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Abstract

In our time, the amount of information and tweets are increasing on Twitter. Unfortunately, we
found that Twitter is a popular place for spammers, which share unwanted messages that may con-
tain malicious software, advertisements, or links that contain malicious sites. As a means of avoiding
text-based filters, spammers inject spam text onto images, a process known as image spam. so. How
can we detect these images and know the unwanted messages from it? What are the possible algo-
rithms to detect it ? This is what we will address in this research. In our thesis, we introduce Some
Learning techniques used to classify images as spam or ham and bio-inspired algorithm which used to
optimize the problem, at the experimental level we design convolutional neural network architectures
using the particle swarm optimization algorithm in order to find the optimal network architecture of
convolutional neural networks.

Keywords— Learning techniques, Bio-inspired algorithm, Convolutional neural network, Particle
swarm optimization
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Introduction

Social networking sites, including Twitter, are a wide space for spreading news, exchanging opinions
and ideas among people in the whole world and communicating with each other, but these features
also make this space a fertile place for spammers to send their messages. Or their posts, and freedom
of expression is one of the rights guaranteed for everyone to express their opinion using what are
called tweets. But unfortunately, these Tweets may exceed certain limits and become inappropriate
or threatening. In order to make this universe without threats which may even affect the safety of
users, it is necessary to have in place automatic protection mechanisms allowing dangerous users to
be found in order to protect them. Several algorithms have been implemented for this purpose, but
until now due to the complexity of this algorithmic problem, complete security is far from within
reach. Among the most promising avenues are organic algorithms inspired by intelligent behavior in
living beings (EHO, PSO, ACO, BSO, etc.) which have proven to be very efficient in solving several
complexes. As meta-heuristics is part of artificial intelligence, on one side of the other side, it is
impossible to separate machine learning from artificial intelligence, due to the fact that it is a type of
artificial intelligence that gives computers the ability to learn without being explicitly programmed.
In this topic we propose the use of a bio-inspired algorithms as well as machine learning techniques
to solve the security problem in the social network twitter.
This is also what made the administrators of these sites looking for solutions to detect these people
and stop their accounts or publications by using machine learning algorithms that analyze the posts
or incoming messages to detect them, and with the development of time, spammers resorted to using
images to post their messages on it, so. How can we detect these images and know the unwanted
messages from it? What are the possible algorithms to detect it ? This is what we will address in
this research.
The study is divided into three sections: Before diving into this study, the first chapter covers impor-
tant terminology and terms such as spam, bio-inspired algorithm, Twitter, Social media, Artificial
Neural Networks, and meta-heuristic. In the second chapter, we look at the state of the art in image
classification utilizing various learning approaches including convolutional neural networks, support
vector machines, and multi-layer perceptrons. The Canny edge detector is a feature that is used in
this technique. Then we’ll discuss Particle Swarm Optimization, which is a technique for optimizing
Convolutional Neural Network Architecture in our case. The third chapter discusses the results of
the experiments conducted to build the CNN Model and Tuning CNN Hyperparameters using PSO.
Finally, the conclusion summarizes everything we’ve talked about so far.
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Chapter 1

Background

1.1 Introduction
In this chapter we present important definitions and terms that need to be explained and clarified
before going into this work.
We first focus on the basic concepts as Spam and approach that used in this work as Bio-inspired
algorithm and Artificial Neural Networks.Also many Learning Techniques. In addition, our feature
The Canny edge detector is a well-known tool for extracting information from images’ edges.

1.2 Spam definition
Spamming consists of sending unsolicited messages to a large number of users in an arbitrary manner.
Spam has a wide variety of uses, ranging from advertising to online deception and other fraudulent
activities. Since sending Spam messages via e-mail has little or no cost, e-mail Spam can be econom-
ically viable. In this research, we discuss spam in general, image spam in particular, and we consider
related work.

1.3 Bio-inspired algorithm
These are algorithms inspired by nature, after studying the behavior of living organisms in general
and in particular the behavior of animals, we develop these algorithms, with the aim of improving
results or finding solutions to difficult problems or not solved by traditional algorithms.
There are more than 200 algorithms inspired by nature.[11]
That can be divided existing algorithms into six major categories illustrated in (Figure 1.1 Classifi-
cation using the inspiration source based taxonomy) :

• Swarm Intelligence (SI) based : It is the collective behavior of dispersed, self-organized systems
in natural and artificial contexts. The term was coined in the context of robotic systems, but
it has now come to mean the formation of collective intelligence from a number of basic agents
who follow simple behavioral norms.

