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ملخص

لاكتشاف والأكاديميين الباحثين أمام كبيرًا تحديًا تمثل الإنترنت على العلمية المنشورات عدد زيادة إن
المختصة. مجالاتهم في الأبحاث بآخر دائم لاع اطٍّ على والبقاء بكفاءة الصلة ذات العلمية المستندات
مصممة شخصية توصيات توفر معاصرة كتقنية التوصية أنظمة ظهرت التحدي، لهذا كاستجابة
العلمية، المستندات توصية تقنيات مختلف بين من بهم. الخاصة المستخدمين لاهتمامات خصيصًا
قوائم توفير إلى النهج هذه يهدف كبير. بانتباه النص بسياق المتناسبة الاقتباس توصية حظيت لقد
مع للتعامل الاقتباس. سياقات تحليل على بناءً عالية جودة ذات المرشحة المستندات من متناسقة
معروفة البيانات مجموعة وهي CiteULike-a، بيانات مجموعة من استفدنا المهمة، هذه تعقيدات
المعلومات، استرجاع بنهج تنفيذنا متابعة تمت نموذجنا. وتقييم لتدريب العلمية، المقالات لتوصية
تمثيلات نموذج استخدمنا التصنيف. بعد ما ونموذج تصنيف ونموذج استرجاع نموذج يتضمن بما
للمستندات التمثيلات لتعلم العميق، التعلم هندسة أحدث وهو المحولات، من الاتجاه ثنائية التشفير
من نوع وهي البوابات ذات العصبونية الشبكة الى بالاضافة سواء، حد على الاقتباس وسياقات
العلاقات دمج خلال من . المتتالية البيانات نمذجة على بقدرتها تتميز التي المتكررة العصبية الشبكات
الهامة. والسياقية الدلالية المعلومات لالتقاط للمتجهات المتوزعة التمثيلات بتعزيز قمنا الاقتباسية،
قمنا الأساسي. المقياس هي الدقة كانت حيث مختلفة، تقييم مقاييس استخدمنا نموذجنا، أداء لتقييم
ذات المستندات عدد القيم هذه تمثل حيث مستندات، عدد لأفضل مختلفة لقيم الدقة درجات بتقييم
أشارت حيث للاهتمام، مثيرة اتجاهات عن تجاربنا كشفت الاسترجاع. عملية في المعتبرة الصلة
أظهر الختام، في تدريجيًا. الدقة درجة تزداد الصلة، ذات المستندات أفضل عدد زيادة مع أنه إلى
واستخدام المعلومات استرجاع بنهج تنفيذه تم الذي السياق، مع المتناسب الاقتباس لتوصية نموذجنا
المتقدمة التقنيات دمج خلال من واعدة. نتائج المحولات، من الاتجاه ثنائية التشفير تمثيلات نموذج
بلغت حيث الصلة ذات العلمية المستندات لتوصية الدقة في تحسينًا حققنا الحوسبة، موارد وتحسين
ويمكن الأكاديمية، للمستندات المعلومات استرجاع مجال في المعرفة تقدم في أبحاثنا تساهم . 60%
أداء لتعزيز المستخدم ملاحظات ودمج إضافية تحسينات استكشاف على المستقبلية الأبحاث تركز أن

أكبر. بشكل النظام

العميق التعلم السياقي، ،الوعي الاقتباس توصية : الرئيسية الكلمات



ABSTRACT

The ever-growing number of scientific publications on the Internet presents a significant
challenge for researchers and academia to efficiently discover relevant scientific papers
and stay up-to-date with the latest research in their respective fields.In response to this
challenge, recommender systems have emerged as a contemporary technology that offers
personalized recommendations tailored to users’ specific interests.

Among the various techniques for scientific paper recommendation, context-aware
citation recommendation has garnered considerable attention. This approach aims to
provide users with curated lists of high-quality candidate papers based on the analysis of
citation contexts. To address the complexities of this task, we leverage the CiteULike-a
dataset,a well-known scholarly article recommendation system, to train and evaluate our
model. Our implementation followed an information retrieval approach, comprising a re-
trieval model,ranking model,and post-ranking model. We utilize the BERT model based
architecture, to learn representations of both papers and citation contexts.In addition to
GRU ,to model sequential data. By incorporating citation relationships,we enhance
the distributed vector representations to capture important semantic and contextual in-
formation. To evaluate the performance of our model,we employ various evaluation
metrics, with accuracy being the primary measure.We assess the accuracy scores for
different values of top-k papers,representing the number of relevant papers considered in
the retrieval process. Our experiments revealed interesting trends,indicating that as the
number of top relevant papers increased, the accuracy score exhibited a gradual increase.
Our context-aware citation recommendation model, demonstrated promising results.By
incorporating advanced techniques and optimizing computational resources,we achieve
improved accuracy in recommending relevant scientific papers which estimated by 60
%. Our findings contribute to the advancement of knowledge in the field of informa-
tion retrieval for scholarly papers, and future work could focus on exploring additional
enhancements and incorporating user feedback to further enhance the system’s perfor-
mance.

Keywords : Citation Recommendation, Context-Aware, Deep Learning.



RÉSUMÉ

Le nombre croissant de publications scientifiques sur Internet représente un défi im-
portant pour les chercheurs et le milieu universitaire afin de découvrir efficacement les
articles scientifiques pertinents et de se maintenir à jour avec les dernières recherches
dans leurs domaines respectifs. En réponse à ce défi, les systèmes de recommanda-
tion ont émergé en tant que technologie contemporaine offrant des recommandations
personnalisées adaptées aux intérêts spécifiques des utilisateurs.

Parmi les différentes techniques de recommandation d’articles scientifiques, la recom-
mandation de citations contextuelles a suscité une attention considérable. Cette approche
vise à fournir aux utilisateurs des listes sélectionnées de candidats d’articles de haute
qualité basées sur l’analyse des contextes de citation. Pour relever les défis de cette
tâche, nous exploitons le jeu de données CiteULike-a, un système de recommandation
d’articles scientifiques bien connu, pour entraîner et évaluer notre modèle. Notre mise
en oeuvre suive une approche de recherche d’informations comprenant un modèle de
recherche, un modèle de classement et un modèle de post-classement. Nous utilisons le
modèle BERT pour apprendre les représentations des articles et des contextes de citation.
En plus , GRU pour modéliser des données séquentielles. En incorporant les relations de
citation, nous avons amélioré les représentations vectorielles distribuées pour capturer
des informations sémantiques et contextuelles importantes. Pour évaluer les perfor-
mances de notre modèle, nous utilisons différentes mesures d’évaluation, l’exactitude
étant la mesure principale. Nous évaluons les scores d’exactitude pour différentes
valeurs de top-k articles, représentant le nombre d’articles pertinents considérés dans le
processus de recherche. Nos expériences ont révélé des tendances intéressantes, indi-
quant qu’à mesure que le nombre d’articles pertinents augmente, le score d’exactitude
augmente de manière graduelle. Notre modèle de recommandation de citations con-
textuelles a donné des résultats prometteurs. En intégrant des techniques avancées et en
optimisant les ressources informatiques, nous avons amélioré l’exactitude des recom-
mandations d’articles scientifiques pertinents Estimé à 60%. Nos résultats contribuent
à l’avancement des connaissances dans le domaine de la recherche d’informations pour



les articles scientifiques, et des travaux futurs pourraient se concentrer sur l’exploration
d’améliorations supplémentaires et l’intégration les commentaires d’utilisateurs pour
améliorer davantage les performances du système.

Mots clés : Recommandation de citation, connaissance du contexte,apprentissage
profond.
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INTRODUCTION

In recent years, the rapid increase in online scientific publications has presented a
challenge for researchers and the academic community in finding the most relevant

papers for their research. The traditional search process using scientific search engines
can be time-consuming, as researchers need to read the titles and summaries of articles
to determine their suitability and interest. This process often requires further searching
for additional relevant articles, adding to the complexity and time investment.

To address this issue, Recommender Systems (RSs) have gained attention as a po-
tential solution. RSs aim to alleviate information overload by suggesting items of
potential interest based on user preferences and behavior. They have been successfully
applied in various fields[7], including e-commerce, entertainment, and now, scholarly
publications. Paper recommender systems specifically focus on recommending relevant
scholarly publications[8] to make the process of finding information easier and more
efficient. However, many existing approaches to recommender systems primarily focus
on recommending the most relevant products to specific consumers, overlooking other
important factors. They often fail to consider contextual information such as users’
context, document’s context, and environmental context[9].
In other words, traditional recommender systems typically deal with applications involv-
ing only two entities: people and objects, without placing them in a broader context.
In the case of paper recommender systems, there has been a shift towards considering
more detailed information beyond just a few keywords. These systems aim to lever-
age additional contextual information associated with scholarly publications to provide
more accurate and personalized recommendations. Such contextual information may
include the author’s expertise, publication venue, citation network, and even the reader’s
research interests and background.
By incorporating contextual information, paper recommender systems can go beyond
simple keyword matching and provide more tailored recommendations that align with
the user’s specific research needs and interests. This approach enhances the precision
and the relevance of the recommendations, helping researchers navigate the vast land-
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scape of scientific publications more effectively. Furthermore, advancements in Natural
Language Processing (NLP) and Machine Learning (ML) techniques have facilitated
the analysis and extraction of contextual information from scholarly publications. Tech-
niques such as topic modeling, citation analysis, and entity recognition allow for a deeper
understanding of the content, relationships, and relevance of papers, enabling more so-
phisticated recommendation algorithms. The utilization of contextual information in
paper recommender systems has the potential to revolutionize the research process by
saving researchers’ time and effort.
By receiving targeted recommendations based on their research interests, expertise, and
the broader scientific landscape, researchers can quickly identify relevant papers, dis-
cover new perspectives, and stay up-to-date with the latest developments in their field.
In conclusion, the increased availability of online scientific publications has posed chal-
lenges for researchers in finding relevant papers. Recommender Systems, have emerged
as a promising solution to address information overload. By incorporating contextual
information and leveraging advanced NLP and ML techniques, these systems aim to
provide personalized and precise recommendations, easing the burden of searching for
scholarly publications and facilitating more efficient research. In this thesis we propose
a deep learning approach that uses content based filtering to retrieve the most relevant
scientific papers so that why we organize our thesis as follow:
Chapter N#1 "Background," we provide a concise overview of the fields that are rele-
vant to our work. This section aims to provide a contextual understanding of the areas
in which our research is situated.
Chapter N#2 "Related works ",We discuss the most well-known relevant works as well
as suggestions made by academics and authors in this field.
Chapter N#3 "Conception", we present the overall concept and approach behind the
design of our system. This section provides a comprehensive explanation of the un-
derlying principles, methodologies, and ideas that form the foundation of our proposed
solution.

Chapter N#4 "Implementation", we delve into the detailed implementation of our
proposed system for papers recommendation. Furthermore, we thoroughly analyze and
discuss its performance based on existed metrics.Finally, we conclude with "General
conclusion" .
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CHAPTER 1

BACKGROUND

1.1 Introduction

In order to place the reader in the proper context, this chapter aims to provide some
background information about the study area in which this work is situated. Initially,

we explore the topic of citation recommendation systems and its various components.
We start by defining recommendation systems, which are algorithms designed to suggest
relevant items to users. Then, we define the concept of citations, citation recommender
systems, which are specialized recommendation systems that provide researchers with
suggestions for relevant citations. Next, we delve into the history of citation recom-
mendation systems, tracing their development and evolution over time. We discuss the
importance of these systems in research communication, highlighting how they facilitate
the dissemination of knowledge and foster collaboration among researchers. Addition-
ally, we outline the benefits of effective citation recommendation, including improved
research quality, time-saving, and enhanced scholarly impact.

Moving on, we explore traditional approaches for citation recommendation. This
include content-based filtering, collaborative filtering, hybrid approaches, and rule-
based techniques. We discuss the strengths and limitations of these traditional methods
in generating citation recommendations.

Following that, we delve into deep learning techniques and their application in recom-
mendation systems. We introduce the concept of deep learning and explore how neural
networks, such as convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and transformer models, can be used for citation recommendation.

Furthermore, we discuss the role of context-awareness in recommendation systems.
We explain the importance of understanding context in recommendations and explore
different types of contextual information. We also delve into incorporating context in
collaborative filtering and context-aware techniques in content-based recommendations.
Additionally, we explore the use of contextual embeddings to enhance the performance
of recommendation systems. Another important aspect we cover is the evaluation
metrics for citation recommendation systems. We discuss accuracy metrics such as
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precision, recall, and F1-score, as well as ranking metrics like Mean Average Precision
(MAP). Additionally, we explore novelty and diversity metrics that assess the novelty and
diversity of recommended citations. We also discuss the challenges and considerations
involved in evaluating citation recommendation systems.
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1.2 Citation Recommendation systems

1.2.1 Definition of Recommender system

A recommendation system(RS), is a type of software application that delivers or pro-
poses items to users based on their needs or preferences. In a conventional recommender
system, users input their recommendations, which the system then combines and directs
to the appropriate recipients. In certain cases, The main focus of some recommendation
systems is on aggregating recommendations. In other situations, the system’s value
is primarily derived from its capability to facilitate accurate matches between those
providing recommendations and those in search of recommendations [10].

A recommender system utilizes the information gathered from a user-item rating
matrix in a specific domain. It analyzes and filters this data to extract the most relevant
information. Based on this pertinent information, personalized recommendations are
calculated for the user [11].

1.2.2 Definition of citation

In the context of recommender systems, a citation refers to the act of referencing or
acknowledging the sources of information or research that are utilized or cited within the
recommender system. It involves providing proper attribution to the authors or creators
of the algorithms, techniques, datasets, or other relevant components incorporated into
the recommender system. Citations in recommender systems serve the purpose of
acknowledging and giving credit to the original authors, promoting transparency, and
allowing users and researchers to explore the referenced sources for further understanding
and evaluation.
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Figure :1.1 Visioning of a citation in a scientific paper[1]

1.2.3 Definition of citation Recommender system

A citation recommendation system is a specialized type of recommender system that
suggests relevant academic or scholarly citations to users based on their research or
writing needs. It assists users in finding and selecting appropriate references or sources
to support their work, such as research papers, books, articles, or other scholarly mate-
rials. These systems utilize various techniques, such as text analysis, topic modeling,
and semantic similarity, to analyze the user’s input (such as the document or research
topic) and provide tailored recommendations for citations that align with the user’s re-
quirements. The goal of a citation recommendation system is to enhance the research
process by assisting users in discovering high-quality and relevant scholarly sources to
support their academic work.
1.2.4 History

Recommendation systems (RS) are widely recognized as one of the most powerful
tools in today’s digital world, despite being a relatively new concept in research. How-
ever, the underlying concept of recommendations has been prevalent in society for a
significant period.

Over the course of human evolution, our complex thinking abilities, language usage,
and tool-making skills have developed over hundreds of thousands of years. Notably,
the concept of recommendations can also be observed in various creatures, including
humans and ants [12]. Drawing inspiration from the foraging behavior of ants, humans
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can develop algorithms for recommendation systems. Just like worker ants wandering
randomly in search of food and leaving pheromone trails to guide other ants, Tapestry,
the first recommendation engine created in 1992 at the Xerox Palo Alto Research Center,
aimed to address the overwhelming amount of electronic mail in organizations. Elec-
tronic mail was the prevalent medium for information sharing among co-workers at that
time, leading to difficulties in filtering out relevant messages based on individual tasks
and preferences [13]. Tapestry was specifically designed to tackle this issue by filtering
a continuous stream of electronic documents into a smaller, personalized selection that
matched a user’s interests. It organized and selected relevant documents to improve
information management within the experimental mail system.

The field of recommender systems experienced a peak explosion in research when
Amazon introduced its Collaborative Filtering method in the late 1990s, leading to a
notable increase in their sales [14]. Amazon’s success story also paved the way for the
development of various approaches, including hybrid approaches that combine multiple
methods. What sets Amazon’s recommendation engine apart is its ability to adapt to
the challenges posed by a growing customer base. Instead of focusing on individual
customers and providing recommendations based solely on their past activities, Amazon
began clustering customers with similar preferences. This approach ultimately yielded
more accurate results [15].

After the successful period in the late 1990s, the industry witnessed a significant in-
flux of funding for research in recommendation systems (RSs). One notable competition
in the RS field was organized by Netflix, a renowned internet streaming media provider.
In 2006, they launched the Netflix Prize, a competition offering a $1 million prize to
the team that developed the best RS movie recommendation system. The winning team
was announced in 2009 [14]. In 2010, YouTube also implemented its own RS on its
website, recommending personalized sets of videos to users based on their activity on
the platform [16]. With the rapid growth and advancement of Internet technology, the
World Wide Web has become an enormous repository of billions of web pages, resulting
in the problem of information overload for individuals. In addressing this challenge,
recommendation systems have emerged as valuable tools that effectively filter, priori-
tize, and present relevant information. These systems have garnered increasing interest
from both academia and industry, finding successful application in various fields such as
e-commerce, movies, music, news, and e-learning [17]. In recent times, there has been a
growing interest in the scientific community regarding the application of recommenda-
tion techniques. This field has gained significant attention due to the surge in the number
of scholarly papers available on the web. The issue of recommending related scientific
papers is known as the recommendation of a scientific article in the scientific community
[18]. In digital repositories, the primary function of a recommender system is to offer
recommendations for pertinent documents. The field of information science and com-
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munication technologies has witnessed notable advancements, resulting in a significant
rise in electronic literature and the proliferation of scientific publications within digital
libraries. Consequently, numerous academic digital libraries now house millions of dig-
ital objects encompassing various document types such as research papers, publications,
journals, research projects, newspapers, magazine articles, and books. Online libraries
play a vital role in supporting the scientific community by serving as repositories for
storing and preserving valuable research data and findings. These digital libraries not
only provide storage capabilities but also offer tools for organizing, searching, and re-
trieving the vast amount of content they contain. However, with the exponential growth
of research articles in digital repositories, researchers are faced with the challenging task
of locating relevant papers to study and cite in their own research. Typically, researchers
rely on search engines like Google Scholar or Microsoft Academic, using specific key-
words to retrieve relevant papers. They then manually review these papers to determine
which ones are suitable for citation[19]. This process can be extremely time-consuming
and demanding, particularly for junior researchers who may have limited experience in
effectively searching for research articles.
1.2.5 Importance in Research communication

Recommender systems have emerged as valuable tools in research communication,
offering significant benefits to researchers and the scientific community as a whole. The
importance of recommender systems in research communication can be highlighted in
several ways:

• Enhancing Discoverability: With the exponential growth of scholarly literature,
it has become increasingly challenging for researchers to navigate and discover
relevant research articles. Recommender systems address this issue by analyzing
user preferences, citation patterns, and other relevant factors to suggest personalized
and highly relevant research articles. By improving discoverability, recommender
systems facilitate efficient literature exploration, enabling researchers to stay up-to-
date with the latest advancements in their field.

• Promoting Interdisciplinary Collaboration: Research communication across
different disciplines is crucial for fostering interdisciplinary collaboration and in-
novation. Recommender systems can play a pivotal role in bridging disciplinary
boundaries by recommending relevant research articles from related fields. By
exposing researchers to diverse perspectives and interdisciplinary research, rec-
ommender systems encourage cross-disciplinary collaboration and facilitate the
emergence of novel research ideas.

• Supporting Serendipitous Discovery: Serendipity, the unexpected discovery of
valuable information, is a vital aspect of research communication. Recommender
systems can facilitate serendipitous discovery by suggesting articles that researchers
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may not have encountered otherwise. By broadening the scope of researchers’ ex-
posure to diverse research literature, recommender systems can stimulate creativity,
spark new research directions, and contribute to breakthroughs in scientific knowl-
edge.

• Tailoring Recommendations for Researchers: Each researcher has unique inter-
ests, preferences, and expertise. Recommender systems can leverage this informa-
tion to provide personalized recommendations tailored to individual researchers’
needs. By considering researchers’ publication history, citation patterns, and collab-
oration networks, recommender systems can offer highly relevant and customized
suggestions, assisting researchers in their exploration of new research avenues and
fostering their professional development.

• Facilitating Knowledge Exchange and Collaboration: Recommender systems
can facilitate knowledge exchange and collaboration within the scientific commu-
nity. By recommending articles based on similarity, citation networks, and collabo-
ration patterns, recommender systems can identify potential research collaborators,
foster networking opportunities, and facilitate the sharing of expertise and resources
among researchers. This promotes collaboration, accelerates scientific progress,
and enhances the overall impact of research communication.

1.2.6 Benefits of Effective Citation Recommendation

Effective citation recommendation systems provide several benefits:

• Improved Research Efficiency: Citation recommendation systems help re-
searchers save time and effort by suggesting relevant and appropriate references
for their work. Instead of manually searching for relevant citations, researchers can
rely on the recommendations to discover relevant sources more efficiently.

• Enhanced Accuracy and Quality: By suggesting appropriate citations, these
systems can help improve the accuracy and quality of academic and scientific
papers. Researchers can access a wider range of relevant and reliable sources,
leading to more comprehensive and well-supported arguments.

