q = 0.

Supposing {
3uv + p = 0,

u3 + v3 + q = 0.

Then {
uv =

−p
3
,

u3 + v3 = −q.
Hence  u3v3 = −p

3

27
,

u3 + v3 = −q,

placing h = u3, z = v3, we get hz = −p
3

27
,

h+ z = −q,

we put {
hz = P,

h+ z = S,

replacing the value of h = S − z, we obtain

z(S − z) = P,

Sz − z2 = P,

z2 − Sz + P = 0.

Hence,

z2 + qz +
(
−p

3

)3

= 0. (1.14)

Similarly, replacing the value of z = S − h, then

h2 + qh+
(
−p

3

)3

= 0.

which implies that u3 and v3 are both the roots of the same equation for which

the discriminant is ∆ =
27q2 + 4p3

27
.
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Lemma 3. [13] The equation (1.13) admits a unique real root if and only if we
have 4p3 + 27q2 > 0.

Proof. [13] We study the function f(y) = y3 + py+ q, and after following the steps
of the Carden method we find ∆ = 4p3 + 27q2, derivative of f is f ′(y) = 3y2 + p.

If p is positive. we consider x1 = −
√
−p

3
, x2 =

√
−p

3
,

1. if x ∈]−∞, x1]
⋃

[x2,+∞[, f(x) increasing,

2. if x ∈]x1, x2[, f(x) decreasing.

She admits a maximum relative M in x1 and a relative minimum m in x2. Say that
the equation has only one real root means that m and M have the same sign, so
that the product mM > 0. Or, we have:

M = f(x1) = q − 2p

3

√
−p

3

m = f(x2) = q +
2p

3

√
−p

3

mM =

(
q +

2p

3

√
−p

3

)(
q − 2p

3

√
−p

3

)
=

4p3 + 27q2

27
= ∆,

and hence ∆ > 0.

Exemple 2. [13] We solve the equation x3 − 2x− 5 = 0.

The equation that gives u3, v3 is then X2 − 5X +
8

27
= 0.

∆ = 25− 32

27
=

643

27
so,

u3 =
5

2
+

√
643

6
√

3
, v3 =

5

2
−
√

643

6
√

3
.

We deduce the unique root of the given equation:

x = u+ v =
3

√
5

2
+

√
643

6
√

3
+

3

√
5

2
−
√

643

6
√

3
.

Lemma 4. [13]
When ∆ is negative, we find first the two roots u3, v3 of (1.3), which are complex

conjugates, then extract their cubic roots u, v. The first is really find those roots.
We return to it below. The second is does u3 admit three cubic roots: u, ju, j2u and
the same for v.
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u1 =
3

√
−q

2
+ i

√(q
2

)2

+
(
−p

3

)3

v1 =
3

√
−q

2
− i
√(q

2

)2

+
(
−p

3

)3

u2 = j
3

√
−q

2
+ i

√(q
2

)2

+
(
−p

3

)3

v2 = j
3

√
−q

2
− i
√(q

2

)2

+
(
−p

3

)3

u3 = j2 3

√
−q

2
+ i

√(q
2

)2

+
(
−p

3

)3

v3 = j2 3

√
−q

2
− i
√(q

2

)2

+
(
−p

3

)3

.

with j and j2 cubic roots of 1.

Proof. We know
1 = e0 = ei0 = cos 0 + i sin 0,

let z be a complex number such that

z3 = 1⇔ r3e3iθ = e0.

Hence, {
r3 = 1,
3θ = 0 + 2kπ.

Therefore, {
r = 1,

θ =
2kπ

3
with k ∈ Z

so we search θ ∈ [0; 2π[

0 6
2kπ

3
< 2π ⇔ 0 6

2k

3
< 2⇔ 0 6 k < 3.

So k ∈ [0; 3[∩Z and k ∈ [0; 1; 2]
If we calculate all the possible sums u + v of these roots, we will find 9 values for
y, which is too much for an equation of degree 3.

z1 = e0 = 1,

z2 = e

2iπ

3 = j,

z3 = e

4iπ

3 =

e2iπ

3

2

= z2
2 = j2.

So the possible sums u + v of these roots is 9 values for y, which is too much for
an equation of degree 3. we imposed the relationship

uv = −p
3
.
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So that if we perform one of the three possible choises for u, the other value v is
well defined, so also x. Precisely, we have v = ū. Indeed, uv = −p/3 is real so

v = − p

3u
= − p

3u
.
ū

ū
= − pū

3|u|2
= cū with c ∈ R.

But as v3 is conjugated from u3, we have v3 = c3ū3 = ū3, and c = 1, because

v3 = −q
2
± i
√(q

2

)2

−
(
−p

3

)3

,

involved

|u| = |v| = 6

√(q
2

)2

−
(q

2

)2

−
(
−p

3

)3

=
(
−p

3

)3

6 =

√
−p

3
,

to give

|u|2 = −p
3
, and c = 1.

we finally deduce the three real solutions:

y1 = u1 + v1 =
3

√
−q

2
+ i

√(q
2

)2

−
(
−p

3

)3

+
3

√
−q

2
− i
√(q

2

)2

−
(
−p

3

)3

,

y2 = u2 + v3 = j
3

√
−q

2
+ i

√(q
2

)2

−
(
−p

3

)3

+ j2 3

√
−q

2
− i
√(q

2

)2

−
(
−p

3

)3

,

y3 = u3 + v2 = j2 3

√
−q

2
+ i

√(q
2

)2

−
(
−p

3

)3

+ j
3

√
−q

2
− i
√(q

2

)2

−
(
−p

3

)3

.

(1.15)
We admit that:

3

√
−q

2
+ i

√(q
2

)2

−
(
−p

3

)3

= a+ib and
3

√
−q

2
− i
√(q

2

)2

−
(
−p

3

)3

= a−ib with a, b ∈ R.

So
y1 = a+ ib+ a− ib = 2a =⇒ y1 ∈ R,
y2 = −(a+ b

√
3) =⇒ y2 ∈ R,

y3 = b
√

3− a =⇒ y3 ∈ R.
(1.16)

Exemple 3. [13]
let’s consider the equation x3 − 7x+ 6 = 0. and hence equation

X2 + 6X +
343

27
= 0 (1.17)
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∆ = −400

27
. The roots of (1.17) are

u3 =
−6 + i

√
400

27
2

= −3 + i
10

3
√

3
,

v3 =
−6− i

√
400

27
2

= −3− i 10

3
√

3
.

We find that the three cubic roots are

u1 = 1 +
2i
√

3

3
, u2 = ju1 = −3

2
+
i
√

3

6
, u3 = j2u1 =

1

2
− 5i
√

3

6
.

To find the values of v, we use the relation

uv =
7

3
,

and hence,

v =
7ū

3|u|2
,

and |u| =

√
12 +

2i
√

3

3

2

=
7

3
, so ui, vi are conjugated

v1 = ū1 = 1− 2i
√

3

3
=⇒ x1 = u1 + v1 = 2, v2 = ū2 =⇒ x2 = −3, v3 = ū3 =⇒ x3 = 1.

1.4 Sylvester’s criteria

[16] Let A = [aij] be an n×n real symmetric matrix, and let ∆k be the kth principal
minor of A for 0 6 k 6 n. Then:

(a) A is positive definite if and only if ∆k > 0 for k = 1, 2, ..., n

(b) A is negative definite if and only if (−1)k∆k > 0 for k = 1, 2, ..., n.