• Breeding-based Evolutionary Algorithms : This category includes population-based algorithms
based on Natural Evolution concepts. Each person in the population represents a solution
to the problem and has a fitness value associated with it (namely, the value of the problem
objective function for that solution).

3



• Physics/Chemistry based Algorithms : Algorithms under this category are characterized by the
fact that they imitate the behavior of physical or chemical phenomena, such as gravitational
forces, electromagnetism, electric charges and water movement (in relation with physics-based
approaches), and chemical reactions and gases particles movement as for chemistry-based op-
timization algorithms.

• Social Human Behavior based Algorithms : Algorithms falling in this category are inspired by
human social concepts, such as decision making and ideas related to the expansion/competition
of ideologies inside the society as ideology , or political concepts such as the Adolescent Identity
Search Algorithm.

• Plants based Algorithms : This category encompasses all optimization methods that are in-
spired by plants in their search process.

• Miscellaneous Sources of Inspiration : The algorithms that do not fit into any of the previous
categories are included in this category. Although this defined category is heterogeneous and
does not exhibit any uniformity among the algorithms it represents, its inclusion in the tax-
onomy serves as an exemplifying fact of the many different sources of inspiration that exist in
the literature.[1]

The strength of these algorithms lies in the fact that they provide solutions close to the ideal and at
the same time in a time acceptable and with available tools(hardware).
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Figure 1.1: Classification using the inspiration source based taxonomy.[1]

1.4 Twitter site
Is a widely used microblogging site where users look for timely and social information such as breaking
news, celebrity posts, and hot topics. Users post tweets, which are short text messages limited to
140 characters in length and visible to the user’s followers. A follower is someone who chooses
to have other people’s tweets appear on their timeline. Twitter has been utilized in numerous
brand promotions, elections, and as a news medium, and it has been used as a medium for real-
time information distribution. Since its inception in 2006, the number of people who utilize it has
skyrocketed. Every day, around 200 million tweets are generated as of June 2011. When a new
topic becomes popular on Twitter, it is labeled as a trending topic, which can be expressed in short
sentences (for example, Michael Jackson) or hashtags (e.g., election). What the Trend2 maintains a
list of hot topics on Twitter that is updated on a regular basis. It’s fascinating to learn about current
events and what interests individuals in other parts of the world. However, hashtags, a person’s
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name, or words in foreign languages make up a large amount of hot topics, and it’s often impossible
to figure out what they’re about. It is consequently critical to group these issues into broad categories
in order to facilitate topic comprehension and information retrieval.[12]

1.5 Social Media
It is a site that includes the accounts of people, organizations and associations...., interconnected
and interconnected with each other in the form of a spider web, each account presents its ideas
and opinions, and it is also considered a space for publishing news and exchanging information and
adding to it the discussion of current and important topics, and these sites are very popular It
also took an important share of other people’s times that reached the point of addiction, so it is
considered a powerful tool for spreading awareness or influencing public opinion in both its positive
and negative aspects. It has contributed to the overthrow of entire regimes and states, as well as to
the establishment of other states, so it is more than just a site, but rather a lethal weapon not to be
underestimated.

1.6 Artificial Neural Networks
Artificial Neural Networks have become popular over the last ten years for diverse applications
from financial prediction to machine vision. Although these networks were originally proposed as
simplified models of biological neural networks, we are concerned here with their application to
supervised learning problems.

1.7 Meta-Heuristic definition
In computer science, Artificial Intelligence, and Mathematical optimization, a Heuristic is a technique
designed for solving a problem more quickly when classic methods are too slow, or for finding an
approximate solution when classic methods fail to find any exact solution.

1.8 Different Learning Techniques

1.8.1 Convolutional Neural Networks (CNN):
Convolutional Neural Networks (CNN) are one of the most common types of neural networks (Figure
1.2 : Neural network) used to recognize and classify pictures. CNNs are widely employed in domains
such as object detection, face recognition, and so on. In CNN, we use an image as an input, which is
represented as an array of pixels (). It will see h x w x d (h = Height, w = Width, d = Dimension)
based on the image resolution. Dimension equals 3 for RGB image matrix (3 refers to RGB values
red, green, blue), and 1 for grayscale image matrix. [2]
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Figure 1.2: Noural Network[2].

• Architecture :
Each input image will be processed using a sequence of Convolution Layers with filters (Kernals),
Pooling, and Fully linked layers (FC) So typically has three layers: a Convolutional Layer, Pooling
Layer, and Fully Connected Layer as illustrated in (Figure 1.3 : CNN Architecture)

Figure 1.3: CNN Architecture.

