
Tþyb`þþþþþþþK�� TþyV�rqþþþþþþþþþm§d�� Tþ§r¶�zþþþþþþþþþ��� Tþþþþ§Cwþhþmþþþþþþþþþ���

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA
¨þmlþþþþþþþ`�� ��þþþþþþþþb�� ¤ ¨�Aþþþþþþþþ`�� �þyl`þþþþþþþþþþþþt�� C�E¤

Ministry of Higher Education and Scientific Research
Tþþþþþ§� rþþ� T`�Aþþþþþþþþ�

University of Ghardaia
Aþy�wþ�wnkt�� ¤ �wþþl`�� Tþyl�

Faculty of Science and Technology
¨�µ� �®�³� ¤ �AyRA§r�� �s�

Department of Mathematics and Computer Science

MEMOIR

Presented for the degree of Master

In: Computer Science Specialty: Intelligence System for Knowledge Extraction

By: MOUAD Chenini and ABDERRAHMANE Sebgag

Theme

TREE KERNEL COMPUTATION
BASED ON BINARIZATION

Jury members

M. Adjila Abderrahmane MAA Univ. Ghardaia Examiner
M. Bellouar Slimane Doctor Univ. Ghardaia Supervisor
M. Djelloul Ziadi Professeur Univ. Rouen France Supervisor
M. Ouled naoui Slimane Doctor Univ. Ghardaia President
M. Kerrache Chaker Abdelaziz Doctor Univ. Ghardaia Examiner

College year 2017/2018

“ هنعهللايضربلاطيبأنبيلع ”

– عستيهنإفملعلاءاعولاإهيفلعجامبقيضيءانإلك

Abstract

Machine learning use intelligent methods of data analysis from massive collections and un-
der the pressure of applications, we are confronted with problems in which the data structure
carries essential information. Linear methods of data analysis and learning were among the
first to be developed. They have also been intensively studied, in particular many applications
are data that can be represented in structured form (sequences, trees, graphs,. . .).
The kernel methods make it possible to find nonlinear decision functions. However, the advent
of kernel methods has lead to research renewal as these methods are generic and can be applied
to a wide variety of domains when we are able to conceive a kernel function.
Tree kernel has been proposed for applications to machine learning in natural language pro-
cessing or for the calculation of XML documents similarity. Our aim is to investigate the tree
kernels proposed by (Moschitti, 2006a) and his algorithm for the evaluation of ST and SST

kernels and to study the effect of these kernels on the similarity between the two analysed
trees, We evaluated the impact of tree kernels in k-ary tree and its equivalent binary tree.
We carried out a comparative study between tree kernel in k-ary tree and binary tree equiva-
lent to it. the Comparison included similarity and running time. We concluded that proposed
method perfect than Knuth method in some cases.

Key words :

Tree binarization, Kernel methods, tree kernel, subtree kernel, subset tree kernel, binarization.

Résumé

Tout d’abord l’apprentissage automatique exploite les méthodes intelligentes d’analyse de don-
nées à partir d’une grande collection. De même que les méthodes habituelles sont des méthodes
linéaires. En outre divers applications possède des données qui peuvent être illustré sous forme
structurée (séquences, arbres, graphes,. . .).
Les méthodes à noyaux permettent de trouver des fonctions de décision non linéaires. Cepen-
dant, l’avènement des méthodes à noyaux a conduit à un renouvellement des recherches dans
la mesure où ces méthodes sont génériques et peuvent sappliquer à une grande variété de do-
maines lors que lon est capable de concevoir une fonction noyau.
Les noyaux d’arbres ont été proposés pour des applications à l’apprentissage automatique en
langue naturelle ou pour le calcul de la similarité des documents XML.
Notre objectif est d’étudier les noyaux d’arbres proposés par (Moschitti, 2006a) et son algo-
rithme pour l’évaluation des noyaux ST et SST et pour étudier l’éffet de ces noyaux sur la
similitude entre deux arbres, nous avons évalué l’impact de noyaux d’arbres dans l’arbre n-aire
et son arbre binaire équivalent.
Nous avons réalisé une étude comparative entre un noyau d’arbre dans un arbre n-aire et un
arbre binaire équivalent. La comparaison incluait la similarité et le temps d’exécution. Nous
avons conclu que la méthode de binarisation proposée parfaite que la méthode de knuth dans
certains cas.

Mot clé :

Noyaus d’arbres, subtree, subset tree, arbre binaire, binarisation des arbres.

P�l�

X�R ��¤ Tm�R �A�wm�� �� �A�Ayb�� �yl�t� Ty�Ð 	y�AF� ¨�µ� �l`t�� �d�ts§

.TyFAF±�¤ Tmhm�� �A�wl`m�� ��Ð �A�Ayb�� Tlky¡ ¨� ��AK� ¢��w� ���¤ , �AqybWt�� ��

�� ¨t�� �rW�� �¤� �y� �� TyW��� �A�Ayb�� ��A`� ¤ �l�� ¨t�� ¨�µ� �l`t��� �rW�

¢�� ¯� ,T�Ws� ��dnts� ��A`� A� ¾Ab�A� ¨¡w, Tf�k� TF�C AhtF�C �� Am� .A¡r§wW�

.(...,�AWW�� CA�J� �F®F) 	�r� �kJ Yl� Ahly�m� �km§ �A�Ayb�� �� d§d`�� d�� Aylm�

.HF�¤ �An¡rb� Yl� zk�r� Tb�rm�� �A�Ayb�� �� �wn�� �@¡ ��A`t� T§w�±� �rhZ dq�

Yl� AhqybW� �km§¤ T�A� 	y�AF±� £@¡ ± ��b�� d§d�� Y�� �wn�� 	y�AF� � � d�¤

.�wn�� TfyZ¤ CwO� Yl� �§C A� wk� A�dn� �¯A�m�� �� T`F�¤ T�wm��

�� (Moschitti, 2006a) TWF�w� T�rtqm�� (Tree kernel) r�K�� �w� TF�C w¡ An�d¡

As� Yl� «wn�� £@¡ ry��� TF�C ¤ SST ¤ ST �w� ��dhtFA� Anm� Cw\nm�� �@¡ ��

�wn��
As� �§w�t� Ty�EC�w� An�rt�� �y� ,Ahlyl�� �t§ ¨t�� �y�r�J �y� ¢�AKt��

T\�A�m�� y� �� �§w�t�� �@¡ P¶AO� TF�C ¤ ,Ty¶An� r�J Y�� T�A� r�J ��

r�J ¨� CA�J±� �w� �y� T�CAq� An§r�� ¢yl� �O�tm�� T�AKt�� T�yt� ¤ Tynb�� Yl�

�¤ ¤ ¢�AKt�� T�CAqm�� nmS� .Ah� T·�Akm�� (Binary tree) Ty¶An��� r�K��¤ (k − ary)

�S�� Ty¶An� r�J Y�� T�A� r�J �� �§w�tl� Any�EC�w� � An�tntF� dq� . �y�Kt��

�¯A��� {`� ¨� Knuth � �§w�t�� Ty�EC�w� ��

Ty�Atf� �Aml�

Ty�rf�� r�K�� �w� ,�wn�� �rV ,Ty¶An��� r�K�� ,CA�J±� «w�

Dedicated
To

My Mother

A 	s��t�r�o�n�g �a�n�d� �g�e�n�t�l�e 	s��o�u�l �w�h�o �t�a�u�gh�t �m�e �t�r�u	s��t �i�n� A�l�l�a�h�, �b�e�l�i�e�v�e �i�n�
�h�a�r�d� �w�o�r�k� �a�n�d� �th�a�t 	s��o �m�u�ch� �c�o�u�l�d� �b�e �d�o�n�e �w�i�th� �l�i�t�t�l�e.

My Father

F�o�r� �e�a�r�n�i�n�g �a�n� �h�o�n�e
s��t �l�i�v�i�n�g �f�o�r� �u	s �a�n�d� �f�o�r� 	s��u	p	p�o�r�t�i�n�g �a�n�d�
�e�n�c�o�u�r�a�g�i�n�g �m�e �t�o �b�e�l�i�e�v�e �i�n� �m�y
s��e�l�f.

My Sisters and Brothers

Th�e �g�r�e�a�t�e
s��t �g�i�f�t �m�y 	p�a�r�e�n�t
s �h�a�v�e �g�i�v�e �m�e, �w�h�o �t�a�u�gh�t �m�e �th�e
	p�o�w�e�r�f�u�l �o�f �h�o�p�e, I �a�m� 	p�r�o�u�d� �t�o �b�e �y�o�u�r� �b�r�o�th�e�r�

My Uncle

F�o�r� �b�e�i�n�g �m�y 	p�r�o�f�e
s�	s��o�r� �d�u�r�i�n�g �m�y �e�d�u�c�a�t�i�o�n�a�l �c�a�r�e�e�r�
My Colleagues

Th�a�n�k� �a�l�l �o�f �m�y �c�o�l�l�e�a�g�u�e
s �o�f �th�e C�o�m	p�u�t�e�r� S�c�i�e�n�c�e D�e
p�a�r�t�m�e�n�t,
�u�n�i�v�e�r	s��i�t�y �o�f Gh�a�r�d�a�i�a� �f�o�r� �th�e�i�r� �h�e�l
p	s.

