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Résumé   

Le travail de ce mémoire porte la modélisation et la synthèse de lois de commandes 

linéaires pour un pendule inversé rotatif. Ce système non-linéaire caractérisé par un 

dynamique instable, ce dernier représente un système intéressent dans le domaine de 

l’industriel du fait de sa difficulté, qui constitue une matière riche pour étudier et expérimenter 

les dernières lois de commandes, les lois maintiennent le pendule en équilibre vers le haut 

après que le pendule a été placé manuellement autour de sa position d’équilibre instable. Nous 

présentons d’abord un modèle mathématique non-linéaire sous la forme d’équation 

différentielles et sous la forme d’une représentation d’état. Ensuite, nous avons présenté une 

linéarisation du modèle obtenu autour du point d’équilibre instable. Finalement, nous avons 

synthétisé une des commandes linéarises, linéaire quadratique régulateur (LQR) et linéaire 

optimisé par les algorithmes génétiques. 

MOTS CLES : Système non linéaire, Pendule inversé rotatif, Commandes linéaires, 

modélisation mathématique, les algorithmes génétiques. 

 

 ملخص  

 

المقلوب   الدوار  للنواس  التحكم الخطي  ن  الغي  خطي   يركز عملنا هذا على نمذجة و توليف قواني  النواس  ن هذا  .يتمي 

ي المجال الصناعي لصعوبته مما يشكل مادة دسمة لدراسة 
ا لللإهتمام فن بديناميكية غي  مسقرة ,ويمثل هذا الأخي  نظاما مثي 

ن الحفاظ على النواس متوازنا إلى الأعلى بعدما يتم وضع النواس   ن التحكم .الغرض من هذه القواني  وتجربة احدث قواني 

ي شكل ثمتيل يدويا ح 
ي شكل معادلات تفاضلية وفن

ول موضع توازنه الغي  مستقر .أولا قدمنا نمودجا رياضيا غي  خطي فن

ا قمنا بتطبيق أحد عناصر التحكم   حالة .قدمنا لاحقا نمودجا خطيا تم الحصول عليه حول نقطة التوازن الغي  مستقرة وأخي 

بيعي المحسن بالخوا  رزميات الجينية     .   الخطية وهي المنظم  الخطي الير

، النواس الدوار المقلوب، أدوات التحكم الخطية، النمذجة الرياضية  كلمات المفتاحية:  النظام غي  الخطي

 ،الخوارزميات  الجينية . 
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Abstract 

This thesis focuses on the modeling and synthesis of linear control for the rotary inverted 

pendulum available on our laboratory. With its unstable and highly nonlinear dynamics, the 

rotating inverted pendulum represents a very interesting system to study, and is an attractive 

one for testing new control laws. The goal of these controls is to maintain the pendulum at its 

high equilibrium position when the pendulum is manually placed around its unstable 

equilibrium position. In the first step, we have given a non-linear mathematical model in the 

form of differential equations and in the form of a state representation. We then presented a 

linearization of the model obtained around the unstable equilibrium point. Finally, we have 

synthesized a linearized control, namely, linear quadratic regulator (LQR) and the optimized 

linear quadratic regulator using genetic algorithms.  

Key-Words: Nonlinear system, Inverted rotating pendulum, Linear controls, mathematical 

modeling, genetic algorithms. 
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Introduction 

Automation is the art of modeling and analyzing the controller systems it is also the one 

that identifies dynamic systems for processing information and making decision to minimize 

human intervention to accomplish difficult missions that require effort beyond human and 

physical capabilities. 

The inverted pendulum among all the pendulums has an important position in the industry 

as a highly unstable nonlinear system. This system represents an ideal reference for studying 

and testing the latest control methods. 

The rotary inverted pendulum also, called the Furuta pendulum, consists of an arm in the 

horizontal plane which is attached by a direct current motor, at the end of this horizontal arm 

is connected another arm that rotates freely in the vertical plane using a controller. 

The goal of this work is to ensure that the pendulum stabilizes around its point of unstable 

equilibrium. To reach and get a satisfying result we use a Linear Quadratic Regulator (LQR) 

command. 

This study is organized as follows: 

In the first chapter we study the modeling on the rotary inverted pendulum. Where we 

introduce the rotary inverted pendulum and its components, the different pendulum types, 

and its real-time application. Moreover, we elaborate on its dynamic model using Eluer-lagrang 

method. Eventually, we will be presenting this system’s state space. 

In The second, chapter we have presented in general the optimal control and we discussed 

the fundamental notions of linear quadratic regulator and some basic concepts, then we have 

exposed general definition on genetic algorithms.  

The third chapter is a simulation part where we apply the two commands on our system 

after we have illustrated the results obtained. 

 

And finally, in the fourth chapter we implemented the three control that we synthesized 

before, on the Quanser QUBE-Servo model which is an inverted pendulum model 

Rotary, in order to test the performance and robustness of the three controls. 
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CHAPTER I 

Modeling of the Rotary inverted pendulum
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Chapter 1: Modelling of the rotary inverted 

pendulum 

1.1 Introduction 

In this chapter, we study the modeling of the rotary inverted pendulum. We introduce the 

rotary inverted pendulum and its components, the different pendulum types, and its real-

world application. Moreover, we elaborate on its dynamic model using the Eluer-lagrang 

method. Eventually, we will be presenting this system’s state space. 

1.2 The inverted pendulum 

An inverted pendulum is a rod placed in a position of unstable equilibrium (180° vertical) 

on a base that is either fixed or mobile, somewhat similar to balancing a rod on the fingers; 

where we have to constantly adjust our hands position to stabilize the rod. The Inverted 

pendulum system represents a significant class of nonlinear under-actuated mechanical 

systems that exhibit numerous problems present in industrial applications, such various 

external disturbances or nonlinear behaviours under different operation conditions. 

 

Figure 1-1 : Illustrative example of inverted pendulum 

 

1.3 The different inverted pendulum types: 

There exist different types of the inverted pendulum and below are some examples: 
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1.3.1 Classic inverted pendulum 

This mechanical system is a cart with mass m that can move horizontally and freely on a 

guide rail by supporting a rod with mass M [10]. This rod can rotate freely around a pivot. 

A force 𝑓 applied to cause the cart to move and the deviation of the pendulum by an angle 

𝜃  in accordance to the vertical. 

 

 

 

 

 

 

 

  

 

 

Figure 1-2 classic inverted pendulum  

1.3.2 The inverted double pendulum 

For this type, there are two different architectures: 

a) The cascade architecture: 

It has the same principal as the classic pendulum, the only difference being that is has two 

freely rotating rods, one that rotate around the pivot with an angle θ1(t) and the other with 

an angle θ2(t) around the second joint between the rods [11]. 
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Figure 1-3 A cascading inverted double pendulum. 

 

b) Parallel architecture: 

In this architecture the cart supports two independent rods; a rod L of length 𝑙1 and another 

rod B of length 𝑙𝐵  both that can freely rotate. The displacement 𝑥(𝑡) of the cart will cause a 

deviation of an angle 𝜃𝐿  from the vertical of the first rod and the angle 𝜃𝐵  accordance to the 

vertical on the second rod [12]. 

   

 

 

  

    

 

 

  

 Figure 1-4 A double parallel inverted pendulum 

1.3.3 Inverted pendulum stabilized by flywheel 

The operating principle of this system is based on the rotational movement of the flywheel 

which is caused by the dynamic effects that it induces. The pendulum rotation is a system 

composed of two mechanical bodies: an inverted pendulum in free rotation around a pivot 

linked to the frame and an actuated flywheel whose center of mass coincides with the end of 

the pendulum [9] . 
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Figure 1-5 Inverted pendulum stabilized by flywheel [9] 

1.3.4 Inverted pendulum on two wheels 

this type of pendulum consists of a mobile base (the axle and the two wheels) surmounted 

by a rotating inverted pendulum free around a pivot (passive articulation) between the axle 

and the pendulum rod. The corner tilt of the pendulum with respect to the vertical is denoted 

ψ. 

 

 

 

 

 

 

 

 

Figure 1-6  Inverted pendulum on two wheels 

1.3.5 Rotary Inverted pendulum 

The rotary inverted pendulum is composed of an arm actuated in rotation in the horizontal 

plane, at its end is added an inverted pendulum mounted in unstable equilibrium. The infinite 

rotation of the arm ensures the stabilization and maintenance of the pendulum around the 

vertical at the point unstable balance [28] . 

 



 

7 
 

DC 
moteu

r 

α 

θ 

m 

 

 

 

  

 

 

 

                                                 Figure 1-7  rotary Inverted pendulum [8] 

1.4 Application of inverted pendulum  

the inverted pendulum is used in several important fields and applications like 

1.4.1  Medical field  

IBOT: an automated electric wheelchair, which works based on the principle of the inverted 

pendulum. Equipped with four driving wheels It allows users to displacement on different 

types easily, This IBOT able to help people with mobility problems. 

 

Figure 1-8  IBOT [7] 

1.4.2 Transport field 

It is a classical motorcycle which is based on the principle of the inverted pendulum. This 

motorcycle creates a self-balancing in the critical phases. 
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Figure 1-9  Honda Riding Assist [6] 

1.4.3 In the aerospace: 

 the study of pendulum systems is of great importance, for example to control and stabilize 

the attitude of the satellite, the launch of rockets ... etc. Rocket works on the principle of 

pendulum inverted, which is a spacecraft, aircraft, vehicle or projectile that obtains thrust from 

a rocket engine. Rocket engine exhaust is formed entirely from propellant carried within the 

rocket. Rocket engines work by action and reaction and push rockets forward simply by 

expelling their exhaust in the opposite direction at high speed, and can therefore work in the 

vacuum of space. 

 

1.4.4 In robotics: 

 Self-balancing Robot 

 

Figure 1-10   Self balancing Robot [5]. 
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And as a successful application of the principle of the inverted pendulum we can mention 

  

a)   Segway b) hoverboard 

                                    Figure 1-11 the application examples [6].                                     

