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ABSTRACT 

Spike sorting technique is one of the Brain Machine Interface’s major steps .This 

technique is used in electrophysiological data analyzing, it depends on the electrical recorded 

neuronal activity detected by electrodes placed on the motor cortex. SS process has four main 

steps; filtering, detection, feature extraction and classification. In this work, using real 

electrocorticography dataset extracted from experiment on rats’ motor cortex; we aim to the 

online spike sorting, in other word, SS process in done simultaneously during this experiment. 

Key words: Spike sorting, Brain Machine Interface, electrophysiological data 

analyzing, neuronal activity, electrodes, electrocorticography, motor cortex, filtering, 

detection, feature extraction, classification, online spike sorting. 

 

 صـــــــــــــملخ

 بياناتال تحليل في الأسلوب هذا ويستخدم. الدماغ-آلة لواجهة الرئيسية الخطوات من واحدة هي سبايكال فرز تقنية

 على الموضوعة الكهربائية الأقطاب بواسطة المكتشفة بالكهرباء المسجل العصبي النشاط على ذلك ويعتمد ية،ائْالكهرب

 هذا في. والتصنيف المعالم استخراج، الكشف، التصفية رئيسية؛ خطوات أربع لديها ههذ الفرز عملية. الحركية القشرة

 للجرذان؛ الحركية القشرة على التجارب من مستخرجة حقيقية دماغة قشر كهربية تخطيط بيانات مجموعة باستخدام العمل،

 .الاختبار هذا خلال وقتنفس ال في الفرز تكون عملية ،بتعبير آخر ،آنيز فر إلى نهدف نحن

 الأقطاب، العصبي النشاط، الكهربية بيانات تحليل، الدماغ-آلة واجهة، سبايكالتقنية فرز :كلمات مفتاحية

  آني. فرز، الدماغ قشر كهربية تخطيط، التصنيف، المعالم استخراج، الكشف، التصفية، الحركية القشرة، الكهربائية

  

Résumé  

La technique de Séparation des impulsions est l'une des étapes majeures de l'Interface 

Cerveau Machine. Cette technique est utilisée dans l'analyse des données électro-

physiologiques, elle dépend de l'activité neuronale enregistrée électriquement détectée par les 

électrodes placées sur le cortex moteur. Le processus de séparation des impulsions comporte 

quatre étapes principales ; filtrage, détection, extraction de caractéristiques et classification. 

Dans ce travail, en utilisant la base de données electrocorticography réel extrait de 

l'expérience sur le cortex moteur des rats; nous visons la séparation en ligne, en d'autres 

termes, ce processus est fait simultanément pendant cette expérience. 

Mots clé : Séparation des impulsions, l'Interface Cerveau Machine, analyse des 

données électro-physiologiques, activité neuronale, électrodes, cortex moteur, filtrage, 

détection, extraction de caractéristiques, classification, electrocorticography, séparation en 

ligne. 
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GENERAL INTRODUCTION  

General Introduction 
As the power of modern computers grows alongside our understanding of the human 

brain, we have become more capable of making the human dream, to interact with the 

computer through the activities of the brain, which was a long standing dream for the 

scientists by the advent of science fiction movies using advanced electronic devices to capture 

brain signals and control real world devices. As for physically disabled people, they face 

difficulties in equating their life with everybody else’s, and that’s a big issue in every society 

today. The scientists have begun using intra\extracellular recording technics, these technics 

were a fantasy thing in medical technologies for the treatment of disorders such as paralysis, 

epilepsy, and even cognitive and memory loss. Many of these technologies are based upon the 

idea of brain machine interfaces (BMIs), in which implanted electronics record and decode 

brain signals that can be used to control machines such as computers or prosthetic limbs. The 

simplest definition of BMI (Brain Machine Interface) is the way for making a direct 

communication between the brain and the external world. 

  The most common method for measuring neural firing is direct electrical recording, which 

uses electrodes to record the voltage patterns of nearby neurons. Each neuron yields a 

characteristic electrical signal, known as a spike but from the recording step, we’ll obtain a 

superposition of many signals from the flow of current coming from the neighbor neurons, 

and as we know about the information is supported in the time distance between individual 

neurons firing. Thus, spike sorting; the grouping of spikes by shape; can be used to match 

measured signals to their generating neurons. More precisely, spike sorting extracts the firing 

times and corresponding neuron labels of noisy electrophysiological recordings. 

 In this thesis, we will go through three linked chapters. As an entry, we will talk about 

the Brain Machine Interface principals and types, its different applications and signal 

recording method. After that, we will learn about spike sorting, specifically, online sorting 

technique and its main four steps: signal filtering, spikes detection and alignment, features 

extraction and spikes classification and clustering. Finally, using MATLAB software, we will 

present the obtained results of online spike sorting applied on real ECoG data extracted during 

the experiment on rats’ behaviors and activities.                         kk 

 
 
 

  



 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 1 : BRAIN MACHINE 
INTERFACE 

 



 

 

3 

 

CHAPTER 1 : BRAIN MACHINE INTERFACE 

1 Introduction 

One of the most important and distinguishing aspects of humans is the ability to 

communicate. Communication between people is richer and more complex than any other 

form of communication, and plays a vital role in any relationship. Similarly, as artificial 

devices become more complicated and play a rapidly waxing role in everyday life, 

communicating effectively with them becomes increasingly important. 

It is impossible to directly convey thoughts, emotions, or concepts between people. 

Instead, these must be translated into verbal or written statements, gesticulations, facial 

gestures, drawings, or other recognizable expressions using a new technology that is Brain 

Machine Interface (BMI) 

BMI gives the paralyzed people another way to communicate with the outside world. In 

addition, these interfaces do not only have medical virtues, they could also be applied in many 

other areas. 

Currently, the latest advances have resulted in this new technology that can lead us to a 

better world. So, the BMI can revolutionize the modern world. 

2 Brain Machine Interface 

Brain Machine Interface (BMI), often called Brain Computer Interface (BCI) or 

sometimes called Mind Machine Interface (MMI).It is the way for making direct 

communication pathway between the brain and an external device. It allows us to transfer and 

use information from distinct brain states for communicating with a machine. 

Brain Machine Interface (BMIs) started with Hans Berger's experiment of brain 

electrical signals recording applied on rabbits witch is actually referenced 

electroencephalography (EEG). In 1924 Berger recorded an EEG signals from a human brain 

for the first time. By analyzing EEG signals Berger was able to identify oscillatory activity in 

the brain, such as the alpha wave (8–12 Hz), also known as Berger's wave. The first recording 

device used by Berger was very elementary, which was in the early stages of development, 

and was required to insert silver wires under the scalp of the patients. In later stages, those 

were replaced by silver foils that were attached to the patients head by rubber bandages later 

on Berger connected these sensors to a Lippmann capillary electrometer, with disappointing 

results. 
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CHAPTER 1 : BRAIN MACHINE INTERFACE 

More sophisticated measuring devices such as the Siemens double-coil recording 

galvanometer, which displayed electric voltages as small as one ten thousandth of a volt, led 

to success. Berger analyzed the interrelation of alternations in his EEG wave diagrams with 

brain diseases. EEGs permitted completely new possibilities for the research of human brain 

activities[1, 2]. 

 

Figure 1.1: Representation of a BMI 

3 Human Brain 

Amazingly, nothing in the world can be compared with the human brain. The brain is 

undoubtedly the most complex organ found among the carbon-based life forms. So complex it 

is that we have only vague information about how it works. 

The most relevant part of brain concerning BMI‘s is the cerebral cortex. Cerebral 

cortex is responsible for many higher order functions like problem solving, language 

comprehension and processing of complex visual information. 

The brain produces electrical signals, which, together with chemical reactions, let the 

parts of the body communicate. 
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CHAPTER 1 : BRAIN MACHINE INTERFACE 

 
Nerves send these signals throughout the body. Brain cells include neurons and glial 

cells. The brain is part of the central nervous system (CNS), which consists of large brain, 

little brain (or cerebellum), brainstem and spinal cord  

The brain is connected to the spinal cord, which runs from the neck to the hip area. 

The spinal cord carries nerve messages between the brain and the body. The nerves that 

connect the CNS to the rest of the body are called the peripheral nervous system. Finally, the 

autonomic nervous system controls our life support systems that we don't consciously control, 

like breathing, digesting food, blood circulation, etc [3, 4] 

 

Figure 1.2: Human brain 

4 BMI Components 

A brain-machine interface (BMI) is a combination of several hardware and software 

components. The hardware consists of an EEG machine and a number of electrodes scattered 

over the subject‘s skull. The EEG machine -that is connected to the electrodes via thin wires- 

records the brain-electrical activity of the subject. The software system has to read, digitize 

and preprocess the EEG data [3]. 
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Figure 1.3 :A BMI based on the classification of two mental tasks. The user is thinking task 

number 2 and the BCI classifies it correctly and provides feedback in the form of cursor 

movement [3]. 

The BMI components can be described as follow: 

4.1 Implant Device 

The EEG is recorded with electrodes, which are placed on the scalp. Electrodes are 

small plates, which conduct electricity. They provide the electrical contact between the skin 

and the EEG recording apparatus by transforming the ionic current on the skin to the 

electrical current in the wires. To improve the stability of the signal, the outer layer of the skin 

called stratum corneum should be at least partly removed under the electrode. Electrolyte gel 

is applied between the electrode and the skin in order to provide good electrical contact. [3]. 

 

Figure 1.4 :An array of microelectrodes[8] 
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4.2 Signal Processing Section 

4.2.1 Multichannel Acquisition Systems 

Electrodes interface directly to the non-inverting opamp inputs on each channel. At 

this section amplification, initial filtering of EEG signal and possible artifact removal takes 

place [3]. 

4.2.2 Spike Detection 

Real time spike detection is an important requirement for developing brain machine 

interfaces. Incorporating spike detection will allow the BMI to transmit only the action 

potential waveforms and their respective arrival times instead of the sparse, raw signal in its 

entirety [3]. 

4.2.3 Signal Analysis 

Feature extraction and classification of EEG are dealt in this section. In this stage, 

certain features are extracted from the preprocessed and digitized EEG signal. In the simplest 

form a certain frequency range is selected and the amplitude relative to some reference level 

measured [3]. 

4.3 External Device 

The classifier‘s output is the input for the device control. The device control simply 

transforms the classification to a particular action. The action can be, e.g., an up or down 

movement of a cursor on the feedback screen or a selection of a letter in a writing application. 

However, if the classification was “nothing” or “reject‖”, no action is performed, although the 

user may be informed about the rejection. It is the device that subject produce and control 

motion. Examples are robotic arm, thought controlled wheel chair etc [3]. 

4.4 Feedback 

Real-time feedback can dramatically improve the performance of a brain–machine 

interface. Feedback is needed for learning and for control. Real-time feedback can 

dramatically improve the performance of a brain–machine interface. In the brain, feedback 

normally allows for two corrective mechanisms. One is the online’ control and correction of 
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errors during the execution of a movement. The other is learning: the gradual adaptation of 

motor commands, which takes place after the execution of one or more movements.  