My Friends

Y�a�k�o�u�b, A�b�d�e�lh�a�k�, A�b�d�e�n�n�o�u�r�, A�b�d�e�l�a�l�l�a�h�, N�a�d	j�e�t, Kh�a�o�u�l�a�, I �d�o�n�'�t
�n�e�e�d� �w�o�r�d� �o�r� �e�x
p�r�e
s�	s, �i� �d�o�n�'�t �n�e�e�d� �t�o �a	s��k� �f�o�r� �a� 	s��m�i�l�e, �o�r� �a� �h�a�n�d� �t�o

�h�o�l�d� �m�e A�l�l I �n�e�e�d� �i	s �t�o �b�e �y�o�u�r� �f�r�i�e�n�d�, �f�o�r�e�v�e�r!
sincerely

Abderrahmane.

D
ra
ft

It is with our deepest gratitude and warmest
affection that we dedicate this thesis

To my tender Mother Fatima: You represent for me
the source of tenderness and the example of dedica-
tion that has not ceased to encourage me. You have
done more than a mother can do to make her children
follow the right path in their lives and their studies.

To my dear Father Lakhdar: No dedication can express
the love, esteem, dedication and respect I always have
for you. Nothing in the world is worth the effort pro-
vided day and night for my education and my well be-
ing. This work and the fruit of your sacrifices that you
made for my education and training along these years.

To my dear brothers: Nabil,
Soufiane, Mohamed and Moussa.

To my sisters: Abir, Serine, Aicha and Zahira.
To my dearest friends: Walid and Yacine.

To our Professor Prof. Ziadi Djelloul
who has been a constant source
of Knowledge and inspiration.

To all members of my promotion.
To all my teachers since my first years of studies.

To all those who feel dear to me
and whom I have failed to mention.

Mouad Chenini

Acknowledgement

“words fly away, writings remain”

In the name of "ALLAH", The most beneficent and merciful who gave as strength and
knowledge to complete this thesis.

First of all, we would like to express our deepest sense of Gratitude to our supervisors
Professor Ziadi Djelloul and Doctor Bellaouar Slimane who offered their continuous advice
and encouragement throughout the course of this thesis. We thank them for the systematic
guidance and great effort they put into training us in the scientific field. Like a charm!

We are deeply grateful to all members of the jury for agreeing to read the manuscript and
to participate in the defense of this thesis.

We thank all the teachers they taught us in the five past years for the vast amount of
information.

For all those who participated in the development of this work.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivations . 2
1.3 Organization . 3

2 Preliminaries 4
2.1 Structured data . 4
2.2 Sequences . 5
2.3 Trees . 5

2.3.1 Graphs . 5
2.3.2 Tree . 6
2.3.3 Subtrees . 7

2.4 Kernels . 8
2.5 Convolution kernels . 10
2.6 Kernel methods . 11
2.7 Properties of kernels . 12
2.8 Example of kernel . 13

3 Related Work 14
3.1 Subtree kernel . 15
3.2 SubSet tree kernel . 16
3.3 Fast Tree Kernel . 19
3.4 Conclusion . 22

4 From k-ary Tree To Binary Tree 23
4.1 Knuth Binarization . 24
4.2 Proposed technique of binarization . 25
4.3 The binary tree kernel function . 28
4.4 Experiments and discussion . 29
4.5 Conclusion . 35

5 Conclusion 36

List of Figures

2.1 Example of directed graph . 6
2.2 Example of undirected graph . 6
2.3 Example of a tree T . 7
2.4 a subtree of tree T . 7
2.5 A syntactic parse tree with some of its subtrees. 8
2.6 A tree with some of its subset trees (SST s). 9
2.7 The stages of the application of kernel methods.(Shawe-Taylor and Cristianini,

2004) . 11

3.1 example of tree t . 16
3.2 Tree t1 . 22
3.3 Tree t2 . 22

4.1 Connect all the child nodes at the same level for the same parent. 24
4.2 Preserve only the link from parent to the leftmost child and the first child to its

sibling . 24
4.3 the equivalente binary tree of tree shown in Figure 3.2 25
4.4 the equivalent binary tree to tree shown in 3.2 with the proposed method . . . 27
4.5 Running time of SST kernel in different sizes runs on k-ary tree structure 30
4.6 Average time in millis seconds for the ST and SST evaluations 31
4.7 Average time in millis seconds for the ST and SST evaluations 31
4.8 Average time in millis seconds for the ST and SST evaluations 32
4.9 Similarity obtained for ST and SST kernel according to large alphabet (1024)

and different sizes of trees. 32
4.10 Similarity obtained for ST and SST kernel according to short alphabet size (32)

and different sizes of trees . 33
4.11 Similarity obtained for ST and SST kernel according to very short alphabet (2)

and different sizes of trees. 33
4.12 Ratio of similarity obtained for ST and SST kernel according to large alphabet

size (1024) . 34
4.13 Ratio of similarity obtained for ST and SST kernel according to short alphabet

size(32) . 34

LIST OF FIGURES LIST OF FIGURES

4.14 Ratio of similarity obtained for ST and SST kernel according to very short
alphabet size(2) . 35

x

List of Algorithms

1 Tree kernel computation . 20
2 Comparing nodes algorithm . 20
3 Pseudo-code for fast evaluation of the node pair sets used in the fast Tree Kernel. 21
4 Knuth Binarization . 25
5 The proposed binarization algorithm . 28
6 Comparing nodes algorithm on binary tree structure 29
7 Tree generation algorithm . 30

1

Introduction

“If you have an apple and I have an apple and we exchange these apples then you
and I will still each have one apple. But if you have an idea and I have an idea and
we exchange these ideas, then each of us will have two ideas.”

– George Bernard Shaw

1.1 Context

ÿTþ
he last decade is marked by the explosion of data, the big data phenomenon, es-
pecially those digital texts in tree structure which are considered among the most
important types of data.

This informational flood has made the operations of analysis and manual classification of
these resources a delicate task. This captured the attention of computer science community
and therefore several machine learning algorithms and technical data representations have been
developed.

Machine learning aims to provide automatic tools for imitate human ability to improve
one’s behavior with experience. It is a growing field, that is used for a wide range of appli-
cations: natural language processing, bioinformatics, medical diagnosis, pattern recognition,
search engines, fraud detection, analysis stock markets, software engineering, adaptive web,
robotics, games,. . .

However, classical methods of machine learning are linear methods. They are often very
well adapted to flat documents represented by vector models. In practice, many applications
have data that can be represented naturally under a structured form. As an example, XML
documents are naturally represented by trees, in the natural language processing, each sentence

1

1. INTRODUCTION 1.2. MOTIVATIONS

can be represented by a syntactic tree. In bioinformatics, proteins can be represented as amino
acid sequences and genomic DNA as a nucleotide sequence. This problem of representing
structured data can be approached by changing the representation data through non-linear
functions while keeping the regularities and the dependencies inherent in the data. The kernel
methods make possible this trick by projecting the data into a high dimensional feature space
while avoiding the explicit computation of this projection.
Kernel methods look for a linear relationship in the feature space. Thus, the input data can be
compared through the inner products of their representations in the feature space. However,
kernel methods avoid direct access to this space while it is possible to replace the inner product
with a positive semi-definite kernel function that computes the similarity between two elements
directly in the input space. The advantage of using the kernel functions, that is possible to use
feature spaces of high dimensions (even infinite), with a complexity independent on the feature
space size, but that depends only on the complexity of the kernel function herself.

1.2 Motivations

An analysis of the literature on the tree kernels concludes that the most of these kernels belong
to a family called convolution kernels (Haussler, 1999). This family introduces a method for
constructing kernel on sets whose elements are discrete structures like sequences, trees and
graphs. Discrete structures are recursive objects that can be decomposed into sub-objects until
reaching an atomic unit. Unfortunately, the complexity of the convolution kernels is very high
and does not allow the computation of the kernel function on very complex structures. This
can prevent their applications in real scenarios.
Our interest in this thesis is the tree kernels for "non-linear" documents where the text can
be formatted in structure such as trees. Indeed, documents are more and more organized in
information fields, especially in XML format. This structure does not only make it possible to
have rich (and heterogeneous) information, but also allows the automatic processing systems
to manage these data more easily (especially for data collection).

Because of the effectiveness of the binary tree structure in various systems and applications,
binary tree have been devloped in many area and it is used in various fields, such as in binary
searche tree (BST), the cost of insertion, remove, lookup is O(logN). We want to find a
relationship and a transformation to calculate the kernel from the K-ary tree to an equivalent
binary tree.
The pulp is to study the effect of different binarization methods on the calculation of tree
kernels.

2

1. INTRODUCTION 1.3. ORGANIZATION

1.3 Organization

This manuscript is organized in three main chapters:

• Chapter 2 introduces some preliminaries on structured data (sequence, graph and tree),
and kernel methods.

• Chapter 3 gives overview of tree kernel and some related works, section 3.1 and 3.2 it
focuses on the presentation of the subtree (ST) and subset tree (SST) kernel.