Note that A has the form

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
a1n a2n · · · ann
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The descriminant is defined as the form

∆1 = a11, ∆2 =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ , ∆3 =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ , ...,∆n = det(A).

Exemple 4.

A =

10 −1 −3
−1 4 −1
−3 −1 5


We calculate the principal minors of A. We find that

∆1 = 10, ∆2 = 39, ∆3 = 143.

Since all principal minors of A are positive, we conclude that A is positive definite.
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Chapter 2

Mathematical Modeling

2.1 Single species population models

We present two simple models to describe the evolution of a population in time t.

2.1.1 Exponential growth model( Malthusian growth)

Exponential growth model [3] allows to describe the dynamics of one population
density (or biomass) of a single species. If the population density at time t is
represented by a real function x : t −→ x(t), it is reasonable to assume that the
function x(t) is everywhere differentiable, denote by b the per capita birth rate and
by d the per capita death rate, (b − d) the difference between the birth and death
rates is the per capita growth rate.
This model states that there is no migration and the rate of growth (with respect to
time ) is proportional to the population size. Then change in size from time t to
(t+ ∆t) is

x(t+ ∆t)− x(t) = (b− d).x(t).∆t

x(t+ ∆t)− x(t)

∆t
= (b− d).x(t)

lim
∆t−→0

x(t+ ∆t)− x(t)

∆t
= (b− d).x(t).

Letting the net growth rate r = (b− d),, we obtain the Malthusian growth model

dx

dt
= r.x(t) (2.1)

This can be integrated between [0, t]
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∫ t

0

dx

dt
dt =

∫ t

0

rx(t)dt∫ x(t)

x(0)

dx

x
=

∫ t

0

rdt

lnx(t)− lnx(0) = rt

ln
x(t)

x(0)
= rt

hence, the solution is
x(t) = x(0)ert

We can infer three cases.

1. If r > 0, the population will grow at exponential.

2. If r < 0, the population will diminish at exponential which tends towards
extinction.

3. If r = 0, the population remains constant and equal to its initial value.

2.1.2 The Logistic model

The logistic model [3] is given by

dx

dt
= rx(1− x

K
),

where K is the carrying capacity of the population, it is the maximum number of
individuals a particular environment. we divide both parts by x(K−x) then multiply
both parts by dt to obtain

dx

x(K − x)
=

r

K
dt.

Use partial fraction on the left hand side and get

dx

x(K − x)
=

1

K

(
1

x
+

1

K − x

)
dx,

so our equation takes the form

1

K

(∫
dx

x
+

1

K

∫
dx

K − x

)
=

r

K

∫
dt.

Now we can integrate both parts and obtain

1

K
(ln(x) + ln(K − x)) =

rt

K
+ c.
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• If x < 0 or x > K so logarithm of a negative number is undefined which
means that the solution does not exist.

• If x = 0 or x = K and hence
dx

dt
= 0 so the solution is constant.

• Assuming 0 < x < K so that we can drop absolute value signs from log-
arithms. If the population size at time t = 0 is x0 we will find the value
of

c =
1

K
(ln(x0) + ln(K − x0)) .

So now we have

1

K
(ln(x) + ln(K − x)) =

rt

K
+

1

K
(ln(x0) + ln(K − x0))

ln

(
x

K − x

)
= rt+ ln

(
x0

K − x0

)
ln

(
x(K − x0)

x0(K − x)

)
= rt(

x(K − x0)

x0(K − x)

)
= ert.

Now we solve the equation for x, it gives

x(K − x0) = x0(K − x)ert = Kx0e
rt − xx0e

rt

x(K − x0 + x0e
rt) = Kx0e

rt

and hence,

x(t) =
Kx0e

rt

K − x0 + x0ert
=

Kx0

x0 + (K − x0)e−rt

and when t −→∞, x(t) −→ K, we can discuss two cases:

1. If x(t) < K, a rapid growth of the population.

2. If x(t) −→ K, a decrease growth of the population.

2.2 Models for interacting populations

We consider a community of two population in this case the dynamics of each
population is affected according to the type of interaction
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2.2.1 Predator-prey

Lotka-Voltera [10] where the first is to suggest independently a predator-prey model
. 

dx

dt
= x(a− by),

dy

dt
= y(cx− d),

(2.2)

where x(t) represent the density of prey population and y(t) is that of predator at
time t. and a, b, c and d are positive parameters.
The model is based on the following assumptions:

(i) The prey grow exponentially with a the per capita growth rate in the absence
of predation.

(ii) The effect of predation decreases the prey’s per capita growth rate by −by.

(iii) The predator diminishes exponentially in the absence of any prey, hence d is
the per capita rate death rate of predator in absence of the prey.

(iv) The prey’s contribution to the predator’s growth rate is cxy.

A general predator-prey model givin
dX

dτ
= f(X)X − g(X, Y )Y,

dY

dτ
= h(X, Y )Y,

(2.3)

in this model X(τ) and Y (τ) represent respectively the population densities (or
biomasses) of the prey and predator at the τ moment of time. f(X) is the per
capita net prey production in the absence of predation and g(X, Y ) the number of
preys eaten per predator per unit time and h(X, Y ) measures the growth rate of

predators. This model is based on the assumption functions:
∂g

∂Y
≥ 0,

∂h

∂X
≥ 0.

According [2] early population predator-prey are built on a basic assumption im-
plicitely: the number of prey attacked to be proportional to the density of prey and
the density of predator. While two experiments show that this assumption is false.
the author in [2], suggeste the following model

dX

dτ
=

(
a1 − b1X −

m1Y

α1X + β1Y + γ1

)
X,

dY

dτ
=

(
a2 −

m2Y

X + k1

)
Y,

(2.4)

the model under name Beddington-DeAngelis functional response with predator-prey
model, with the initial values X(0) > 0 and Y (0) > 0. The constants a1, a2, b1,m1,m2, α1, β1, γ1,
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and k1 are the parameters of model and are assumed to be positive.

We have by placing τ = a1t,X(τ) = x(t)/(b1/a1), Y (τ) = y(t)/(m2b1/a1a2), a =
(m1b1)/a1, b = a2/a1, α = α1(a1m2)/a2), β = β1(a1a2)/m2, γ = γ1((b1/a1)2(m2a1/a2),
and k = k1(b1/a1). 

dx

dt
= x(1− x)− axy

αx+ βy + γ
,

dy

dt
= b

(
1− y

x+ k

)
y,

(2.5)
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Chapter 3

Bondedness of Solutions and
Existence of an Attracting Set

We are interested in the existence and uniqueness of solution (x(t), y(t)) of the
Beddington-DeAngelis with predator-prey model

dx
dt

= x(1− x)− axy

αx+ βy + γ
,

dy
dt

= b

(
1− y

x+ k

)
y.

(3.1)

We show that the positive quadrant is positively invariant for (3.1) and the solution
(x(t), y(t)) satisfy the initial conditions (x(0), y(0)) is attracted by a bounded set
Int(R2

+).

3.1 Positively invariant quadrant

Definition 3.1. The set A ⊆ Rn is called an invariant set of system (1.1) if

x(0) ∈ A =⇒ x(t) ∈ A, ∀t ∈ R.

