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Abstract: 

In this thesis, a newly developed approach for speed sensorless estimation application of an 

induction machine using Recurrent Neural Network (RNN) is presented. It only requires the stator 

voltage and flux of induction motor to obtain an estimation for rotor speed. The theoretical analysis 

is described, the simulation result using MATLAB software has proven to be successful with very 

high precision using the proposed method. 

 

Résumé : 

Dans cette thèse, une approche nouvellement développée pour l'application d'estimation de vitesse 

sans capteur d'une machine à induction utilisant un réseau de neurones récurrent (RNN) est présentée. 

Il ne nécessite que le stator tension et flux du moteur à induction pour obtenir une estimation de la 

vitesse du rotor. L'analyse théorique est décrite, le résultat de la simulation à l'aide du logiciel 

MATLAB s'est avéré efficace avec une très grande précision en utilisant la méthode proposée . 

 

  الملخص

السرعة بدون مستشعر   لتطبيق تقدير  تقديم منهاج تم تطويره حديثاً  الكهربائيةللفي هذه الأطروحة، يتم   اللاتزامنية محركات 

. ويتطلب فقط جهد الجزء الثابت وتدفق الآلة الحثية للحصول على تقدير ) الاصطناعيالذكاء   (رةباستخدام الشبكة العصبية المتكر 

نجاحها بدقة عالية باستخدام باستعمال برنامج ماتلاب  وصف التحليل النظري، وأثبتت نتيجة المحاكاة    وقد تملسرعة الجزء الدوار.   

 الطريقة المقترحة.

 

Keywords: Induction machine, Induction motor, Stator, Rotor, Artificial neural network (ANN), 

Recurrent Neural Network (RNN), Speed sensor. 
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General Introduction: 

 

Induction Motors particularly those of the squirrel cage type a brilliant development of the late 

nineteenth century are the most famous wellsprings of mechanical power in industry practice 

provided from a three-phase ac line they are simple robust and economical. 
 

Induction motors employ a simple but clever scheme of electromechanical energy conversion. In 

the squirrel-cage motors, which constitute a vast majority of induction machines, the rotor is 

inaccessible. No moving contacts, such as the commutator and brushes in dc machines or slip rings 

and brushes in ac synchronous motors and generators, are needed. This arrangement greatly increases 

reliability of induction motors and eliminates the danger of sparking, permitting squirrel-cage 

machines to be safely used in harsh environments, even in an explosive atmosphere. An additional 

degree of ruggedness is provided by the lack of wiring in the rotor, whose winding consists of 

uninsulated metal bars forming the "squirrel cage" that gives the name to the motor. Such a robust 

rotor can run at high speeds and withstand heavy mechanical and electrical overloads. In adjustable-

speed drives (ASDs), the low electric time constant speeds up the dynamic response to control 

commands. Typically, induction motors have a significant torque reserve and a low dependence of 

speed on the load torque [1] . 
 

Although operating principles of induction motors have remained unchanged, significant 

technological progress has been made over the years, particularly in the last few decades. In 

comparison with their ancestors, today's motors are smaller, lighter, more reliable, and more efficient. 

The so-called 
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I Chapter 01: The induction machine 

I.1 Introduction: 

The asynchronous motor, or induction motor, is the motor most used in the most electric drives. 

Its main advantage is the absence of sliding electrical contacts, which leads to a simple, robust 

mechanical structure and easy to build, their stator is directly connected to the industrial voltage 

network and constant frequency, it rotates at a speed little different from the synchronism speed; it is 

he who is used for the realization of almost all the training at constant speed. It also allows the 

realization of variable speed drives and the place it occupies in this field continues to grow. [2]  
 

Modelling is an essential phase on the approach to simulation and realization, the adopted model 

should interpret all the phenomena that the designer seeks to highlight in order to predict the behavior 

in dynamic and steady state of the physical system. Firstly, we will describe the mathematical model 

of the induction motor (electrical and mechanical equations) in its three-phase frame of reference. 

Secondly, we will reduce the order of the system by a so-called PARK Transformation this 

transformation, models the induction motor in a new frame of reference, which consists of 

transforming the three-phase system into a system with two orthogonal axes (two-phase). Finally, we 

will present the numerical simulation of the various parameters of the induction motor. 

I.2 Classification of rotating electrical machines: 

Electric motors are generally classified according to the type of the electrical network in which 

the motor is connected: direct current motors (DC) and current motors alternative (AC). Motors 

with AC power supply are subdivided into two synchronous and inductions. The basic difference 

between an induction machine and a machine synchronous lies in the rotor speed of the induction 

machine under load does not coincide not (is not equal) the speed of the magnetic field, generated 

by the voltage feeding 

 

Induction motors are divided into two main categories: single phase and three-phase, the first 

type of induction motors is not studied in this work. The motors at Three-phase induction are 

classified according to the type of rotor: cage rotor and wound rotor. [3] 

I.3 Constitution of the induction machine: 

The induction machine Figure I-1 is made up of a fixed part called the stator and a part rotating 

called the rotor unlike synchronous and current machines continuous, only the stator windings are 

coupled to a supply network whose voltages (amplitude and frequency) define the magnetic state of 

the air gap. The rotor windings are connected to themselves. The induction motor therefore does not 

have no field windings or permanent magnets. For the rotor flux necessary for the formation of the 
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electromagnetic couple, it is produced from induction represents the induction motor. From a 

mechanical point of view, the synchronous machine is subdivided into three distinct parts: 

The stator: stationary part is the part where the power supply is connected. 

 The rotor: rotating part, it allows the magnetic charge to rotate. 

The bearings: support organs, these constitute the mechanical part. This allowing the rotation of 

the motor shaft. [4] 

 

 

 

 

 

 

 

 

 

 

Figure I-1: construction of 3-phase induction motor 

I.3.1 The stator: 

 It is the fixed Figure I-2 part of the motor a casing in cast iron or light alloy encloses a ring of 

thin sheets (about 0.5 mm thick) in silicon steel. The sheets are isolated from each other by oxidation 

or by an insulating varnish. The “foliation” of the circuit magnetic reduces hysteresis and eddy current 

losses. The plates are equipped slots in which the stator windings intended to produce the rotating 

field (three windings in the case of a three-phase motor). Each winding is consisting of several coils. 

The mode of coupling of these coils between them defines the number of pole pairs of the motor, 

therefore the speed of rotation. [5] 

 

 

 

 

 

 

 

Figure I-2: The stator of induction motor 
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I.3.2 The rotor: 

 It is the moving part of the motor Figure I-3. It consists of a stack of thin insulated sheets between 

them and forming a keyed cylinder on the motor shaft. This element, by its technology, makes it 

possible to distinguish two families of induction motors: those whose rotor is called "cage", and those 

whose wound rotor is called "with rings". [5] 

 

 

                                                 

 

 

 

 

 

 

 

Figure I-3: The rotor of induction motor 

 

I.4 Operating Principle of induction Motor: 

The operating principle is entirely based on the laws of induction: the induction machine is a 

transformer with a rotating magnetic field, the secondary (rotor) of which is short-circuited. The speed 

of rotation Ns of the rotating field of stator origin, qualified as synchronism, is, as in the case of 

induction machines, rigidly linked to the frequency fs of the three-phase supply voltages                         

equations (I-1): 

Ns (rpm) = 60 fs / p                   I-1 
 

The number of pairs of poles of each of the windings of the stator phases is denoted by p; this in 

countries, where the frequency of the electrical network is 50 Hz, the synchronism rotation speeds 

(rpm) are: 3000, 1500, 1000, 750... respectively for motors whose number of poles is 2, 4, 6, 8.... 

When the rotor rotates at a speed N different from Ns (synchronism), the application of Faraday’s 

law to the rotor windings shows that these become the seat of a system of three-phase electromotive 

forces themselves generating three rotor currents; according to Lenz's law these deniers are opposed 

to the cause which gave rise to them, that is to say the relative speed of the stator rotating induction 

with respect to the rotor. Thus, the effects of the stator induction on the induced rotor currents are 

manifested by the elaboration of a couple of electromagnetic forces on the rotor such that the speed 

difference is reduced. Therefore, depending on whether N is lower (hypo-synchronism) or higher 
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(hyper-synchronism) synchronism) at Ns, the machine develops respectively a driving torque tending 

to increase N or a resisting torque (generating) tending to reduce N; obviously the electro-pneumatic 

torque is canceled at equal speeds. The network therefore depends on the sign of the gap (Ns — N); 

this is why induction operation is characterized by the slip g thus defined by the equations (I-2); 

g = (Ns — N) / Ns I-2 
 

Under the nominal operating conditions of the machine as a motor, the slip expressed as a 

percentage is a few units; an increase in mechanical load causes an increase in slip and Joule losses 

in the rotor and stator windings. Connected to a constant voltage and constant frequency network, the 

induction motor therefore has a substantially constant speed in steady state; its controlled variation in 

fact requires the adjustment of the synchronism speed, that is to say the modification of the power 

source frequency, which is made possible by the interposition of a static converter frequency changer 

(Rectifier + Inverter) between the fixed frequency network (50 or 60 Hz) and the induction machine. 

[6]. 

 

I.5 Terminal board: 

I.5.1 Star or triangle connection: 

There are two possibilities for connecting the motor to the three-phase electrical network. The 

star connection and delta connection as the figure below Figure I-4 shows [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I-4: coupling of induction motors (star and delta) 
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I.6 Nameplate of induction motor: 

Each electrical machine has a nameplate which is a kind of Motor ID card [8]. Figure I-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I-5: Example nameplate of induction motor  

I.6.1 Example Nameplate:  

The nameplate for a Two-pole 15kw motor may have the following important data: 

Data 01:  

The motor has three phases and is for a mains supply with a frequency of 50 Hz. 

Data 02:   

The rated output of the motor is 15 Kw, i.e. the motor is able to supply a shaft output of at least 15 

Kw if connected to the mains supply as indicated. The rated output of the induction motor has been 

written into a standard. This allows the user a free choice of the different motor makes for various 

applications. 
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Data 03 and 04:   

The stator windings can be connected in a Star or delta formation. If the mains voltage is 400 v, the 

windings must be connected in a “star” formation. The motor current is then 27.5 A per phase. If the 

mains voltage is 230 V, the windings must be connected in a “delta” formation. The motor current is 

then 48.7 A per phase. 