In the BMIs based on the operant conditioning approach, feedback training is essential 

for the user to acquire the control of his or her EEG response. The BMIs based on the pattern 

recognition approach and using mental tasks do not definitely require feedback training. 

However, feedback can speed up the learning process and improve performance. Cursor 

control has been the most popular type of feedback in BMIs. Feedback can have many 

different effects, some of them beneficial and some harmful. Feedback used in BMIs has 

similarities with biofeedback, especially EEG.[3] 

5 BMI Function 

Applications of Brain Computer Interface base its functionality on either observing the 

user state or allowing the user to deliver his/her ideas. BCI system records the brain waves 

and sends them to the computer system to complete the intended task. The transmitted waves 

are the refor used to express an idea or control an object [3]. 

5.1 Communication and Control 

Brain Machine interface (BMI) systems build a communication bridge between human 

brain and the external world eliminating the need for typical information delivery methods. 

They manage the sending of messages from human brains and decoding their silent thoughts. 

Thus they can help handicapped people to tell and write down their opinions and ideas via 

variety of methods such as in spelling applications semantic categorization, or silent speech 

communication 

BMIs can also facilitate hands-free applications bringing the ease and comfort to human 

beings through mind-controlling of machines. They only require incorporating brain signals in 

order to accomplish a set of commands and no muscles intervention is needed. BCI assistive 

robots can offer support for disabled users in daily and professional life, increasing their 

cooperation in building their community [5]. 

5.2 User State Monitoring 

Early BMI applications have targeted disabled users who have mobility or speaking 

issues. Their aim was to provide an alternative communication channel for those users. But 
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later on, BMI enters the world of healthy people as well. It works as a physiological 

measuring tool that retrieves and uses information about an individual’s emotional, cognitive 

or effectiveness state. The target of brain signals utilization has been extended beyond 

controlling some object or offering a substitution for specific unctions, in what is called 

passive BMI .According to Garcia-Molina et al. , the precise awareness of the curren 

temotional or cognitive state can affect the recognition of the mental task associated with the 

recorded brain waves. Another beneficial employment of such information is to determine the 

state itself and use that knowledge for enhancing various BMI systems. BMI user state 

monitoring function is considered a helpful hand in Human Computer Interfaces and adapts 

them according to the estimated user emotional or cognitive state. It participates in a shared 

control environment and decides the best type of control that might be used in certain 

situations. 

It also contributes in the development of smart environments and emotion controlling 

applications. Working conditions’ assessment and educational methods’ evaluation 

are examples of other fields that could benefit from measuring user’s brain state. The next 

section highlights some applications that exploit brain computer interface [5]. 

6 BMI Applications 

BMI is interesting area to researchers because it can solve many problems which seem to 

be impossible. The essential target of BMI applications is to convert the user’s intent or 

thoughts to an action in external device or computer and control to these devices. Many 

applications of BMI concerned on patients suffer from disorders of consciousness 

(DOC).These patients unable to make communication with their around world. By using 

BMI, these patients can control some devices to perform basic and important jobs they need 

without helping like moving with wheelchair, getting something for eating or drinking by 

using robotic legs or arms controlled by brain. 

BMI technologies are used to restore the vision to blinds by connecting an external 

camera with brain. Applications on device control not include patients only, but also healthy 

users like whose needs to perform many jobs at the same time like divers, astronauts and 

drivers where they keep their hands on swimming, operate equipment and the steering wheel 

.Rabie et al.developed a BMI based system that can help disabled persons to use the web 

through their brains only. The authors developed a technique that captures the eye signals 

through the brain to select the appropriate letters as well as words to be written on the web 
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browser. Another application that has been developed is the wheelchair simulator that is 

controlled also by the BMI signals. 

BMI used also on User-state monitoring which make alert to sleepy drivers or students. 

Also, it extended physically to measure the heart beats for users. Many applications focused 

in entertainment and playing games especially after using 3D monitors, certain glasses and an 

EEG headset where the control on the game by thoughts. EEG combined sometimes with eye 

movement on some applications for security and safety where the system can monitor 

suspicious objects, deviant behavior or arousal state. A common BMI application is 

neurofeedback training to improve working, attention, executive functions and memory. 

Neuroergonomics is an evaluation application used to estimate how well human abilities 

match a technology. BMI used also in education and training techniques. By sing BMI based 

on EEG, patient can control or move the cursor by mental thoughts where the patient can 

select words or letters [6]. 

 

 

 

Figure 1. 5: Wheel chair controlled by brain signals [7]. 
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Figure 1.6: Computer game Pong for two players [8]. 

 

7 BMI Classification 

BMIs have been categorized into four (04) classes types in recent years, these classes are 

discussed below: 

7.1 Brain Signals 

Numerous recording techniques make it possible to capture brain activity directly or 

indirectly and to convert it into signals that can be used to perform a BMI. Some of these 

techniques, called invasive require the surgical implantation of electrodes under the skull; to 

measure the electric field resulting from neuronal activities. There is a wider issue concerning 

the term ‘invasive’. In biomedical engineering, any technology that deposits any eternal 

elements on the sub-epidermal tissue is considered invasive. Other types measuring brain 

activity by a set of electrodes placed on the cortical surface called non-invasive [9]. 
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Figure 1.7: Invasive BMI Electrodes [6]. 

 

Figure 1.8: Wireless noninvasive signal capturing device [6]. 

7.2 Synchronous and Asynchronous 

BMI system is called a synchronous when the user interaction with the system is done 

at certain period of time. In other words, the system has to impose the subject to interact with 

it at certain period of time. Otherwise, the system will not be able to receive the subject 

signals. On the other hand, in asynchronous BMI, also named as “self-paced”, the subject is 

able to perform its mental tasks at any period of time and the system will react to the mental 

activities. Therefore, the subject is free to have the activity at any period of time [10]. 

7.3 Dependent and Non-Independent 

The BMI machines have been classified as Dependent and Independent. The first one, 

the dependent BMIs does not employ the usual ways of brain output to transport and dispatch 

the relevant message. A dependent BMI requires the presence but does not use normal output 
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pathway to produce the brain signals that feed the interfacing computer. For instance, let us 

consider a matrix of alphabet letters presented in a video display, which are sequentially 

illuminated; the human subject is trained to choose the letter he/she wants just via ocular 

fixation .This act produces a Visual Evoked Potential (VEP) on the occipital scalp 

significantly larger than the responses provoked by the other flashing letters which are not 

fixated by the Patient. Therefore, the relevant signal is coming from the EEG, but it is due to 

the sight focus direction.  

An Independent BMI, on the other hand, is entirely free from the physiological output 

pathways of brain as the relevant signal is not generated by propagating signals along 

peripheral nerves, muscles, or other physiological outputs [4]. 

7.4 Spontaneous and Evoked and Event-Related 

Evoked potentials (EPs) appear in the brain as a result of a particular stimulus, e.g., a 

flashing letter, whether the subject is interested in it or not. EPs are time locked to the 

stimulus. Other brain signals can be completely spontaneous, such as those related to 

movement intentions in the sensory motor cortex and are thus not a result of specific input. 

Finally, a third class of signals is dubbed ‘event-related potentials’ (ERP). These are related to 

evoked potentials but include brain responses that are not directly elicited by the stimulus; 

they can include cognitive signals, among other psychological manifestations In fact the term 

ERP is seen as a more accurate term for all but the most restricted simulation protocols. It is 

thus the preferred term instead of EP [4]. 

8 Neuromagink Methods 

8.1 Electroencephalography (EEG) 

Many brain activities could be generated by potential actions of the subject or by changing 

in the blood flow. Recording such activities could be done directly by monitoring 

electrophysiological signals. The most used methods are [10]: 

Electroencephalography (EEG) consists of brain electrical activity patterns as measured 

from the outside of the skull. The first observation of such patterns in animals was made by 

Richard Caton, in Liverpool, in 1875(Cooper et al., 1969). Caton was studying brain activity 

in cats, monkeys and rabbits using cortical non-polarizable electrodes connected to a 

galvanometer when he observed that “feeble currents of varying direction pass through the 
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multiplier [instrumentation] when two electrodes are placed on two points of the external 

surface”. In 1876, Danilevskey observed a change in cortical potentials due to acoustic 

stimuli. 

It was not until 1929 that similar studies were reported in humans. At that time, Hans Berger 

(Figure 1.9.A), in Germany, reported on a study using platinum wires pushed into the scalp, 

zinc-plated steel needles, and various other metals in an attempt to observe 

electroencephalographic activity in humans. Berger also gave electroencephalography its 

name. He is widely considered to be the inventor of EEG. Later, after 1930, when the 

galvanometer was replaced by valve amplifiers and a.c. coupling, better  technology was 

available. One of the most important developments was the multi-channel EEG system 

developed by Grey Walter, which he called the EEG toposcope (Figure 1.9.B). This device 

allowed for studies of brain potentials and their temporal relationships. It is a very useful tool 

and inspired the multi-channel devices used today. Meanwhile, Edgard Adrian and others 

continued Berger’s work. In the 50’s, after the invention of the transistor, researchers returned 

to using d.c. instrumentation. Since then, most developments have been made on making the 

instrumentation less prone to noise and developing better electrodes [4]. 

Figure 1.9:Some of the pioneers in the development of EEG technology. A) Hans 

Berger and the first reported human EEG signals. B) Grey Walter and the EEG 

toposcope. 
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EEG measures the electrical activity by detecting the electrical potential difference 

between a point on the scalp and a ground. More specifically, EEG mostly measures the 

potentials resulting from current flow during excitation of the dendrites of pyramidalneurons 

in the cerebral cortex. Other, deeper cells may contribute to the detected signal as well, but 

this is usually a small affect. 

The amplitude of the potentials measured on the neural cells’ membranes is in the order of 

several tens of mV. However, the tissues between the electrode and the monitored cells, and 

the distance between the neurons and the electrodes, cause the signal to be attenuated by 

many orders of magnitude. Thus, the activity of a few neural cells cannot be detected through 

EEG. Instead, EEG is a result of joint activity of thousands of underlying neurons activated 

together (so called synchronous activity). The amplitude of the EEG signal is proportional to 

the number of synchronously activated neurons and the size of the synchronous area. Even so, 

at besEEG amplitudes are usually in the order of 100 microvolt or less [4]. 

 

Figure 1.10: Generation of cortical potentials that are measured from the skull 

using EEG instrumentation. 
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8.2 Electrocorticography (ECoG) 

Electrocorticography (ECoG) is used to measure the electrical activities of the brain 

through an invasive procedure. In other words, the skull of the subject has to be removed and 

the electrodes are placed directly on the service of the brain. 