1.5 Dynamic modeling 

The inverted rotary pendulum model is a combination of an arm that attaches the SRV02 

system and a servo rotary base unite should turn in the CCW direction when the control 

voltage is positive 𝑉𝑚 > 0. The pendulum is connected at the end of the rotary’ s arm, more 

specifically at the arm’s metal shafts as shown in  

Figure 1-12 . 

 

Figure 1-12   components of an inverted rotary pendulum [1]. 
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N° 
Components 

1 SRV02 

2 VIS 

3 Arm 

4 Shaft housing 

5 Shaft 

6 connection 

7 Pendulum 

8 Encoder connector 

9 Encoder 

 

Table 1-1 Nomenclature of the components of the rotary pendulum dynamic modeling 

 

Figure 1-13   Rotary inverted pendulum and its coordinate systems [1]. 

1.6 Analytical modeling 

In this section, dynamic modeling of RIP is performed by using two approaches, 

the first approach is Newton’s fundamental law of dynamics which is based on the concept 

of force, in the second approach, which is analytical in nature, the Euler-Lagrange is used to 
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develop the equation of motion which is based on the principal conservation of mechanical 

energy. 

In this work we used the Euler-Lagrange method to find the equation of motion. 

 The Lagrange function L is defined as the difference of the kinetic energy and potential 

energy, and the equations describing these two energies respectively are expressed in terms 

of the variables in the specified coordinate systems as shown in  

Figure 1-12 . 

𝐿 = 𝑇 − 𝑉   (1-1) 

kinetic energy of the system (𝑇𝑠𝑦𝑠): 

𝑇𝑠𝑦𝑠 = 𝑇𝑝 + 𝑇𝑟 

 
(1-2) 

𝑇𝑠𝑦𝑠 =     
1

2
𝑚𝑝𝑉2 +

1

2
𝐽𝑝�̇�2 +

1

2
𝐽𝑟�̇�2  (1-3) 

 

Potential energy of the system (𝑇𝑠𝑦𝑠): 

𝑉𝑠𝑦𝑠 = 𝑉𝑝 + 𝑉𝑟 (1-4) 

𝑉𝑠𝑦𝑠 =
1

2
𝑚𝑝𝑔𝐿𝑝𝑐𝑜𝑠 𝛼 (1-5) 

For reach the center speed of pendulum we need to determine the coordinate 𝑃𝑓  of the 

pendulum center mass by: 

𝑃𝑥 = 𝐿𝑟𝑐𝑜𝑠 (𝜃) +
1

2
𝐿𝑝𝑠𝑖𝑛 (𝛼)𝑠𝑖𝑛 (𝜃)𝑃𝑦 = 𝐿𝑟𝑐𝑜𝑠 (𝜃) −

1

2
𝐿𝑝𝑠𝑖𝑛 (𝛼)𝑠𝑖𝑛 (𝜃)𝑃𝑧

=
1

2
𝐿𝑝𝑐𝑜𝑠 (𝛼) 

(1-6) 

 

 

We take the derivatives of this coordinates to find the center speed of the pendulum  

𝑃˙𝑥   = −𝐿𝑟𝜃˙𝑠𝑖𝑛 𝜃 +
1

2
𝐿𝑝(𝛼˙𝑐𝑜𝑠 𝛼𝑠𝑖𝑛 𝜃 + 𝜃˙𝑐𝑜𝑠 𝜃𝑠𝑖𝑛 𝛼) 𝑃˙𝑦   

= 𝐿𝑟𝜃˙𝑠𝑖𝑛 𝜃 −
1

2
𝐿𝑝(𝛼˙𝑐𝑜𝑠 𝛼𝑠𝑖𝑛 𝜃 + 𝜃˙𝑐𝑜𝑠 𝜃𝑠𝑖𝑛 𝛼) 𝑃˙𝑧   

= −
1

2
𝐿𝑝𝛼˙𝑠𝑖𝑛 𝛼  

(1-7) 
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We have: 

𝑃˙2 = 𝑃˙𝑥
2 + 𝑃˙𝑦

2 + 𝑃˙𝑧
2 (1-8) 

So, by replacing in () we find: 

𝐸𝑐 =
1

2
( 𝐽𝑟 + 𝑚𝑝𝐿𝑟

2 +
1

4
 𝑚𝑝𝐿𝑝

2 𝑠𝑖𝑛2 𝛼) 𝜃˙2
+

1

2
( 𝐽𝑝 +

1

4
 𝑚𝑝𝐿𝑝

2 ) 𝛼˙2
−

1

2
 𝑚𝑝𝐿𝑟𝐿𝑝𝑐𝑜𝑠 𝛼𝜃˙𝛼˙ (1-9) 

Then L becomes:  

𝐿 =
1

2
( 𝐽𝑟 + 𝑚𝑝𝐿𝑟

2 +
1

4
 𝑚𝑝𝐿𝑝

2 𝑠𝑖𝑛2 𝛼) 𝜃˙
2

+
1

2
( 𝐽𝑝 +

1

4
 𝑚 𝑝𝐿𝑝

2 ) 𝛼˙
2

−
1

2
 𝑚𝑝𝐿𝑟𝐿𝑝𝑐𝑜𝑠 𝛼𝜃˙𝛼˙ −

1

2
 𝑚𝑝𝑔𝐿𝑝𝑐𝑜𝑠 𝛼 (1-10) 

1.7 The Euler-Lagrange method:  

  The Euler–Lagrange equation is mathematical equation that was developed in the 1750s 

by Leonard-Euler and joseph louis- Lagrange in connection with their studies of 

the autochrome problem. that result plays a fundamental role in the calculus of variations. We 

find this equation in many real problems of arc length minimization, such as the 

brachistochrone problem or even geodesic problems Specifically, the equations that describe 

the motion of the rotating arm and the pendulum with respect to the voltage of the 

servomotor will be obtained using of equation of Euler-Lagrange: 

𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝑥˙
) −

𝑑𝐿

𝑑𝑥
= 𝑄 (1-11) 

With our choice of generalized displacement vector   𝑞(𝑡)𝑇 = [𝜃(𝑡)𝛼(𝑡)] 

{
𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝜃˙
) −

𝑑𝐿

𝑑𝜃
= 𝑄1  

𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝛼˙
) −

𝑑𝐿

𝑑𝛼
= 𝑄2  (1-12) 

the Euler-Lagrange equation can be written: 

where, L = K - P and T represents torque applied by motor at rotary arm.  

{𝑄1 = 𝜏 − 𝐵𝑟𝜃˙ 𝑄2 = −𝐵𝑝𝛼˙  
(1-13) 

With the torque τ, which generated by a servo motor is described by the equation: 

𝜏 =
𝜂𝑔𝜂𝑚𝐾𝑔𝐾𝑡(𝑉𝑚 − 𝐾𝑔𝐾𝑚𝜃˙)

𝑅𝑚
 (1-14) 

After solving the equations and linearizing them about operating point the following 

equations of motion are obtained: 
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𝜃¨ (𝐽
𝑟

+ 𝑚𝑝𝐿𝑟
2

+
1

4
𝑚𝑝𝐿𝑝

2
𝑠𝑖𝑛

2) + 𝛼¨ (−
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝑐𝑜𝑠 𝛼) + 𝛼˙𝜃˙ (

1

2
𝑚𝑝𝐿𝑝

2
𝑠𝑖𝑛 𝛼𝑐𝑜𝑠 𝛼) + 𝛼¨2 (

1

2
𝑚𝑝𝐿𝑟𝐿𝑝𝑠𝑖𝑛 𝛼)

= 𝑄
1

𝜃¨ (−
1

2
𝑚𝑝𝐿𝑟𝐿𝑃𝑐𝑜𝑠 𝛼) + 𝛼¨ (𝐽

𝑃
+

1

4
𝑚𝑝𝐿𝑝

2) + 𝜃˙2 (−
1

4
𝑚𝑝𝐿𝑝

2𝑠𝑖𝑛 𝛼𝑐𝑜𝑠 𝛼)

−
1

2
𝑚𝑝𝑔𝐿𝑃𝑠𝑖𝑛 𝛼 = 𝑄

2
 

(1-15) 

 

the motor and rotary inverted pendulum parameters are given with them units in Tableau 

1-2 

Symbol Description units Values 

𝐿𝑝 
 

Length of the 

pendulum 

𝑚 0.129 

𝐿𝑟 
 

Length of the 

rotary arm 

𝑚 0.085 

𝑚𝑝 Mass of pendulum 𝑘𝑔 0.024 

𝐽 pendulum Inertia 𝑘𝑔𝑚2 3.3xI0-5 

𝐽𝑟 Rotary arm Inertia 𝑘𝑔𝑚2 5.7xI0-5 

𝐷𝑟 Viscous damping 

coefficient 

𝑁𝑚𝑠

𝑟𝑎𝑑
 

0.0015 

𝐷𝑝 Pendulum damping 

coefficient 

𝑁𝑚𝑠

𝑟𝑎𝑑
 

0.0005 

Table 1-3 parameters of the rotary inverted pendulum 

1.8 Linearizing: 

Linearizing equation (1-16) and (1-16) are linearized around the point of working 

[𝛼, 𝜃, ˙, 𝛼, ˙ 𝜃, ¨𝛼¨] the resulting linear equation of the inverted pendulum are defined as: 

(𝑚𝑝𝐿𝑟
2 + 𝐽𝑟)𝜃¨ −

1

2
 𝑚𝑝𝐿𝑝𝐿𝑟𝛼¨

= 𝜏 − 𝐵𝑟𝜃˙
1

2
 𝑚𝑝𝐿𝑟𝐿𝑝𝜃¨ + (𝐽𝑝 +

1

4
 𝑚𝑝𝐿𝑝

2 ) 𝛼¨ +
1

2
 𝑚𝑝𝐿𝑝𝑔𝛼

= −𝐵𝑝𝛼˙ 

(1-16) 

The linear stat space equation is: 

Nonlinear rotary inverted pendulum equation, equation () the initial condition for all 

variables are zero means: 𝛼0 = 0, 𝜃˙0 = 0, 𝛼˙0 = 0, ˙ 
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𝑓(𝑧) = (𝑚𝑝𝐿𝑟
2 +

