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Abstract

With the invasion of electronic devices all areas of our life, speeding up the process of
entering information and facilitating it is now an imperative. We can contribute to this
by predicting the next word.

In this work we discuss the effective methods of predicting the next word, especially
given the magnitude of current data. This work aims to apply deep learning to this prob-
lem, specifically recurrent neural networks and temporal convolutional networks, with a
primitive comparison between their results.

In this project we use three databases: the first one is Coursera Swiftkey, the second is
the book: Nietzsche Writings: Volume1 by Friedrich Nietzsche and the third is the News
category from the Brown corpus in the nltk library. We prepare and insert them into
RNN and TCN models.

The results were satisfactory according to the state of the art results and the platform
and data set used, as we reached an accuracy of 71.51% for the RNN model and 65.20% for
TCN model using the third database when taking into account the three previous words
to predict the next word. Given the results, we can say that the temporary convolutional
network competes with the recurrent neural network in the field of language modeling.

Although we obtain satisfactory results, they would have been better had it not been
for the inefficiency of the devices and the limited work environment due to the restrictions
imposed by Google Colab and Kaggle, as well as the circumstances that we faced while
we were in the process of completing this work due to the pandemic Covid19. We will
develop the research in the future by using platforms that meet the requirements of most
deep learning.

Key words: Next word prediction, Recurrent neural networks, Temporal convolu-
tional networks, Deep learning, Language modeling, Word Prediction systems, Natural
Language Processing.



Résumé

Avec l’invasion des appareils électroniques dans tous les domaines de notre vie, ac-
célérer le processus de saisie des informations et le rendre plus facile est désormais un
impératif. Par programmation, nous pouvons y contribuer en prédisant les mots suivants.

Dans ce travail, nous discutons des méthodes efficaces de prédiction du mot suivant,
en particulier compte tenu de l’ampleur des données actuelles. Ce travail vise à appliquer
l’apprentissage profond à ce problème, en particulier les réseaux de neurones récurrents et
les réseaux convolutifs temporels, avec une comparaison très primitive entre leurs résultats.

Dans ce projet, nous utilisons trois bases de données: la première est Coursera Swiftkey,
la seconde est le livre: Nietzsche Writings: Volume1 de Friedrich Nietzsche et la troisième
est la catégorie News du corpus Brown de la bibliothèque nltk. Nous les préparons, puis
les insérons dans des modèles RNN et TCN.

Les résultats ont été satisfaisants selon les résultats de l’état de l’art et la plate-forme
et la base de données utilisés, car nous avons atteint une précision de 71,51% pour le
modèle RNN et de 65,20% pour le modèle TCN en utilisant la troisième base de données
en tenant compte des trois mots précédents pour prédire le mot suivant. Au vu des ré-
sultats, on peut dire que le TCN est en concurrence avec le RNN dans le domaine de la
modélisation du langage.

Bien que nous ayons obtenu des résultats satisfaisants, ils auraient été meilleurs à cause
de l’inefficacité des appareils, ainsi que l’environnement de travail limité en raison des re-
strictions imposées par Google Colab et Kaggle, ainsi que les circonstances auxquelles
nous avons été confrontés alors que nous étions en train de terminer ce travail en raison
de la pandémie de virus Covid 19. Nous développerons la recherche à l’avenir en utilisant
des plateforms qui répondent aux exigences de la plupart des deep learning.

Mots clés: Prédiction du mot suivant, Réseaux de neurones récurrents, Réseaux
convolutifs temporels, Apprentissage profond, Modélisation du langage, Systèmes de pré-
diction du mots, Traitement du langage naturel.
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Introduction

With the big data revolution, old problems demanded new ways to solve them, and
most especially, we find Deep Learning (DL). One of the domains affected by this rev-
olution is Natural Language Processing (NLP), where with the rapid development and
proliferation of social media and websites we have a massive amount of data that can help
us to achieve good results in this field. One of NLP sub-domains is Language Modeling
(LM) which includes the task of word prediction.

With the technological development and the great use of electronic devices, the search
for ways to speed up the process of entering information became an imperative, as the
beginnings were since the emergence of augmentative and alternative communication sys-
tems, as well as word prediction systems since 1980. To face the next word prediction
problem, the beginnings were with using statistical and probabilistic methods, then com-
bined with knowledge based models, then heuristic modeling. After the immediate surge
in data, machine learning techniques stepped in to suggest good solutions and finally,
with the strong return of neural networks because of its revolutionary results with big
data, deep learning models are sweeping the field and satisfy the objectives in this task,
that’s why we chose them in our work to solve the problem.

In this thesis we present DL models that predict the next word using Temporal Convo-
lutional Network (TCN) and Recurrent Neural Network (RNN) and compare their results,
as we train them using three different data sets as we reached an accuracy of 71.51% for
the RNN model and 65.20% for TCN model using the third database when taking into
account the three previous words to predict the next word.

Our thesis consists of three chapters:

In the first one, we present the concept of deep learning in which we state its history,
contents, and basic principles and architectures.

At the second chapter we represent the state of the art of next word prediction, cov-
ering several concepts such as NLP, Language Modeling (LM), word prediction systems,
factors affecting prediction, and the different prediction methods from classical to machine
learning methods, and finally coming to DL models.

The last chapter represents the steps and architectures proposed to solve the problem
of Next Word Prediction (NWP) using TCN/RNN.

And finally, we end with a conclusion that summarizes all of the above.
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Chapter 1

From Artificial Intelligence to Deep
Learning

1.1 Introduction
Artificial Intelligence (AI) is considered one of the most important fields of science

and engineering that many researchers have been interested in. This field includes many
branches the most important is Machine Learning (ML). With the rapid development of
technology and the increase in data volume, the focus has increased on the field of ML
which has become an important part of many applications such as image classification,
natural language processing, video recommendation, text extraction and many other ap-
plications.

Recently, a sub field of ML called Deep Learning (DL) has appeared and became very
popular because it deals with algorithms that mimic the way the human brain works.

In this chapter, we highlight the effectiveness of DL starting from its origins. We
present a brief reminding about AI and ML, fundamentals of neural networks (NN), then
we present some incentives that led to heading into the field, the fields where DL applica-
tion make a huge positive results. After that, we present the most popular architectures
and learning algorithms of the field. Finally, we give an overview about generalization,
regularization and optimization techniques.

1.2 Artificial Intelligence
The humans have always wanted to make a machine equivalent to their intelligence.

The beginning was with Turing Machine in 1936 by Alan Turing. In 1943, the computer
appeared and evolved, at the same time humans become more and more eager to acquire a
machine closer to them in intelligence. So they tried to make the machine solve problems
automatically by adding techniques that use logic, if-then rules and so on.

Artificial intelligence can be defined as a set of techniques that allow the machine to
simulate a human, in other word, to perform operations and solve problems that humans
or some animals usually solve (Lecun [2016]).

Artificial intelligence, in its definition, is divided into four parts (Russell and Norvig
[2010]):
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Thinking Humanly

"The exciting new effort to make computers think ... machines with minds, in the full
and literal sense." (Haugeland [1989])

Thinking Rationally

"The study of mental faculties through the use of computational models." (Charniak
and McDermott [1985])

Acting Humanly

"The art of creating machines that perform functions that require intelligence when
performed by people." (Kurzweil et al. [1990])

Acting Rationally

"Computational Intelligence is the study of the design of intelligent agents." (Poole
et al. [1998])

With the huge increase in the amount of data, the problems have become more com-
plex and the solutions provided by artificial intelligence became unhelpful in making the
machine provide the appropriate decisions. This led to the emergence of machine learning.

1.3 Machine Learning
Machine Learning, according to Arthur Samuel, is the scientific specialty that focuses

on making computers able to learn without programming them properly. Sometimes the
correct form of doing things is costly and inaccurate (Samuel [1959]).

Tom Mitchell gives a modern definition: “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P, if its per-
formance at tasks in T, as measured by P, improves with experience E.” (Mitchell [1997])

Machine learning algorithms are classified according to the desired result into several
types, here we explain some common types mentioned in Figure 1.1:
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Figure 1.1: Types of Learning (Dey [2016])

1.3.1 Supervised Learning
Supervised machine learning algorithms are algorithms that require a human super-

visor. We have an input data set divided into training set and test set where the data
set contains labeled data, i.e both input X and the desired output Y, and the algorithm
try to reach Y using X without any idea of the relation between them and the learned
pattern from the training set is applied on test set for regression which means predicting
the output which has a continuous value and classification which means classifying the
input into specific class or group where the output has a discrete value (Dey [2016]).

1.3.2 Unsupervised Learning
Unlike supervised machine learning algorithms, Unsupervised Machine Learning algo-

rithms do not require a human supervisor. The input data set contain unlabeled data,
i.e only the input X, and the output Y is not known, we have no idea about what the
result should be and we try to learn features from the data and find relations between
the inputs to build clusters in order to classify data and it is also used in dimensionality
reduction (Dey [2016]).

1.3.3 Semi-Supervised Learning
In semi-supervised learning we use both labeled and unlabeled examples or data to

generate a function or classifier (Ayodele [2010]). This type helps to improved accuracy
and also facilitates the classification of data because it allows to classify unlabeled data
with the use of a knowledge from some labeled data.

1.3.4 Reinforcement Learning
In this type of learning, we do not know the correct output of a specific input where

the algorithm performs actions that have an impact on the environment. In return, the
environment provides notes that direct the learning algorithm and measure the quality of
the output, where whenever the environment is given a reward, the higher the quality of
the result presented by the algorithm (Lison [2015]).
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1.4 Neural Networks
Artificial Neural Network (NN) is one of the most important machine learning tech-

niques. It allows the grateful training of models by extracting features by experiences
and not by defined rules. Artificial NN were developed by observing how the human
neural network work and trying to build a mechanism that simulates this process. In the
following, we provide a brief review the most important NN notions.

1.4.1 Biological Origin
The human brain contains millions of neurons that are linked together, forming neural

networks which are also called connectionist models. Its function is to transmit informa-
tion that is processed in the cerebral cortex, where the cognitive functions are language,
thinking, learning and memory, which are among the most complex brain operations to
define in terms of neural mechanisms (Du and Swamy [2013]). Neurons are the main
structure of the nervous system where they connect to each other using so-called axons
and the areas between the axons and dendrites are linked with synapses. Synapses are
structures that acts like a path way connection to transmit signals to other cells. The
strength of this cross-linking between neurons changes in response to external stimuli, this
change is what leads people to what is called learning which is the function that artificial
neural networks try to emulate (Aggarwal [2018a]).The Figure 1.2 shows the structure of
neurons and how two neurons connect to each other, where the Figure 1.3 shows a formal
neuron.

Figure 1.2: Biological Neuron (Smith et al. [2007]).
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Figure 1.3: formal Neuron (Abdessamad et al. [2015]).

1.4.2 Principal Architectures
The neuron is a basic processing unit in a neural network where it was achieved using

a simple amplifier and the synapse is achieved using a resistor. The neurons processes
the information entered into them and produce an output by applying a function usually
called an activation function which we will explain later while the synapses that connect
the neurons to each other are modeled with weights (Du and Swamy [2013]).

The perceptron, also known as single layer perceptron or single layer NN, is the sim-
plest architecture of neural networks that was used initially then the multi layer perceptron
or multi layer NN emerged after that in recent years deep neural networks appeared (Du
and Swamy [2013]). We will provide in the following sections a brief explanation of these
architectures

The Perceptron

The Perceptron or single computational layer is the simplest NN invented in 1957 by
Frank Rosenblatt Rosenblatt [1958] based on the neuron model proposed by McCulloch
and Pitts [1943] (Hayman [1999]). It is a linear classifier for binary predictions that
consists of input layer which is a K nodes that receive the K input information (features)
and each node have a proper weight that presents its effectiveness in the process; so it
transmits the K features X = [x1. . . xk] with the K weights W = [w1. . . wk] to the output
node in order to compute the linear function in 1.1

W ·X =
k∑

i=1
wi · xi (1.1)

Then the predicted value Ŷ is computed using an activation function which takes the
value W ·X as a parameter:

Ŷ = f(
k∑

i=1
wi · xi) (1.2)

Sometimes we need to add a node to the input layer that represents the invariant part
in the prediction, named “bias”. We need it when the binary class distribution is highly
imbalanced. The value of the bias node is always equal to 1, the weight of this neuron
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provides the bias variable, as if it represents the threshold of latency in the biological
neural synapses. So the function will be (Aggarwal [2018a]):

Ŷ = (W ·X + b) = f(
k∑

i=1
wi · xi + b) (1.3)

The preceprton architecture is shown in Figure 1.4a.

Multi-layer Neural Networks

Multi-layer NN consist of multiple computational layers where each layer feed the next
one. That is what leads to name this architecture as “feed-forward networks”. Each input
node pass the value xi and the weight wi to the first hidden layer, then each node make
computation using an activation function and pass the result to the next layer and so on
until we reach the output layer that makes the expected result (Aggarwal [2018a]). The
multi-layer NN architecture is shown in Figure 1.4b.

(a) Perceptron (b) multi layer NN

Figure 1.4: The basic architectures: Perceptron and multi layer NN (Aggarwal [2018a]).

Deep Neural Networks

A deep NN is a more complex architecture than its predecessor as it was called deep
because it contains many hidden layers. We will present some deep neural networks in
the coming sections.

Activation Function

The activation function converts the signal coming from the neurons to an expected
result, where the bias can adjust up or down the function, which leads to greater learning
opportunities for the network (Aggarwal [2018a]).

There are many activation functions as shown in Figure 1.5, each one is appropriate
in a given type of problem.
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Figure 1.5: Various activation functions (Aggarwal [2018a]).

• The sign function can be used in case of binary outputs

f(v) = sign(v) (1.4)

• Whereas the sigmoid function is helpful in performing computations that should be
interpreted as probabilities

f(v) = segmoid(v) = 1
1 + e−v

(1.5)

• Besides tanh function is helpful when the calculation outputs are required to be
positive and negative

f(v) = tanh(v) = ev − e−v

ev + e−v
(1.6)

• ReLU and hard tanh activation functions have replaced sigmoid and tanh activation
functions in modern neural networks because they make the multi-layered neural
networks easy to train (Aggarwal [2018a]).