• Avoidance of Plagiarism:Citation recommendation systems can help researchers
avoid unintentional plagiarism by providing proper references for the sources they
use. By suggesting appropriate citations, these systems ensure that researchers
give credit to the original authors and avoid any potential ethical or legal issues
associated with plagiarism.
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• Discovery of Relevant Literature: Citation recommendations can introduce re-
searchers to new and relevant literature in their field. These systems can suggest
papers and articles that researchers might have otherwise missed, expanding their
knowledge and helping them stay up-to-date with the latest research.

• Increased Collaboration:Effective citation recommendation systems can foster
collaboration among researchers. By suggesting relevant work from other re-
searchers, these systems facilitate the discovery of potential collaborators and en-
courage interdisciplinary connections.

1.2.7 Challenges in Citation Recommendation

While citation recommendation systems offer numerous benefits, they also face sev-
eral challenges. Some of the key challenges include:

• Ambiguity and Context: Determining the appropriate citations for a given docu-
ment can be challenging due to the ambiguity and context of the text. Understanding
the intended meaning and context of a particular phrase or sentence requires deep
comprehension of the content, which can be difficult for an algorithm to accurately
capture.

• Subjectivity and Diversity: Different researchers may have varying preferences
and perspectives when it comes to selecting citations.Recommendation systems
must consider the subjective nature of citation choices and cater to the diverse
needs of researchers from various disciplines and backgrounds.

• Data Quality and Availability: The quality and availability of citation data pose
challenges for recommendation systems.Incomplete or inaccurate citation databases
can limit the effectiveness of the recommendations.Moreover, not all papers are
freely accessible, and access restrictions can hinder the availability of relevant
citation information.

• Multi-modal Recommendations: Citation recommendation systems typically fo-
cus on text-based recommendations.However, research papers often include other
forms of media, such as figures, tables, or datasets.Incorporating multi-modal rec-
ommendations that consider these additional elements poses a challenge for existing
systems.
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1.2.8 Role in Enhancing Scholarly Impact

Citation recommendation systems play a significant role in enhancing scholarly im-
pact in several ways:

• Improved Citations: Citation recommendation systems can assist researchers in
selecting appropriate and accurate citations for their work. By suggesting relevant
and well-cited sources, these systems encourage researchers to cite influential and
highly regarded papers, which can enhance the credibility and impact of their own
work.

• Strengthened Research Foundations: Effective citation recommendations help
researchers build a solid foundation for their research. By suggesting seminal or
foundational papers in a specific field, these systems ensure that researchers are
aware of and properly cite the key works that form the basis of their research.
This strengthens the theoretical framework and intellectual lineage of the research,
enhancing its scholarly impact.

• Contextualization of Research: Citation recommendation systems provide re-
searchers with contextual information about how their work fits into the broader
scholarly landscape. By suggesting related papers and prior works, these systems
enable researchers to situate their research within the ongoing discourse, identify
gaps, and contribute to existing knowledge in a meaningful way, thereby enhancing
the impact of their research.

• Facilitation of Reproducibility and Transparency: Citation recommendations
can include references to data sets, software, or methodologies used in research.
This promotes reproducibility and transparency by providing researchers with the
necessary information to verify and build upon previous work. Transparent and
reproducible research practices contribute to the overall impact and trustworthiness
of scholarly work.
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1.3 Traditional Approaches for Citation Recommendation

Recommendation systems are capable of handling vast amounts of data and enable
users to filter information based on relevance or personal preferences. These systems
employ different filtering methods to offer recommendations and can be categorized into
four main types: Content-based filtering (CBF) , Collaborative filtering(CF), Hybrid
Filtering, Graph based Approaches as it mentioned in Figure1.2.

Figure :1.2 Recommendation systems approaches
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1.3.1 Content based filtering

The content-based filtering approach in recommendation systems retrieves and rec-
ommends relevant documents by matching the features of document content with the
user’s profile. It operates by identifying papers that are similar to the ones a user has
previously liked or positively rated based on their content.

The content-based filtering model is widely employed in recommender systems and
serves as a fundamental approach in this field. It extensively utilizes text mining
methods to analyze the content of papers. These methods involve content analysis
to extract relevant papers and employ techniques from natural language processing
(NLP), such as the well-known topic model called Latent Dirichlet Allocation (LDA).
Information retrieval techniques, such as TF-IDF and bag-of-words, are also utilized.
TF-IDF calculates the weighted importance of each word based on its frequency in the
document and corpus, while the bag-of-words model does not consider grammar and
word order, but rather focuses on word multiplicity. TF-IDF reflects the significance of
a word within a specific document in a collection of documents or corpus [20].

According to [21], the main goal of the LDA algorithm is to analyze texts in natural
language. Its purpose is to uncover the underlying topics present in the texts and
represent them using probability distributions across words. Content-based systems
have the benefits of being simple and efficient. However, they come with certain
drawbacks. One challenge is the difficulty in accurately assessing the quality and style
of the content in resources. Moreover, these systems may have limited ability to discover
new resources that align with users’ interests, as they tend to primarily recommend items
that are similar to what users have already expressed interest in[22].

Basic structure of content-based systems

To enable effective comparison between items and user profiles, a content-based rec-
ommender system requires techniques that can generate efficient representations. In this
regard, [23] propose a high-level architecture (Figure 1.3) that divides the recommen-
dation process into three steps, with each step managed by a dedicated component:

¶ Content Analyzer:when the information is unstructured for instance, when an
item is represented by text.This module intends to do pre-processing to extract the
pertinent information, structure it, and represent it in a suitable target form such as
a keyword vector.

· Profile Learner: This module gathers data indicative of the user’s preferences
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and generalizes it In order to learn and create the user’s profile. For this, machine
learning techniques [24] can be applied. Neural networks, decision trees, and naive
Bayes categorization are a few examples. These methods try to infer a user’s profile
based on information what they liked and not liked.

¸ Filtering Component : This module filters the pertinent items By comparing the
user profile representation to the candidate items for recommendations.Utilizing
similarity metrics between the item and the user profile, the relevance of the item
is computed . The more closely the item resembles the "positive" profile and the
less closely it resembles the "negative" profile, the more probable it is that the item
will be recommended.

Figure :1.3 Architecture of a Content-based recommender system [2]

1.3.2 Collaborative based filtering

Collaborative Filtering(CF) has emerged as a highly effective technique in recom-
mender systems, as highlighted by [25]. The fundamental idea behind collaborative
filtering is that individuals who share similar interests in one domain are likely to have
similar preferences for items or products in other domains as well [12].Collaborative
filtering, which is a classical recommendation method, has found widespread applica-
tion in various domains,particularly in e-commerce platforms like Amazon. Addition-
ally,researchers have also employed this method for recommending scientific literature.
Collaborative filtering methods play a crucial role in recommending relevant papers to
users by considering not only their own interests but also the behavior of other users
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who have similar preferences. CF methods in scientific paper recommendation sys-
tems generate recommendations by discovering the connections between researchers
who share common research interests.These connections are identified through factors
such as the readership patterns and shared publications among researchers.By leverag-
ing these correlations,CF approaches offer personalized recommendations for scientific
papers [19].Collaborative filtering’ process depicted in Figure 1.4.

Figure :1.4 Collaborative filtering process [3]

Collaborative filtering models categorized into two types: memory-based CF and
model-based CF.

S Memory-Based CF: The items that have been previously rated by a user play a
significant role in finding similar neighbor who share similar preferences. Once a
user’s neighbors are identified, various algorithms can be employed to aggregate
the preferences of these neighbors and generate recommendations. Memory-based
collaborative filtering can be categorized into two techniques: User-Based CF and
Item-Based CF.

– User-Based technique: This approach entails comparing the evaluation data
of users for the same item in order to identify similarities between them. By
leveraging the ratings of similar users, the system can provide recommendations
for items that are likely to match a user’s preferences [26]. Similarities are
typically calculated using metrics like cosine similarity. However, this approach
can encounter common challenges, such as data sparsity and cold-start issues.
Data sparsity refers to situations where only a small portion of the available
items in a database are rated by users, leading to limited data for accurate
recommendations [3].On the other hand, the cold-start problem arises when a
new item that hasn’t been rated by any user needs to be recommended.
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– Item-based techniqueIn item-based collaborative filtering, the prediction of
unknown ratings is calculated by considering items that are similar to the
specific item for which the rating is being predicted [27]. This method is
known to be more stable compared to user-based collaborative filtering and
helps address the issues faced by the latter approach

S Model-Based CF: The core concept of the model-based approach is to develop
a model by utilizing user or characteristics and rating information. This trained
model is then employed to predict the potential rating of the target user [28].
Model-based collaborative filtering commonly leverages techniques such as matrix
factorization and clustering algorithms to achieve accurate predictions. These
methods are extensively utilized in model-based CF to enhance the effectiveness of
recommendations.

1.3.3 Hybrid based filtering

Hybrid filtering approaches combine multiple recommendation techniques to create
more effective recommendation systems for scientific papers, addressing the challenges
and limitations of pure recommendation systems. These hybrid recommender systems
typically integrate content-based filtering and collaborative filtering methods, leveraging
the strengths of both techniques while mitigating their weaknesses. The combination
of content-based filtering and collaborative filtering methods enhances the accuracy of
the recommender system compared to using a single algorithm alone [29]. Hybrid rec-
ommender systems have been successfully applied in various domains such as movies,
education, music, and web services. In the context of movie recommendations, there
is a wide range of algorithms and solutions available [30]. The hybrid recommen-
dation model can be categorized into seven types: weighted hybridization, switching
hybridization, cascade hybridization, mixed hybridization, feature combination, fea-
ture augmentation, and meta-level, depending on the method used to combine filtering
techniques[26].

• Weighted Hybridization: Weighted hybridization is a technique that combines
the outcomes of different recommenders to generate a recommendation list or
prediction. It integrates the scores obtained from each technique using a linear
formula. P-tango, for instance, serves as an example of a weighted hybridized
recommendation system [3]. The underlying principle of this method involves
gradually adjusting the weights based on the level of agreement between the user’s
evaluation of an item and the evaluation predicted by the recommendation system.
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This enables the system to adapt and provide more accurate recommendations over
time.

• Switching Hybridization: The switching hybrid system utilize a set of criteria to
switch between recommendation techniques related to the situation. The strengths
and weaknesses of the recommenders that make up this system are taken into
consideration which means thta this system is particularly responsive to them.

• Cascade Hybridization : Cascade hybrids employ a two-step process for gener-
ating recommendations. Initially, one approach is utilized to generate an initial
set of recommended items. Subsequently, a second approach is employed to care-
fully select the most appropriate items from that initial set, resulting in a final
recommendation [18].

• Mixed Hybridization: Mixed hybrids involve combining the recommendation
outcomes of multiple recommendation techniques simultaneously, rather than pro-
viding a single recommendation per item. An instance of the mixed hybridization
approach is the PTV system, as discussed by [31].

• Feature-Combination : Feature-combination hybridization scheme combines col-
laborative and content information, with a focus on effectively utilizing the collab-
orative information. The hybridization process yields a standalone and improved
system that possesses knowledge about the both genres of information as described
by [32].

• Feature-Augmentation: The technique utilizes the ratings and information gener-
ated by the previous recommender as input features in the primary recommendation
system, contributing to the generation of the final predicted outcome.

• Meta-level: Meta-level hybrids leverage the internal model produced by one rec-
ommendation technique as input for another, resulting in a more comprehensive
information model compared to relying solely on a single rating. Furthermore,
Another advantage of meta-level hybrids is their ability to effectively overcome
the issue of data sparsity commonly found in collaborative filtering techniques, as
emphasized by [3].

1.3.4 Graph based filtering

According to [33], a graph consists of two sets: a set of nodes and a set of edges
connecting those nodes. The construction of graphs is a central focus in graph-based
approaches, which involve creating graphs from various sources such as citation networks
and social networks. In these graphs, researchers and papers serve as nodes, and the
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relationships between researchers, researchers and papers, and papers and papers are
represented as edges [29]. By utilizing walking algorithms on the graph, recommender
systems can leverage information from diverse sources to suggest relevant papers to
researchers. One of the key advantages of the graph-based approach is its ability to find
suitable papers by integrating information from multiple sources.

1.3.5 Limitation of Traditional Approaches

While recommendation systems have proven to be valuable, there are several limita-
tions associated with their techniques. Some common limitations include:

• Sparsity Problem:The sparsity problem is a significant challenge faced by recom-
mender systems, and it significantly impacts the quality of recommendations.Typically,
systems like MovieLens represent data in the form of a user-item matrix populated
with ratings given to movies.As the number of users and items increases, the di-
mensions of the matrix grow, leading to increased sparsity.The main reason for
data sparsity is that most users do not rate most items, resulting in sparse available
ratings. Collaborative filtering techniques are particularly affected by this problem
since they heavily rely on the rating matrix.Despite efforts by researchers to ad-
dress this issue, as evident in studies [34], [35], [36],there is still a need for further
research in this area to mitigate the impact of data sparsity on recommendation
quality.

• Cold Start problem:When a recommendation system encounters a new user or
item, it faces a problem known as the cold start problem.It encompasses three
types of cold start problems: the new user problem, new item problem, and new
system problem.These scenarios make it difficult to provide recommendations due
to limited information available. In the case of a new user, there is minimal user
data available, making it challenging to understand their preferences and generate
personalized recommendations. Similarly, for a new item, there are typically no
ratings or interaction data to rely on, which poses a challenge for collaborative
filtering techniques that heavily depend on such information. However, content-
based methods offer a solution in the case of new items since they don’t rely on
previous ratings information of other users.

• Scalability:Scalability refers to the ability of a system to effectively handle an in-
creasing amount of information in a smooth and efficient manner.As the internet
has witnessed an enormous growth in data,recommender systems are faced with the
challenge of managing this explosion of information while meeting the growing de-
mands of users. Many recommender system algorithms involve computations that
become more complex as the number of users and items increases.In collaborative

18



filtering (CF), these computations can grow exponentially, leading to higher costs
and potentially inaccurate results.To address the scalability problem, various meth-
ods have been proposed that rely on approximation mechanisms to speed up the
recommendation process. However, while these methods can improve performance
and computational efficiency, they often leads to reduced accuracy, as mentioned
in [37].

• Over Specialization Problem: In certain cases, users may face an issue known as
the over-specialization problem, where they are limited to receiving recommenda-
tions that closely resemble the items already known or defined in their profiles [36].
This restricts their ability to discover new items and explore alternative options.
However, diversity in recommendations is considered a desirable feature in all rec-
ommendation systems. By utilizing genetic algorithms to address this problem,
users can be presented with a diverse and extensive set of alternatives, expanding
their range of choices.

• Robustness of RSs: RSs face a significant challenge in terms of their robustness
against attacks, which is a crucial performance metric.In order to achieve certain
benefits, attackers may employ various attack models, such as Push/Nuke Attacks,
to create fabricated user profiles.These attacks aim to artificially boost or diminish
the popularity of specific target items, respectively. The term used to describe these
types of attacks collectively is "shilling attacks" or "profile injection attacks."[38]

1.4 Deep Learning Techniques In Recommendation Systems

1.4.1 Introduction to Deep Learning

Deep learning has emerged as a prominent field within machine learning, leveraging
artificial neural networks to learn multiple layers of representations. This hierarchical
approach allows for the definition of higher-level concepts based on lower-level ones
[39]. The efficiency of training deep models was introduced by [40] demonstrated the
capabilities of deep architectures in complex artificial intelligence tasks in 2009, leading
to the growing popularity of deep learning in computer science. Today, deep learning
approaches are at the forefront of solving problems in computer vision, natural language
processing, and speech recognition [39]. Although the concept of neural networks and
deep models has existed for over 50 years, it is in the last decade that the power of
deep learning techniques has become evident. Several factors have contributed to the
prominence of deep learning as the leading machine learning technique:
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• Big Data: Deep learning models benefit from large amounts of data, as they can
learn more accurate representations from a larger and more diverse dataset.

• Computational Power: The availability of powerful graphical processing units
(GPUs) has provided the necessary computational resources to perform complex
computations required by deep learning models. GPUs excel at parallel processing,
significantly accelerating the training and inference processes.

1.4.2 Neural Networks for Recommendation Systems

Deep neural networks have demonstrated significant progress in various domains
such as image processing, voice recognition, natural language processing, and recom-
mendation systems.

There are two major categories for classifying deep neural-based recommender
systems[41]:

1. Recommender systems that solely employ deep learning approaches for generating
predictions.

2. Recommender systems that combine traditional recommendation techniques with
deep learning approaches.

Deep learning approaches commonly used for recommender systems include Con-
volutional Neural Networks (CNNs), Multi-Layer Perceptrons (MLPs), Autoencoders
(AEs), and Recurrent Neural Networks (RNNs).

• Convolutional Neural Networks (CNNs)are feed-forward neural network [42]are
typically used in computer vision and natural language processing tasks. They
employ convolutional layers to extract local features and pooling layers to generate
concise representations. In recent years, CNNs have also been applied to recom-
mender systems.

• Multi-Layer Perceptrons (MLPs) are feed-forward neural networks that consist of
an input layer, one or more hidden layers, and an output layer. Non-linear activation
functions are applied to all nodes except for the input nodes. MLPs use backprop-
agation for training and have been employed in recommender systems.

• Autoencoders (AEs) are unsupervised neural networks that learn to reconstruct the
input data. They typically have three layers: an input layer, a bottleneck layer
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(which captures the compressed representation), and an output layer. AEs have
gained popularity in recommender systems in recent years.

• Recurrent Neural Networks (RNNs) are utilized for learning sequential data[43].
While RNNs have been widely applied in natural language processing and speech
recognition, they have also found use in recommender systems. RNNs are able
to retain information about a sequence over time, and a well-known variant is the
Long Short-Term Memory (LSTM) model.

Figure :1.5 Deep learning techniques [4]
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1.4.3 Convolutional Neural Network in Recommendations

CNNs (Convolutional Neural Networks) are neural networks that utilize convolution
operations in at least one of their layers. While CNNs are commonly associated with
tasks such as image recognition and object classification, they also offer benefits to
recommender systems. In the context of recommender systems, CNNs are utilized for
various purposes, including extracting latent factors from different types of data.

[44] employed CNNs to extract latent factors from audio data when these factors
cannot be directly obtained from user feedback. By applying convolutional operations
on the audio data, CNNs can capture relevant patterns and features that contribute to the
recommendation process.

[45] utilized CNNs to extract latent factors from text data. Textual information, such as
product descriptions or user reviews, can be processed using CNNs to derive meaningful
representations that capture important semantic features. These latent factors can then
be used for generating recommendations based on text data.

[46] focused on extracting visual features for generating visual interest profiles of
users. CNNs were employed to analyze images and extract relevant visual features that
reflect users’ preferences. By understanding the visual aspects of user interests, more
accurate recommendations can be generated.

[47] utilized CNNs to extract latent features from images and map them to the same
latent space as user preferences. By aligning image features with user preferences, the
recommender system can make personalized image recommendations that align with
the user’s interests. In the context of context-aware recommender systems, CNNs are
utilized to extract semantic meanings from textual information. [48] leveraged CNNs to
extract meaningful semantic representations from text, allowing for more qualified and
contextually relevant recommendations.

Figure :1.6 Convolutional neural network architecture [4]
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1.4.4 Recurrent Neural Network in Recommendations

In e-commerce systems, a user’s browsing history is an important factor that influences
their purchase behavior. However, traditional recommender systems often overlook the
current history and the order of user actions by creating user preferences at the beginning
of a session. To address this limitation, RNNs (Recurrent Neural Networks) have been
utilized in recommender systems to integrate the user’s current viewing web page history
and the sequential order of their actions, resulting in more accurate recommendations
[49],[50],[51].
Wu et al[49] proposed a method that combines the results of an RNN with the output of a
feed-forward neural network. This approach takes into account the correlations between
users and items, leveraging the RNN to capture temporal patterns in user behaviors. By
integrating the RNN representations with latent factors of user preferences, the model
produces more precise predictions for personalized recommendations. Ko et al[52] also
employed RNNs to capture the temporal and contextual aspects of user behaviors. By
representing user actions and preferences using RNNs, they enhanced the accuracy of
recommendations. The RNN representations were combined with latent factors of user
preferences to create a comprehensive recommendation model.

RNNs have been utilized in recommendation systems not only to capture sequential
user behaviors but also to represent the influence between users’ and items’ latent features
and their coevolution over time [53]. This approach allows for non-linear representations
of the complex relationships between users and items. In the work of Devooght and
Bersini [54], RNNs were employed to integrate the evolution of user tastes into the
recommendation process. They framed the recommendation problem as a sequence
prediction task.

Analyzing studies on deep learning in recommender systems reveals several key find-
ings. One notable finding is that RNNs (Recurrent Neural Networks) have demonstrated
positive effects on the coverage of recommendations and short-term predictions, par-
ticularly when compared to conventional approaches like nearest-neighbor and matrix
factorization-based methods. This success can be attributed to RNNs’ ability to account
for the evolution of users’ tastes and the coevolution between user and item latent features
[54] [53].RNNs are particularly well-suited for session-based recommender systems and
the integration of users’ implicit behaviors into their preferences

1.4.5 Transformer models in Recommendations

Transformers models initially introduced in natural language processing (NLP) tasks .
BERT is one of these models, it has been adapted and applied to recommendation tasks
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Figure :1.7 Reccurent neural network architecture [4]

due to their ability to capture complex patterns and dependencies in data.The BERT
model undergoes pre-training with two distinct learning objectives, which compel the
model to grasp semantic information at both the within and between sentences [55].