1

4
𝑚𝑝𝐿𝑝

2 𝑠𝑖𝑛 (𝛼)2 + 𝐽𝑟) 𝜃¨ − (
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝑐𝑜𝑠 (𝛼)) 𝛼¨

+ (
1

2
𝑚𝑝𝐿𝑝

2 𝑠𝑖𝑛 (𝛼)𝑐𝑜𝑠 (𝛼)) 𝜃˙𝛼˙ + (
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝑠𝑖𝑛 (𝛼)) 𝛼˙2 = 𝜏 

(1-17) 

Nonlinear rotary inverted pendulum equation, equation () the initial condition for all 

variables is zero: 

The linearization of 𝑓(𝑧) relative to 𝜃¨gives: 

(
𝜕𝑓(𝑧)

𝜕𝜃¨
) |𝑧=𝑧0

= 𝑚𝑝𝐿𝑟
2 +

1

4
𝑚𝑝𝐿𝑝

2 𝑠𝑖𝑛 (0)2 + 𝐽𝑟 = 𝑚𝑝𝐿𝑟
2 + 𝐽𝑟 

(1-18) 

By linearizing 𝑓(𝑧)  relative to 𝛼¨ we obtain: 

(
𝜕𝑓(𝑧)

𝜕𝜃¨
) |𝑧=𝑧0

=
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝑐𝑜𝑠 (0) =

1

2
𝑚𝑝𝐿𝑝𝐿𝑟 

(1-19) 

All other terms are: 

(
𝜕𝑓(𝑧)

𝜕𝜃
) |𝑧=𝑧0

= 0                                    (
𝜕𝑓(𝑧)

𝜕𝛼˙
) |𝑧=𝑧0

= 0 (1-20) 

(
𝜕𝑓(𝑧)

𝜕𝜃
) |𝑧=𝑧0

= 0                     (
𝜕𝑓(𝑧)

𝜕𝛼
) |𝑧=𝑧0

= 0                   𝑓(0) = 0 (1-21) 

 

𝑓𝑙𝑖𝑛(𝑧) = 𝑓(0) + (
𝜕𝑓(𝑧)

𝜕𝜃¨
) |𝑧=𝑧0

𝜃¨ + (
𝜕𝑓(𝑧)

𝜕𝛼¨
) |𝑧=𝑧0

𝛼¨ + (
𝜕𝑓(𝑧)

𝜕𝜃˙
) |𝑧=𝑧0

+ (
𝜕𝑓(𝑧)

𝜕�̇�
) |𝑧=𝑧0

�̇� + (
𝜕𝑓(𝑧)

𝜕𝜃
) |𝑧=𝑧0

𝜃 + (
𝜕𝑓(𝑧)

𝜕𝛼
) |𝑧=𝑧0

𝛼 

(1-22) 

By evaluating equation, we obtain: 

𝑓𝑙𝑖𝑛(𝑧) = (𝑚𝑝𝐿𝑟
2 + 𝐽𝑟)𝜃¨ −

1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝛼¨ 

(1-23) 

Integrating this into the original equation. we get the following equation of linear motion:  

(𝑚𝑝𝐿𝑟
2 + 𝐽𝑟)𝜃¨ −

1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝛼¨ = 𝜏 − 𝐵𝑟𝜃˙ (1-24) 

Linearizing the second equation of the nonlinear rotary inverted pendulum equation with 

initial condition: 𝜃0 = 0, 𝛼0 = 0, 𝜃˙0 = 0  , 𝛼˙0=0  
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The same principles as those used to linearize the first equation of nonlinear motion can be 

used for this purpose. The left side of the equation is: 

𝑓(𝑧) −
1

2
𝑚𝑝𝐿𝑝𝐿𝑟 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝛼) 𝜃¨ + (𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 ) 𝛼¨ −
1

4
𝑚𝑝𝐿𝑝

2 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝛼)  𝑠𝑖𝑛 𝑠𝑖𝑛 (𝛼) 𝜃˙2

−
1

2
𝑚𝑝𝐿𝑝𝑔𝑠𝑖𝑛 (𝛼) 

(1-25) 

The linearization given in equation is used for this equation: 

The solution to derivatives based on: 𝜃, ¨𝛼 ¨𝑎𝑛𝑑  𝛼  is: 

(
𝜕𝑓(𝑧)

𝜕𝜃¨
) |𝑧=𝑧0

= −
1

2
𝑚𝑝𝐿𝑝𝐿𝑟 

(1-26) 

(
𝜕𝑓(𝑧)

𝜕𝛼¨
) |𝑧=𝑧0

= 𝐽𝑝 +
1

4
𝑚𝑝𝐿𝑝

2  
(1-27) 

(
𝜕𝑓(𝑧)

𝜕𝛼
) |𝑧=𝑧0

= −
1

2
𝑚𝑝𝐿𝑝𝑔 

(1-28) 

The other derivatives based on are zero and 𝑓(𝑧0) = 0 evaluating the function 𝑓𝑙𝑖𝑚(𝑧), we 

obtain: 

𝑓𝑙𝑖𝑛 (𝑧) = −
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝜃¨ + 𝐽𝑝 + (

1

4
𝑚𝑝𝐿𝑝

2 ) 𝛼¨ −
1

2
𝑚𝑝𝐿𝑝𝑔𝛼 

(1-29) 

−
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝜃¨ + 𝐽𝑝 + (

1

4
𝑚𝑝𝐿𝑝

2 ) 𝛼¨ −
1

2
𝑚𝑝𝐿𝑝𝑔𝛼 = −𝐵𝑝𝛼˙ 

(1-30) 

Linear model in state space: 

The linear state-space equations are: 

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 

(1-31) 

    Either x is the state, or is the control input. A, B, C, D are the state matrices. For the 

rotating inverted pendulum system, the state and output equations are defined as follows: 

𝑥𝑇 = [𝜃 𝛼 �̇� �̇�],           �̇�𝑇 = [�̇� �̇� �̈� �̈�] 

𝑦𝑇 = [𝜃 𝛼] 

(1-32) 

From the generalized definition of the coordinates in (1-12) and the linear equations 

Equation (1-17) and Equation (1-14), the matrix becomes: 

[𝑚𝑝𝐿𝑟
2 + 𝐽𝑟  −

1

2
𝑚𝑝𝐿𝑝𝐿𝑟  −

1

2
𝑚𝑝𝐿𝑝𝐿𝑟 𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2  ] [�̈� �̈� ] + [𝐵𝑟 0 0 𝐵𝑝 ][�̇� �̇� ]

+ [0 −
1

2
𝑚𝑝𝐿𝑝𝑔𝛼 ] = [𝜏 0 ] 

(1-33) 
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Rearrange the matrix (1-18) to obtain: 

[𝑚𝑝𝐿𝑟
2 + 𝐽𝑟  −

1

2
𝑚𝑝𝐿𝑝𝐿𝑟  −

1

2
𝑚𝑝𝐿𝑝𝐿𝑟 𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2  ] [�̈� �̈� ]

= [𝜏 − 𝐵𝑟�̇�  
1

2
𝑚𝑝𝐿𝑝𝑔𝛼 − 𝐵𝑝�̇� ] 

(1-34) 

[𝑚𝑝𝐿𝑟
2 + 𝐽𝑟  −

1

2
𝑚𝑝𝐿𝑝𝐿𝑟  −

1

2
𝑚𝑝𝐿𝑝𝐿𝑟 𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2  ]
−1

=
1

𝐽𝑇
[𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2  
1

2
𝑚𝑝𝐿𝑝𝐿𝑟  

1

2
𝑚𝑝𝐿𝑝𝐿𝑟 𝑚𝑝𝐿𝑟

2 + 𝐽𝑟 ] 

(1-35) 

The determinant of the matrix is equal to: 

𝐽𝑇 = (𝑚𝑝𝐿𝑟
2 + 𝐽𝑟) (𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 ) − 
1

4
𝑚𝑝

2𝐿𝑝
2 𝐿𝑟

2 =  𝐽𝑝𝑚𝑝𝐿𝑟
2 + 𝐽𝑟𝐽𝑝 +

1

4
𝐽𝑟𝑚𝑝𝐿𝑝

2  
(1-36) 

 

Resolve Acceleration Conditions 

[�̈� �̈� ] =
1

𝐽𝑇
[𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2  
1

2
𝑚𝑝𝐿𝑝𝐿𝑟  

1

2
𝑚𝑝𝐿𝑝𝐿𝑟 𝑚𝑝𝐿𝑟

2 + 𝐽𝑟 ] [𝜏 − 𝐵𝑟�̇�  
1

2
𝑚𝑝𝐿𝑝𝑔𝛼

− 𝐵𝑝�̇� ] 

(1-37) 

From matrix multiplication, the first equation is: 

�̈� =
1

𝐽𝑇
(𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 )( 𝜏 − 𝐵𝑟�̇�) +
1

2𝐽𝑇
𝑚𝑝𝐿𝑝𝐿𝑟(

1

2
𝑚𝑝𝐿𝑝𝑔𝛼 − 𝐵𝑝�̇�).                                (1-38) 

Expanding the equation and collecting similar terms gives us: 

�̈� =
1

𝐽𝑇
(−(𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 )𝐵𝑟�̇� −
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝐵𝑝�̇� +

1

4
𝑚𝑝

2𝐿𝑝
2 𝐿𝑟 𝑔𝛼 +  (𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 )𝜏)         

(1-39) 

For the second equation, the multiplication of the matrix leads to: 

�̈� =
1

2𝐽𝑇
𝑚𝑝𝐿𝑝𝐿𝑟(𝜏 − 𝐵𝑟�̇�) +

1

𝐽𝑇
(𝐽𝑟 + 𝑚𝑝𝐿𝑟

2)(
1

2
𝑚𝑝𝐿𝑝𝑔𝛼 − 𝐵𝑝�̇�)                                    (1-40) 

�̈� =
1

𝐽𝑇
(−

1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝐵𝑟�̇� − (𝐽𝑟 + 𝑚𝑝𝐿𝑟

2)𝐵𝑝�̇� +
1

2
𝑚𝑝𝐿𝑝𝑔(𝐽𝑟 + 𝑚𝑝𝐿𝑟

2)𝛼 +

1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝜏)                                                                                                                                                  

(1-41) 

To obtain the linear state space of the rotating inverted pendulum system. You have to find 

the matrix A and B, C and D. 
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From the state defined in the equation (IV.36), it is given that �̇�1= 𝑥3 et �̇�2 =𝑥4, We replace 

the state x by the equations of motion found. 