• There is another activation function called softmax which is used when we want
our output vector to be a probability distribution over a set of mutually exclusive
labels. The output of a neuron in a softmax layer depends on the outputs of all the
other neurons in its layer (Buduma and Locascio [2017]), as converges the equation
1.7

softmax(xi) = exi∑
j e

xj
(1.7)

A strong prediction would have a single entry in the vector close to 1, while the
remaining entries were close to 0 (Buduma and Locascio [2017]).
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1.4.3 Learning algorithms
The important phase is the training of the neural network to make it capable to learn.

The neuron can make sense from the incoming parameters and produce a result. That’s
what the learning algorithms do.

Learning algorithms are algorithms that work to find appropriate weights and/or other
network parameters in order to minimize a cost function. Usually, neural networks are
trained by epoch. An epoch means presenting training data to the network and processing
them with the training algorithm only once (Du and Swamy [2013]).

As mentioned earlier, learning methods are traditionally divided into supervised, un-
supervised and reinforcement learning.

In supervised learning, the output is known so we change the network parameters
according to the result of the comparison between the true and the obtained output.

The most popular and effective supervised training algorithm is the back propagation
gradient developed later.

In the case of unsupervised learning the output is not known, we try to link informa-
tion from the inputs and find links between them to find common patterns or features.
In this type of learning, we need a criterion to end the learning process. If there is no
criterion, the process continues even when a result is presented. The three well known
approaches in this type of learning are: Hebbian learning, competitive learning, and the
Self Organizing Maps (SOM) (Du and Swamy [2013]).

Reinforcement learning is a special case of supervised learning, where the output is
unknown and the agent learn what kind of actions he had to make in order to maximize
the total expected reward. It rewards the NN for a good output result and punishes it
for a bad one (Du and Swamy [2013]).

Back Propagation Gradient

The principle of this algorithm is to calculate the gradient error between the supposed
result and the result at the actual output where the gradient is a vector calculated using
partial derivations of a function dependent on more than one variable, then to adjust
the synaptic weights of the previous layers by the back-propagation of the error value.
The derivative is useful for minimizing the error function because it help us to know how
we can change X in order to make an improvement in Y (Goodfellow et al. [2016]). The
operation is repeated until we reach the defined number of iteration or meet the validation
rate as shown in Figure 1.6 (Khacef et al. [2018]).
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Figure 1.6: Gradient back propagation learning algorithm steps (Khacef et al. [2018])

The algorithm can be resumed in the next steps.

Forward phase

• Initialize the value of the input layer from the data set.

• Initialize the weights of neurons randomly.

• Get the result of the output layer.

• Calculate the gradient error E with the equation.

E = 1
2

∑
c

∑
j

(yj,c − dj,c)2 (1.8)

Where c is the index over cases (input-output pairs), j is an index over output units,
y the actual output and d is the desired output (Rumelhart et al. [1986]).

Backward phase

• Compute the partial derivation of E in order to minimize it by the gradient decent.

∂E

∂yj

= yj − dj (1.9)

∂E

∂xj

= ∂E

∂yj

.
dyj

dxj

= ∂E

∂yj

.yj(1− yj) (1.10)

• Change weights according to error:

∂E

∂wji

= ∂E

∂xj

.
∂xj

∂wji

= ∂E

∂xj

.yj (1.11)
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And for the output of the ith unit:
∂E

∂xj

.
∂xj

∂yi

= ∂E

∂xj

.wji (1.12)

Taking into account all the connections we got:
∂E

∂yi

=
∑

j

∂E

∂xj

.wji (1.13)

• Finally we collect the partial derivatives on all training examples in our data set:

∆w = −ε∂E
∂w

(1.14)

This method does not converge as quickly as methods that use the second derivatives,
but it is much simpler (Rumelhart et al. [1986]).

1.4.4 Advantages and Disadvantages of NNs
Neural networks have many advantages and disadvantages we mention among them

(Zou et al. [2009], Walczak and Cerpa [2003], Mijwel [2018])

Advantages

• Model non-linear and complex problems.

• Can be generalize and predict invisible data.

• Able to perform more than one function simultaneously.

• Information storing in the entire network and not in a database so also if few data
disappear, the network stay functioning. NN are fault-tolerant systems.

Disadvantages

• The requirement of powerful processing devices.

• When the network produces a result, it doesn’t give any idea about how or why,
which reduce the trust (black boxes).

• The choice of the right network structure is hard, because it is achieved through
experience and trial and error.

1.4.5 Typical applications
Deep learning is currently one of the most common and widespread fields of research,

which has led to its use in many applications. We mention in the following sections some
of the most prominent.

11



Natural Language Processing

NLP is a special field that contains several algorithms and techniques which focus on
how to train the machine to understand the human language, which is a challenge due to
the complexity, ambiguity, and diversity of the human languages.

The solutions performed by NLP have achieved great development and have proven
an effectiveness in achieving high accuracy in their tasks. Here are some of these leading
learning solutions (Pouyanfar et al. [2018]):

• Sentiment Analysis: Is a branch of NLP which deals with text analysis and clas-
sification of the writer’s feeling or opinion. Most data sets for sentiment analysis
are classified as either positive or negative, and neutral expressions are removed by
personality classification methods.

• Machine Translation: Deep learning plays an important role in improving the meth-
ods and approach of machine translation. One of the most famous and used struc-
tures in this field is RNN (see later), where the structure of RNN-based encoding
and decoding was introduced in neural machine translation.

Visual data processing

We can say that deep learning techniques have become the main parts of media systems
and computer vision, as the famous convolutional neural network architecture showed
important results in simulations of real-world tasks, including image and video processing
and object detection.

1.5 Deep Neural Networks
The great effectiveness of deep neural networks comes from their ability to extract

high-level features from the data presented to them after using statistical learning on a
large group to obtain an effective representation. This differs from the previous result
that uses handmade features and as the name shows, there are many layers that increase
their effectiveness (Sze et al. [2017]). An example of a simple deep neural network is
shown in Figure 1.7.

Figure 1.7: Deep neural network (Bahi and Batouche [2018]).
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1.5.1 Emergence of deep learning
The modern history of deep learning started in 1943 when the McCulloch-Pitts (MCP)

model was introduced and became known as the prototype of artificial neural model.

After the MCP model, the Hebbian theory, originally used for the biological systems
in the natural environment, was implemented (Pouyanfar et al. [2018]).

After that, the first electronic device called "perceptron" within the context of the
cognition system was introduced in 1958, though it is different from typical perceptrons
nowadays (Pouyanfar et al. [2018]).

In 1980, the "neocogitron" was introduced, it inspired the convolutional neural network
(Pouyanfar et al. [2018]).

In 1986 the Recurrent Neural Networks (RNNs) were proposed (Pouyanfar et al.
[2018]).

Next, in the 1990s LeNet made the Deep Neural Networks (DNNs) work practically
(Pouyanfar et al. [2018]).

Around 2006, Deep Belief Networks (DBNs) with a layer-wise pretraining framework
were developed (Pouyanfar et al. [2018]).

Google AlphaGo is an inspirational application of deep learning, which shocked the
world at the start of 2017. It won 60 online games Under the pseudonym name "master"
in a row against human professional Go players, including three victories over Ke Jie,
from December 29, 2016, to January 4, 2017 (Pouyanfar et al. [2018]).

Deep learning has imposed its effectiveness on solving problems that have been un-
able to solve the best attempts of artificial intelligence algorithms for years. This be-
came evident from its effectiveness with the complex dilemmas of high-dimensional data
and thus its effectiveness in many fields: such as the field of images, sound, chemistry,
bio-informatics and especially the understanding of natural languages, where it achieved
surprising and very promising results (LeCun et al. [2015]).

There are many deep networks, we will present next an overview about the most
famous one.

1.5.2 Convolutional Neural Networks
Convolutional neural networks (CNN) is one of the most famous deep neural networks

and the most widely used, especially in the field of computer vision, where its structure
simulates the way the visual cortex works in the cat’s brain (Pouyanfar et al. [2018]).

It is designed to work with grid-structured inputs, which have strong spatial depen-
dencies in local regions of the grid (Aggarwal [2018a]). In other word the input is multiple
arrays, for example a color image composed of three 2D arrays containing pixel intensities
in the three color channels (LeCun et al. [2015]). Despite the focus of CNNs on image
data processing, we can also consider sequential data such as texts as a special case of grid
structured data and use CNN to process it (Aggarwal [2018a]). This has already been
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done and has shown high efficiency, especially in the field of natural language processing.

There are four key ideas behind CNNs: local connections, shared weights, pooling
and the use of many layers which makes the network more effective (LeCun et al. [2015],
Pouyanfar et al. [2018]).

The CNNs consist of several consecutive layers where the output of a layer is the in-
put to the next layer, these layers are known to be repeatable where each of them has a
specific function and when repeated it gives better results.

Figure 1.8 shows the structure of a CNN :

Figure 1.8: Convolutional Neural Network (Kulkarni and Shivananda [2019]).

The previous figure shows that CNN contains a convolutional layer followed by an
activation function then the pooling layer comes usually max pooling layer. Convolutional
and pooling layers can be done many times after that comes the flattening that gives us
vector presented as input to the fully connected layer that works like a traditional NN
and produces the final output. Here is an explanation about the different layers.

Convolutional layer

The convolutional layer takes inputs and applies to each position a filter, the result is
called a feature map. A specific number of filters are applied resulting many feature maps.

The units in this layer are organized in feature maps, where each unit communicates
with the previous layer via a set of weights called the filter bank (LeCun et al. [2015]).
After getting the result we apply ReLU activation function which does not change the
dimension. The result is a 3-dimensional grid structure which has a height, width and
depth (Aggarwal [2018a]). The depth refer to the number of future maps. The Figure 1.9
shows the input and output future maps in the convolutional layer.
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Figure 1.9: Convolutional layer (Véstias [2019]).

The function of this layer can be summarized in extracting features and applying
filters.

Pooling layer

Pooling means doing a variety of computations to reduce the dimension of feature
maps. To do so, we include another type of layer called pooling (Buduma and Locascio
[2017], Sze et al. [2017]). There are three types of pooling:

• Max pooling: We take the maximum value of the pixels in a specific range.

• Min pooling: We take the minimum value of the pixels in a specific range.

• Average pooling: We take the average value of the pixels in a specific range.

To preserve the important features we use the Max-pooling, where each feature map
is divided into squares of equal size, then an intense feature map is created. We take
the maximum value in every square and produce a condensed feature map (Buduma and
Locascio [2017]).

This process is illustrated in Figure 1.10

Figure 1.10: Average and Max-Pooling (Véstias [2019]).
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Flattening

We need to convert the output of previous layers into one dimension feature vector to
be used by next layer, here where comes the turn of flattening which do this as shown in
Figure 1.11

Fully Connected layer

In this layer we connect each feature in the final spatial layer with each hidden state in
the first fully connected layer. We can say that its structure is similar to the traditional
feeding network. To increase the strength of calculations we can use more than one con-
tinuous layer. The majority of parameters lie in these fully connected layers due to the
big number of connections (Aggarwal [2018a]).

Figure 1.11 shows the flattening operation followed by the fully connected layers and
output layer that gives the output of the CNN.

Figure 1.11: Flatten and fully connected layers (Ng et al. [2019]).

1.5.3 Recurrent Neural Networks
Recurrent Neural Networks (RNN) are among the most famous deep neural networks

that simulate the repetitive brain structure. They have been proposed in 80’s and spe-
cialize in the sequential domain. RNN is characterized by its unique structure which is
different from the rest of the networks where it has feedback connections (Du and Swamy
[2013]), which makes it one of the best ways to solve problems that need previous knowl-
edge or experience such as prediction and production (Bullinaria [2013]), it is also used
in cases where the input has a variable of unfixed length.

RNNs process the entry sequence each time while keeping the state vector in its hidden
units since the latter contains information about the history of all previous elements of
the sequence (LeCun et al. [2015]).
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Figure 1.12: Recurrent Neural Network (Feng et al. [2017]).

As shown in Figure 1.12 the output of the hidden layer is its input and this operation
is repeated for a specific times in different time steps. The weights are shared at each
time step.

The hidden state at time t is given by a function of the input state at time t and the
hidden state at time t-1 (Aggarwal [2018a]):

ht = f(ht−1, xt) (1.15)

Note that we have input hidden weight Wxh and hidden layer hidden weight Whh and
the resulted output hidden weight Wyh and by using tanh as a function the equation
became:

ht = tanh(Whh.ht−1,Wxh.xt) (1.16)
and the output is:

yt = Wyh.ht (1.17)
As RNN can process inputs of different lengths and generate outputs of different

lengths it has different representations as shown in Figure 1.13 (Subramanian [2018]):

Figure 1.13: RNN representations (Subramanian [2018]).

• One to one: Used for fixed size input to fixed size output and it is appropriate for
image classification.

• One to many: The output is a sequence and it is used for image captioning or music
generation.

• Many to one: The input is a sequence and it is used for sentiment analysis or
classification.
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• Many to many: There is two types, the first has a sequence input and used in
machine translation where the second has a synchronized sequence input and output
and it is used for video classification.

RNN Problems

We can look at RNN as very deep feedforward network, where all layers share the same
weights and as we mentioned earlier, they learn long-term dependencies and this produces
a learning problem where it is difficult to store information for a long time (LeCun et al.
[2015]).

While learning the RNN the gradients keep changing at each time step, they may grow
or shrink which cause an exploding gradients problem or vanishing gradients problem.

Exploding gradients problem: It is a problem that happens when training the
RNN with the backpropagation. The shared weights are the same, so the gradient is
multiplied with the same quantity resulting an exploding in the gradient when the weight
w is bigger then one (Aggarwal [2018a]).

Vanishing gradients problem: Is a problem that happens when the shared weight
w is less then one which makes the gradient keep shrinking throw time (Aggarwal [2018a]).

Solutions: There is different solutions (Aggarwal [2018a], Grosse [2017]):

• We can change the used activation function because its derivation is included in the
product while calculating the gradient, an activation function such as ReLU may
be more helpful then tanh and segmoid.

• For the exploding gradient problem we can use the Gradient Clipping which prevent
gradients from exploding by rescaling them. It means capping the maximum value
for the gradient.

• We can use also a technique called Input Reversal which means reversing the input
words order when the gaps between the input and the output are very long.

• Another solution proposed in Hochreiter and Schmidhuber [1997], Graves et al.
[2008], where the structure of RNN have been improved with an architecture called
short-term long-term memory, denoted by LSTM.