Exemple 5. any equilibrium point i.e., x̄, where f(x̄) = 0

Definition 3.2. A set A is a positively invariant set of system (1.1) if

x(0) ∈ A =⇒ x(t) ∈ A, ∀t ≥ 0.

Denote by R2
+ the positive quadrant of R2, i.e.,

R2
+ =

{
(x1, x2) ∈ R2|xi ≥ 0, i = 1, 2

}
And denote by Int(R2

+) the interior positive quadrant of R2, i.e.,

Int(R2
+) =

{
(x1, x2) ∈ R2|xi > 0, i = 1, 2

}
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Lemma 5. Positive quadrant Int(R2
+) is positively invariant for system(3.1).

Proof:
We show that the positive x-axis and y-axis are invariant for this system:

Consider an initial value on y-axis, that is x(0) = 0, y(0) = y0 ≥ 0, let x(t) = 0
for t ≥ 0, and y(t) the solution of

dy

dt
= b

(
1− y

k

)
y,

the (0, y), is solution of system (3.1) for the initial value (0, y0) arbitrary in R+,
this makes the positive part of y-axis positively invariant.

Similarly, suppose x(0) = x0 ≥ 0, y(0) = 0 and (x(t), y(t)), let y(t) = 0 for
t ≥ 0, and x(t) the salution of

dx

dt
= x(1− x),

we can easily see that (x, 0) is the solution of (3.1) for (x0, 0) as an initial value,
therefor the positive part x-axis is also positivaly invariant. Now it remains to show
that if x(0) > 0 and y(0) > 0 then the trajectory of the solution of (3.1) does not
leave the positive quadrant. Suppose this result is not true, and proof that it leads
to some contradiction. This means that we assume that there exists t0 such that
x(t0) < 0 or y(t0) < 0. if x(t0) < 0 we have, x(0) > 0 accorrding to the Intermediate
Value Theorem it exists t1 ∈ [0, t0] such that x(t1) = 0.
Then, the curve of the solution intersects the positive part of the axis ′Oy′ which is
another trajectory and therfor contradicts the uniqueness of the solution.
If y(t0) < 0, the same reasoning applies and leads the contradiction. Therefore,
densities x(t) and y(t) are positive for all t ≥ 0 if x(0) > 0 and y(0) > 0.

3.2 Ultimate Boundedness and Attracting Set

Definition 3.3. A solution φ(t, t0, x0, y0) of system(3.1) is said to be ultimately
bounded with respect to R2

+ if there exists a compact region A ∈ R2
+ and a finite

time T (T = T (t0, x0, y0)) such that, for any (t0, x0, y0) ∈ R× R2
+,

φ(t, t0, x0, y0) ∈ A, t > T.

Definition 3.4. [5] A closed invariant set γ ⊂ Rn is called an attracting set if
there exists some open neighborhood A of γ such that, for all x0 ∈ A, φ(t, x0) ∈ A
for all t ≥ 0 and φ(t, x0) −→ γ as t −→∞.

Theorem 3.1. Let A be the defined by

A =
{

(x, y) ∈ (R2
+) : 0 6 x 6 1, 0 6 x+ y 6 L1

}
,
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where

L1 =
1

4b

(
5b+ (1 + b)2 (1 + k)

)
.

then

1. A is positively invariant

2. all solutions of (3.1) initiating in R2
+ are ultimately bounded with respect to

R2
+ and eventually enter the attracting set A.

Proof: Let (x(0), y(0)) ∈ A, we will show that (x(t), y(t)) ∈ A for all t ≥ 0 :
from Lemma 5. as, (x(0)), y(0)) ∈ A, (x(t), y(t)) is in Int(R2

+). Then, we have show
to that for all t ≥ 0, 0 6 x(t) 6 1, and 0 6 x(t) + y(t) 6 L1.

1. (a) First, We prove that for all t ≥ 0, 0 6 x(t) 6 1.
We have x > 0 and y > 0 in Int(R2

+); then every solution φ(t) = (x(t), y(t))
of system(3.1), which starts in Int(R2

+), satisfies the differential inequality
dx
dt

6 (1− x(t))x(t). Thus, x(t) may be compared with solutions of{
du
dt

= (1− u(t))u(t)
u(0) = x(0) > 0

so we have,

u′(t) = u(t)− (u(t))2

and

u′(t)

[u(t)]2
=

1

u(t)
− 1

set

z(t) =
1

u(t)

then

z′(t) = − u′(t)

[u(t)]2

and z(t) satisfies the equation

−z′(t) = z(t)− 1

hence

z′(t) + z(t) = 1
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all the solutions of the homegenous differential equation z′(t) + z(t) = 0, are
of the form:

zh(t) = ce−t

particular solution of z′(t)+z(t) = 1 is obtained by constant variation method

z′(t) = c′e−t − ce−t

c′e−t − ce−t + ce−t = 1

c′ = et

c = et

zp(t) = 1

Then the solution is:

u(t) =
1

zh(t) + zp(t)

u(t) =
1

ce−t + 1
.

Since u(0) = x(0) =
1

ce−0 + 1

x(0) =
1

c+ 1

c+ 1 =
1

x(0)

c =
1

x(0)
− 1

with x(0) 6 1, which implies that c =
1

x(0)
− 1 ≥ 0. From the fact that

0 < e−t 6 1 for t ≥ 0, and we have c ≥ 0 therefor x(t) 6 1.
It follows that every nonnegative solution φ(t) = (x(t), y(t)) of (3.1) satisfies

x(t) 6 1 ∀t ≥ 0.

(b) For all t ≥ 0, and (x(t), y(t)) ∈ R2, 0 6 x+ y 6 L1.
We define the function σ(t) = x(t) + y(t);

dσ

dt
=
dx

dt
+
dy

dt
=

(
1− x− ay

αx+ βy + γ

)
x+ b

(
1− y

x+ k

)
y,

then
dσ

dt
=
dx

dt
+
dy

dt
6 (1− x)x+ b

(
1− y

x+ k

)
y
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Thus, as

max
[0,1]

(1− x)x =
1

4
,

we have
dσ

dt
6

1

4
+ b

(
1− y

x+ k

)
y;

then
dσ

dt
6

1

4
+ b

(
1− y

x+ k

)
y + σ(t)− σ(t),

σ(t) = x(t) + y(t) which implies that

dσ

dt
+ σ(t) 6

1

4
+

(
b− by

x+ k

)
y + x+ y

dσ

dt
+ σ(t) 6

1

4
+ x+

(
b+ 1− by

x+ k

)
y,

Since in (1)(a), x(t) 6 1 for all t ≥ 0, we obtain

dσ

dt
+ σ(t) 6

5

4
+

(
b+ 1− by

1 + k

)
y.

Moreover, set

g(y) = (b+ 1)y − by2

1 + k
, y ∈ R+

with

g′(y) =
−2by

1 + k
+ (b+ 1),

which give

(b+ 1)(1 + k) = 2by

so,

y =
(b+ 1)(1 + k)

2b

Thus,

max
R+

[g(y)] = max
R+

[(
b+ 1− by

1 + k

)
y

]
=

1

4b
(1 + b)2(1 + k).
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Consequently
dσ

dt
+ σ(t) 6 L1,

By applying Lemma 1. then we get

∀t ≥ T̄ ≥ 0 : σ(t) 6 L1 −
(
L1 − σ

(
T̄
))
e−(t−T̄ ).