At start-up, when the current is between 4 and 10 times higher than the rated current, the mains supply 

may be overloaded. 

This has led supply companies to issue regulations ordering the start-up current of large motors to be 

reduced. This can be achieved by, for example, having the motor start up in a star connection and 

subsequently switching to a delta connection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I-6: motor torque and current in star and delta connections 

 

With the star connection power and torque are reduced to 1/3rd, and the motor cannot start at full 

load. A motor designed for star connection will be overloaded if there is no switch-over to star 

connection for full-load operation. 
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Data 05: 

The motor protection rating indicates the degree of protection provided by the motor enclosure 

against the penetration of liquids and foreign bodies. Designations used are described in the 

international standard IEC Publication 34-5. 

Protection is indicated by the two letters IP (international Protection) and two digits. These are used 

to specify the protection level against contact and foreign bodies (first digit), and as liquid (second 

digit). If required, extra letters can be added. 

Data 06: 

The rated current Is, which the motor takes up, is called apparent current and can be divided into two: 

an active current Iw and a reactive current Ib. Cos ϕ indicates the share of the active current as a 

percentage of the motor current at rated operation. The active current is converted into shaft output, 

while the reactive current indicates the power required to build up the magnetic field in the motor. 

Equations (I-3): 

𝐈𝐒 = √𝐈𝐖
𝟐 + 𝐈𝐛

𝟐
 

 

I-3 

The currents can be seen as the sides of a right-angled triangle, where the long side equals the square 

root of the sum of the short sides squared (following Pythagoras’s geometry). 

ϕ is the angle between the apparent current and the active current and Cos ϕ is the ratio between the 

size of the two currents, equations (I-4): 

 

Cos ϕ=
𝐈𝐰

𝐈𝐛
 I-4 

Data 07: 

The rated speed of the motor is the motor speed at rated voltage, rated frequency and rated load. 

Data 08: 

Electric motors are designed for different types of cooling. Normally the cooling method is stated in 

accordance with international standard IEC Publication 34-6 [8]. 

 

I.7 Electromechanical characteristics: 

I.7.1 Nominal power: 

 The Nominal Power is the mechanical Power available on the motor shaft at its nominal speed is 

expressed in kilowatts (kW). It is called the useful power the power of an electric motor is linked to 

its sizing and in particular to its axis height in relationship with speed [9]. 
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I.7.2 Nominal speed 

 The nominal speed is the speed of the shaft, it is necessary to distinguish the speed of the 

rotating field of the stator, of the synchronous speed: 𝑛𝑠 =
𝑓

𝑝
 

𝐧𝐬 ∶ synchronousspeed, in[trn/s]. 

f: network frequency Hz. 

p : number of pole pairs. 

The rotation speed of the rotor is lower than that of the rotating field [9]. 

I.7.3  Nominal intensity:  

 The nominal intensity is the value of the current at nominal power given for the supply voltage 

depending on the coupling of the windings [9]. 

 

I.7.4 Power factor 𝐜𝐨𝐬𝝋 e and efficiency 𝜼 

The efficiency and the cos 𝜑 evolve according to the motor load the useful power on the shaft of 

the three-phase motor is given by the equations (I-5) [9]: 

𝑷𝒖 = √𝟑.U.I. 𝐜𝐨𝐬 𝝋. 𝜼 I-5 

I.7.5 Starting current 𝑰𝒅 : 

Three-phase induction motors require a high direct starting current𝑰𝒅. Depending on the model 

used, this current can reach a value of 3 to 15 times greater than that of the rated operational current. 

As a base value, a value 7 to 8 times higher than that of the rated current of the motor can be used. 

This has the disadvantage. This means that during motor starting, the supply network must be 

dimensioned to provide this higher intensity [10]. 

I.7.6 The torque: 

Consider a squirrel-cage motor, powered by a three-phase source whose voltage and frequency are 

fixed. As the mechanical load increases, the speed gradually decreases. However, when the torque 

reaches the critical value called the stall point, the speed drops. Suddenly and the motor stops. There 

is therefore a relationship between the torque developed by the motor and its speed. 

 

I.8 Advantages and disadvantages of the induction machine: 

The induction motor is the most widely used electric motor in industry; it is inexpensive, we 

manufactured in large series, it is robust, reliable and economical. 

It operates directly on the AC mains, without prior energy transformations electricity which 

powers it, it is the industrial motor par excellence which does not have delicate organs like the 
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commutator of the DC motor and which does not use sliding contacts like the synchronous motor (for 

excitation of the rotor). 

The currents circulating in the stator constitute the only external source of the magnetic field. Its 

speed varies a little when it is loaded, it is said to slip, but this slip is generally not does not exceed a 

few hundredths of the no-load speed, it is most often negligible. Induction motors do not cause 

problems for small power units. On the other hand, for the high-power motors, start under reduced 

voltage to avoid excessive current draw raised. 

 

On the other hand, in the induction motor, the stator currents are both to generate the flux and the 

torque. The natural decoupling of the DC machine does not exist. On the other hand we cannot know 

the internal variables of the cage rotor only through the stator. 

 

The inaccessibility of the rotor will lead us to modify the rotor vector equation to express the rotor 

quantities through their actions on the stator. The structural simplicity therefore hides a great 

functional complexity due to the characteristics that have just been mentioned but also nonlinearities, 

difficulty of identification and parameter variations (Rr in particular) [11]. 

 

I.9 Conclusion: 

In this chapter we have presented some general information about the induction machines, its 

different constituents as well as its operating principle, which will contribute to start the other chapters 

and highlights the mathematical model of the induction motor which will be the focus of the second 

chapter.
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II Chapter 02: Modelling induction machine: 

II.1 Introduction: 

Modelling is an essential phase on the approach to simulation and realization, the adopted model 

should interpret all the phenomena that the designer seeks to highlight in order to predict the behavior 

in dynamic and steady state of the physical system. Firstly, we will describe the mathematical model 

of the induction motor (electrical and mechanical equations) in its three-phase frame of reference. 

Secondly, we will reduce the order of the system by a so-called PARK Transformation this 

transformation, models the induction motor in a new frame of reference, which consists of 

transforming the three-phase system into a system with two orthogonal axes (two-phase). Finally, we 

will present the numerical simulation of the various parameters of the induction motor. 

II.2 Modelling induction machine: 

The modelling of the induction machine is an essential need to observe and analyze the different 

evolutions of its electromechanical, electrical and on the one hand and on the other hand to provide 

the necessary control. 

 

 We will use a model of the induction machine to describe the behavior dynamics of the different 

quantities concerned by the control system (torque electromagnetic, magnetic flux, currents, 

voltages……), to do this we must hold taking into account some simplifying assumptions [12]. 

II.2.1 Simplifying assumptions: 

The modelling of the induction machine is based on a number of simplifying assumptions, which 

are: 

• The magnetic circuits are symmetrical. 

• The induction distribution in the air gap is sinusoidal. 

• The air gap is constant. 

• Saturation phenomena are neglected, which makes it possible to consider the magnetic flux as a 

linear function of the currents. 

• The effect of notching is negligible. 

• The influence of skin effect and heating on the characteristics is not taken into account. 

Thus, among the important consequences of these assumptions, we can cite: 

- The additivity of the flow. 

- The constancy of the self-inductors. 

- The law of sinusoidal variation of the mutual inductances between the stator and rotor windings as 

a function of the electrical angle between their magnetic axes. 
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II.2.2 Modelling Induction Machine in the abc three-phase plane: 

 Consider a three-phase induction machine with a stator and a rotor represented schematically by 

Figure II-1 and whose phases are identified respectively by SA, SB, SC. The electrical angle θ 

variable as a function of time defines the instantaneous relative position between the magnetic axes 

of the SA and Ra phases chosen as reference axes [13]. 

 

 

 

 

 

 

 

 

Figure II-1: Schematic representation of a three-phase induction machine. 

 

II.2.2.1 General equations of the three-phase induction machine: 

Under these conditions, if it is considered that the induction motor is three-phase at the stator and at 

the rotor. The three types of equations reflecting the behavior of the motor are [14]. 

Electrical equations: 

The voltage equations of the three stator phases are, equations (II-1): 

 

{
 
 

 
 𝑉𝑠𝑎 = 𝑅𝑠𝑖𝑠𝑎 +

𝑑

𝑑𝑡
Φ𝑠𝑎

𝑉𝑠𝑏 = 𝑅𝑠𝑖𝑠𝑏 +
𝑑

𝑑𝑡
Φ𝑠𝑏

𝑉𝑠𝑐 = 𝑅𝑠𝑖𝑠𝑐 +
𝑑

𝑑𝑡
Φ𝑠𝑐

 

 

 

 

II-1 

 

The voltage equations of the three rotor phases are, equations (II-2): 

 

{
 
 

 
 𝑉𝑟𝑎 = 𝑅𝑟𝑖𝑟𝑎 +

𝑑

𝑑𝑡
Φ𝑟𝑎

𝑉𝑟𝑏 = 𝑅𝑟𝑖𝑟𝑏 +
𝑑

𝑑𝑡
Φ𝑟𝑏

𝑉𝑟𝑐 = 𝑅𝑟𝑖𝑟𝑐 +
𝑑

𝑑𝑡
Φ𝑟𝑐

                                                                              

 

II-2 
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With 𝚽 = 𝐋 ∗ 𝐢 

Vsa, Vsb, Vsc : Voltages applied to the three stator phases. 

𝑖ṡa, isb, 𝑖ṡc    : Currents which cross the three stator phases. 

Φsa, Φsb,, Φsc: Total fluxes through these windings. 

 Vra, Vrb, Vrc: Rotor voltages. 

𝑖ṙa, irb, 𝑖ṙc: Rotor currents. 

Φra, Φrb,, Φrc: Rotor fluxes. 

RS : Resistance of a stator phase.  

Rr : Resistance of a rotor phase. 