Where (as shown in equation IV.36) we have  𝜃 = 𝑥1, 𝛼 = 𝑥2, �̇� = 𝑥3,�̇� = 𝑥4. the matrix 𝐴 

and 𝐵 for  �̇� = 𝐴𝑥 + 𝐵𝑢 can then be found. 

Substituting x in the equation and the equation gives: 

�̇�3 =
1

𝐽𝑇
(−(𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 )𝐵𝑟𝑥3 −
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝐵𝑝𝑥4 +

1

4
𝑚𝑝

2𝐿𝑝
2 𝐿𝑟𝑔𝑥2 + (𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 )𝑢)    

(1-42) 

And 

�̇�4 =
1

𝐽𝑇

(−
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝐵𝑟𝑥3 − (𝐽𝑟 + 𝑚𝑝𝐿𝑟

2)𝐵𝑝𝑥4 +
1

2
𝑚𝑝𝐿𝑝𝑔(𝐽𝑟 + 𝑚𝑝𝐿𝑟

2 )𝑥2 +
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝑢) (1-43) 

The matrix 𝐴 et 𝐵 in equation  �̇� = 𝐴𝑥 + 𝐵𝑢  : 

 

    𝐴 =
1

𝐽𝑇
[0 0 𝐽𝑇  0 0 0 0 𝐽𝑇  0 

1

4
𝑚𝑝

2𝐿𝑝
2 𝐿𝑟 𝑔 −(𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 ) 𝐵𝑟   −

1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝐵𝑝 0 

1

2
𝑚𝑝𝐿𝑝𝑔(𝐽𝑟 + 𝑚𝑝𝐿𝑟

2)  −
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝐵𝑟  − (𝐽𝑟 + 𝑚𝑝𝐿𝑟

2)𝐵𝑝 ]   

 

 

𝐵 =  
1

𝐽𝑇
[0 0 𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2  
1

2
𝑚𝑝𝐿𝑝𝐿𝑟 ]       

 

 

 

(1-44) 

1.9 Validation of QUBE-SERVO model using states: 

The coefficient matrices of state space representation are calculated from equations 

derived in analytical modeling. Using the values of parameters from Table (table1-2), these 

matrices (1-45) are calculated  by(table1-2), 
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𝑨 = [

𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏
𝟎 𝟏𝟒𝟑. 𝟐𝟕𝟓𝟏 −𝟎. 𝟎𝟏𝟎𝟗  𝟎
𝟎 𝟐𝟓𝟖. 𝟔𝟎𝟗𝟏 −𝟎. 𝟎𝟏𝟎𝟕 𝟎

] 

 

𝑩 = [

𝟎
𝟎

𝟒𝟖. 𝟕𝟐𝟕𝟓
𝟒𝟖. 𝟏𝟒𝟗𝟑

] 

 

𝑪 = [
𝟏 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎

]  

 

𝑫 = [
𝟎
𝟎

] 

 

(1-46) 

 

 

The output obtained from the state space model of QUBE-Servo RIP system is compared 

with angular positions obtained from the  Simulation model .Square wave is used as test input 

for comparison. Simulink model of the state space validation along with the results are shown 

in. Figure 1-14 and Figure 1-15. After comparing, it can be seen that the model built using 

Matlab Simulink is similar to QUBE-Servo [1]. 
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Figure 1-14   State space validation 

 

 

Figure 1-15   Comparison of angular displacement of rotary arm 

Figure 1-16   Comparison of angular displacement of pendulum 

 

1.10 Conclusion 

   In this chapter, we conducted a detailed study about the rotary inverted pendulum and 

on the development of its mathematical form then we used the of Euler -Lagrange method to 

find and establish the dynamic equation. Finally, we have represented this system on state 

space by linearization of the model around the point of balance.  

In the next chapter we will take a look at the application of the two commands the quadratic 

linear control and LQR genetic in order to find out which has the best impact on the control 

system.  
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CHAPTER II 

Control System 
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Chapter 2: Control System 

 

1.11 Introduction 

The inverted cart-pendulum system is an under actuated mechanical system. It has two 

degrees of freedom and one control input the inverted pendulum is nonlinear system with only 

one control input which is voltage applied to DC motor and two outputs one is angular rotation 

of pendulum arm and the rotary pendulum inverted angle. The inverted pendulum is 

considered as a platform to study real world non-linear control problems; we have different 

control design techniques are being developed to balance the inverted pendulum in an upright 

position while the arm moving [27]. On this chapter we will talk about optimal control used to 

control the pendulum   We will take an overview of optimal control and the basics and 

fundamentals of linear quadratic regulator genetic algorithms which we use it to optimize the 

LQR controller. 

1.12 Classical and Modern Control  

The classical (conventional) control theory concerned with single input and single output 

is mainly based on Laplace transforms theory and its use in system representation in block 

diagram form, we see that  

𝑌(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 

                                                                     

(2-1) 

 

 

                    Figure 2-1   Classical Control Configuration [4]. 
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where s is Laplace variable and we used (2-1)  

𝐺(𝑠) = 𝐺𝑐(𝑠)𝐺𝑝(𝑠)                                                             (2-2) 

Note that 

1. the input u(t) to the plant is determined by the error e(t) and the compensator, and 

2. all the variables are not readily available for feedback. In most cases only one output 

variable is available for feedback. The modern control theory concerned with 

multiple inputs and multiple outputs (MIMO) is based on state variable 

representation in terms of a set of first order differential (or difference) equations. 

Here, the system (plant) is characterized by state variables, say, in linear, time 

invariant form as 

�̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 
𝑦 = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)                                 

(2-3) 

where, dot denotes differentiation with respect to (w.r.t.) t, x(t), u(t), and y(t) are n, r, and 

m dimensional state, control, and output vectors respectively, and A is nxn state, B is nxr input, 

C is mxn output, and D is mxr transfer matrices. Similarly, a nonlinear system is characterized 

by 

𝑥(𝑡)̇ = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡 
𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡                               

(2-4) 

The modern theory dictates that all the state variables should be fed back after suitable 

weighting. We see from Figure (2-2) that in modern control configuration,  

1. the input u(t) is determined by the controller (consisting of error detector and 

compensator) driven by system states x(t) and reference signal r (t), 

2. all or most of the state variables are available for control, and  

3. it depends on well-established matrix theory, which is amenable for large scale 

computer simulation [4]. 
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Figure 2-2  Modern Control Configuration 

 

The fact that the state variable representation uniquely specifies the transfer function while 

there are a number of state variable representations for a given transfer function, reveals the 

fact that state variable representation is a more complete description of a system. Figure 2-2 

shows components of a modern control system. It shows three components of modern control 

and their important contributors. The first stage of any control system theory is to obtain or 

formulate the dynamics or modelling in terms of dynamical equations such as differential or 

difference equations. The system dynamics is largely based on the Lagrange function. Next, 

the system is analyzed for its performance to mainly find out stability of the system and the 

contributions of Lyapunov to stability theory are well known. Finally, if the system performance 

is not according to our specifications, we resort to design. In optimal control theory, the design 

is usually with respect to a performance index. We notice that although the concepts such as 

Lagrange function and V function of Lyapunov are old, the techniques using those concepts are 

modern. Again, as the phrase modern usually refers to time and what is modern today 

becomes ancient after a few years, a more appropriate thing is to label them as optimal 

control, nonlinear control, adaptive control, robust control and so on [4]. 
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Figure 2-3   Components of a Modern Control System [4]. 

1.13 Optimization 

Optimization is a very desirable feature in day-to-day life. We like to work and use our time 

in an optimum manner, use resources optimally and so on. The subject of optimization is quite 

general in the sense that it can be viewed in different ways depending on the approach 

(algebraic or geometric), the interest (single or multiple), the nature of the signals 

(deterministic or stochastic), and the stage (single or multiple) used in optimization. This is 

shown in Figure 2-4. As we notice that the calculus of variations is one small area of the big 

picture of the optimization field, and it forms the basis for our study of optimal control systems. 

Further, optimization can be classified as static optimization and dynamic optimization [4]. 

1.13.1 Static Optimization 

 It is concerned with controlling a plant under steady state conditions, i.e., the system 

variables are not changing with respect to time. The plant is then described by algebraic 

equations. Techniques used are ordinary calculus, Lagrange multipliers, linear and nonlinear 

programming. 
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1.13.2 Dynamic Optimization  

It concerns with the optimal control of plants under dynamic conditions, i.e., the system 

variables are changing with respect to time and thus the time is involved in 

system description. Then the plant is described by differential   

 

Figure 2-4   Overview of Optimization 

(Or difference) equations. Techniques used are search techniques, dynamic programming, 

variational calculus (or calculus of variations) and Pontryagin principle.  
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1.14  Optimal Control 

The main objective of optimal control is to determine control signals that will trigger a 

process (plant) to satisfy some physical constraints and at the same time extremist (maximize 

or minimize) a chosen performance criterion (performance index or cost function). Referring 

to Figure 2- , we are interested in finding the optimal control u*(t) (* indicates optimal 

condition) that will drive the plant P from initial state to final state with some constraints on 

controls and states and at the same time eternizing the given performance index J. The 

formulation of optimal control problem requires 

1. a mathematical description (or model) of the process to be controlled (generally 

in state variable form),  

2. a specification of the performance index, and  

3. a statement of boundary conditions and the physical constraints on the states 

and/or controls [4].  

1.14.1 Plant  

For the purpose of optimization, we describe a physical plant by a set of linear or nonlinear 

differential or difference equations. For example, a linear time-invariant system is described 

by the state and output relations (2-3) and (2-4) and a nonlinear system by (2-5) and (2-6) [4].  