Backpropagation Throw Time

Backpropagation Throw Time (BPTT) is an updated version of Back Propagation for
RNNs which update weights throw time. BPTT unfold the RNN in time to create an
equivalent feedforward every time a sequence is processed which make the derivatives
calculable via standard BP (Du and Swamy [2013]). BPTT performs gradient descent on
a complete unfolded network.

Suppose that the training starts at time t0 and ends at time t1, the total cost function
is the sum over time of the standard error function Esse/ce(t) at each time-step (Bullinaria
[2013]), as follows in 1.18 :

Etotal(t0, t1) =
t1∑

t=t0
Esse/ce(t) (1.18)
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and the gradient descent weight updates each time-step 1.19 :

∆Wij = −η∂Etotal(t0, t1)
∂Wij

= −η
t1∑

t=t0

∂Esse/ce(t)
∂Wij

(1.19)

The partial derivatives ∂Esse/ce/∂Wij have contributions from each weight Wij ∈
{WIH ,WHH} and depend on the inputs and hidden unit activation at previous time
steps, after that the error back-propagate throw time and network (Bullinaria [2013]).

Long Short Term Memory

Long Short Term Memory (LSTM) is an update of RNN introduced by Hochreiter and
Jürgen Schmidhuber and Bengio et al. in Hochreiter and Schmidhuber [1997], Graves
et al. [2008] in order to solve the exploding/vanishing gradient problems, where the basic
idea was to modify RNN to allow a better flow to error derivations.

LSTM was designed to transmit important information many time steps into the fu-
ture in order to learn and remember long term dependencies. The key component of
LSTM is the memory cell which hold the information that it has learned over time until
it’s needed. The activations correspond to short-term memory while the weights corre-
spond to long-term memory (Buduma and Locascio [2017], Grosse [2017]).

LSTM maintains the state of the cell as well as carrying weights to ensure that the
signal and information are not lost during sequence processing. Also, it can learn how
to make a multi-step prediction from one-step and it may be useful for predicting a time
series.

In RNN there is a single tanh layer, while in LSTM there is four layers as in Figure 1.14

Figure 1.14: LSTM structure (Tao and Zhou [2017]).

As shown in Figure 1.14 LSTM have 3 main gates: input gate, forget gate and output
gate.
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Forget gate ft : The gate’s job is to discover if the past memory is useful or not.
The past memory is rich with information that we have to figure out if it is useful or not.
This gate multiplies the past memory cell with a vector that takes the value of one or
zero (memory kept or forget). This vector results from applying a segmoid function on
the result of the multiplication of the weight by the past hidden layer and the current
input added to them the bias .

ft = σ(Wf .[ht−1, xt] + bf ) (1.20)

Input gate it : Also use the input and the past hidden state to preserve the worthless
input and use it to gate the new memory.

it = σ(Wi.[ht−1, xt] + bi) (1.21)

New memory generation C̃t : Use the input and the past hidden state to generate a
new memory.

C̃t = tanh(Wc.[ht−1, xt] + bc) (1.22)
Final memory generation Ct : It takes the advice of the forget gate ft and input gate

it to produce the final memory.

It adds the forget gate result to the result of the multiplication of the input gate with
the generated memory to produce the final memory.

Ct = ft.Ct−1 + it.C̃t (1.23)

Output gate ot : It separates the final memory from the hidden state and makes the
assessment regarding what parts of the memory needs to be present in the hidden state.

ot = σ(Wo.[ht−1, xt] + bo) (1.24)

ht = ot. tanh(Ct) (1.25)

Gated Recurrent Units

Gated Recurrent Units (GRU) is an updated version of LSTM, where the forget and
input gates are replaced with an update gate zt, and a reset gate rt is introduced to
modify the ht−1, and the internal memory Ct is eliminated (Aggarwal [2018a]), as shown
in Figure 1.15.

Figure 1.15: GRU structure (Jabreel and Moreno [2019]).

20



The main difference with the LSTM is that a single gating unit simultaneously controls
the forgetting factor and the decision to update the state unit. The updated equations
are the following:

The update gate zt:
zt = σ(Wz.[ht−1, xt]) (1.26)

The reset gate rt:
rt = σ(Wr.[ht−1, xt]) (1.27)

The new memory h̃t:
h̃t = tanh(W.[rt ∗ ht−1, xt]) (1.28)

The hidden state ht:
ht = (1− zt) ∗ ht−1 + zt ∗ h̃ (1.29)

Bidirectional RNN

As mentioned earlier, RNN have knowledge of previous entries, but this knowledge is
up to a certain point, and so does not have information about future cases.

In the bidirectional recurrent network, we have separate hidden states h(t) and g(t) for
the forward and backward directions as shown in Figure 1.16. The forward states interact
in the forwards direction, while the backwards states interact in the backwards direction.
Both h(t) and g(t) receive input from the same vector x(t) and they interact with the same
output vector o(t) (Aggarwal [2018a]).

Figure 1.16: Bidirectional RNN (Feng et al. [2017]).
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Multi-layer RNN

The multi-layer structure is used in large and complex models and can be used with
RNN as it is considered highly effective, especially with the LSTM or GRU structure. The
nodes in higher-level layers receive input from those in lower-level layers. The relation-
ships among the hidden states can be generalized directly from the single-layer network
(Aggarwal [2018a]).

Example on multi-layer RNN is described by Figure 1.17:

Figure 1.17: multi-layer RNN (Chaudhuri [2019]).

1.6 Generalization, Regularization and Optimization
techniques

This section overviews some generalization techniques, strategies of regularization, and
optimization techniques for deep NN.

1.6.1 Generalization
The goal of building and training machine learning and deep learning models is to give

them the ability to generate results when providing them with data they have not trained
on which make them general models.

Generalization is the ability to perform well on unseen inputs where their value is
estimated or in other words, the input data is interpolated and extrapolated (Du and
Swamy [2013], Goodfellow et al. [2016]).

To represent our problems well, the training set should be sufficiently large and for
a good generalization the size of the training set should be several times larger than the
network’s capacity (Du and Swamy [2013]). To know the generalization degree of our
model we compute the generalization error. The generalization error is divided into two

22



parts, which are an approximation error, which is due to the presence of a limited num-
ber of used parameters and the ignorance of the noise level in the training data, and the
training error (estimation error), which is due to the presence of a limited number of data.
When using a larger model, our approximation error decreases, but the estimation error
increases, and therefore we cannot reduce the error components at one time, but we try to
determine an optimal size for the trade-off between approximation and estimation errors.
We can also view the generalization error as the sum of bias squared plus the variance
(Du and Swamy [2013]).

The bias and the variance are useful to characterize the concept of generalization
(Goodfellow et al. [2016], Aggarwal [2018a]). The bias is caused by the simplifying as-
sumptions and the inappropriate choice of the size of a class of model when the training
set is infinite, which causes errors. Whereas the variance is caused by finite number of
training samples which makes the model not able to learn all the parameters of the model.
The limited data make the model have a large number of parameters.

To get a good generalization we need to balance the bias and the variance values.

Generalization by early stopping

Early stopping is one of the best methods used to improve generalization as we stop
training before reaches the absolute minimum. We should choose an optimum stopping
point to avoid over-training and high-frequency noise learning (Du and Swamy [2013]).

Generalization by regularization

Another method to improve generalization is the regularization. Its concept is sum-
marized in choosing a good regularizer to decrease the variance by affecting the bias as
little as possible (Du and Swamy [2013]).

Over-fitting and Under-fitting

The over-fitting and under-fitting problems are among the most common generaliza-
tion problems that can be defined as follows (Du and Swamy [2013], Goodfellow et al.
[2016]). When training the model too much it gives us perfect results for training data
and the training error decreases until it is almost nonexistent, but on the other hand the
generalization error increases too much and the model became not generalizable this is
over-fitting. When the model is not adequately trained, both training error and gener-
alization error increases, this is called under-fitting. Over-fitting gives a good training
performance and a poor generalization while under-fitting gives a poor training and gen-
eralization performances.

When the bias is high it cause an under-fitting and when the variance is high it cause
an over-fitting.

The under-fitting problem does not occur much and can be solved by acquiring more
data for the algorithm to train on or increasing the model’s complexity by adding more
layers or weights or parameters or also increasing the number of times a model is trained,
while the over-fitting problem is solved by regularization.
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1.6.2 Regularization
Regularization is defined by: "any modification we make to a learning algorithm that

is intended to reduce its generalization error but not its training error." (Goodfellow et al.
[2016]).

The regularization technique enables us to convert incorrectly presented problems into
well-posed problems in order to make the solution stable. Generally the regularization is
performed by adding a penalty called regularizer to the cost function. There is no best
machine learning algorithm and no best form of regularization, we have to choose the best
suitable regularization form to the task that we want to solve (Goodfellow et al. [2016]).

L1 and L2 Regularization

Here we present two forms of regularization which can be used to prevent over-fitting
(Buduma and Locascio [2017], Subramanian [2018]):

L1 regularization

L1 regularization also refereed to as Lasso Regression is the most used type of reg-
ularization in ML/DL which adds absolute value of magnitude of coefficient as penalty
term to the loss function. In NNs a coefficient is added to all weights in the network
or with another word a sum of absolute values of weight coefficients are added to loss
function. L1 has a property that leads the weight vector to became very close to zero
during optimization. It makes the neurons resistant to noise in the input by making them
use a small subset of their most important inputs.

L2 regularization

L2 regularization also refereed to as weight decay or Ridge Regression is another com-
mon type of regularization. It augments the error function by adding squared magnitude
coefficient which is the weight in NNs to the loss function or with another word a sum of
absolute values of weight coefficients are added to loss function. It encourage the network
or the model to use all the inputs a little, using L2 during the gradient descent update
means that all the weights decayed linearly to zero.

L1 regularization is useful in understanding which features are contributing to a deci-
sion, if feature analysis is not necessary it is preferable to use L2 regularization because
it presents a better empirically performance.

Dropout

Dropout is one of the most used and powerful regularization technique developed by
Hinton and his students at the University of Toronto in (Hinton et al. [2012]). It is
widespread used in DL and applied to intermediate layers of the model during the train-
ing time.

It can be considered as a different kind of method to prevent over-fitting in deep NNs.
A probability is given to neurons where they remain active only if the probability value
is different from zero which make the network forced to accurate even when some infor-
mation are missing. With this way the network is prevented from relying heavily on any
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neuron.

This naïve implementation of dropout requires scaling of neuron outputs at test time
which is undesirable so we use the inverted dropout where the scaling is done at training
time. The output of the neuron that his activation is not silence is divided by the proba-
bility p (a hyperparameter) before propagating his value to the next layer (Buduma and
Locascio [2017]).

To sum up, regularization is one of the central techniques in ML/DL, rivaled in its
importance by the optimization (Goodfellow et al. [2016]).

1.6.3 Optimization
Optimization is known as the task of minimizing or maximizing a function usually called

objective function. Usually most optimization problems are minimization problems and
the minimized function is called cost or loss function. There are two kinds of optimization
algorithms (Goodfellow et al. [2016]): First order and second order.

First-order Optimization Algorithms

Is the algorithms that use only the gradient such as:

Gradient Descent

Gradient Descent (GD) is a method that calculate the gradient and minimize the loss
function f(x) by moving x in small steps according to the result of the derivation provided
by the gradient vector which tell us which direction to move. The gradient descent is used
in NNs learning. The gradient descent have many versions, we mention of them (Buduma
and Locascio [2017]):

Stochastic Gradient descent (SGD): We estimate the error at each iteration with
respect to a single example which helps us to navigate flat regions.

Batch Gradient Descent (BGD): The hole data set is used to compute the error
and the gradient take the path of steepest descent.

Mini-Batch Gradient Descent: We compute the error at each iteration with re-
spect to a subset of the data which is refer to as Mini-batch.

Momentum: The momentum method is used to accelerate learning when we face a
high curvature, small but consistent gradients. It move in the direction of past gradient
after accumulating an exponentially decaying moving average of them. Some times SGD
is slow in learning so it is added with the momentum algorithm.

Second-Order Optimization Algorithms

Sometimes, we are interested in the second derivative which tells us how the first deriva-
tive changes when changing the inputs, this is important because it tells us whether the
gradient step will cause a lot of improvement as we expect based on the gradient alone.
This led to the emergence of second-order optimization algorithms that not only uses the
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gradient but also the Hessian Matrix that collects all second order derivatives.

The most widely used second-order method is Newton’s method (LeCun et al. [1998],
Goodfellow et al. [2016]).

1.7 Conclusion
This chapter prove the choose of deep learning to solve the problem of the next word

prediction. To be more confident, we will see how this problem can be solved without
using DL and with it. The next chapter present the different methods used in next word
prediction.
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Chapter 2

Next Word Prediction

2.1 Introduction
Nowadays people rely heavily on new technologies in their daily lives, such as smart-

phones and social media, which makes them search for aids that reduce effort in writing.
Smart keyboards provide suggestions to the user by predicting the next word, which is one
of the major problems currently being addressed and which we will present in this chapter.

Word prediction dates back to early last century before the advent of computers with
Andrei Markov, who developed the mathematical basis to predict upcoming symbols from
symbol chains of fixed length (Markov [1913]).

Next, Claude Shannon devised a game where a player guesses a random text snip-
pet letter by letter (Shannon [1951]). Then a family of models based on Markov’s work
emerged which assume that the appearance of a symbol depends on a number of other
symbols, n-gram language model is an example.

In 1956, Noam Chomsky showed in his seminal paper Chomsky [1956] that a natural
language expression can be described by other means than by a Markov model. He gave
a proposition of a phrase structure grammar and creates a hierarchy of language types.
Those grammatical, syntactic and semantic information have been incorporated and used
later in word prediction.

The two labs IBM Thomas J. Watson Research Center and CMU used n-grams in
their speech recognition systems (Baker 1975b, Jelinek 1976, Baker 1975a, Bahl et al.
1983, Jelinek 1990).

Many prediction systems based on different prediction methods have been in use since
the early 1980s.

In this chapter we will present the various methods mentioned previously to solve the
problem of next word prediction as well as the new ones based on machine learning and
deep learning.