Equations (II-1) and II-2) can be written in the following matrix form: 

For the stator, equations II-3): 

[
𝑉𝑠𝑎
𝑉𝑠𝑏
𝑉𝑠𝑐

] = [
𝑅𝑠    0    0
0    𝑅𝑠    0
0    0    𝑅𝑠

] [
𝑖𝑠𝑎
𝑖𝑠𝑏
𝑖𝑠𝑐

] +
𝑑

𝑑𝑡
[
Φ𝑠𝑎

Φ𝑠𝑏

Φ𝑠𝑐

] 

 

 

II-3 

Or in condensed form as follows, equations II-4) : 

[𝑉𝑠(𝑎𝑏𝑐)] = [𝑅𝑠][𝑖𝑠(𝑎𝑏𝑐)] +
𝑑

𝑑𝑡
[Φ𝑠(𝑎𝑏𝑐)] 

 

 

II-4 

For the rotor, equations (II-5): 

[

𝑉𝑟𝑎
𝑉𝑟𝑏
𝑉𝑟𝑐

] = [
𝑅𝑟 0 0
0 𝑅𝑟 0
0 0 𝑅

] [

𝑖𝑟𝑎
𝑖𝑟𝑏
𝑖𝑟𝑐

] +
𝑑

𝑑𝑡
[

Φra

Φrb

Φrc

] 

 

 

II-5 

Or in condensed form as follows, equations II-6): 

[𝑉𝑟(𝑎𝑏𝑐)] = [𝑅𝑟][𝑖𝑟(𝑎𝑏𝑐)] +
𝑑

𝑑𝑡
[Φ𝑟(𝑎𝑏𝑐)] 

 

 

II-6 

Magnetic equations: 

The simplifying hypotheses cited earlier lead to linear relationships between flows and currents of 

the induction machine, these relationships are written matrix as follows: [15]. 

For the stator, equations (II-7): 

 

[

Φ𝑠𝑎

Φ𝑠𝑏

Φ𝑠𝑐

] = [𝐿𝑠] [

𝑖𝑠𝑎
𝑖𝑠𝑏
𝑖𝑠𝑐

] + [𝑀𝑠𝑟] [

𝑖𝑟𝑎
𝑖𝑟𝑏
𝑖𝑟𝑐

] 

 

 

II-7 
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For the rotor, equations (II-8) : 

[

Φ𝑟𝑎

Φ𝑟𝑏

Φ𝑟𝑐

] = [𝐿𝑟] [

𝑖𝑟𝑎
𝑖𝑟𝑏
𝑖𝑟𝑐

] + [𝑀𝑟𝑠] [

𝑖𝑠𝑎
𝑖𝑠𝑏
𝑖𝑠𝑐

] 

 

 

II-8 

Such as: 

[𝑀𝑠𝑟] = [𝑀𝑟𝑠]
𝑇 

We denote by: 

[𝑳𝑠] : Matrix of stator inductors. 

[𝑳𝑟] : Matrix of rotor inductors. 

[𝑴𝒔𝒓] : Matrix of stator mutual inductances. 

[𝑴𝒓𝒔] : Matrix of rotor mutual inductances. 

 

Where, equations II-9) and (II-10):    

[𝐿𝑆] = [

𝑙𝑆𝑀𝑆𝑀𝑆

𝑀𝑆𝑙𝑆𝑀𝑆

𝑀𝑆𝑀𝑆𝑙𝑠

] 
    

II-9 

[𝐿𝑟] = [

𝑙𝑟𝑀𝑟𝑀𝑟

𝑀𝑟𝑙𝑟𝑀𝑟

𝑀𝑟𝑀𝑟𝑙𝑟

] 
 

II-10 

 

And, equations (II-11): 

[𝑀𝑠𝑟] = [𝑀𝑟𝑠]
𝑇 = 𝑀0

[
 
 
 
 
 cos(𝜃)cos (𝜃 −

2𝜋

3
) cos (𝜃 +

2𝜋

3
)

cos (𝜃 +
2𝜋

3
) cos(𝜃)cos (𝜃 −

2𝜋

3
)

cos (𝜃 −
2𝜋

3
) cos (𝜃 +

2𝜋

3
) cos(𝜃)]

 
 
 
 
 

 

 

 

 

II-11 

 

With: 

𝑙𝑠 : inductance of a stator phase. 

𝑙𝑟 : Inductance of a rotor phase. 

Ms : Mutual inductance between stator phases. 

Mr : Mutual inductance between rotor phases. 

𝜃 : Electrical angle defines the instantaneous relative position between the stator axes and the rotor 

axes which are chosen as reference axes. 

𝑀 : Maximum mutual inductance between phase of stator and corresponding phase of rotor. 
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Mechanical equations:  

The study of the characteristics of the induction machine introduces the variation not only of 

electrical parameters (voltage, current, flow) but also of mechanical parameters (torque, speed), 

equations (II-12) [16]. 

 

𝑬𝑻 = 𝑃[𝑖𝑠(𝑎𝑏𝑐)]
𝑇 𝑑

𝑑𝑡
[M𝑠𝑟][𝑖𝑟(𝑎𝑏𝑐)] 

II-12 

To have a complete model of the machine it is necessary to introduce the equation of the movement 

of the machine is expressed as follows, equations (II-13): 

𝐽
𝑑

𝑑𝑡
Ω𝑟 = ET − RT − 𝑓Ω𝑟 

II-13 

 

With: 

𝐽 : Moment of inertia of the rotating masses. 

RT : Resistant torque imposed on the machine shaft. 

Ω𝑟 : Rotor speed. 

ET: Electromagnetic torque. 

𝑓 : Viscous coefficient of friction. 

The equations (I.4) thus obtained are with variable coefficients resulting in the resolution 

complexity of the model defined by (I.3). This will lead to the use of Park’s transformation to make 

these parameters constant. 

 

II.2.3 Park Transformation: 

The purpose of Park's transformation is to treat a wide range of machines in a unified way by 

reducing it to a single model. This conversion is often called axis transformation, a fact corresponding 

to the two windings of the original machine followed by a rotation, the electrically and magnetically 

equivalent windings. This transformation thus, for the purpose of making the mutual inductances of 

the model independent of the angle of rotation [17]. 

II.2.3.1 Different landmarks:  

The isotropy of the induction motor allows a great flexibility in the composition of the equations 

of the machine according to two axes using the components of Park that requires the use of a reference 

which makes it possible to simplify the analytical expressions as much as possible. There are different 
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possibilities for the choice of the axis reference, which is practically reduced to three orthogonal 

reference frames (two-phase systems) [18]. 

1- Stationary referential relative to stator: (𝛼 − 𝛽) → 𝜔obs = 0. 

2- Stationary referential relative to rotor: (𝑥 − 𝑦) → 𝜔𝑜𝑏𝑠 = 𝜔𝑅. 

3- Stationary referential relative to the rotating field: (d − q) → 𝜔obs = 𝜔S. 

Where: 

𝜔obs : Angular speed of rotation of the two-phase axis system relative to the three-phase axis 

system. 

II.2.4 Modelling induction motor in the two-phase plan dq: 

Due to the existence of continuous trigonometric terms in the matrix of mutual inductances [Msr], 

the coefficients of the differential equations are variable and the analytical resolution of the system 

comes up against practically insurmountable difficulties to obtain a system of equations with constant 

coefficients, the stator and rotor windings are transformed into two orthogonal two-phase windings 

dq according to the PARK transformation. The conversion involves the transformation of electrically 

and magnetically equivalent windings. Figure II-2  represents the transformation of real windings 

abc into orthogonal windings d-q [14]. 

- Direct along the axis (d). 

- Quadrature (transverse) along the axis (q). 

- homopolar (o). 

 

 

 

 

 

 

 

 

 

Figure II-2: Rotating frame of axes ( d– q) 
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Where: 

𝜃𝑜𝑏𝑠 = ∫𝜔𝑜𝑏𝑠𝑑𝑡 : is any observation position between the two-phase axis systems with relative to 

the three-phase axis system. 

The application of the Park transformation to the induction machine corresponds to a transformation 

of the three coils (statoric and rotoric) to two equivalent coils taking up the same consideration or 

aspects in terms of flow, torque, current or month an image which will be perfectly proportional to 

them [19]. 

For the transition from the three-phase system to the two-phase system, we have the following 

equivalents equations (II-14) [20].  

The voltage equivalent: [𝑽𝑑𝑞0] = [𝑃(𝜃𝑜𝑏𝑠)][𝑽𝒂𝒃𝒄] 

The current equivalent: [𝒊𝑑𝑞0] = [𝑃(𝜃𝑜𝑏𝑠)][𝒊𝑎𝑏𝑐]                             

The flow equivalent: [Φ𝑑𝑞0] = [𝑃(𝜃𝑜𝑏𝑠)][Φ𝑎𝑏𝑐] 

 

 

 

II-14 

Where: 

[𝑃(𝜃𝑜𝑏𝑠)] is Park’s matrix 

In the case of a reverse passage, we have, equations II-15): 

{

[𝑽𝑎𝑏𝑐] = [𝑃(𝜃𝑜𝑏𝑠)]
−𝟏[𝑽𝑑𝑞𝟎]

[𝒊𝑎𝑏𝑐] = [𝑃(𝜃𝑜𝑏𝑠)]
−𝟏[𝒊𝑑𝑞𝟎]

[Φ𝑎𝑏𝑐] = [𝑃(𝜃𝑜𝑏𝑠)]
𝟏[Φ𝑑𝑞0]

 

 

 

 

II-15 

The matrix of transformation of Park modified direct and inverse is then written, equations (II-16) 

[𝑃(𝜃𝑜𝑏𝑠)] = √
2

3

[
 
 
 
 
 
 cos(𝜃𝑜𝑏𝑠)cos (𝜃𝑜𝑏𝑠 −

2𝜋

3
) cos (𝜃𝑜𝑏𝑠 −

2𝜋

3
)

−sin(𝜃𝑜𝑏𝑠) − sin (𝜃𝑜𝑏𝑠 −
2𝜋

3
) − sin (𝜃𝑜𝑏𝑠 +

2𝜋

3
)