1.14.2 Performance Index 

 Classical control design techniques have been successfully applied to linear, time-invariant, 

single-input, single output (8180) systems. Typical performance criteria are system time 

response to step or ramp up input characterized by rise time, settling time, peak overshoot, 

and steady state accuracy; and the frequency response of the system characterized by gain 

and phase margins, and bandwidth. In modern control theory, the optimal control problem is 

to find a control which causes the dynamical system to reach a target or follow a state variable 

(or trajectory) and at the same time extremist a performance index which may take several 

forms as described below[4]. 

1.14.2.1 Performance Index for Time-Optimal Control System:  

We try to transfer a system from an arbitrary initial state x(t0) to a specified final state x(tf) 

in minimum time. The corresponding performance index (PI) is 
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𝐽 = ∫
𝑡𝑒

𝑡0

 𝑑𝑡 = 𝑡𝑓 − 𝑡0 = 𝑡∗. (2-5) 

1.14.2.2 Performance Index for Fuel-Optimal Control System:  

Consider a spacecraft problem. Let u(t) be the thrust of a rocket engine and assume that 

the magnitude I u(t) I of the thrust is proportional to the rate of fuel consumption. In order to 

minimize the total expenditure of fuel, we may formulate the performance index as 

𝐽 = ∫
𝑡𝑒

𝑡0

|𝑈(𝑡)| 𝑑𝑡 (2-6) 

1.14.2.3 Performance Index for Minimum-Energy Control System: 

 Consider Ui (t) as the current in the ith loop of an electric network. Then ∑𝑚
𝑖=1 𝑈𝑖2(𝑡) ri 

(where, ri is the resistance of the ith loop) is the total power or the total rate of energy 

expenditure of the network. Then, for minimization of the total expended energy, we have a 

performance criterion as 

𝐽 = ∫
𝑡𝑒

𝑡0

∑

𝑚

𝑖=1

𝑈𝑖2(𝑡) 𝑑𝑡 

 

(2-7) 

1.14.2.4 Performance Index for General Optimal Control System: 

Combining the above formulations, we have a performance index in general form as 

𝐽 =  𝑋’(𝑡𝑓)𝐹𝑥(𝑡𝑓) + ∫
𝑡𝑒

𝑡0

[𝑋’(𝑡)𝑄𝑋(𝑡)  +  𝑢’(𝑡)𝑅𝑢(𝑡)]𝑑𝑡  

 

(2-8) 

𝐽 =  𝑆(𝑥(𝑡𝑓), 𝑡𝑓) + ∫
𝑡𝑒

𝑡0

𝑉(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡  (2-9) 

where, R is a positive definite matrix, and Q and F are positive semidefinite matrices, 

respectively. Note that the matrices Q and R may be time varying. The particular form of 

performance index (2-8) is called quadratic (in terms of the states and controls) form. 

The problems arising in optimal control are classified based on the structure of the 

performance index J. If the PI (2-9) contains the terminal cost function S(x(t), u(t), t) only, it is 

called the Mayer problem, if the PI (2-9) has only the integral cost term, it is called the Lagrange 

problem, and the problem is of the Bolza type if the PI contains both the terminal cost term 
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and the integral cost term as in (2-9). There are many other forms of cost functions depending 

on our performance specifications. However, the above-mentioned performance indices (with 

quadratic forms) lead to some very elegant results in optimal control systems. 

1.14.3 Constraints 

The control u(t) and state x(t) vectors are either unconstrained or constrained depending 

upon the physical situation. The unconstrained problem is less involved and gives rise to some 

elegant results. From the physical considerations, often we have the controls and states, such 

as currents and voltages in an electrical circuit, speed of a motor, thrust of a rocket, 

constrained as 

X+≤x(t)≤X-, and    U+≤ u(t) ≤U- 

where, +, and - indicate the maximum and minimum values the variables can attain. 

1.14.4 Formal Statement of Optimal Control System 

Let us now formally state the optimal control problem. The optimal control problem is to 

find the optimal control u*(t) (* indicates extremal or optimal value) which causes the linear 

time-invariant plant (system) 

�̇�(𝑡)  = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (2-10) 

to give the trajectory x* (t) that optimizes or extremizes (minimizes or maximizes) a 

performance index 

𝐽 =  𝑋’(𝑡𝑓)𝐹𝑥(𝑡𝑓) + ∫
𝑡𝑒

𝑡0

[𝑋’(𝑡)𝑄𝑋(𝑡)  +  𝑢’(𝑡)𝑅𝑢(𝑡)]𝑑𝑡  (2-11) 

or which causes the nonlinear system 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) (2-12) 

to give the state x*(t) that optimizes the general performance index 

 𝐽 =  𝑆(𝑥(𝑡𝑓), 𝑡𝑓) + ∫
𝑡𝑒

𝑡0

𝑉(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡  (2-13) 

with some constraints on the control variables u(t) and/or the state variables x(t) given by 

(2-10). The final time tf may be fixed, or free, and the final (target) state may be fully or partially 

fixed or free. The entire problem statement is also shown pictorially in Figure 2-5. Thus 
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we are basically interested in finding the control u*(t) which when applied to the plant 

described by (2-11) or (2-13), gives an optimal performance index J* described by (2-12) or (2-

14). The optimal control systems are studied in three stages. 

1. In the first stage, we just consider the performance index of the form (2-14) 

and use the well-known theory of calculus of variations to obtain optimal 

functions.  

2. In the second stage, we bring in the plant (2-11) and try to address the 

problem of finding optimal control u*(t) which will drive the plant and at the 

same time optimize the performance index (2-12). Next, the above topics are 

presented in discrete time domain. 

3. Finally, the topic of constraints on the controls and states (2-10) is 

considered along with the plant and performance index to obtain optimal 

control[4]. 

1.15  Linear quadratic regulator: 

Linear quadratic control: LQ or LQR for "linear quadratic regulator”, is an optimal control 

law u(t) in closed loop which allows to ensure the desired performance. It is one of the most 

popular design methods widely answered for system control and stability according to 

different criteria. when the system is linear and the criterion to be minimized is quadratic, this 

is the linear quadratic controller, this control is defined as being an optimal controller by state 

feedback [3]. The principle of the LQR control is presented in the figure 

 

Figure 2-5 Principle of an LQR controller [2]. 

1.15.1 Properties and Use of the LQR 

● Static Gain:  LQR generates a gain matrix static K, which is not a dynamical system. 
Hence, the order of the closed-loop system is the same as that of the plan. 

● Output Variables: When we want to conduct output regulation (and not state 
regulation), we set Q= 𝐶𝑇 Q′ C. 

● Robustness:  LQR achieves infinite gain margin [12]. 
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1.15.2  Concept of linear quadratic regulator  

LQR controller is an optimal state feedback controller that is concerned with operating 

dynamic system at minimum cost and time. It provides optimal feedback gains to enable close 

loop system stability and high performance, note that there are two points of balance for 

inverted pendulums, 180 degrees (stable) and 0 degrees (unstable). A schematic diagram of 

the system with linearization and a K regulator is shown in figure 2-6                                         

LQR controller has designed using algebraic Riccati equation given by Eq 

 𝐴𝑇 𝑃 + 𝑃 𝐴 + 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 
 

(2-14) 

the Q and R,are state control matrices, A is the state matrix, B is the input matrix, and P is 

the transformation matrix. State feedback gain matrix is indicated by 

 𝐾 = 𝑅−1𝐵𝑇𝑃 (2-15) 

the performance index J is found and controller has to be designed to minimize  

𝐽 = ∫ (𝑋𝑇 𝑄𝑋 + 𝑈𝑇 𝑅𝑈)𝑑𝑡 (2-16) 

According to this boundary condition and by backward integration of Riccati Equation, 

optimal feedback gain can be calculated online 

𝑈 = −𝐾𝑋 (2-17) 

 

Figure 2-6   Block diagram for the realization of LQR [29]. 
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       This form is that of state feedback. The MATLAB command LQR returns a set of gains 

calculated on the basis of the matrices A and B and the design matrices Q and R. Where Q is 

State weighted matrix and R is control weighted matrix, that penalize certain states or control 

inputs. In the design, the weighting parameters of the optimal state feedback controller are 

chosen as follows: 

Q=[

𝑸𝟏 𝟏 𝟏 𝟏
𝟏 𝑸𝟐 𝟏 𝟏
𝟏 𝟏 𝑸𝟑 𝟏
𝟏 𝟏 𝟏 𝑸𝟒

] 𝑹 = 𝑸𝟎 
(2-18) 

 

Then we vary the matrix diagonal Q in an interval that we will define and hold R to 1, we 

can then choose which state variable the command places more emphasis on by increasing the 

associated qi parameter[3]. 

1.15.3     Choice of weighting matrices 

Linear Quadratic Regulator (LQR) is an optimal control method. The main objective of 

optimal control is to determine control signals that will cause a Process (Plant) to satisfy some 

physical constraints and at the same time extremize (maximize or minimize) a chosen 

performance criterion (performance index or cost function). The synthesis of the optimal 

controller gain matrices is based directly on the Q and R weighting matrices. The compositions 

of Q and R elements have great influences on system performance. The designer is free to 

select the matrices Q and R, but the selection of matrices Q and R is normally based on an 

iterative procedure using experience and physical understanding of the problems involved. 

However, to simplify the determination of these matrices, it is generally preferred to render 

invariants and diagonals. Indeed, by proceeding thus, we are reduced to the choice of m scalars 

for R and n scalars for Q. There are two methods for choosing them:  

➜ The first method is Bryson's rule which suggests choosing diagonal weighting matrices, 

whose diagonal coefficients are equal to the square of the inverse of the desired maximum 

deviation on the corresponding variable.  Bryson also indicates that this rule only provides 

initial values, which can then be imp 

roved by successive simulations.   
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In the second method the weighting matrices Q and R can be chosen symmetrical, 

diagonal.  At the start, we generally choose weightings equal to the identity matrices which we 

can then improve by successive simulations until a satisfactory corrector is obtained [13].   

The choice of weighting matrix favors energy saving [29]. 