• Chapter 4 is reserved for our contribution by presenting our proposed method of the bi-
narization. Moreover we conduct experiments to measure the impact of tree binarization
on tree kernel.

3

2

Preliminaries

“ Writing the perfect paper is a lot like a military operation. It takes discipline,
foresight, research, strategy, and, if done right, ends in total victory”

– Ryan Holiday

ÿTþ
his chapter introduces the basic concepts necessary to understand the work pre-
sented in the next chapters. first, we give an overview of the discipline of struc-
tured data as well as the theoretical foundations relating to it. Then we highlight

the kernel methods, and the substance of our research.

2.1 Structured data

Due to the accelerated appearance of several forms of data, it became necessary to organize these
data to exploit and extract information from them. There are three type of data classification
perspective: structured data, unstructured data and semi-structured data. Structured data
that is formed by a simpler combination components into more complex elements often involve
the frequent use of the simplest objects of the same type. Usually, it is easier to compare simpler
components with basic function or using an inductive argument on the structure of objects.
For this reason, a lot of researchs have been devoted to them in recent years. Examples of
structured data include familiar examples, strings and sequences, but also complex object like
trees, images and graphs (Shawe-Taylor and Cristianini, 2004; Arimura, 2008).

"Universal" data models that allow to represent structures.

• Irregular: we can compare data in different formats (eg. a character sequences with
n-tuple).

• Implied data and structures (grammar, schema) are mixed.

4

2. PRELIMINARIES 2.2. SEQUENCES

• Partial: coexistence of structured and unstructured data (eg. XML, graphs / labelled
trees. The data are heterogeneous level of structure and semantics).

In the next sections of this chapter we focus on sequences and more generally on structured
data (trees, graphs).

2.2 Sequences

The sequences are considered as part of the structured data because a sequence can be decom-
posed into subpart, so the sequences have the property of the structured data (Aseervatham,
2007).
For the sequence representation of symbols, the sequential aspect is important. A symbol
means a letter on an alphabet. It can be a character, a syllable, a word or a concept. This rep-
resentation is adopted in several areas: in bioinformatics applications, where the proteins can
be represented as an amino acid sequence, genomic DNA as nucleotide sequences. In the field
of the natural language processing, a document can be represented as a sequence of characters,
words, sentences or paragraphs.

2.3 Trees

This section is dedicated to trees, one of the most important algorithmic concepts of computing.
Trees are used to represent a set of hierarchically structured data. Several distinct notions are
hidden in this terminology (graphs, trees, binary trees, . . .) These definitions are specified this
section.
To present the trees in a homogeneous way, some terms borrowed from the graphs are useful.
We will present the graphs, then successively, trees and thier terminologies.

2.3.1 Graphs

Formally, a graph is defined by a couple G = (S,A) such as S is a finite set of nodes and A is a
set of edges (si,s j) ∈ S2 (Solnon, 2008)

A graph can be directed or not:

• In a directed graph, couples (si,s j) ∈ A are oriented, i.e (si,s j) is an orderly couple, where
si is the initial node, and s j is the terminal node. A couple (si,s j) is called an arc(or
edge), and it can be represented graphically by si −→ s j. Figure 2.1 show an example of
directed graph.

5

2. PRELIMINARIES 2.3. TREES

1

2 4

5

6

3

Figure 2.1: Example of directed graph

Example 2.3.1. The figure 2.1 represents the directed graph, G(S,A) with S= {1,2,3,4,5,6}
and A = {(1,2),(2,4),(2,5),(4,1),(5,4),(6,3)}

• In an undirected graph, couples (si,s j) ∈ A, are not oriented, i.e (si,s j) is equivalent
to(s j,si). A pair (si,s j) is called an arity. Figure 2.2 show an undirected graph.

1

2

5

4

6

3

Figure 2.2: Example of undirected graph

Example 2.3.2. The figure 2.2 represents the undirected graph, G(S,A) with S= {1,2,3,4,5,6}
and A = {(1,2),(1,5),(5,2),(6,3)}

In an undirected graph, a cycle is a sequence of consecutive edges (single chain) whose two
vertices ends are identical.

A graph is without cycle or acyclic, if it does not have cycles. It is directed if the set E of
arcs, is constituted couple of nodes. A couple being ordered unlike a pair.

The degree d(v) of a node v is the number of edges incident to this node. In an directed
graph, d−(v) is the number of incoming arcs at v, while d+(v) is the number of outgoing arcs
of v.

2.3.2 Tree

A tree T is particular acyclic oriented graph in which each nodes except one has in-degree one.
The node with in-degree 0 is known as the root r(T) of the tree. Nodes v with out-degree
d+(v) = 0 are known as leaf nodes, while those with non-zero out-degree are internal nodes.
The nodes to which an internal node v is connected are known as its children, while v is their

6

2. PRELIMINARIES 2.3. TREES

parent. Two children of the same parent are said to be siblings (Shawe-Taylor and Cristianini,
2004). We give some terminologies inherent to trees by describing Figure 2.3

A

B

C D

E

F G H

I J

K

N O

L M

Figure 2.3: Example of a tree T

• A is the root of tree T .

• B is parent of C and D.

• B, E, I, J are children of A, K, L, M are children of J.

• C and D are siblings, F ,G and H are siblings.

• A, B, E, I, J, K, L and M are internal nodes.

• C, D, F , G, H, I, N, O, L and M are leaves.

• The production of node is represent by its label follows by each label of its children, for
example the production of A →B E I J is given by (A(B,E, I,J)) .

Definition 2.3.1. in an k-ary tree the out-degree of any node is bounded by k, i.e. it can
never be greater than k. If k = 2 the tree is known as a binary tree. A binary tree consist of
node linked with two binary trees which are the right subtree and the left subtree.

2.3.3 Subtrees

E

F G H

Figure 2.4: a subtree of tree T

Figure 2.4 is one of the subtrees of T .
A subtree is a portion of a tree that can be viewed as a complete tree in itself. Any node in a
tree T , together with all the nodes below, comprise a subtree of T . The subtree corresponding
to the root node is the entire tree. The subtree corresponding to any other node is called a

7

2. PRELIMINARIES 2.4. KERNELS

proper subtree.
We can distinguish several types of subtrees (Shawe-Taylor and Cristianini, 2004):

• A SubTree (ST) or complete subtree of a tree T at a node v is the tree obtained by taking
all nodes and arcs accessible from v. Figure 2.5 illustrates a syntactic parse tree with
some of its subtrees.

• A co-rooted subtree of a tree T is obtained by subtracting a sequence under complete
trees and replacing them with their roots. Therefore, if a node v is included in a co-rooted
subtree, then so are all of its siblings..

• A SubSet Tree (SST) or general subtree of a T tree is any rooted subtree of a complete
subtree. Figure 2.6 shows a tree with some of its general subtrees.

S

N

Djelloul

VP

V

proposes

NP

D

a

N

solution

=⇒

VP

V

proposes

NP

D

a

N

solution

NP

D

a

N

solution

N

solution

D

a

V

proposes

N

Djelloul

. . .

Figure 2.5: A syntactic parse tree with some of its subtrees.

2.4 Kernels

Linear methods of data analysis and learning were among the first to be developed. They have
also been intensively studied, in particular because they lend themselves well to mathematical

8

2. PRELIMINARIES 2.4. KERNELS

S

N

Djelloul

VP

V

proposes

NP

D

a

N

solution

=⇒

VP

V

proposes

NP

D

a

N

solution

VP

V NP

D

a

N

solution

VP

V NP

D N

NP

D

a

N

solution

NP

D N

solution

NP

D

a

N NP

D N

D

a

N

solution

V

proposes
. . .

Figure 2.6: A tree with some of its subset trees (SST s).

9

2. PRELIMINARIES 2.5. CONVOLUTION KERNELS

analysis. However, many applications require non-linear models to report dependencies and
underlying patterns in the data. The kernel methods make it possible to find non-linear deci-
sion functions, while relying fundamentally on linear methods. A kernel function corresponds
to a scalar product in a data feature space, often of large size. In this space, it is not necessary
to manipulate the data explicitly, linear methods can be used to find linear regularities, corre-
sponding to non-linear regularities in the original space. Thanks to the use of kernel functions,
it becomes possible to have the best of two worlds: use simple and rigorously guaranteed tech-
niques, and treat non-linear problems. That’s why these methods have become very popular
recently.
Trees and graphs naturally fit into composite and structured objects. The comparison of such
objects has been discussed for a long time, especially in what was called the "recognition of
structural forms". However, the advent of kernel methods has lead to renewed research as
these methods are generic and can be applied to a wide variety of domains when one is able to
conceive a kernel function. That is an appropriate measure of similarity.

2.5 Convolution kernels

The convolution principle (Haussler, 1999) introduces a method for constructing kernels on
sets whose elements are discrete structures such as words, trees, or graphs. These discrete
structures are recursive objects that can be decomposed into sub-objects until they reach an
atomic unit.