1

√2

1

√2

1

√2 ]
 
 
 
 
 
 

 

 

II-16 

 

The factor (√
2

3
) : is there to retain instant electrical power [15]. 
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[𝑃(𝜃𝑜𝑏𝑠)]
𝑇 = √

2

3

[
 
 
 
 
 
 cos(𝜃𝑜𝑏𝑠) − sin (𝜃𝑜𝑏𝑠 −

2𝜋

3
)
1

√2

cos (𝜃𝑜𝑏𝑠 −
2𝜋

3
) − sin (𝜃𝑜𝑏𝑠 −

2𝜋

3
)
1

√2

cos (𝜃𝑜𝑏𝑠 +
2𝜋

3
) − sin (𝜃𝑜𝑏𝑠 +

2𝜋

3
)
1

√2]
 
 
 
 
 
 

 

 

 

 

II-17 

When the angle 𝜃𝑜𝑏𝑠 assigned to the zero value, the Park transformation is called Clarke 

transformation and the passage matrix is written as follows, equations (II-18): 

[𝐶] =
√3

2

[
 
 
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2
1

2

1

2

1

2 ]
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II.2.4.1 Application of Clark Transformation to the System (induction motor): 

We have found that: 

[𝑉𝑠(𝑎𝑏𝑐)] = [𝑅𝑠][𝑖𝑠(𝑎𝑏𝑐)] +
𝑑

𝑑𝑡
[[𝐿𝑠][𝑖𝑠(𝑎𝑏𝑐)] + [𝑀𝑠𝑟][𝑖𝑟(𝑎𝑏𝑐)]] 

[𝑉𝑟(𝑎𝑏𝑐)] = [𝑅𝑟][𝑖𝑟(𝑎𝑏𝑐)] +
𝑑

𝑑𝑡
[[𝐿𝑟][𝑖𝑟(𝑎𝑏𝑐)] + [𝑀𝑟𝑠][𝑖𝑠(𝑎𝑏𝑐)]] 

And 

[𝐶] =
√3

2

[
 
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2
1

√2

1

√2

1

√2 ]
 
 
 
 

             And                     [𝐶]−1 =
√3

2

[
 
 
 
 1 0

1

√2

−
1

2

√3

2

1

√2

−
1

2
−
√3

2

1

√2]
 
 
 
 

 

So  

 

[

𝑥𝛼
𝑥𝛽
𝑥0

] = [𝐶] [

𝑥𝑎
𝑥𝑏
𝑥𝑐

]                           And                           [

𝑥𝑎
𝑥𝑏
𝑥𝑐

] = [𝐶]−1 [

𝑥𝛼
𝑥𝛽
𝑥0

] 
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So, we have: 

The electrical equations: 

- For the stator:  

[𝑉𝑠(𝑎𝑏𝑐)] = [𝑅𝑠][𝑖𝑠(𝑎𝑏𝑐)] +
𝑑

𝑑𝑡
[Φ𝑠(𝑎𝑏𝑐)] 

 

[𝐶]−1[𝑉𝑠(𝛼𝛽0)]=[𝑅𝑠] [[𝐶]
−1[𝑖𝑠(𝛼𝛽0)]]+

𝑑

𝑑𝑡
[[𝐶]−1[Φ𝑠(𝛼𝛽0)]] 

Donc  

[𝑉𝑠(𝛼𝛽0)]=[𝑅𝑠][𝑖𝑠(𝛼𝛽0)]+
𝑑

𝑑𝑡
[Φ𝑠(𝛼𝛽0)] 

[𝑉𝑠(𝛼𝛽)]=[𝑅𝑠][𝑖𝑠(𝛼𝛽)]+
𝑑

𝑑𝑡
[Φ𝑠(𝛼𝛽)] 

So  

The general electrical equation is, equations (II-19):  

{
 
 
 
 

 
 
 
 𝑉𝑠𝛼 = 𝑅𝑠𝑖𝑠𝛼 +

𝑑

𝑑𝑡
Φ𝑠𝛼

𝑉𝑠𝛽 = 𝑅𝑠𝑖𝑠𝛽 +
𝑑

𝑑𝑡
Φ𝑠𝛽

𝑉𝑟𝛼 = 𝑅𝑟𝑖𝑟𝛼 +
𝑑

𝑑𝑡
Φ𝑟𝛼 = 0

𝑉𝑟𝛽 = 𝑅𝑟𝑖𝑟𝛽 +
𝑑

𝑑𝑡
Φ𝑟𝛽 = 0

 

 

 

 

 

II-19 

 

The magnetic equations is, equations (II-20):  

[
 
 
 
𝜓𝑠𝛼
𝜓𝑠𝛽
𝜓𝑟𝛼
𝜓𝑟𝛽]

 
 
 

= [

𝐿𝑠 0 𝑀cos(𝜃) −𝑀sin(𝜃)
0 𝐿𝑠 𝑀sin(𝜃) 𝑀cos(𝜃)

𝑀cos(𝜃) −𝑀sin(𝜃) 𝐿𝑟 0
𝑀sin(𝜃) 𝑀cos(𝜃) 0 𝐿𝑟

]

[
 
 
 
𝐼𝑠𝛼
𝐼𝑠𝛽
𝐼𝑟𝛼
𝐼𝑟𝛽]
 
 
 
 

 

 

 

II-20 
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We have that Figure II-3: 

 

 

 

 

 

 

 

Figure II-3: Block diagram of the induction machine supplied with voltage 

The output vector[X], can have one of these forms  

[𝑿] = [

𝑖𝑠𝑑
𝑖𝑠𝑞
𝑖𝑟𝑑
𝑖𝑟𝑞

] 𝐎𝐫[𝑿] =

[
 
 
 
Φ𝑠𝑑

Φ𝑠𝑞

Φ𝑟𝑑

Φ𝑟𝑞]
 
 
 
𝐨𝐫[𝑿] =

[
 
 
 
Φ𝑠𝑑

Φ𝑠𝑞

𝑖𝑟𝑑
𝑖𝑟𝑞 ]

 
 
 

 or [𝑿] =

[
 
 
 
𝑖𝑠𝑑
𝑖𝑠𝑞
Φ𝑟𝑑

Φ𝑟𝑞]
 
 
 
 

So, if we have chosen that the state vector is:  [𝑿] =

[
 
 
 
𝑖𝑠𝑑
𝑖𝑠𝑞
Φ𝑟𝑑

Φ𝑟𝑞]
 
 
 
 

We will find that, equations (II-21) :  

[�̇�] = [𝐴][𝑋] + [𝐵][𝑉] 

 

{
 
 
 
 

 
 
 
 
𝑑𝑖𝑠𝛼
𝑑𝑡

= 𝑎1𝑖𝑠𝛼 + 𝑎2𝜓𝑠𝛼 + 𝑎3𝜔𝑟𝜓𝑟𝛽 +
1

𝜎𝐿𝑠
𝑉𝑠𝛼

𝑑𝑖𝑠𝛽

𝑑𝑡
= 𝑎1𝑖𝑠𝛽 − 𝑎3𝜔𝑟𝜓𝑠𝛼 + 𝑎2𝜓𝑟𝛽 +

1

𝜎𝐿𝑠
𝑉𝑠𝛽

𝑑𝜓𝑟𝛼
𝑑𝑡

= 𝑎4𝑖𝑠𝛼 + 𝑎5𝜓𝑟𝛼 − 𝜔𝑟𝜓𝑟𝛽

𝑑𝜓𝑟𝛽

𝑑𝑡
= 𝑎4𝑖𝑠𝛽 + 𝑎5𝜓𝑟𝛽 + 𝜔𝑟𝜓𝑟𝛼
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Va 

Vb 

Vc 

Induction Machine 

Model 
[𝐗] 

RT 
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With: 

𝑎1 = −(
1

𝑇𝑟𝜎
+
1 − 𝜎

𝑇𝑟𝜎
) , 𝑎2 =

𝑀

𝜎𝐿𝑠𝐿𝑟𝑇𝑟
, 𝑎3 =

𝑀

𝜎𝐿𝑠𝐿𝑟
, 𝑎4 =

𝑀

𝑇𝑟
, 𝑎5 = −

1

𝑇𝑟
 

𝜎 = 1 −
𝑀2

𝐿𝑠𝐿𝑟
, 𝑇𝑠 =

𝐿𝑠
𝑅𝑠
, 𝑇𝑟 =

𝐿𝑟
𝑅𝑟

 

 

Mechanical equation, equations (II-22): 

𝐸𝑇 − RT = 𝐽
𝑑Ω𝑚
𝑑𝑡

+ 𝑓Ω𝑚

Ω𝑚 = 𝑝𝜔𝑟
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Expression of the torque, equations (II-23): 

 

ET =
3

2
𝑝
𝑀

𝐿𝑟
(𝜓𝑟𝛼𝑖𝑠𝛽 − 𝜓𝑟𝛽𝑖𝑠𝛼) 
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II.3 Conclusion: 

In this chapter, we made the modelling of the induction machine this modelling based on Park's 

theory, the primary interest of this transformation is to simplify the problem in the three-phase model. 
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III Chapter 03: Artificial neural network 

III.1 Introduction 

Neural network is the most generic form of AI for emulation of human thinking compared to expert 

systems and fuzzy logic. In 1943, McCulloch and Pitts first proposed a network composed of binary-

valued artificial neurons that were capable of performing simple threshold logic computations. The 

modern era of neural network with rejuvenated research practically started in 1982 when Hopfield 

presented his invention. Since then, many network models and learning rules have been introduced. 

The neural network is famous for its learning ability and arbitrary approximation to any continuous 

function. [21]  

 

Recently, neural networks have been used for the parameter identification and state estimation of 

induction motor drive systems, object recognition, and speech recognition. Furthermore, many recent 

works showed that neural networks can be successfully used in a number of tasks in natural language 

processing such as language modelling, paraphrase detection and word embedding extraction. 