Then, if T̄ = 0, for (x(0), y(0)) ∈ A,

σ(t) = x(t) + y(t) 6 L1.

Then
(x(t), y(t)) ∈ A, ∀t ≥ 0.

2. We have to prove that, for (x(0), y(0)) ∈ R2
+, (x(t), y(t)) −→ A when t −→

+∞. We will show that limt−→+∞x(t) 6 1 and limt−→+∞ (x(t) + y(t)) 6 L1.

(a) For, limt−→+∞ x(t) 6 1, we have from the system

dx

dt
6 (1− x(t))x(t)

and using lemma 2 with u(t) from 1, a) we obtain

x(t) 6 u(t)

therefor

limt−→+∞ x(t) 6 limt−→+∞ u(t) = 1.

(b) Let ε > 0, and T1 > 0 exists, such that

x(t) 6 1 +
ε

2
∀t ≥ T1.

From (1) with T̄ = T1, we get for all t ≥ T1,

σ(t) = x(t) + y(t)

6 L1 − (L1 − σ (T1)) e−(t−T1)

6 L1 −
{
L1e

T1 − (x(T1) + y(T1))eT1
}
e−t

6 L1 −
{
L1 − (x(T1) + y(T1))eT1

}
e−t

σ(t) = x(t)+y(t) 6
(
L1 +

ε

2

)
−
{(
L1 +

ε

2

)
− (x(T1) + y(T1))eT1

}
e−t, t ≥ T1 ≥ 0.

Let T2 ≥ T1
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σ(t) = x(t) + y(t)

6
(
L1 +

ε

2

)
−
{(
L1 +

ε

2

)
− (x(T1) + y(T1))eT1

}
e−t,

because t ≥ T1 and T2 ≥ T1 so,

∣∣∣(L1 +
ε

2

)
− (x(T1) + y(T1))eT1

∣∣∣ e−t 6 ∣∣∣(L1 +
ε

2

)
− L1

∣∣∣ 6 ε

2
∀t ≥ T2.

Then
x(t) + y(t) 6 L1 + ε ∀t ≥ T2.

Hence,
lim

t−→+∞
(x(t) + y(t)) 6 L1.

In the latter we deduce that system (3.1) is dissipative (solutions are bounded
) in R2

+.

27



Chapter 4

Stability

4.1 Linear stability

4.1.1 Equilibrium points

we find equilibrium points of the system in order to study their stability.
dx
dt

= x(1− x)− axy

αx+ βy + γ
,

dy
dt

= b

(
1− y

x+ k

)
y.

We solve


x(1− x)− axy

αx+ βy + γ
= 0,

b

(
1− y

x+ k

)
y = 0,

which implies that by = 0 and hence y = 0 or

1− y

x+ k
= 0

therefore
y = x+ k.

Hence, if y = 0 :

x(1− x) = 0 means x = 0 or x = 1.

28



Or, if

y = x+ k,

by replacing y in the first equation we get

x(1− x)− ax(x+ k)

αx+ β(x+ k) + γ
= 0

then we get

(x− x2)(αx+ β(x+ k) + γ)− ax2 + axk = 0,

hence

αx2 + βx2 + βxk + γx− αx3 − βx3 − βkx2 − ax2 + axk = 0,

then

−x3(α + β) + x2(α + β − βk − a) + x(βk + γ + ak) = 0,

therefore

−x(x2(α + β) + x(α + β − βk − a) + (βk + γ + ak)) = 0

which implies that

x = 0 or x =
−(α + β − βk − a)±

√
((α + β − βk − a)2 − 4(α + β)(βk + γ + ak))

2(α + β)

so, {
y = 0
x = 0

∨
{
y = 0
x = 1

∨
{
y = x+ k
x = 0.

Then we conclude that the trivial equilibria are

P1(0, 0), P2(0, k), P3(1, 0).

The other equilibria are defined by the system{ ay

αx+ βy + γ
= 1− x,

y = x+ k.
(4.1)
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Proposition 4.1. The system (3.1) has a unique interior equilibria P ∗(x∗, y∗)(i.e.,
x∗ > 0 and y∗ > 0) if the following condition is verified:

k(a− β) 6 γ. (4.2)

Proof. We remplace the value of the unknown y in the second equation of
(3.1) in the first one, then

a(x+ k) = (1− x)((α + β)x+ (βk + γ)),

and we obtain

(α + β)x2 + (βk + γ + a− α− β)x+ ak − βk − γ = 0. (4.3)

(4.3) is a second degree equation, so in order to solve it we need to determine
the sign of the discriminant

∆ = (βk + γ + a− α− β)2 − 4(ak − βk − γ)(α + β)
= ((βk + γ + a)− (α + β))2 + 4((βk + γ)− ak)(α + β)
= (βk + γ + a)2 + (α + β)2 − 2(βk + γ + a)(α + β)
+ 4(βk + γ + a)(α + β)− 4a(k + 1)(α + β)
= ((βk + γ + a) + (α + β))2 − 4a(1 + k)(α + β).

Therefore, if (4.2) holds (i.e.,βk + γ ≥ ak), then

∆ = ((βk + γ) + a+ (α + β))2 − 4a(1 + k)(α + β)
≥ (a(k + 1) + (α + β))2 − 4a(1 + k)(α + β)
≥ (a(k + 1) + (α + β))2 ≥ 0.

(4.4)

Consequently, ∆ is positive, and the system (3.1) has two other equilibriums
P ∗1 (x1, y1) and P ∗2 (x2, y2), where

x1,2 = −((βk + γ)− (α + β) + a)±
√

∆

2(α + β)
,

y1,2 = (x1,2 + k).

however one of these equilibriums is not in (R2
+). In deed, let

x2 = −((βk + γ + a)− (α + β))−
√

∆

2(α + β)
,

then

2x2 = 1− ((βk + γ + a) +
√

∆)

(α + β)
,
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from (4.4) we have, √
∆ ≥ |a(k + 1)− (α + β)|,

and due to (4.2)

2x2 6 1− (a(k + 1) + |a(k + 1)− (α + β)|)
(α + β)

,

which implies that

(1) if a(k + 1) < (α + β)

2x2 6 1− a(k + 1)− a(k + 1) + (α + β)

(α + β)
6 0;

(2) if a(k + 1) > (α + β),

2x2 6 1− a(k + 1) + a(k + 1)− (α + β)

(α + β)
6 2− 2

a(k + 1)

α + β
6 0.

it results that P ∗2 (x2, y2) is not in (R2
+), remains to verify that x1 > 0 in

order to have (and only one) equilibrium point in the interior of the positive
quadrant, we know that x1 and x2 satisfy

x1x2 = ak − βk − γ 6 0;

then the first point P ∗1 (x1, y1) is in (R2
+).

4.1.2 Stability of equilibria

The Jacobian matrix of the system (3.1) at equilibrium Pi is given by

J(Pi) =

1− 2x− ay(βy + γ)

(αx+ βy + γ)2
− ax(αx+ γ)

(αx+ βy + γ)2

b(
y

x+ k
)2 b− 2by

x+ k


(1) At P0(0, 0),

J(P0) =

(
1 0
0 b

)
.