[56] introduced a context-aware model for citation recommendation that combined
BERT [57]and a variation of GCN [58]. They utilized pre-trained BERT as a context
encoder to generate textual embeddings, while the GCN model was employed to generate
graph embedding. By combining these two components, the model can provide more
accurate and relevant recommendations that consider both the content and the citation
relationships between papers.

1.5 Context Awareness in Recommendation Systems

Researchers in a variety of disciplines, such as information retrieval, ubiquitous
computing, marketing, and management, have acknowledged the value of contextual
information. However, contextual data has not been extensively used in recommender
system research. In some fields, information like time, location, and the company of
other people might enhance the recommendation process. Users and items are the
only two types of entities that traditional recommender systems work with. However,
it might not be enough to take users and items into account for certain applications,
such as recommender systems for travel. Integrating information about context is
frequently crucial. For instance, to produce an appropriate recommendation, a system of
recommendations for vacation hotels must consider the season. Similar to this, a mobile
device-based tourist recommendation system may privilege recommending attractions
and activities near the user.

1.5.1 Understanding Context in Recommenations

Context is a broad concept that is particularly hard to give an overall and practical
definition.We quote the definition provided by [59], which is one of the most extensively
admitted:

"Context can be defined as any information that can be utilized to describe the
status of an entity.Entities include both users and apps themselves and any other people,
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places, or things that are thought to be important to the interaction between a user and
an application". However, Zimmermann [60] has questioned this description as being
too general and non-operational.

According to Zimmermann[60], "context is any information that can be utilized to
describe the status of an entity .The elements used to describe this context information
can be divided into five groups: action, individuality, location, time, and relations".
1.5.2 Types of Contextual information

Any information that describes entity’s context falls into one of the five distinct types,
as illustrated in Figure 1.8 .

Figure :1.8 The five fundamental elements of the Context. [5]

• individuality: This category gives access to contextual information about the entity
to which it is linked. This information includes everything that can be observed
about an entity and especially its state. Entities can be categorized into active, to
manipulate other entities, or passive, real or virtual, mobile or fixed.

• relations: this category of contextual information captures the relationships estab-
lished between the given entity and another entity that may be a person, service or
information.

• activity: This context covers the entitys present and future activities. In most
scenarios of interactions with context sensitive systems, the entity is engaged in a
task that determines the purpose of the activities performed

• location: location is one of the main parameters of a context-sensitive system.
Physical objects move in ubiquitous environments. This category describes location
models that classify the physical or virtual location (e.g. IP address) of an entity as
well as other spatial information: speed, orientation, etc.
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• time: time is an indispensable aspect for understanding and classifying context.
This includes information about the time a process takes to run, the interval between
two recurring events, etc.

1.5.3 Incorporating Context in Collaborative Filtering

In traditional recommender systems, there are several approaches used to cater to user
preferences, including collaborative filtering [61][62], content-based [23], knowledge-
based [63], and hybrid [64] methods. However, in the case of Context-Aware Recom-
mender Systems (CARS), researchers have focused on integrating contextual informa-
tion into these conventional recommendation approaches, with particular emphasis on
collaborative filtering techniques.

Adomavicius and Tuzhilin [6] have identified three main approaches to incorporating
contextual information in a recommender system as it shown in Figure 1.9, based on
the stage at which the context is introduced. These approaches can be summarized as
follows:

• Contextual pre-filtering

• Contextual post-filtering

• Contextual modeling

Let’s briefly outline these three approaches.

• Contextual pre-filtering Incorporating context by pre-filtering or pre-processing
allows choosing a subset of data that is momentous for context where the individual
is located and limiting the recommendation process to this subset . Building a
model for each context is implied by this. Let’s use the example of a movie
recommendation system that leverages the temporal context to demonstrate this
strategy: if a user wishes to watch a movie during the weekend, only the weekends’
movies are recommended as candidates. Candidates for recommendations are those
that are available during the weekend, and only the ratings of users who have seen
the films over the weekend are utilized for ratings anticipation. As the data set is
decreased and can cause issues for score prediction if the system does not have
enough data, the use of this a priori filtering has been criticized.

• Contextual post-filtering When using a contextual post-filtering strategy, the rec-
ommender system does not consider the contextual data while making recommen-
dations . The results of the recommendation algorithms are edited a posteriori
in order to reorganize the list of recommended items according to context. For
instance, a recommendation system for tourist destinations may utilize the user’s
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geographic position (location context) and might determine to call off a posteriori
recommendations for locations that are too far away from the user’s location .

• Contextual modeling The context modeling strategy involves incorporating con-
textual information right into the process of making recommendations for item
score prediction . Tensor factorization techniques are suggested by [65] to incor-
porate context. For these methods, each genre of context is taken into account as a
new dimension in addition to the first two dimensions that are traditionally utilized
for items and users. The score is now is not regarded as a function with the two
parameters : user and item but it is function with the parameters :item ,user and
context.

Figure :1.9 Context incorporation in Recommender system process [6]

1.5.4 Context modeling for recommender systems

Traditional recommendation systems are two-dimensional (2D) because they solely
take into account the dimensions of the user and the item.The context is viewed as
an extra information in the context-integrated recommendation system.We include the
context dimension in addition to the user and the item, which will help the system’s
recommendation function better.Consequently, score functions in the form will be taken
into account by a context-sensitive recommendation system.

𝑅 : 𝑈𝑠𝑒𝑟x𝐼𝑡𝑒𝑚x𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ⇒ 𝑅𝑎𝑡𝑖𝑛𝑔

The rating function which symbolized with R is if we characterize contextual infor-
mation using a set of contextual dimensions D,two of it are user and item ,the rest are
contextual.
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𝑅 : 𝐷1x.............x𝐷𝑛⇒ 𝑅𝑎𝑡𝑖𝑛𝑔

As we can notice, contextual information might be of variety of aspects, included time
and location. Additionally, each contextual side may have a sophisticated structure
that reflects the nature of contextual information (like text, for example). Contextual
information is often hierarchical and represented as a tree to handle this complexity.

1.5.5 Context Awareness

Overall, The term contextual awareness refers to the app’s ability to discover and
utilize contextual data, for instance the location of user and contiguous tools. The
concept of context-awareness was initially put forth by Shilit [66], who described it as
an application’s ability to discover and respond to changing in the user’s environment.
According to Brown [67], they are "applications that may vary their behavior based on
the user’s situation", moreover to Dey [59] who defines a context-aware application as
one that takes advantages of contextual information to provide the user with information
and services that are pertinent for them, with pertinence decided by the user’s labour.
A sundry of factors need to be considered in order to take an effective advantage of the
context and set up a trusty way to develop context-aware services. number of challenges
have arisen [68]:

z Context representation: Suggesting a high-level abstraction-based representation.

z Context capture: Getting the user’s context’s characteristics.

z Context management: Context management comprises addressing aspects that
are not functional.

z Context interpretation and reasoning: The reasoning around the context is to
draw context from the current context at a high semantical level of service adaptation
Service adaption: Services must be operated and adjusted through productive
scenarios.

z Context reuse: Utilizing contextual features to claiming for the expiration of their
validity.
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1.6 Evaluation Metrics for Citation Recomendation Systems

Within the field of recommendation systems (RSs), researchers and professionals
are primarily concerned with user satisfaction and ensuring that the recommendations
provided deliver maximum value to the users.It is important for RSs to go beyond
suggesting more of the same and instead offer suggestions that are genuinely useful to
the users.Therefore, researchers focus on evaluating various aspects of user interaction
and consumption experience within the system.To address this challenge, researchers
have started exploring evaluation concepts beyond traditional measures of predictive
accuracy and machine learning techniques.
The performance of CRSs should be measured based on the value they bring to the users.
Consequently, different evaluation concepts have emerged in the research community,
including Precision,Recall,Mean Average Precision(MAP),coverage, novelty, diversity,
and surprise of recommendations .These concepts have been thoroughly examined and
assessed by researchers to understand their impact on the quality of recommendations.

1.6.1 Accuracy Metrics

There are several types of accuracy metrics commonly used in different domains such
as citation recommendations systems .

• Recall: The recall metric is used to determine the percentage of relevant papers that
are included in the top-k recommendations.A higher recall in lower top-k values
indicates that the system is able to capture a greater proportion of relevant papers,
resulting in more robust and comprehensive results[69].

𝑅𝑒𝑐𝑎𝑙𝑙 = 1
𝑄

𝑄∑
𝑗=1

𝑅𝑝∩𝑇𝑝
𝑇𝑝

where Q represents the total number of target articles and 𝑅𝑝 denotes the list of
top-k recommendations produced against a target paper p.

It can be represented also as follow:

𝑅𝑒𝑐𝑎𝑙𝑙 = |Relevant papers recommended |
|All relevant papers|

• Precision: The precision of a recommendation is defined as the ratio of the relevant
papers recommended divided by the all the recommended papers.
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = |Relevant papers recommended |
|All recommended papers|

• F1 score: The F1 score is a metric that combines precision and recall by taking
their harmonic mean. It serves as a summary of both precision and recall.[70]

𝐹1 = 2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

1.6.2 Ranking Metrics Metrics

Ranking metrics are commonly used to evaluate either the quality of the generated
recommendations and assess how well they are ranked or ordered.These metrics
focus on the position or order of relevant items within the recommendation list.
1.6.3 Mean Average Precision(MAP)

MAP : is a metric used to evaluate the quality of recommendations in terms of
whether relevant papers are included in the top-K results or not.To calculate the
Average Precision (AP) for a specific query paper, the precision is computed after
each Ground Truth Positive (GTP) is retrieved. The AP is then determined by
taking the mean of these precision values[69].

𝐴𝑃@𝐾 = 1
𝐺𝑇𝑃

𝐾∑
𝑖=1

𝑇𝑃𝑠𝑒𝑒𝑛
𝑖

TPseen refers to the count of true positive items that have been encountered or seen
up to position K within the recommendation list.

1.6.4 Diversity, Novelty an Serendipity Metrics

• Diversity: Ziegler et al.[71] introduced a metric for assessing diversity in recom-
mendation lists by measuring the intra-list similarity, which is essentially a measure
of dissimilarity between the items. Diversity can be define as the inclusion of dier-
ent types of item set in recommendation for user which is dierent from their past
preferences. The calculation of diversity often involves using an intra-list similarity
measure [72].

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 1
2

∑
𝑖 𝑗∈𝑢

∑
𝑖𝑘∈𝑢

𝑠𝑖𝑚(𝑖 𝑗 , 𝑖𝑘)

The term "sim(𝑖 𝑗 , 𝑖𝑘)" represents the similarity measure between two items, 𝑖 𝑗 and
𝑖𝑘 , that are commonly rated by a user, u.
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• Novelty:Novelty is a key qualities of recommendation systems that contributes to
their effectiveness and the addition of new items to their lists, both of which increase
accuracy[72].

𝑁𝑜𝑣𝑒𝑙𝑡𝑦 = 𝑈𝑥

𝑈𝑖

𝑈𝑥 is the item set which is unknown to user and 𝑈𝑖is the item set that is liked by
the user U[73].

• Serendipity Serendipity refers to how surprising or pertinent recommendations are
made for the user. Serendipity is computed as the difference of the probability of
an item being recommended specifically for a user and the probability of that item
is recommended for any other user[72].

𝑆𝑒𝑟𝑒𝑛𝑑𝑖𝑝𝑖𝑡𝑦 =
∑
𝑢

𝑅𝑆𝑢∪𝐸𝑢

|𝐸𝑢 |

Where the recommendation generated for user "u" is denoted as 𝑅𝑆𝑢 and the item
set of user "u" is represented as "𝐸𝑢. The complete item set of user is denoted as
|N|.

1.6.5 Challenges and Considerations in Evaluation Metrics for Citation Recommen-
dation

When it comes to evaluating metrics in citation recommendation systems, there are
several challenges and considerations to keep in mind. Here are some key ones:

• Lack of ground truth:Obtaining an accurate ground truth dataset for citation
recommendation is a significant challenge. It requires manual annotation by experts,
which is time-consuming and expensive. Additionally, different experts may have
varying opinions on what constitutes a relevant citation, leading to inconsistencies
in the ground truth labels.

• Subjectivity and context:Evaluating citation recommendations often involves sub-
jective judgments, as the relevance of a citation can vary depending on the specific
research context. Different researchers may have different preferences or interpreta-
tions of relevance, making it challenging to define a universally accepted evaluation
metric .

• Evaluation scale:Determining the appropriate scale for evaluating citation recom-
mendations is important. Binary evaluation metrics (e.g., precision, recall) may
not capture the nuances of relevance, while continuous metrics (e.g., ranking-based
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metrics like mean average precision) require extensive manual judgments and may
not reflect real-world user behavior.

• Generalizability:Citation recommendation systems often need to be evaluated on
different datasets and research domains to assess their generalizability. Evaluating
system performance across diverse domains and datasets is crucial to understanding
their robustness and effectiveness beyond specific contexts
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1.7 Conclusion

In this chapter, we delved into the topic of citation recommendation systems. We
started by defining recommendation systems and then specifically focused on citation
recommender systems. We explored the history of citation recommendation and dis-
cussed its importance in research communication. The benefits of effective citation
recommendation are highlighted, along with the challenges involved in this task. Ad-
ditionally, we discussed the role of citation recommendation in enhancing scholarly
impact.

Next, we presented the traditional approaches used in citation recommendation,
including content-based filtering, collaborative filtering, hybrid approaches, and graph-
based techniques. We also acknowledged the limitations of these traditional methods.

We then shifted our focus to deep learning techniques in recommendation systems.
We provided an introduction to deep learning and explored how neural networks, such
as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and trans-
former models, can be applied to recommendation tasks. Context-awareness in recom-
mendation systems is another aspect we covered. We explained the concept of context in
recommendations, delved into different types of contextual information, and discussed
how context can be incorporated into collaborative filtering. We also touched upon con-
text modeling for recommender systems and the overall importance of context awareness.
Evaluation metrics for citation recommendation systems are then discussed, including
accuracy metrics like precision, recall, and F1-score, as well as ranking metrics such
as mean average precision (MAP). Additionally, we considered novelty, diversity, and
serendipity metrics and the challenges faced when evaluating citation recommendation
systems.
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CHAPTER 2

RELATED WORK

2.1 Introduction

Related Work provides a comprehensive overview of the existing literature and re-
search efforts in the field of citation recommendation. This chapter serves as a

foundation for the development of the proposed deep learning context-aware technique
for citation recommendation. By examining prior work and understanding the strengths
and limitations of existing approaches, we can identify research gaps and opportunities
for innovation.

In this chapter, we classify and analyze related works into three distinct categories:
data representation methods, methodologies and models, and personalization techniques.
By categorizing and examining prior work within these categories, we aim to gain a
comprehensive understanding of the advancements made, challenges faced, and oppor-
tunities for improvement in the domain of citation recommendation.
The objective of this chapter is to provide a systematic and structured review of the
various approaches and techniques used in citation recommendation systems. By clas-
sifying related works into these three categories, we can examine different aspects of the
research landscape and identify key contributions and trends.
The first category, data representation methods, focuses on how citation data is repre-
sented and transformed to extract meaningful features. The second category, method-
ologies and models, delves into the different approaches and algorithms employed in
citation recommendation. The third category, personalization, focuses on tailoring ci-
tation recommendations to the specific needs and preferences of individual researchers
as shown in Tables (2.1,2.2,2.3).

34



Figure :2.1 An overview of algorithms taxonomy [4]

2.2 Recommendation model classification

In this section, our initial focus is to investigate and classify 35 citation recommen-
dation models that utilized deep neural networks. We classify these models based on
three specific criteria: the representation of the data, the methodologies employed, and
the type of personalization. The classification results are presented in Tables (2.1; 2.2;
2.3).
The purpose of this multilevel taxonomy is to thoroughly analyze the strengths and
weaknesses of the examined models and identify trends within specific domains. Addi-
tionally, we provide a comprehensive overview of the contents presented in tables (2.1;
2.2; 2.3), offering detailed insights into the characteristics and details of each model.

2.2.1 Data representation methods

This section discusses a range of data representation techniques utilized in the studies
under investigation.

• Matrix-based: is referred to algorithms that utilize matrix to represent data. Specif-
ically, these algorithms employ a user-item rating matrix, where each entry rep-
resents the interaction between user 𝑖 and item 𝑗 . This approach is particularly
relevant in the context of implicit feedback, where the focus is on whether a user
has interacted with an item rather than explicit ratings. The elements within this
matrix can take the value of 1 to indicate that a user has interacted with a specific
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item, or it can be 0 if there was no interaction.
The model employs the items 𝑅+

𝑖 that have been interacted with by the user in order
to propose a list of the top 𝐾 relevant items from a pool of unseen items, denoted
as 𝑅−

𝑖 .
In this context, the Multi-model Adversarial Auto-encoder (MAAE) model devel-
oped by [74] utilizes a ratings matrix 𝑥(0, 1) that represents implicit feedback based
on the interactions between a document 𝑗 and other nodes 𝑘 .
In contrast to the conventional user-item rating matrix [𝑈𝐼], the approach consid-
ered in this study involves treating research papers as users, with authors being
associated with those papers. The rationale behind this approach is that an au-
thor can collaborate on multiple research works across different domains, but all
authors associated with a specific paper should receive similar recommendations.
Likewise, a research paper should receive a consistent set of recommendations for
potential subject areas. It is worth noting that only a limited number of models in
the literature have employed a matrix for data representation in this manner ([75],
[76], [77], [78], [74], [79], [80], [81]).

Tableau :2.1 Classification of citation recommendation models Matrix based data representation [4]
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Data factors/Information used Data representations Methodologies adopted Recommendation types Problem faced Personalization
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1 MAAE[74] ✓ ✓ ✓ − ✓ − ✓ ✓ − − − − − ✓ − − − − ✓ ✓ ✓ − − ✓
2 POLAR[78] ✓ − ✓ − − − − ✓ − − − − − − ✓ − ✓ − ✓ − − − − ✓
3 ML-DTR[75] ✓ ✓ ✓ − − − ✓ ✓ − − − − − − − ✓ − − ✓ − ✓ ✓ − ✓
4 Paper2veC[81] − − − − ✓ − − ✓ − − ✓ − − − − − − − ✓ − − − ✓ −
5 VOPRec [79] − − ✓ − ✓ − − ✓ ✓ − ✓ − − − − − − − ✓ − − − − ✓
6 TMR-PCR[82] − − ✓ − ✓ − − ✓ ✓ − − − − − − − ✓ − ✓ − − − − ✓
7 BNR[77] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
8 HRM[80] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

• Graph-based: Utilizing k-partite graphs to investigate meaningful connections
among nodes is a common approach. One such method, called Bibliographic Net-
work Representation (BNR) as proposed by [77] , incorporates both the graph struc-
ture and content (such as authors, papers, and venues) to generate lower-dimensional
representations of objects. The BNR model computes citation suggestions by eval-
uating the similarity between the representations of papers and authors. According
to Table 2.2, specifically in the column labeled "Data representations" it is observed
that 17 models have employed graphs to represent data.

• Hybrid: refers to a combination of different approaches, such as incorporating
both graph-based and matrix-based methods or exploring alternative techniques.
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Table :2.2 Classification of citation recommendation models Graph based data representation [4]
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Data factors/Information used Data representations Methodologies adopted Recommendation types Problem faced Personalization
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1 CIRec [83] ✓ ✓ − − ✓ − − − ✓ ✓ ✓ − − − − − − ✓ − − − − − ✓
2 RBM-CS[84] − − ✓ − ✓ − − − ✓ − − ✓ − − − − − ✓ − − − − − ✓
3 MMRQ[19] ✓ ✓ ✓ − ✓ − − − ✓ − − − − − − − ✓ − ✓ − − − − ✓
4 HGRec[85] ✓ ✓ ✓ ✓ ✓ ✓ − − ✓ − ✓ − − − − − − − ✓ − − ✓ − ✓
5 DRDF-CR [86] − − ✓ − ✓ − − − ✓ − − − ✓ − − − − ✓ − − − − − ✓
6 HRLHG[87] ✓ ✓ ✓ − ✓ − − − ✓ − ✓ − − − − − − − ✓ − − − − ✓
7 SAR[88] − − ✓ − ✓ − − − ✓ − ✓ − − − − − − − ✓ − − − − ✓
8 BERT-GCN[56] ✓ − ✓ − ✓ − − − ✓ − − − − − ✓ − − ✓ − − − − − ✓
9 ASL[89] ✓ − ✓ − ✓ − − − ✓ ✓ − − − − − ✓ − ✓ − − − − − ✓
10 WHIN-CSL[90] ✓ − ✓ ✓ ✓ ✓ − − ✓ − ✓ − − − ✓ ✓ − − ✓ − − − − ✓
11 GAN-HBNR[76] ✓ − ✓ − ✓ ✓ − − ✓ − − − − ✓ − − − − ✓ − ✓ − − ✓
12 PCCR[91] ✓ − ✓ − ✓ − − − ✓ − − − − − − ✓ − ✓ − − − − − ✓
13 VOPRec [79] − − ✓ − ✓ − − ✓ ✓ − ✓ − − − − − − − ✓ − − − − ✓
14 TMR-PCR[82] − − ✓ − ✓ − − ✓ ✓ − − − − − − − ✓ − ✓ − − − − ✓
15 BNR[77] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
16 NREP[92] − − ✓ − ✓ − − − ✓ ✓ ✓ − − − − − − − ✓ − − − − ✓
17 HIPRec[93] − ✓ ✓ ✓ ✓ − − − ✓ − ✓ − − − − − − − ✓ − − ✓ − ✓

The growing number of models ( [94]; [90]; [89]; [95]; [96]; [97]; [98]; [92]; [99];
[100]) utilizing this hybrid representation signifies a notable trend emerging within
the field.