III.2 Biological Neural Network (BNN)  

 

Table III-1: Fuels of Functional Organization in the Brain 

Global conscious awareness, behavior, truth, beauty, conscience, 
and so on 

Systemic autonomic, sensorimotor, sensory, motor, instinctive, 
affective, representational, volitional, cognitive, and so on 

Neuroelectric networks local, composite, neurons, ions, membranes 

Chemical neurotransmitters/synaptic transmission; monoamine 
transmitter systems; chemical neuroregulator systems, and 
so on 

Molecular molecular neurobiology  
 

A central quality of the operational organization of the brain is its hierarchical array of multiple 

levels of functioning. A representation of this is shown in Table III-1 This feature of hierarchical 

levels of ordered functioning can be seen in cosmological structures, is most pronounced in biological 

systems, and is probably more developed in the brain than in any other known system. The essential 

ingredient is that each individual level (say, conscious awareness, appetitive behavior, neural network 

activity patterns, neural transmitter or neurohormonal systems, certain genetic predispositions) seems 

to have its own principles of operation, logic, and cohesion, but at the same time seems to stand in 

some significant influential way(s) (either dependent or supportive) with the levels below and above 

it. One of the most fundamental and difficult questions one can ask about the functional organization 
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of the brain is about the degrees of relative upward and downward influences and autonomies between 

and within these levels. [22]  

 

 

 

Figure III-1: Primary Neuroelectric Signals. 

Figure III-1 illustrates the primary Neuroelectric signals used by neurons and neural networks in 

representing information. One may succinctly characterize the main characteristics of this signaling 

at a surface level as follows. The typical neuron consists functionally of dendritic tree, a cell body or 
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soma, and an axon with its terminal projections. The dendritic tree and soma serve as input regions 

of the neuron, where characteristic input signals are manifested; the soma serves further as a 

triggering section, where input signals are converted to output signals; and the axonal regions serve 

as output regions, where characteristic output signals are manifested. [22] 

 

The characteristic output signal of individual neurons consists of individual action or spike 

potentials and their collection into temporally variable sequences called spike trains. To a first 

approximation, one thinks of action potentials as discrete, unitary events that have essentially the 

same time courses and amplitudes whenever they occur. That is, the significant fact about action 

potentials is that they occur and when they occur. The view is analogous to the firing of a bullet from 

a gun: the event projected following the pulling of the trigger is sensibly identical from one event to 

another. Action potentials are sudden excursions wherein the transmembrane potential rises some 100 

mV or so above its resting level, inside relative to outside. [22] 

 

The characteristic potentials at the input ends of neurons are PSPs (standing for postsynaptic 

potentials). PSPs are much smaller than action potentials and are continuous, graded, analog signals 

as illustrated in Figure III-1. They have a short rise time (usually about 2 msec or less) and a longer 

gradual decay period (usually approximately exponential with time constant about 5 to 15 msec in 

vertebrate neurons). Individual PSPs are the unitary input responses in neurons; each PSP is the 

response originating under a synapse in a neuron to a single action potential in the presynaptic 

terminal. The rise time of PSPs corresponds to the period when the synapse is active; the decay period 

corresponds to the natural relaxation of the membrane potential to its resting level after the synapse 

is closed, and sometimes to a decay period of this synaptic conductance modulation. The rise time of 

the PSP directly under and close to a synapse usually corresponds closely in time to the duration of 

the input action potential. [22] 

 

Spread out in time and decay in magnitude as they are conducted passively along the membrane 

away from the synapse. PSPs initiated on passive dendrites a hundred or more microns from the soma 

and observed at the soma can exhibit very slow rise times, perhaps as long as 5 to 10 msec. PSPs can 

be either excitatory (EPSPs) or inhibitory (IPSPs) depending on whether they are positive or negative 

fluctuations in transmembrane potential (inside relative to outside). Unitary PSPs initiated in 

dendrites as observed at the soma are usually very small, of the order of 0.1 to 1 mV. Their peak 

values in dendritic trees may be considerably larger, perhaps approaching 50 or even more mV. [22] 

 

The potential recorded with an intracellular electrode in the soma regions of neurons is typically a 

graded continuous analog signal, one such manifestation of which is illustrated in Figure III-1. Such 

a signal represents the confluent resultant of the interactions of all the input PSPs continually 
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bombarding the neuron, and it may be referred to as the generator potential. To a first approximation 

one may picture this interaction as a simple algebraic summation of the positive and negative 

excitatory and inhibitory PSPs, although, the interactions are in fact, nonlinear. The magnitude of the 

generator potential varies between about 10 mV negative and some 10 to 25 mV positive. This 

composite signal can be called the neuron generator potential, because it generates the ongoing 

sequence of action potentials that constitute the output spike train of the neuron. The triggering of a 

single action potential by a generator potential is illustrated in Figure III-1. [22] 

 

Individual action potentials are triggered when the generator potential exceeds a critical value, 

known as the threshold. The threshold may be an approximately constant value in a given neuron or 

may vary depending on the time history of the generator potential. This last factor, known as 

accommodation, represents the desensitizing of neurons by maintained input activation. It results in 

transient responses to steady inputs known as on and off responses. When a neuron fires a single 

action potential, the neuron is thrown into a rather short period of absolute and then relative 

refractoriness, wherein it is impossible, then difficult to fire subsequent action potentials. Absolute 

refractoriness typically lasts less than a millisecond or so, and relative refractoriness may last of the 

order of 10 to 30 msec. Typical upper limits of neuronal firing in normal function are about 30 to 50 

per second, determined in large part by these refractory mechanisms. Threshold values for vertebrate 

neurons are typically about 10 to 25 mV; they set the upper limits for somatic generator potentials. 

Output action potentials are typically triggered at the place where the axon emerges from the cell 

body, the axon hillock. When action potentials are generated at the axon hillock, they .are propagated 

essentially without change to all the synaptic terminals of the neuron. [22] 

 

In summary, a surface-level view of the rudiments of neuroelectric signaling is quite simple: 

primary neuroelectric signals consist of PSPs and generator potentials at the input regions of neurons 

and action potentials and spike trains at the output regions. Action potentials are converted to PSPs 

at the synaptic junctions between neurons; generator potentials are converted to action potentials by 

means of threshold rules at the somas of neurons. Neural networks operate by feeding ongoing spike 

trains in large numbers of neurons to each other and to distal target neurons by virtue of vast numbers 

of synaptic interconnections determined by the particular anatomical structure of the system under 

consideration. [22] 

 

Information is represented in the nervous system by coordinated patterns of activity involving 

large or vast numbers of interconnected neurons. There are some 100 billion or more neurons in the 

brain, with approximately 10 billion in the human cerebral cortex, and perhaps as many as 100 billion 

cerebellar Purkinje cells alone. Typical central neurons receive from a few thousand (spinal cord) 
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input synapses to tens or even a hundred thousand (cerebral cortex) input synapses. The degree of 

interconnectivity and the corresponding amount of neuronal material attributed to thin, filigreed 

instruments of interconnection dendrites and axons is astounding. The axons from a single human 

brain, for example, if laid out end to end would stretch to the moon and back. [22] 

 

The operations of neural networks must be interpreted in terms of vastly numerous divergent-

convergent synaptic junctions between vastly numerous populations. These junctions are divergent 

in the sense that any one projecting neuron activates typically thousands of receiving cells, and 

convergent in the sense that any one receiving neuron receives from typically thousands of sender 

cells. Typical central neurons must receive several hundred active PSPs instantaneously, or 

alternatively PSPs numbering into the low thousands spread over a time constant or two, to be driven 

across threshold to spike production. Then the firing of this particular cell will be significant only if 

its firings are correlated in time with firings of hundreds or thousands of other neurons projecting to 

common receiving cells. To properly grasp the operative dynamics of these systems one needs to 

develop visual images that represent this extensive parallel as well as serial integration of signals. 

[22] 

 

Synapses are centrally significant in this contemporary view that coordinated patterns of activity 

over vast numbers of interconnected neurons are the Neuroelectric manifestations of meaning and 

representation that neural networks, and not neurons, are the fundamental functional units of 

Neuroelectric signaling in the brain. Specific individual patterns of this sort are seen to be served and 

maintained by corresponding specific sets of synapses whose strengths are appropriately adjusted to 

maintain the pattern and resist the incursions of alien patterns. The enormous numbers of synapses in 

the brain (about1014) are appropriate and perhaps necessary to allow for the embedding of very large 

numbers of distinct patterns of this sort. [22] 

 

In this context, long-term synaptic plasticity is thought to be the primary anatomical substrate of 

learning, memory, and representation in the mammalian and human nervous system. Individual 

synapses are thought to be selectively increased or perhaps decreased in strength to enhance or 

diminish their participation as desired in the formation of various multineuronal dynamic firing 

patterns, which in turn constitute the Neuroelectric representation of particular psychological 

elements. The Neuroelectric firing patterns can be considered the realizations of such representations, 

and the synaptic specializations underlying them can be considered their anatomical beds. [22] 

 

A specific salient embodiment of this theory that changing synaptic effectiveness is the substrate 

of learning, memory, and representation is the suggestion that the stalks of synaptic spines under 

synapses on pyramidal cells in the cerebral cortex and hippocampus increase in size to allow larger 
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responses to the same level of presynaptic activation by deceasing longitudinal resistance to synaptic 

currents. [22] 

 

That neural networks rather than neurons are the functional units of organization of the nervous 

system is underscored by recent principles found in the field of development. The nervous system 

overbuilds: considerably more neurons and more synaptic connections are originally laid down than 

are ultimately retained. The specific connectivities of mammalian and human neural nets are 

constructed under the general guidance of an individual's unique genetic inheritance, but the 

development is winnowed and carefully fine-tuned according to one's unique life experience, 

primarily during the very critical prenatal and early postnatal learning periods. Large numbers of 

neurons and synaptic connections that are not actively used die and are weeded away during these 

periods. It seems likely that only those cells and networks involved in mediating useful systemic 

operations and interactions with the environment are maintained. [22] 

 

This process may reach some sort of climax in adolescence. It has been suggested that a 

particularly critical stage in adolescence occurs wherein as many as 80% of cortical synapses fall 

away. The picture is that early in adolescence local and regional cortical connections are close to all-

to-all, whereas in late to post adolescence only some one in six or seven of these survive. If this is so, 

it would seem likely that such an event would reflect the end of long trial period in which one's basic 

representation of many features of the external world were being established. After this event, one's 

representations of many basic features of this world would be relatively fixed. [22]. 