2.2 Natural Language Processing
Natural Language Processing (NLP) is a very active research field since its appearance

four decades ago. The origins back to Alan Turing test where the exigency to imitate the
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human lead to thinking about processes which can manipulate the natural language (Gen-
dron and Gendron [2015]), where it collected a set of various models, tools, statistical and
linguistic techniques to solve problems. The main goal of NLP is to study how humans un-
derstand and use languages and develop tools that enable computers to simulate humans
(Doszkocs [1986], Chowdhury [2003]). "It encompasses all computer-based approaches to
the handling of unrestricted written or spoken language, from purely “mechanistic” pro-
cedures, as employed in many text editors, word processors, and in automatic-indexing
approaches in information retrieval (IR), to “intelligent” analysis, understanding and ex-
pression of “meaning” as exemplified in natural-language understanding, question answer-
ing, speech recognition, machine translation and expert systems in artificial intelligence
(AI)." (Doszkocs [1986])

NLP can be divided into two sub-fields: Natural Language Understanding (NLU) and
Natural Language Generation (NLG), as shown in Figure 2.1. NLU deals with an under-
standing of the structure of language, whether it is words, phrases or speeches. It focuses
on syntax and semantics and tries to solve different types of ambiguities related to them.
Where, NLG try to teach machines how to create Natural Language in a reasonable way
(Thanaki [2017]).

Figure 2.1: The relation between NLP, NLU and NLG.

The problem of next word prediction that we cover in this work fall under NLG
problems.

2.3 Language Modeling
The idea that some word sequences are more frequent than others has led to the con-

cept of language modeling which is now considered a central task in NLP (Jozefowicz
et al. [2016], Pereira and Paraboni [2007]).

A language model can be considered as a probability distribution P (W ) overW which
is a sequences of symbols called strings, P (W ) tel us how often W occurs in a given text
or sentence in a specific language. Language Modeling is widely used in many tasks such
as: Machine Translation, Speech Recognition, Spelling Correction and in predicting the
next word which is it’s main goal. The probability of a word in a sequence of words is
based on the previous words in the sequence (Chen and Goodman [1999], Zitouni [2014],
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Kłosowski [2018]):

P (W ) =
N∏

i=1
P (wi|w1, ....., wi−1) (2.1)

Where P (wi|w1, ....., wi−1) is a conditional probability that wi will occur given the
previous word sequence w1, ....., wi−1.

A basic and widely used language model is N -gram language model which gives the
probability of a word wi based on N previous words.

P (wi|wi−N+1, ...., wi−1) (2.2)

The first and simplest way to approximate this probability is called Maximum likeli-
hood estimation (MLE) (Wandmacher [2009]).

2.3.1 Maximum likelihood Estimation
MLE calculate the probability distribution based on frequencies where it is formalized

as follow:
PMLE(wi|w1, ....., wi−1) = C(w1, ...., wi)

C(w1, ...., wi−1) (2.3)

Where C(w1, ...., wi) is the frequency of the sequence w1, ...., wi in the corpus.

The maximum likelihood estimation can lead to poor performance when we estimate
the probability based on a long history. It sets a zero probability for a word that has not
occurred before in the training set. The phenomenon of not seen enough data in training
data is refer to as data sparsity (or data sparseness) problem, and this is what we do
not want it to happen because we will work on different data from the training set so a
technique called Smoothing or Discounting is used to address this problem (Allison et al.
[2006], Wandmacher [2009]).

2.3.2 Smoothing
Smoothing or discounting refers to those techniques that adjust MLE to give more

appropriate probabilities. It makes the probability distributions more uniform by up-
warding low probabilities and down-warding high probabilities, they also improve the
accuracy of the model (Chen and Goodman [1999]). Here we present some of the famous
and widely used smoothing techniques.

Additive Discounting

Also known as additive smoothing is the oldest and simplest used solution. We add
counts by 1 according to Laplace work in 19th century to avoid zero (Chen and Goodman
[1999], Wandmacher [2009]), as seen:

PLaplace(wi|w1, ....., wi−1) = C(w1, ...., wi) + 1
C(w1, ...., wi−1) + |V | (2.4)

Where |V | is the size of the vocabulary.

This technique does not give good result because it can change the probability dis-
tribution strongly (Chen and Goodman [1999], Wandmacher [2009]). Lidstone (1920)
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generalized Laplace’s law by adding a factor δ to every count which improves the proba-
bility estimates significantly where 0 < δ ≤ 1 :

PLidstone(wi|w1, ....., wi−1) = C(w1, ...., wi) + δ

C(w1, ...., wi−1) + δ|V |
(2.5)

Good–Turing Estimate

Good–Turing Estimate (GT) estimate is central to many different smoothing tech-
niques. GT estimate assume that the probability of not yet seen events equal to the
number of events seen once n1 divided on the total number of existing events N : n1

N

Pereira and Paraboni [2007]. In GT estimate we assume that for any n-gram that occur
r times, it occur r∗ times where (Chen and Goodman [1999]):

r∗ = (r + 1).nr+1

nr

(2.6)

Where nr is the number of n-grams that occur r times.

With this technique the resulted probability contains non-zero estimates to unseen
n-grams (Pereira and Paraboni [2007]). GT is used as a tool in various smoothing tech-
niques and is not in itself used for smoothing because it does not include the combination
of higher-order models with lower-order models which are considered necessary as de-
scribed later (Chen and Goodman [1999]).

Kneser-Ney Discounting (KN)

Kneser-Ney discounting (Kneser & Ney, 1995) is an extension of absolute discounting.
Absolute discounting is based on subtracting a small fixed amount D from all non-zero
counts where in KN discounting the combination of lower-order distribution with a higher-
order distribution is built in a new way where in previous the lower-order distribution was
taken to be as a smoothed version of the lower-order maximum likelihood distribution and
in KN the calculation on the lower-order n-gram probabilities is optimized in case the
higher order n-gram was unseen where the lower-order distribution is selected in a way
that the marginals of the higher-order smoothed distribution match the marginals of the
training data (Wandmacher [2009], Chen and Goodman [1999], Körner and Staab [2013]).

In case of uni-gram which is the lowest level there is no interpolation, so:

PKN(wi) = N1 + (•wi)
N1 + (••) (2.7)

Where:
N1+(•wi) = |{wi−1 : C(wi−1, ..., wi) > 0}| (2.8)

N1+(••) = |{(wi−1, wi) = C(wi−1, ..., wi) > 0}| =
∑
wi

N1+(•wi) (2.9)

N1+(•wi) refer to the number of words that precede wi at least once in the data set.

In case of higher levels:

PKN(wi|wi−n+1, ....wi−1) = max{N1+(•wi−n+1, ....wi)−D, 0}
N1+(•wi−n+1, ....wi−1•)

+ D

N1+(•wi−n+1, ....wi−1•)
.N1+(wi−n+1, ...., wi−1•).PKN(wi|wi−n+2, ....wi−1)

(2.10)
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Where:
N1+(•wi−n+1, ....wi) = |{wi−n : C(wi−n, ...., wi) > 0}| (2.11)

N1+(•wi−n+1, ....wi−1•) = |{(wi−n, wi) : C(wi−n, ...., wi) > 0}| =∑
wi

N1+(•wi−n+1, ....wi) (2.12)

As in absolute discounting the D is a small fixed account where 0 ≤ D ≤ 1 and
D

N1+(•wi−n+1,....wi−1•) .N1+(wi−n+1, ...., wi−1•) is the weight that determines the impact of the
lower order value on the result.

After compensation we get:

PKN(wi|wi−n+1, ....wi−1) = max{C(wi−n+1, ...., wi)−D, 0}∑
wi
C(wi−n+1, ...., wi)

+ D∑
wi
C(wi−n+1, ...., wi)

.N1+(wi−n+1, ...., wi•).PKN(wi|wi−n+2, ....wi−1)
(2.13)

Modified Kneser-Ney Discounting

Chen and Goodman in Chen and Goodman [1999] introduced a variation of KN smooth-
ing by converting it into an interpolation smoothing method where:

PMKN(wi|wi−n+1, ....wi−1) = C(wi−n+1, ...., wi)−D(C(wi−n+1, ...., wi))∑
wi
C(wi−n+1, ...., wi)

+γ(wi−n+1, ...., wi).PMKN(wi|wi−n+2, ....wi−1)
(2.14)

Where γ(wi−n+1, ...., wi) is the scaling or interpolation factor to mix in lower-order
distribution and it value depends on D.

The single discount D is replaced with three different parameters, D1, D2, and D3+,
where:

D(C) =


0 if C = 0
D1 if C = 1
D2 if C = 2
D3+ if C ≥ 1

(2.15)

The modified KN discounting performs better than the KN discounting and it is
considered as the best way to solve zero probability problem (Chen and Goodman [1999],
Wandmacher [2009]).

2.3.3 Model combination
Backing-off

Backing off presented in Katz [1987], also called katz smoothing, is a combining model
which combine information from several models. The idea is to consult the model of
order n − 1 if the model of order n cannot help and so on or in other words combining
higher-order models with lower-order models (Wandmacher [2009], Chen and Goodman
[1999]):

PBO(wi|wi−n+1, ....., wi−1) =


C∗(wi−n+1,....,wi)
C(wi−n+1,....,wi−1) , if C(wi−n+1, ...., wi) > 0
αwi−n+1,....,wi−1PBO(wi|wi−n+2, ....., wi−1), otherwise

(2.16)
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The algorithm recursively applies models of a shorter history until n = 1. C∗ represents
an already smoothed count which is calculated according to GT estimate, because such a
backoff scheme is normally applied in combination with a standard smoothing scheme and
the coefficient α is a normalizing factor which is also called backoff weight which assures
that the sum of all probabilities remains unchanged.

Interpolation

Interpolation is another combining model that combines information from several mod-
els. Unlike backing-off, interpolation mixes the estimates from all models. In linear or
simple interpolation we multiply each model by a coefficient λi which represent the weight
then we add to it the single estimate (Wandmacher [2009]):

PLI(wi|wi−2wi−1) = λ1.P
∗(wi|wi−2wi−1) + λ2.P

∗(wi|wi−1) + λ3.P
∗(wi) (2.17)

Where 0 ≤ λi ≤ 1 and ∑
i λi = 1. p∗ is meant to be any kind of estimate. We mention

also that there is other types of interpolation like geometric interpolation.

2.3.4 Expectation Maximization algorithm
One of the most important tasks is to find the optimal parameters for a particular

algorithm. Often this is done by experimenting several times until finding the optimal
value, but experimentation takes time and does not guarantee reaching a result. This is
why many algorithms that perform this task have been developed. In probabilistic, the
most notable one is Expectation Maximization (EM) algorithm.

EM is a greedy algorithm proposed by Dempster et al. in 1977. The algorithm always
converges but it also may stuck within a local minimum, moreover it is fast and very
easy to apply. The algorithm has two main steps: expectation step which initialize the
parameter or expect his value and maximization step which maximize the parameter value
expected on expectation step. It is used to find optimal weights for combined language
models and had different versions (Wandmacher [2009]).

2.4 Word Prediction Systems
Prediction in NLP means guessing the missing letter, word or sentence (Ghayoomi and

Momtazi [2009]). Currently there are many prediction programs that aim to reduce the
number of keystrokes needed for writing by trying to predict the letter, word or phrase
that the user is writing or intending to write later (Väyrynen et al. [2007]).

The prediction program monitors the words and letters that the user is typing and
applies one of the prediction methods or many of them to produce a list of predictions
that are updated with each new letter the user writes then the user selects the appropriate
prediction from this list.

We are going to concentrate on word prediction systems where only the next word
is offered. The biggest challenge is that the left context is the only piece of information
available for predicting and often not sufficient (Väyrynen et al. [2007]).

Word prediction systems use both word prediction and word completion, which first
predicts the next possible word and gives a list of suggestions, then when the user does
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not choose one of the suggestions presented he continues writing letters here comes the
word completion role where the prediction system gives the following possible words based
on the written letters. This process is illustrated in Figure 2.2

Figure 2.2: Example of the prediction system to English with five words in the prediction
list (Cavalieri et al. [2016]).

2.4.1 Evaluation Metrics
The quality of prediction systems and methods can be evaluated using several measures,

the most famous are discussed:

Savings

It means the potential savings obtainable by using a predictor (Väyrynen et al. [2007]).
There is three involved parameters which can be defined as follow:

Savings is the cost difference between using predictions and entering standard events.

Where the cost of using predictions includes the visual scan time for searching for pre-
dictions and cognitive time for deciding on the correct prediction with physical movement
time required to select a prediction.

Whereas the cost of entering standard events comprise the cognitive time required to
formulate the next event and the physical movement required to enter the next event.

Hit Rate

Hit Rate (HR) is the percentage of times that the intended word appears in the pre-
diction list where a high hit rate means a good prediction performance (Wandmacher
[2009]).

Hit Ratio

Hit ratio expresses the possibility of guessing the word before writing it and is calculated
by dividing the number of times that words are guessed by the number of written words
(Garay-Vitoria and Abascal [2006]).

Hit Ratio = number of times that words are guessed

number of written words
(2.18)
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Keystrokes Until Completion

Keystrokes Until Completion (KUC) is the average number of keystrokes that have to
be entered before the intended word appears in the prediction list where a high perfor-
mance means a low value of KUC (Wandmacher [2009], Aliprandi et al. [2008]).

KUC = (c1 + c2 + ..+ cn)
n

(2.19)

Where c1...cn is the number of keystrokes for each of the n words before the desired
word appears.

Accuracy

Accuracy (ACC) is the percentage of words that could be predicted and completed
before the user reached the end of the word (Wandmacher [2009]).

Keystroke Saving Rate

Keystroke Saving Rate (KSR) or Keystroke Saving (KS or KSS) is the percentage of
saved keystrokes reached by using the predictor (Wandmacher [2009]). It does not tell us
how to reduce the keystrokes but tell us how much we can save by using the predictor.

KSR = (1− Kred

Kall

)× 100 = (Kall −Kred

Kall

)× 100 (2.20)

Where Kred is the number of keystrokes needed on the input device when typing with
reduction or prediction method and Kall is the number of keystrokes needed on the input
device when typing without reduction or prediction method.

Perplexity

Perplexity (PP) is the average number of possible choices or words that may occur
after a string of words and it can be measured with cross entropy calculated on test set
with N words (Cavalieri et al. [2016]), where the cross entropy equation is:

H(W ) = 1
N

N∑
i=1

log( 1
P (wi|wi−(n−1), ti−(m−1))

) (2.21)

where W = (w1, w2, ..., wN) represents the words in the test set and the PP is:

PP (W ) = 2H(W ) (2.22)

2.4.2 Applications
Word Prediction is useful in many domains and used in many applications (Ghayoomi

and Momtazi [2009], Aliprandi et al. [2008], Väyrynen et al. [2007]).