Convolution Layer :

C onvolution is the first layer, and its main goal is to extract features like edges, colors, and corners
from the input. As we delve deeper into the network, it begins to recognize more complex features
such as shapes, digits, face parts, and text. It’s a mathematical procedure that requires two inputs
: a set of trainable parameters (known as the Filter/Kernel) and a restricted section of the image
(known as the restricted portion). - An image matrix(volume) of dimension (h*w*d) - A filter (fh *
fw * d) - Outputs a volume dimension (h- fh +1) *(w- fw +1) *1
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Figure 1.4: Image Matrix Multiplies Kernel or Filter Matrix[2].

C onsider a 3x3 Kernel is convoluted over a 5x5 source image which called “Feature Map” as output
shown in (figure1.5 : output matrix).[2]

Figure 1.5: 3 x 3 Output matrix[2].

T he output volume is controlled by three hyper parameters: depth, stride, and zero-padding:
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• Depth: It’s the number of filters we’d like to employ.

• Stride: number of pixels shifts over the input matrix When the stride is set to 1, the filters are
moved one pixel at a time. When the stride is two, the filters jump two pixels at a time, and
so on.

• Zero-Padding: Filters do not always precisely fit the input image, so we pad it with zeros
around the border of the input volume which allow us to control the output volumes’ spatial
size. [2]

Pooling Layer :

The Pooling layer is responsible for reducing the Convolved Feature’s spatial size. This is done to
reduce the amount of parameters and computations in the network, as well as to control overfitting by
reducing dimensionality. Pooling can be divided into two types: Max Pooling and Average Pooling:

• Max Pooling: is a pooling procedure that return the maximum value from the feature map
region covered by the filter like (Figure 1.6 : Max Pooling) After the max-pooling layer, the
output would be a feature map with the most important features from the preceding feature
map. Also can also be used to reduce noise. It removes all noisy activations and conducts
de-noising and dimensionality reduction at the same time.

Figure 1.6: Max Pooling.

• Average Pooling: is a pooling procedure that return the average value from the feature map
region covered by the filter like (Figure 1.7 : Average Pooling). [13]
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Figure 1.7: Average Pooling

As a result of the Pooling Layer, we now have a matrix comprising the image’s main features, and
this matrix has even smaller dimensions, which will aid us much in the next phase.[14] The i-th layer
of a Convolutional Neural Network is made up of the Convolutional Layer and the Pooling Layer.
Depending on the image complexity, the number of such layers might be raised even more to capture
low-level features, but at the cost of more computational power. After going through the previous
method mean that we have successfully enabled the model to understand the features.[14]

Fully connected layer :

A completely linked layer is the last layer in CNN. We link all of the nodes from the previous layer
to this completely connected layer, which conducts the classification operation based on the features
retrieved from the previous layers and their various filters (Figure 1.8 : CNN Architecture). [15]
This fully connected layer examines the output of the preceding layer and identifies which features
are most closely related to a specific class. Finally, we can classify the outputs using an activation
function like softmax or sigmoid. [15]

Figure 1.8: CNN Architecture.
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1.8.2 Support Vector Machine (SVM):
SVM stands for Support Vector Machine and is a Supervised Machine Learning technique that can
be used for classification and regression. SVMs are more typically utilized in classification problems,
therefore we’ll concentrate on that in this section. represent each data item as a point in n-dimensional
space (where n is the number of features), with the value of each feature being the value of a certain
coordinate in this algorithm. Then we perform classification by determining the best hyper-plane for
separating the two classes.[16]
We use the SVM technique to find the points from both classes that are closest to the line. Support
vectors are the names given to these points. The distance between the line and the Support Vectors
is now computed. The Margin is the term used to describe the amount of space between two objects.
Our goal is to increase the profit margin. The Hyperplane with the greatest margin is the best
Hyperplane as illustrated in (Figure 1.9 : Optimal Hyperplane using the SVM algorithm). [17]

Figure 1.9: Optimal Hyperplane using the SVM algorithm.