 

III.3 Artificial Neural Network (ANN)  

III.3.1 What is artificial neural network? 

The artificial neural network (ANN) abstracts the neural network of human brain on information 

processing, thus different networks forms in according to different connection modes [1]. ANN works 

as an operational model including numerous nodes (or neurons) connected to each other. There are 

extension neural network such as back propagation (BP) network (BPN), wavelet neural network 

(WNN), and genetic neural network (GNN) [23]. 

 

BP network (BPN) is in essence a feedback network. Similar to other typed of neural network, 

there are at least one hidden layer and a linear output layer in the BPN. The hidden layer could use 

functions such as sigmoid function as the transfer function, and the output layer uses transfer function 

such as linear function. The BPN learning process composes of the signal forward propagation and 

the error backward propagation. The signal forward propagation process means that the inputs are 

transmitted from input layer to output layer, going through the hidden layer. With the output deviation 
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from desired value, the error is transferred back. The neurons are transferred backward layer by layer, 

which is sharing the output error. Thus, all the weights are adjusted corresponding to the error signal 

variation. These two processes are periodic until the error meets the accuracy requirements or 

reaching learning number limit [24]. 

III.3.2 Mathematical models and structures of artificial neural network 

 

 

 

 

 

 

 

 

 

 

 

Figure III-2: The Structure of The Artificial Neuron. 

 

The table below Table III-2 shows the mapping between a biological neuron and an artificial 

neuron: 

Table III-2 : biological neuron and an artificial neuron 

biological neuron artificial neuron 

Synapses Weight of connections 

Axons Output signal 

Dendrites Input signal 

Core or Suma Activation function 
 

A classic calculation of the output y of a neuron is given by the equations (III-1): 

Output = 𝑓(𝛴(W ∗ X) + b) III-1 
 

Where f (·) is a nonlinear function that is called the activation function, and W and b are the weight 

and bias associated with the neuron. The purpose of the activation function is to introduce nonlinearity 

which enables neural networks to tackle very complex nonlinear problems. Common activation 

functions include Sigmoid, hyperbolic tangent function (Tanh), rectified linear unit (ReLU), and 
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leaky ReLU (LReLU). The respective formulas and curves are presented in Figure III-3. In general, 

the parameter W and b are randomly initialized and then iteratively updated according to back-

propagated loss (error) using the gradient descent method. [25] 

 

 

Figure III-3 : Commonly used Activation Functions. 

 

III.3.3 Different models of neural network 

 

Figure III-4: Different Models of Neural Networks. 

In Figure III-4 (a) Architecture of a single layer perceptron. The architecture consists of a layer 

on input neurons fully connected to a single layer of output neurons. (b) Extension to a multi-layer 
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perceptron including more than one layer of trainable weights. In this example, the network includes 

3 layers: input, hidden and output layer. Each connection between two neurons is given by a certain 

weight. 

Simple single-layer or multi-layer structure has no connections to previous layers. 

 

 

 

(A): The Hopfield Network Model (B): Kohonen Model 

 

Figure III-5: the Hopfield network and Kohonen Model 
The Hopfield Network is typical recurrent fully interconnected to all other units, and it is a simple 

assembly of perceptrons that is able to overcome the XOR problem Figure III-5 (A). 

Complex Hopfield and Kohonen structure include connections to previous layers. 

III.4  Recurrent Neural Network (RNN)  

III.4.1 What is recurrent neural network? 

Recurrent neural networks have been an important focus of research and development during the 

1990's. They are designed to learn sequential or time-varying patterns. A recurrent net is a neural 

network with feedback (closed loop) connections. Examples include BAM, Hopfield, Boltzmann 

machine, and recurrent backpropagation networks. Recurrent neural network techniques have been 

applied to a wide variety of problems. Simple partially recurrent neural networks were introduced in 

the late 1980's by several researchers including Rumelhart, Hinton, and Williams to learn strings of 

characters. Many other applications have addressed problems involving dynamical systems with time 

sequences of events. [26] 

 

This is some interesting examples to give the idea of the breadth of recent applications of recurrent 

neural networks. For example, the dynamics of tracking the human head for virtual reality systems is 

being investigated. The forecasting of financial data and of electric power demand are the objects of 
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other studies. Recurrent neural networks are being used to track water quality and minimize the 

additives needed for filtering water. And, the time sequences of musical notes have been studied with 

recurrent neural networks. Some focus on systems for language processing. Others look at real-time 

systems, trajectory problems, and robotic behavior. [26] 

 

Another definition for a recurrent neural network (RNN) is a neural network that simulates a 

discrete-time dynamical system that has an input xt, an output yt and a hidden state ht. In our notation 

the subscript t represents time. The dynamical system is defined by 

𝐡𝑡 = 𝑓ℎ(𝐱𝑡, 𝐡𝑡−1) 

𝐲𝑡 = 𝑓𝑜(𝐡𝑡) 

Where fh and fo are a state transition function and an output function, respectively. Each function is 

parameterized by a set of parameters; θh and θo. [27] 

Given a set of N training sequences𝐷 = {((𝐱1
(𝑛)
, 𝐲1
(𝑛)
), … , (𝐱𝑇𝑛

(𝑛)
, 𝐲𝑇𝑛
(𝑛)
))}

𝑛=1

𝑁

, the parameters of an 

RNN can be estimated by minimizing the following cost function, equations (III-2) 

𝐽(𝜽) =
1

𝑁
∑  

𝑁

𝑛=1

∑ 

𝑇𝑛

𝑡=1

𝑑 (𝐲𝑡
(𝑛)
, 𝑓𝑜(𝐡𝑡

(𝑛)
)) 

 

 

 

III-2 

 

 

Where 𝐡𝑡
(𝑛)

= 𝑓ℎ(𝐱𝑡
(𝑛)
, 𝐡𝑡−1

(𝑛)
) and 𝐡0

(𝑛)
= 𝟎 . d(a, b) is a predefined divergence measure between a 

and b, such as Euclidean distance or cross-entropy. [27] 

III.4.2 Conventional Recurrent Neural Network 

A conventional RNN is constructed by defining the transition function and the output function 

as, equations (III-3) and (III-4): 

𝐡𝑡 = 𝑓ℎ(𝐱𝑡, 𝐡𝑡−1) = 𝜙ℎ(𝐖
⊤𝐡𝑡−1 + 𝐔

⊤𝐱𝑡) 
 

III-3 

 

𝐲𝑡 = 𝑓𝑜(𝐡𝑡, 𝐱𝑡) = 𝜙𝑜(𝐕
⊤𝐡𝑡) 

 
III-4 

 

Where W, U and V are respectively the transition, input and output matrices, and 𝜙ℎ and 𝜙𝑜  are 

element-wise nonlinear functions. It is usual to use a saturating nonlinear function such as a logistic 

sigmoid function or a hyperbolic tangent function for 𝜙ℎ. An illustration of this RNN is in Figure 

III-6 (a). 



 

Chapter 03: Artificial neural network 
   
 

35 
 

 

Figure III-6: Illustrations of different recurrent neural networks (RNN). 

Figure III-6 represents an illustrations of different recurrent neural networks (RNN).  

(a) A conventional RNN.  

(b) Deep Transition recurrent neural network (DT-RNN).  

(b*) Deep Transition recurrent neural network with shortcut connections (DTS-RNN). 

(c) Deep Transition, Deep Output recurrent neural network (DOT-RNN).  

(d) Stacked RNN. 

 

III.4.3 Recurrent Neural Network Architectures 

The architectures range from fully interconnected Figure III-7 (A) to partially connected networks 

Figure III-7 (B), including multilayer feedforward networks with distinct input and output layers. 

Fully connected networks do not have distinct input layers of nodes, and each node has input from 

all other nodes. Feedback to the node itself is possible. [26] 

  

(A) (B) 
 

Figure III-7: examples of a fully connected RNN 

Simple partially recurrent neural networks Figure III-7 have been used to learn strings of 

characters. Although some nodes are part of a feedforward structure, other nodes provide the 
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sequential context and receive feedback from other nodes. Weights from the context units (C1 and 

C2) are processed like those for the input units, for example, using backpropagation. The context 

units receive time-delayed feedback from, in the case of Figure III-7 the second layer units. Training 

data consists of inputs and their desired successor outputs. The net can be trained to predict the next 

letter in a string of characters and to validate a string of characters. [26] 

 

Two fundamental ways can be used to add feedback into feedforward multilayer neural networks. 

Elman introduced feedback from the hidden layer to the context portion of the input layer. This 

approach pays more attention to the sequence of input values. Jordan recurrent neural networks use 

feedback from the output layer to the context nodes of the input layer and give more emphasis to the 

sequence of output values. 