The eigenvalues of this matrix are

λ1 = 1, λ2 = b.

Because, (λ1, λ2) are positive, then P0(0, 0), is an unstable node.
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(2) P1(0, k),

J(P1) =

1− ak

βk + γ
0

b −b

 .

The eigenvalues are

λ1 = 1− ak

βk + γ
=
−k(a− β) + γ

βk + γ
, λ2 = −b < 0.

Then, we have

(a) if k(a− β) > γ, P1(0, k) is stable node;

(b) if k(a− β) 6 γ, P1(0, k) is unstable point.

(3) At P2(1, 0),

J(P2) =

(
−1 − a

α + γ
0 b

)
.

The eigenvalues are

λ1 = −1 < 0, λ2 = b > 0.

Then the equilibrium P2(1, 0) is a saddle point.

Around P ∗(x∗, y∗), the Jacobien matrix takes the form

J(P ∗) =

1− 2x∗ − ay∗(βy∗ + γ)

(αx∗ + βy∗ + γ)2
− ax∗(αx∗ + γ)

(αx∗ + βy∗ + γ)2

b −b

 .

The characteristic equation is

λ2 − trJ(P ∗)λ+ det J(P ∗) = 0,

where

det J(P ∗) = −b
(

1− 2x∗ − ay∗(βy∗ + γ)

(αx∗ + βy∗ + γ)2

)
+ ab

x∗(αx∗ + γ)

(αx∗ + βy∗ + γ)2

=
b

(αx∗ + βy∗ + γ)2
{ay∗(βy∗ + γ)

+ (2x∗ − 1)(αx∗ + βy∗ + γ)2 + ax∗(αx∗ + γ)}

=
b

(αx∗ + βy∗ + γ)2
{(x∗ − 1)(αx∗ + βy∗ + γ)2

+ x∗(αx∗ + βy∗ + γ)2 + ay∗(βy∗ + γ) + ax∗(αx∗ + γ)} .
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From (4.1) we get

det J(P ∗) =
b

(αx∗ + βy∗ + γ)2
{−ay∗(αx∗ + βy∗ + γ) + x∗(αx∗ + βy∗ + γ)2

+ ay∗(βy∗ + γ) + ax∗(αx∗ + γ)}

=
b

(αx∗ + βy∗ + γ)2
{−aαx∗y∗ + x∗(αx∗ + βy∗ + γ)2 + ax∗(αx∗ + γ)}

=
b

(αx∗ + βy∗ + γ)2
{x∗(αx∗ + βy∗ + γ)2 + ax∗(αx∗ − αy∗ + γ)}

=
b

(αx∗ + βy∗ + γ)2
{x∗(αx∗ + βy∗ + γ)2 − ax∗(αk − γ)} ;

then

det J(P ∗) =
bx∗

(αx∗ + βy∗ + γ)2

{
(αx∗ + βy∗ + γ)2 − a(αk − γ)

}
. (4.5)

If det J(P ∗) is positive, then the stability of the interior equilibrium P ∗ is
determined by the sign of trJ(P ∗). We observe that det J(P ∗) is positive if

{
(αx∗ + βy∗ + γ)2 − a(αk − γ)

}
> 0.

To simplify, we developed det J(P ∗) respecting one variable, from 4.1; then

(αx∗ + βy∗ + γ)2 − a(αk − γ) =

(
a(x∗ + k)

1− x∗

)2

− a(αk − γ)

=
a2(x∗ + k)2

(1− x∗)2
− a(αk − γ),

which implies that det J(P ∗) has the same sign of

a(x∗ + k)2 + (1− x∗)(γ − αk).

We rewrite

a(x∗)2 + 2kax∗ + ak2 + (γ − αk)
(
(x∗)2 − 2x∗ + 1

)
.

Let

f(x) = (a+ γ − αk)x2 + 2(ak + αk − γ)x+ (γ − αk + ak2).
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The discriminant is

∆′ = (ak + αk − γ)2 − 4(a+ γ − αk)(γ − αk + ak2)
= (a+ α)2k2 − 2γk(a+ α) + γ2 − (a+ γ)(ak2 + γ) + (a+ γ)αk + αk(ak2 + γ − αk)
= (a+ α)2k2 − 2γk(a+ α) + γ2 − (a+ γ)(ak2 + γ) + (ak2 + a+ 2γ)αk − (αk)2

= (a2 + 2aα + α2)k2 − 2γk(a+ α) + γ2

− (a2k2 + a(1 + k2)γ + γ2) + aαk3 + γ + (a+ 2γ)αk − α2k2,
= 2aαk2 − 2aγk − aγk2 − aγ + aαk3 + aαk
= a {αk3 + (2α− γ)k2 + (α− γ)k − γ}
= a {αk(k2 + 2k + 1)− γ(k2 + 2k + 1)}
= a(αk − γ)(k + 1)2.

We get three cases.

(1) If αk < γ,∆′ is negative, f(x) has the same sign of (a + γ − αk), and
we have (a+ γ − αk) > a > 0.

Then, det J(P ∗) is positive.

(2) If αk > γ,∆′ is positive and det J(P ∗) has at least two solutions x1 and
x2, then

(a) if x ∈]−∞, x1]
⋃

[x2,+∞[, det J(P ∗) has the same sign of (a+ γ −
αk);

(b) if x ∈]x1, x2[ it has sign of −(a+ γ − αk).

(3) If αk = γ, then

f(x) = ax2 + 2akx+ ak2 = a(x+ k)2 > 0.

Then, det J(P ∗) is positive.

Remark 4.1. From the expression (4.5), we find that det J(P ∗) is positive,
if αk 6 γ, hence the eigenvalues associated to P ∗ have the same sign.

To determine the sign of these eigenvalues, it suffices to determine the sign
of trJ(P ∗),

trJ(P ∗) = 1− 2x∗ − ay∗(βy∗ + γ)

(αx∗ + βy∗ + γ)2
− b

=
1

(αx∗ + βy∗ + γ)2
{(1− 2x∗ − b)(αx∗ + βy∗ + γ)2 − ay∗(βy∗ + γ)}

=
1

(αx∗ + βy∗ + γ)2
{(1− x∗)(αx∗ + βy∗ + γ)2 − (x∗ + b)(αx∗ + βy∗ + γ)2

− ay∗(βy∗ + γ)} .
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From (4.1), we get

trJ(P ∗) =
1

(αx∗ + βy∗ + γ)2
{ay∗(αx∗ + βy∗ + γ)

− (x∗ + b)(αx∗ + βy∗ + γ)2 − ay∗(βy∗ + γ)}
=

1

(αx∗ + βy∗ + γ)2
{aαx∗y∗ − (x∗ + b)(αx∗ + βy∗ + γ)2}

= αx∗
ay∗

(αx∗ + βy∗ + γ)2
− (x∗ + b)

= αx∗
ay∗(1− x∗)2

a2(y∗)2
− (x∗ + b)

= αx∗
(1− x∗)2

ay∗
− (x∗ + b)

=
1

a(x∗ + k)
{αx∗(1− x∗)2 − a(x∗ + b)(x∗ + k)}

=
1

a(x∗ + k)
{α(x∗)3 − (a+ 2α)(x∗)2 − (a(b+ k)− α)x∗ − abk} .

Let
P3(x) = αx3 − (a+ 2α)x2 − (a(b+ k)− α)x− abk.