• Text production proper where we generate texts by predicting the next words.

• Writing assistance systems and assistive communication system such as Augmenta-
tive and Alternative Communication (AAC) devices, where those systems predict
the next word or character that the users wants to write to help them and reduce
the effort needed to write.
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• Speech recognition, where in the case of different pronunciation of words from one
person to another, we can predict those words based on what the user previously
said, and we can improve the results of speech recognition by correcting the resulting
words by predicting them.

• Spelling correction and error detection, where we predict correct words based on
typed characters and words.

• Word-sense disambiguation, where we can know the exact meaning of it based on
its predecessors or predicting a synonym for that word, which makes the meaning
more clear.

• Statistical machine translation, where when translating from a language to another
we may make mistakes due to the difference between languages so we use word
prediction to minimize and correct those errors.

• Handwriting recognition and optical character recognition where many wrong words
can be obtained due to the difference in the writing method from person to another,
here we can use word prediction to reduce these errors and letter prediction to make
Optical Character Recognition more accurate.

• Also it can be used in text-entry interfaces for messaging on mobile phones and
typing on handheld and ubiquitous devices or in combination with assistive devices
such as keyboards, virtual keyboards, touchpads and pointing devices.

2.5 Factors affecting prediction
There are some factors that influence the prediction process such as text block size,

dictionary structure and prediction method. We give a survey here on those techniques
(Garay-Vitoria and Abascal [2006]).

1. Predictable Block Size: The choice of the size of predicted block is an important
factor due to its contribution in the value of savings and hit ratio, where it can take
the value of 1 character (at this case the model save no keystrokes), n characters
(n-grams), word or more than one where the most block used is the word.

2. Dictionary Structure: Word prediction systems store the required information using
dictionaries (lexicons), it can use more than one; the organization of them makes
difference in the system, where there’s two type of organization, sequential: simple
but slow, or structured: faster but more complex. Note that the adaptation of dic-
tionaries can augment the keystroke savings in the case where the user’s vocabularies
are added.

3. Prediction Methods: There are many approaches, we present five of them in what
follows:

(a) Frequencies: The system suggests the most probably words that have the same
prefix with the word written by the user. It is possible to store the recency also
in order to improve the results but also increase the computational complexity
and the storage.
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(b) Word probabilities: A two-dimensional array stores the word and the condi-
tional probability of the next word likely. This method can be improved if
recency is taken on consideration, but it is usually restricted because of the
difficulty of updating the table with fixed dimension with the user vocabulary.

(c) Syntactic prediction with probabilities: For this approach, two information
are used: the probability of appearance for each word, and the probability of
appearance for each semantic category after the appearance of another. This
approach achieves usually better results than the precedent discussed.

(d) Syntactic prediction using grammars: Grammatical rules are taken in to con-
sideration which constructed by analyzing sentences using grammars and NLP
techniques to obtain the category with the highest probability of appearance.
The same dictionary of the precedent approach is used with some addition
of morphological information. It is complicated in computation than the last
approach but makes appropriate predictions.

(e) Semantic prediction: This approach is similar to the precedent, where words
are associated with a semantic category, which is difficult and augment the
computational complexity, as results are similar to those of the syntactic ap-
proaches.

4. User Interface Characteristics: The characteristics of the user interface are also one
of the most important factors that affect the quality of the prediction program, since
if they are not well prepared the user may not benefit from them. The number of
suggestions must be taken into consideration, many suggestions may distract the
user and take time from him to read them up to the time required to write the
desired word while submitting one or two suggestions represents a risk as there is
a high possibility that no word will be chosen. The manner in which choices are
presented is also important as showing proposals as vertical word lists gives better
acceptance because the effort required to see and manipulate them is less.

5. Proposals Arrangement: The arrangement of proposals is also important, as they
are often arranged according to the likelihood of their occurrence, they can also
be arranged alphabetically to facilitate their reading, or provide suggestions in a
specific location for the user to save their position and access them easily.

6. It is also needed to balance algorithm complexity, dictionary size and response time
to get more efficient results. The user’s physical and mental ability should also be
taken into account as it greatly affects the predictor’s effectiveness. When building a
prediction system, smart decisions must be taken, taking into account all the factors
mentioned above and trying to balance them.

2.6 Classical Prediction Methods
Classical techniques are those that use probabilities in the estimation of the occurrence

of a word. Other techniques enhance these technique by syntactic or semantic construction
(Ghayoomi and Momtazi [2009], Makkar et al. [2015]).

2.6.1 Statistical Modeling
Statistical modeling, also known as probabilistic modeling, use the probability of the

word appearing in the text to anticipate letters and words and even phrases and place

36



them in the list of predictions. In case of words, the prediction is made with n-gram model
which is based on Markov assumption where the precedent n − 1 word affect the next
word. In what follows, we describe the most common statistical methods for prediction:

Word Frequency

The first method in word prediction use the word frequency to complete what the user
is writing without taking into consideration what was previously written. The systems
based on this method used the unigram model with a fixed lexicon. This method makes
the system gives the same prediction suggestions for a specific letter sequences and of-
ten gives inappropriate suggestions (Ghayoomi and Momtazi [2009], Makkar et al. [2015]).

Swiffin et al. [1987] used unigram model but with adaptive lexicon in PAL1. PAL
generates prediction based on word frequency and recency of use information stored in its
lexicon. The predictions are generated and updated according to the typed prefix. The
lexicon adapts to the user by adding the user’s vocabulary to the dictionary and update
the frequency and recency to give more appropriate predictions. PAL reduces to over 50%
the number of characters necessary to enter a text.

N-Gram Language Model

This method has been developed to overcome the limitation of the previous method.
It takes into account the previous context where the previous words are used to predict
the next word. When using only the previous word, the model is called bigram, and when
using the previous two words it is called trigram and so on (in general when using the
previous n − 1 word to predict the n word is called the n-gram model). This method
provides smart suggestions and saves time by moving away from grammar rules.

N -gram language model is a probabilistic language model based on Markov assump-
tion, the beginnings was in 1913 with Markov in Markov [1913], who propose this tech-
nique, which called later markov chains, to predict from a roman if the next letter will be
a vowel or a constant, for more histories check Jurafsky and Martin [2009].

There are tow approaches of them: Character based and word based, where the con-
cept is to extract n sequence of successive elements from a text (Majumder et al. [2002]).

The idea of n-grams is making a realizable solution to keep the history of almost
all known words (preceding) by just the n − 1 preceding words, according to Markov
assumption:

P (w|w1, ..., wL−1) ≈ P (w|wL−n+1, ..., wL−1) (2.23)
Where L is the position of the current word.

For example with unigram the probability of the sentence " I read a paper " became:
P (I − read− a− paper) = P (I).P (read).P (a).P (paper)

Many works used N -grams for prediction, we mention some of them in the following.

1PAL is an abbreviation for predictive adaptive lexicon which is a communication aid and keyboard
emulator developed at Dundee university by Arnott et al. in 1984
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Ghayoomi and Assi [2005] implemented a word predictor for the Persian language
that uses unigram, bigram and trigram word model. Their system achieves 57.57 % of
keystroke savings and 24.42 % of HR where the number of suggestions is 9.

Haque et al. [2016] applied N -gram language model specifically unigram, bigram
and trigram, back-off and deleted interpolation techniques to predict Bangla words in a
sentence and used large data set of text word collected from different news papers. The
results showed that trigram, backoff and deleted interpolation performed almost in the
same trend-line where their accuracy was 63.04, 63.50, 62.86. While Bigram perform
modestly with an accuracy of 45.84 and unigram performance was very poor with an
accuracy of 21.24.

Bhuyan and Sarma [2018] used N -gram language model to predict the next word that
the user wants to write in their Automatic Formation, Termination and Correction system
of Assamese words but it can also be used for other languages. After comparing different
n-gram models, the results showed that trigram and quadrigram are almost similar, but
corpus size for them has a big difference. They concluded that for faster computers it
is better to use a quadrigram, but for economical computers the trigram or bigram is
better.

Let us mention other researches that used n-grams (as each had a point of view) like
Lesher et al. [1999] who studied the effects of n-gram order and training text size on word
prediction, others focus on complex languages like Gao et al. [2002] who applied trigram
language model to Chinese. Others concentrate on corpus like Trnka and McCoy [2007]
how analyzed the effect of in-domain and out-of-domain data on word prediction with
trigram model.

Skip-Gram Language Model

Despite the effectiveness of smoothing techniques in solving the data sparsity problem,
it has some limitations. For this reason, other techniques were sought to overcome this
problem, among them we find the skip-gram language model.

Skip-grams come from the concept of introducing gaps in n-grams. Skip-grams in-
corporate long distance relations between words beyond the level of n consecutive words
without an exponential increase in the parameter space. It allows to skip k tokens while
predicting the context of a word (Pickhardt et al. [2014], Aggarwal [2018b]).

Pickhardt et al. [2014] provided a generalized language model (GLM) based on skip
n-gram models interpolated using modified Kneser-Ney smoothing. Experiment over En-
glish text corpora led to a substantial reduction of perplexity between 3.1% and 12.7% in
comparison to traditional language models using modified kneser-Ney (MKN) where for
higher orders the GLM outperforms MKN for all test cases and the investigation over three
other languages and a domain specific corpus gave a consistent improvements moreover
the experiments on a small training data set of only 736 KB text gave an improvements
of even 25.7% reduction of perplexity.
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Hidden Markov Models

Hidden Markov Models (HMM) presented in Baum and Petrie [1966] are considered as
statistical modeling techniques often used for sequences or time series processing (Eddy
[1996]). They are defined in Rabiner and Juang [1986] as following:

"An HMM is a doubly stochastic process with an underlying stochastic process that is
not observable (it is hidden), but can only be observed through another set of stochastic
processes that produce the sequence of observed symbols."

Jordan et al. [2020] presented an HMM-based word prediction method to predict words
with virtual keyboard. The results showed a reduction in the total amount of clicks with
26.3% and 61% user typed the text in less time moreover 90.7% of the desired words were
displayed.

2.6.2 Knowledge-based Modeling
One of the disadvantages of systems based on statistical modeling is that it predicts

words syntactically, semantically, or pragmatically inappropriate which makes it difficult
for the user to choose the intended word. As a solution, knowledge-based modeling omits
some inappropriate words, making the results more specific and relevant to the user. The
used linguistic knowledge in prediction systems is syntactic, semantic, and pragmatic
(Ghayoomi and Momtazi [2009], Makkar et al. [2015]).

Syntactic Prediction

The syntactic structure of the language is used to present syntactically appropriate
words where part of speech (POS) tags are determined and the syntactic knowledge is
used by the prediction system which makes it more accurate and knowing the type of
the following words (Ghayoomi and Momtazi [2009], Makkar et al. [2015]). Syntactic
prediction methods include Statistical syntax and rule-based grammars.

1. Statistical Syntax: It uses both syntactic categories sequence and POS tags to
make predictions where the appearance of word is estimated using n-gram word
tags. POS tags is sufficient in the simplest method where the probability of each
predicted word is estimated by its probability of existing in a specific position along
with its tag with respect to the past word tag. In another approach the probability
of each predicted word is estimated according to the past word and its POS tag and
the POS tag of the word before the past word, this means that we use word bigram
and POS trigram model.

Part-Of-Speech (POS) Tagging: Tagging sets a description to a token, this descrip-
tion can be a semantic information or part of speech and is known as tag (Indurkhya
and Damerau [2010]). Part Of Speech Tagging means labeling words with their ap-
propriate Part of speech. This part of speeches: noun, verb, adjective, etc.

Fazly [2002] implemented word unigram and bigram and introduced new prediction
algorithms which exploit POS tag information and compaired them with wordQ
2. Results showed that all the predictors outperform wordQ where the syntactic

2WordQ is a commercial word prediction program.
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predictors gives the best results, and using only POS info gives results better than
unigram but worse than bigram. When n=5 and taking into account that predic-
tions may be repeated, the linear combination with α = 0.8 gives the best result
with a HR of 37.78 % and KSR of 53.14 % noting that the tags-and-words model
gives a results close to it.

After a year Fazly and Hirst [2003] investigate the effect of incorporating syntactic
information into a word completion algorithm. They introduced the two algorithms
that were explained in Fazly [2002]. Tag-and-words algorithm which combined tag
trigrams and word bigrams and linear combination algorithm that combines tag
trigram and word bigram models. The results showed that the linear combination
algorithm outperforms all other with 36.23% HR and 51.98% in KS.

Aliprandi et al. [2008] enhanced Fastype which is a word prediction system designed
to predict words for inflected languages with word and Part-of-Speech n-gram lan-
guage models and a new interface called DonKey. The added POS n-grams and
Tagged Word (TW) n-grams where the tagged word n-gram model extends word
n-gram model by adding POS information. They use a linear combination algorithm
to combine POS trigrams and simple word bigrams and tested their enhanced sys-
tem on Italian language. They reached a Keystroke Saving up to 51% for a standard
prediction list of length 10.

C. Spiccia et al. in Spiccia et al. [2015] proposed a two steps word prediction method
based on posgrams to predict the missing words in sentences.
The first is a preparatory step which aimed to predict the part of speech of the
missing word by using a posgram lookup table, this information is used in the sec-
ond step to predict the word. The approach is compared with three traditionally
word prediction algorithms: n-grams, Latent Semantic Analysis (LSA) and random
choice.

They train the model for the Italian and English languages and they train only
the POS, where they test it with posgrams, always noun and random choice; the
posgrams results were the higher with 43.2% accuracy for the Italian language and
45.0% for the English language.

They also compare the prediction using the two steps and without (traditional pre-
diction), the n-grams make the higher results constantly, where it results without the
first step an accuracy of 50.3% for Italian language and 57.8% for English language,
but with the preparatory step the accuracy improved for the Italian language, it
becomes 51.1% and for the English language it remains stable.

Cavalieri et al. [2016] proposed an interpolation model, which combines word-based
n-gram language model with m-POS-based language model where m < n. The
resulted m-POS interpolation model was evaluated on three different languages:
Portuguese, Spanish and English. The results showed an improvements in the KSS,
HR and PP parameters, with 1 and 5 words in the prediction lists.