• Separating Hyperplane : Hyperplanes are decision-making boundaries that aid in data clas-
sification. Different classes can be assigned to data points on either side of the Hyperplane.
The Hyperplane’s dimension is also determined by the number of features. In the case of one-
dimensional data, a Hyperplane will be a point, a line in the case of two-dimensional data, a
plane in the case of three-dimensional data, and so on. [3]

– Not Linearly Seperable: There is no guarantee that the data in the classes will be sepa-
rable in a linearly. as shown in (Figure 1.10 : Non-linearly separable data)
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Figure 1.10: Non-linearly Separable Data

there is no line that can be drawn between the two classes. This is a problem that
SVM can tackle. We can plot the z feature, which is defined as z= x2 + y2. Using
this transformation, we may project this linear separator in higher dimensions back into
its original dimensions. this line maps to a circular boundary, as seen in (Figure 1.11 :
Dataset on higher dimension).These transformations are called kernels. [17]
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Figure 1.11: Dataset on Higher Dimension.

• Kernel Trick: a way of solving a non-linear problem with a linear classifier. It requires convert-
ing linearly inseparable data into linearly separable data such as those shown in (Figure 1.12 :
Hyperplanes in 2D and 3D feature space).

Figure 1.12: Hyperplanes in 2D and 3D Feature Space [3].

The kernel function is used on each data point to translate the non-linear observations into a
higher-dimensional space where they can be separated. [18]
We can identify a decision surface that clearly differentiates between distinct classes if we find a
way to transfer the data from 2-dimensional space to 3-dimensional space, as shown in (Figure
1.13 : Kernel Trick).
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Figure 1.13: Kernel Trick.

The first thing that comes to mind when thinking about this data transformation process is to
transfer all of the data points to a higher dimension (in this example, 3-dimensional), determine
the boundary, and classify the data. That appears to be adequate. However, as the number of
dimensions increases, computations within that space grow more expensive. This is when the
kernel technique comes into play. It enables us to work in the original feature space without
having to compute the data’s coordinates in a higher dimensional space. [19]
Mathematical definition: K (x, y) = <f(x), f(y)>. Here K is the kernel function, x, y are n
dimensional inputs. f is a map from n-dimension to m-dimension space. < x, y> denotes the
dot product. usually m is much larger than n, calculating typically needs us to first compute
f(x), f(y), and then the dot product. Because these two compute stages require manipulations
in m-dimensional space, where m can be a big number, they can be quite costly.[18] Simple
Example: x = (x1, x2, x3); y = (y1, y2, y3). Then for the function f(x) = (x1x1, x1x2, x1x3,
x2x1, x2x2, x2x3, x3x1, x3x2, x3x3) the kernel is K (x, y) = (<x, y>) 2. To make this more
intuitive, let’s put some numbers in: suppose x = (1, 3, 4); y = (4, 7, 8). Then: f(x) = (1, 3,
4, 3, 9, 12, 4, 12, 16) f(y) = (16, 28, 32, 28, 49, 56, 32, 56, 64) <f(x), f(y)> = 16 + 84 +128
+ 84 + 441+ 672 + 128 + 672 + 1024 = 3249 Because f is a mapping from 3-dimensional to
9-dimensional space, there is a lot of algebra involved.[18] Let’s try using the kernel instead
(Figure 1.14 : kernel function): K(x, y) = (4 + 21 + 32)2 = 57š = 3249 Same result, but much
easier to calculate.[18]
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Figure 1.14: Kernel Function.

• Different kernel Functions: Different types of kernel functions are used in SVM algorithms.
These functions include Linear, Nonlinear, Polynomial, Radial Basis Function (RBF), and
Sigmoid Functions.in this part we will mention both Linear and RBF Kernels :

– Linear kernel: When the data can be divided using a single line, the Linear Kernel is
utilized. One of the most widely utilized kernels is this one. It’s typically employed when
a data set has a lot of features. Text Classification is an example of a feature with a large
number of options, as each alphabet has its own set of options.[20] A Linear Kernel is faster
than any other Kernel for training an SVM. Only the (C) Regularisation Parameter must
be optimized when training an SVM with a Linear Kernel. When training with various
kernels, however, the (Γ) parameter must be optimized, which implies that executing a
grid search will normally take longer. Linear Kernel Formula F (x, xj) = sum( x.xj) Here,
x, xj represents the data you’re trying to classify.[20]

– RBF kernel: In svm, it is one of the most popular and often utilized kernel functions. It’s
typically used with non-linear data. When there is no prior knowledge of data, it aids in
proper separation. RBF Kernel Formula(Figure 1.15 : RBF kernel)[4].