Table :2.3 Classification of citation recommendation models Hybrid data representation [4]

Models

Data factors/Information used Data representations Methodologies adopted Recommendation types Problem faced Personalization
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1 CIRec [83] ✓ ✓ − − ✓ − − − ✓ ✓ ✓ − − − − − − ✓ − − − − − ✓
2 RI-PR[94] ✓ ✓ ✓ − − − − − − ✓ ✓ − − − − − − − ✓ − − − − ✓
3 DocCit2Vec[101] ✓ − − − ✓ − − − − ✓ ✓ − − − − − − ✓ − − − − ✓ −
4 NCN[95] ✓ − − − ✓ ✓ − − − ✓ − − − − ✓ ✓ − ✓ − − − − − ✓
5 ASL[89] ✓ − ✓ − ✓ − − − ✓ ✓ − − − − − ✓ − ✓ − − − − − ✓
6 NPM[96] ✓ ✓ ✓ − − − − − − ✓ − − ✓ − − − − − ✓ − − − − ✓
7 p-CNN [99] ✓ − ✓ − − ✓ − − − ✓ − − − − ✓ − − ✓ − − − − − ✓
8 VCGAN[100] ✓ − ✓ − − ✓ − − − ✓ − − − ✓ − − − − ✓ − − − − ✓
9 CPR[102] ✓ − ✓ − − − − − − ✓ ✓ − − − − − − − ✓ − − − − ✓
10 CPA-CE[97] ✓ − − − ✓ − − − − ✓ ✓ − − − − − − − ✓ − − − − ✓
11 AED[98] ✓ − − − ✓ ✓ − − − ✓ − − − − ✓ ✓ − ✓ − − − − − ✓
12 NREP[92] − − ✓ − ✓ − − − ✓ ✓ ✓ − − − − − − − ✓ − − − − ✓
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2.2.2 Methodologies and models

In recent years, Artificial Neural Networks (ANN) have shown promising results in
the citation recommendation domain [103]. Similar to Restricted Boltzmann Machine
(RBMs) [104], embedding methods [105][106], Convolutional Neural Network (CNN)
[107], and Recurrent Neural Network (RNN) [108], ANNs are utilized to learn complex
mappings within the network. The various types of ANN approaches employed by
citation recommendation systems are discussed in the "Methodologies and Models"
column of Table (2.1; 2.2; 2.3).
Typically, an ANN consists of multiple layers, including an input layer, one or more
hidden layers, and an output layer, with each layer comprising a set of neurons [107].
This part provides an overview of deep learning architectures that are closely relevant
to the explored models, as illustrated in Figure 1.5.

• Restricted Boltzmann Machine (RBM): The individual components of the net-
work are interconnected in a symmetrical manner, allowing them to make stochastic
decisions regarding whether they should be activated or deactivated. Furthermore,
these neurons can establish connections within the same layer. However, the learn-
ing algorithm of this type of network is relatively simple but can become slow when
dealing with multiple layers. On the other hand, the Restricted Boltzmann Machine
(RBM) [104] is a two-layer neural network consisting of only an input layer and a
hidden layer.
RBMs impose constraints on the connections between layers, making their im-
plementation easier compared to Boltzmann Machines. These restrictions on the
intra-layer connectivity in RBMs result in significantly improved learning efficiency
when compared to Boltzmann Machines [109]. A basic depiction of an RBM net-
work can be seen in Figure 2.2.
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Figure :2.2 Architecture of Restricted Boltzmann machine [4].

The hidden layer 𝐻𝑖 calculates the score for each node by multiplying the four
inputs from the visible layer 𝑉𝑙 with their corresponding weights. The products
are then summed and combined with a bias term. Finally, an activation function
is applied to pass the results to the output, expressed as ℎ = 𝑔(𝑊 · 𝑣 + 𝑏). The
probability of observing a particular state of 𝑣 and ℎ is computed as follows:

𝑝(𝑣, ℎ) = 1
𝑍 𝑒

−(𝑎𝑇𝑣+𝑏𝑇ℎ+ℎ𝑇𝑤𝑣)

The biases 𝑎 and 𝑏 represent the offsets or adjustments for the visible and hidden
layers, respectively. The symbol 𝑍 represents the normalization function, and 𝑊
represents the weight parameter connecting the visible layer𝑉𝑙 and the hidden layer
𝐻𝑙 . The optimization process aims to optimize the following objective:

arg max
∑
𝑣∈𝑉

log 𝑃(𝑣, ℎ)

Unlike sparse Autoencoder and other networks, Restricted Boltzmann Machine
(RBM) stands out for its fast performance due to its simple forward encoding
process. [84] introduced a variant of RBM called RBM-CS, which consists of
two layers. RBM-CS aims to learn the topic distribution of articles’ contents and
citation relationships. By incorporating a hidden topic layer, RBM-CS captures the
topic distribution of papers and utilizes these relationships to generate a ranked list
of top−𝑛 papers.

• Multi Layer Perceptron (MLP): Considered as the most straightforward type of
neural network, the feed-forward method consists of one or more hidden layers and
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one output layer [41]. These layers incorporate activation functions that adjust the
weights during training. When the hidden layer(s) receive input representations,
they perform a mapping of inputs to outputs by applying non-linearity [107] as
shown in Figure2.3. The output of each neuron is calculated using ℎ = 𝑔(𝑊 ·𝑥𝑖+𝑏),
where 𝑊 represents the weights between corresponding neurons of the input and
hidden layers. The variables ℎ and 𝑏 denote the hidden layer neuron and the bias
vector, respectively, while 𝑔 refers to the activation function used, such as relu,
tanh, sigmoid, and others.
Finally, the network’s output is predicted by propagating the weighted sums from
the hidden layer(s) to the output layer, which applies non-linearity to the transmitted
value to generate the final prediction as follows:
ŷ= 𝑔(𝑊 · ℎ + 𝑏)

Figure :2.3 An example of MLP network [4].

In this context, the symbol ŷ represents the output, and 𝑔 is used to denote the
non-linear activation function. These activation functions play a crucial role in
propagating information to the subsequent layers of the network.

In the field of citation recommendation, Multi-Layer Perceptrons (MLPs) have
demonstrated promising outcomes in capturing the semantic representations of
research papers and generating high-quality results. One notable example is the
NNRank model introduced by [110] which utilizes a three-layer feed-forward neural
architecture to encode research papers into a lower-dimensional space based on their
content. The model then identifies the 𝐾 nearest neighbors for a given query paper
and applies another discriminative model to re-rank the papers, distinguishing
between observed and unseen papers. During training, the model is optimized to
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predict a high cosine similarity for the pair ( 𝑑𝑞 , 𝑑+ ) and a low cosine similarity
for the pair ( 𝑑𝑞 , 𝑑− ) by employing the per-instance triplet loss as defined in the
context:

Loss = max(𝛼+𝑠(𝑑𝑞; 𝑑−)−𝑠(𝑑𝑞; 𝑑+), 0) The term 𝑠(𝑑𝑖, 𝑑 𝑗 ) represents the cosine
similarity between document embeddings cos−sim(ed i, ed 𝑗 )

Where ed i, ed j are the embeddings of documents 𝑑𝑖, 𝑑 𝑗 , respectively. The hyper-
parameter 𝛼 is used in the model as a tuning parameter.

The model demonstrates superior performance compared to other models, partic-
ularly in scenarios where metadata such as author information, venue information,
and key-phrases are not accessible. Additionally, [96] leverage the semantic rep-
resentations of references and their contexts to generate recommendations. They
train a multi-layer neural network to learn the probability of references given the
contexts, enabling the computation of a score for each paper 𝑑 𝑗 using the following
formula:

𝑝(𝑑𝑖 |𝑞) =
𝑞∑
𝑗=1

𝑝(𝑑𝑖 |𝑤 𝑗 )𝑝(𝑤 𝑗 |𝑞)

In this context, 𝑝(𝑤 𝑗 |𝑞 represents the probability of an article given a query 𝑞.
In contrast, [86] proposed a co-citation model called DRDF-CR, which combines
text and citation graphs to learn multi-vector representations. Each vector captures
different discourse facets of a paper, enabling context-aware recommendations. To
classify sections within an article, the model utilizes the fastText library [111]. It
computes vector representations for each section by averaging the vectors of all
words present in the section. Facet representations (such as objective, method, and
result) are computed by averaging the corresponding facets for each paper. Addi-
tionally, the citation graph is enhanced by incorporating a discourse facet for each
citation edge. Finally, the model updates facet and section vectors using the LINE
[112].

Similarly, [80] presented a model called Hybrid Reranking Model (HRM) that
utilizes a two-layer feedforward neural network to generate predictions. The model
takes article features as input and produces a prediction score for each article in the
output layer. The HRM model sends weekly article recommendations to registered
users. It leverages both article content and user behavior to re-rank the suggested
articles provided by ScienceDirect. Specifically, it incorporates various content-
based measures that are derived from different aspects such as space, tags, and
author similarity. Additionally, the model employs joint matrix factorization to link
the articles that the user has browsed with the user’s click behavior. A pairwise
learning approach is used to further refine the final list of recommendations.
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• Embedding methods: Discrete variables are transformed into continuous vector
representations through a process known as encoding. These learned embeddings
offer several advantages over traditional encoding methods like one-hot encoding.
They find diverse applications, including identifying nearest neighbors to enable
recommendations based on user or group interests, serving as input for other neural
networks, and facilitating the visualization of concepts and relationships across
different categories. Embedding techniques can be broadly categorized into word
embedding [106] and graph embedding methodsg [113].
In natural language processing (NLP), word embedding is commonly used to rep-
resent phrases and employ feature learning methods that encode words into vectors.
These methods have proven effective in capturing both syntactic and semantic in-
formation in words. Among the popular models in this domain are BERT [57],
word2vec [106], and doc2vec [114], which are utilized to embed users, items, doc-
uments, and locations [115] into a latent space for various applications.

For example, when the word ’United’ is inputted into an embedding model, it
is highly probable that the model will generate a representation similar to related
words like ’States’, rather than unrelated words like ’Banana’ or ’Watermelon’. This
is achieved by analyzing the contexts in which these words appear and generating
their vector representations, as shown in Figure 2.4. As a result, the 4-dimensional
representation uncovers words that occur in similar contexts and exhibit similar
representations in the embedding space.

Figure :2.4 A 4-dimensional vector representation of words[4].
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Figure :2.5 An Illustration of Network representation learning [4]

In contrast, graph embedding techniques transform nodes into a lower-dimensional
space by leveraging the graph’s topological structure and other relevant information
such as node contents and attributes. These representations enable the capture of
node relationships by measuring distances in the embedded space, as illustrated in
Figure 2.5. Notably, closely connected nodes are positioned closer to each other in
the latent space. For example, node 7 exhibits first-order proximity with node 11,
indicating their close proximity in the embedded space. Similarly, nodes 12 and 14,
while not directly connected, share common neighbors and maintain second-order
proximity, leading to their proximity in the embedding. Various learning methods
have been introduced in the literature, including LINEE [112], DeepWalk [116],
HINE [117], and Node2vec [105]. It is important to note that these approaches can
be classified as homogeneous or heterogeneous graph embeddings. Homogeneous
network embedding models such as LINE and DeepWalk focus on a single type of
nodes and relations, making them unsuitable for handling heterogeneity. On the
other hand, heterogeneous network embedding models like HINE and Node2vec ex-
plore multiple types of nodes and relations when generating vector representations.
For a more comprehensive discussion on novel network embedding approaches,
refer to [113].

In the context of citation recommendations, the aforementioned embedding
techniques are utilized either to measure similarity between nodes or as input for
other methods, typically supervised learning approaches, that generate the recom-
mendations. In line with this, [83] introduced a weighted heterogeneous network
embedding model known as Tendency Random Walk (CIRec). This model fo-
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cuses on capturing the relationships between papers and their references through a
weighted version of random walk. Specifically, the citation tendency is computed
by considering the connections between papers and their citations based on shared
features like authors and terms. The skip-gram method is then employed to obtain
vector representations of the research papers, optimizing the following objective
function:
𝐿 =

∑
𝑣𝑖∈𝑉 log 𝑃𝑟 (𝑁𝑠 (𝑣𝑖) |𝑣 𝑗 )

Where 𝑉 represents all the nodes in the graph, and 𝑁𝑠 contains the neigh-
borhood information within the same sliding window as 𝑣𝑖. The model utilizes
cosine similarity to measure the similarity between papers in the embedding space,
which is then used to generate recommendations. On the other hand, [83] intro-
duced WHIN-CSL, a model that leverages semantic relations and attribute values
to generate reference recommendations. It constructs a weighted heterogeneous
information network (HIN) consisting of nodes representing papers and authors,
and considers four different types of relations: writing, semantic linking, citing, and
co-authorship. After Node2vec [105] is applied to obtain vector representations of
the nodes, and similarity between vertices is computed using a linear combination
method, such as:
𝑃𝑟 (𝑐𝑝𝑐 |𝑡 𝑝𝑡) = 𝑤1𝜇1(𝑐𝑝𝑐 |𝑡 𝑝𝑡) + 𝑤2𝜇2(𝑐𝑝𝑐 |𝑡 𝑝𝑡) + (1 − 𝑤1 − 𝑤2)𝜇3(𝑐𝑝𝑐 |𝑡 𝑝𝑡)
Where 𝑃𝑟 (𝑐𝑝𝑐 |𝑡 𝑝𝑡) represents the conditional probability between the target pa-

per 𝑡 𝑝𝑡 and the candidate paper 𝜇1(𝑐𝑝𝑐 |𝑡 𝑝𝑡), 𝜇2(𝑐𝑝𝑐 |𝑡 𝑝𝑡) and 𝜇3(𝑐𝑝𝑐 |𝑡 𝑝𝑡) represent
the similarity measures for abstract-abstract, paper-paper vertex, and paper-author
vertex, respectively. The weights 𝑤1 and 𝑤2, with 𝑤1 + 𝑤2 < 1, are used to adjust
the contribution of each relation. By considering these factors, the model generates
top−𝑛 relevant reference recommendations.
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• Convolutional Neural Network (CNN): these models are similar to MLP (Multi-
Layer Perceptron) and offer advantages such as reduced pre-processing require-
ments and efficient performance on large-scale networks with low memory usage
during training. Their architecture includes an input layer, a convolutional layer,
a sub-sampling layer for pooling, a fully connected layer, and an output layer, as
shown in Figure 2.6. This architecture produces a feature map 𝑓 𝑘 , which is calcu-
lated using the following process:
𝑓 (𝑙)𝑖 = tanh((𝑊 𝑙 ∗ 𝑓 (𝑙−1)

𝑖 ) + 𝑏𝑙)

Figure :2.6 Convolutional neural network [4]
:

In the given context, the activation function used is the hyperbolic tangent function
𝑡𝑎𝑛ℎ. The symbol𝑊 represents the parameters specific to the corresponding layer,
and 𝑓 (𝑙−1)

𝑖 represents the segment of the layer for convolution at a particular location
𝑖. Furthermore, the max-pooling layer performs downsampling of text or images
by using a sliding window, as described below:
𝑓 (𝑙)𝑖 = max{ 𝑓 (𝑙−1)

𝑡 , 𝑓 (𝑙−1)
𝑡 (𝑖 + 1)}

By adopting this methodology, the computational burden is significantly reduced
as each layer becomes smaller. This iterative process is performed on multiple
layers, allowing each layer to learn valuable features. Once these features are
learned, the CNN network functions as a classifier. The penultimate layer calculates
the probabilities associated with each class for the classification of items/papers.
Ultimately, the final layer of the network serves as a classification layer, generating
the classification output.
CNN models have been performing really well in the areas of NLP and recommender
systems in recent years. They are more effective than multi-layer perceptrons be-
cause they can reduce the number of neurons through pooling operations. The
shared-weights architecture also helps to reduce the overall number of parameters,
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making them faster and less complex. Because of these advantages, CNNs have
been showing promising results in capturing the meaning and context of citations
for citation recommendation tasks. One specific model, called the personalized
convolutional neural network (p-CNN), was introduced by [99]. This model learns
unique features about an author and uses them to calculate how relevant a cited
article is to the context. It uses a discriminative training strategy to minimize a
specific objective function as following:

𝐿𝑜𝑠𝑠(𝜃) = max{0, 1 + 𝑠(𝑐𝑐, 𝐷−
𝑗 ) − 𝑠(𝑐𝑐, 𝐷+)}

In he given equation 𝑠(𝑐𝑐, 𝐷) represents the similarity score between context c and
document D, which is obtained using multi-layer perceptions in the fully connected
layer. POLAR [78] proposed an attention-based CNN model to generate citation
recommendations. The model utilizes an attention matrix to calculate the impor-
tance of a term based on local and global weights for text similarity. The attention
matrix and matching matrix are then fed into the CNN network to identify various
levels of textual similarities.

In addition [56] put forward a context-aware model that employs a combination of
the BERT [57] model and a modified version of the Graph Convolution Network
(GCN) [58]. In order to produce textual embedding, the pre-trained BERT functions
as a context encoder, while the GCN model is used to create graph embedding. This
approach enables the model to utilize both textual content and citation network to
generate context-aware citation recommendations.

• Recurrent Neural Network (RNN): is similar to Convolutional Neural Networks
(CNNs) in their structure, but differ in their ability to retain previously learned infor-
mation and apply it to future inputs. RNNs utilize a directed graph with sequential
connections between nodes, allowing for the persistence of information over time.
In contrast, traditional neural networks lack this ability and are thus limited in their
decision-making and event prediction capabilities. RNNs address this limitation
by incorporating memory into their architecture, as illustrated in Figure 1.7 [109].
The diagram depicts an input 𝑥𝑡 being passed through a layer of feed-forward neural
network 𝐴, with the resulting output value being represented by ℎ𝑡 . Loops are used
to maintain information and pass it from one step to the next in the network, with
each participating network passing a message to its succeeding network. Overall,
RNNs consist of multiple copies of the same graph, with each copy contributing to
the retention and utilization of previous information.
Recurrent Neural Networks (RNNs) are highly efficient in handling sequential data
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and can remember and identify patterns across different time periods. RNNs com-
prise an input, an output, and hidden units that are essential in storing information.
Unlike Multilayer Perceptrons (MLPs), RNNs incorporate a directional loop that
stores previous information and applies it to the output. Moreover, RNNs utilize a
dynamic user 𝑢𝑢𝑡 and paper 𝑣𝑝𝑡 attributes that are learned from Long-Short Term
Memory (LSTM), and corresponding static attributes 𝑢𝑢 and 𝑣𝑝 obtained through
Matrix Factorization. Based on this, predictions for a paper can be computed as
follows:
r̂𝑢𝑝 |𝑡 = 𝑓 (𝑢𝑢𝑡 , 𝑣𝑝𝑡 , 𝑢𝑢, 𝑣𝑝)
In order to produce precise predictions, the process aims to reduce errors by align-
ing the anticipated score with the actual score. Several types of RNNs exist and are
chosen based on the specific requirements of the application. However, the most
frequently implemented methods are LSTM (Long Short-Term Memory) [108] and
GRU (Gated Recurrent Unit) [108], as cited by Goodfellow et al. in 2016. LSTM is
a type of time recurrent neural network that is well-suited for forecasting significant
events that occur over longer intervals.
When dealing with long sequences, traditional RNNs can experience the short-term
memory problem. This means that if we want to process a lengthy textual para-
graph to generate predictions, traditional RNNs may miss important information.
Another issue that RNNs face is the vanishing gradient problem, where gradients
shrink as they backpropagate through time, leading to small values that do not
contribute much to learning. As a result, layers that encounter this problem stop
the learning process, and RNNs experience the short-term memory problem. To
address this issue, LSTM integrates both short and long-term memories through
a subtle gate control. The main difference between these two approaches is that
LSTM adds a "cell" to determine whether the information it possesses is useful
or not. A cell memory contains three cells, including an input, a forget, and an
output gate, as depicted in Figure 2.7. Mathematically, these cells are represented
in Equation [118].