2. Rule-Based Grammar: We use the grammatical rules of the language in this ap-
proach where the sentence will be parsed using the grammar to know its categories.
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The parsing may be top-down or bottom-up and the methods based on grammat-
ical rules are: Phrase Structure Rule Grammar (PSRG), Context Free Grammar
(CFG), and Head-driven Phrase Structure Grammar (HPSG). Usually the rules are
structured as follows:

LEFT → [RIGHT ]+ (2.24)

The previous equation shows that the left part of the rule may be decomposed into
the categories in the right part in the order in which they appears, where the right
part contains at least one category and all categories are defined (Garay-Vitoria and
Abascal [2006]).

Hunnicutt [1986] was one of the firsts who used word frequency with simple struc-
ture grammar to predict words in Text-To-Speech system.

Morris et al. [1992] extended PAL with syntactic information and named the new
enhanced version Syntax PAL. This version is considered the first prediction system
that uses syntax. Syntax PAL performs a syntactic parse of the partial sentence
that has been typed to predict a syntactically correct words. It reduced the effort
significantly for users with motor dysfunctions, but had a problem when users make
syntactic errors.

McCoy and Demasco [1995] presented an intelligent word prediction system based
on syntactic information. They implement a grammar of English in a transition
network formalism that allows several parsers to be pursued in parallel which assist
in predicting. Their long term goal is to add semantic and pragmatic information.

Wood and Lewis [1996] developed and implemented a syntactic pre-processor by
using context free grammar along with phrase-structure-rule grammar and simple
parsing technique to predict syntactically correct words then apply statistical pre-
diction to order the suggestion list. They create a platform know as WINDMILL
to test their technique and compared it with no prediction, statistical and syntactic
techniques. The proposed technique gave the better results with 55.1% of Keystroke
saving.

(a) Chart Parsing Method: Is a bottom-up parsing technique proposed by
Allen [1987]. The bottom-up parsing uses the rule and match the sequence
of symbols to the right part then identifies them as the left symbol from the
point of view of the key wich is a special symbol. The parser require the key to
complete or extend a rule after finding the rule that starts with that key. The
chart is a special structure that is used by buttom-up parser to keep records of
its state. The chart also store the previously matched but not complete rules
(Garay-Vitoria and González-Abascal [1994]).

In this work Garay-Vitoria and González-Abascal [1994], the authors proposed
a new approach based on the chart bottom-up technique and syntactic predic-
tion using grammars. They noted that the existing methods such as syntactic
approaches make best results than the frequency approaches but this last need
simple computation effort than syntactic approaches.
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The idea is to associate each word with the semantic information of the con-
versation theme and to enrich the syntactic approach with semantic categories,
which leads to minimize the possible words, which should enhance the hit rate.

They test four prediction methods: word frequencies, syntactic with automa-
ton, syntactic chart and semantic-based chart, on two Spanish texts. For the
first text (994 character) and the second (2444 character), the syntactic with
automaton and syntactic chart score the best saving percentage (they was quasi
similar).

This approach rise a new problem. It is constrained to the topic which it
trained on, so the performance of the method decrease if the model changes.

They think that the promising approach which can make best results is the
neural network approach because it’s similar to the natural human approach
in prediction.

Garay-Vitoria and Gonzalez-Abascal [1997] developed a word prediction method
based on syntactical analysis of a sentence using the chart parsing method.
Word information is stored in dictionary that adapts itself according to the
user’s vocabulary, this makes the system adaptable. They tested their system
on four cases and it gives better results than the purely statistical one but the
required computational effort is higher. The word faced some problems as the
new words added to the lexicon moreover there is some possible dysfunctions
if a user does not look at the proposals offered by the predictor.

(b) Chunk Parsing Method: (Abney, 1991, and Abney, 1996) is a simple pars-
ing strategy based on chunking by identifying base phrases and converting
them to non-terminal symbols then chunking them after that converting them
again into non-terminal symbols. This procedure is repeated until there are
no phrases to be chunked. The complete parsing tree is then building on the
basis of chunking results (Tsuruoka and Tsujii [2005]).

Schadle [2004] present Sibyl3 that uses two predictive modules sibyletter which
applies n-gram model on letters and sibyword which predict the next word
using chunk parsing method where the predictions are based on the last words
and the last head chunks. The results show that for a list of 5 words, the
keystroke savings reach 57%.

(c) Automata: Automatas are graphical representations of tables that contains
information about categories which follow each of the category. Its also takes
into account the syntactic category of the related words.

Garay and Abascal [1994] used two approachs which are purely statistical that
uses unigram and syntactical approach which uses bouth statistical informa-
tion and syntactical information by using an automaton to predict words and

3Sibyl is an Augmentative and Alternative Communication computer system that aims at improving
text typing for persons with sever speech and motor impairments.
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compare between the results of the used approaches. The syntactical approach
gives better result than purely statistical one but had a problem with am-
biguous words and new words, those problems can be solved by creating new
categories for ambiguous cases and special category for new words.

(d) Token Automata: Is a hybrid system based on both symbolic and statistical
approaches. Statistical part studies word tokens and symbolic part based on
sentence schema and acceptability notions.

Maurel and Le Pévédic [2001] used token automata to get token number of
syntactic categories and memorize token number of words in dictionary then
compute words probability on the basis of those numbers. These system is
incorporated in HandiAS 4 and improve the clicking action saving by more
then 43%. HandiAS is independent of the language so they plain to work on
English, German and Italian versions.

(e) Dependency Language Model: These kind of language models use depen-
dency grammar where they generate words along paths in the dependency tree
of the sentence.

Gubbins and Vlachos [2013] uses dependency language models to tackle the
sentence completion task. They apply the approach to MSR completion chal-
lenge 5. They used labeled and unlabeled dependency language models where
both models outperforms n-gram language model and the four labeled depen-
dency model gives the best result which is 8.7 points in accuracy better than
the best n-gram model.

Semantic Prediction

Syntactic prediction is not sufficient since the predicted item may be syntactically
correct but wrong in the semantic side. So attempts are made to suggest words that are
both syntactically and semantically correct. Semantic knowledge is added by assigning
categories to the existing words in the corpus and find a set of rules that constrain the
possible next candidate word (Ghayoomi and Momtazi [2009], Makkar et al. [2015]).

Two methods are used for semantic prediction. The first is using lexical source like
WordNet in English which measures the semantic probability of words, the second is the
use of lexical chain which gives a high priority to the words which are related semantically.

This method is rarely used in word prediction because it requires complex hand coding
and may consume time (Makkar et al. [2015]).

1. Semantic Grammar: Semantic information was used initially by categorizing
words semantically and defining semantic rules and grammars.

Hunnicutt [1989] present a study about incorporating syntactic and semantic infor-
mation in the prediction task. For semantic, a study of marking Swedish lexicon

4HandiAS is a prototype software for disabled communication aid, and it is a part of the Research
project CNHL of the LI, the Computer Laboratory of the Tours University 2001.

5MSR completion challenge is a sentence completion challenge launched by Microsoft in 2011
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with semantic categories to optimize ranking in the list of predicted words was done.
The tests showed a small savings in keystrokes for syntactic information, and no sav-
ings for low-level semantic information.

Ghayoomi and Daroodi [2008] designed three word predictors for the Persian lan-
guage. Statistical, syntactic with POS tags and the third uses syntactic categories
with their morphological, syntactic and semantic subcategories. The best results
was given by the third system that uses syntactic and semantic information where
it achieves 42% savings in KS.

2. Latent Semantic Analysis\Indexing (LSA\I): LSA is a statistical method for
extracting and representing usage and meaning of word. It is based on singular
value decomposition which is a mathematical matrix decomposition technique. The
meanings derived by LSA are capable of simulating a variety of human cognitive
phenomena (Landauer et al. [1998]), therefore it is used to extract semantic knowl-
edge of words in word prediction task.

Zweig and Burges [2011] present MSR sentence completion challenge and test it
using models based on n-gram statistics and average LSA similarity where they
treated each sentence in the training data as a “document” and performed LSA.
The results showed that the model based on LSA performed better than n-gram
models and gave 49% correct suggestions.

Spiccia et al. [2015] proposed an alternative methodology based on LSA for au-
tomatic sentence completion. They use a word-word frequency matrix to achieve
higher scalability with large training data and use it in addition to a word-document
matrix to achieve the best accuracy where they reached 52.3% accuracy.

2.6.3 Heuristic Modeling
Heuristic modeling, also known as adaptation, as its name suggests it adapts the system

according to the user making the predictions provided appropriate for him. It have been
incorporated in many word predictors and used in many word prediction methods to
improve results. There is short-term learning and long-term learning methods (Ghayoomi
and Momtazi [2009], Makkar et al. [2015]).

Short-Term Learning

The system is adapted according to the user in the text that he is currently writing.
The most common methods used in adaptation include recency promotion, topic guidance,
trigger and target, and n-gram cache:

1. Recency Promotion: It means that the word that occurred in the text has a
high probability that it will be used in the text again. This method takes into
account the written words and newly used words, which makes it able to adapt to
the requirements of the user, but ignores the grammatical structure when predicting.

2. Topic Guidance: This approach adapts to the general theme of the text, as it
adds a specific dictionary for the text field that contains repeated words in this field
in addition to the general dictionary.
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3. Trigger and Target: This method is based on the principle of the correlation of
words to each other. When a word occurs, it is called a trigger, and it triggers the
operation of another word, which is called the target.

4. N-Gram Cache: This approach is based on the assumption that the once used
word may be used again as it captures frequently used words by using the n-gram
cache in which the words are placed to gain an increased possibility.

Long-Term Learning

Unlike the previous method, this takes into account the texts previously produced by
the user in addition to the one currently produced. The most common methods are adding
new words, automatic capitalization, providing inflected form of words, and compounding:

1. Adding New Words: This method includes adding words that are unknown to
the system and that the user is writing to the system’s dictionary to call them in
the list of predictions when needed.

2. Automatic Capitalization: It allows the user to save more keystrokes by capi-
talizing the letters that should be capitalized depending on the system language.

3. Providing Inflected Form of Words: The system takes into account the inflected
forms of words in the case of very inflected languages like German, which makes it
more efficient for the user and gives higher percentage of keystrokes saving.

4. Compounding: This method adds the compounding, that is the formation of new
words from other words to make it easier for the user to write them. Compound
words are written as a single unit and used in many languages, such as German.

Baroni et al. [2002] presented a solution to the compounds problem in German
language. The designed word predictor predict the compound by splitting the com-
pounded word into modifier (the left element) and head (the right element) and
predicting each part alone. The results showed that the simple model achieved a
KSR of 51.5% where the split-compound model achieved a combined KSR of 57.9%.

Matiasek et al. [2002] presented Fasty 6 that uses combination of different n-gram
models and the split-compound model presented in Baroni et al. [2002] with collocation-
based predictions based on the heuristic approach of trigger and target. The system
achieved a prominent results.

Hunnicutt and Carlberger [2001] design and implement a word predictor for Swedish.
They use probabilistic language model and achieved a KS saving of 46%. They
discuss the use of tag model which increase KS savings by 4.2% for one prediction
and 2.8% for five predictions, and the use of heuristic models to improve both
quality of word prediction and KS savings. Adding new words or new words learning
method increased the keystroke savings by 3.2% for one prediction and by 5.1% for
five predictions where the recency promotion increased the keystroke savings by
1.0% for one prediction and by 2.1% for five predictions in addition the use of
automatic capitalization to monitor the user’s employment of uppercase letters in a

6Fasty is an intelligent statistically based adaptive word prediction program which is under develop-
ment for the German, French, Dutch and Swedish language which is expected to be released in 2003
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word which is called case sensitivity improved KS for one prediction by 0.5% and for
five predictions by 0.2% moreover the method of providing inflected form of words
increased KS for one prediction was 0.1% and for five predictions 0.3%.

There’s also other classical techniques, the next works describe them:

The paper Even-Zohar and Roth [2000] study learning approach for the problems that
need a large number of inputs but actually just a few of them are necessary for the de-
cision. The SNoW architecture is used, they choose the verb prediction task; where a
confusion set is constructed by coupled two verbs, so the predictor choose the verb the
most likely appeared in the sentence according to the probability and the part of speech.
In average, the approach improves the error rate. The success depends on using a large
expressive features and a learning approach suitable to it.

The authors of Kapse and Shrawankar [2013] presented a word prediction model for
braille users. This work based on matching prefixes to predict word using B+ tree. At the
first step, they extract prefixes from data set, then they index it by using ASCII binary
encoding technique and a leftshift and xor operations. The B+ tree is then constructed
to link the indexes with words. By using four characters for prefix, the model saves over
50% of time typing.

2.7 Machine Learning Prediction Methods
Different ML techniques have been used in word prediction. We mention the most used

ones in the next section.

The word prediction problem have been seen as a supervised learning problem. The
most used supervised Learning algorithms in word prediction are:

2.7.1 Decision Trees
Decision trees are machine learning technique that can be considered as decision sup-

port tool used for classification or regression, where they use a binary rules to calculate a
target value. The values are represented in a tree form (Horning [2013]).

An optimal binary-tree is likely to achieve results much better than an optimal n-
gram model which is considered as a special case of binary-tree model. The object of this
architecture is to maximize the precision of the decided result (Bahl et al. [1989]).

The model proposed by Bahl et al. [1989] predicts the next word the speaker will say
according to the previous spoken words based on a greedy algorithm with questions as
restrictions: at each node the question which gives minimum entropy is selected. The
model predict the 21st word given the 20 previous words; in order to avoid the over-fitting
of trees the experiment was as follow: they train the tree construction on a data set of
10 million words, test the reduction of entropy on another 10 million words, 9 million
words to compute the smoothed leaf probability distributions, and test the model on ≈
1 million words. The perplexity of the suggested tree gives 90.7, where an equivalent
trigram language model gives 94.9. They also create a language model which combine
the tree and the trigram, where the perplexity was 82.5 (lower than both). So, the tree
based language model achieves best results than a trigram language model, but it is more
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effective if it is used as an adjunct to the trigram model.

IGTree: Daelemans et al. [1997] is a top-down induction algorithm of decision trees
where it compresses a database of labeled examples into a lossless-compression decision-
tree structure (Van Den Bosch [2006]). He presented a classification-based word prediction
model based on IGTree. Experiments showed that the system exhibits log-linear increases
in prediction accuracy and decreases in discrete perplexity, they reach 42.2% correctly
predicted tokens on the same type of text when trained on 30 million words of newswire
text. Better word prediction accuracy can be attained simply by adding more training
examples, where the best rate observed was an 8% increase in performance.