III.4.4 Learning in Recurrent Neural Network 

Learning is a fundamental aspect of neural networks and a major feature that makes the neural 

approach so attractive for applications that have from the beginning been an elusive goal for artificial 

intelligence. Learning algorithms have long been a focus of research. [26] 

 

Hebbian learning and gradient descent learning are key concepts upon which neural network 

techniques have been based. A popular manifestation of gradient descent is back-error propagation 

introduced by Rumelhart in 1986 and Werbos in1993. While backpropagation is relatively simple to 

implement, several problems can occur in its use in practical applications, including the difficulty of 

avoiding entrapment in local minima. The added complexity of the dynamical processing in recurrent 

neural networks from the time-delayed updating of the input data requires more complex algorithms 

for representing the learning. [26] 

 

To realize the advantage of the dynamical processing of recurrent neural networks, one approach 

is to build on the effectiveness of feedforward networks that process stationary patterns. Researchers 

have developed a variety of schemes by which gradient methods, and in particular backpropagation 

learning, can be extended to recurrent neural networks. Werbos introduced the backpropagation 

through time approach in 1990, approximating the time evolution of a recurrent neural network as a 

sequence of static networks using gradient methods. Another approach from Lapedes and Farber in 

1986 deploys a second, master, neural network to perform the required computations in programming 

the attractors of the original dynamical slave network. [26] 

 

III.4.5 Learning process 

Among the desirable properties for a neural network, the most fundamental is surely the ability to 

learn from its environment, to improve its performance through a learning process. But what is 

learning? Unfortunately, there is no general definition, universally accepted, because this concept 
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affects too many distinct notions that depend on the point of view that one adopts. In the context of 

artificial neural networks, we will adopt a pragmatic point of view by proposing the following 

definition: Learning is a dynamic and iterative process allowing the parameters of a network to be 

modified in response to the stimuli it receives from its environment. The type of learning is 

determined by the way in which parameter changes occur. This definition implies that a network must 

be stimulated by an environment, that it undergoes changes in response to this stimulation, and that 

these provoke in the future a new response to the environment. Thus, the network can improve over 

time. [28] 

 

In most architectures, learning results in a modification of synaptic efficiency, meaning a change 

in the value of the weights that connect the neurons from one layer to another. Let the weight 𝑤𝑖,𝑗 

connect the neuron i to its input j. At time t, a change Δ𝑤𝑖,𝑗(𝑡) in weight can be expressed simply as 

follows, equations (III-5):  

 

Δ𝑤𝑖,𝑗(𝑡) = 𝑤𝑖,𝑗(𝑡 + 1) − 𝑤𝑖,𝑗(𝑡) 

 

III-5 

 

And therefore, 𝑤𝑖,𝑗(𝑡 + 1) = 𝑤𝑖,𝑗(𝑡) + Δ𝑤𝑖,𝑗(𝑡) with  𝑤𝑖,𝑗(𝑡 + 1) and  𝑤𝑖,𝑗(𝑡) representing 

respectively the new and old values of the weight 𝑤𝑖,𝑗. [28] 

A set of well-defined rules allowing to carry out such a process of adaptation of the weights 

constitutes what is called the learning algorithm of the network. One of different types of rules as 

well as different principles that can guide the learning of a neural network is by error correction. [28] 

 

III.4.5.1 By error correction 

The first rule that can be used is based on the correction of the error observed at the output. Let 

𝑎𝑖(𝑡)  be the output obtained for neuron i at time t. This output results from a stimulus p(t) that is 

applied to the inputs of the network, one of the neurons of which corresponds to neuron i. Let 𝑑𝑖(𝑡) 

be the output that we want to obtain for this same neuron i at time t. Then, 𝑎𝑖(𝑡)and 𝑑𝑖(𝑡) will 

generally be different and it is natural to calculate the error 𝑒𝑖(𝑡)  between what we obtain and what 

we would like to obtain, equations (III-6): 

𝑒𝑖(𝑡) = 𝑑𝑖(𝑡) − 𝑎𝑖(𝑡) 
 

III-6 

 

And look for a way to reduce this error as much as possible. In vector form, we get, equations (III-7): 

𝑒(𝑡) = d(𝑡) − a(𝑡) 
 

 III-7 
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With 𝐞(𝑡) = [𝑒1(𝑡)𝑒2(𝑡)⋯𝑒𝑖(𝑡)⋯ 𝑒𝑆(𝑡)] which designates the vector of errors observed on the S 

output neurons of the network. Error correction learning consists of minimizing a performance index 

F based on the error signals 𝑒𝑖(𝑡) , in order to make the outputs of the network converge with what 

we would like them to be. A very popular criterion is the sum of squared errors, equations (III-8): 

𝐹(𝐞(𝑡)) =∑  

𝑆

𝑖=1

𝑒𝑖
2(𝑡) = 𝐞(𝑡)𝑇𝐞(𝑡) 

 

 

III-8 

 

Now, it is important to notice that the free parameters of a network are its weights. Let's take all 

of these weights and put them together in the form of a vector w(𝑡) at time t. To minimize (e(𝑡)) =

𝐹(w(𝑡)) = 𝐹(𝑡) , we will start by choosing initial weights (t = 0) at random, then we will modify 

these weights in the following way, equations (III-9):  

𝐰(𝑡 + 1) = 𝐰(𝑡) + 𝜂𝐱(𝑡) 
 

III-9 

Where the vector x(𝑡) designates the direction in which we will look for the minimum and 𝜂 is a 

positive constant determining the amplitude of the step in this direction (the learning speed). The 

objective is to ensure that F(𝑡 + 1) < F(𝑡) . But how can we choose the direction x so that the 

previous condition is respected? Consider the 1st order Taylor series around w(𝑡), equations (III-10): 

𝐹(𝑡 + 1) = 𝐹(𝑡) + ∇𝐹(𝑡)𝑇Δ𝐰(𝑡) 
 

III-10 

 

Where ∇𝐹(𝑡) designates the gradient of F with respect to its free parameters (the weights w) at 

time t, and Δw(𝑡) = w(t + 1) − 𝑤(𝑡). But, so that F(𝑡 + 1) < F(𝑡) , the following condition must 

be satisfied, equations (III-11): 

 

∇𝐹(𝑡)𝑇Δ𝐰(𝑡) = 𝜂∇𝐹(𝑡)𝑇𝐱(𝑡) < 0 III-11 
  

Any vector x(𝑡) which respects the inequality of the equation III-11 therefore points in a direction 

that decreases F. This is then referred to as a “descent” direction. [28] 
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Figure III-8: Gradient descent trajectory. 

To obtain maximum descent, given 𝜂 > 0, the vector x(𝑡)  must points in the opposite direction 

to the gradient because it is in this case that the scalar product will be minimum, equations (III-12): 

 

x(𝑡) = −∇𝐹(𝑡) III-12 
 

This generates the so-called “gradient descent” rule, equations (III-13) : 

 

Δw(𝑡) = −𝜂∇𝐹(𝑡) III-13 
 

Illustrated in Figure III-8. In the space of weights, this Figure III-8 shows the level curves of F 

represented by hypothetical ellipses. The dotted arrow shows the optimal direction to reach the 

minimum of F. The full arrow shows the direction of the gradient which is perpendicular to the curve 

line in w(𝑡). The exact expression of the gradient depends on the activation function used for the 

neurons. [28] 

III.5  Conclusion  

The next years we should see major advances in theory and design, as well as an increase in the 

number of applications for the creative solution of major practical challenges. The growing use of 

recurrent neural networks should spark interest in research and development while also raising new 

theoretical and design challenges. The continued development in hybrid systems should evolve in 

new and better applications for recurrent neural networks. 
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IV Chapter 04: simulation results: 

IV.1 Introduction:  

After we found the mathematic model of the induction motor in the last chapter. In the first part 

of this chapter, we will simulate the motor model in MATLAB program, and then we will analyze 

and interpret the results obtained from different experiments. 
 

In the second part of this chapter, we will use the results obtained from the simulation of the 

induction motor in order to create an artificial neural network that calculates the speed of the motor 

based on the measurement of the following quantities. The stator current Alpha 𝑖𝑠𝛼, the stator current 

Beta    𝑖𝑠𝛽, the rotor flow Alpha 𝜓𝑟𝛼,the rotor flow Beta 𝜓𝑟𝛽 .Then we analyze all the results obtained. 

IV.2 Simulation of the induction machine model: 

The induction machine is normally supplied directly from the industrial network by a system of 

balanced three-phase voltages. 
 

In some applications for which speed variation is necessary, the motor will be powered by a system 

of three-phase voltages or by a system of three-phase currents (injected) into the stator windings, 

through an electronic power converter placed between the motor and the electrical industrial network 

[29]. 

Figure IV-1 represents the induction machine model simulated using the SIMULINK software under 

MATLAB. The parameters of the induction machine used in this work are given in the Appendix. 

The simulation will be done in the (α, β) frame of reference for a nominal load test after a no-load 

start. 

The supply voltages assumed to be perfectly sinusoidal with equal and constant amplitudes, they 

can be presented as follows, equations (IV-1): 

{
 
 

 
 𝑉𝑠𝑎 = √2𝑉𝑆sin(𝜔𝑠𝑡)

𝑉𝑠𝑏 = √2𝑉𝑆sin (𝜔𝑠𝑡 −
2𝜋

2
) (𝐈 − 31)

𝑉𝑠𝑐 = √2𝑉𝑆sin (𝜔𝑠𝑡 +
2𝜋

2
)

 

 

IV-1 

With: 

𝑉𝑆 : RMS voltage value. 

𝜔𝑠 : Power pulse. 
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Figure IV-1: The induction machine model 
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IV.2.1 Simulation results: 

 

IV.2.1.1  No-load : 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

Figure IV-2: Simulation results of the induction machine model during no load start 
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IV.2.1.2  Under load: 

 

 (𝐑𝐓=60 N.m) in t=1s:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure IV-3: Simulation results of the induction machine model under load 

IV.2.2 Interpretation of simulation results: 

Note that the parameters of the machine are given in appendix. In the first step, we will digitally 

simulate the operation of the induction machine powered directly by the standard 220/380V, 50HZ 

network and without the disturbance application (RT= 0). 

Examination of the curves in Figure IV-2 shows that no-load starting with a nominal voltage 

makes it possible to have: 

At the first moments, the stator currents present successive oscillations around zero, but which 

quickly disappear after a few vibrations, the steady state is reached, these oscillations can cause the 

destruction of the machine by overheating in the event of excessive repetitions. 
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During the transient state, the torque is strongly pulsating, present at the first moments of starting of 

the important beats followed by a number of oscillations before stabilizing at zero. 
 

In the second step, a torque disturbance (𝐑𝐓=60N.m) is applied to the motor shaft at instants (t=1 

s) and the simulation results are grouped in the Figure IV-3. 

When the load is applied, the electromagnetic torque reaches its reference value to compensate for 

this stress with an almost instantaneous response. 

Before stabilizing at the resistive torque value, there is a decrease in rotor speed which results in very 

high slip. The stator currents changing according to the load applied to the motor shaft. 

 

IV.3 Simulation of the artificial neural network: 

In this part, we will create an artificial neural network Figure IV-4  in MATLAB Simulink based 

on the results obtained in the first part of the simulations. 