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 +𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)
𝑓𝑡 = 𝜎(𝑊 𝑓 𝑥𝑡 +𝑈𝑜ℎ𝑡−1 + 𝑏 𝑓 )
𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 +𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)
𝑐𝑡 = tanh(𝜎(𝑊𝑐𝑥𝑡 +𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)
𝑐𝑡 = 𝑓𝑡 � 𝑐𝑡−1 + 𝑖𝑡 � 𝑐
ℎ𝑡 = 𝑜𝑡 � tanh(𝑐𝑡)
where 𝜎 and � denotes the sigmoid function and the element-wise multiplication,
respectively.
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Figure :2.7 Long short term memory block[4]
:

In the context of LSTM (Long Short-Term Memory) networks, various symbols are
used to represent specific components. The symbol 𝑡 is used to denote a specific
time step. The input gate is denoted by 𝑖𝑡 , while the forget gate is represented by
𝑓𝑡 . The output is represented by �𝑡 , the cell state by 𝑐𝑡 , and the hidden state by ℎ𝑡 .
Additionally, the parameters of the LSTM are represented by𝑊 ,𝑈, and 𝑏. The cell
state retains relevant information for transfer to the next level, while the forget gate
ensures that only useful information is retained during training.
On the other hand, GRUs use the hidden state to transmit information instead of re-
lying on the cell state. Moreover, GRUs incorporate two novel gates - the reset gate
and the update gate. The update gate functions akin to the forget gate in an LSTM
network, whereas the reset gate determines which prior information to disregard.
As a result of utilizing fewer tensor operations compared to LSTMs, GRUs exhibit
greater speed.
At the end, CACR [91] utilized LSTM to acquire a distributed representation of
articles context and manuscripts. The model then selects the most relevant articles
based on the scores of relevance between the two. Similarly, MLDTR [75], a
CF-based model, produces paper recommendations by generating the latent repre-
sentation of text sequence using GRUs. Another RNN-based model [119] generates
personalized recommendations by discovering the latent semantic features of sci-
entific papers and considering users’feedback. The study investigates the impact of
using word2vec and LSTM to extract the semantic representation of the content of
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papers.

• Generative Adversarial Network (GAN): In the field of artificial intelligence,
Generative Adversarial Networks (GANs) are composed of two neural networks: a
Discriminator and a Generator, as described by [120]. The Generator produces fake
data such as images or text, and attempts to deceive the Discriminator, which in turn
tries to differentiate between real and fake samples. During the training process,
these two models compete against each other, repeating their respective steps mul-
tiple times to achieve their goals. GANs have been developed as a min-max game,
with the aim of minimizing the reward of the Discriminator while maximizing the
probability of the Discriminator making an error. The Discriminator attempts to
minimize its loss by estimating the probability that the sample it received is from
the probe set and not the generated one, as shown in Figure 2.8.

Figure :2.8 Framework of generative adversarial network[4]
:

In a professional tone, assume that the user’s relevance distribution is denoted
by (𝑃𝑡𝑟𝑢𝑒 = 𝑑 |𝑞𝑛, 𝑟) represents the users relevance distribution, and the Generator
(𝑃𝜃 = 𝑑 |𝑞𝑛, 𝑟) aims to estimate the actual relevance distribution. On the other hand,
the Discriminator ( 𝑓𝜙 = 𝑞 |𝑑) distinguishes between relevant and non-relevant item-
s/papers. The primary objective function is expressed as follows:
𝐽𝐺

∗,𝐷∗
= min𝜃 max𝜙

∑𝑁
𝑛=1

(
𝐸𝑑∼𝑝𝑡𝑟𝑢𝑒 (𝑑 |𝑞𝑛,𝑟) [log𝐷 (𝑑 |𝑞𝑛)] + 𝐸𝑧∼𝑝𝜃 (𝑑 |𝑞𝑛,𝑟) [1 − log𝐷 ((𝑑 |𝑞𝑛))]

)
Where 𝐷 (𝑑 |𝑞𝑛) = 𝜎( 𝑓𝜙(𝑞𝑛 |𝑑)) the symbol 𝜎 represents the sigmoid function,
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while 𝜃 is the parameter used for generative retrieval and 𝜙 is utilized for discrimi-
native retrieval. To learn both parameters, gradient descent is employed.
In order to achieve this objective, [100] developed VCGAN, a system that utilizes
Generative Adversarial Network to produce personalized citation recommenda-
tions. The system leverages both the network and content associated with nodes
to create content-based graph representations. It also examines the co-authorship
network. The resulting representations are combined to form the node feature
vectors, which are then utilized to generate citation recommendations for a given
manuscript query:
𝑠(𝑞, 𝑝 𝑗 ) = 𝑞·𝑝 𝑗

‖𝑞‖·‖‖𝑝 𝑗 ‖‖
The variables 𝑞 and 𝑝 𝑗 denote the query and candidate papers, respectively. Ad-
ditionally, there exists a comparable approach for learning in heterogeneous bibli-
ographic networks, known as GAN-HBNR [76]. The variables 𝑞 and 𝑝 𝑗 denote
the query and candidate papers, respectively. In this model, personalized recom-
mendations are generated by utilizing the network structure, authors, papers, and
query manuscript to develop representations. Doc2vec embedding approach is
used to acquire the content representation of each vertex [114]. To incorporate the
network structure and vertex content, the model utilizes a Denoising Autoencoder
(DAE) network. The DAE network includes a feed-forward generator network,
𝐺 (𝑧), which takes a vector 𝑧 ∈ Rℎ𝑔 as input and produces a generated vector. Addi-
tionally, the discriminator network, 𝐷 (𝑥), takes vectors 𝑧 ∈ R𝑚+𝑛 and produces an
energy estimate 𝐸 ∈ R. Once the network representations are learned, the model
uses a similarity computation method between vectors to determine top-ranked
papers:
®𝑉𝑞 = ®𝑉𝑃𝑅 ®𝑉𝑇𝑞𝑡 + ®𝑉𝐴𝑅 ®𝑉𝑇𝑞𝑎
The vectors ®𝑉𝑃𝑅, ®𝑉𝑞𝑡 and 𝑣𝑒𝑐𝑉𝑞𝑎 represent the training papers, manuscript text, and
manuscript author, respectively. Additionally, [74] proposed a technique called
MAAE, which combines generative adversarial networks with auto-encoders to
generate recommendations for citations and labels.

• Deep Reinforcement Learning (DRL): in the field of Machine Learning (ML),
Reinforcement Learning (RL) is a technique where an agent takes action within an
environment at a specific point in time (t). The agent receives two responses from
the environment: a reward that quantifies the action taken by the agent at that time
step, and a state where the environment changes in response to the agent’s action.
This process is repeated until a terminal state is reached. Deep Reinforcement
Learning (DRL) integrates RL with deep learning models to tackle more intricate
challenges in Natural Language Processing (NLP) and Information Retrieval (IR).
Citation recommendation models utilize Deep Reinforcement Learning (DRL) to
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assign scores to potential candidate citations for a target user. DRL incorporates
gradient descent operations to estimate values that take into account the changing
preferences of a researcher.
In order to generate citation recommendations, TMR-PCR [82] combines re-
searchers, venues, and papers in a three-layered graph using a mutually reinforcing
approach. To personalize the recommendations, the model incorporates both the
researcher’s information and the query’s textual information into a random walk
process. By utilizing a three-layered interactive clustering method, the model
addresses the computational complexity challenges associated with random walk
methods when applied to large graphs.
Likewise, MMRQ [19] utilizes a multi-layered graph containing entities such as
authors, papers, and keywords. The model employs multi-layer reinforcement rules
within the graph to generate citation recommendations that are tailored to the spe-
cific query.

• hybrid: to enhance the effectiveness of citation recommendations, various models
have integrated multiple deep learning networks, such as CNN and RNN, CNN and
AE, GAN and AE, among others. During our survey, we found that only a few
models utilized hybrid deep learning approaches to generate citation recommenda-
tions, as shown in Table 2.4, in the column labeled "Methodologies and models".
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Table :2.4 Classification of citation recommendation models[4].
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1 CIRec [83] ✓ ✓ − − ✓ − − − ✓ ✓ ✓ − − − − − − ✓ − − − − − ✓
2 RBM-CS[84] − − ✓ − ✓ − − − ✓ − − ✓ − − − − − ✓ − − − − − ✓
3 MMRQ[19] ✓ ✓ ✓ − ✓ − − − ✓ − − − − − − − ✓ − ✓ − − − − ✓
4 MAAE[74] ✓ ✓ ✓ − ✓ − ✓ ✓ − − − − − ✓ − − − − ✓ ✓ ✓ − − ✓
5 HGRec[85] ✓ ✓ ✓ ✓ ✓ ✓ − − ✓ − ✓ − − − − − − − ✓ − − ✓ − ✓
6 POLAR[78] ✓ − ✓ − − − − ✓ − − − − − − ✓ − ✓ − ✓ − − − − ✓
7 RI-PR[94] ✓ ✓ ✓ − − − − − − ✓ ✓ − − − − − − − ✓ − − − − ✓
8 DocCit2Vec[101] ✓ − − − ✓ − − − − ✓ ✓ − − − − − − ✓ − − − − ✓ −
9 DRDF-CR [86] − − ✓ − ✓ − − − ✓ − − − ✓ − − − − ✓ − − − − − ✓
10 HRLHG[87] ✓ ✓ ✓ − ✓ − − − ✓ − ✓ − − − − − − − ✓ − − − − ✓
11 ML-DTR[75] ✓ ✓ ✓ − − − ✓ ✓ − − − − − − − ✓ − − ✓ − ✓ ✓ − ✓
12 SAR[88] − − ✓ − ✓ − − − ✓ − ✓ − − − − − − − ✓ − − − − ✓
13 BERT-GCN[56] ✓ − ✓ − ✓ − − − ✓ − − − − − ✓ − − ✓ − − − − − ✓
14 NCN[95] ✓ − − − ✓ ✓ − − − ✓ − − − − ✓ ✓ − ✓ − − − − − ✓
15 5 PPR-DL[119] ✓ − ✓ − − − − − − − − − − − − ✓ − − ✓ − − − − ✓
16 ASL[89] ✓ − ✓ − ✓ − − − ✓ ✓ − − − − − ✓ − ✓ − − − − − ✓
17 CITEWERTs(a)[121] ✓ − − ✓ − − − − − − − − − − ✓ ✓ − ✓ − − − − ✓ −
18 CITEWERTs(b)[122] ✓ − − ✓ − − − − − − − − − − ✓ ✓ − ✓ − − − − ✓ −
19 WHIN-CSL[90] ✓ − ✓ ✓ ✓ ✓ − − ✓ − ✓ − − − ✓ ✓ − − ✓ − − − − ✓
20 NNRank[110] ✓ − ✓ ✓ − ✓ − − − − ✓ − − − − − − − ✓ − − − − ✓
21 GAN-HBNR[76] ✓ − ✓ − ✓ ✓ − − ✓ − − − − ✓ − − − − ✓ − ✓ − − ✓
22 PCCR[91] ✓ − ✓ − ✓ − − − ✓ − − − − − − ✓ − ✓ − − − − − ✓
23 NPM[96] ✓ ✓ ✓ − − − − − − ✓ − − ✓ − − − − − ✓ − − − − ✓
24 Paper2veC[81] − − − − ✓ − − ✓ − − ✓ − − − − − − − ✓ − − − ✓ −
25 VOPRec [79] − − ✓ − ✓ − − ✓ ✓ − ✓ − − − − − − − ✓ − − − − ✓
26 p-CNN [99] ✓ − ✓ − − ✓ − − − ✓ − − − − ✓ − − ✓ − − − − − ✓
27 VCGAN[100] ✓ − ✓ − − ✓ − − − ✓ − − − ✓ − − − − ✓ − − − − ✓
28 TMR-PCR[82] − − ✓ − ✓ − − ✓ ✓ − − − − − − − ✓ − ✓ − − − − ✓
29 CPR[102] ✓ − ✓ − − − − − − ✓ ✓ − − − − − − − ✓ − − − − ✓
30 BNR[77] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
31 HRM[80] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
32 CPA-CE[97] ✓ − − − ✓ − − − − ✓ ✓ − − − − − − − ✓ − − − − ✓
33 AED[98] ✓ − − − ✓ ✓ − − − ✓ − − − − ✓ ✓ − ✓ − − − − − ✓
34 NREP[92] − − ✓ − ✓ − − − ✓ ✓ ✓ − − − − − − − ✓ − − − − ✓
35 HIPRec[93] − ✓ ✓ ✓ ✓ − − − ✓ − ✓ − − − − − − − ✓ − − ✓ − ✓

In a similar vein, [95] employ an encoder-decoder (ED) approach to understand the
semantic connections between citation contexts and relevant cited papers by con-
sidering author relationships. The encoder component transforms a given citation
context into a vector representation using a modified version of CNN known as
the time delay neural network. The GRU decoder component utilizes an attention
mechanism and author networks to decode the encoded representation produced by
the encoder. Refer to Figure2.9 for a visual representation of this process.

Figure :2.9 Architecture of CNRN model[4]

52



Similarly, the attention-based encoder-decoder (AED) model developed by [98]
generates citation recommendations that are sensitive to the context. This model
employs a time delay neural network (TDNN) as the encoder network and a re-
current neural network (RNN) as the decoder network. To capture the semantic
relationships between citation contexts and research papers, the AED model in-
corporates an attention mechanism that takes into account the author and venue
information. By leveraging these components, the model is able to provide context-
aware citation recommendations.

2.2.3 Personalization

This section pertains to the various types of recommendations provided to a specific
user, including personalized, non- personalized, and group-based recommendations,
which are detailed in Table 2.4. Personalized models use a user’s profile information and
browsing history to generate recommendations. Conversely, non-personalized models
create recommendations based on popular or highly-rated items, resulting in all users
receiving similar recommendations, regardless of individual research interests. Upon
reviewing several studies, it was found that many models have produced personalized
recommendations.

2.3 Datasets and metrics for evaluation

In order to assess the effectiveness of different models, researchers have utilized
diverse sets of data and performance measures. With the emergence of new recom-
mendation algorithms, it is crucial to identify suitable datasets and metrics that can be
employed for evaluating experimental outcomes. Presented below is a summary of the
datasets and metrics employed by the models under scrutiny.

2.3.1 Datasets

This section presents an analysis of the most popular datasets, as shown in Tables
??. The findings indicate that the ACL anthology dataset is the most frequently used
dataset, with 13 mentions. This is due to the dataset’s ability to provide access to
more comprehensive information about papers, authors, venues, citation relations, and
content. Additionally, a considerable number of articles utilize self-collected datasets
from various online repositories and libraries, such as Springer, ScienceDirect, ACM,
and IEEE. Finally, it is worth noting that two datasets, CiteUlike and RARD II, offer
user ratings information, making them suitable for adoption in CF-based models [75].

2.3.2 Evaluation metrics
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In this section, we present a comprehensive list of the most commonly used evalu-
ation metrics in the literature, which include Precision, Recall, F-Measure, Root Mean
Square Error (RMSE), Coverage, normalized Discounted Cumulative Gain (nDCG),
and Accuracy. Table2.5 shows that the majority of models use multiple metrics for
evaluation. Specifically, six models perform a thorough evaluation using four metrics,
eleven models use three metrics, while eight models use two metrics. On the other hand,
the remaining nine models use only one metric. It is important to note that using more
metrics leads to a more thorough analysis of the model’s performance, and the use of
multiple metrics enhances our understanding of the model’s impact.
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Table :2.5 Evaluation metrics.[4]
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1 CIRec [83] ✓ ✓ − − ✓ − − − −
2 RBM-CS[84] ✓ − − − − ✓ − − −
3 MMRQ[19] − ✓ − − ✓ − − − −
4 MAAE[74] − − − − − ✓ − − −
5 HGRec[85] ✓ ✓ − − − − ✓ − −
6 POLAR[78] − − − − ✓ − − − −
7 RI-PR[94] ✓ ✓ − − − − ✓ ✓ −
8 DocCit2Vec[101] ✓ ✓ − − ✓ − − − −
9 DRDF-CR [86] − − − − ✓ − − − −
10 HRLHG[87] ✓ − − − ✓ ✓ − − −
11 ML-DTR[75] − ✓ − − − − − − −
12 SAR[88] − ✓ − − ✓ − − − −
13 BERT-GCN[56] ✓ ✓ − − − ✓ − − −
14 NCN[95] ✓ ✓ − − ✓ ✓ − − −
15 PPR-DL[119] − ✓ − − ✓ − − − −
16 ASL[89] ✓ ✓ − − ✓ − − − −
17 CITEWERTs(a)[121] ✓ ✓ − − − − ✓ ✓ −
18 CITEWERTs(b)[122] ✓ ✓ − − − − ✓ ✓ −
19 WHIN-CSL[90] − ✓ − − ✓ − − − −
20 NNRank[110] − ✓ − − ✓ − − − −
21 GAN-HBNR[76] ✓ ✓ − − − ✓ − − −
22 PCCR[91] ✓ ✓ − − − ✓ − − −
23 NPM[96] ✓ − − − ✓ ✓ − − −
24 Paper2veC[81] − − − − − − − − ✓
25 VOPRec [79] ✓ ✓ ✓ − ✓ − − − −
26 p-CNN [99] ✓ ✓ − − − − − − −
27 VCGAN[100] − ✓ − − ✓ − − − −
28 TMR-PCR[82] ✓ ✓ − − − ✓ − − −
29 CPR[102] − − − − ✓ − − − −
30 BNR[77] ✓ − − − − ✓ − − −
31 HRM[80] ✓ − − − − − − − −
32 CPA-CE[97] − − − − ✓ − − − −
33 AED[98] ✓ ✓ − − ✓ − − − −
34 NREP[92] ✓ ✓ − − ✓ − − − −
35 HIPRec[93] − − − − − − − ✓ −
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2.4 Conclusion

In conclusion, this chapter provided a comprehensive overview of the related work
in the field of context-aware citation recommendation using deep learning techniques.
The studies and approaches discussed in this chapter shed light on the advancements
made in the area of citation recommendation systems and highlight the significance
of incorporating contextual information for improved recommendation accuracy and
relevance.

The review of literature revealed that traditional citation recommendation methods
often suffer from limitations such as the reliance on simple features, lack of consideration
for contextual factors, and inability to capture the semantic relationships between papers.
To address these challenges, researchers have turned to deep learning techniques, which
have shown great potential in capturing complex patterns and representations in citation
networks.

Despite the progress made in context-aware citation recommendation using deep
learning, there are still several challenges and open research questions that need to be
addressed. These include the development of more robust and scalable models, the
integration of additional contextual factors, the consideration of temporal dynamics in
citation networks, and the exploration of interpretability and explainability in recom-
mendation results.
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CHAPTER 3

CONCEPTION

3.1 Introduction

The goal of this chapter is to outline the conception of the proposed citation rec-
ommendation system. The subsequent sections delve into the system design and

architecture, system components and functionality, and the presentation of a sequence
diagram.
The chapter aims to provide a comprehensive understanding of the inner workings of
the proposed system. By discussing the design and architecture, the system’s compo-
nents and their respective functionalities will be explored, shedding light on the specific
algorithms and techniques employed in each component. Furthermore, the sequence
diagram will visually illustrate the flow of information and operations within the system.
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3.2 System Design and Architecture

The system design and architecture of the proposed system are crucial in transforming
a large dataset of thousands of papers into meaningful results through the stages of
preprocessing, retrieval, ranking, and post-ranking. In this section, we provide an
overview of the system’s design principles and the components involved in each stage
as it depicted in Figure3.1.

Figure :3.1 System Design and Architecture

3.2.1 Preprocessing Stage

The preprocessing stage is the initial step in the system pipeline, where the dataset of
thousands of papers is processed and transformed into a more manageable format. This
stage involves various tasks such as data cleaning, normalization, and feature extraction.
The preprocessing tasks aim to improve the quality of the dataset, remove irrelevant
or redundant information, and extract essential features that will be used in subsequent
stages.

58



3.2.2 Retrieval Stage

The retrieval stage focuses on selecting a subset of papers from the preprocessed
dataset that are most relevant to a given query or user context. This stage utilizes
retrieval techniques to match the query with the available papers based on their textual
content, metadata, or other relevant factors. Various retrieval algorithms, such as vector
space models or neural networks, may be employed to determine the similarity between
the query and the papers in the dataset. The output of this stage is a reduced set of
thousands of papers that are deemed relevant to the query.

3.2.3 Ranking Stage

The ranking stage aims to further refine the retrieved set of papers by assigning a
relevance score or rank to each paper. This stage leverages ranking algorithms that take
into account various factors such as paper quality, citation count, author reputation, or
user feedback. The ranking algorithms analyze the characteristics of each paper and
assign a score to determine its relative importance or relevance within the retrieved
set. As a result, the ranking stage produces a ranked list to establish the most relevant
hundreds of papers based on their scores.

3.2.4 Post-Ranking Stage

The post-ranking stage focuses on enhancing the ranked list of papers by applying
additional post-processing techniques. This stage may involve techniques such as result
diversification, clustering, or user-specific filtering. Result diversification aims to pro-
vide a diverse set of papers to cater to different user preferences or avoid redundancy.
Clustering techniques can group similar papers together to improve the organization and
presentation of the results. User-specific filtering can further personalize the ranked list
based on a user’s specific interests, previous interactions, or feedback. The output of the
post-ranking stage is a refined and personalized set of papers that better aligns with the
user’s needs.
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3.2.5 Query Stage

In addition to the data flow through the preprocessing, retrieval, ranking, and post-
ranking stages, the system also accommodates user queries. Users input their specific
query, such as a research topic or keywords, to receive personalized and relevant citation
recommendations based on their specific needs.