Figure 1.15: RBF kernel [4]

• TUNNING PARAMETERS OF SVM :

– Regularisation Parameter (C): to regulate the trade-off between decision boundary and
correctly classifying training points in order to avoid misclassifying each training exam-
ple, You’ll obtain more training points correctly if c is large as shown in (Figure 1.16:
Regularization Parameter).[19]

15



Figure 1.16: Regularization Parameter

– Gamma(Γ) : Determines how far a single training example has an impact. This indicates
that high Gamma will only evaluate points near the plausible hyperplane, whereas low
Gamma will consider sites further away as shown in (Figure 1.17 : Gamma Parameter).
[19]

Figure 1.17: Gamma Parameter

• Choosing Linear kernel vs Nonlinear kernel: Andrew Ng gives a nice rule of thumb explanation
in [21] starting 14 :46 Key Points : - Use Linear Kernel when number of Features is larger than
number of Training example. - Use Gaussian kernel when number of Training example is larger
than number of Features. - If number of Training example is larger than 50,000 speed could
be an issue when using Gaussian kernel ; hence, one might want to use linear kernel.[21]

1.8.3 Multi-Layer Perceptrons (MLP)
Multi-Layer Perceptrons (MLP) is a subfield of Artificial Neural Network, it has the same simple
structure, that has an input layer and an output layer and include one or more Hidden Layers between
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the input and the output An example of an MLP with two Hidden Layers is given in figure 1.18.
Although a perceptrons conceptually simple,the result with different data set in figures suivant :

Figure 1.18: MLP With Two Hidden Layers.[5]

1.9 Canny Edge Detector Feature :
Is an edge detection operator that extracts information about edges in photos using a multi-stage
approach. It was created in 1986 by John F. Canny. An image with its edges highlighted is called a
Canny Image. [7] There are five steps in the Canny Edge Detection algorithm : - Noise Reduction.
- Gradient Calculation. - Non-Maximum Suppression. - Double Threshold. - Edge Tracking by
Hysteresis. Grayscale images are used in the algorithm. You must first convert the image to grayscale
before proceeding with the above steps.[7]

Figure 1.19: Original Image— Processed Image [6]
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1.9.1 Noise Reduction:
On the image, apply a Gaussian blur. Before further processing the image, the blur removes some
of the noise. To accomplish so, a Gaussian Kernel (3x3, 5x5, 7x7, etc...) is used in conjunction with
picture convolution. The size of the kernel is determined by the blurring effect desired. In general,
the smaller the kernel, the less noticeable the blur. The following (Figure 1.20: Gaussian Filter
kernel equation) is the equation for a Gaussian Filter Kernel of size (2k+1) (2k+1):

Figure 1.20: Gaussian Filter Kernel Equation [7]

The standard deviation (sigma σ ) is a measure of dispersion. The term "dispersement" describes
how far your info is dispersed. It demonstrates how widely your data is dispersed around the mean
or average. A low standard deviation implies that the values are close to the set’s mean, whereas a
high standard deviation suggests that the values are dispersed over a larger range.[22] We get the
following result (Figure 1.21 : Noise Reduction with a Gaussian filter) after applying the Gaussian
blur.

Figure 1.21: Noise Reduction with a Gaussian Filter[6]

1.9.2 Gradient Calculation:
The Gradient computation stage calculates the gradient of the image using edge detection operators
to determine the edge strength and direction. Edges represent a change in the intensity of pixels.
Applying filters that highlight this intensity change in both directions is the simplest technique to
detect it: vertical (y) and horizontal (x). [7] The gradients can be determined by using a Sobel Filter
(Figure 1.22 : Sobel Filters).

Figure 1.22: Sobel Filters [7]
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An edge occurs when the color of an image changes, hence the intensity of the pixel changes as well.
A Sobel Filter can be used to detect gradients. When the color of an image changes, the pixel’s
intensity changes as well, so the edge happen.
The magnitude and angle of the directional gradients should then be calculated (Figure 1.23 : Gra-
dient intensity and Edge direction) :

Figure 1.23: Gradient Intensity and Edge Direction [6]

The following (Figure 1.24 : Gradient Intensity) is the output of the image:

Figure 1.24: Gradient Intensity[6]

Although the outcome is nearly as expected, we can see that some of the edges are dense while others
are thin. We’ll use the Non-Max Suppression phase to help us deal with the dense ones.[7]

1.9.3 Non-Maximum Suppression:
The final image’s edges should be thin. As a result, to thin out the edges, we must use Non-Maximum
Suppression. The concept is straightforward: the algorithm iterates through all of the points on the
gradient intensity matrix, looking for the pixels with the highest value in the edge directions. [7]
Let’s look at an example (Figure 1.25: Example the edge directions).
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Figure 1.25: Example the edge directions[7].