The idea of the convolution kernel is to adopt a recursive approach in the similarity cal-
culation. Formally, let x be a discrete structure belonging to a set X of the same type. The
structure x can be decomposed into sub-objects (x1, . . . ,xD) where xd belongs to the set Xd for
1≤ d ≤ D and D is a positive integer.
We can represent the relation ”x1, . . . ,xD are parts of x” by the relation R :~x = (x1, . . . ,xD)−→ X

with R(~x;x) true if and only if x1, . . . ,xD are parts of x. Let R−1 = {x : R(~x,x)} that returns for
x all of the possible decompositions.

Suppose that x,y ∈ X and that ~x = (x1, . . . ,xD) and ~y = (y1, . . . ,yD) are respectively decom-
positions of x and y. We also assume that for each 1≤ d ≤ D, we have a kd kernel on Xd that
we can use to measure the similarity kd(xd,yd) between the part xd and the part yd. So let’s
define the convolution kernel (R-convolution) for two elements x,y of X as follows:

k(x,y) = ∑
~x∈R−1(x),~y∈R−1(y)

D

∏
d=1

kd(xd,yd). (2.1)

It’s easy to show that if kd are valid kernels, the convolution kernel k is valid. If kd is valid,
then its Gram matrix is positive semi-definite. The same is true for the product and the sum of
the positive semi-definite matrices. A kernel is valid if is symmetric and positive semi-definite.
Moreover, recursive definitions for calculating a convolution kernel requires a significant cal-
culation time. Therefore the use of iterative programming techniques and sophisticated data

10

2. PRELIMINARIES 2.6. KERNEL METHODS

structures is necessary.

2.6 Kernel methods

A classic approach to deal with non-standard linear approach is to project all the data into
one feature space that preserves the inherent grouping of data while simplifying the associated
structure.
However, as this feature space can be very large, working directly with projected variables is
generally considered an unrealistic option. The kernel trick, which we describe here, makes it
possible to free oneself from it.

The kernel trick allows to transform searching for non-linear regularities into linear regular-
ities via the (virtual) projection of the input space into a feature space. Formally, for a point x

of the space x, we consider a function Φ to a feature space F with inner product: (Shawe-Taylor
and Cristianini, 2004)

Φ : x 7→Φ(x) ∈ F⊆ RN (2.2)

Learning algorithms do not need to know the coordinates projections in the feature space
F. On the other hand they must calculate the inner products of images of points in such a
space. The complexity of calculating each inner product is proportional to the dimension N of
F which can be great (even infinite). However, it is possible to calculate efficiently this inner
product using the input space through the kernel functions:

k(x,z) = (Φ(x),Φ(z)) (2.3)

The kernel methods provide a modular platform as shown in Figure 2.7. At first, the data
is processed by using a kernel to create a kernel matrix. Then, a variety of pattern algorithms
can be used to produce a pattern function. In other words, any kernel can be used with any
pattern algorithm.

f (x) =

ΣαiK(xi,x)

Data Kernel function

k(x,z)

Kernel matrix

K

Pattern
algorithm

A

Pattern
function

Figure 2.7: The stages of the application of kernel methods.(Shawe-Taylor and Cristianini,
2004)

11

2. PRELIMINARIES 2.7. PROPERTIES OF KERNELS

2.7 Properties of kernels

Equation 2.3 defines the kernel function as the dot product of two-point images in a feature
space. In this section, we discuss the properties of the kernels considering the properties of the
inner product and its relation with the positive semi-definite notion of Gram matrices.
This section is interested in recalling some notions emanating from linear algebra and which
constitute the foundations of the properties of the kernels functions.(Strang, 2009; Mohri et al.,
2012).

Definition 2.7.1. An inner product space is a vector space E including a function 〈., .〉 :
EE→ R such :

• For each x,y ∈ E : 〈x,y〉= 〈y,x〉 (symmetry).

• For each x,y,z ∈ E and α ∈ R : (αx,y) = α〈x,y〉 and 〈x+ y,z〉= 〈x,y〉+ 〈x,z〉 (linearity).

• For each x ∈ E,x , 0⇒ 〈x,x〉> 0, (positive).

Moreover, the inner product space is said to be strict if 〈x,x〉= 0⇐⇒ x = 0.

The function 〈., .〉 is called inner product. Each inner product space is a normed linear
space with the Euclidean norm ‖x‖ =

√
〈x,x〉 and therefore a metric space with the distance

d(x,z) = ‖x− z‖=
√

(x− z,x− z).

An inner product space is sometimes called a Hilbert space. In literature, other definitions
require the properties of completeness and separability.

Definition 2.7.2. Gram matrix: Let us consider the vectors S = {x1, . . . ,xı} in the set of the in-
put space X. The matrix G, ı x ı, inner products between these vectors (the inputs Gi j = (xi,x j))
is called the Gram matrix associated with S.
In the case of the kernel functions, Gi j = (φ(xi),φ(x j)) = K(xi,x j). This matrix contains all use-
ful information to calculate the distance between all the data pairs. Moreover, it is symmetrical:
Gi j = G ji.

Definition 2.7.3. eigenvalues, eigenvector and spectrum: Let A be a n x n matrix, a scalar
λ is a eigenvalue of A, if there exists a non-zero vector v such that Av = λv. In this case, v

is eigenvector associated with the value λ , The set of eigenvalue of a matrix A, denoted λ (A)
and called spectrum of A.

Definition 2.7.4. λ = 0 is a eigenvalue of A if A is a singular matrix.

Definition 2.7.5. Positive semi-definite matrix : A symmetric matrix is positive semi-definite,
if all its eigenvalues are non-negative. To recognize this type of matrix, it is sufficient to
calculate the eigenvalues and test if λ > 0. However, this type of solution must be avoided
because the calculation of eigenvalues is not so easy, especially for important dimension matrices
(Shawe-Taylor and Cristianini, 2004).

12

2. PRELIMINARIES 2.8. EXAMPLE OF KERNEL

Proposition 1. Closure properties: Let k1 and k2 be two kernel functions on X x X, where
X∈Rd, c∈R+, f (.) a real function on X, poly(.) a polynomials with positive or null coefficients,
φ(x) a function of X on RD, A is a positive semi definite matrix, xa and xb variables with
x = (xa,xb) and ka and kb kernel functions in their respective space, then the following functions
are kernel functions :

• k(x,x) = ck1(x,x′)

• k(x,x′) = f (x)k1(x,x′) f (x′)

• k(x,x′) = poly(k1(x,x′))

• k(x,x′) = exp(k1(x,x′))

• k(x,x′) = k1(x,x′)+ k2(x,x′)

• k(x,x′) = k1(x,x′)k2(x,x′)

• k(x,x′) = xT Ax′

• k(x,x′) = ka(xa,x′a)+ kb(xb,x′b)

• k(x,x′) = ka(xa,x′a)kb(xb,x′b)

The proof of proposition 1 can be found in (Shawe-Taylor and Cristianini, 2004).

2.8 Example of kernel

Among the kernel functions, we can mention the three most used kernels in literature, namely
the linear kernel, the polynomial kernel and the Gaussian kernel (Marref, 2013).

• The linear kernel: is a simple inner product: k(x,x′) = (x,x′).

• The polynomial kernel: allows to represent decision boundaries by polynomials of
degree d. The generic form of this kernel is: k(x,x′) = (a(x,x′)+b)d

• The Gaussian kernel: is a very used kernel in practice, which is evaluated according
to:

k(x,x′) = exp− ‖x− x′‖d

2σ2 where σ is the covariance of the entire data set

13

3

Related Work

“Perhaps the most important principle for the good algorithm designer is to refuse
to be content.“

– Aho, Hopcroft, and Ullman, The Design and Analysis of Computer Algorithms,
1974

ÿKþ
ernel methods have been widely used to extend the applicability of many well-known
algorithms, such as the Perceptron (Aizerman et al., 1964), Support Vectors Machine
(Cortes and Vapnik, 1995), or Principal Component Analysis (Zelenko et al., 2003).

The hierarchical structure of the trees reflects the underlying dependence information from the
domain it represents. Indeed, such an addiction is essential during the learning process, it
embarks relevant information. In general, the flat representation approaches of trees, in the
form of vectors, fail to capture these dependencies. However, the kernel methods avoid having
direct access to the feature space, because it is possible to replace the inner product with a
kernel function that calculates the similarity between two trees directly in their input space.
Thus tree kernels are the appropriate tools to evaluate the similarity between two trees.
In recent years, tree kernels have been proposed for applications to machine learning in natural
language or for the calculation of the similarity of the XML documents. They show a quadratic
complexity and less accuracy than traditional attribute / value methods.
This chapter provides a study of some related works of tree kernels, in particular subtree and
subset tree kernels.

14

3. RELATED WORK 3.1. SUBTREE KERNEL

3.1 Subtree kernel

Vishwanathan and Smola (2003) proposed an algorithm for matching discrete objects such as a
strings and trees. When applied to trees, the subtree kernel (STK) uses a feature space indexed
by subtrees. The component φs(T) of a subtree ts represents the number of occurrences of ts
in T . The corresponding kernel is expressed as a weighted sum on all subtrees shared by two
trees T1 and T2.