1.15.4 feedback gain matrix 

the optimal control feedback gain matrix can be obtained by Riccati equation. Its form is as 

follows [14]:                                   

𝐾 = 𝑅−1(𝐵𝑇𝑃 + 𝑁𝑇) (2-19) 

P is obtained by solving the Riccati equation: 

𝐾 = 𝐴𝑇( 𝑃 − 𝑃 𝐵(𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃)𝐴 + 𝑄 = 0 (2-20) 

The differential equation describing the behavior of the closed-loop system:  

ẋ (𝑘)  = (𝐴 − 𝐵𝐾) 𝑥(𝐾) (2-21) 

1.15.5 LQR control law calculation: 

An explicit diagram of the optimal control system with criterion 

quadratic is given as follows: 

 

Figure 2-7   Optimal closed-loop control [2]. 
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The difference with the control by placement of poles appears in the fact that the gain 

matrix K is calculated according to the constraints imposed on the system, constraints that are 

expressed through the R and Q weightings. 

 

 

1.16 Genetic Algorithm 

Optimization techniques are the techniques used to discover the best solution out of all the 

possible solutions available under the constraints present, Optimization refers to finding the 

values of inputs in such a way that we get the “best” output values. The definition of “best” 

varies from problem to problem, but in mathematical terms, it refers to maximizing or 

minimizing one or more objective functions, by varying the input parameters. 

The set of all possible solutions or values which the inputs can take make up the search 

space. In this search space, lies a point or a set of points which gives the optimal solution. The 

aim of optimization is to find that point or set of points in the search space. The genetic 

algorithm is one such optimization algorithm built based on the natural evolutionary process 

of our nature. The idea of Natural Selection and Genetic Inheritance is used here. Unlike other 

algorithms, it uses guided random search, i.e., finding the optimal solution by starting with a 

random initial cost function and then searching only in the space with the least cost (in the 

guided direction). Suitable when you are working with huge and complex datasets, we have 

a pool or a population of possible solutions to the given problem. These solutions then 

undergo recombination and mutation (like in natural genetics), producing new children, and 

the process is repeated over various generations. Each individual (or candidate solution) is 

assigned a fitness value (based on its objective function value) and the fitter individuals are 

given a higher chance to mate and yield more “fitter” individuals. This is in line with the 

Darwinian Theory of “Survival of the Fitness”. In this way we keep “evolving” better individuals 

or solutions over generations, till we reach a stopping criterion [15]. 

Genetic Algorithms are sufficiently randomized in nature, but they perform much better 

than random local search (in which we just try various random solutions, keeping track of the 

best so far), as they exploit historical information as well. 

the important criteria for GA approach can be formulated as given below:  
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- Completeness: Any solution should have its encoding  

- Soundness: Any code (produced by genetic operators) should have its corresponding 

solution 

- Non redundancy: Codes and solutions should correspond one to one  

 

 - Characteristic perseverance: Offspring should inherit useful characteristics from parents 

[16]. 

1.16.1 Advantages and the limitation of Genetic Algorithms: 

 Genetic Algorithms have various advantages which have made them immensely popular. 

These include  

● Does not require any derivative information (which may not be available for many 

real-world problems). 

● Is faster and more efficient as compared to the traditional methods. 

● Always gets an answer to the problem, which gets better over the time. 

● Optimizes both continuous and discrete functions and also multi-objective 

problems. 

● Provides a list of “good” solutions and not just a single solution. 

● Useful when the search space is very large and there are a large number of 

parameters involved. 

● Has very good parallel capabilities [17]. 

The limitation of genetic algorithm includes,  

1. The problem of identifying fitness function 

2. Definition of representation for the problem 

3. Premature convergence occurs 

4. Cannot easily incorporate problem specific information 

5. Cannot use gradients.  

6. The problem of choosing the various parameters like the size of the population, 

mutation rate, cross over rate, the selection method and its strength.  

7. Not good at identifying local optimal [17]. 
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1.16.2 Concept of Genetic Algorithms 

Genetic Algorithms (GAs) are adaptive heuristic search algorithms that belong to the larger 

part of evolutionary algorithms. Genetic algorithms are based on the ideas of natural selection 

and genetics. These are intelligent exploitation of random search provided with historical data 

to direct the search into the region of better performance in solution space. They are 

commonly used to generate high-quality solutions for optimization problems and search 

problems. 

Genetic algorithms simulate the process of natural selection which means those species 

who can adapt to changes in their environment are able to survive and reproduce and go to 

next generation. In simple words, they simulate “survival of the fittest” among individual of 

consecutive generation for solving a problem. Each generation consist of a population of 

individuals and each individual represents a point in search space and possible solution. Each 

individual is represented as a string of character/integer/float/bits. This string is analogous to 

the Chromosome[18]. 

Genetic algorithms are based on an analogy with genetic structure and behavior of 

chromosomes of the population. Following is the foundation of GAs based on this analogy 

1. Individual in population compete for resources and mate 

2. Those individuals who are successful (fittest) then mate to create more offspring 

than others 

3. Genes from “fittest” parent propagate throughout the generation, that is 

sometimes parents create offspring which is better than either parent. 

4. Thus, each successive generation is more suited for their environment[19]. 

1.16.3 Genotype Representation 

One of the most important decisions to make while implementing a genetic algorithm is 

deciding the representation that we will use to represent our solutions. It has been observed 

that improper representation can lead to poor performance of the GA. 

Therefore, choosing a proper representation, having a proper definition of the mappings 

between the phenotype and genotype spaces is essential for the success of a GA. 
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In this section, we present some of the most commonly used representations for genetic 

algorithms. However, representation is highly problem specific and the reader might find that 

another representation or a mix of the representations mentioned here might suit his/her 

problem better [20]. 

1.16.3.1 Binary Representation 

This is one of the simplest and most widely used representation in GAs. In this type of 

representation, the genotype consists of bit strings. 

For some problems when the solution space consists of Boolean decision variables – yes or 

no, the binary representation is natural. Take for example the 0/1 Knapsack Problem. If there 

are n items, we can represent a solution by a binary string of n elements, where the xth element 

tells whether the item x is picked (1) or not (0). 

 

For other problems, specifically those dealing with numbers, we can represent the numbers 

with their binary representation. The problem with this kind of encoding is that different bits 

have different significance and therefore mutation and crossover operators can have 

undesired consequences. This can be resolved to some extent by using Gray Coding, as a 

change in one bit does not have a massive effect on the solution[21]. 

1.16.3.2 Real Valued Representation 

For problems where we want to define the genes using continuous rather than discrete 

variables, the real valued representation is the most natural. The precision of these real valued 

or floating-point numbers is however limited to the computer. 
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1.16.3.3 Integer Representation 

For discrete valued genes, we cannot always limit the solution space to binary ‘yes’ or ‘no’. 

For example, if we want to encode the four distances – North, South, East and West, we can 

encode them as {0,1,2,3}. In such cases, integer representation is desirable. 

 

1.16.3.4 Permutation Representation 

In many problems, the solution is represented by an order of elements. In such cases 

permutation representation is the most suited. 

A classic example of this representation is the travelling salesman problem (TSP). In this the 

salesman has to take a tour of all the cities, visiting each city exactly once and come back to 

the starting city. The total distance of the tour has to be minimized. The solution to this TSP is 

naturally an ordering or permutation of all the cities and therefore using a permutation 

representation makes sense for this problem[21]. 

 

1.16.4 Parents 

Everything starts with the parents. Two of them to be more exactly. They provide the 

necessary structure and information to create the new children, as we said in the beginning, 

we used a Deep Learning Neural Network to explain Generic Algorithm and now is time to add 

it into the explanation. For education purpose, we create a Full Dense Neural Network with 5 

Inputs and 3 Outputs, doesn’t matter the purpose of this Neural Network. 
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Figure 2-8 Neural Network 

Initially our network has 2 fixed layers (input and output) and a variable number of hidden 

layers each with a variable number of neurons and with unknown Activation Function. We can 

call these combinations as Chromosome invoking the real name of that “” 

object/thing/element “” that’s carry our biological information. 

1.16.5 Fitness Function 

The fitness function simply defined is a function which takes a candidate solution to the 

problem as input and produces as output how “fit” our how “good” the solution is with respect 

to the problem in consideration. 

Calculation of fitness value is done repeatedly in a GA and therefore it should be sufficiently 

fast. A slow computation of the fitness value can adversely affect a GA and make it 

exceptionally slow. 

In most cases the fitness function and the objective function are the same as the objective 

is to either maximize or minimize the given objective function. However, for more complex 

problems with multiple objectives and constraints, an Algorithm Designer might choose to 

have a different fitness function. 

● A fitness function should possess the following characteristics  

● The fitness function should be sufficiently fast to compute. 

It must quantitatively measure how fit a given solution is or how fit individuals can be 

produced from the given solution. 

https://en.wikipedia.org/wiki/Perceptron
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In some cases, calculating the fitness function directly might not be possible due to the 

inherent complexities of the problem at hand. In such cases, we do fitness approximation to 

suit our needs [15]. 

1.16.6 Mechanism of a Genetic Algorithm 

As you can see in the diagram, the Genetic Algorithm implementation consist on 8 distinct 

steps. 

 

Figure 2-9   Diagram of Generic Genetic Algorithm Implementation 

the basic four steps used in simple Genetic Algorithm to solve a problem are,  

1. The representation of the problem 

2. The fitness calculation  

3. Various variables and parameters involved in controlling the algorithm  

4. The representation of result and the way of terminating the algorithm [23]. 
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Figure 2-10   Flowchart of genetic algorithm 

 

 

 

1.16.7 Structure of genetic algorithm  
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                       Figure 2-11   the Genetic Algorithm phases [24]. 

the different phases of the Genetic Algorithm represented in: 

1.16.7.1 Initialization of Population (Coding) 

- Every gene represents a parameter (variables) in the solution. This collection of 

parameters that forms the solution is the chromosome. Therefore, the population 

is a collection of chromosomes. 

- Order of genes on the chromosome matters. 

- Chromosomes are often depicted in binary as 0’s and 1’s, but other encodings are 

also possible. 