An intensity pixel of the Gradient Intensity matrix being processed is shown by the red box in the top
left corner of the (Figure 1.25 : example). The orange arrow with an angle of -pi Radians (+/-180
degrees) represents the matching edge direction. [7]

Figure 1.26: Focus on the upper left corner red box pixel[7].

The orange dotted line indicates the edge direction (horizontal from left to right). The algorithm’s
goal is to see if pixels in the same direction are brighter or darker than the ones being processed.
The pixel (i, j) in (Figure 1.26 : Focus on the upper left corner red box pixel) is being processed, and
the pixels in the same direction (i, j-1) and (i, j+1) are highlighted in blue. Only the more intense of
those two pixels is maintained if one of them is more intense than the one being processed. Because
it is white, pixel (i, j-1) appears to be more intense. As a result, the current pixel’s intensity value
(i, j) is set to zero. If there are no pixels with more intense values in the edge direction, the current
pixel’s value is preserved. [7] Edge Direction in Radians and Pixel Intensity (between 0 and 255)
are the two most important characteristics for each pixel. Non-Max-Suppression steps are based on
these inputs:
- Using the angle value from the angle matrix, determine the edge direction.
- Check if the pixel in the same direction has a higher intensity than the one being processed right
now.
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- Return the picture that was suppressed using the non-max technique.
[7] The following (Figure 1.27 : Non Maximum Suppression) is the output of the image:

Figure 1.27: Non Maximum Suppression [6].

1.9.4 Double Threshold:
We can see that the result of Non-Maximum Suppression isn’t ideal; certain edges may not be true
edges, and the image has some noise. This is handled by Double Thresholding. [7] The Double
Threshold step seeks to distinguish between three types of pixels: strong, weak, and irrelevant:
- Strong pixels are those with such a high intensity that we can be certain they influence to the final
edge.
- Weak pixels are those with an intensity value that isn’t high enough to be called strong, but not
low enough to be regarded irrelevant for edge detection.
- Other pixels are ignored since they are irrelevant to the edge.
For the following, the double thresholds apply:
- High threshold: is used to find the pixels that are very bright (intensity > high threshold).
- Low threshold: is used to find pixels that aren’t relevant (intensity < low threshold).
- All pixels with an intensity between the two thresholds are labeled as weak, and next step will
assist us distinguish between those that are potentially strong and those that are irrelevant. [7]
The result of this step is (Figure 1.28: Double Thresholding):

Figure 1.28: Double Thresholding [6].
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1.9.5 Edge Tracking by Hysteresis:
The hysteresis transforms weak pixels into strong ones based on the threshold findings, but only if
at least one of the pixels around the one being processed is a strong one, as stated below (Figure
1.29 : Edge Tracking by Hysteresis):

Figure 1.29: Edge Tracking by Hysteresis [7].

The result of this step is (Figure 1.30 : Results of hysteresis process):

Figure 1.30: Results of Hysteresis Process [6].

1.10 Conclusion
In this chapter, the basic concepts are covered as Spam and Site we focus on it Twitter. And the
general definition of approach we will use it as Bio-inspired algorithm and Artificial Neural Networks.
Now we can get into more detail about our work.
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Chapter 2

State of arts

2.1 Introduction
In our time, the amount of information and tweets are increasing. Twitter has been growing steadily,
and studies have suggested that Twitter users share about 8.3 million tweets every hour. Unfor-
tunately, Twitter is a popular place for "Spammers", which they publish unwanted message that
may contain malicious software, advertisements, or links that contain malicious sites, and Spammers
spread across different forms. Spammers insert their messages into images to avoid detection the
spam. Previous image spam detection research has found that certain kinds of image spam can be
detected with a level of accuracy focused on techniques of machine learning. In this chapter we focus
on the various Machine Learning and Neural Network approaches, we go through Support Vector
Machines (SVM), Multilayer Perceptrons (MLP), and Convolutional Neural Networks (CNN). There
is also a discussion of the Particle Swarm Optimizer (PSO). It also discusses how to apply this ap-
proach with a Convolutional Neural Network to discover the appropriate hyperparameters and create
a fully trained CNN architecture for a certain Dataset.