Therefore, since the electrodes are placed directly on the skull, the special resolution 

of the measured signals are much better than EEG and signal-to-noise ratio is superior due to 

greater vicinity to neural activity. However, the usage of ECoG is very limited to the exposed 

brain area and it is almost impossible to be used outside of a surgery room [10]. 

8.3 Magnetoencephalography (Meg) 

Magnetoencephalography (MEG) is used to identify and analyze the magnetic field of 

the brain using a functional neuroimaging technique It was first invited by David Choen in 

1968.[15] It utilizes a superconducting quantum interference device (SQUID) that is 

extremely sensitive to the magnetic disturbances created during neuronal activity. This device 

can be used to non-invasively detect the magnetic field signals around the scalp ( 50–500 fT) 

that are generated by neural activity. Modern MEG devices typically use helmet-shaped 

sensor arrays of more than 300 SQUIDs that are systematically arranged to cover the entire 

scalp [28]. Magnetoencephalography (MEG) devices are still too bulky to become a 

convenient BMI modality for everyday use. 

8.4 Positron Emission Tomography (Pet) 

Positron Emission Tomography (PET) is used to observe metabolic processes in the 

body and it is similar to SPECT; however, in PET a pair of gamma rays is emitted due to 

radionuclides injection in the patients. In other words, this radionuclides emits positrons that 

interacts with the electrons located in the monitored/canned area. This interaction generates 

the gamma rays. Using these gamma rays, an image can be constructed. Unfortunately PET 

has high operating cost which makes it not preferable to be used [10]. 

8.5 Functional Magnetic Resonance Imaging (Fmri) 

Functional magnetic resonance (fMRI, Heeger&Ress 2002) is a noninvasive method of 

measuring neuronal activity in the human brain. FMRI detects changes in the concentration of 

deoxyhemoglobin, dependent on a complex interplay among blood flow, blood volume and 
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cerebral oxygen consumption (Heeger et al., 2000; Heeger and Ress, 2002). When neurons 

increase their activity with respect to a baseline level, a modulation of the  deoxyhemoglobin 

concentration is induced, generating the so-called blood oxygen level dependent (BOLD) 

contrast (Boynton et al., 1996). BOLD dynamics is characterised by an initial transient small 

decrease below baseline due to initial oxygen consumption (negative dip), followed by a large 

increase above baseline, due to an oversupply of oxygenated blood only partially 

compensated by an increase in the deoxygenated venous blood volume [4]. 

 

 

Figure 1.11: BOLD signal generation [4]. 

8.6 Optical Imaging (Functional Near Infrared (FNIR)) 

fNIRS technology projects the infrared light into the brain to measure the changes at 

various wavelengths as the light is reflected back out. Usually, the fNIRS detects the localized 

blood volume and oxygenation changes. In fact, fNIRS is used to shape the function maps of 

the brain activities since the fluctuations in tissue oxygenation modulate the scattering and 

absorption of the infrared light photons to varying amounts. Therefore, images similar to the 
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traditional Functional Magnetic Resonance Imaging could be generated with high spatial 

resolution (<1 cm) at the expense of lower temporal resolution (>2–5 seconds). Unfortunately, 

due to the low temporal resolution, fNIRS is not preferred to be used by most of the 

researchers [28]. 

9 Conclusion 

The BCI reads the waves produced from the brain at different locations in the human head, 

translates these signals into actions, and commands that can control the computer(s). The field 

of BCI is one of the important fields that deal with brain activities. It is expected that BCI 

applications will have great effect on our daily life. This chapter focuses on defining the BMI. 

And also present its different types and applications .There are a plethora of signals, which 

can be used for BCI. These signals divide into two classes: field potentials and spike. In order 

to better understand how the brain works we present in the next chapter a necessary step in 

the brain machine interface that is spike sorting.                   M
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1 Introduction 

Neurons communicate through electrophysiological signals, which may be recorded 

using electrodes inserted into living tissue. When a neuron emits a signal, it is referred to as a 

spike, and an electrode can detect these from multiple neurons. 

The point process component of intracellular recording results from the spiking 

activity of neurons in a background of physical and biological noise. When a recording 

electrode measures action potentials from multiple cells, these contributions must be 

disentangled from the background noise and from each other before the activity of individual 

neurons can be analyzed. This procedure of estimating one or more single cell point processes 

from a noisy time series is known as spike sorting. 

2 Stat Of The Art 

In a traditional neural recording system, electrodes provide the direct interface to the 

brain, and the unamplified raw data is sent outside the body through wires to the rest of the 

data acquisition hardware. The raw data is recorded onto computer hard disks [11]. 

Many different approaches have already been tested and introduced in order to address 

the problem at hand. In terms of spike detection, the most common methods use simple 

thresholding techniques to extract the actual spike signals from the noisy measurement data. 

More elaborated algorithms further add specific signal transformations, e.g. using the 

nonlinear or Teager energy operator (NEO or TEO) (Kim and Kim, 2000; Choi et al., 2006) 

to the thresholding process in order to decrease the influence of noise or low frequency signal 

artifacts. Another approach presented by Hulata et al. (2002) uses Wavelet-based 

decomposition to discriminate actual spike shapes from noise. Such extended detection 

methods usually yield a more precise detection result, which facilitates the actual sorting 

process, but at the expense of a higher computational complexity. The most common method 

of feature extraction and reduction is still the principal component analysis (PCA) (Wood et 

al.,2004; Wang et al., 2006; Biffi et al., 2008).However, Wavelet or Wavelet packet-based 

features have also become quite popular as the resulting coefficients are also capable of 

describing the differences of various spike signals (Oweiss and Anderson, 2002; Hulata et al., 

2002; Quiroga et al., 2004). A drawback of this complex method is the necessity of an 

additional selection step to identify the coefficients that most precisely discriminate between 
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the various spike shapes. In some cases, geometric features are also obtained from the 

measured spike events (Fee et al., 1996; Vogelstein et al., 2004) as an alternative or, more 

commonly, a complement to standard PCA features. The variety of the used spike sorting 

features indicates that no optimal feature set has yet been established. This might be due to 

the fact that it is questionable whether a fixed set of features exists that can generally 

guarantee a suitable spike shape representation. While an analysis of common spike sorting 

features already shows certain diversity, this is even more apparent in the area of possible 

classification algorithms. Many different pattern recognition approaches, ranging from simple 

clustering techniques such as k-means (Hulata et al., 2002; Sato et al., 2007), more elaborate 

expectation maximization (Kim and Kim, 2003; Wood et al., 2004) and super-paramagnetic 

clustering methods (Quiroga et al., 2004), to trainable classification algorithms such as neural 

networks (Kim and Kim, 2000) and support vector machines (SVMs) (Vogelsteinet al., 2004), 

have already been tested for neural spike sorting. However, none of these approaches has 

been able to provide generally optimal results to be widely established. Whereas trainable 

algorithms certainly provide a greater potential, their performance still seems to suffer due to 

a lack of fundamental training data. Unlike in other areas, for example voice recognition or 

person identification, in which basic training databases already exist, such datasets have not 

been established for neural patterns, thereby limiting actual algorithm training. In addition, 

many spike sorting algorithms also include a final template matching step to further refine the 

classification result (Zhang et al., 2004; Wang et al., 2006; Sato et al., 2007). However, since 

the result depends on prior template extraction methods, which usually include the already-

mentioned clustering techniques, inaccuracies cannot always be compensated. In conclusion, 

there still seems to be no optimal method that is generally capable of sorting neural spike 

patterns. One reason for this might be the lack of fundamental test datasets containing a 

principal spectrum of theoretically possible spike shapes that could be used to evaluate the 

different classification algorithms. As this problem also prevents a thorough evaluation of the 

suitability of different spike features, it is generally difficult to evaluate the feasibility of 

specific types of features such as principal components or Wavelet coefficients. Although 

certain studies have shown that Wavelet-based feature extraction potentially outperforms the 

PCA, this fact cannot be generalized to all possible datasets (Pavlov et al., 2007). Therefore, a 

priori exclusion of PCA features can limit the ability to discriminate between certain spike 

forms. In fact, this is also true for other features that might be inferior in most cases but not in 

general. Hence, it might not be useful to focus on a specific feature extraction technique, as 

other features might be more suitable on specific occasions. Therefore, in contrast to most 



 

 

22 

 

CHAPTER 2: ONLINE SPIKE SORTING 

methods, the algorithm presented in this paper regards various possible features, such as 

principal components and different Wavelet packet coefficients, as well as geometric features. 

As such an approach requires a unique feature reduction step in order to determine the 

features most suitable for the particular spikes of the signal, a newly developed feature 

evaluation step is proposed in this paper. By analyzing the probability distribution of the 

different feature coefficients, the candidates with the most distinctive multimodal character 

can be found. Resembling the different spike shape characteristics, this method allows the 

derivation of spike sorting feature sets that are customized for each individual set of neuronal 

data [12]. 

3 Spike Sorting 

An important standard in neuroscience is to record intracellular the activity of single 

neurons with thin electrodes implanted in the brain. Intracellular recordings pick up the spikes 

of neurons nearby the electrode tip and the job of the experimenter is to determine which 

spike corresponds to which neuron. This identification is done based on the shape of the 

spikes, given that, in principle, each neuron fires spikes of a particular shape, depending on 

the morphology of its dendritic tree and the distance and orientation relative to the recording 

site, among other factors. Spike sorting is the grouping of the detected spikes into clusters 

based on the similarity of their shapes. The resulting clusters of spikes correspond to the 

activity of different putative neurons [13]. 

 The process consists of ordered steps (see Figure2.1), which will be explained in the 

following sections: 

1. Signal filtering 

2. Spike detection 

3. Feature extraction 

4. Spike classification clustering 

 

Figure 2.1: Main four steps of spike sorting process. 
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All of these steps are important for the final result {an efficient and reliable clustering 

algorithm is of little use if one is unable to extract relevant features from the relevant spikes. 

 The development of reliable and efficient spike sorting algorithms is lagging behind 

the recent developments in recording hardware, increasing the importance of improving the 

algorithms. Hundreds of electrodes can now record signals simultaneously, allowing the 

recording of many neurons, which helps in providing a bigger picture of the activity. 

However, being able to classify all the recorded neurons is non-trivial, especially when they 

are being recorded simultaneously. 

A potential problem with neuronal activity recording is making a distinction between 

one or several close neurons. This is sometimes not possible, and clusters are labeled either as 

single neurons or multi-units {collections of several neurons which fire together. Many 

automatic spike sorting algorithms make no distinction between the two, and there are no 

clear, objective and agreed-upon criteria for making the distinction. 

 

4 Online Spike Sorting 

This section presents the proposed solution to the problem of designing an implantable 

Digital Spike Sorting that implement a Spike Sorting Process. Besides implantable, this 

processor must be able to transmit, in real-time, the relevant information to the external world 

through a wireless module as illustrated in Figure 2.2. However, due to the current 

technologies used in the development of electrode arrays, the SSP is actually a multi-channel 

system, where multiple parallel channels record the responses of different sets of neurons. 