αk < γ ensures that the determinant is positive, so the stability of P ∗ is

related to sign of trJ(P ∗) =
1

a(x∗ + k)
P3(x).

Lemma 6. If αk < γ is verified, the interior equilibrium P ∗(x∗, y∗) is locally
asymptotically stable if P3(x∗) < 0 and it is unstable if P3(x∗) > 0.

We use the Cadran’s methode [13] to solve the cubic equation P3(x∗) = 0.
Then we consider the equation

a3x
3 + a2x

2 + a1x+ a0 = 0, (4.6)

with a3 = α, a2 = −(a + 2α), a1 = −(a(b + k) − α), a0 = −abk. Making the
substitution y = a3x+ a2/3 reduces the equation to the standard from

y3 − py − q = 0, (4.7)

where p and q depend on a3, a2, a1, a0

p = −a1a3 +
a2

2

3
,

q = −a0a
2
3 − 2

(a2

3

)3

+
a3a2a1

3
.
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Let
y = u+ v.

y3 − py − q = (u+ v)3 − 3uv(u+ v)− (u3 + v3) = 0.

And from there

3uv = p,
u3 + v3 = q.

Then

u3v3 =
(p

3

)3

,

u3 + v3 = q,

and we obtain that u3 and v3 are solutions of the quadratic equation

z2 − qz +
(p

3

)3

= 0. (4.8)

Then we constitute three cases.

(1) if 27q2 − 4p3 > 0, then (4.8) admits two real roots u3, v3 such that

u3 =
q

2
+

√(q
2

)2

−
(p

3

)3

,

v3 =
q

2
−
√(q

2

)2

−
(p

3

)3

,

each admits a single real cubic root

u =
3

√
q

2
+

√(q
2

)2

−
(p

3

)3

,

v =
3

√
q

2
−
√(q

2

)2

−
(p

3

)3

.

From lemma 3 we deduce the unique real root of the equation (4.7) is

y =
3

√
q

2
−
√(q

2

)2

−
(p

3

)3

+
3

√
q

2
+

√(q
2

)2

−
(p

3

)3

;
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then (4.6) has one real root

r0 =
1

a3

 3

√
q

2
−
√(q

2

)2

−
(p

3

)3

+
3

√
q

2
+

√(q
2

)2

−
(p

3

)3

− a2

3

 .

So, we have P3(x) < 0 if 0 < x < r0, and P3(x) > 0 if r0 < x.

(2) if 27q2 − 4p3 < 0, we find first both u3, v3 roots of (4.8), which are com-
plex conjugates, then extract their cubic roots u, v. And u3 admits three
cubic roots: u, ju, j2u and even for v.

u1 =
3

√
q

2
+

√(q
2

)2

−
(p

3

)3

v1 =
3

√
q

2
−
√(q

2

)2

−
(p

3

)3

u2 = j
3

√
q

2
+

√(q
2

)2

−
(p

3

)3

v2 = j
3

√
q

2
−
√(q

2

)2

−
(p

3

)3

u3 = j2 3

√
q

2
+

√(q
2

)2

−
(p

3

)3

v3 = j2 3

√
q

2
−
√(q

2

)2

−
(p

3

)3

.

So the possible sums of these roots is 9 values for y, which is too much
for an equation of degree 3. we imposed the relationship

uv =
p

3
.

So that if we perform one of the three possible choises for u, the other
value v is well defined, so also x. Precisely, we have v = ū. Indeed,
uv = p/3 is real so

v =
p

3u
=

p

3u
.
ū

ū
=

p

3|u|2
ū = cū with c ∈ R.

But as v3 is conjugated from u3, we have v3 = c3ū3 = ū3, and c = 1

we finally deduce the three real solutions: (lemma 4)

y1 = u1 + v1 =
3

√
q

2
+ i

√(q
2

)2

−
(p

3

)3

+
3

√
q

2
− i
√(q

2

)2

−
(p

3

)3

,

y2 = u2 + v3 = j
3

√
q

2
+ i

√(q
2

)2

−
(p

3

)3

+ j2 3

√
q

2
− i
√(q

2

)2

−
(p

3

)3

,

y3 = u3 + v2 = j2 3

√
q

2
+ i

√(q
2

)2

−
(p

3

)3

+ j
3

√
q

2
− i
√(q

2

)2

−
(p

3

)3

.

Then there are three real roots: r1, r2 and r3.

we know that P3(x) = (x − r1)(x − r2)(x − r3), and therefore, r1r2r3 =
abk > 0 then one of them is positive, then
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(a) if r2 < r3 < 0 < r1, then P3(x) > 0 if 0 < r1 < x, and P3(x) < 0 if
0 < x < r1;

(b) if 0 < r1 < r2 < r3, then P3(x) > 0 if r1 < x < r2, or r3 < x, and
P3(x) < 0 if x < r1, and r2 < x < r3.

(3) if 27q2 = 4p3, then
u3 = q/2,
v3 = q/2,

then (4.7) admits

y0 = 2 3

√
q

2
,

and

y1,2 = j 3

√
q

2
+ j2 3

√
q

2
,

and j2 + j + 1 = 0⇔ j2 + j = −1 so,

y1,2 = (j2 + j) 3

√
q

2
= − 3

√
q

2
.

then (4.6) there are one real root positive r0 =
1

a3

(y0−
a2

3
), and a double root

r1,2 =
1

a3

(y1,2 −
a2

3
); we also have P3(x) < 0 if 0 < x < r0, and P3(x) > 0 if

r0 < x.

Remark 4.2. In [11] we find: (b) if 0 < r1 < r2 < r3, then P3(x) > 0 if
0 < r1 < x, and P3(x) < 0 if x < r1, which is different from the conclution
we are lead to in (b).

4.2 Global stability

Lapunov function is one of the methods in study the stability and in this
chapter, through this function, we will prove globally asymptotically stable of
system (3.1).

Theorem 4.1. The interior equilibrium P ∗(x∗, y∗) is globally asymptotically
stable if

β < α, (4.9)

2aL1 < γ, (4.10)

(βk + γ)(αL1 + γ)(1 + k) < 4βk2γ2, (4.11)

α(1 + 2k)− β(1 + k) < γ, (4.12)

a− 4βL1 < 4γ. (4.13)
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Proof. Theorem 1.3 gives a result for solution x = 0 to be globaly asymptot-
ically stable. In our cas we are studying the global stability at (x∗, y∗) 6= 0, by
this a simple changes variables which

x(t) = x′(t) + x∗, and y(t) = y′(t) + y∗,

then

dx′

dt
= (x′ + x∗)(1− (x′ + x∗))− a(x′ + x∗)(y′ + y∗)

αx+ βy + γ
,

dy′

dt
= b

(
1− y′ + y∗

(x′ + x∗) + k

)
y.

we choose a Liapunov function

V (x′, y′) = (αx∗+βy∗+γ)

(
x′ − x∗ − x∗ ln

(
x′

x∗

))
+
a

b
(x∗+k)

(
y′ − y∗ − y∗ ln

(
y′

y∗

))
.

where

V1(x′, y′) = (αx∗ + βy∗ + γ)

(
x′ − x∗ − x∗ ln

(
x′

x∗

))
,

V2(x′, y′) = a
b
(x∗ + k)

(
y′ − y∗ − y∗ ln

(
y′

y∗

))
.