2.2 The Support Vector Machine (SVM) experiment :
To train the models for the SVM experiments, he first create feature vectors. Images in the datasets
are of various sizes. As a result, he resizes all of the photos to 32*32. He then converts a raw image
into a Canny image using the Canny edge detection method. He generates byte data for each pixel
in the Canny image to form the feature matrix. Each pixel is made up of three bytes that represent
the red, green, and blue (RGB) color information in the 0 to 255 range. Each integer is normalized
to be in the range of 0 to 1 for computational convenience. He also created a feature vector based on
the raw byte values (also normalized).[5] Each feature vector has a length of 1024. He created unique
SVM models for the dataset for the studies. He uses a random shuffle in each dataset and 70 percent
of the image samples for training and the remaining 30 percent for testing. He uses both linear and
RBF kernels, as well as various features, in his SVM research. In the figure2.1(SVM feature size
and type comparison (ISH dataset)) : compares the accuracy of the SVM when trained and assessed
on the ISH dataset with raw images shrunk to 32 32 as opposed to images resized to 16 16. He
achieves a best accuracy of 0.9752 while employing the RBF kernel, which is significantly better than
the best case for the linear kernel, which is 0.9156.The raw picture feature performs better in both
circumstances than the Canny image feature.
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Figure 2.1: SVM feature size and type comparison (ISH dataset) [5].

The difference between the two feature sizes in the RBF kernel is minor. figure2.2(ROC curves for
ISH dataset.) : displays the ROC curves for both the RBF and linear kernels for the SVM binary
classification results based on the ISH dataset. The RBF kernel has an area under the ROC curve of
0.97, while the linear kernel has an area under the ROC curve of 0.73. These findings show that an
SVM using an RBF kernel can accurately distinguish ham and spam images with a low false positive
rate.[5]

Figure 2.2: ROC curves for ISH dataset [5].

2.3 The Multi-Layer Perceptrons (MLP) experiment :
He experimented with many topologies for multilayer perceptrons (MLP). MLPs with one input
layer, two hidden layers, and one output layer are studied in this paper. Each hidden layer has 128
nodes and the activation functions are rectifier linear units (ReLU). He chose the binary cross-entropy
function to calculate the loss. At the output stage, a sigmoid score function is applied. The greatest
results were routinely obtained with this architecture. The models are trained for 100 epochs and
70 % of the picture data are used to train the MLPs. A batch size of 64 is employed for each epoch,
and the validation split is 15 percent of the picture data samples. figure2.3(MLP accuracy and loss)
: demonstrate MLP accuracy and loss over 50 epochs, with figure 2.3(b)(MLP loss) showing the
related loss graph.
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Figure 2.3: MLP accuracy and loss [5].

The model is converging without overfitting, according to these results. The ideal testing accuracies
for the MLP experiments reported in figure2.4(MLP result).[5]

Figure 2.4: MLP result [5].

2.4 The Convolutional Neural Networks (CNN) experiment:
For image processing, convolutional neural networks are generally favorable - in terms of efficiency
and accuracy. In the data set ISH. The results is based on a combination of characteristics (raw
and Canny image). A variety of CNN hyperparameters have been experimented with, but for the
purpose of this study the following setup is used. The first convolution layer has 32 nodes and 3
kernels. There are three convolutional layers, with 32 and 64 nodes in the second and third layers,
respectively. Use the ReLU activation function on all convolutional layers, and the sigmoid function
on the fully connected final layer. Use a pool size of 2 2 to downsample the data using a maximum
pooling layer. A 0.5 dropout rate was also used to avoid overfitting.For each epoch, the batch size
is set to 64, training for 100 epochs using 70 % of the data used for training and 30 % retained for
testing. figure2.5(CNN architecture) : shows the architecture of a CNN network.
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Figure 2.5: CNN architecture [5].

Figure2.6(CNN accuracy and loss) : shows the accuracy and loss graphs of the ISH data set, which
clearly show that no overfitting occurred. The heights in the test graphs for the challenge data set
indicate the difficulty the models have with the data; Even a small advance in the training set can
lead to instability in the validation set.

Figure 2.6: CNN accuracy and loss [5].

It may be possible to mitigate these mutations by using more regulation (eg, dropouts), but this would
have little effect on outcomes and would increase the cost of training significantly. Figure2.7(CNN
result) : shows the best CNN test accuracy for the data set under consideration. In the ISH dataset,
we can observe that CNN outperforms both SVM and MLP.[5]
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Figure 2.7: CNN result [5].