Our network has  

4 inputs: 

- The stator current Alpha 𝑖𝑠𝛼 

- The stator current Beta    𝑖𝑠𝛽 

- The rotor flow Alpha 𝜓𝑟𝛼 

- The rotor flow Beta 𝜓𝑟𝛽  

Hidden layers 

1 output: 

- The speed of the motor (Omega)  

Where the goal of this experiment is to create an artificial neural network that performs the same 

work as the speed sensor of the induction motor. 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-4: Artificial neural network 



 

Chapter 04: simulation results 
   
 

46 
 

IV.3.1 Simulation settings are: 

IV.3.1.1 Artificial neural network type: Recurrent Neural Network (RNN) 

Example: 

The Figure IV-5 represents an artificial neural network of type RNN containing: 

4 Inputs 

1 Hidden Layer (5 neural) 

1 Output 

 

Figure IV-5: Recurrent Neural Network (RNN) 

 

IV.3.1.2 The database:  

In essence, an AI database is a database created solely for the aim of speeding up the training of 

Machine Learning (ML) models. As vendors roll out more AI-based features that need significant 

compute power, a number of tech companies are already building dedicated AI chips to alleviate the 

hefty processing burden in new hardware products. In this sense, artificial intelligence is defined as 

a set of strategies that allow a computer to solve tasks that would require intelligence if completed by 

humans. [30]. 

 

In an in-memory database, an AI database integrates data warehousing, sophisticated analytics, 

and visualizations. Within milliseconds, AI databases should be able to absorb, examine, evaluate, 

and visualize fast-moving, complicated data. The goal is for businesses to make more efficient, data-

driven decisions by lowering costs, generating new revenue, and integrating machine learning 

models. [30]. 

 

So, in our simulation. The database of inputs and outputs was extracted by the simulation of the motor 

rotation for 5 seconds with changes in the Torque of the motor 𝐑𝐓. 
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Where: 

- When applying the following Torques: 

RT1 = 10 in T= 1s 

RT2 = 40 in T= 3s 

RT3 = -50 in T= 4s 

The motor speed changes as follows Figure IV-6: 

 

 

 

 

 

 

 

 

 

Figure IV-6: The motor speed 

 

We notice from this Figure IV-6 that the motor speed changes with the change in the value of the 

Torque. Where when a positive torque is applied to the motor at the moment 1 and 3 seconds, we 

notice a decrease in the motor speed, but when we apply a negative torque at the moment 4 seconds, 

we notice an increase in the motor speed. 

So, we will train the output of our artificial neural network based on these results. 

The database extracted from simulation of the motor rotation for 5 second is a matrix of (50014x6) 

Table IV-1. 

Where the first column in this matrix represents the time starting from 0 seconds in the first line and 

ending in 5 seconds in the last line where it takes 50014 values. 

The columns 2, 3,4 and 5 represent the values of: the stator current Alpha 𝑖𝑠𝛼, the stator current Beta    

𝑖𝑠𝛽, the rotor flow Alpha 𝜓𝑟𝛼, the rotor flow Beta 𝜓𝑟𝛽  that are measured during the simulation for 5 

seconds with difference value of  torque as mentioned before, and these columns represent the inputs 

of the neural network. 

The last column in this matrix represents the motor speed values during the simulations where it takes 

50014 values. And these values  represent the output of the neural network. 
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Table IV-1: the Database of 4 inputs and 1 output 

  4 Inputs 1 Output 

Time 
(s) 

The stator 

current Alpha 

(A) 

The stator 
current Beta 

(A) 

The rotor 
flow Alpha 

(Wb) 

The rotor 
flow Beta 

(Wb) 

The speed 
of the motor 

(Rad/s) 

0 0 -367,648489 0 0 0 

…… 
…. 
….. 

……. 
…….. 
……. 

……… 
……… 
…….. 

………. 
…….. 
………. 

………. 
…….. 
……… 

…….. 
…….. 
……… 

5 -262,470345 -257,110191 -5,406733 5,192375 156,997760 

 

IV.3.2 The training result of the recurrent neural network (RNN):  

In order to train the neural network, we simulate the six experiments shown in the Table IV-2 

Where in experiment 01 and 02 the number of hidden layers in the neural network (RNN) was 1 and 

the number of neurons in the hidden layer was 5 and then 10. 

In experiment 03 and 04 the number of hidden layers in the neural network (RNN) was 2 and the 

number of neurons in the hidden layers was (10, 10) and then (10, 20). 

In experiment 05 and 06 the number of hidden layers in the neural network (RNN) was 3 and the 

number of neurons in the hidden layers was (5, 10, 10) and then (20, 10, 10). 

 

Table IV-2: The training result of the recurrent neural network (RNN): 

simulation number of 
hidden 
layers 

number of 
neurons 

time of training error 
value 

01 1 5 20 s 24.0 

02 1 10 02 min,17 s 6.65 

03 2 (10.10) 24 min,57 s 0.656 

04 2 (10.20) 2 h,15 min,15 s 0.1254 

05 3 (5.10.10) 27 min,26 s 0.514 

06 3 (20.10.10) 24 h,47 m,06 s 0.00452 

 

The arrangement having given the smallest error is arrangement number 06 with 3 hidden layers 

(20.10.10) after 1000 iterations, Function used is logsig. 

 

 

 

 



 

Chapter 04: simulation results 
   
 

49 
 

So, the recurrent neural network final is Figure IV-7:  

It is a recurrent neural network (RNN) contains: 4 inputs, 1 output and 3 hidden layers (20.10.10) 

Figure IV-7: The recurrent neural network of the arrangement number 06 

The Figure IV-8 represents the results obtained by training this recurrent neural network (RNN):  

Where the graph represents the change in the mean squared Error (MSE) value of the network in 

terms of the Epochs, where it reached a value of 0.0046672 at epoch number 1000. 

 

 

 

 

 
Figure IV-8 : The represents the results obtained by training of the RNN 

IV.3.3 Test of the recurrent neural network: 

In the experiment the database of inputs and outputs was extracted by the simulation of the 

motor rotation for 7 seconds with changes in the Torque of the motor RT. 

Where: 

When applying the following Torques: 

𝐑𝐓1 = 50 in T= 1s 

𝐑𝐓2 = -45 in T= 5 s 
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The motor speed changes as follows Figure IV-9:  

 

 

 

 

 

 

 

 

 

Figure IV-9: The motor speed 

We notice from this figure that the motor speed changes with the change in the value of the Torque. 

Where when a positive torque is applied to the motor at the moment 1 seconds, we notice a decrease 

in the motor speed, but when we apply a negative torque at the moment 5 seconds, we notice an 

increase in the motor speed. 

So, we are going to use the values of: 

- The stator current Alpha 𝑖𝑠𝛼 

- The stator current Beta    𝑖𝑠𝛽 

- The rotor flow Alpha 𝜓𝑟𝛼 

- The rotor flow Beta 𝜓𝑟𝛽  

 That extracted by the simulation of the motor rotation in this experiment (7 s) as inputs of the 

recurrent neural network. 

The output of the recurrent neural network is Figure IV-10:  

 

 

 

 

 

 

 

Figure IV-10: The output of the recurrent neural network 
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IV.3.4 Interpretation of simulation results 

IV.3.4.1 The Comparison of the results: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-11: The Comparison of the results  

From the Figure IV-11 we note that when comparing the results obtained from the neural network 

(Output of the RNN) with the real motor speed graph, there is an almost perfect match for the results. 

This indicates that the neural network (RNN) is well trained and the error rate is very small. 

IV.3.4.2 The final result: 

We can use this neural network as a sensor for the motor speed. 

Where it calculates the rotational speed of the motor based on the measurement of the following 

quantities: 

- The stator current Alpha 𝑖𝑠𝛼 

- The stator current Beta    𝑖𝑠𝛽 

- The rotor flow Alpha 𝜓𝑟𝛼 

- The rotor flow Beta 𝜓𝑟𝛽  

 

IV.4 Conclusion: 

In this chapter, we analyzed the results obtained after simulating of the induction motor in both 

cases (No-load and Under load) , Then we used the obtained results to create a neural network that 

calculates the motor speed based on the measurement of the following quantities. The stator current 

Alpha i_sα, the stator current Beta    i_sβ, the rotor flow Alpha ψ_rα,the rotor flow Beta ψ_rβ. 
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And in the end, we noticed the success of the experiment, as we could consider that this neural 

network is worked as the speed motor sensor. 
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General Conclusion: 

 

Monitoring the rotor speed of induction machine is necessary in order to improve the control 

performance and fault diagnosis. Due to the specific structure of induction machine and its tough 

operating environment, it is difficult and expensive to install sensors to monitor the speed 

traditionally. 

 

In this thesis, we have proposed a mathematical model for induction machine, then a new speed 

sensorless estimation method based upon the Recurrent Neural Network (RNN). The recurrent neural 

network have been trained using Neural Network Toolbox (nntool) for MATLAB-SIMULINK 

program from Math Works corporation, so the RNN can estimate the speed, following the speed from 

induction machine model, and it requires only the stator current and the rotor flow of induction 

machine for the input signals. 

 

Simulation results show that the RNN can produce very high precision and robust speed estimation 

performance. 
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Appendix 

The machine used is a standard squirrel cage induction machine. Its main characteristic feels the 

following: 

 

Electrical Parameters: 

 

Stator resistance 

 

 

1.2 Ω 

 

Rotor resistance 

 

 

1.8 Ω 

 

Stator cyclic inductance 

 

 

0.1554 H 

 

Rotor cyclic inductance 

 

0.1568 H 

 

mutual inductance 

 

 

0.15 H 

 

Mechanical Parameters: 

 

Rotor moment of inertia 

 

 

0.07 Kg.m2 

 

Physical coefficient of friction 

 

 

0.00 SI 

 

Nominal power 

 

4KW 

 

nominal voltage 

 

220/380 V 

 

Nominal  current 

 

 

15 A 

 

Number of pole 

 

2 

 

Cos φ 

 

 

0.8 

 

rotational speed 

 

1500 tr/min 
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