The system design and architecture presented here provide an overview of the trans-
formation process from the dataset of millions of papers through the preprocessing,
retrieval, ranking, and post-ranking stages. The specific implementation details, al-
gorithms, and technologies used may vary based on the specific requirements and
characteristics of the dataset and the target application.

3.3 System Components and Functionality

Our deep learning context-aware citation recommendation system consists of several
key components that work together to provide efficient and accurate recommendations.
Each component plays a vital role in the overall functionality of the system. Here we
explore the main components and their respective functionalities:

3.3.1 Retrieval Description and Role

The retrieval stage is a fundamental component in our system. It plays a crucial role
in retrieving a subset of relevant papers from a vast dataset based on the user’s query.
This stage focuses on efficiently narrowing down the search space and identifying papers
that are most likely to be of interest to the user.
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Figure :3.2 Internal Retrieval Model Architecture

• Query Encoder: this component is responsible for encoding the user query, which
represents the information the user provides to search for relevant papers. It trans-
forms the query into a numerical representation that can be processed by the retrieval
model using embedding technique.

• Candidate Encoder: the candidate encoder takes the features of the candidate
papers, such as titles and abstracts, and encodes them into numerical representations
by applying embedding technique. These representations capture the important
characteristics of the candidate papers.

• Similarity Score Computation: the similarity score computation calculates the
similarity between the encoded query and the encoded candidate papers. It measures
the relevance or similarity between the user query and the candidate papers, allowing
for retrieval of the most relevant papers.

• Evaluation: is an essential aspect of any retrieval model to assess its performance
and effectiveness. Various evaluation metrics are used to measure the quality of the
retrieval results precision, recall, F1-score, mean average precision (MAP).
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3.3.2 Ranking Description and Role

The ranking stage is a critical component in our system. It follows the retrieval stage
and focuses on ranking the retrieved candidate papers based on their relevance to the
user’s query. The ranking stage plays a vital role in determining the order in which the
recommended papers are presented to the user.

Figure :3.3 Internal Ranking Model Architecture

Our ranking model follows a straightforward architecture that efficiently generates rec-
ommendations based on user queries and a collection of documents. The process begins
with the user submitting a query, specifying their information need or topic of interest.
Simultaneously, the retrieval model selects a relevant set of documents from the entire
collection based on various retrieval techniques.

Once the query and documents are transformed into numerical representations, the
ranking model computes a similarity score between the query and each document in the
collection. This similarity score serves as a measure of relevance, indicating how well
each document aligns with the user’s query. The computation of the similarity score is
clculated by cosine similarity.
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Finally, based on the computed similarity scores, the ranking model arranges the
collection of documents in descending order, placing the most relevant documents at
the top of the ranking list. This ranking enables users to quickly identify and access the
most pertinent documents that address their information need.

3.3.3 Post-ranking Description and Role

The post-ranking stage is a crucial component in our system. It follows the initial
ranking stage and focuses on further refining the ranking of recommended papers based
on additional factors and considerations. The post-ranking stage plays a vital role in
fine-tuning the recommendations and improving their relevance to the user’s needs.

3.4 Sequence diagram

Sequence diagram provides a visual representation of the flow and interactions between
different components or actors in a system. It illustrates the chronological order and
dependencies of various operations involved in the citation recommendation process. It
showcases the sequence of messages, actions, and responses among the system compo-
nents, highlighting the dynamic behavior of the system. By presenting a step-by-step
depiction of the system’s functionality, the sequence diagram offers a clear understand-
ing of how different components collaborate and exchange information to accomplish
the citation recommendation task.
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Figure :3.4 Sequence Diagram: Interaction Flow of the Proposed System Components
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The sequence diagram 3.4illustrates the flow of actions in the system for inserting
and processing papers, generating queries, retrieving relevant papers, ranking them,
and recommending top k papers to the user.

• The process starts with the user inserting a paper into the system.

• The query model receives the inserted paper and processes it to generate a query.

• The retrieval model takes the query representation and the representations of papers
as input and predicts the relevant papers.

• Once the papers are predicted to be relevant, they are sent along with the generated
query representation to the rank model.

• The rank model, which has been trained, ranks the papers based on their relevance
to the query.

• The post-rank model receives the ranked papers and the generated query represen-
tation.

• The post-rank model, recommends the top k papers by considering their ranking.

• Finally, the system sends the top k recommended papers to the user.

This sequence diagram demonstrates the flow of data and actions within the system,
showing how papers are processed, queries are generated, papers are retrieved and
ranked, and ultimately, top k papers are recommended to the user.
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3.5 Conclusion

In this chapter, we have discussed the system design and architecture, including
various stages such as the preprocessing stage, retrieval stage, ranking stage, post-
ranking stage, and query stage. The preprocessing stage involves preparing the data,
while the retrieval stage focuses on finding relevant information based on user queries.
The ranking stage assigns ranks to the retrieved items, and the post-ranking stage further
refines the ranked information. The query stage handles user queries and provides
appropriate responses. We have also described in detail the system components and their
functionalities, including the retrieval component responsible for retrieving information,
the ranking component for assigning ranks, and the post-ranking component for refining
results. Finally, a sequence diagram have been provided to visualize the interactions and
flow of messages between the system components.
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CHAPTER 4

IMPLEMENTATION AND EVALUATION

4.1 Introduction

In this chapter, we will delve into the details of the implementation process, including
the design choices, programming languages, libraries, and frameworks employed.

Additionally, we will discuss the evaluation methodology, metrics used, and the results
obtained from the experiments conducted on real-world datasets.
The implementation and evaluation chapter plays a crucial role in assessing the
effectiveness and performance of the proposed deep learning context-aware technique
for citation recommendation. This chapter focuses on the practical implementation of
the developed system, including the selection of appropriate tools, technologies, and
frameworks. It involves translating the theoretical concepts and algorithms.
Furthermore, the evaluation aspect of this section aims to measure the system’s
performance, effectiveness, and efficiency.
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4.2 Development environment

The development environment section provides an overview of the tools, technologies,
and resources used to implement our system.

It encompasses the hardware and software setup that facilitated the development and
experimentation process.
In this section, we will discuss the hardware infrastructure employed, including the
specifications of the computer systems used for training and evaluating the models.
This may include details such as the processor, memory, and storage capacity, which
are crucial for executing resource-intensive deep learning tasks.

4.2.1 Hard-ware environment

• 1𝑠𝑡 computer:
PC:Acer computer
Processor: Intel Core i3 5th generation
Hard disk:hdd
RAM: 8GB
Storage: 466GB
Operating System: Windows 8

4.2.2 Soft-ware environment
• Python: is a high-level programming language known

for its simplicity, readability, and versatility. It was
created by Guido van Rossum and first released in 1991.
Python emphasizes code readability and uses a clean
syntax, making it easy to learn and understand for both
beginners and experienced programmers.
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• Tensorflow: TensorFlow is an open-source machine
learning framework developed by Google. It provides
a comprehensive ecosystem of tools, libraries, and
resources for building and deploying machine learning
models. TensorFlow is designed to efficiently handle
large-scale numerical computations and is particularly
well-suited for training and deploying deep neural
networks. It offers a flexible and intuitive interface
for constructing computational graphs and executing
operations on various hardware platforms, including
CPUs and GPUs. TensorFlow has gained popularity
for its ability to simplify the development of complex
machine learning models.

• Keras: is an open-source high-level neural networks li-
brary written in Python. It is built on top of TensorFlow,
Theano, or CNTK, providing a user-friendly interface for
building and training deep learning models. Keras of-
fers a modular and intuitive API that allows developers
to quickly prototype and experiment with various neu-
ral network architectures. It supports both convolutional
and recurrent neural networks. Keras abstracts away the
complexities of low-level implementation details, mak-
ing it easy for beginners to get started with deep learning.
It also provides a range of pre-trained models and utilities
for common tasks such as natural language processing.
Overall, Keras is known for its simplicity, flexibility, and
ease of use.
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4.3 Dataset Collection and Acquisition

In this section, the emphasis is on discussing the methods and techniques used to collect
and acquire the dataset, ensuring its quality and relevance to the project’s objectives.

It may involve data collection from online sources, data scraping, data extraction from
databases, or collaborations with organizations or institutions that provide access to
specific datasets.

4.3.1 Selecting the sources of research papers

A variety of data sets for the topic citation recommendation systems have been col-
lected in order to train and evaluate models created for this topic. Datasets used for

citation recommendation systems consist of two parts, collection of scientific articles
and information about citations between this articles.
For this topic we find several available datasets like DBLP, RefSeer, citeUlike-a and
many others. Difference between datasets is: some datasets include full article text
while others include just abstract of article, another distinction: while some datasets list
only the articles cited, others include the textual context for those citations.
As result of these differences, some datasets are only suitable for global CR tasks
(datasets without context), whereas others can be used for both global and local CR
tasks. Figure 4.1 below shows the sundary datasets known in citation recommendation
task.
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Table :4.1 Common Data sets for Citation recommendation specifications[4]
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ACL-ARC1 23766 18862 ✓ - - - 373 ✓ ✓ ✓ - - 2016
DBLP2 4,107,340 318,406 ✓ - - - 23709 ✓ ✓ - ✓ - 2019

RefSeer3 855,735 - ✓ ✓ - ✓ - - ✓ ✓ ✓ - 2015
Amnier4 3,680,007 212,567 ✓ - - - 12770 ✓ ✓ - ✓ - 2017
PubMed5 789 212,312 ✓ - ✓ ✓ 2319 ✓ ✓ ✓ - - 2015

OpenCorpus6 6,090,000 8,030,000 ✓ - - ✓ 23672 ✓ ✓ - ✓ - 2018
Citeulike-a7 16980 5551 ✓ - ✓ - - ✓ ✓ - - ✓ 2013

The citeulike-a dataset was carefully chosen as the primary dataset for our citation
recommendation system. This dataset played a pivotal role in training and evaluating

the models developed in our research. Citeulike-a offers a rich collection of scientific
articles along with comprehensive information about the citations between these articles.
By leveraging this dataset, we were able to capture the interconnectedness of scholarly
works and extract valuable insights for effective citation recommendation.
By utilizing the citeulike dataset, we aimed to ensure the representativeness of our re-
search findings within the scholarly domain. The dataset encompasses a wide range
of research areas and covers a substantial volume of articles, allowing us to achieve a
broader perspective and overcome potential biases associated with narrower datasets.
Moreover, the richness and depth of the CiteULike-a dataset empower our models to
capture intricate relationships and semantic connections between research papers, en-
abling more precise and context-aware citation recommendations.
In summary, the CiteULike-a dataset serves as the foundation of our citation recom-
mendation system, providing the necessary data to train and evaluate our models. Its
comprehensive coverage, contextual information, and representation of various research
domains make it a valuable resource in advancing context-aware citation recommenda-
tion.

1(https://acl-arc.comp.nus.edu.sg)
2(https://dblp.dagstuhl.de)
3(https://citeseerx.ist.psu.edu)
4(https://www.aminer.cn/data)
5(https://pubmed.ncbi.nlm.nih.gov)
6(https://www.semanticscholar.org/product/api)
7(https://github.com/js05212/citeulike-a)
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4.3.2 Defining the criteria for inclusion in the dataset

When defining the criteria for inclusion in the dataset, we toke several considerations
into account to ensure the dataset’s quality and relevance for citation recommendation

research. The following criteria were established:

• Research Paper Relevance: only research papers directly related to the target
domain or field of study were included in the dataset. Papers from diverse
disciplines were considered to capture a wide range of topics.In the CiteULike-a
dataset, research paper relevance played a crucial role in the selection process.
The goal was to compile a dataset that encompasses a diverse range of scholarly
articles while ensuring their alignment with specific research areas.

• Language: papers written in a specific language or languages were chosen to
maintain consistency and facilitate analysis. The CiteULike-a dataset was written
in English.

• Abstract Screening: the abstracts of the papers in citeulike-a were reviewed
to assess their alignment with the selected topic(s). Papers with abstracts that
demonstrated relevance to the research area were given priority.

• Expert Knowledge: the expertise of domain experts or researchers familiar with
the topic(s) was utilized to ensure the inclusion of papers that are highly relevant
and significant within the field.

• Publication Type: CiteULike-a dataset provides a diversity in types of publica-
tions, such as conference papers and journal articles, were considered to provide a
comprehensive representation of scholarly communication.

• Availability: the citeulike-a dataset is publicly available for research purposes. It
can be accessed and downloaded from the official citeulike website or other data
repositories where it has been made available. The dataset is often provided in a
structured format, such as CSV or XML, making it easier for researchers to process
and analyze the data.

By employing these criteria, the CiteULike-a dataset was carefully curated to include
research papers that are pertinent to the chosen research area, enabling the development

and evaluation of citation recommendation models that effectively cater to the specific
domain.
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4.3.3 Value of dataset

• The dataset has been utilized to create and assess recommender systems for scholarly
papers. The data can be utilized to train machine learning models that can make
personalized recommendations based on a interests of users, inclinations.

• A free service that assists you in storing, organizing, and sharing the scholarly
papers you are reading.

• It enables users to include their academic reference library in their online profile
on the CiteULike website.

• CiteULike allows users to engender their own collections of articles.

• Can be utilized to create and test information science and machine learning models.
For case, analysts may utilize it to prepare models to foresee the affect of scholarly
distributions or recognize the foremost significant articles for a specific inquire
about address.
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To recap , the ensuing Table 4.2 includes all previously mentioned informa-
tion:

Table :4.2 Specification Table
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The process of obtaining the CiteULike-a dataset included web scraping and
data processing methods.Web scraping: The CiteULike site was crawled and
significant information was mined from the website’s HTML code. This included
writing code to scoop out paper titles, authors, abstracts, publication venues, and
other metadata from the site. Besides the processing methods involved data
cleansing by getting rid of duplicate information and correcting errors.

D
at

a
de

sc
rip

tio
n The CiteULike-A dataset is a portion of the CiteULike dataset, which is extracted

from the CiteULike platform. CiteULike-A particularly alludes to a version of
the dataset that has been preprocessed and made accessible for use in research and
analysis. The CiteULike-A incorporates 16980 papers. Each paper (document)
includes metadata such as title, users, abstract, paper_ID, publication year, as
well as citations. The CiteULike-A dataset has been utilized in different research
studies such as citation analysis.
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Citeulike-a dataset is available publicly Press here.
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4.3.4 Ensuring that dataset is representative for the field of study

According to the previous subsection, "Defining the criteria for inclusion in the
dataset," we are able to ensure the quality and relevance of the CiteULike-a dataset

for citation recommendation research. So in brief we can confidently state that the
CiteULike-a dataset is representative of the field of study.

4.3.5 Data Collecting and Format

CiteULike-a dataset was collected from CiteULike and Google Scholar using web
scrapping techniques to mine a significant informations such as document title,

abstract, users,publication venues and other informations . It was released as portion
of the RecSys Challenge 2013 a competition to develop algorithms for recommending
scientific articles to users based on their past lecture behavior. CiteULike-a dataset
contains seven files among them raw-data.csv ,users.dat,citations.dat which we adopted
in this memorandum.

Some statistics are represented as follow:
Tableau :4.3 Total number of each attribute in citeULike-a

Entity Totaling number
tags 46391
Items 16980
Users 5551

Citations 44709
User-item pairs 204987

Dataset CiteULike-a for CTRSR is collection of 16980 articles or documents.

• citation.dat: each row in citation.dat corresponds to an edge connected to a
node(article). For instance row 1: 3 2 485 3284 that indicates there is 3 edges
connected article number 0 (taking into consideration that indexing starts from
zero) their ID’s are respectively 2, 485 and 3284. In another sense, the article
that defined by "The metabolic world of Escherichia coli is not small" as title is
connected to "Community structure in social and biological networks", "Exploring
complex networks", "Reconstruction of metabolic networks from genome data and
analysis of their global structure for various organisms".
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Figure :4.1 1𝑠𝑡 examples in row in citation.dat

• users.dat: each row in users.dat corresponds to total number of papers that each
user may have access and their ID’s.For example raw 1: 70 495 1631 2317 2526
2846 2931 3171 3297 3332...means that user_1 have 70 papers that accessed to
read their ID’s are consecutively 495,1631,2317,.....

Figure :4.2 1𝑠𝑡 examples in row in users.dat
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• row in raw_data.csv: each row in raw_data.csv represents an article. And each
article defined by it’s ID, Title, Abstract and citeulike.id.

Figure :4.3 1𝑠𝑡 examples raw_data.csv

4.3.6 Organizing the dataset into a usable format

We selected the three files, raw-data.csv, users.dat, and citations.dat, from the
CiteULike-a dataset available at the specified GitHub repository. These files con-

tain the necessary information about research papers, users, and citations within the
dataset.
We integrated the information from these three files by merging the relevant fields.
This integration ensured that all essential information was captured in the final dataset.
Where we concatinate the 3 files by ID’s.
To facilitate data handling and compatibility with various analysis tools and program-
ming languages, we transformed the dataset into a tabular format, typically using CSV
(Comma-Separated Values) format. This format allows for easy storage, retrieval, and
manipulation of the dataset.
After meticulous organization and careful processing, the format of final dataset as it
is shown in the figure bellow. The result is a comprehensive and refined collection of
data that encompasses a wealth of valuable information. The dataset now stands as a
testament to our commitment to providing reliable and accurate data for our system.
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Figure :4.4 Head of the CiteULike-a dataset

The final dataset is presented below, where each row represents a research paper and
its corresponding features. The title of the paper represents the concatenation of its

title and abstract, providing a comprehensive identifier and the other columns, each one
represent the citations for the corresponding paper.

Figure :4.5 Final dataset
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4.4 Dataset Preprocessing

In order to ensure the integrity and relevance of the dataset used for this study, a
thorough cleaning process was conducted to remove duplicates and irrelevant papers

as it depicted in Figure 4.6. This subsection outlines the steps taken to clean the dataset,
ensuring the accuracy and reliability of the data used for analysis.

Figure :4.6 Dataset Preprocessing Pipeline

4.4.1 Removing Duplicate Papers

Duplicate papers can introduce bias and lead to skewed results in the analysis. To
address this issue, a duplicate removal process was conducted. Initially, a similarity

measure was applied to identify potential duplicates based on the textual content of the
papers. This measure compared the similarity between titles and abstracts of different
papers. Once potential duplicates were identified, manual inspection and verification
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were performed to validate and retain the most relevant version of the paper. By removing
duplicate papers, the dataset’s quality and integrity were enhanced, ensuring each paper
represented a unique contribution.

4.4.2 Lowercase Conversion

To maintain consistency and facilitate text analysis, all text data in the dataset was
converted to lowercase. This step helped eliminate any potential discrepancies arising

from inconsistent capitalization in titles and abstracts. By converting all text to lower-
case, the dataset became standardized and easier to process.

4.4.3 Removing Tags

Tags, such as HTML or XML tags, are commonly found in scraped or downloaded
datasets. These tags provide formatting information but are irrelevant for the analysis.

Therefore, a tag removal process was implemented to strip off any tags present in the
dataset. This step ensured that only meaningful content remained for further cleaning
and analysis.

4.4.4 Removing Special Character and Digit

Special characters, such as punctuation marks and symbols, do not typically con-
tribute significant meaning to the text analysis. Therefore, a special character and

digit removal process was applied to eliminate them from the dataset. This step involved
systematically scanning each document and removing any special characters or digits
encountered. The resulting dataset contained only alphabetic characters and words,
which were more suitable for subsequent analysis.

4.4.5 Removing Stop Word

Stop words are commonly occurring words in a language, such as "and," "the," or
"in," that do not provide substantial meaning in the context of the analysis. These

words can be noise and hinder the accuracy of text analysis algorithms. Hence, a stop
word removal process was implemented to eliminate stop words from the dataset. A
predefined list of stop words specific to the research domain was used to identify and
remove such words. This step enhanced the quality of the dataset by eliminating noise
and reducing the dimensionality of the text data.
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4.4.6 Visualization of some features

Data visualization is a powerful technique for transforming complex information
into visual formats such as maps and charts. It serves the purpose of aiding human

comprehension and extracting insights from data. By presenting data visually, it
becomes easier to identify patterns, trends, and outliers, especially when dealing with
large datasets.
In the context of our study, we have utilized data visualization techniques to explore and
understand the dataset. As shown in Figure 4.4, we observed that certain features in the
dataset are categorical, meaning they have non-numeric values. To effectively model
these features, we employed the embedding technique, to transform the categorical data
into numerical representations.
By transforming the title and abstract fields into numerical data through the embedding
technique using "bert-base-nli-mean-tokens" model , we can now establish relationships
between the previously mentioned features. With the numerical representations, it
becomes easier to model and analyze the relationships between variables. This allows
us to explore how each feature is related to the others and gain a deeper understanding
of the dataset.

Figure :4.7 Visualization of sundry features in terms of each others

Figure 4.7 provides a visual representation of the correlations between the previously
mentioned features. It demonstrates that these features exhibit a significant level of
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correlation with each other. This finding is valuable as it indicates that changes in one
feature are associated with changes in other features, suggesting potential interdepen-
dencies within the system under consideration.
The correlation among the features serves as a beneficial tool for gaining a better un-
derstanding of the underlying system. By examining the strength and direction of the
correlations, we can identify relationships and dependencies between variables. This
knowledge enables us to make more informed interpretations and predictions based on
the observed patterns.