2.7.2 Support Vector Machine
Support Vector Machines (SVM) are supervised machine learning algorithms first pro-

posed by V. N. Vapnik and A. Ya. Chervonenkis in the framework of the “Generalised
Portrait Method” for computer learning and pattern recognition in 1962 and they were
first published in 1964. SVMs started and become famous when statistical learning theory
was developed further by Vapnik (1979) (Chervonenkis [2013], Burges [1998]).

SVM provide higher performance than traditional machines learning algorithms, they
are powerful tools for solving classification problems where they map the input points into
a high-dimensional feature space and try to find a separating hyperplane that maximizes
the margin between two classes in this space (Lin and Wang [2002]).

Al-Mubaid [2007] presented a learning-classification based method for word prediction
using context features and machine learning. He use a combination of SVM with various
feature selection techniques MI, X2 and two other feature selection techniques adapted
from MI: MI_1 and MI_2. The results showed that the method is effective in predict-
ing the correct words by utilizing small contexts; and the system achieved an accuracy of
91.42% correct predictions with MI_2 .

Al-Mubaid and Chen [2008] presented a word prediction method as an assistive tech-
nique for people with mechanical disability to improve textual information entry. They
applied SVM and Lsquare into word disambiguation task that is extended and adapted
to the word prediction problem for text completion with adaptive learning methods. Su-
pervised learning methods have been integrated with adaptive learning to produce robust
learning techniques. They made two evaluations where the first gives 87.9% accuracy
with X2 and vectors of size 40; and for the second the accuracy, precision and recall rates
approach or exceed 99% which indicate that their method is highly effective.

2.7.3 Naive Bayes and Bayesian Networks
Naive Bayes is a probabilistic model developed through bayesian networks. It states

that its variables can be divided into cause and effect where the effects are independent
between themselves.

Goulart et al. [2018] proposed a hybrid word prediction model based on Naive Bayes
and LSA. They first created and trained LSA and Naive Bayes sub-models and then per-
formed inferences to predict a word usage probability in the analyzed context based on
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n of the previously used words and combined the models, and finally they performed the
optimization through supervised training. The results in the Microsoft Research Sentence
Completion Challenge show that their hybrid model gives 44.2% accuracy.

Troiano et al. [2017] built a predictive model based on bayesian networks which predict
the user input when a form is filled according to the past interactions to reduce the amount
of time required to fill a form. Results of experimentation proved that the proposed
approach is able to provide an effective support in filling a form. The limitation of the
model is in the single form context: it does not allow reuse parts of acquired knowledge
across different forms. The combination with the method based on ontology might solve
this problem.

2.7.4 K-Nearest-Neighbor
K-Nearest-Neighbor (KNN) is a supervised machine learning technique based on the

idea that the nearest patterns to a target patterns gives the best label information about
them. The K-nearest patterns are assigned to the same class label by KNN where the
choice of K defines the locality of KNN (Kramer [2013]).

Kuo [2011] presents a novel simple task of word prediction given a piece of text and
other tasks. They compare a version of Co-occurrence (Naive Bayes), two versions of
K-Nearest-Neighbor method and Latent semantic indexing, against a baseline algorithm
using different datasets on different tasks.

The results of next word prediction task on MED dataset showed that using different
simularity functions affects the KNN performance. The K parameter affects the predic-
tions for the KNN and LSI, where for the KNN the K is the number of neighbors and for
LSI is the dimensions which represent the number of unique words. Also the number of
predicted words affects the KNN and LSI where generally the best k for predicting one
word remains the best for predicting many words.

For the ArnetMiner dataset it seems that KNN with citation did not give results better
than the KNN method with the randomly sampled Arnet-Miner data, also the LSI did
not perform well on this dataset where the baseline algorithm gives better results than it,
and for the StackOverflow data the KNN gives the best results.

2.7.5 Neural Networks
We mentioned previously that N -gram language models have a major disadvantage

where they assign probabilities of 0 to n-grams that do not appear in the training corpus,
this problem was solved with smoothing techniques. However, there are still other prob-
lems where the main is the curse of dimensionality, which in order to solve it the neural
networks was presented for modeling language in continuous space (Jing et al. [2019]).

Xu and Rudnicky [2000] investigated the use of artificial neural networks to build
language models. Their network has |V | input and output units where |V | is the vocabu-
lary size and they use the logarithm of perplexity as error function, for the output units
they used softmax activation function. They trained their model with back-propagation
algorithm where it performed better than n-gram language model, but gives a poor gen-
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eralization ability.

Bengio et al. propose in Bengio et al. [2003] a NN approach for probabilistic lan-
guage modeling, the goal is fighting what they named “the curse of dimensionality” which
means that the model in testing may face a different sequence from all sequences that it
was trained on.

The idea was make each sentence in training lead the model to learn an exponential
number of other sentences with similar semantics; so the model learns in parallel the
representations of each word and the probability function for word sequences. The archi-
tecture proposed by them is shown in Figure 2.3.

Figure 2.3: FFNNLM arhitecture (Bengio et al. [2003]).

The Figure 2.3 shows that to predict the probability of the word wi the previous n−1
words are projected by C which is the projection matrix that represent the distributed
feature vectors associated with each word in the vocabulary.

The paper shows that using neural networks make better results compared with the
best of n-grams where the difference in the test perplexity for the Brown data set was
24% and 8% for the Associated Press News data set.

Bengio et al. opened the door to the use of NNs in language modeling and proposed
the idea of using RNN for LMs (Jing et al. [2019]). After that, several researches emerged
that used neural networks in language modeling, especially in word prediction.

Mnih and Teh [2012] propose a simple algorithm for training Neural Probabilistic Lan-
guage Models (NPLMs) based on noise-contrastive estimation, a procedure for estimating
unnormalized continuous distributions. They investigate the behavior of the algorithm
on the Penn Treebank corpus and show that it reduces the training times. They train
several neural language models on a 47M-word corpus with a 80K-word vocabulary and
test the models on MSR Completion Challenge dataset where they record a new accuracy
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for the dataset at 54.7%.

There are also those who have combined many machine learning techniques, as we
mention:

Cavalieri et al. [2010] D. C. Cavalier et al. who propose an adaptation of existing
POS prediction ML algorithms as statistical POS model, Naive Bayes, SVM, LR. . . and
a fusion algorithm in order to improve the performance of Portuguese word prediction.
The idea of fusion is to combine algorithms which sometimes perform better than other
and sometimes the opposite in order to achieve the best performance. The results of the
proposed fusion algorithm showed an increase of 3.42% of keystrokes saved compared with
N -gram which don’t use grammatical information. The Portuguese POS prediction algo-
rithms evaluated here gave an improvement between 0.92% and 3.42% in the keystrokes
saved.

2.8 Deep Learning Prediction Methods
Deep learning was used to solve many problems, including the problems of natural

language processing so the next word prediction, as recurrent and convolutional neural
networks were used in many work to improve its efficiency, we describe some of them
bellow.

Recurrent neural networks are known to be the most suitable for dealing with text
data, as they solve problems that need previous knowledge or experience, which made
them one of the most used methods for word prediction task.

Mikolov et al. [2010] introduced the first recurrent neural network language model that
could be trained by the backpropagation through time. The model overcome FFNNLM
and n-gram LM. Note that the LSTM was firstly introduced into LM by Sundermeyer
et al. [2012].

In 2013 Mikolov et al. in Mikolov et al. [2013] presented a Skip-gram architecture and
explore its performance on Microsoft Sentence Completion Challenge where it did not
perform better than LSA similarity, but in combination with RNN-LM it gives the best
result with an accuracy of 58.9 %.

Yu et al. inYu et al. [2017] presented a word prediction method for mobile devices
based on embedded deep learning. They propose a pipeline which compress the RNN-LM
model, this pipeline composed by knowledge distillation (of Hinton et al. [2015]) phase
and compression and retraining phase; the Figure 2.4 describe the proposed model.

The results showed that the proposed method improves the KSS and the WPR com-
pared with other commercialized keyboard using manually curated dataset, where it
scored the highest rate equal to 65.11% KSS and 34.38% WPR, when the Apple key-
board scored 64.35% KSS and 33.73% WPR, then Swiftkey with 62.39% KSS and 31.14%
WPR, after that Samsung with 59.81% KSS and 28.84%WPR, finally Google with 58.89%
KSS and 28.02% WPR.
The proposed method satisfies the mobile device memory and runtime constrains. Authors
want to make it adaptable to user choices in future work and combine it with n-grams
statistics for the full advantage.
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Figure 2.4: Overview of the proposed embedded DL architecture (Yu et al. [2017]).

Another work for mobile device, Grachev et al. [2019] propose a compressed RNNs
model for efficient language modeling in real-time offline mobile applications, because
of the complexity of the RNN running and memory requirement, and the high dimen-
sional output. This work is one of the first models of RNNs for mobile GPUs and also
compressed.

They test different techniques of compression such as pruning, quantization, low-rank
matrix factorization and Tensor Train decomposition on different types of RNNs such as
RNN, LSTM and GRU. Their experiments show that the low-rank (LR) compression for
the model LSTM650-650 is more efficient.

An LSTM model to predict a next word in Assamese language is presented by Bar-
man et al in their paper Barman and Boruah [2018]. According to the complexity of
this language, the performance of LSTM is lower than with low inflected languages like
English. They have developed a solution facing this problem by storing the phonetics of
the Assamese words.

So they used two data set: The first is a collection of words and the second is the
phonetics of those words, noting that the number of words increases in the second data
set because of the high inflection of the language.

They experiments the model with different number of hidden layer, neurons in each
one, learning rate and epochs. The best result for the first data set was 88.20% average
accuracy when they use 2 hidden layers with 128 neurons with a learning rate equal to
0.001 for 98000 epochs. And it makes 72.10% accuracy with the second data set when
they use 3 hidden layers with 256 neurons with a learning rate equal to 0.001 for 77000
epochs.

The results showed that the maximum accuracy was with the first data set, where
they attributed it to its size.

Boldt [2017] propose an LSTM model to predict the next word in a java code, trained
with one English dataset and four JAVA codes datasets such as PTB, JDK.

The LSTM model result less perplexity with the Java datasets than the English
dataset, where it achieve under 22% of perplexity and above 0.47 of accuracy comparing
to the English which score 85% of perplexity and 0.27 accuracy.

The work was for the general representation of the code, it does not account the name
of variables or type etc, so as a future work, they want to make in consideration those
information, and to compare the model with other programming language.

Oualil et al in Oualil et al. [2017] describe a new approach of multi span architecture
that merge the long (which represent the global) and the short( which represent the local)
context information through a recurrent network Long Short Range Context (LSRC)
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which is an adaptation of the LSTM architecture. The idea is to learn both the global
and local constraints of language by using two separates hidden layer, than combine their
results to perform the word prediction.

The model was experimented using two dataset: Penn Treebank (PTB) and Large
Text Compression Benchmark (LTCB); and compared with different LM approaches such
as N -gram Kneser-Ney (KN), FFNN based LM, Fixed-size Ordinally Forgetting Encoding
(FOFE) approach, the full RNN (without classes), deep RNN (D-RNN) and LSTM model.

The Figure 2.5 shows the results of perplexity for each one with the PTB dataset,
which was almost the same with the LTCB dataset:

Figure 2.5: Perplexity of the different NN-based LMs with different hidden layer sizes on
the PTB test set (Oualil et al. [2017]).

The Figure 2.5 shows that the LSRC model achieves the best result, where the deep
LSRC with word embedding size set to 200 reduced it the most.

The novel architecture LSRC which combine the LSTM and RNN improves its effec-
tiveness in reducing the perplexity compared with the most known architecture in the field.

Despite the fact that RNNs are the most used in word prediction task, researchers
have also turned to the use of convolutional neural networks, where they have also shown
high efficiency.

Wang et al. [2015] was the first work that uses the CNN for word sequence predic-
tion. They propose a novel convolutional architecture named genCNN. Their extensive
experiments on text generation and n-best re-ranking in machine translation show that
genCNN outperforms the state-of-the-arts with big margins.

Pham et al. [2016] explore also the use of CNN for language modeling where they pro-
posed a CNN-based language models. They incorporate a CNN layer on top of a strong
feed-forward model. The results show a reduction in perplexity of 11% to 26% when the
model uses MultiLayer Perceptron (MLP) Convolution and combines kernels of different
window sizes. This improvement open the door for the use of CNN to LM.

The paper Souri et al. [2019] presents CNN architecture to predict the missing text
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in Arabic language. First they prepared the data set (about 130MB of text), then they
preprocess it to be inputs for the CNN architecture, so they transformed texts to numerical
codes.

The architecture was composed of an input layer, two of convolutional layers with the
activation function ReLU, two of pooling layers then a fully connected layer.

They train the model on texts of the same author, then train it on texts of the same
data set, and finally they train it on all document confused. For the validation and test-
ing, they repeat them with the same strategy. In the best case, the model achieves a
97.8% of accuracy. As a future work, they want to adapt the model to work on GPU.

To go far, there’s a new architecture which is a kind of convolutional NN, developed by
Lea et al. in Lea et al. [2017] called Temporal Convolutional Nets (TCN), which supposed
to make a revolutional results in the field of sequence modeling.

This paper Bai et al. [2018] presents a TCN architecture that outperforms the LSTMs
and GRUs in sequence modeling because of its longer memory. It is based on two prin-
cipals: the length of outputs equal to the length of inputs and the output depend to the
past only. The TCN model was compared with the other RNNs model such as RNN,
LSTM and GRU for more than 10 sequence modeling tasks, the results was clearly that
TCN was the best than others.

So the idea was to change the judgment that says RNNs are the best in the sequence
modeling topics, we have here a generic convolutional network that performs so good
called TCN.

2.9 Conclusion
In this chapter, we presented a look at the most famous techniques used in next word

prediction, as we mentioned a number of researches that dealt with this task, where the
most famous and newest of these techniques are RNN and TCN, which we will focus on
and use to build a word prediction model in the next chapter.
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Chapter 3

Experiment

3.1 Introduction
In this chapter we present our experience to build some next word prediction models.

These models use RNN and TCN-based architecture for deep learning.

We describe first the proposed network architectures then the environment and the
data set that we worked on, then we move on to provide the implementation steps, after
that we discuss the obtained results.