Thus, it is highly relevant to provide the means for a single processor to handle multiple 

channels (preferably all) without missing relevant information, in order to minimize both the 

implantable device size and its energy consumption. Nonetheless, to ensure a correct 

operation, such a processor must be limited by the worst-case scenario. For instance, consider 

the reasonable refractory period (the minimum interval of time between the fires of two spikes 

from the same neuron) of 5ms and a 16 channel system. The time available to process a spike, 

from its detection to its classification, is approximately 300 µs (since the interval of time 

between two spikes from the same neuron has to be enough for processing all the other 

channels). In this way, once guaranteed the real-time operation, the objective of the proposed 

work is to increase the number of different channels the dedicated processor is able to process 

simultaneously within the inherent restrictions. 
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Figure 2.2: Data transmission to the external world. 

To accomplish this objective, the proposed solution is developed in several steps. Each 

new step represents a lower-level of abstraction as well as contains a more detailed and closer 

to the hardware description [14]. 

5 Spike Sorting Steps: 

The spike sorting and classification regroup many steps before obtaining sorted signal, 

first, we have to filter the signal from eliminating noises, than, we have to detect, isolate and 

align spikes and finally, we cluster spikes using any technique of separation. 

5.1 Signal Filtering 

The word "filtering" refers to an attempt to extract the important part of some data 

while eliminating random contributions called "noise" or other unwanted features which 

obscure the ones that matter. Depending on the applications, we can describe two wide worlds 

of filters, digital and analogical. If we classify filters on the way of permitted frequencies we 

can have four types: high-pass, low-pass, band-pass and stop-band.  

5.1.1 Filters 

Filter is the (i) circuit for analogical signals and (ii) algorithm for digital signals that 

capable of passing signal from input to output that has frequency within a specified band and 

attenuating all others outside the band. This is the property of selectivity. There are four basic 

types of filters depending on the permitted frequencies to cross the filter. They are low-pass, 

high-pass, band-pass, and band-stop. For analogical signals, the basic filter is achieved with 

various combinations of resistors, capacitors, and sometimes inductors, these are named 

passive filters. Active filters besides using passive element, it also uses active element such as 

transistors or operational amplifiers to provide desired voltage gains or impedance 
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characteristics. For, digital signals, filters are designed by using frequency band-pass low or 

high combinations convolved to the original signal to be filtered[15]. 

5.1.1.1 Ideal Filter 

Ideally, filter should have the characteristics as shown in Figure 2.3. In practice, such 

characteristics are not possible to be achieved and the attenuation of the signal after the 

critical frequency is either exponentially increased or decreased. It is not abruptly decreased 

or increased as shown in figure [15]. 

 

 

Figure 2.3:Ideal filter characteristic – (a) low-pass, (b)high-pass, (c) band-pass,  

(d)and band-stop. 
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Some famous digital filters are described in the following subsections. 

5.1.1.2 Butterworth Filter 

A low-pass Butterworth filter is an all-pole filter with a squared magnitude response 

given by: 

|�	
�Ω�|� =  11 + 
�Ω/�Ω����                                            
2.1� 

The parameter N is the order of the filter (number of poles in the system function), and Ω�is the 3-dB cutofffrequency. The magnitude of the frequency response may also be 

written as: 

|�	
�Ω�|� =  1
1 + �� � �Ω�Ω� ��                                              
2.2� 

Where: 

� = �Ω!Ω�  �                                                               
2.3� 

The frequency response of the Butterworth filter decreases monotonically with increasing 

of the frequency, and as the filter order increases, the transition band becomes narrower. 

These properties are illustrated in Figure 2.4, which shows|�	
�Ω�|for Butterworth filters of 

orders N = 2,4, 8, and 12. Because:[16] |�	
�Ω�|� =  �	
���	
−��|#$�Ω                                      
2.4� 

From the magnitude-squared function, we may write: 

∗ &	
�� =  �	
���	
−�� =  1
1 + ' #�Ω()��                                     
2.5� 
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Figure 2.4: The magnitude of the frequency response for Butterworth filters of orders N= 2, 4, 8[16]. 
Therefore, the poles of &	
��are located at 2N equally spaced points around a circle of 

radiusΩ�, 

�. =  
−1�//��
�Ω� =  Ω� 01� 2� 
� + 1 + 23�42� 5             3 = 0, 1, … , 2� − 1       
2.6� 
and are symmetrically located about the �Ω-axis. Figure 2.4 shows these pole positions for � =  6 and � =  7.The system function,�	
��, is then formed from the N roots 

of�	
���	
−��that lie in the left-half s-plane. 

For a normalized Butterworth filter with  Ω� = 1 , the system function has the form[16] 

�	
�� = 1=�
�� = 1�� + >/��?/ + ⋯ + >�?/� + >�                                
2.7� 
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Table 2.1 lists the coefficients of =�
��for 1≤ N ≤8. Given Ω!, Ω#, A!and A# the steps 

involved in designinga Butterworth filter are as follows: 

1. Find the values for the selectivity factor, k, and the discrimination factor, d. from the 

filter specifications. 

2. Determine the order of the filter required to meet the specifications using the design 

formula:                        � B CDE FCDE .                                                                                        
2.8� 

 

Table 2.1:The Coefficients in the System Function of a Normalized Butterworth Filter (Ω� =1) For order 1 ≤ � ≤ 8 [16]. 

 

 

(a) Order N=6                                  (b) order N=7 

Figure 2.5: The poles of �	
���	
−��for a Butterworth filter of order N = 6 and N = 7 [16]. 

N >/ >� >G >H >I >J >K >L 
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2 
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8 

1.0000 

1.4142 

2.0000 

2.6131 

3.2361 
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3. Set the 3-dB cutoff frequency, M� to any value in the range [16] 

Ω! NO1 − A!P?� − 1Q?//�� ≤ Ω� ≤ Ω#[A#?�]? RST                                   
2.9� 

4. Synthesize the system function of the Butterworth filter from the poles of  

&	
�� = �	
���	
−�� = 1
1 + ' #�Ω()��                                           
2.10� 

that lie in the left-half s-plane. Thus,[16] 

�	
�� = V −�.� − �.
�?/
.$W                                                              
2.11� 

Where: 

�. = Ω�01� 2� 
� + 1 + 23�42� 5          3 = 0, 1, … , � − 1                 
2.12� 

 

5.1.1.3 Lattice Filters: 

Lattice filters have a number of interesting and important properties that make them 

popular in a number of different applications. These properties include modularity, low 

sensitivity to parameter quantization effects, and a simple criterion for ensuring filter stability. 

In the following sections, we present the lattice filter structure for FIR filters, all-pole filters, 

and filters that have both poles and zeros [16]. 

 

FIR Lattice Filters 

An FIR lattice filter is a cascade of two-port networks as shown in Figure 2.7. Each 

two-port network is defined by the value of its reflection coefficient,X. .The two inputs, Y.?/
Z�and[.?/
Z�are related to the outputsY.
Z�and [.
Z�by a pair of coupled difference 

equations [16]: Y.
Z� = Y.?/
Z� + X.[.
Z − 1�                                            
2.13� [.
Z� = [.?/
Z − 1� + X.Y.?/
Z�                                         
2.14� 

With the input to the first section being:     YW
Z� = [W
Z� + 1
Z�                                                    
2.15� 
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Figure 2.6:Apth-order FIR lattice filter. (a) The two-port network for each lattice filter 
module. (b) A cascadeof p lattice filter modules [16]. 

 

With =.
\�the system function relating the input 1
Z�to the intermediate output].
\�, ].
\� = =.
\�^
\�                                                         
2.16� 

These difference equations may be solved by induction to yield the following recurrence 

formula for=.
\�: =.
\� = =.?/
\� + X.\?.=.?/
\?/�                                        
2.17� 

This is called the step-up recursion. The recursion is initialized by setting=W
\� = 1. This 

recurrence formulaalso defines a recurrence relation for the coefficients >.
_�of =.
\�, which 

is: >.
_� = >.?/
_� + Г.>.
3 − 1�          _ = 1, 2, … , 3 − 1                       
2.18� >.
3� = Г.                                                           
2.19� 

A simple way to write this recursion is in terms of vectors as follows: 

ab
bb
c 1>.
1�⋮>.
3 − 1�>.
3� ef

ff
g =

ab
bb
c 1>.?/
1�⋮>.?/
3 − 1�0 ef

ff
g + Г.

ab
bb
c 0>.?/
3 − 1�⋮>.?/
1�1 ef

ff
g                          
2.20� 
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All-Pole Lattice Filters 

The structure for an all-pole lattice filter is shown in Figure 2.6. As with the FIR 

lattice, a p th-order all-pole filter is a cascade of p stages, with each stage being a two-port 

network that is parameterized by its reflection coefficient X..The two inputs, Y.
Z�and [.?/
Z�, are related to the two outputs Y.?/
Z�and[.
Z�by a pair of coupled 

difference equations: Y.?/
Z� = Y.
Z� + X.[.?/
Z − 1�                                          
2.21� [.
Z� = [.?/
Z − 1� + X.Y.
Z�                                           
2.22� 

The system function relating the input 1
Z�to the output h
Z�is: 

�
\� = 1=!
\�                                                            
2.23� 

Where =!
\�is the polynomial that is generated by the recursion given in Eq. (2.17).In 

addition, note that the system function relating 1
Z�to i
Z�is an all-pass filter with a system 

function =	!
\�givenby: 

�	!
\� = \?!=!
\?/�=!
\�                                                   
2.24� 

 

Figure 2.7: A �th-order all-pole lattice filter. (a) The two-port network for the kth stage of the 
all-pole lattice filter. (b) Cascade of p lattice stages[16]. 

IIR Lattice Filters 

If �
\� is an IIR filter with � poles and j zeros, 

�
\� = kl
\�=!
\� = ∑ nl
3�\?.l.$W1 + ∑ >!
3�\?.!.$/                                        
2.25� 
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Withj ≤ �, a lattice filter implementation of �
\� consists of two components. The first is an 

all-pole latticewith reflection coefficients X/, X�, … , X!, those implements1/=!
\� . The second 

is a tapped delay line withcoefficients ol
3�. The structure is illustrated in Figure 2.8 for the 

case in which  � = j. The relationship betweenthe lattice filter coefficients ol
3�and the 

direct form coefficients nl
3�is given by [16]: 

nl
3� = p ol
��l
�$. >�
� − 3�        3 = 0, 1, … , �                            
2.26� 

Similarly, a recursion that generates the coefficients ol
3�from the coefficients nl
3�is: 

ol
3� = nl
3� − p ol
��l
�$.q/ >�
� − 3�       3 = j − 1, j − 2, … , 0       
2.27� 

This recursion is initialized with ol
j� = nl
j�. 

 

Figure 2.8: An IIR lattice filter with p poles and p zeros [16]. 