(4.14)

we find that V has to satisfy

(a) V (x∗, y∗) = 0, if x′ = y′ = 0.

(b) V (x′, y′) > 0, for all (x′, y′) 6= (0, 0), we have that (α, β, γ, a, b) are
positive and (x∗, y∗) > 0, under the condition (4.2), and hence

we suppose

f(x′) = x′ − x∗ − x∗ ln

(
x′

x∗

)
= x∗

(
x′

x∗
− 1− ln

(
x′

x∗

))
,

and

g(y′) = y′ − y∗ − y∗ ln

(
y′

y∗

)
,

= y∗
(
x′

y∗
− 1− ln

(
y′

y∗

)
,
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we making α =
1

x∗
, β =

1

y∗
, so

f(α) =
1

α
(αx′ − 1− ln(αx′)) ,

g(β) =
1

β
(βy′ − 1− ln(βy′)) ,

befor to study variation of this function f, g we get that f(α) and g(β)
are positive for all (α, β) ∈ R+, therefor V (x∗, y∗) > 0.

(c)
dV (x′, y′)

dt
< 0, for all x 6= 0,

we know,
dVi
dt

=
dVi
dx′

ẋ′ +
dVi
dy′

ẏ′, i = 1, 2.

dV1

dt
(x′, y′) = (αx∗ + βy∗ + γ)

(
1− x∗

x′

)
ẋ′,

dV2

dt
(x′, y′) = a

b
(x∗ + k)

(
1− y∗

y′

)
ẏ′,

and using (4.1), we get

dV1

dt
(x′, y′) =

(αx∗ + βy∗ + γ)(x′ − x∗)
x′

(
1− x′ − ay′

αx′ + βy′ + γ

)
x

= (αx∗ + βy∗ + γ)(x′ − x∗)
(

ay∗

αx∗ + βy∗ + γ
+ x∗ − x′ − ay′

αx′ + βy′ + γ

)
= −(αx∗ + βy∗ + γ)(x′ − x∗)2

+ (αx∗ + βy∗ + γ)(x′ − x∗)
(
ay∗(αx′ + βy′ + γ)− ay′(αx∗ + βy∗ + γ)

(αx∗ + βy∗ + γ)(αx′ + βy′ + γ)

)
= −(αx∗ + βy∗ + γ)(x′ − x∗)2

− (x′ − x∗)(y′ − y∗)
(

aαx′ + aγ

αx′ + βy′ + γ

)
+

(
aαy′

αx′ + βy′ + γ

)
(x′ − x∗)2,

Similarly,
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dV2

dt
(x′, y′) =

a

b
(x∗ + k)b

(
y′ − y∗

y′

)(
1− y′

x′ + k

)
y′

= a(x∗ + k)(y′ − y∗)
(

y∗

x∗ + k
− y′

x′ + k

)
= a(x∗ + k)(y′ − y∗)

(
y∗x′ + y∗k − y′x∗ − y′k + y′x′ − y′x′

(x∗ + k)(x′ + k)

)
= a(y′ − y∗)(−k(y′ − y∗) + y′(x′ − x∗)− x′(y′ − y∗))

(x′ + k)

= a(y′ − y∗) [−(y′ − y∗)(x′ + k) + y(x′ − x∗)]
(x′ + k)

= −a(y′ − y∗)2 +
ay′

(x′ + k)
(x′ − x∗)(y′ − y∗).

Therefore,

dV

dt
=

(
−(αx∗ + βy∗ + γ) +

(
aαy′

αx′ + βy′ + γ

))
(x′ − x∗)2

+ (x′ − x∗)(y′ − y∗)
(
−
(

aαx′ + aγ

αx′ + βy′ + γ

)
+

ay′

(x′ + k)

)
− a(y′ − y∗)2.

The above equation can be written as

dV

dt
= −(x′ − x∗, y′ − y∗)

(
−g(x′, y′) −h(x′, y′)
−h(x′, y′) a

)(
x′ − x∗
y′ − y∗

)
,

where

g(x′, y′) = −(αx∗ + βy∗ + γ) +
aαy′

αx′ + βy′ + γ
,

h(x′, y′) =
a

2

(
−αx′ − γ

αx′ + βy′ + γ
+

y′

(x′ + k)

)
.

’ To prove dV/dt < 0 we follow the steps Sylvester’s criteria that we
mentioned in the chapter 1, since a > 0, if only if

(1) g(x′, y′) < 0;

(2) φ(x′, y′) = ag(x′, y′) + h2(x′, y′) < 0.

Proof. It is of (1)

g(x′, y′) = −(αx∗ + βy∗ + γ) +
aαy′

αx′ + βy′ + γ
< 0.

So, as A is an attracting positively invariant set, where, all solutions
satisfy 0 6 x′ 6 1 and 0 6 x′ + y′ 6 L1, then
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g(x′, y′) 6 −αx∗ +
aαy′

αx′ + βy′ + γ
,

6 α

(
−1 +

ay∗

αx∗ + βy∗ + γ
+

ay′

αx′ + βy′ + γ

)
,

6 α

(
−1 +

a

γ
(y′ + y∗)

)
6 α

(
−1 +

2aL1

γ

)
.

Therefore, if (4.10) holds, then

g(x′, y′) < 0, ∀(x′, y′) ∈ A.

Proof. of (2)

φ(x′, y′) = −a(αx∗+βy∗+γ)+
a2αy′

αx′ + βy′ + γ
+
a2

4

(
− αx′ + γ

αx′ + βy′ + γ
+

y′

x′ + k

)2

< 0.

Since (for x′ fixed)

∂φ

∂y′
=

a2α(αx′ + γ)

(αx′ + βy′ + γ)2

+
a2

2

(
− αx′ + γ

αx′ + βy′ + γ
+

y′

x′ + k

)(
β(αx′ + γ)

(αx′ + βy′ + γ)2
+

1

x′ + k

)
,

then,

∂2φ

∂y′2
=
−2a2βα(αx+ γ)(αx′ + βy′ + γ)

(αx′ + βy′ + γ)2

+
a2

2

[(
β(αx′ + γ)

(αx′ + βy′ + γ)2
+

1

x′ + k

)(
β(αx′ + γ)

(αx′ + βy′ + γ)2
+

1

x′ + k

)
+

(
− αx′ + γ

αx′ + βy′ + γ
+

y′

x′ + k

)(
−2β2(αx′ + γ)(αx′ + βy′ + γ)

(αx′ + βy′ + γ)4

)]
= −2a2 αβ(αx′ + γ)

(αx′ + βy′ + γ)3
+
a2

2

(
β(αx′ + γ)

(αx′ + βy′ + γ)2
+

1

x′ + k

)2

+
a2

2

(
−2β2(αx′ + γ)

(αx′ + βy′ + γ)3

)(
− αx′ + γ

αx′ + βy′ + γ
+

y′

x′ + k

)
= − 2a2αβ(αx′ + γ)

(αx′ + βy′ + γ)3
+

a2β2(αx′ + γ)2

(αx′ + βy′ + γ)4
+

a2

2(x′ + k)2

+
a2β(αx′ + γ)

(αx′ + βy′ + γ)2(x′ + k)
− a2β2y′(αx′ + γ)

2(αx′ + βy′ + γ)3(x′ + k)
.
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We have

∂2φ

∂y′2
6 − 2a2αβ(αx′ + γ)

(αx′ + βy′ + γ)3
− a2β2y′(αx′ + γ)

2(αx′ + βy′ + γ)3(x′ + k)

+
a2β2

(αx′ + γ)2
+

a2

2(x′ + k)2
+

a2β

(αx′ + γ)(x′ + k)

6 − a2β(αx′ + γ)

(αx′ + βy′ + γ)3(x′ + k)
(4α(x′ + k) + βy′) +

a2β2

(αx′ + γ)2

+
a2

2(x′ + k)2
+

a2β

(αx′ + γ)(x′ + k)
.