K(T1,T2) = ∑
s∈Σ∗

φs(T1)φs(T2)ws. (3.1)

Where Σ∗ is the set of all subtrees and ws is the weight associated with the ts tree. Indeed, the
computation of the STK kernel is reduced to the computation of the string kernel, starting with
the encoding of subtrees as a strings. To do so, we must define a lexicographic order between
the labels of the tree, if they exist. Moreover, we add two symbols ’[’ and ’]’ with ’[’ < ’]’ and
’[’, ’]’ < label(v) for all labels on the tree. The encoding of a tree of root v is realized by the
function tag(v) described as follows:

• If v is an unlabeled leaf then tag(v) = [].

• If v is a tagged leaf then tag(v) = [label(v)].

• If v is an unlabeled node with children v1, . . . ,vc then define a sorted permutation π child
nodes such as

tag(vπ(i))≤ tag(vπ(j))i f π(i)≤ π(j)

. So, define
tag(v) = [tag(vπ(1))tag(vπ(2)) . . . tag(vπ(c))]

.

• If v is a node labeled with children v1, . . . ,vc then perform the same operations as the
previous step and put
tag(v) = [label(v)tag(vπ(1))tag(vπ(2)) . . . tag(vπ(c))].

For example, the tree in Figure 3.1 can be represented by the string
”[S[NP[D[a]][[N[solution]]][V P[V [proposes]]][N[D jelloul]]]”

The Theorem 1.1 of Vishwanathan and Smola (2003) summarizes the results obtained in
tree with l nodes and λ the maximum width of a label:

• tag(v) can be computed in a time O((λ +2)(llog2l)) and requires a space linear storage
based on the number of nodes in the subtree of root v.

• Each substring s of tag(v), starting with ′[′ and ending with ′]′ is balanced, has a corre-
sponding subtree.

15

3. RELATED WORK 3.2. SUBSET TREE KERNEL

• If the trees T and T̂ are equivalent (T can be obtained from T̂ in permuting the child
nodes) then their tag(v) is the same. By the way, tag(v) allows a reconstruction of a
single element of the equivalence class.

s

N

Djelloul

VP

V

proposes

NP

D

a

N

solution

Figure 3.1: example of tree t

3.2 SubSet tree kernel

Subset Tree Kernel (SST K) (Collins and Duffy, 2002a), also called The parse tree kernel (PT K),
is based on counting common subset trees of trees. Syntactic trees are obtained from the repre-
sentation of grammatical relations between words of a sentence. They are considered a typical
structure in the natural language processing. Figure 2.5 shows a syntax tree for the sentence
"Djelloul propose a solution".
The SST K use a feature space indexed by all subset trees of a syntax tree T . The component
φS(T) of a subset tree ts represents the number of occurrences of ts in T . The T tree is repre-
sented by the vector

φ(T) = [φ1(T),φ2(T), . . . ,φ|T |(T)] (3.2)

where T = {T1,T2, . . . ,T|T |} is the space of substructures.
Let T1 and T2 be two trees, the corresponding kernel is defined as follows:

k(T1,T2) = 〈φ(T1),φ(T2)〉 (3.3)

=
|T |

∑
s=1

φs(T1)φs(T2). (3.4)

16

3. RELATED WORK 3.2. SUBSET TREE KERNEL

However, the explicit computation of this kernel is hard, since the number of subtrees is ex-
ponential depending on the size of the tree. The technique of the convolution kernel, makes it
possible to calculate the inner product in the feature space of high dimension without enumer-
ating explicitly all the features.
In view of this latter consideration, the SST kernel can be evaluated recursively. Let Is(v) be
an indicator function equal to 1 if ts is a subtree rooted to the tree T in v, 0 otherwise. So
φS(T1) = ∑v1∈V1 IS(V1) and φs(T2) = ∑v2∈V2 IS(V2) where V1 and V2 represent respectively the set
of nodes of trees T1 and T2.
Therefore, the SST kernel can be expressed as:

k(T1,T2) =
|T |

∑
s=1

∑
v1∈V1

Is(v1) ∑
v2∈V2

Is(v2)

= ∑
v1∈V1

∑
v2∈V2

|T |

∑
s=1

Is(v1)Is(v2)

= ∑
v1∈V1

∑
v2∈V2

∆(v1,v2) (3.5)

where

∆(v1,v2) = ∑
|T |
s=1 Is(v1)Is(v2)(3.6) it can be evaluated recursively as follows:

• If the productions at v1 and at v2 are different, then ∆(v1,v2) = 0.

• If the productions at v1 and at v2 are identical and v1 and v2 only have leaf children
(pre-terminal symbols), then ∆(v1,v2) = 1.

• If the productions at v1 and at v2 are identical and v1 and v2 are not pre-terminals,so :

∆(v1,v2) =
nc(v1)

∏
j=1

(1+∆(ch j
v1
,ch j

v2
)), (3.7)

where nc(v) is the number of children of v and ch j
v returns the jth child of node v. To be con-

cerned about the influence of fragment size of subtrees on the value of the kernel, it is possible
either to limit the depth of the subtrees considered, or penalize them according to their size.
This can be obtained by introducing a decay factor λ ∈]0,1] and by modifying the basic case
and the recursive definition as follows:

∆(v1,v2) = λ and ∆(v1,v2) = λ

nc(v1)

∏
j=1

(1+∆(ch j
v1
,ch j

v2
)) (3.8)

17

3. RELATED WORK 3.2. SUBSET TREE KERNEL

This corresponds to a modified kernel:

K(T1,T2) =
|T |

∑
s=1

λ
sizesφs(T1)φs(T2)

where sizes is the number of nodes in the subtree ts. The use of the dynamic programming
technique leads to a computation complexity of the SST kernel in the worst case O(n2), where
n is the number of nodes of the largest input tree.

18

3. RELATED WORK 3.3. FAST TREE KERNEL

3.3 Fast Tree Kernel

Moschitti (2006a) shows that tree kernels are very useful in the natural language processing. He
provides a simple algorithm to compute the tree kernel in quadratic time, and his study about
the classifications and properties of various tree kernels, and he shows that the combinations
of kernels always improves traditional methods.
Furthermore, the tree kernel have been applied to reduce such an effort for several tasks in
natural language processing, for example the extraction of relations (Schölkopf et al., 1997),
Named-entity recognition (Culotta and Sorensen, 2004; Cumby and Roth, 2003), and the se-
mantic role labeling (Moschitti, 2004).

The main idea of his proposition is to compute the number of common substructure between
two trees t1 and t2. To this end, Moschitti modified the kernel function proposed by (Collins
and Duffy, 2002a). To do so, he slightly modifies the equation (3.4) by introducing a parameter
σ ∈ {0,1} that allows the evaluation of subtrees (σ = 0) or subset trees (σ = 1). So :

∆(v1,v2) =
nc(v1)

∏
j=1

(σ +∆(ch j
v1
,ch j

v2
)), (3.9)

The kernel K(t1, t2) is the number of common substructures between t1 and t2.

To solve the problem of time complexity, an algorithm with a linear complexity for com-
putation of the subtrees kernel (ST K), was conceived in (Vishwanathan and Smola, 2003).
Moschitti design an algorithms that run in "linear time on average" and he named it as (Fast
tree kernel), the pseudo-code is described in algorithm 3. To compute with fast tree kernel, sum
∆(v1,v2) were v1 ∈NT1 and v2 ∈NT2 defined in (Equation 3.5) , when the productions associated
with v1 and v2 are different. Thus, look for a node pair set Np = (v1,v2)∈NT1NT2 : p(v1) = p(v2),
to efficiently build Np, they extract the lists L1 and L2 of the production rules from T1 and T2,
sort them in the alphanumeric order and scan them to find the node pairs (v1,v2) such that
(p(v1) = p(v2)) ∈ L1L2. This, may require only O(|NT1 |+ |NT2|) time.

This low complexity allow the use of tree kernel with SVM on large training set. To
confirm this hypothesis, Moschitti measured the impact of the algorithm on the time required by
SVM for learning about 122,774 examples of predicate arguments annotated in the PropBank
database (Kingsbury and Palmer, 2002) and 37,948 annotated cases in FrameNet (J Fillmore,
1982).

To solve the problem of less accuracy, a study on the different substructures of trees is
carried out to obtain tree kernel that provide the greatest precision. Moreover, SSTs provide
algorithms with richer information that may be essential to capture the syntactic properties of
derivation trees as indicated. Furthermore, if the SST has too many irrelevant aspects, over-
fitting can occur and decrease the accuracy of the classification (Cumby and Roth, 2003). As

19

3. RELATED WORK 3.3. FAST TREE KERNEL

a result, the fewer features of the ST approach may be more appropriate.

Algorithms 1 Tree kernel computation
Output:kernel

1: function Kernel(Node t1, t2)
2: P ←GeneratePairs(t1, t2)
3: kernel← 0
4: for each pair in P do
5: kernel ←kernel + getDelta(pair(n1),pair(n2))
6: end for
7: return kernel
8: end function

Algorithm 2 describes the function of comparing the nodes from the two trees t1 and t2.