5.1.2 Signals Convolution 

5.1.2.1 Signals Of The Same Dimensions  

If the signals h and g are numerical and defined by the sequences {ℎ 
Z�} and {[ 
Z�} 

of dimension N, the convolution product is written: 

�
Z� = ℎ
Z� ∗ [
Z� = p ℎ
3�[
Z − 3��?/
u$W                              
2.28� 
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The signals h and g are both defined over the interval [0, � −  1]. However in the 

operation of reversal of the signal g the index n - k will be likely to run of [−� +  1, � −  1]. 
Since g is only defined on the interval [0, � −  1] it is important toset the rules of calculation 

and these rules can be different according to the objective that one is fixed. We can see that if 

we start from the signal g returned, this signal will remain in coincidence with the signal h not 

returned as long as Z will belong to the interval [0, 2� −  1]. The dimension of the 

convoluted signal is therefore 2� −  1 if the starting signals are both a clear way to establish 

this property is to consider that the signal g exists only if the quantity Z −  3 belongs to the 

interval [0, � −  1] with k contained in the same interval [17]. 

Suppose that k is equal to either the index 3 =  0 or the index 3 =  � −  1. The signal [ 
Z −  3� will exist if 

v 0 ≤ Z ≤ � − 10 ≤ Z − � + 1 ≤ � − 1 ⇔ 0 ≤ Z ≤ 2� − 2                                
2.29� 

which leads to a convoluted signal of dimension 2� −  1 
To perform the numerical calculation we adopt the following rules [17]: 

Rule n°1 

We perform the operation considering that in the sum contained in the Equation 2.28 samples 

with an index outside the range [0, � –  1] will be zero. The problem obviously does not arise 

for ℎ but clearly for [. 

 We have then: 

�
Z� = ℎ
Z� ∗ [
Z� = p ℎ
3�[
Z − 3��?/
u$W          Z ∈ [0;  2� − 2]          
2.30� 

Rule n°2 

The operation is performed considering that the samples outside the interval[0, � −  1] 
have the same value as those contained in the interval which corresponds to periodize the 

returned signal. 
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Rule n°3 

We do the calculation on an interval half of the dimension of the signal which comes 

back indirectly using rule 2. 

It is clear that the proposed rules for this calculation do not all lead to the same result. This 

will be discussed later. 

The following example shows how the convolution product is performed in the case of digital 

signals. We will consider the following signals: 

Zℎ
Z� 0 1 2  1 2 3    / dim ℎ = 3                                                 
2.31� 

and 

Z[
Z�0 1 21 1 2    / dim [ = 3                                                
2.32� 

The graph of these signals looks like this: 

To carry out the convolution operation, it is now necessary to return the signal [ 

starting withZ =  0. It is trivial to note that [ 
−3� which is nothing else that [ 
Z –  3�for Z =  0. 

 

 

Figure 2.9: Graph of the tow signals [17]. 

 During this operation we obtain the symmetry of [ by relative to the y-axis. Indeed to 

check it just as k  } =  −3 and it is immediately see that [17]: 



 

 

35 

 

CHAPTER 2: ONLINE SPIKE SORTING 

−3[
Z� 0 −1 −2 1    1    2                                                               
2.33� 

If we fix the rule n◦1 calculation we see that we will not keep in the signal returned only [ 
0� 

to perform the summation contained in the convolution product. 

The first sample of the convoluted signal 

�
0� = p ℎ
3�[
−3� = ℎ
0�[
0� = 1�
.$W                                      
2.34� 

For Z =  1 the signals ℎ 
3� and [ 
1 −  3� have a common intersection in 3 =  0 and 

3 =  1  and the second sample of the convoluted signal becomes: 

�
1� = p ℎ
3�[
1 − 3� = ℎ
0�[
0� + ℎ
1�[
0� = 1 + 2 = 3              
2.35��
.$W  

By gradually sliding the signal [ 
Z −  3� from Z =  0 to Z =  2� −  2 onthe axis of the 

abscissa is obtained the product of convolution of the two digital signals. 

The samples contained in the convoluted signal are: 

Z 0 1 �
Z� 1 3 2 3 47                                                    
2.36� 

5.1.2.2 Signals of Different Dimensions 

Now, we approach the case of two signals ℎ and [ of different size. 

We put ~_�ℎ =  � and ~_�[ =  �. By definition we always have [17]: 

�
Z� = ℎ
Z� ∗ [
Z��
0� = p ℎ
3�[
Z − 3��?/
.$W                               
2.37� 

In this case Z − 3 must belong to the interval [0, � −  1] and k to the interval [0, � −  1]. 
Therefore, the index n must verify: 

v 0 ≤ Z ≤ � − 10 ≤ Z − � + 1 ≤ � − 1 ⇔ 0 ≤ Z ≤ � + � − 2                        
2.38� 
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which shows that the dimension of the convoluted signal is � +  � −  1. 

In this case we use the calculation rule n◦1 [17]. 

5.2 Spike Detection and Alignment 

5.2.1 Spike Detection 

Spike detection as the first basic step, it is very important in data analyzing and  

classification, since the quality of resulting data depends crucially on a particular 

detection technique used among them the threshold application, and there are another class of 

spike-detection algorithms are based on detecting changes in the energy of the signal. Some 

of these algorithms are the nonlinear energy operator (NEO) and the Teager energy operator 

(TEO).  

5.2.1.1 Teager Energy Operator (Teo) 

The TE operator of a complex-valued signal 1
�� isdefined as 

Ψ�[1
��] = 1� 
��1� ∗
�� − 12 [1� 
��1∗
�� + 1
��1� ∗
��]                    
2.39�  
When 1
�� is real, 
2.39� reduces to the TE of a real-valued signal, which is defined as Ψ�[1
��] = 1� �
�� − 1
��1� 
��                                          
2.40� 

Furthermore, writing the complex signal 1
�� as a function of itsreal and imaginary 

parts: 1
�� = 1�
�� + �1�
��
2.41� 

 

then applying the complex TE operator of 
2.39�, we obtain: 

     Ψ�[1
��] = Ψ�[1�
�� + �1�
��] = 1���
�� + 1���
�� − 1�
��1��
�� − 1�
��1� 
��     
2.42� 

 

Hence, the TE of a complex signal is equal to the sum of the Teager energies of its real and 

imaginary parts: Ψ�[1
��] = Ψ�[1�
��] + Ψ�[1�
��]                                           
2.43� 
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It is proposed, the following TE operator for complex-valued signals: 

 Ψ�[1
��] = ‖1�
��‖� − �0|1∗
��1� 
��|                                    
2.44� 

Substituting the complex-valued signal 1
�� by its real and imaginary parts in 
2.44�, it can 

easily be show that 
2.43� holds also for Maragos and Bovik’s definition, although ours 

exhibits the symmetry of the operator more clearly. Note that both definitions yield a real 

quantity, as expected for an energy operator [18]. 

5.2.1.2 Nonlinear Energy Operator (Neo) 

The Non-linear Energy Operator (a.k.a. Tieger operator) is known to be very effective 

in spike detection, especially for signals with very low SNR (Signal to Noise Ratio). The 

NEO output is proportional to the square of the instantaneous product of a signals amplitude 

and frequency [19], described by  �O�
��P = 
1�
���� − 1
�� ∙ O1� 
��P                                        
2.45� 

It can easily be shown that the output of the NEO is proportional to the product of the 

amplitude and frequency of the input signal ……..[20]. 

For a discrete-time sequence  1
��, the NEO is given as: 

�[1
Z�] = 1�
Z� −  1
Z + 1�1
Z −  1�                                           
2.46� 

The NEO has been used for the amplitude and frequency demodulation, the analysis of 

speech signals, and recently for the detection of a spiky waveform in (ECoG) all of these 

studies have made the use of the fact that the NEO can simultaneously consider the 

“instantaneous” amplitude and frequency information of the input signal. By the 

“instantaneous” amplitude and frequency, we mean the amplitude and frequency of the 

dominant sinusoidal component at any particular time. More formally, they can be defined by 

the Hilbert transform pair. When an action potential is fired, it is possible to see an 

instantaneous increment of signal amplitude and frequency using time-frequency analysis 

such as short-time Fourier transform or Wigner–Ville distribution. The output of the NEO is 

convolved with a Bartlett window in order to eliminate the spurious peaks due to the cross 

terms and background noise [20]. 
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5.2.1.3 Threshold Application 

Thresholding is an often-used method of spike detection for implantable neural signal 

processors due to its computational simplicity. A means for automatically selecting the 

threshold is desirable, especially for high channel count data acquisition systems. Estimating 

the noise level and setting the threshold to a multiple of this level is a computationally simple 

means of automatically selecting a threshold [21]. 

In any spike detection algorithm, the choice of threshold for detection of a spike event 

is a tradeoff between avoiding false positives (i.e., Type I errors) and false negatives         

(i.e., Type II errors). A low threshold will capture the most spike events but will 

erroneously admit many noise events. A high threshold rejects the most noise but 

also misses the most spikes. When a statistical model of noise is used, the threshold 

can be calibrated to a desired ratio of Type I to Type II errors. In most cases, a 

more permissive threshold is desirable because windows of noise can be removed in 

later stages of processing [22]. 

The threshold for NEO detection is a statistical calculation, which the mean of the 

NEO filtered out-put multiplied by a factor [23] The formula for NEO threshold is given in 
2.47�: 

�ℎ� = � × 1� p Ψ[1
Z�]�
�$/                                                  
2.47� 

Where;  � is the number of samples of the signal, and C is the multiplying factor found 

empirically. This factor was tested in [23] on several neural datasets and an approximate value 

of 8 gave the best detection results at multiple SNRs. Since the factor is a power of 2, it is 

relatively easily implemented in hardware, and thus this approximation is suitable when the 

threshold needs to be determined in hardware on-chip [24]. 
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Figure 2.10:Spike detection using thresholding in NEO and raw data. 

Figure 2.10illustrates how thresholds are applied to raw and NEO data. It is clear that 

NEO data provide a better contrast between spike and noise data. Outside the spikes, data are 

smoother. Therefore 1
Z�, 1
Z − 1�and 1
Z + 1�are similar in magnitude, leading to 

�[1
Z�]close to zero. This is true even when raw data is large in magnitude but not spiky. 

NEO is less prone to error even when noise accumulates to a high voltage level. The choice of 

NEO threshold value depends on data set and is normally obtained after a training period. So, 

threshold value in NEO is defined as:[25] 

�ℎ�0���� = 8 1� p Ψ[1
Z�]�
/                                                
2.48� 

5.2.2 Alignment 

When spike detection is performed in the digital domain, whenever the voltage signal 

crosses a threshold, a window is applied and a spike waveform is captured. At this point, each 

spike is essentially aligned to the point of the threshold crossing. However, sampling jitter 

combined with noise effects may leave features of interest, such as maximum and minimum 

values, misaligned. This temporal misalignment has the effect of increasing the spread of 

points in feature space, making clustering more difficult. Thus, alignment should be 

performed prior to classification. 
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Figure 2.11:Examples of two different alignment methods. Left: alignment to maximum 
amplitude, Right: alignment to maximum slope. 