1.16.7.2 2. Fitness Function 

- We have to select the best ones to reproduce offspring out of the available 

chromosomes, so each chromosome is given a fitness value. 

- The fitness score helps to select the individuals who will be used for reproduction. 

1.16.7.3  Selection 

- This phase’s main goal is to find the region where getting the best solution is more. 

- Inspiration for this is from the survival of the fittest. 

- It should be a balance between exploration and exploitation of search space. 

- GA tries to move the genotype to higher fitness in the search space. 

- Too strong fitness selection bias can lead to sub-optimal solutions. 
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- Too little fitness bias selection results in an unfocused search. 

- Thus, Fitness proportionate selection is used, also known as roulette wheel 

selection, as a genetic operator used in genetic algorithms to select potentially 

useful recombination solutions. 

1.16.7.4 Reproduction 

Generation of offspring happen in 2 ways: 

a) Crossover 

The crossover operator is analogous to reproduction and biological crossover. In this more 

than one parent is selected and one or more off-springs are produced using the genetic 

material of the parents. Crossover is usually applied in a GA with a high probability 

There are 3 major types of crossovers. 

- Single Point Crossover: A point on both parents’ chromosomes is picked randomly 

and designated a ‘crossover point’. Bits to the right of that point are exchanged 

between the two parent chromosomes. 

- Two-Point Crossover: Two crossover points are picked randomly from the parent 

chromosomes. The bits in between the two points are swapped between the parent 

organisms. 

- Uniform Crossover: In a uniform crossover, typically, each bit is chosen from either 

parent with equal probability. 

The new offspring are added to the population. 

b) Mutation 

In simple terms, mutation may be defined as a small random tweak in the chromosome, to 

get a new solution. It is used to maintain and introduce diversity in the genetic population and 

is usually applied with a low probability – pm. If the probability is very high, the GA gets reduced 

to a random search. Mutation is the part of the GA which is related to the “exploration” of the 

search space. It has been observed that mutation is essential to the convergence of the GA 

while crossover is not. 

we describe some of the most commonly used mutation operators. 
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- Bit Flip Mutation: In this bit flip mutation, we select one or more random bits and 

flip them. This is used for binary encoded GAs. 

 

- Random Resetting 

Random Resetting is an extension of the bit flip for the integer representation. In this, a 

random value from the set of permissible values is assigned to a randomly chosen gene. 

- Swap Mutation 

In swap mutation, we select two positions on the chromosome at random, and interchange 

the values. This is common in permutation-based encodings. 

 

- Scramble Mutation 

Scramble mutation is also popular with permutation representations. In this, from the entire 

chromosome, a subset of genes is chosen and their values are scrambled or shuffled randomly. 

 

- Inversion Mutation 

In inversion mutation, we select a subset of genes like in scramble mutation, but instead of 

shuffling the subset, we merely invert the entire string in the subset. 

 

1.16.7.5 Convergence (when to stop) 

Few rules which are followed which tell when to stop is as follows: 

When there is no improvement in the solution quality after completing a certain number of 

generations set beforehand. 

When a hard and fast range of generations and time is reached. 

Till an acceptable solution is obtained [24]. 
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1.16.8 Application of Genetic Algorithm   

Genetic Algorithms are primarily used in optimization problems of various kinds, but they 

are frequently used in other application areas as well. We list some of them 

● Multimodal Optimization − GAs are obviously very good approaches for 
multimodal optimization in which we have to find multiple optimum solutions. 

● Neural Networks − GAs are also used to train neural networks, particularly 
recurrent neural networks. 

● Optimization − Genetic Algorithms are most commonly used in optimization 
problems wherein we have to maximize or minimize a given objective function 
value under a given set of constraints. The approach to solve Optimization 
problems has been highlighted throughout the tutorial. 

● Economics − GAs are also used to characterize various economic models like the 
cobweb model, game theory equilibrium resolution, asset pricing, etc. 

● Parallelization − GAs also have very good parallel capabilities, and prove to be 
very effective means in solving certain problems, and also provide a good area 
for research. 

● Image Processing − GAs are used for various digital image processing (DIP) tasks 
as well like dense pixel matching. 

● Vehicle routing problems − With multiple soft time windows, multiple depots 
and a heterogeneous fleet. 

● Scheduling applications − GAs are used to solve various scheduling problems as 
well, particularly the time tabling problem. 

● Machine Learning − as already discussed, genetics-based machine learning 
(GBML) is a niche area in machine learning. 

● Robot Trajectory Generation − GAs have been used to plan the path which a 
robot arm takes by moving from one point to another. 

● Parametric Design of Aircraft − GAs have been used to design aircrafts by 
varying the parameters and evolving better solutions. 

● DNA Analysis − GAs have been used to determine the structure of DNA using 
spectrometric data about the sample. 

● Traveling salesman problem and its applications − GAs have been used to solve 
the TSP, which is a well-known combinatorial problem using novel crossover and 
packing strategies. 

1.17   Optimized LQR Controller Using Genetic Algorithm 

In LQR problem, the weighting matrices Q and R have significant effect on the performance 

of the controller. Finding the best values for Q and R are highly time consuming by 

implementing computer simulations or trial and error methods [26]. For effective solution 

some intelligent optimization techniques can be applied. The main objective of the genetic 

algorithm implemented here is to determine the weighting matrices Q and R in order to have 

better performance. Q and R are usually represented as diagonal matrices[22]. 
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𝑄 = [

𝑸𝟏 𝟏 𝟏 𝟏
𝟏 𝑸𝟐 𝟏 𝟏
𝟏 𝟏 𝑸𝟑 𝟏
𝟏 𝟏 𝟏 𝑸𝟒

] ; 𝑅 = 𝑄0 
(2-22) 

 

 

Figure 2-12   Flowchart for optimizing LQR using GAs [25]. 

1.18 Conclusion 

In this chapter, we presented the principle of LQR control and genetic algorithms. the LQR 

controller is efficient in stabilizing the system thus the adjustment of the control is rather 

simple, since the two parameters of weighting are the only ones to be defined by the user to 

obtain a compromise between desired performance and allowable control effort. 

we use genetic algorithms to optimize the controller, and to get the state weighing matrix 

and control weighing matrix in the light of the time domain index, and to solve Riccati equation 

to get the optimal results. 
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Chapter III 

Simulation and Results 
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Chapter 3: Simulation and Results  

1.19 Introduction  

In this chapter, we will apply different commands to our pendulum system, and we’ll 

present our numerical result and graphical simulation using: MATLAB/SIMULINK®. 

The results obtained are studied by applying different control strategies and are 

implemented and compared to the system that will stabilize it around its point of unstable 

equilibrium. To design such a control, it is necessary to respect the energy constraints, and in 

the face of all uncertainties presented in the models and all disturbances, we must ensure a 

certain robustness 

The angular displacement of the rotary arm represented by and which represent the 

angular displacement pendulum from their reference point respectively are observed and 

shown by graphs for each control  

we will start with the LQR control and to obtain more adequate results we will optimize the 

LQR using the genetic algorithm to study and integrate the influence of optimization 

algorithms. 

1.20 Design of LQR controller for rotary inverted pendulum  

To apply the LQR command, we ran a script file on MATLAB, The LQR method is a powerful 

and most used methods for control complex systems; the LQR algorithm calculates a control 

law U to find the optimal controller that minimizes a given cost function J, the design matrices 

Q and R contain the penalties on the deviations of the state variables from their set point and 

the actions of control, respectively. Q is a non-negative definite matrix that penalizes the 

departure of system states from the equilibrium, and R is a positive definite matrix that 

penalizes the control input. 

The important point in this method is calculated gain matrix K the optimal feedback 

parameters of K matrix are taken by the cost function J. 

𝐽 = ∫ (𝑋𝑇 𝑄𝑋 + 𝑈𝑇 𝑅𝑈)𝑑 (3-1) 
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𝑈 = −𝐾𝑋 (3-2) 

We defined the two matrix Q and R and calculated the gain matrix finely then we will 

implement LQR controller to stabilize the pendulum in the vertical position even in the 

presence of disturbance. 

In our case the state vector x is defined: 

𝑥 = [𝜃0, 𝛼0, 𝜃˙0 , 𝛼˙0] (3-3) 

The coefficient matrices of state space representation 

𝐴 = [

𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏
𝟎 𝟏𝟒𝟑. 𝟐𝟕𝟓𝟏 −𝟎. 𝟎𝟏𝟎𝟗  𝟎
𝟎 𝟐𝟓𝟖. 𝟔𝟎𝟗𝟏 −𝟎. 𝟎𝟏𝟎𝟕 𝟎

] 

 

𝑩 = [

𝟎
𝟎

𝟒𝟖. 𝟕𝟐𝟕𝟓
𝟒𝟖. 𝟏𝟒𝟗𝟑

] 

 

𝑪 = [
𝟏 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎

]  

 

𝑫 = [
𝟎
𝟎

] 

 
      

(3-4) 

 

We take in first time Q and R as follow 

𝑄 = [

𝟏 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

] , 𝑅 = 1 
(3-5) 

 

We changed the diagonal elements of Q many times with taking R=1, based on previous 

experiences to obtain the desired performance with several attempts. We deduce that the 

values of matrix taken from the article [30] below it gives best results and satisfying 

performance; Q and R is given as   
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𝑄 = [

𝟓 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟐𝟎

] , 𝑅 = 1 
(3-6) 

 

Using the system model from (3-4) and above weighting matrices, the state feedback 

controller gains obtained for robust LQR controller is: 

𝐾 =  [−2.2361   53.8606   − 1.6975    6.5259] (3-7) 

 

 

Figure 3-1 The LQR controller  

 

After calculated gain matrix K, and we implemented the controller on simulation model of 

QUB-Servo developed in Simulink we illustrate three graphs the arm angle, pendulum angle, 

the command graph. 