Algorithms 2 Comparing nodes algorithm
1: Inputs: node t1 of tree 1 and node t2 of tree 2
2: Output: delta
3: Initialize:
4: σ ← 0 . 0 to evaluate subtrees, 1 to evaluate subset trees
5: function getDelta(Node t1, t2)
6: delta← 1
7: if t1.getProduction() , t2.getProduction() then
8: delta = 0
9: else if t1.getProduction() = t2.getProduction() and t1.isPreterminal() and t2.isPreter-

minal() then
10: delta = 1
11: else
12: for i from 0 to size(childrens(t1)) do
13: delta = delta * (σ+ getDelta(t1.childern[i],t2.childern[i]))
14: end for
15: end if
16: return delta
17: end function

The algorithm in 3 show the evaluation of tree kernels used Fast Tree Kernel (FTK)

20

3. RELATED WORK 3.3. FAST TREE KERNEL

Algorithms 3 Pseudo-code for fast evaluation of the node pair sets used in the fast Tree
Kernel.

1: function EvaluatePairSet(Tree T 1, T 2) returnNODE PAIR SET
2: LIST L1,L2
3: NODE PAIR SET Np
4: L1← T1.ordered list;
5: L2← T 2.ordered list . the lists were sorted at loading time
6: n1 ←extract(L1) . get the head element and
7: n2 ←extract(L2) . remove it from the list
8: while n1 and n2 are not NULL do
9: if n1.getProduction() > production of(n2) then

10: n2 = extract(L2)
11: else if production of(n1) < production of(n2) then
12: n1 = extract(L1)
13: else
14: while n1.getProduction() == n2.getProduction() do
15: while n1.getProduction() == n2.getProduction() do
16: add((n1,n2),N p)
17: n2=get next elem(L2) . get the head element
18: . move the pointer to the next element
19: end while
20: n1 = extract(L1)
21: reset(L2) . set the pointer at the first element
22: end while
23: end if
24: end while
25: return Np
26: end function

21

3. RELATED WORK 3.4. CONCLUSION

Example 3.3.1. Now, let us give an example for computation tree kernel between two trees t1
Figures 3.3 and t2 3.2.

s

b

l l

g e

a c d

Figure 3.2: Tree t1

s

b

l l

g e

a c m

Figure 3.3: Tree t2

The kernel computation for these two trees is given by:

K(T1,T2) = ∑
n1∈NT1

∑
n2∈NT2

∆(n1,n2)

= ∆(s,s)+∆(s,b)+∆(s,g)+∆(s,e)+ . . .+∆(s,m)

+∆(b,s)+∆(b,b)+∆(b,g)+∆(b,e)+ . . .+∆(d,m)

We will now calculate each ∆(n1,n2), for example:
We have ∆(b,b) = 1 since both are non-leaves nodes and have the same productions,
We have ∆(d,m) = 0 since they do not have the same symbol,
We have ∆(e,e) = 0 since they are non-leaves so we will see if the productions are the same.
We have ∆(e,e) = ∆(a,a)∆(c,c)∆(d,m),· · ·

3.4 Conclusion

In this chapter we have presented common tree kernel, namely ST, SST and FTK kernels, we
highlight the results of FTK in terms of efficiency. In fact the experiments reveal that the time
complexity of FTK is linear in the average for parse trees.

22

4

From k-ary Tree To Binary Tree

“Controlling complexity is the essence of computer programming. “
– Brian Kernigan

ÿBþ
inary tree data structures play an important role in almost every area in computer
science (which are for example widely used in database). Today the bursting of data
makes a greater demand for the performance of the trees.

In the literature, researchers have provided several methods of binarization of an k-ary tree,
which allow them to derive different results in several domains. Binary trees are simple struc-
tures which allow to solving (in the algorithmic sense) many problems. We wanted this conver-
sion to find a relationship between k-ary tree and the equivalent binary tree, then we calculate
the kernel in binary tree structure instead of k-ary tree strucuture.

From existing methods to represent a k-ary tree to its equivalent binary tree, we can cite:

• Knuth binarization (Knuth, 1969).

• Threaded Binarization (an algorithm based on threaded binary tree in forest). (Knuth,
1969; Horowitz et al., 1996).

• Kumar binarization (Kumar Ghosh et al., 2008).

• Recursive algorithm design ideas of converting the forest into the corresponding binary
tree (Wang, 2011).

In our experiment we focus on Knuth binarization and our proposed binarization algorithm.
We describe both methods in the next sections.

23

4. FROM K-ARY TREE TO BINARY TREE 4.1. KNUTH BINARIZATION

4.1 Knuth Binarization

Knuth (1969) states that, in natural way, we can represent any k-ary as a binary tree. The
binary tree obtained here has one-to-one correspondence with the original tree. However, after
converting one tree (other than the binary tree) to the equivalent in the binary tree structure,
the root node of the computed binary tree has no right subtree. Algorithm 4 illustrates the
function of binarizing trees the technique of conversion is as follows (Knuth, 1969; Horowitz
et al., 1996):

• Connect the sibling nodes at any level.

• Keep the link from the parent to the leftmost child and eliminate the subsequent links
to the children.

• The root is the center, rotate the tree by 45 degree clockwise. The obtained tree is a
binary tree.

To illustrate this technique, the figures 4.1 and 4.2 show the method applied to the tree in
Figure 3.2 :

In the first step we link all the child nodes for the same parent in the same level as shown
in Figure 4.1. The children of each parent are connected together. As for example, b, g and e

are the children of s, hence, they belong to the same family. Similarly as l and l belong to one
family, and a ,c and d to another. However, l and a do not belong to the same family.

s

gb e

a c dl l

Figure 4.1: Connect all the child nodes at the same level for the same parent.

Now, from this representation in Figure 4.1, we remove the vertical links and keep the ones
that connect the parent to the leftmost child, for example, b is the first child for s. Similarly a

is the first child for e. The next obtained tree is shown in Figure 4.2.

s

gb e

a c dl l

Figure 4.2: Preserve only the link from parent to the leftmost child and the first child to its
sibling

24

4. FROM K-ARY TREE TO BINARY TREE 4.2. PROPOSED TECHNIQUE OF BINARIZATION

This tree is rotated keeping the root as the center clockwise, giving the binary tree as shown
in Figure 4.3. Generally, if two or more k-ary trees are considered in a forest, then the right
child of the root of the final tree would contain the root of the second tree in the given forest.

s

g

b

e

a

c

d

l

l

Figure 4.3: the equivalente binary tree of tree shown in Figure 3.2

Algorithms 4 Knuth Binarization
1: Inputs: t a k-ary tree
2: Output : an equivalent binary tree to t

3: function ToBinaryTree(Node t) :An equivalent binary tree to t

4: BTreeNode n . n is an empty binary tree
5: n.setValue(t.value)
6: if t.hasChildren() then
7: Node c← t.getFirstChild()
8: n.setLeft(ToBinaryTree(c))
9: end if

10: if t.getRightSibling() , null then
11: n.setRight(toBinaryTree(t.getRightSibling()))
12: end if
13: end function

4.2 Proposed technique of binarization

In the previous section we explained the Knuth method, and how binarizing tree with this
method by giving an example.
During our study in binarization, we note that Knuth method are limited and do not keep the
notion of subtree and loss the information, These difficult problems have prompted us to think
of a new method that tries to address them.

The rest of this section explains our proposed method and we prove its efficiency.

25

4. FROM K-ARY TREE TO BINARY TREE 4.2. PROPOSED TECHNIQUE OF BINARIZATION

The proposed method is as fallow :

• Each parent node in the k-ary tree remains parent in the equivalent binary tree.

• Recursively, at the left child of parent node, put the leftmost child in the k-ary tree.

• At the right child of parent node, put an # node.

• # node contain at the left node the sibling of its parent left child. and at the right node
connect with # node recursively.

Figure 4.4 shows our proposed method of binarizing the k-ary tree given in Figure 3.2. One
of the strength of our proposed method is that the property of subtree is conceived. The
proposition 2 claims this property for our proposed method.

Definition 4.2.1. The equivalent binary tree with the proposed method can define as :

t ′ =

a, if t ′ = a.

f (t ′1,#(t
′
2, . . . ,#(t

′
n−1,#(t ′n,⊥)) . . .)), otherwise.

Proposition 2. Let t be an k-ary tree, and t ′ its equivalent binary tree (in terms of the proposed
method) , s is a subtree of t and s′ is a subtree of t ′. We have then s < t =⇒ s′ < t ′.

Proof. Let t = f (t1, t2, . . . , tn).
The proof is by induction on the size of t, if t = a and if s < t then s = a �

26

4. FROM K-ARY TREE TO BINARY TREE 4.2. PROPOSED TECHNIQUE OF BINARIZATION

s

b #

l

l2

#

⊥

g #

⊥e

#

c #

⊥d

a

Figure 4.4: the equivalent binary tree to tree shown in 3.2 with the proposed method

To clarify more, the algorithm in 5 explains the proposed method of binarization.