 

The alignment process usually begins by up-sampling the signal (using an 

interpolation method such as cubic spline) to help reduce the effects of sampling jitter. Then, 

the signal is aligned to some event in time. The aligned spikes may be down-sampled to the 

original sampling rate after alignment. 

The most common method of temporal alignment is to align each spike to the point of 

its maximum amplitude (Fig. 2.11) .Alignment to the point of maximum slope (Fig. 2.11) has 

also been proposed, which is intuitive since the rising slope of the action potential has 

biological significance. This method would be especially convenient if discrete derivatives 

were already being used for feature extraction. Others have proposed alignment to the 

maximum of an energy measure such as the NEO, which would be convenient if NEO were 

already being used for spike detection. Similarly, alignment to the maximum integral would 

be convenient if the integral transform were being used for feature extraction. Indeed, it 

would be convenient to perform alignment with respect to any measure that is already being 

calculated in the sorting process. 

Although the aforementioned alignment methods will usually improve classification 

accuracy, alignment to a metric that is derived from the whole spike rather than from a single 

point may be less susceptible to the effects of background noise. One example of such a 

metric is the spike’s center of mass. Note that all of the algorithms that have been described in 

this section are completely automatic and real-time[11] 
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5.3 Feature Extraction 

The implementation  of  a  generalized  feature  evaluation  step  in the  spike  sorting  

process  does  not  only  provide  the  opportunity  to use  a  mixture  of  PCA  and  Wavelet  

features  for  the  classification step,  but  also  allows  the  inclusion  of  other  features  that  

are,  for example,  based  on  the  shape  of  the  measured  spikes  themselves.Certain 

characteristics of the spike, e.g.  its  negative  or  positive amplitude,  as  well  as  various  

gradients  or  its  signal  energy  can  be used  as  additional  candidates.  On  the  one  hand,  

such  geometry based  features  are  usually  vulnerable  to  noise  signals  and  voltage 

offsets.  On  the  other  hand,  they  can  be  very  potent  in  particular situations,  in  which  

such  a  feature  can  specifically  highlight  a  difference  between  two  spike  shapes.  

Furthermore,  these  features  can be  quickly  and  easily  calculated  and  represent  no  

imminent  threat to  the  algorithm’s  computational  complexity [12]. 

5.3.1 Geometric Features 

The  calculation  of  the  positive  and  negative  amplitude  is  basically  self-

explanatory.  The  left  and  right  spike  angles  represent  the left  and  the  right  gradient  of  

the  characteristic  spike  minimum  to the  point  in  the  signal,  at  which  it  crosses  the  

margin  of  50%  of that  value.  The  choice  of  this  particular  margin can  be  explained  by  

low  liability to the noise components of the signal. The  resulting  value  can  easily  be  

transformed  into  an  angular  measure,  using  basic  trigonometric  functions.  In  addition,  

the spike  duration  can  be  approximated  as  the  distance  between  the intersection  points  

of  both  gradients  with  the  0  �  level.  The  positive  and  negative  signal  energy  of  a  

continuous-time  signal  �
��  canbe  approximated  based  on  the  following  equation: 

�� =  � ��
��~�∞

?�                                                         
2.50� 

Likewise,  the  signal  energy  can  also  be  calculated  for  discrete-time signals  by  

summing  the  squared  discrete  signal  values.  In  this case, the  positive  and  negative  

energy  components  of  the  spike  are  calculated  in  particular  to  separate  mono-polar  

from  bipolar  spike  shapes more  accurately [12]. 
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5.3.2 Principal Component Analysis: 

The strategy behind PCA is to apply a transformation in the spikes. The difference is 

that the new base in which the spikes are described is composed of a set of orthogonal 

vectors, which eliminates the redundancy in its representation. In turn, the data reduction is 

achieved by considering only the coordinates that increase the capability of distinguishing the 

neurons that elicited the spikes. According to the literature, a minimum set of 3 coordinates 

already allows capturing more than 90% of the variance in the spike data. The mathematical 

definition is presented by the next expression, where each spike is expressed as a series of 

Principal Component Coefficients (PCC) o�, N is the number of samples in a spike �, and PCi 

is the i th PCC: 

o� =  p ���,�
�

�$/  ∙  ��                                                        
2.51� 
These PCCs are obtained by the eigen value decomposition of the covariance matrix 

of the data. The disadvantage of this algorithm is that it is oriented by the maximum variance 

in the data, which is not necessarily the best set of features to identify which neuron the spike 

corresponds to. Nonetheless, this is by far the most used algorithm for the FE stage and it is 

presented here for comparison purposes since it cannot be used to implement a real-time 

solution [14]. 

5.4 Spike Classification and Clustering 

The classification of the detected spikes according to the generator neuron is 

accomplished in this last stage. It analyzes these spikes (already represented through the 

features generated in the previous stage, FE) and classifies them based on their similarity. 

There is no usual sub-division of this stage in the literature. In the first approaches, this was 

done manually and the quality of the results depended on the skills of the person in charge of 

the analysis. Since then, many other methods have been proposed to automate the clustering 

step. One of the main differences among these automatic methods is the capability to run in 

real-time. Several methods provide good accuracy and are robust to SNR differences but need 

to process the whole recorded data and it is not possible to apply them in a real-time 

application. This is the case of the K-means and Super-paramagnetic Clustering (SPC) 

algorithms. On the other hand, several real-time approaches have been proposed, which 

process and adapt the sorting process in real-time (e.g., OSort). Although such approaches are 

not as accurate as their offline counterparts, they can be integrated and used for the 
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development of neural-prosthesis. Alternatively, other approaches operate in real-time, but 

require a training phase in order to adjust their parameters to the specificity of the 

circumstances. However, one of the main drawbacks of such approaches is the inability of the 

system to detect spikes from neurons that did not fire during the training phase [14]. 

5.4.1 K-Means 

K-means has become a standard in clustering applications because of its simplicity and 

accuracy. This is a simple approach, also called "nearest neighbor". It was proposed by 

Hartigan 1975 and a more efficient version by the same author was put forward in 1979. The 

main idea is to partition the P points in � dimensions into } clusters, minimizing the sum of 

the squares in each cluster. With a large dataset, and when } >  2, it is impractical to require 

a global minimum when the solution has the minimum sum of squares in all clusters, since a 

local minimum in one cluster negatively affects another cluster. Instead, a local optimum is 

expected, where no movement of points from one cluster to another will reduce the sum of 

squares in the cluster. In k-means, the average of each group is called a centroid. If the 

centroid must be on a real data point, and not on the real average, it is called k-medoids 

clustering. To calculate the similarity, a distance metric form must be used. We used 

Euclidean distance in our implementation, but other measures such as the distance from 

Manhattan might make more sense for other problems. K-means is a fast and well known 

algorithm. A high-level overview is shown in the following algorithm[14,26]. 

Algorithm High-level serial k-means [26] 

1: Distribute K centroids according to some heuristic, as explained later inthis section. 

2: repeat 

3: for all point in points do 

4: calculate which centroid is nearest, and assign point to that centroid 

5:end for 

6:for all centroid in centroids do 

7: recalculate centroid position as a mean of all the current points inits cluster 

8:end for 

9: until stop criteria (number of iterations, number of membership changes,distance moved, 

etc) 
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5.4.2 Bayesian Clustering 

In BC, the data is seen as having a statistical distribution for which a model is 

wanted, i.e. the clustering. One of the main advantages is the quantification of the 

certainty of each spike generated by each neuron (cluster) resorting to the Bayes’ rule: 

�
o.|1, �/:u� = �
1|o., �.��
o.�∑ �
1|o., �.��
o.�.                                          
2.52� 
whereo.is a cluster, x is the spike data and �is used to represent the parameters of 

each class, e.g.�/:. =  /, ∑ , ⋯ ,  ., ∑ ../ Then, the class parameters are optimized by 

maximizing the likelihood of the data:  

�
1/:�|�/:u� = V �
1�|o., �/:u�                                            
2.53��
�$/  

An additional step can be performed in order to increase the robustness to outliers: the 

creation of a ’background’ cluster with a low weight. It is responsible 

for accommodating such undesired issues and, at the end, through the distribution of 

probabilities of each cluster, it is possible to see how well separated the actual clusters 

are. The possibility to calculate the likelihood helps the experimenter to make decisions 

about the isolation of the spikes [14]. 

5.4.3 Super-Paramagnetic Clustering 

Super-paramagnetic clustering (SPC) is a non-parametric classification algorithm 

presented by Blatt et al. SPC is based on the physical properties of an inhomogeneous 

ferromagnetic model. And on the Potts model theory, which describes the interaction between 

spins on a crystal lattice, and is used to describe the behavior of ferromagnets at varying 

temperatures[26]. 

This algorithm proposes an automatic classification of points without resorting to 

hypotheses and has been successfully applied to the sorting of points by Quiroga et al.  

A spin is simply a point on the lattice with a state "spin "q, ranging from 1 to Q. The 

points on the lattice are called spins because of the way they will rotate to align with a 

magnetic field The increase in temperature will increase the entropy, which reduces the 

influence of neighboring spins, in relation to the Curie temperatures (Tc) of the 

ferromagnetic, where the ferromagnetic becomes paramagnetic. Over this temperature, the 
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alignment will be random, and a ferromagnetic will no longer be influenced by a magnetic 

field (the magnetic susceptibility tends to 0). For example, the Curie temperature of iron (Fe) 

is 770◦C, and above this temperature, the iron will no longer attract a magnet[26]. 

Blatt et al. give a good description of the process, in an example with three dense 

regions: At high temperatures, the system is in a disordered (paramagnetic) phase. When the 

temperature is lowered, a transition to a super-paramagnetic phase occurs; rotates in the same 

high density region become completely aligned, while different regions unordered. As the 

temperature is further lowered, the efficiency coupling between the three clusters (induced by 

diluted background spins) increases until it aligns. [...] we call this "phase" of ferromagnetic 

aligned clusters. 

Therefore, the algorithm has two main steps: locate the super-paramagnetic phases and 

determine how the points cluster in these phases[14,26] 

Superparamagnetic Clustering algorithm [11] 

1. Calculate the Euclidean distance matrix � =  
~�� �. 
2. Identify the } nearest neighbors of each point  ��. ��and��are considered neighbors if ��is 

one of the } nearest neighbors of ��  and ��  is one of the } nearest neighbors of vi. 

3. Assign a Potts spin �_ =  1, 2, … , j to each point �� randomly (or set all � � =  1), wherej 

is a constant representing the number of possible spins. Note: The value chosen for jdoes not 

imply anything about the number of clusters. 