4.4.7 Checking for consistency and accuracy in the data

To ensure the reliability and accuracy of the data used in our study, we conducted
thorough checks for consistency and accuracy. Data visualization played a crucial role

in exploring and understanding the CiteULike-a dataset, as it allowed us to transform
complex information into visual formats such as maps and charts. By presenting the
data visually, we were able to identify patterns, trends, and outliers, especially when
dealing with large datasets.
In addition to leveraging data visualization techniques, we also performed thorough
checks for consistency and accuracy within the CiteULike-a dataset. These checks
ensured that the dataset was reliable and of high quality. By validating the consistency
of data elements, such publication titles, abstracts, citataions and users, we verified the
coherence and conformity of the dataset.
In summary, the CiteULike-a dataset underwent rigorous checks for consistency
and accuracy to ensure the reliability of our study’s findings. By employing data
visualization techniques, we explored the dataset, transformed categorical features into
numerical representations, and identified significant correlations among the features.
These checks, along with the validation and cleaning processes, allowed us to maintain
the integrity of the CiteULike-a dataset and generate meaningful insights from the data.
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1 x=abstract
2 y=title
3 plt.scatter(x, y)
4 plt.title("Scatter Plot papers informations")
5 # Setting the X and Y labels
6 plt.xlabel(’Title’)
7 plt.ylabel(’Abstract’)
8 plt.colorbar( orientation="vertical")
9 plt.show()

The code snippet provided performs a scatter plot visualization of the dataset, where
the X-axis represents the "Abstract" and the Y-axis represents the "Title" of the

papers. Here’s an explanation of the code:

• In this code, the "abstract" variable represents the abstract information of the papers,
while the "title" variable represents the title information. The plt.scatter() function
is used to create a scatter plot, where each point represents a paper. The X-axis
represents the abstracts, and the Y-axis represents the titles of the papers.

• The plt.title() function sets the title of the plot to "Scatter Plot of Papers Information".
The plt.xlabel() and plt.ylabel() functions set the labels for the X and Y axes,
respectively, as "Abstract" and "Title".

• Additionally, the plt.colorbar() function adds a colorbar to the plot, which provides
additional information related to the points plotted. The colorbar helps in inter-
preting any additional variable associated with the papers, such as the relevance or
importance of the papers.

• Finally, the plt.show() function is called to display the scatter plot on the screen.

The given code below snippet performs a 3D visualization of the dataset, incorporating
the "abstract" and "title" information along with the "citation" data.

Here’s an explanation of the code:

1 ax=plt.axes(projection=’3d’)
2 ax.scatter(abstract,title,citation ,cmap=’viridis’,linewidth=0.5,color = ’black’)
3 ax.set_title(’3D visualization papers information and citation’)
4 ax.set_xlabel(’Data’)

• Overall, this code snippet visualizes the dataset in a 3D space, incorporating the
abstract, title, and citation information. Each data point is represented by a marker
in the plot, with the position in the 3D space determined by the values of the
abstract, title, and citation variables.
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4.5 Dataset Preprocessing Code

In this section, we provide an overview of the code used for preprocessing
the dataset. The code outlined below describes the specific steps and techniques

employed to clean and transform the dataset into a suitable format for further processing.

Raw-data

1 df=pd.read_csv(’/content/drive/MyDrive/raw-data.csv’,encoding=’utf-8’, encoding_errors=’
replace’)

2 df=pd.DataFrame(df)
3 df=df.drop([’doc.id’, ’title’,’citeulike.id’], axis=1)
4 df=df.rename(columns={"raw.title": "Title", "raw.abstract": "Abstract"})
5 df[’Title’] = df[’Title’] + df[’Abstract’]
6 df=pd.DataFrame(df[’Title’])

Explanation:

• The code starts by reading the contents of the CSV file. The encoding parameter is
set to ’utf-8’ to handle the file’s encoding, and encoding_errors is set to ’replace’
to handle any encoding errors encountered during reading. The resulting data is
stored in the variable df.

• The next line converts the df variable into a DataFrame explicitly.

• The code then drops three columns from the DataFrame using the drop() function.
This operation removes these columns from the dataset.

• The next line renames two columns in the DataFrame. The column ’raw.title’ is
renamed to ’Title’, and ’raw.abstract’ is renamed to ’Abstract’. This step provides
more meaningful column names for these attributes.

• The code concatenates the values of the ’Title’ and ’Abstract’ columns together
using the + operator and assigns the result back to the ’Title’ column. This concate-
nation merges the text content of the Title and Abstract fields into a single column,
facilitating subsequent processing if needed.

• Finally, the code creates a new DataFrame named df containing only the ’Title’
column by assigning df[’Title’] to df. This operation discards all other columns,
resulting in a DataFrame that solely contains the combined Title and Abstract
information.
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1 import re
2 def pre_process(text):
3 # lowercase
4 text=text.lower()
5

6 #remove tags
7 text=re.sub("</?.*?>"," <> ",text)
8

9 # remove special characters and digits
10 text=re.sub("(\\d|\\W)+"," ",text)
11 return text
12 df[’Title’] = df[’Title’].apply(lambda x:pre_process(x))

The provided code defines a function named pre_process that performs text
preprocessing operations on a given input text as it is explained:

• The code begins by importing the re module, which provides support for regular
expressions in Python. This module is necessary to perform pattern-based string
operations.

• The code defines a function named pre_process that takes a single parameter, text,
representing the input text to be preprocessed.

• The first preprocessing step is to convert the entire input text to lowercase. This is
done using the lower() method, which converts all uppercase characters to lower-
case.

• The code uses a regular expression pattern to remove any HTML tags present in the
text. The re.sub() function is used with the pattern "</?.*?>" to match and replace
any occurrences of HTML tags with a space. This effectively removes the tags
from the text.

• The next line of code removes special characters and digits from the text. The
re.sub() function replaces these matches with a space, effectively removing them
from the text.

• The next line, the function returns the preprocessed text.

• Finally, the code applies the pre_process function to each element of the ’Title’
column in the DataFrame df and replaces the original values with the preprocessed
versions. This step ensures that the text in the ’Title’ column is cleaned and
normalized according to the defined preprocessing rules before further analysis or
processing.
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Here, we see the difference between the original text and the cleaned one.

Figure :4.8 Original text

Figure :4.9 Cleaned text

Citation data

1 import pandas as pd
2 citation = pd.read_csv(’/content/drive/MyDrive/citations.csv’,header=None)
3 citation=citation.drop(citation.columns[0],axis=1)
4 citation=citation.fillna(0)
5 citation=citation.rename(columns={citation.columns[i]:’cit_’+ str(i) for i in range(0,193)})

The explanation of each step:

• The second line reads a CSV file called "citations.csv" located at "/content/-
drive/MyDrive/" and assigns the resulting DataFrame to the variable "citation".
The "header=None" parameter indicates that the CSV file doesn’t have a header
row, so pandas will assign default column names.

• The third line drops the first column from the DataFrame "citation". The cita-
tion.columns[0] retrieves the label of the first column (number of citations), and
the drop() function is used to remove it. The axis=1 parameter specifies that the
operation should be performed along the columns.

• The fourth line fills any missing values (NaN) in the "citation" DataFrame with
zeros. The fillna() function is used to replace missing values with a specified value,
in this case, 0.

• The last line renames the columns of the "citation" DataFrame. It uses a dictionary
comprehension to iterate over the column indices (0 to 192) and assigns new column
names to each column. The new column names follow the pattern "cit_0", "cit_1",
"cit_2", and so on, where the index is appended to the string "cit_".

The result of executing the provided code is depicted in Figure 4.10:
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Figure :4.10 Final result of citations.csv

Embedding files

1 abstract=pd.read_csv(’/content/drive/MyDrive/Embeddingg Abstract.csv’)
2 abstract=abstract.rename(columns={abstract.columns[i]:’feat_’+ str(i) for i in range(0,768)

})
3 title=pd.read_csv(’/content/drive/MyDrive/Embeddingg Title.csv’)
4 title=title.rename(columns={title.columns[i]:’feat__’+ str(i) for i in range(0,768)})

The explanation of the code above:

• The given code loads two CSV files, "Embeddingg Abstract.csv" and "Embeddingg
Title.csv," containing abstract and title embeddings, respectively.

• In the first line, the "abstract" dataset is loaded using the pd.read_csv() function,
and then the column names are renamed using a dictionary comprehension. Each
column is renamed as "feat_" followed by the index number ranging from 0 to 767.

• Similarly, in the next lines, the "title" dataset is loaded and its column names are
also renamed using a dictionary comprehension. Here, each column is renamed as
"feat__" followed by the index number ranging from 0 to 767.
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The result of executing the provided code is:

Figure :4.11 Embeded Title

Figure :4.12 Embeded Abstract

88



4.6 Experimental Results and Discussion

This section provides a comprehensive analysis and interpretation of the results
obtained, offering insights into the effectiveness, accuracy, and overall performance

of the developed model.
We begin by describing the experimental setup, the evaluation metrics employed, and
any preprocessing or parameter settings applied during the experiments. This ensures
transparency and reproducibility of the results.
Next,we present the quantitative evaluation results obtained from the experiments and
we present the qualitative evaluation findings.Furthermore, we compare our results
with existing state-of-the-art citation recommendation models or approaches.This
comparative analysis helps to improve the performance of our model against others
in the field.The experimental results and their implications are then discussed in
detail,addressing the research questions,objectives, or hypotheses stated in the earlier
sections of the thesis.Finally, we identify the limitations of our study,acknowledging any
potential biases,constraints,or areas for future improvement.We provide recommenda-
tions for future research directions based on the insights gained from the experimental
results and discussions.By presenting and discussing the experimental results in a
structured and comprehensive manner,this section aims to provide a clear understanding
of the performance and effectiveness of the developed citation recommendation
system,contributing to the knowledge and advancement of the field.

4.6.1 Model selection

In the process of developing our system, we carefully studied the selection of models
to integrate them. The two main components of our model selection process were the

retrieval model based on artificial neural network(ANN) and the incorporation of BERT
model and Gated Recurrent Unit(GRU). The retrieval model served as the foundation
for our recommendation system. We opted for an embedding-based retrieval model,
leveraging the power of embeddings to represent the papers in a high-dimensional
space. By transforming textual data into numerical representations, we could effectively
capture the semantic meaning and similarities between papers. The retrieval model
played a crucial role in retrieving a set of potentially relevant papers based on user
queries.
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4.6.2 Model training & testing

In the "Model training" subsection, we focus on the process of training our model.
Once the dataset is prepared, we proceed with the model training phase. The code

implementation involves setting up the model architecture, defining loss functions,
selecting optimization techniques, and specifying the evaluation metrics. Through this
subsection, we provide a comprehensive overview of the code required for training our
model as it is explained below.

1 columns = [’Title’] +[’cit_{}’.format(i) for i in range(10)]
2 dataset = tf.data.Dataset.from_tensor_slices(tuple([tf.cast(df[col].values, tf.string) for

col in columns]))
3

4 def rename(x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10):
5 y = {}
6 y["Title"] = x0
7 y[’cit_0’] = x1
8 y[’cit_1’] = x2
9 y[’cit_2’] = x3
10 y[’cit_3’] = x4
11 y[’cit_4’] = x5
12 y[’cit_5’] = x6
13 y[’cit_6’] = x7
14 y[’cit_7’] = x8
15 y[’cit_8’] = x9
16 y[’cit_9’] = x10
17 return y
18 dataset = dataset.map(rename)
19

20 Tset = dataset.map(lambda x: {
21 "Title": x["Title"],
22 "cit_0": x["cit_0"],
23 "cit_1": x["cit_1"],
24 "cit_2": x["cit_2"],
25 "cit_3": x["cit_3"],
26 ’cit_4’ : x[’cit_4’],
27 ’cit_5’ : x[’cit_5’],
28 ’cit_6’ : x[’cit_6’],
29 ’cit_7’:x[’cit_7’] ,
30 ’cit_8’: x[’cit_8’] ,
31 ’cit_9’: x[’cit_9’]
32

33 })
34 TCset = Tset.map(lambda x: x["Title"])

• The first line creates a list of column names. The list starts with the string ’Title’
and is followed by a list comprehension that generates column names in the format
’cit_0’, ’cit_1’, .... The resulting list will have 11 elements. The second line
creates a tf.data.Dataset object using the from_tensor_slices method. It takes as
input a tuple of tensors created from the columns of the DataFrame. In breif it
consists of converting the values from specific columns of a pandas DataFrame
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into TensorFlow string tensors.

• The function called rename takes in multiple arguments (x0, x1, x2, ..., x10). The
purpose of this function is to rename the input arguments and create a dictionary
(y) with specific keys. After defining the rename function, the code proceeds to
apply it to the dataset using the map method. The map function applies the rename
function to each element of the dataset, transforming the elements accordingly.

• Another map function is applied to the Tset dataset. This time, a lambda function is
used to extract only the values corresponding to the key "Title" from each element
x in the dataset.

1 tf.random.set_seed(42)
2 shuffled = dataset.shuffle(1000, seed=42, reshuffle_each_iteration=False)
3

4 train = shuffled.take(10000)
5 test = shuffled.skip(10000).take(6980)
6

7 T_titles = df.Title.values
8 TC_citations0 = df.cit_0.values
9 TC_citations1 = df.cit_1.values
10 TC_citations2 = df.cit_2.values
11 TC_citations3 = df.cit_3.values
12 TC_citations4 = df.cit_4.values
13 TC_citations5 = df.cit_5.values
14 TC_citations6 = df.cit_6.values
15 TC_citations7 = df.cit_7.values
16 TC_citations8 = df.cit_8.values
17 TC_citations9 = df.cit_9.values
18 unique_T_titles = np.unique(list(T_titles))
19 unique_TC_citations0 = np.unique(list(TC_citations0))
20 unique_TC_citations1 = np.unique(list(TC_citations1))
21 unique_TC_citations2 = np.unique(list(TC_citations2))
22 unique_TC_citations3 = np.unique(list(TC_citations3))
23 unique_TC_citations4 = np.unique(list(TC_citations4))
24 unique_TC_citations5 = np.unique(list(TC_citations5))
25 unique_TC_citations6 = np.unique(list(TC_citations6))
26 unique_TC_citations7 = np.unique(list(TC_citations7))
27 unique_TC_citations8 = np.unique(list(TC_citations8))
28 unique_TC_citations9 = np.unique(list(TC_citations9))

• The first line sets the random seed to ensure reproducibility.By setting the seed to
a specific value (in this case, 42). The shuffle function is applied to the dataset
to randomly shuffle its elements. The argument 1000 indicates that a buffer of
size 1000 will be used to shuffle the elements. The reshuffle_each_iteration=False
option ensures that the same order is maintained across multiple iterations if the
dataset is iterated multiple times. The take function is used to create a new dataset
(train) that contains the first 10000 elements from the shuffled dataset. The skip
function is used to skip the first 10000 elements of the shuffled dataset. Then, the
take function is applied to select the next 6980 elements. This subset represents
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the testing data.

• The code segment extracts the values from specific columns of a DataFrame and
creates variables to store them. It also computes the unique values for each column
and stores them in separate variables prefixed with "unique_".

1 T_titles = df.Title.values
2 TC_citations0 = df.iloc[:,1].values
3 for i in range(1):
4 TC_citations1 = df.iloc[:,i+2].values
5 TC_citations2 = df.iloc[:,i+3].values
6 TC_citations3 = df.iloc[:,i+4].values
7 TC_citations4 = df.iloc[:,i+5].values
8 TC_citations5 = df.iloc[:,i+6].values
9 TC_citations6 = df.iloc[:,i+7].values
10 TC_citations7 = df.iloc[:,i+8].values
11 TC_citations8 = df.iloc[:,i+9].values
12 TC_citations9= df.iloc[:,i+10].values
13 TC_citations9 = [TC_citations0 ,TC_citations1 ,TC_citations2 ,TC_citations3 ,TC_citations4 ,

TC_citations5 ,TC_citations6 ,TC_citations7 ,TC_citations8 ,TC_citations9]
14 TC_citations = np.array(TC_citations9)
15 TC_citations
16

17 unique_T_titles = np.unique(list(T_titles))
18 unique_TC_citations = np.unique(list(TC_citations))

• This code segment extracts values from specific columns of a DataFrame using
integer-based indexing. It retrieves the values from different columns and stores
them in separate variables. Finally, it combines the variables into a list and
converts the list into a NumPy array (TC_citations). The resulting array contains
the extracted values from the DataFrame columns.

• The two last lines extract the unique values from the variables T_titles (representing
the "Title" column values) and TC_citations (representing the "cit_" column values)
by converting them into lists and applying the np.unique() function. The resulting
unique values are stored in the variables unique_T_titles and unique_TC_citations,
respectively.

92



Figure :4.13 Final format of TC_citations

Citation sub-model construction

1

2 embedding_dimension = 320
3 cit_model = tf.keras.Sequential([
4 tf.keras.layers.StringLookup(
5 vocabulary=unique_TC_citations , mask_token=None),
6 tf.keras.layers.Embedding(len(unique_TC_citations) + 1, embedding_dimension),
7 tf.keras.layers.Reshape((-1, embedding_dimension)),
8 tf.keras.layers.GRU(64),
9 tf.keras.layers.Dense(320, activation=’relu’), # Additional dense layer
10 tf.keras.layers.Dense(320, activation=’relu’), # Additional dense layer
11 ])

The explanation of code is:

• StringLookup Layer:This layer is responsible for mapping unique_TC _citations
vocabulary . It takes each citation string as input and converts it into an integer
index.

• Embedding Layer:This layer maps the integer indices to dense vectors of size
embedding_dimension (320 in this case). It learns the representation of each
citation based on the provided vocabulary.

• Reshape Layer :This layer reshapes the output of the embedding layer from a 3D
tensor to a 2D tensor. The resulting shape will be (-1, embedding_dimension),
where -1 represents the batch size and embedding_dimension is the size of each
citation embedding.

• GRU Layer: This layer implements a Gated Recurrent Unit (GRU) with 64 units.
The GRU processes the sequence of citation embeddings and captures temporal
dependencies.
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• Dense Layer:Citation sub model consists of two Dense layers (line 9 line 10).These
layers has 320 units and uses the ReLU activation function. It adds an additional
non-linear transformation to the GRU output.

Paper sub-model construction

1 embedding_dimension = 320
2 paper_model = tf.keras.Sequential([
3 tf.keras.layers.StringLookup(
4 vocabulary=unique_T_titles , mask_token=None),
5 tf.keras.layers.Embedding(len(unique_T_titles) + 1, embedding_dimension),
6 tf.keras.layers.Reshape((-1, embedding_dimension)),
7 tf.keras.layers.GRU(64),
8 tf.keras.layers.Dense(320, activation=’relu’), # Additional dense layer
9 tf.keras.layers.Dense(320, activation=’relu’), # Additional dense layer
10 ])

The explanation of code is:

• StringLookup Layer:This layer is responsible for mapping unique_T_titles vocab-
ulary . It takes each title string as input and converts it into an integer index.

• Embedding Layer:This layer maps the integer indices to dense vectors of size
embedding_dimension (320 in this case). It learns the representation of each title
based on the provided vocabulary.

• Reshape Layer :This layer reshapes the output of the embedding layer from a 3D
tensor to a 2D tensor. The resulting shape will be (-1, embedding_dimension),
where -1 represents the batch size and embedding_dimension is the size of each
title embedding.

• GRU Layer: This layer implements a Gated Recurrent Unit (GRU) with 64 units.
The GRU processes the sequence of title embeddings and captures temporal
dependencies.

• Dense Layer:Paper sub model consists of Dense layers (line 9 line 10)These
layers has 320 units and uses the ReLU activation function. It adds an additional
non-linear transformation to the GRU output.
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BERT model Incorporation

1 from transformers import TFBertModel
2 from typing import Dict, Text
3

4 bert_model = TFBertModel.from_pretrained(’bert-base-uncased’)
5

6 class paperModel(tfrs.Model):
7 def __init__(self, cit_model , paper_model):
8 super().__init__()
9 self.paper_model: tf.keras.Model = paper_model
10 self.cit_model: tf.keras.Model = cit_model
11 self.bert_model: tf.keras.Model = bert_model
12 self.task: tf.keras.layers.Layer = task
13 def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:
14 cit_embeddings = self.cit_model(features["cit_0"])
15 positive_paper_embeddings = self.paper_model(features["Title"])
16 return self.task(cit_embeddings , positive_paper_embeddings)

The explanation of code is:

• The first line imports the TFBertModel class from the Transformers library. It
allows you to use the pre-trained BERT model for natural language processing
tasks. Then it initializes a BERT model using the pre-trained ’bert-base-uncased’
model. Then we import the Dict and Text types from the typing module. These
types are used to specify the input features and labels in the subsequent code.