27

4. FROM K-ARY TREE TO BINARY TREE 4.3. THE BINARY TREE KERNEL FUNCTION

Algorithms 5 The proposed binarization algorithm
1: INITILAIZE:
2: Inputs: t a k-ary tree
3: function ToBinaryTree(Node t) :An equivalent binary tree to t

4: if t , null then
5: BTreeNode n, temp . n and temp are binary tree nodes
6: n.setValue(t.value)
7: temp← n

8: if t.hasChildren() then
9: Node c← t.getNext() . Get the first child of t and move pointer to the next

element
10: n.setLeft(ToBinaryTree(c))
11: end if
12: while t.hasChildren() do
13: BTreeNode diaze

14: diaze.setValue(’#’)
15: Node c← t.getNext()
16: temp.setRight(diaze)

17: temp← diaze

18: diaze.setLeft(ToBinaryTree(c))
19: end while
20: temp.setRight(⊥)
21: return n

22: end if
23: return null

24: end function

4.3 The binary tree kernel function

To compute the number of the common substructures between two binary trees n1 and n2 or
in other context the calculate the similarity in the binary tree, For this purpose, we slightly
modied the kernel function proposed in (Moschitti, 2006b) to adapte with the binary tree. We
define

∆(n1,n2) = σ +∆(Cl
n1
,Cl

n2
)∗σ +∆(Cr

n1
,Cr

n2
), (4.1)

where Cr
n1

is the right children of n1 and Cl
n1

is the left children of n1.

28

4. FROM K-ARY TREE TO BINARY TREE 4.4. EXPERIMENTS AND DISCUSSION

Algorithms 6 Comparing nodes algorithm on binary tree structure
INITILAIZE:
Inputs: Binary tree node t1 of tree 1, binary tree node t1 of tree 2
Output: delta

function getDelta(Node t1, t2) :delta

delta← 1
if t1.getProduction() , t2.getProduction() then

delta← 0
else if t1.getProduction() = t2.getProduction() and t1.isPreterminal() and t2.isPretermi-

nal() then
delta← 1

else
delta← delta * (0 + getDelta(t1.getLeft(),t2.getLeft())
delta← delta * (0 + getDelta(t1.getRight(),t2.getRight())

end if
return delta

end function

4.4 Experiments and discussion

The purpose of these experiments is to show the impact of tree binarization with Knuth method
and the proposed method on kernel computation in terms of similarity and running time.

The tests are run on an Intel Atom processor at 1,80 GHZ with 2 GB of RAM under Win-
dows 10, 32 bit. All the algorithms tested are implemented in Java.
In order to conduct the experiment, we generated trees of different size of nodes (20,50, . . . ,1000)
on very short alphabet size(2), on short alphabets sizes (32) and on large alphabets size (1024).
The Algorithm 7 show how we build a tree. All generated k-ary trees are converted into equiv-
alent binary trees using both, Knuth binarization and the proposed method. For each node
size, we generate 20 trees. For the purpose to obtain accurate running time, we repeat the
experiments 5 times.

29

4. FROM K-ARY TREE TO BINARY TREE 4.4. EXPERIMENTS AND DISCUSSION

Algorithms 7 Tree generation algorithm
1: Initialize:
2: al phabet: [a,b,c, ...,x,y,z,aa,bb,cc,dd] . Short alphabet size
3: t : empty root tree node
4: n : random number . n is number of t children
5: counter← 0
6: m← 200 . m is the number of nodes in t , in this case 200
7: counter← counter + 1
8: local i← 0
9: while i < n do

10: node← creatSubElement(t)
11: node.value = al phabet[random(0..size(al phabet))]
12: if counter < m then
13: r← Random(0..5) . 5 means max number of children
14: GenerateTree(node,r)
15: else
16: break
17: end if
18: i← i+1
19: end while
20:

As we shown in section 3.3, (Moschitti, 2006a) presented an algorithm (Fast tree kernel)
for the evaluation of ST and SST kernels that operate with a linear average time and calculates
the kernels between two parse trees in average time "O(m+n)", where m and n are the number
of nodes in both trees.
To check the claims of (Moschitti, 2006a), we measure the running time of this implementation
on SST kernel. Using the constructed k-ary tree dataset. Figure 4.5 shows the obtained results.

20 100 200 300 500 750 1,0000

10

20

30

40

50

60

65

Number of nodes

R
un

ni
ng

tim
e(

m
s)

alphabet size(2)
alphabet size(1024)
alphabet size(32)

Figure 4.5: Running time of SST kernel in different sizes runs on k-ary tree structure

30

4. FROM K-ARY TREE TO BINARY TREE 4.4. EXPERIMENTS AND DISCUSSION

Running time Has a relationship with the size of alphabet, When the size of alphabet is
short compared with the number of nodes the running time became quadratic.

Moschitti, 2006a studied the tree kernel in natural language processing where the size of
alphabet almost equal to size of tree, this explains why he reached this average running time.

IN order to study the impact of tree binarization on the tree kernel (ST and SST), in terms of
running time, we consider the three different structures (k-ary, binary tree of knuth and binary
tree of our proposed approach).
We consider also different alphabet sizes (2,32,1024) and the number of nodes (20,50,. . . ,1000).
Figures 4.6, 4.7, 4.8 shows the obtained results.

20 100 200 300 500 750 1,0000

0.5

1

1.5

2

2.5

3

3.5

4

4.4

5

5.5

6

Number of nodes

R
un

ni
ng

tim
e(

m
s)

Running time ST(alphabet size(1024))

K-ary tree
Binary tree(Knuth)

Binary tree(proposed)

20 100 200 300 500 750 1,0000

0.5

1

1.5

2

2.5

3

3.5

4

4.4

5

5.5

6

Number of nodes

R
un

ni
ng

tim
e(

m
s)

Running time SST(alphabet size(1024))

K-ary tree
Binary tree(Knuth)

Binary tree(proposed)

Figure 4.6: Average time in millis seconds for the ST and SST evaluations

20 100 200 300 500 750 1,0000
1
2

6

8

10

15

20

Number of nodes

R
un

ni
ng

tim
e(

m
s)

Running time ST(alphabet size(32))

K-ary tree
Binary tree(Knuth)

Binary tree(proposed)

20 100 200 300 500 750 1,000

2

4

6

8

10

12

Number of nodes

R
un

ni
ng

tim
e(

m
s)

Running time SST(alphabet size(32))

K-ary tree
Binary tree(Knuth)

Binary tree(proposed)

Figure 4.7: Average time in millis seconds for the ST and SST evaluations

31

4. FROM K-ARY TREE TO BINARY TREE 4.4. EXPERIMENTS AND DISCUSSION

20 100 200 300 500 750 1,000

10

50

100

150

200

250

Number of nodes

R
un

ni
ng

tim
e(

m
s)

Running time ST (alphabet size(2))

K-ary tree
Binary tree(Knuth)

Binary tree(proposed)

20 100 200 300 500 750 1,000

10

50

0

100

150

200

250

Number of nodes

R
un

ni
ng

tim
e(

m
s)

Running time SST(alphabet size(2))

K-ary tree
Binary tree(Knuth)

Binary tree(proposed)

Figure 4.8: Average time in millis seconds for the ST and SST evaluations

IN order to study the impact of tree binarization on the tree kernel (ST and SST) in terms
of similarity, we consider the three different structures (k-ary, binary tree of knuth and binary
tree of our proposed approach).

We consider also different alphabet sizes (2,32,1024) and the number of nodes (20,50,70,. . . ,1000).
Figures 4.9, 4.11, 4.10 shows the obtained results.

020 100 200 300 500 1,0000

100

150

200

250

300

350

400

450

550

Number of nodes

Si
m

ila
rit

y

K-ary tree
Binary tree(Knuth)

Binary tree(proposed)

(a) Similarity of ST kernel(alphabet size(1024))

020 100 200 300 500 1,0000

100

500

1,000

Number of nodes

Si
m

ila
rit

y

K-ary tree
Binary tree(Knuth)

Binary tree(proposed)

(b) Similarity of SST kernel(alphabet size(1024))

Figure 4.9: Similarity obtained for ST and SST kernel according to large alphabet (1024) and
different sizes of trees.

32

4. FROM K-ARY TREE TO BINARY TREE 4.4. EXPERIMENTS AND DISCUSSION

020 100 200 300 500 1,0000
100

500

1,000

2,500

Number of nodes

Si
m

ila
rit

y
K-ary tree

Binary tree(Knuth)
Binary tree(proposed)

(a) Similarity of ST kernel(alphabet size(32))

020 100 200 300 500 1,00000.1

0.5

1

1.5

2

2.5

3

4.5
·104

Number of nodes

Si
m

ila
rit

y

K-ary tree
Binary tree(Knuth)

Binary tree(proposed)

(b) Similarity of SST kernel(alphabet size(32))

Figure 4.10: Similarity obtained for ST and SST kernel according to short alphabet size (32)
and different sizes of trees

020 100 200 300 500 1,0001 ·10−3
0.1

0.5

1

1.5

2

2.5

3

3.25
·105

Number of nodes

Si
m

ila
rit

y

K-ary tree
Binary tree(Knuth)

Binary tree(proposed)

(a) Similarity of ST kernel(alphabet size(2))

0 50 100 200 300 500 750 1,00002 ·10−2

0.1

0.25

0.5

0.75

1.04
·106

Number of nodes

Si
m

ila
rit

y
K-ary tree

Binary tree(Knuth)
Binary tree(proposed)

(b) Similarity of SsT kernel(alphabet size(2))

Figure 4.11: Similarity obtained for ST and SST kernel according to very short alphabet (2)
and different sizes of trees.