3.2 Networks Architecture
Inspired by the neurons work in the previous chapter, we have used two deep learning

networks namely RNN and TCN. These two architecture are detailed in the following
section.

3.2.1 Recurent Neural Network
For the RNN models, our proposed architecture to face the next word prediction

problem illustrated in Figure 3.1.

The architecture contains three main layers: embedding, RNN and dense layer.

Embedding Layer

The embedding layer is used to obtain the word vectors where they are randomly
selected. It takes as parameters the number of tokens which is in our case the vocabulary
size, the embedding dimension and the input length.

RNN Layer

The RNN layer is considered as the core layer where it is responsible of processing
data, it can take many entries but in our case we define just the number of hidden units.
We have used two versions of RNN: SimpleRNN and bidirectional LSTM.

Dense Layer

The dense layer is responsible of processing the output, where it takes as parameter
the units which is in our case the vocabulary size and the activation function where we
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Figure 3.1: The proposed RNN Architecture

use the Softmax. It gives a probability for each class, where in our case the output classes
is the vocabulary size, the class that contains high probability is the most likely next
probable word.

3.2.2 Temporal Convolutional Networks
Temporal Convolutional Networks (TCNs) arose from the idea of using the advantages

of CNNs and RNNs together as the idea appear in the paper Lea et al. [2016], and devel-
oped where in 2018 the famous structure know was proposed in Bai et al. [2018]. TCN
has two main characteristics:

• It can take a sequence of any length and map it to produce a sequence of the same
length like the RNNs.

• It use a causal convolutions which means that there is no leakage between informa-
tion from future to past.

It has two main concepts:

Dilated Convolution

Dilated convolutions are used to explore large receptive field where for 1-D sequence
input x and filter f : 0, ...., k − 1, the dilated convolution operation F on the element s of
the input sequence can be defined as:

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i).xs−d.i (3.1)

Where d is dilation factor and k is the size of the filter and s − d.i are accounts for
the direction of the past.
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Residual Block

Residual block is employed in place of convolutional layer where each one contains a
branch leading out to a series of transformations where its outputs are added to the input
of the block.

Our proposed TCN model architecture is shown in the Figure 3.2.

Figure 3.2: The proposed TCN architecture

The embedding and dense layers are the same as the first architecture.

TCN Layer

The TCN layer has many arguments, we define the followings:

• nb_filters: represent the number of used filters in the convolutional layers. We set
it to 64.

• kernel_size: represent the size of the used kernel which is the size of filters in each
convolutional layer. We set it to five for the second data set and four for the third
data set.

• dilations: represent the list of the used dilations. We define the list as follow : [1,
2, 4, 8, 16, 32, 64].

• padding: represent the used padding in the convolutions where we set it to ’causal’
for a causal network.

3.3 Environment
Due to the low efficiency of our computers, we used Google Colab and Kaggle to develop

our deep learning models.

• Google Colab: we use it in the cleaning and pre-processing steps and in building and
training models with the second and third data sets with the following proprieties:
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– RAM: 12.72 GB
– Disk: 107.77 GB
– CPU: There are two CPUs.
– GPU: Nvidia Tesla K80.

• Kaggle: we use it in building and training models with first data set with the next
propreties:

– RAM: 16 GB
– Disk: 4.9 GB
– CPU: there are two CPUs as Google Colab.
– GPU: Tesla P100.

We write our code using: Python3 programming language under jupyter notebook
with the following libraries:

• re: is a library that provides regular expression matching operations similar to Perl.

• Keras: is neural-network library designed to enable fast experimentation with deep
neural networks and it is supported in TensorFlow’s core library since 2017.

• io: is a library designed to deal with various types of I/O and provides the Python
interfaces to stream handling.

• json: is a library that provides a familiar API to users of the marshal and pickle
modules in the standard library inspired by the syntax of literal JavaScript objects.

• csv: is a library that implements classes to read and write tabular data in CSV
format.

• Tensorflow: is an open source library for fast numerical computing used to create
deep learning models .

• Matplotlib: is a comprehensive plotting library where its numerical mathematics
extension NumPy.

• NumPy: is scientific computing library that support large and multi-dimensional
arrays and matrices with a large collection of high-level mathematical functions to
operate on these arrays.

• Keras-tcn: is a library that supports the new TCN architecture.

3.4 Dataset
We used three data sets in this project.

• The first one is Coursera Swiftkey data obtained from: https://d396qusza40orc.
cloudfront.net/dsscapstone/dataset/Coursera-SwiftKey.zip. The data con-
tains four folders:

– de_DE: with size of 244 MB which contains data of Dutch language.
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– en_US: with size of 556 MB which contains data of English language.
– fi_FI: with size of 217 MB which contains data of Finnish language.
– ru_RU: with size of 325 MB which contains data of Russian language.

Where each folder contains three files. We have used only the english data that
contains:

– en_US.blogs with size of 205,235 KB which contains data obtained from blogs.
– en_US.news with size of 200,989 KB which contains data obtained from news-

papers.
– en_US.twitter with size of 163,189 KB which contains data obtained from

Twitter.

Our idea is to use multi-domain data of the first data set.

• The second data set is: nietzsche.txt obtained from https://www.kaggle.com/
heudanlv/nietzschetxt with size of 586 KB from the book: Writings of Nietzsche:
Volume 1 by Friedrich Nietzsche.

• The third data set is a News category from the Brown corpus in nltk library, de-
scription in https://www.kaggle.com/nltkdata/brown-corpus.
For the third data, we took the idea of n -gram, where we used the last three words
to predict the next word.

3.5 Implementation
For the implementation, we started with cleaning the data sets, where we cleaned the

first and second data sets, while the third data set does not need to be cleaned, then we
pre-processed all of them for training. Cleaning
We started with cleaning the data set from numbers, special characters and punctuation
marks where the used cleaning function is shown in the Figure 3.3.

Preprocessing
For the preprocessing step we have eliminate the words with length bigger then 25 char-
acters, then we split the data set, noting that we are using a specific percentage from the
first data due to the limits of the used RAM, where we choose to use only 1% then 2% of
each file.

After that we encode the data using Tokenizer function imported from keras.preprocessing.text
and saved it to use it later.

Finally, we define the input and output labels. The input is the past word and the
output is the next word for the first and second data sets and for the third data set the
input is the past three words and the output is the next word. Then we split the data
set, where for first data we split it into 60% for training, 20% for validation and 20% for
testing; the second and the third data sets are split into 80% for training and 20% for
test, where for the 80% used for training we split it using validation_split into 90% for
training and 10% for validation.
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Figure 3.3: Cleaning Function

3.6 Results and Discussion
We train and test our models using the three data sets, here we discuss the obtained

results:

3.6.1 First dataset
We train on it an RNN and bidirectional LSTM models, where when increasing the

embedding dimension from 50 to 100 the bidirectional LSTM model gives the best results
when using 1% and 2% of data from each file. Here we present only the bidirectional
LSTM model, because of its effectiveness.

• In case of one percent: the model was trained on 591545 samples, and was val-
idated on 197180 samples and evaluated on 197180 samples, where the used loss
function was categorical_crossentropy and the optimization was Adam as shown in
Figure 3.4.
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Figure 3.4: Bideractional LSTM model (A).

The model has been trained for 12 epochs. We notice that the best result was
achieved when using an embedding dimension equal to 100 where the accuracy
reached 12.12%.

• In case of two percent: the model was trained on 1182083 samples, and validated
on 394027 samples and evaluated on 394027 samples as shown in Figure 3.5.

Figure 3.5: Bideractional LTSM model (B).

When using two percent of the data and training the model for 12 epochs, we
expected to get more accuracy since we increased the amount of data, but the
results were less than when using one percent of the data where it was 11.48%.

Due to the consumption of the TCN model for more RAM, we could not use it with this
data.
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3.6.2 Second dataset
With this data set we use:

• SimpleRNN model: we trained this model on 80835 samples and validated it on
8083 samples and evaluated it on 20208 samples, the used loss and optimization
functions were the same as the first data as shown in Figure 3.6.

Figure 3.6: SimpleRNN model (C).

This model has been trained for 50 epochs. The best results were achieved using an
embedding dimension of 50 where the accuracy reached 20.63%.

• TCN model: the TCN model was trained as same as the precedent model, as shown
in Figure 3.7

Figure 3.7: TCN Model (D).

This model was also trained on 50 epochs. The best result was achieved using an
embedding dimension of 60 where the accuracy reached 21.25 %.
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3.6.3 Third dataset
We use two models:

• SimpleRNN model: we trained this model on 80440 samples and validated it on
8044 samples and evaluated it on 20110 samples, the used loss and optimization
functions were the same as the others, as shown in Figure 3.8.

Figure 3.8: SimpleRNN model (E).

The model has been trained for 100 epochs. The best results were achieved using
an embedding dimension of 50 where the accuracy reached 71.51%.

• TCN model: the TCN model was trained as same as the precedent model, as shown
in Figure 3.9

Figure 3.9: TCN model (F).

This model also has been trained for 100 epochs. The best results were achieved
using an embedding dimension of 50, where the accuracy reached 65.20%.

62



3.6.4 Discussion
After many trials, we draw the following results shown in table 3.1. The characters

A,B,..F reference the previous models.

Model Training Validation epochs batch Test batch
/ Accuracy Loss Accuracy Loss / / Accuracy Loss /
A 12.05 % 5.96 8.30 % 7.34 12 500 8.32 % 7.38 128
B 11.45 % 6.01 8.79 % 7.21 12 500 8.81 % 7.19 128
C 20.63 % 4.09 12.51 % 7.78 50 150 12.10 % 7.89 80
D 21.25 % 3.93 12.59 % 11.75 50 50 12.07 % 11.81 10
E 71.51 % 1.14 9.14 % 10.98 100 100 8.32 % 11.41 80
F 65.20 % 1.38 8.22 % 18.33 100 100 7.18 % 18.59 10

Table 3.1: Results of all trained models.

From the obtained results we can conclude that:

• The idea of using multi-domain data did not give promising results, as we think this
is due to our use of a small amount of data. Likewise, the use of the previous word
only to predict the next word causes confusion to the model due to the multiplicity
of options for the next word, which reduces its accuracy. Using the history to
predict the next word reduces confusion and significantly improves the accuracy of
the model due to the availability of sufficient information to predict the next word,
and makes up for lack of data

• The accuracy of the models is affected by many parameters, such as the number
of epochs, the batch size and the embedding dimension, where a greater value of
this parameters gives better result, but with limits where a very large value may
give poor results and slow the learning processes, we do not have any rule that
tell us what are the values we should choose, so we should try until we reach the
appropriate values.

• The accuracy does not depend only on the model and parameters but it depends
heavily on the used data set, as the first data was very noisy compared to the second
and the third, so we conclude that cleaner and less noisy data gives better results
than a big and noised data. Making in consideration the linguistic universe, our
used dataset was so small and not sufficient to represent the whole language. The
best solution is a big cleaned data.

We faced the problem of over-fitting where in all the models the training loss keeps
decreasing and validation loss keeps increasing. We try many regularization techniques
such as L1, L2, L1_L2, but they make the results much worst instead of improving them.
When we use SGD optimization function with gradient clipping technique like above:

SGD(lr = 0.01,momentum = 0.9, clipvalue = 0.5) (3.2)

It prevents the over-fitting in different RNN models for the first and second data sets
but not in TCN models, it also makes the accuracy stuck at 5% where it stops the model
from learning for the first and second data sets, and for the third one it makes the accu-
racy of the model decreased as it decreased to 28.55% and did not completely solve the
problem of over-fitting, but only reduced it, so we gave up the idea of using it.
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• After many experiments and according to what we learned about the problem of
NWP we think that the over-fitting difficult if not to say impossible to solve it in this
task because no matter how much we try, we cannot predict all word formations,
and we cannot guarantee how words are distributed in the data, it needed a really
huge amount of data with knowledge about all possible words formations and a very
high computing capacity computer which we can not achieve.

On the other hand, we cannot judge a model with acceptable or good accuracy as not
good or very good since the last judgment depends upon application. When a model is
used in a prediction system, it is highly dependent on the user, where we cannot guarantee
or know what the user intends to write. We mention that there are several factors that
play a role in evaluating prediction systems, which we mentioned earlier in chapter two.

We also mention that the advantage of the RNN is that when giving it even one word,
it gives predictions, even though it has trained to take three words to predict the next
word, unlike n-gram, which requires the use of n previous word and does not work without
it.

3.7 Conclusion
In this chapter, we presented the best models that we found, where the highest accuracy

was 71.51% obtained from the SimpleRNN model trained on the third dataset using the
past three words to predict the next word, followed by the TCN model for the same dataset
with an accuracy of 65.20% where the difference was not that much big, indicating the
strength and effectiveness of the TCN hybrid neural network. The achieved results can
be improved with many ways such as increasing data volume which we cannot do due to
the low efficiency of our devices and the resource limitations imposed by Google Collab
and Kaggle.
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Conclusion

In our work we investigate the field of machine learning where we focus on neural net-
works and deep learning with application from the field of natural language processing.
We dive into language modeling to build deep learning models that solve the problem of
predicting the next word which is one of the most important goals of language modeling
due to its multiple uses especially in our time.

We develop several deep learning models to predict the next word using the RNN as
well as the TCN structure using three databases: the first is Coursera Swiftkey data, the
second is the book Writings of Nietzsche: Volume 1 by Friedrich Nietzsche and the third
is the news category from the Brown corpus in nltk library. Results are satisfactory and
would have been better had it not been for the restrictions imposed by Google Colab
and Kaggle, the maximum accuracy we got is 71.51%, which was recorded by the Sim-
pleRNN structure trained on the third data set by using the past three words to predict
the next word followed by the TCN model for the same data with an accuracy of 65.20%.
We can say that TCN architecture competes with RNN architecture in language modeling.

In order to obtain better results, we suggest using a large database or several databases
to cover the largest possible number of vocabulary, as well as changing parameter values
or using a larger network. Deep neural networks can also be used with other algorithms
to give better results.

We also suggest to work with specific domain (sport, news,...) datasets, this can re-
duce the vocabulary size and gives more focused results.

The study of some recent deep learning platforms for mobile devices can also be pro-
posed as an extension.

Due to the limited resources, we do not investigate NWP for Arabic datasets. It would
be very interesting to move in this direction.
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