4. Calculate the interaction strength  ¡�� between neighboring points ��and ��  , where 

 

¡�¢ = £130 01� ¤− ~���
2>�¥  _Y ��  >Z~  ��  >�0 Z_0[ℎn¦��,

¦�ℎ0� i_�0,                         
2.54� 

and a is the average of all ~�� 's between neighboring points. 

5. For each temperature (e.g. � =  0 ∶  0: 02 ∶  0: 2), perform the following Monte Carlo 

simulation of iterations � =  1 ∶  �: 

(a) Assign a frozen bond between nearest-neighbor points �� and ��  with probability: 

���̈ = 1 − 01� �− ¡��� ⋅ A���� , iℎ0�0 A#ª,#« = ¬10  _Y ��  =  �� ,otherwise,           
2.55� 
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(b) Generate a random number x from a uniform distribution on [0, 1]. If 1 < ���̈there is a 

bond between ��and �� . 

(c) Define clusters as all points that are connected by a bond. 

(d) Defineo´, where 

���́ = ¬1   _Y ��  >Z~  ��  >�0 Z_0[ℎn¦��,0 otherwise,                               
2.56� 

6. Calculate the two-point connectedness ��� , where 

��� = 1� p ���́
µ

´$/                                                            
2.57� 

7. Calculate the spin-spin correlation function: 

&�� = 
j − 1���� + 1j                                                      
2.58� 

8. If &_� >  �  where  � is a pre-defined threshold, �� and ��  belong to the same cluster. 

9. Assign cluster labels to observations according to  &. 

5.4.4 OSort 

OSort is a MATLAB implementation of a model-based unsupervised online spike 

sorting algorithm. OSort has already been designed focusing on the application in real time. It 

was first introduced by Rutishauser One of its important features is that it removes the FE 

phase because it directly calculates the distance between an income peak and the clusters 

Estimating the number of neurons present, as well as the assignment of each peak to a neuron, 

is based on a distance metric between two peaks (Rutishauser, 2006). Based on this distance, 

a threshold is used to decide the number of neurons present and to assign each peak only to a 

group of neurons, or to a noise group if it is not bearable. The threshold is calculated from the 

noise properties of the signal and is equal to the mean square deviation of the signal, 

calculated with a sliding window. OSort's main advantage over its competitors is that it can be 

used online, allowing for real-time sorting during an experiment [27,14]. 
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OSort clustering algorithm [11] 

1. Initialization: Assign the first data point to its own cluster. 

2. Calculate the Euclidean distance between the next data point and each cluster centroid. 

3. If the smallest distance is less than the merging threshold TM, assign the point to the 

nearest cluster and recompute that cluster’s mean using the N most recent points. Otherwise, 

start a new cluster. 

4. Check the distances between each cluster and every other cluster. If any distanceis below 

the sorting threshold TS, merge those two clusters and recompute its mean. Steps 2 and 4 are 

then repeated indefinitely. In the simplified version of this algorithm,T= TS, which is equal 

to the variance of the data computed continuously on a long (1 minute) sliding window. Note 

that when computing cluster centroids, only the N most recent points are used. This helps to 

account for electrode drift, since the clusters are allowed to drift as well. 

 

5.4.5 Template Matching 

Another important technique is TM, which is based on a comparison between the input 

signal under analysis and a predefined template. This template is obtained from an arbitrary 

training set and aims to describe the average of the main features. After the comparison, it is 

decided if the input signal is considered as a new spike or not. Three different approaches are 

considered: Matched-Filter (MF), NEO combined to MF and the absolute value (AV) 

combined to MF, which main difference regards the pre-emphasis step. Hence, for a pure MF 

approach,[14] 

1. a convolution is applied directly to the raw signal with the predefined template; 

2. a convolution is applied to the pre-emphasized signal by the AV algorithm when the 

MF is allied with AV; 

3. Finally, a convolution is applied to the pre-emphasized signal by the NEO algorithm 

when the MF approach is combined with the NEO algorithm. 

In other words, the First spike will be ranked as first form or a ‘template’, so the 
following spike will be compared to the previous one: 
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 If the next spike matches with the first one, it will be recorded as a new spike in the 
same class. 

  If the next spike does not match with the first one, a new form is detected and ranked 
in a new class. 

 

Matching calculation: 

We calculate the quadratic error between the template and the new spike using the 
formula bellow:  

0�� = pO�0��
_� − 1
_�P��
�$/                                                
2.59� 

To decide or compare this error to the threshold: 

 If  0��l < �ℎ�0�ℎ¦¶~, so there is a resemblance. 

 If not, there is no resemblance, so it is a new form. 
So as a result, if there is resemblance, the ranked form may change a little because of 

having the median form with the template, or applying a short algorithm on this form: 

Template matching  algorithm  

New spike detected 
erq = pO�0��
_� − 1
_�P��

�$/  
if erq < �0»_¶   
�0�0�n¶>Zo0� 
    totspikes = totspikes + 1 
    spike
ti� = 1 
    forme = forme ∗ 
totspikes − 1� + new spike 
else  
    newforme =  newspike 
    spike
ti� = 1 
    totspike = 1 
end 
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Figure 2.12: Final schema of the online spike sorting. 

 

6 Conclusion 

Spike detection, classification and sorting become more important for any brain signal 

uses such as brain computer interfaces and medical analyzing of brain behavior study. 

In this chapter, we tried to present the four basic and principal levels in spike sorting 

process:  filtering, detection, feature extraction and finally, spike classification and clustering. 

Also, we talked about the new technique that is Online Spike Sorting, and the different wide 

known algorithms used in spikes classification and clustering.  

In the following chapter, we will present the results of an online spike sorting on a real 
data ECoG signal. 
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1 Introduction 

In this chapter, we’ll present results of the different spike sorting steps applied on real 

data of a rat pressing a lever to bring water. 

The application of spikes sorting is done using MATLAB software where it is possible to 

program our own function with a simple instruction set. At first we will give a brief 

presentation of the MATLAB software then we move to the data collection part and finally 

the representation of results. 

2 MATLAB Software 

MATLAB is a high-performance language for technical computing. It integrates 

computation, visualization, and programming in an easy-to-use environment where problems 

and solutions are expressed in familiar mathematical notation. Typical uses include: 

• Math and computation 

• Algorithm development 

• Data acquisition 

• Modeling, simulation, and prototyping 

• Data analysis, exploration, and visualization 

• Scientific and engineering graphics 

• Application development, including graphical user interface building 

MATLAB is an interactive system whose basic data element is an array that does not 

require dimensioning. This allows users to solve many technical computing problems, 

especially those with matrix and vector formulations, in a fraction of time it would take to 

write a program in a scalar non interactive language such as C and FORTRAN. 

The name MATLAB stands for Matrix Laboratory. MATLAB was originally written to 

provide an easy access to matrix software developed by the LINPACK and EISPACK 

projects. Today, MATLAB engines incorporate the LAPACK and BLAS libraries, embedding 

the state of the art in software for matrix computation. 

MATLAB has evolved over a period of years with inputs from many users. In university 

environments, it is the standard instructional tool for introductory and advanced courses in 
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mathematics, engineering and science. In industry, MATLAB is the tool of choice for high-

productivity research, development, and analysis. 

MATLAB features a family of add-on application-specific solutions called toolboxes. 

Very important to most users of MATLAB, toolboxes allow users to learn and apply 

specialized technology. Toolboxes are comprehensive collections of MATLAB functions (M-

files) that extend the MATLAB environment to solve particular classes of problems. Areas in 

which toolboxes are available include signal processing, control systems, neural networks, 

fuzzy logic, wavelets, simulation, and many others. 

2.1 The MATLAB System 

The MATLAB system consists of five main parts: 

2.1.1 Development Environment: 

This is the set of tools and facilities that help using MATLAB functions and files. 

Many of these tools are graphical user interfaces. It includes the MATLAB desktop and 

Command Window, a Command History, an editor and debugger, and browsers for viewing 

help, the workspace, files, and the search path. 

2.1.2 The Matlab Mathematical Function Library: 

This is a vast collection of computational algorithms ranging from elementary 

functions, like sum, sine, cosine, and complex arithmetic, to more sophisticated functions like 

matrix inverse, matrix Eigen values, Bessel functions, and fast Fourier transforms … etc. 

2.1.3 The MATLAB Language: 

This is a high-level matrix/array language with control of flow statements, functions, 

data structures, input/output, and object-oriented programming features. It allows both 

“programming in the small” to rapidly create quick and impropriate throw-away programs, 

and “programming in the large” to create large and complex application programs. 

2.1.4 Graphics: 

MATLAB has extensive facilities for displaying vectors and matrices as graphs, as 

well as annotating and printing these graphs. It includes high-level functions for two 
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dimensional and three-dimensional data visualization, image processing, animation, and 

presentation graphics. It also includes low-level functions that allow you to fully customize 

the appearance of graphics as well as to build complete graphical user interfaces on your 

MATLAB applications. 

2.1.5 The MATLAB External Interfaces/API: 

This is a library that allows users to write C and FORTRAN programs that interact with 

MATLAB. It includes facilities for calling routines from MATLAB(dynamic linking), calling 

MATLAB as a computational engine, and for reading and writing MAT-files. 

2.2 MATLAB Simulink 

Simulink is an environment for simulation and model-based design for dynamic and  

embedded systems. It provides an interactive graphical environment and a customizable set  

of block libraries that let you design, simulate, implement, and test a variety of time-varying  

systems, including communications, controls, signal processing, video processing, and image  

processing. 

Simulink offers: 

• A quick way to develop models in contrast to text based-programming language  

such as C. 

• Simulink has integrated solvers. In text based-programming language such as C  

you need to write your own solver. 

3 Experimentation and Data Representation 

3.1 Animal Training and Behavioral Tasks 

The study, approved by the Institutional Animal Careand Use Committee at the National 

Chiao Tung University, was conducted according to the standards established in the Guide for 

the Care and Use of Laboratory Animals. Four male Wistar rats weighing 250-300g 

(BioLASCO Taiwan Corp., Ltd.) were individually housed on a 12 h light/dark cycle, with 

access to food and water ad libitum. Dataset was collected from the motor cortex of awaked 

animal performing a simple reward task. In this task, male rats (BioLACO Taiwan Co.,Ltd) 

were trained to press a lever to initiate a trial in return for a water reward. The animals were 
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water restricted 8-hours/day during training and recording session but food were always 

provided to the animal ad lib every day. 

3.2 Chronic Animal Preparation And Neural Ensemble Recording 

The animals were anesthetized with pentobarbital (50mg/kg i.p.) and placed on a standard 

stereotaxic apparatus (Model 9000, David Kopf, USA). The dura was retracted carefully 

before the electrode array was implanted. The pairs of 8 micro-wire electrode array 

(no.15140/13848, 50m in diameter; California Fine WireCo., USA) are implanted into the 

layer V of the primary motor cortex (M1). The area related to forelimb movement is located 

anterior 2-4 mm and lateral 2-4 mm to Bregma. After implantation, the exposed brain should 

be sealed with dental acrylic and a recovery time of a week is needed. 