1.21 Genetic algorithm optimization 

The selection of weighting matrix in design of the linear quadratic optimal controller is an 

important topic to design LQR controller, to select the weighting matrix for the optimal 

controller we will use genetic algorithm to optimize our control for best results. Genetic 

algorithm is adaptive heuristic search algorithm premised on the evolutionary ideas of natural 

selection and genetic. In this algorithm, the fitness function is used to evaluate individuals and 
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reproductive success varies with fitness. In the design of the linear quadratic optimal 

controller, the fitness function has a relation to the anticipated step response of the system. 

Not only can the controller designed by this approach meet the demand of the performance 

indexes of linear quadratic controller, but also satisfy the anticipated step response of close-

loop system. 

The main objective of the genetic algorithm implemented here is to determine the 

weighting matrices Q and R in order to have better performance. 

Applying the GAs, we obtained the fitness function that we use to determine the values of 

the weighting matrices Q and R to get gain matrix K. 

 After execution of the script in MATLAB, we obtained the fitness function as fellow 

 

 

Figure 3-2   Fitness function  

X= 

0.1973    20.5213    8.6780    9.2072    0.5745 

J=    

0.000292752 
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The matrices Q and R of   LQR optimized by genetic algorithms are: 

𝑄 = [

𝟐𝟎. 𝟓𝟐𝟏𝟑    𝟎 𝟎 𝟎
𝟎 𝟖. 𝟔𝟕𝟖𝟎 𝟎 𝟎
𝟎 𝟎 𝟗. 𝟐𝟎𝟕𝟐 𝟎
𝟎 𝟎 𝟎 𝟎. 𝟓𝟕𝟒𝟓

] , 𝑹 = 𝟎. 𝟏𝟗𝟕𝟑 
(3-8) 

 

 Using the system model from (3-4) and above weighting matrices, the state feedback 

controller gains obtained for optimized LQR controller is: 

𝑲 =  [−𝟏𝟒. 𝟕𝟗𝟕𝟗  𝟏𝟕𝟖. 𝟒𝟒𝟑𝟒   − 𝟔. 𝟖𝟎𝟎𝟏   𝟐𝟐. 𝟑𝟔𝟎𝟎] (3-
9) 

After calculating the gain matrix K, and implementing the controller in the simulation model 

of QUB-Servo developed in Simulink, we illustrated three graphs the arm angle, pendulum 

angle, the command graph. 

 

 

 

Figure 3-3 The LQR controller implemented on Simulink model of QUBE-Servo 
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1.22 Results and comparison  

The results obtained from the simulation of the two controls applied the LQR controller and 

the LQR optimized by GAs on our system, For the input of the system, we change the position 

of the arm θ with a square signal between 20º and -20º degrees. the simulation time is chosen 

as t_sim=100s, and the sampling time t=0.02s.  

which shows the evolution of the arm angles 𝜃 and the pendulum angles  𝛼 and the 

commands graph, which we illustrated bellow: 

 

Figure 3-4 The arm angles for two controls LQR and LQR GAs 
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Figure 3-5 The pendulum angles for the two controls LQR and LQR GAs 

 

 

Figure 3-6 The two controls graphs 
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The results illustrated in the previous curves (3-4….3-6) show that the LQR genetic algorithm 

control has better performance compared to the LQR control. The arm which is characterized 

by the angle θ welcoming to the desired position in a shorter time, also stabilizing the 

pendulum is faster and less oscillating. 

1.23 Conclusion 

In this chapter, we applied the two commands previously studied (the quadratic linear 

control and the quadratic linear control genetic optimized by the genetic algorithm) on a 

pendulum rotary inverted, in order to make the comparison between them.  After having our 

results, we noted that the best order which gives us the least response time and least rise time 

is the command LQR genetic algorithm. 
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Chapter IV 

Experimental implementation of the controllers on 

the QUBE-SERVO 2 model 
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Chapter 4: Experimental implementation of the 

controllers on the QUBE-SERVO 2 model  

1.24 Presentation of the Rotary Inverted Pendulum 

The RIP considered in the context of this work is of the Quanser QUBE-Servo 2 type available 

at level of our establishment, called the Furuta pendulum and is a classic automatic system. It 

is widely used for testing command types because it represents a nonlinear system and under 

actuated multivariable. 

The Rotary Inverted Pendulum experiment is ideal for studying intermediate to advanced 

concepts encountered in any system that requires vertical stabilization, from Segway vehicles 

to rocket launching systems. Equipped with high quality direct drive brushed DC motor, single 

encoder, internal data acquisition system and amplifier; the Rotary Inverted Pendulum module 

consists of an arm that mounts to the Rotary Servo Base Unit. The pendulum rod is attached 

to the arm’s metal shaft, instrumented with a high-resolution encoder measuring the 

pendulum’s angle allows us to connect the unit to a PC via USB, an NI myRIO on board device, 

and other microcontrollers such as an Arduino or a Raspberry Pi using the SPI protocol. The 

Rotary Servo Base Unit rotates the arm with the pendulum in the horizontal plane. We learn 

to design controllers that balance the pendulum in the upright position by rotating or changing 

the angle at the base (inverted pendulum), or swing up the pendulum and maintain it in the 

upright position (self-erecting inverted pendulum). 
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Figure 4-1 the Quanser rotating pendulum [1]. 

 

1.25 Components of the Rotary Inverted Pendulum 

The QUANSER type RIP is composed of an SVR02 motor, which drives an arm with its 

end a pendulum (rod) bind to each other by a pivot connection. This system has two 

sensors, 

one encoder wheel each. the different elements of the pendulum are described by the 

figure 4-2 

 

Figure 4-2 the Quanser rotating pendulum Components [1]. 

 



 

59 
 

The rotating inverted pendulum module is attached to the SRV02 load gear by two 

thumbscrews. 

The pendulum arm is fixed to the body of the module by a set screw. The RIP experience is 

A classic example of how the use of the controller can be used to stabilize a system. The 

inverted pendulum is also an accurate model in the pitch and yaw of a rocket in flight and can 

be used as a reference for many control methodologies. 

1.26 Linear model of RIP 

state presentation of the QUBE-Servo rotary pendulum will be changed from our state 

representation (The values of matrices A and B will be a bit efferent from our matrices) 

𝐴 = [0 0 1 0 0 0 0 1 0 143.2751 − 0.0109   0 0 258.6091 − 0.0107 0 ] 
 

𝐵 = [0 0 48.7275 48.1493 ] 
 

𝐶 = [1 0 0 0 0 1 0 0 ]  
 

𝐷 = [0 0 ] 
      

(4-1) 

 

1.27 Implementation of controller on model  

To implement the linear controls on the RIP, the pendulum must be manually placed around 

from its position of unstable equilibrium (area of linearity). Command parameter values 

used are readjusted in relation to the system of the model. 

1.27.1 LQR controller 

Using LQR function with loaded model and weight matrices 

𝑄 = [

1 0 0 0
  0 1 0 0
 0 0 1 0 
 0 0 0 1 

] , 𝑅 = 1 
(4-2) 

 

from simulation results we constate that the values of Q and R shown below are the best 

choice for satisfactory commands  
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𝑄 = [

5 0 0 0 
0 1 0 0 
0 0 1 0

 0 0 0 20 

] , 𝑅 = 1 
(4-3) 

With gain matrix: 

𝐾 =  [−2.2361   53.8606   − 1.6975    6.5259] (4-4) 

 

We illustrate the graphs of the arm and pendulum angel and commands in next section  

1.27.2 LQR genetic controller  

For an optimized controller result we use the values of the weighting matrices with the 

optimal result from the simulation to implement it in real time simulation 

 

𝑄 = [

20.5213  0 0 0
  𝟎    8.6780 0 0  
 0   9.2072   0 0
 0  𝟎  0   0.5745 

] , 𝑅 = 0.1973 
(4-5) 

 

   With the gain matrix as follow: 

𝐾 =  [−14.7979  178.4434   − 6.8001   22.3600 (4-6) 

 

We illustrate the graphs of the arm and pendulum angel and commands in next section 

  

Figure 4-3 real time simulation of LQR controller implemented on model of QUBE-Servo 
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1.28      Result of the test on the model 

 

Figure 4-4 The arm angles response for the two controls LQR and LQR GAs 

Figure 4-5 The pendulum angles response for the two controls LQR and LQR GAs  

 

          Figure 4-6 The evolution of controls for the two commands LQR and LQR GAs 
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1.29 Discussions 

From the results obtained in the figure (4-4,4-5) we note that that the LQR genetic controller 

reaches the set point quickly compared to LQR controller, as we can see from these graphs, 

LQR genetic controller shows better performance compared to the LQR- controller, the arm, 

which characterized by the welcoming angle θ that has the desired position in a shorter time, 

also the stabilization of the pendulum is faster and less oscillating. 

LQR genetic controller is also characterized by a reduced overshoot and short delay time. 

In summary, for dynamic response, the inverted pendulum controlled by LQR optimized 

controller balances faster because of the shorter settling time; and it has better robustness 

because of the less maximum overshoot. The above points substantiate for the fact that the 

LQR controller can guarantee the rotary inverted pendulum system a better performance 

dynamic than a LQR controller. 

1.30 Conclusion 

In this chapter, we applied two commands of the real-time linear controls (the linear 

quadratic regulator and the linear quadratic regulator) which are optimized by the genetic 

algorithm for the RIP. We noticed that the two commands succeeded in stabilizing the RIP even 

in the presence of disturbances. We found that the optimization by genetic algorithms of the 

linear quadratic regulator gave the best results in terms of energy efficiency, robustness, and 

stabilization of the pendulum. 
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General conclusion 

The work presented in this project focuses mainly on modeling the LQR command to 

stabilize the rotary inverted pendulum that is considered as a highly unstable non-linear 

system. The objective is to stabilize the rotary inverted pendulum around its unstable 

equilibrium point. We used the Euler-Lagrange formalism to model the system 

mathematically; but with its complex nature, it became very difficult to command, then we 

proceeded by the linearization of this system; then, we synthesized linear controller; 

Quadratic Linear Regulator (LQR) and the optimized LQR using genetic algorithm in order to 

see its impact on controlling the non-linear system with two degrees of freedom. We 

applied the controller in real time on the model of Quancer type pendulum. Finally, the 

experimental results show the efficiency of the proposed controller. 
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