• Then we define a custom model class called paperModel, which extends the
tfrs.Model class provided by TensorFlow Recommenders. It encapsulates the logic
and structure of the recommendation model. Then it is initialized by taking two
parameters: cit_model and paper_model, which represent the citation model and
the paper model, respectively. Then we set the paper_model as an attribute of the
paperModel class. After we set the bert_model as an attribute of the paperModel
class. Then we set the task as an attribute of the paperModel class. The next is to
define the compute_loss method in the paperModel class. After we retrieves the
embeddings of the citation features by passing the "cit_0" feature from the input
features dictionary and the "Title" feature from the input features dictionary through
the paper_model.

• Finally, we calculate and return the loss. It compares the citation embeddings with
the positive paper embeddings to compute the loss.
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In summary, the code defines a custom paperModel class that combines a citation
model (cit_model), a paper model (paper_model), and a BERT model (bert_model).

The model computes the loss by passing the citation and paper features through the
respective models and comparing them using a retrieval task. The compute_loss method
encapsulates this computation.

1 class NoBaseClasspaperModel(tf.keras.Model):
2 def __init__(self, cit_model , paper_model , task):
3 super(NoBaseClasspaperModel , self).__init__()
4 self.cit_model = cit_model
5 self.paper_model = paper_model
6 self.bert_model: tf.keras.Model = bert_model
7 self.task = task
8 def call(self, features: Dict[Text, tf.Tensor]) -> tf.Tensor:
9 cit_embeddings = self.dropout_cit(self.cit_model(features["cit_0"]))
10 positive_paper_embeddings = self.dropout_paper(self.paper_model(features["Title"]))
11 return self.task(cit_embeddings , positive_paper_embeddings)
12

13 def train_step(self, features: Dict[Text, tf.Tensor]) -> Dict[Text, tf.Tensor]:
14 with tf.GradientTape() as tape:
15 predictions = self.call(features)
16 loss = self.task.loss_fn(features, predictions) # Assuming a custom loss

function in the task
17 regularization_loss = tf.reduce_sum(self.losses)
18 total_loss = loss + regularization_loss
19

20 gradients = tape.gradient(total_loss , self.trainable_variables)
21 self.optimizer.apply_gradients(zip(gradients , self.trainable_variables))
22

23 metrics = {"loss": loss, "regularization_loss": regularization_loss , "total_loss":
total_loss}

24 for metric in self.metrics:
25 metric.update_state(loss)
26 metrics[metric.name] = metric.result()
27

28 return metrics
29

30 def test_step(self, features: Dict[Text, tf.Tensor]) -> Dict[Text, tf.Tensor]:
31 predictions = self.call(features)
32 loss = self.task.loss_fn(features, predictions) # Assuming a custom loss function

in the task
33 regularization_loss = tf.reduce_sum(self.losses)
34 total_loss = loss + regularization_loss
35

36 metrics = {"loss": loss, "regularization_loss": regularization_loss , "total_loss":
total_loss}

37 for metric in self.metrics:
38 metric.update_state(loss)
39 metrics[metric.name] = metric.result()
40

41 return metrics

The explanation of code is :

• The __init__ method initializes the NoBaseClasspaperModel class by assigning
the provided cit_model, paper_model, bert_model, and task to respective instance
variables. These variables can then be utilized within other methods of the class.
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• The call method defines the forward pass of the NoBaseClasspaperModel class.
It applies dropout layers to the embeddings obtained from the citation and paper
models, and then passes these embeddings to the retrieval task. The method returns
the output tensor computed by the retrieval task.

• The train_step method defines a single training step for the NoBaseClasspaperModel
class. It computes predictions, loss, regularization loss, and gradients, applies the
gradients to update the trainable variables, and computes and returns the metrics
for the training step.

• The test_step method defines a single testing step for the NoBaseClasspaperModel
class. It computes predictions, loss, regularization loss, and the total loss. It
also updates the metrics’ states and returns a dictionary containing the computed
metrics for the testing step.

1 model = paperModel(cit_model , paper_model)
2 model.compile(optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.003))
3

4 cached_train = train.shuffle(500).batch(500).cache()
5 cached_test = test.batch(100).cache()
6

7 history=model.fit(cached_train , epochs=10)

The explanation of the code above is :

• It creates an instance of the paperModel class and assigns it to the variable model.
The paperModel class is defined earlier in the code, and it takes two arguments:
cit_model and paper_model.Then it configures the model for training by specifying
the optimizer to be used.
In this case, the RMSprop optimizer is used with a learning rate of 0.003. The
compile method prepares the model for training by setting the loss function,
optimizer, and any additional metrics.

• It takes the train dataset and performs three operations on it:

– It shuffles the examples in the dataset with a buffer size of 500, which means it
randomly rearranges the examples.

– It groups the examples into batches, with each batch containing 500 examples.
This is done to facilitate more efficient processing during training.
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– It caches the dataset in memory, which means the dataset will be stored in
memory for faster access during training.

• It takes the test dataset and performs two operations on it:

– It groups the examples in the dataset into batches, with each batch containing
100 examples.

– It caches the dataset in memory.

• Finally, the training dataset, using cached_train that we created earlier and
epochs=37. In this case, the model will be trained for Thirty-Seven epochs,
meaning it will go through the entire training dataset 37 times.

In summary:
The first two lines of code create an instance of the paperModel class and configure it

for training using the RMSprop optimizer with a learning rate of 0.003.
The second two lines of code create cached versions of the training and test datasets,
with the training dataset being shuffled, batched, and cached, and the test dataset being
batched and cached. Caching the datasets in memory improves training performance by
reducing the time required to load and preprocess the data for each training iteration.
By running this code, the model will be trained on the cached training dataset for 37
epochs, and the history object will store the training metrics that can be used for analysis
and evaluation.

4.6.3 Model evaluation and Reporting Results

After training our model, we get to the crucial step of model evaluation. This step
involves assessing the performance and effectiveness of the trained model. Through

a rigorous evaluation process, we analyze the model’s predictive capabilities, assess its
accuracy and other relevant metrics. By examining the model’s performance on test
data, we gain valuable insights into its strengths, limitations, and overall effectiveness.
The results and findings obtained is summarized in the table below:
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Tableau :4.4 Results of training model

Epochs Top 1 Top 5 Top 10 Top 50 Top 100 Loss
1 0.0000e+00 2.0000e-04 3.0000e-04 0.0012 0.0030 3107.3367
2 0.0050 0.0065 0.0068 0.0087 0.0118 3104.1413
3 4.0000e-04 0.0018 0.0029 0.0090 0.0159 3025.4610
4 0.0283 0.0343 0.0369 0.0526 0.0641 2802.5468
5 0.0556 0.0637 0.0703 0.0973 0.1166 2705.2627
6 0.0971 0.1074 0.1126 0.1294 0.1429 2618.6160
7 0.1170 0.1286 0.1345 0.1608 0.1792 2499.2172
8 0.1032 0.1165 0.1238 0.1539 0.1835 2356.1027
9 0.1511 0.1812 0.1957 0.2483 0.2837 2236.4857
10 0.1769 0.2055 0.2209 0.2747 0.3170 2176.7205
11 0.1887 0.2167 0.2306 0.2911 0.3390 2057.6299
12 0.1944 0.2226 0.2367 0.3033 0.3547 2041.7897
13 0.1786 0.2070 0.2223 0.3000 0.3684 1925.7477
14 0.2019 0.2304 0.2504 0.3360 0.4135 1939.2665
15 0.1985 0.2310 0.2521 0.3457 0.4394 1854.8943
16 0.2191 0.2537 0.2728 0.3733 0.4680 1803.3240
17 0.1473 0.2010 0.2242 0.3294 0.4295 1802.8569
-- -- -- -- -- -- --
32 0.2646 0.3254 0.3708 0.6219 0.7311 1288.2220
33 0.2859 0.3446 0.3939 0.6527 0.7600 1265.0565
34 0.2814 0.3492 0.4053 0.6724 0.7633 1261.7922
35 0.2351 0.3214 0.3881 0.6733 0.7489 1204.0600
36 0.2379 0.3327 0.4029 0.6728 0.7492 1172.7148
37 0.2213 0.3142 0.3874 0.6659 0.7331 1167.6898

4.6.4 Presentation of Experimental Findings

In this subsection, we present the experimental findings of our study. The goal of our
experiments was to evaluate the performance and effectiveness of our proposed model

in the context of citation recommendation. We conducted a series of experiments using
the trained model and the CiteULike-a dataset to assess its performance and provide
insights into its capabilities.

Accuracy

1 import matplotlib.pyplot as plt
2 plt.plot(history.history[’factorized_top_k/top_1_categorical_accuracy’])
3 plt.plot(history.history[’factorized_top_k/top_5_categorical_accuracy’])
4 plt.plot(history.history[’factorized_top_k/top_10_categorical_accuracy’])
5 plt.plot(history.history[’factorized_top_k/top_50_categorical_accuracy’])
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6 plt.plot(history.history[’factorized_top_k/top_100_categorical_accuracy’])
7 plt.title(’model accuracy’)
8 plt.ylabel(’accuracy’)
9 plt.xlabel(’epochs’)
10 plt.legend([’Top_1’, ’Top_5’,’Top_10’,’Top_50’,’Top_100’], loc=’lower right’)
11 plt.show()

The results of executing this code is:

Figure :4.14 Performance of the Proposed Model Over Training Iterations

The figure 4.14 illustrates the accuracy of the model as a function of epochs,
considering different values of k for the top relevant papers. It demonstrates the

performance of the system in recommending highly relevant papers based on the trained
model. The accuracy metric provides insights into the effectiveness of the ranking
algorithm and its ability to retrieve top-k papers that align with user preferences and
query relevance.

Loss

1 import matplotlib.pyplot as plt
2 # summarize history for accuracy
3 plt.title(’model loss’)
4 plt.ylabel(’Lossy’)
5 plt.xlabel(’epochs’)
6 plt.legend([’Loss’], loc=’lower right’)
7 plt.show

This code generates a line plot showing the values of the regularization loss and
overall loss over the course of training a model. The plot helps visualize the progres-

sion of the losses and can provide insights into the model’s performance and convergence.
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Figure :4.15 Training Loss over Epochs

The generated plot 4.15 illustrates the reduction of loss over time during the training
process of our model. The horizontal axis represents the number of epochs, which

refers to the number of times the model has iterated through the entire training dataset.
The vertical axis represents the loss, which is a measure of the deviation between the
predicted values and the actual values.

As the plot shows, the loss gradually decreases as the number of epochs in-
creases. This indicates that the model is learning and making more accurate predictions
over time. The decreasing trend of the loss indicates that the model is becoming more
proficient at capturing patterns and relationships within the data.

Visualize results using TensorBoard

In the field of machine learning, assessing and enhancing the performance of models
often requires the ability to quantify their progress. TensorBoard serves as a valu-

able instrument for obtaining the necessary measurements and visual representations
throughout the machine learning process. It facilitates the monitoring of key metrics
such as loss and accuracy, offers insights into the structure of the model through graph
visualizations, allows for embedding projections into lower-dimensional spaces, and
provides numerous additional functionalities to aid in analysis and improvement.

1 log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
2 tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
3
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4 load_ext tensorboard
5 tensorboard --logdir logs/fit

Explanation of the code above is:

• In the first line we created a log directory path by concatenating the "logs/fit/" string
with the current date and time in the format of "YYYYMMDD-HHMMSS". This
ensures that each run of the training process has a unique log directory.

• The second line initializes a TensorBoard callback using the tf.keras.callbacks.
TensorBoard class. It takes the log_dir parameter, which specifies the directory
where the logged data will be stored. Additionally, histogram_freq=1 indicates that
histograms should be computed and logged for each epoch during training.

• load_ext tensorboad permits to load the TensorBoard extension, allowing to use
the tensorboard magic command to launch and display TensorBoard within the
notebook interface.

• In the last line we started TensorBoard and display the visualizations within the
notebook interface which allows to explore and analyze the logged data.

Plot Accuracy for each top K, Loss , BERT histogram and GRU using TensorBoard:
Accuracy for each top K

Figure :4.16 Model performance for each top K over Training epochs
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Loss

Figure :4.17 Training Loss over Epochs

BERT

Figure :4.18 Bert performance

• First plot(Left side): The histogram of the values of the "beta_0" parameter in the
Layer Normalization operation applied to the output of the attention mechanism in
the first layer of the BERT model.
The "beta_0" parameter is part of the Layer Normalization operation and represents
the learned bias term. It is added to the normalized outputs to shift and scale the
values, providing flexibility to the model to adapt the activations according to the
task requirements

• Second plot (Middle):The histogram of the values of the "bias_0" parameter in
the key component of the self-attention mechanism in the first layer of a BERT
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model.The self-attention mechanism allows the model to attend to different words
or positions within an input sequence. It consists of three components: key, query,
and value. Each component has its associated weights and biases. The "key"
component is responsible for providing the key vectors that help determine the
relevance of different positions in the input sequence.
The "bias_0" parameter specifically refers to a bias term associated with the key
component in the self-attention mechanism of the first layer. Bias terms are added
to introduce additional flexibility to the model’s computations. The bias term in
this context affects the calculations performed on the key vectors during the self-
attention operation.

• Third plot (Right side): The histogram of the values of the "gamma_0" parameter in
the Layer Normalization operation applied to the embeddings of a BERT model.the
embeddings layer is responsible for converting input tokens into continuous vector
representations that capture semantic meaning.
These embeddings are further processed and transformed by subsequent layers in
the model to perform various natural language processing tasks.
"gamma_0" specifically refers to the scaling parameter associated with the Layer
Normalization operation applied to the embeddings layer. The "gamma_0" param-
eter is used to scale the normalized embeddings, allowing the model to control the
importance or magnitude of the normalized values.

GRU(Gated Recurrent Unit)

Figure :4.19 GRU layer performance

• First plot(Left side):In a GRU, there are different cells that make up the network.
Each cell has various parameters, including biases, which are learnable weights that
allow the network to adjust its behavior during training. These biases associated
with the 64st GRU cell in the network help the GRU model to capture and process the
input data effectively.The histogram of this bias parameter shows the distribution of
its values. It provides insights into how the values of the bias parameter are spread
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across different ranges. Analyzing the histogram can help understand the impact of
the bias on the GRU cell’s activation and influence on the overall behavior of the
neural network.

• Second plot(Middle): Represents The histogram of the weight matrix associated
with the 64st GRU cell in the network. It is denoted as "kernel_0" .The histogram
of this weight parameter shows the distribution of its values. It provides insights
into how the weight values are spread across different ranges and can give an
understanding of the importance and impact of each weight on the GRU cell’s
computation.

• Third plot(Right):Represents the histogram the of weight matrix associated with
the recurrent connection of the 64st GRU cell in the network. It is denoted as
"recurrent_kernel_0" .It provides information about the distribution of weight val-
ues.By examining this distribution, we can gain insights into the range of values
and understand the significance of each weight in influencing the computation of
the GRU cell.

Figures(4.16,4.17,4.18,4.19) demonstrates and proves to us that our proposed model
PaperRec-BERTGRU has good performance,as a result of leveraging strengths in both

the BERT and GRU architecture.In other word, our context-aware citation recommen-
dation model,PaperRec-BERTGRU that relies on the retrieval framework has benefited
from BERT’s contextual understanding and the sequential modeling capabilities of GRU
to capture the context of the paper and effectively recommend citations that align with
the papers content thus earn correct predictions and perform better. In summary , BERT
and GRU integration enhances the model’s ability to understand and represent the se-
mantic meaning of paper and citations. Thus, PaperRec-BERTGRU offers a strong
solution to the context-aware citation recommendation, demonstrating its effectiveness
in enhancing the search process.

4.6.5 Analysis and Interpretation of Results

To assess the effectiveness of our information retrieval approach,we employed a
range of evaluation metrics,with the accuracy score being the primary measure

of performance.The accuracy score represents the percentage of correctly retrieved
relevant papers out of the total number of relevant papers in the dataset.
Our experiments revealed that the accuracy score varied depending on the number of
top relevant papers considered in the retrieval process.By analyzing the results, we
observed interesting trends and patterns.
When considering a smaller number of top relevant papers (e.g., k=5), the accuracy
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score tended to be relatively low.This suggests that the retrieval system successfully
identified and ranked the most relevant papers among the retrieved set.However, as the
number of top relevant papers increased (e.g., k=10, 50),the accuracy score exhibited a
gradual increase.
This decrease in accuracy can be attributed to various factors.As more papers are
considered in the retrieval process,the system encounters a higher number of potentially
relevant but less closely related papers.This introduces a greater possibility of including
false positives in the retrieved set, resulting in a lower accuracy score.

4.6.6 Addressing Research Questions and Hypotheses

In this part, we aim to address the research questions and hypotheses that were
formulated in the earlier sections. The primary objective of our study is to investigate

the impact of information retrieval techniques on the performance of our proposed model.
We have designed a series of experiments to evaluate the effectiveness of different
retrieval methods in retrieving relevant papers from large scholarly databases. By
analyzing the results, we can determine whether our model achieves a good accuracy and
improved performance when incorporating advanced information retrieval techniques.
Furthermore, we will assess the impact of various parameters, such as the number of
top relevant papers considered and the choice of similarity measures, on the overall
performance of the model. Through a rigorous analysis of the experimental findings,
we aim to gain insights into the effectiveness and limitations of our approach, ultimately
contributing to the advancement of knowledge in the field of information retrieval for
scholarly papers.

4.7 Limitations and Challenges

While our system demonstrates promising results and contributes to the field of
citation recommendation, it is important to acknowledge its limitations and the

challenges we encountered during its development.

4.7.1 Data Limitations

The data used in this study is sourced from CiteULike, a well-known scholarly article
recommendation system. While CiteULike offers valuable data for research purposes,

it is important to acknowledge certain limitations associated with the dataset. These
limitations include:
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• Limited Coverage: CiteULike’s dataset covers a specific range of academic disci-
plines and research domains. Consequently, the findings of this study may not be
representative of other fields or areas of study that are not well-represented in the
CiteULike-a dataset.

• Limited Data Size: The size of the dataset used in this study is relatively not
large, with approximately 16,000 samples. While this provides a foundation for
analysis, it is important to consider that a larger dataset may provide more robust
and comprehensive results.

4.7.2 Challenges in Model Implementation and Execution

• Computational Resources: The successful execution of the recommendation sys-
tem models often relies on adequate computational resources, including processing
power, memory, and storage. Large-scale training and inference processes can be
computationally intensive, requiring sufficient resources to achieve reasonable per-
formance and response times.

• Real-time Recommendations: Deploying the recommendation system to provide
real-time recommendations introduces additional challenges. Efficiently processing
incoming queries, retrieving relevant papers, and generating timely recommenda-
tions require low-latency and scalable solutions. Ensuring the system can handle
a high volume of concurrent requests and maintain responsiveness is critical in
real-world scenarios.
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4.8 Conclusion

In this chapter, we presented the implementation details of our citation recommenda-
tion system. We discussed the dataset used for training and evaluation, the selection

of models, and the experimental results obtained. The results demonstrated the effec-
tiveness of our system in providing relevant and accurate citation recommendations to
users.
Through the implementation process, we have developed a robust system that leverages
retrieval models and deep learning techniques to generate meaningful recommendations.
The integration of various components, such as the retrieval model for candidate selec-
tion, the ranking model for relevance scoring, has contributed to the overall performance
and effectiveness of the system.
Our implemented citation recommendation system demonstrates promising results in
providing accurate relevant recommendations. The system’s performance can be further
improved by exploring advanced techniques, optimizing computational resources, and
incorporating user feedback. By addressing these areas of future work, we can continue
to enhance the system.
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CONCLUSION

In the recent few years, there has been a remarkable increase in the quantity of scholarly
publications, reflecting the expanding scope of research. As a result, researchers face

an increasingly challenging and time-consuming task of staying abreast of past and
current findings in their respective research areas.

To address these challenges, various approaches to paper recommendation have been
proposed, as discussed in Chapter 1. However, recommending a specific number of
papers from a vast collection of thousands poses a significant challenge. To tackle this
issue, we developed our own recommendation model PaperRec-BERTGRU utilizing
the BERT model and Gated reccurent unit(GRU) and information retrieval techniques.

Our recommender system employs an innovative and intelligent mechanism to
improve recommendations and deliver scientific papers that are highly tailored to users’
specific requirements. The system utilizes a content-based filtering technique, which
compares the similarity between users’ papers and the content of papers present in the
dataset.

This system is particularly beneficial for PhD students and novice researchers, as it
facilitates the discovery of the most relevant papers in their respective fields of study.

The system encompasses four primary components: Query Modelling Module,
Retrieval Module, Ranking Module, and Database Module.
Python programming language and various libraries were employed in the development
of our system. This system holds considerable significance for researchers seeking to
save time when referencing pertinent papers for their research endeavors.
The most significant limitation of the current system is its failure to consider the user
profile in the recommendation mechanism. In this case, the system lacks information
about user preferences, resulting in the inability to provide relevant recommendations.
Additionally, the system does not fully utilize the benefits of the collaborative-based
filtering approach. To address these limitations, we plan to upgrade the system by
incorporating advanced deep learning and natural language processing techniques.
Our project experience provided us with a valuable chance to apply the knowledge
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we gained during our university studies and enhance our understanding of artificial
intelligence techniques. It also allowed us to explore the functioning of recommender
systems, along with their benefits and the challenges they pose. However, it is important
to acknowledge that there is room for improvement in the resulting system, as indicated
by the mentioned perspectives and measures.
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