During the recording sessions, the animal was free to move within the behavior task box 

(30 cm×30 cm× 60cm), where rats only pressed the lever via the right forelimb for receiving 

1-ml water reward as shown in figure 3.1. A Multi-Channel Acquisition Processor (MAP, 

Plexon Inc., USA) was used to record neural signals. The recorded neural signals were 

transmitted from the head stage to an amplifier, through a band-pass filter(300Hz-3kHz),and 

sampled at 20 kHz per channel. Simultaneously, the animal’s behavior was recorded by the 

video tracking system (CinePlex, PlexonInc.,USA) and examined to ensure that it was 

consistent for all trials included in a given analysis. The obtained data; after spike sorting 

process; was composed of 48 channels (number of neurons) containing succession of ’1’ 

separated by long silence of ’0’. Another representation is used based onthe rate of spike 

smoothed with a Gaussian window. In next parts, we’ll show results of these explained steps 

with their figures. 
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  Figure 3.1:ECoG recording during rat movement.  

4 Results and Simulation 

4.1 Signal Filtering: 

The first step and the purpose of spike sorting is the signal preprocessing to prepare the 

signal in order to simplify the next steps of the processing. At the beginning, a channel is 

represented with a collection of many states of a group of neighbor neurons with different 

positions of contacts at the level of the in-out of the Soma, dendrite, axon …etc. According to 

the points of contacts; the used sensor records a temporal superposition of many neuronal 

influences on only one channel and it has been. This will be big problem for the application of 

the brain computer interface. So a signal processing is necessary to get separated information 

of each neuron. 

Firstly, the signal will be filtered with a band pass filter between 300 and 3000Hz to 

eliminate noises and obtain the original signal containing spikes. 
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Figure 3.2: ECoG original and filtered. 

 Figure 3.2 illustrates the original signal with its filtered version with a band pass 

filter from 300Hz to 3 KHz. It can be seen the difference between the two signals where there 

is no noise in the filtered signal with a clear spikes shapes.  

The filtered signal will be simple for other next steps of the spikes sorting process.  

4.2 Spike Detection and Alignment: 

At this stage, the recorded signal has already been filtered. For the detection of spikes, we 

use the NEO operator function (Nonlinear Energy Operator) applied on the signal to make 

spikes more clear and easy to be localized. Spike shapes became more important energy and 

with the use of a simple threshold will be detected. The threshold should be chosen depending 

on the NEO results using specific equations as mentioned in the second chapter. A normalized 

time window will be centered on the maximal spikes position energy to limit spikes. 
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Figure 3.3: Detection using the operator NEO. 

NEO coefficient: 

The value of the NEO operator ½(x[n]) is calculated to the characteristic spike 

minimum value using equation 3.1, where ½
¾[¿]�is the value of the NEO operator at the ¿ÀÁ 

time sample, ¾[¿] is the ¿ÀÁ sample of the signal: 

 ½
¾[¿]� = ¾²[¿] − ¾[¿ − Ã] × ¾[¿ + Ã]                                 
3.1� 

The resulting parameter ½ (x[n]) gives an estimate of the energy content of the signal. 
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Figure 3.4: Superposition of the NEO with the Threshold. 

 

Figure 3.4 shows the results of the NEO applied on the filtered signal. The energy of 

the NEO is more important at each spike position. It can be detected easily by the use of a 

specific threshold calculated using the formula: 

 

�ℎ� = � 1� p ½O¾
¿�P�
�$/                                                    
3.2� 

Where C is a scaling factor (C=3) and ½O¾
¿�Pis the NEO at Z�Ä sample time. Figure 3.5 

illustrates the superposition of the NEO with the Threshold. Each spike energy crosses the 

threshold and be identified and localized at the maximal value of the energy. Figure 3.6 

demonstrates the localization of three successively crossing of the NEO (in blue) with the 

threshold (in green) which mean the presence of four spikes temporal successively. Spike 

centers will be at the maximal value of the NEO between up and down crossing. 

0.03 0.04 0.05 0.06 0.07 0.08 0.09
-10

-5

0

5

10

time(sec)

E
C

o
G

 

 

0.03 0.04 0.05 0.06 0.07 0.08 0.09
-0.4

-0.2

0

0.2

0.4

time(sec)

fi
lt
e
re

d
 E

C
o
G

0.03 0.04 0.05 0.06 0.07 0.08 0.09
-0.1

0

0.1

0.2

0.3

time(sec)

 

 
NEO

Thres



 

 

58 

 

CHAPTER 3 : RESULTS REPRESENTATION 

 

Figure 3.5: Spike time localization with NEO. 

 

Figure 3.7 illustrates the detection of spikes and their position after the application of 

the threshold on the NEO. It can be seen the good detection of spikes position extracted from 

the comparison of the NEO to the threshold, where each detected position is superposed on a 

real spike in ECoG. The spikes positions depend on the maximal value of the NEO instead of 

the extremes (minima and maxima) of the ECoG, it can be seen also that positions takes 

different situation on the evolution of the potential. These positions will be the center of the 

time windows that contain the spikes shapes. 

 

 

Figure 3.6: Real spikes positions. 
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4.3 Isolation 

This part consists of the isolation of detected spikes where the temporal spikes delimitation of 

shapes is done. We determine the low and up time windows limit of the spikes shapes.  Figure 

3.8 summarizes a superposition of detected spike shapes collected together, as it is obvious a 

three groups of resemble shapes. This opens another work to apply any technic of 

classification and clustering. 

 

Figure 3.7: Detected spikes shapes.  

4.4 Classification 

Spike sorting aims to group similar spikes together, based on the assumption that similar 

spikes originate from the same neuron, so that each cluster represent a neuron (or similar 

multi-unit). The spikes clustering are based on two principal lows:  

   -if the spike looks like a spike shape, then it will be ranked with this group of spikes. 

   -if the spike does not look like any of the spikes shapes, then a new line is recorded in the 

class matrix. 

In figure 3.9, we can see clearly three different colored shapes, each color represents a 

group of spikes.   
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Figure 3.8: Classification of spikes. 

4.5 Spikes Representation 

The spikes sorting gives 48 binary time series channels of neural firing rate represented by 

‘1’ separated by a long silence represented by ‘0’. The real information corresponding to the 

hand position (lever) is included in the time between spikes. So a special representation is 

important for that and also to synchronize the time samples of the hand position with the 

neural firing rates. 

In figure 3.10 is shown different techniques and comparison of continuous spikes train 

representation. Figure (3.10.A) shows three seconds of the response of a neuron in the inferior 

temporal cortex recorded while the experiment. (Mention that in the region of cortex where 

this recording was made are selective for actions and behaviors). A simple way of extracting 

an estimate of the firing rate from a spike train like this is to divide time into discrete bins of 

duration  �, count the number of spikes within each bin, and divide by �. Figure (3.10.B) 

shows the approximate firing rate computed using this procedure with a bin size of 100��. 

Note that, with this procedure, the quantity being computed is really the spike-count firing 

rate over the duration of the bin, and that the firing rate �
�� within a given bin is 

approximated by this spike-count rate. The binning and counting procedure illustrated in 

figure (3.10.B) generates an estimate of the firing rate that is a piecewise constant function of 

time, resembling a histogram. Because spike counts can only take integer values, the rates 

computed by this method will always be integer multiples of 1/A�, and thus they take discrete 

values. Decreasing the value of t increases temporal resolution by providing an estimate of the 

firing rate at more finely spaced intervals of time, but at the expense of decreasing the 
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resolution for distinguishing different rates. One way to avoid quantized firing rates is to vary 

the bin size so that a fixed number of spikes appear in each bin. The firing rate is then 

approximated as that fixed number of spikes divided by the variable bin width. In figure 

(3.10.C) is shown an approximate of the firing rate determined by sliding a rectangular 

window function along the spike train with A� =  100��and in figure (3.10.D) is the same as 

in C but with a Gaussian function.  

 

 

Figure 3.9: Continuous spikes train representation. 
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5 Conclusion 

In this chapter, we have seen an overview on MATLAB software; its definition, uses 

and MATLAB Simulink. Then, we talked about the experiment done on male Wistar rats, 

where it has been trained to press a lever to initiate a trial in return for a water reward. At that 

time; the dataset was collected from the rat’s motor cortex obtaining the ECoG. Depending on 

the ECoG data recorded, we presented the spike sorting results using the MATLAB software 

applying specific algorithms, such as: filtering, detection and alignment (using NEO 

coefficient and thresholding), isolation, classification and spikes representation. Finally, all 

these mentioned steps have been done online. 



 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 

GENERAL CONCLUSION  
 



 

 

 

64 

 

General Conclusion  

General Conclusion 

Spike sorting is a very challenging mathematical problem; it is a crucial step to extract 

information from extra\intracellular recordings. With new recording opportunities provided 

by the development of new electrodes that allow monitoring hundreds of neurons 

simultaneously, this problem has attracted the attention of scientists from different fields. It is 

indeed an interesting problem for researchers working on signal processing, especially those 

dealing with pattern recognition and machine learning techniques. It is also crucial for 

neurophysiologists, since an optimal spike sorting can dramatically increase the number of 

identified neurons and may allow the study of very sparsely firing neurons, which are hard to 

find with basic sorting approaches. 

As the algorithms for spike sorting can be quite complicated and given this can be a 

difficult and time consuming process, it is worth asking whether it is really necessary to do 

spike sorting rather than taking all the spikes together, as the lump activity of an unknown 

number of neurons. The problem is that close-by neurons -picked up by the same electrode -

can fire in response to different things. This is the case, for example, in the human or rat 

hippocampus, where nearby neurons fire to unrelated people in the first case and to distant 

place fields in the latter. But even when nearby neurons have similar responses, it is important 

to distinguish them and observe their individual tuning properties, firing characteristics, 

relationship with other neurons and local field potentials, and so on. One strategy to avoid 

having to use complex spike-sorting algorithms is to use acute electrodes lowered into the 

animals’ brain during each experiment. Then, the electrode can be placed sufficiently close to 

a given neuron, decreasing interference of the spikes from others. There are, however, several 

caveats with this approach: 

 First, it introduces a bias towards recording from high firing (and typically less 

selective) neurons. 

 Second, it is possible to observe only one or very few neurons at a time. 

The possibility of recording from hundreds or thousands of neurons simultaneously is the 

dream of any neurophysiologist and a goal that is within reach, as it is now possible to record 

from hundreds of channels simultaneously. There is clearly a need to develop fully automatic, 

fast spike-sorting algorithms to deal with such large number of channels and the massive 

volumes of recorded data. The advantage of using tetrodes is also clear, but current spike 
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sorting algorithms still use relatively naïve methods to combine the information from different 

sites. Further developments of spike-sorting algorithms should go together with the 

optimization of electrode designs with the general goal of maximizing the number of 

simultaneously recorded and identified neurons. 
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