First of all, we can easily observe that k-ary tree and its equivalent binary tree with the
proposed algorithm is hardly identical in similarity in ST , and this proves to us that the
proposed method of binarization keep the property of subtree and the information does not
disturb in which leaves in k-ary tree remains leaves in the proposed method, also internal
nodes.
In general, we can see that the obtained curves have the same order of growth. To validate
this observation, we pass to another visualization by considering the ration of similarities of the
different structures. Figures illustrates the results of the ratio between different similarities.

33

4. FROM K-ARY TREE TO BINARY TREE 4.4. EXPERIMENTS AND DISCUSSION

We can easily see that the ratio in the k-ary tree and after converted into a equivalent
binary tree both, Knuth and proposed method is stable. However, this ratio is different the
first (proposed method) which is always greater than 1, but the second (Knuth binarization)
does not exceed 0.2. These results reveal the efficiency of the proposed method, that clearly
keep the property of substructures of a tree. Figures 4.12, 4.13, 4.14 shows the obtained results.

050100200300 500 750 1,000
01 ·10−2

0.5

1

1.5

0

Number of nodes

R
at

io

Proposed binarization algorithm ratio
Knuth binarization algorithm ratio

(a) Ratio ST kernel

050100200 300 500 750 1,000
0

0.2

0.4

0.6

0.8

11.05

Number of nodes
R

at
io

Proposed binarization algorithm ratio
Knuth binarization algorithm ratio

(b) Ratio SST kernel

Figure 4.12: Ratio of similarity obtained for ST and SST kernel according to large alphabet
size (1024)

050100200300 500 750 1,000
0

0.2

0.4

0.6

0.8

1

1.2

Number of nodes

R
at

io

Proposed binarization algorithm ration
Knuth binarization algorithm ration

(a) Ratio ST kernel(32)

050100200 300 500 750 1,000
01 ·10−2

1

2

3

4

Number of nodes

R
at

io

Proposed binarization algorithm ratio
Knuth binarization algorithm ratio

(b) Ratio SST kernel

Figure 4.13: Ratio of similarity obtained for ST and SST kernel according to short alphabet
size(32)

34

4. FROM K-ARY TREE TO BINARY TREE 4.5. CONCLUSION

050100200300 500 750 1,000
0

0.2

0.4

0.6

0.8

1

1.2

Number of nodes

R
at

io
Proposed binarization algorithm ratio

Knuth binarization algorithm ratio

(a) Ratio ST kernel(2)

050100200 300 500 750 1,000
01 ·10−2

1

2

3

4

Number of nodes

R
at

io

Proposed binarization algorithm ratio
Knuth binarization algorithm ratio

(b) Ratio SST kernel(2)

Figure 4.14: Ratio of similarity obtained for ST and SST kernel according to very short alphabet
size(2)

4.5 Conclusion

In this chapter, we discuss the impact of tree binarization on tree kernels, we proposed a new
binarization approach (Algorithm 5) which always keep the property of subtrees We conduct
experiments involving running time and similarity of the ST and SST kernel by considering the
k-ary, Knuth binary and the proposed-binary structures.
We concluded that the proposed method are mush better than Knuth method in similarity but
worse than it in running time.

35

5

Conclusion

“It is hard to fail, but it is worse never to have tried to succeed.“
– Theodore Roosevelt

ÿTþ
he purpose of this thesis is to evaluate the effect of tree binarization on the kernel.
We start with an overview on structured data and some preliminaries and intro-
duced the concept of kernel methods. Thereafter, we investigated the tree kernel,

we mentioned some related work in this area and we gave an example of a similarity compu-
tation between trees. Subsequently we conducted a comparative study of tree kernel between
k-ary tree and after binarization with two method: Knuth method binarization and a proposed
method. The comparison was based on similarity and running time measures. We used an
XML dataset that we generated.

The result of experiments reveal that the proposed method for binarization keeps the prop-
erty of subtree and the information does not disturb.

we also plan to focus on the random generation of trees, a task that we consider very useful
in this area of research

36

Bibliography

M. A. Aizerman, È. M. Braverman, and L. I. Rozonoèr. Theoretical foundation of potential
functions method in pattern recognition. Avtomat. i Telemekh., 25, 1964.

Hiroki Arimura. Efficient algorithms for mining frequent and closed patterns from semi-
structured data. Springer, 2008.

Sujeevan Aseervatham. Machine Learning with Semantic Kernels for Textual Data. PhD
thesis, Université Paris-Nord - Paris XIII, 2007.

Michael Collins and Nigel Duffy. New ranking algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, 2002a.

Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Advances in
neural information processing systems, pages 625–632, 2002b.

Antoine Cornuéjols and Laurent Miclet. Apprentissage artificiel: concepts et algorithmes.
Editions Eyrolles, 2011.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20, 1995.

Corinna Cortes, Patrick Haffner, Mehryar Mohri, Kristin Bennett, and Nicolò Cesa-bianchi.
Rational kernels: Theory and algorithms. Journal of Machine Learning Research, pages
1035–1062, 2004.

Aron Culotta and Jeffrey S. Sorensen. Dependency tree kernels for relation extraction. In
Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics,
21-26 July, 2004, Barcelona, Spain., 2004.

Chad M. Cumby and Dan Roth. On kernel methods for relational learning. In Machine
Learning, Proceedings of the Twentieth International Conference, 2003.

Haussler. Convolution kernels on discrete structures, 1999.

Ellis Horowitz, Sartaj Sahni, and Sanguthevar Rajasckaran. Computer Algorithms: C++. W.
H. Freeman & Co., New York, NY, USA, 1996.

Charles J Fillmore. Frame semantics, 1982.

37

BIBLIOGRAPHY BIBLIOGRAPHY

Paul Kingsbury and Martha Palmer. From treebank to propbank. European Language Re-
sources Association (ELRA), May 2002.

Knuth. The art of computer programmingvolume 1: Fundamental algorithms (donald e.
knuth). SIAM Review, 1969.

Sumit Kumar Ghosh, Joydeb Ghosh, and Rajat Pal. A new algorithm to represent a given
k-ary tree into its equivalent binary tree structure. 01 2008.

Nadia Marref. Apprentissage Incrémental & Machines à Vecteurs Supports. PhD thesis, Uni-
versité de Batna 2, 2013.

at SAS Matthew Magne. Global product marketing for data management. 2017.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learn-
ing. The MIT Press, 2012. ISBN 026201825X, 9780262018258.

Alessandro Moschitti. A study on convolution kernels for shallow statistic parsing. In Proceed-
ings of the 42nd Annual Meeting of the Association for Computational Linguistics, 2004.

Alessandro Moschitti. Making tree kernels practical for natural language learning. In EACL
2006, 11st Conference of the European Chapter of the Association for Computational Lin-
guistics, 2006a.

Alessandro Moschitti. Efficient convolution kernels for dependency and constituent syntactic
trees. In Machine Learning: ECML 2006, 17th European Conference on Machine Learning,
Berlin, 2006b.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler, Wayne Ward, James H. Martin, and Daniel
Jurafsky. Support vector learning for semantic argument classification. Machine Learning,
2005.

Bernhard Schölkopf, Alex J. Smola, and Klaus-Robert Müller. Kernel principal component
analysis. In Artificial Neural Networks - ICANN ’97, 7th International Conference, Lau-
sanne, Switzerland, October 8-10, 1997, Proceedings, 1997.

Aliaksei Severyn and Alessandro Moschitti. Fast support vector machines for convolution tree
kernels. Data Min. Knowl. Discov., 2012.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge, UK, 2004.

Kilho Shin and Taro Niiyama. The mapping distance - a generalization of the edit distance -
and its application to trees. In Proceedings of the 10th International Conference on Agents
and Artificial Intelligence.

Christine Solnon. Théorie des graphes et optimisation dans les graphes. INSA de Lyon, 2008.

38

BIBLIOGRAPHY BIBLIOGRAPHY

G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2009.

S. V. N. Vishwanathan and Alexander J. Smola. Fast kernels for string and tree matching. In
Advances in Neural Information Processing Systems 15 — Proceedings of the 2002 Neural
Information Processing Systems Conference, 2003.

Min Wang. The recursive algorithm of converting the forest into the corresponding binary tree.
Springer Berlin Heidelberg, 2011.

Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. Kernel methods for relation ex-
traction. Journal of Machine Learning Research, 3, 2003.

39

	Introduction
	Context
	Motivations
	Organization

	Preliminaries
	Structured data
	Sequences
	Trees
	Graphs
	Tree
	Subtrees

	Kernels
	Convolution kernels
	Kernel methods
	Properties of kernels
	Example of kernel

	Related Work
	Subtree kernel
	SubSet tree kernel
	Fast Tree Kernel
	Conclusion

	From k-ary Tree To Binary Tree
	Knuth Binarization
	Proposed technique of binarization
	The binary tree kernel function
	Experiments and discussion
	Conclusion

	Conclusion