We note, using (4.9), that for (x′, y′) ∈ A

1

a2

∂2φ

∂y′2
6 − β(α + γ)

2(αL1 + γ)3(1 + k)
(4α(1 + k) + βy′)

+
β2

(β + γ)2
+

1

2(1 + k)2
+

β

(β + γ)(1 + k)

therefore,

1

a2

∂2φ

∂y′2
6 − 2kβ2

(αL1 + γ)3(1 + k)
+
β2

γ2
+

1

2k2
+

β

kγ
.

If (4.11) holds, then

1

a2

∂2φ

∂y′2
6 0.

Hence, ∂φ/∂y′ is strictly decreasing in R+ with respect to y′.
Now,

∂φ

∂y′
|y′=0 =

a2α

αx′ + γ
− a2

2

(
β

αx′ + γ
+

1

x′ + k

)
=

a2

2(αx′ + γ)(x′ + k)
((α− β)x′ + k(2α− β)− γ).

In, A, all solutions satisfy 0 6 x 6 1, and from (4.9)

(α− β)x′ + k(2α− β)− γ 6 (α− β) + k(2α− β)− γ,

then, if (4.12) holds, (∂φ/∂y′)|y′=0 6 0 in R+. Hence, φ(x′, y′) is strictly
decreasing in R+. This yields φ(x′, y′) < D(x′, 0) for (x′, y′) ∈ A; that is,
using (4.9), we get
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φ(x′, y′) < −a(αx′∗ + βy′∗ + γ) +
a2

4
< −a

(
β(x′∗ + y′∗) + γ − a

4

)
< a

(
βL1 + γ − a

4

)
.

Consequently, due to (4.13),

φ(x′, y′) < 0, ∀(x′, y′) ∈ A.

Then dV/dt < 0 along all trajectories in the first quadrant (x∗, y∗); so P ∗(x∗, y∗)
is globally asymptotically stable.
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Chapter 5

Permanence

Permanence or uniform persistence of strictely positive equilibria means that
the omega limit of the trivial equilibrium points cannot intersect of the positive
cone. In this chapter, we prove under necessary condition the permanence of
the system (3.1)

Definition 5.1. Consider an ODE model for n interacting biological species

dxi
dt

= fi(x1, x2, ..., xn), i = 1, 2, ..., n,

where xi(t) denotes the density of the ith species. Let (x1(t), x2(t), ..., xn(t))
denote the solution of (5.1) with componentwise positive initial values. The
system (5.1) is said to be weakly persistent if

lim sup
t−→+∞

xi(t) > 0, i = 1, 2, ..., n,

persistent if

lim inf
t−→+∞

xi(t) > 0, i = 1, 2, ..., n,

and uniformly persistent if there is an ε0 > 0 such that

lim inf
t−→+∞

xi(t) > ε0, i = 1, 2, ..., n.

The system (5.1) is said to be permanent if for each i = 1, 2, ..., n there are
constant ε0 and Mi such that

0 < ε0 < lim inf
t6+∞

xi(t) < lim sup
t6+∞

xi(t) 6Mi.
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Suppose that Υ is a complete metric space with Υ = Υ0

⋃
∂Υ0 for an open

set Υ0. We choose Υ0 to be the positive cone in R2.

Definition 5.2. A flow or semiflow on Υ = Υ0

⋃
∂Υ0 under which Υ0 and

∂Υ0 are forward invariant is said to be permanent if it is dissipative and if
there is a number ε > 0 such that any trajectory starting in Υ0 will be at least
a distance ε from ∂Υ0 for all sufficiently large t.

Let ω(∂Υ0) =
⋃
u∈∂Υ0

ω(u),such that ω(∂Υ0) ∈ ∂Υ0 denote the union of the
sets ω(u) over u ∈ ∂Υ0.

Definition 5.3. The ω-limit set ω(∂Υ0) is said to be isolated if it has a
covering Ω =

⋃N
k=1 Ωk of pairwise disjoint sets Ωk which are isolated and

invariant with respect to the flow or the semiflow both on ∂Υ0 and on Υ =
Υ0

⋃
∂Υ0, (Ω is called an isolated covering). The set ω(∂Υ0) is said to be

acyclic if there exists an isolated covering
⋃N
k=1 Ωk such that no subset of Ωk

is a cycle (The chain is called a cycle if Ωk = Ω1).

Theorem 5.1. Suppose that a semiflow on Υ leaves both Υ0 and ∂Υ0 forward
invariant, maps bounded sets in Υ to precompact set for t > 0, and it is
dissipative. If in addition

(1) ω(∂Υ0) is isolated and acyclic;

(2) W s(Ωk) ∩Υ0 = ∅ for all K, where
⋃N
k=1 Ωk is the isolated covering used

in the definition of acyclicity of ∂Υ0.

Then the semiflow is permanent.

Remark 5.1. [9] The stable set of pairwise disjoint sets Ωk is denoted by W s

( the stable manifold) and is defined as

W s(Ωk) = {x|x ∈ Υ, ω(x) 6= ∅, ω(x) ⊂ Ωk} .

And, we have this theorem.

Theorem 5.2. Let us assume the following condition:

k(a− β) 6 γ. (5.1)

Then, system (3.1) is permanent.

Proof. We take Υ the strictly positive quadrant of R2; then ω(∂Υ0) consists
of the equilibria P0(0, 0), P1(0, k), and P2(1, 0).
P0(0, 0) is an unstable node, P2(1, 0) is saddle point, and its stable manifold
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is x-axis.
If ak 6 βk+ γ, P1(0, k) is a saddle point stable along the y-axis and unstable
along the x-axis.
Then, all trajectories on the axis (ox) other than P0(0, 0) approach the point
P1(0, k). It follows from these structural features that the flow in ∂Υ0 is
acyclic. So ω(∂Υ0) is isolated and acyclic.
The stable manifold of P2(1, 0) is the x-axis and the stable manifold of P1(0, k)
is the y-axis, and we know, from Theorem 3.1, thet these stable manifolds can-
not intersect the interior of Υ0.
In this case, Theorem 5.1 implies permanence of the flow defined by (3.1).
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Conclusion

In this memory, we have presented and analysed the mathimatical models de-
scribing the dynamics of the population of interacting species.This model takes
into account the domain biological.

The main study out during this work is the treatment of the question of exis-
tence of an attracting set, boundedness of solutions and persistence for model
(3.1) .

Under certain imposed conditions, we have formulated the result of existence,
boundedness of solutions in the Theorem 3.1.

We have considered with a certain condition the local and global asymptotic
stability of trivial and interior equilibrium .

We have completed this study by the permannence of system(3.1) .
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