2.5 Particle Swarm Optimization (PSO) :
Optimization of Particle Swarms (PSO) It’s a Meta-Heuristic optimization strategy based on pop-
ulation. It has attracted the attentions of researchers all around the world due to its applicability
and performance in a wide range of complicated real-world optimization issues. In 1995, Kennedy
and Eberhart created the Particle Swarm Optimization technique. It is inspired by the way a flock
of birds in search of food sources adjusts their position based on their individual previous positions
as well as the position of their swarm. It starts by creating a number of discrete search ‘Particles’
each representing a potential solution. An evolutionary process causes this population of particles
to shift their places.[23]

2.5.1 How PSO works:
Simple mathematical calculations over the particle’s position and velocity are used to move these
particles around in the search space. The particles’ movements (Figure 2.8 : Movement of Particle)
are directed by their previous best position in the search space (Personal Best) and also the swarm’s
best-known position (Global Best).[24]
It requires finding an optimal location within a specific neighborhood, which is determined by three
factors: inertia: the particle tends to follow its current direction of movement cognitive: the particle
tends to go to the best site by which it has already passed social: the particle tends to rely on the
experience of its congeners and, thus, to move towards the best site already reached by its neighbors.
[24]

Figure 2.8: Movement of a particle.
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Components of PSO:

The algorithm’s procedure then requires moving these particles in order for them to discover the best
solution; they must have:
-their locations, knowing their coordinates under the condition that they are part of the search space
-the best position they’ve ever had.
-Their neighborhood’s optimal position, as determined by their objective function.
-Their speed, which enables them to move and change positions throughout the iterations.
-a neighborhood, which is a group of particles that communicates with the particle directly (espe-
cially the one with the best position).[25]

2.5.2 The Concept Of The Neighborhood :
The particle’s neighborhood is made up of a group of other particles with whom it interacts. The
interweaving of all the particles’ relationships is referred to as sociometry or swarm topology. There
are two types of neighborhoods:
- Geographic Neighborhood: it is a dynamic neighborhood in which the closest particles are the
neighbors. The new neighbors or groups must be revised at each iteration by reference to a specified
distance in the research space. [25]

Figure 2.9: Geographical Neighborhood at (t) and (t + 1).

The concept of dynamic neighborhood is illustrated in (Figure 2.9: Geographical neighborhood at
(t) and (t + 1) the neighborhood for the same swarm at (t) and (t + 1) is not the same. Note: in
this example, we’ll suppose that a particle’s neighborhood is composed of the two closest particles.
- Social Neighborhoods: These neighborhoods are considered static because they do not change. This
is the most commonly used neighborhood because of:

• In terms of calculation, it provides a better time/cost ratio.

• In a convergence scenario, a social neighborhood is closely connected to a geographic neighbor-
hood.

• Its programming simplicity. [25]
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2.5.3 Number Of Particles:
The dimension of the search space and the relation between the machine’s processing capabilities
and the maximum time complexity determine the number of particles that used fix the issues. There
is no law that defines this parameter; nonetheless, and do a large number of tests will provide you
with the essential expertise to understand it. The decision is made randomly in most cases. [26]

2.5.4 Neighborhood Topology:
The structure of the social network is defined by the topology of the neighborhood, which determines
with whom each particle will be able to communicate. There are other combinations, but the following
are the most popular (Figure 2.10: Neighborhood Topologies):

• Star Topology: each particle is connected to all others, and the best global is the best neigh-
borhood.

• Ring Topology: each particle is linked to n other particles (usually n = 3), and each particle
tends to move toward the best in its near area.

• Radius Topology: just one central particle connects with the particles.[26]

Figure 2.10: Neighborhood Topologies Most Used.

2.5.5 PSO Algorithm:
A particle i in the swarm is represented by its position vector and velocity vector in the D-dimension
research space, as follows:

In a research space, a group of particles (possible solutions) of the global minimum. None of the
particles knows where the global minimum is, but they all have fitness values that need to be
optimized using the fitness function. [8]
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Each of these particles has a velocity that allows them to update their position over time in order
to discover the global minimum.[8] In the search space, the particles have already been scattered at
random. After that, their velocity must be set. The velocity vector, which is defined by its speed in
each direction, will be randomized once more. [8] determine the particle’s speed, which then allows
us to calculate the particle’s position by using equation (Figure 2.11: Particle Update).[8]

Figure 2.11: Particle Update.[8]

There are two aspects to our worth. The best personal solution and the best global solution, the
first discovered by a single particle and the second by a swarm of particles. Each particle stores the
best personal and global solutions in its memory. [8]
(wV )t

icorrelates to the displacement’s inertia component, where the w parameter determines the
influence of displacement direction on future displacement. c1r1(p(best(i))t − pt

i) relates to the cog-
nitive component of displacement, with parameter c1 controlling the particle’s cognitive behavior.
c2r2(pbestglobal

t − pt
i) corresponds to the social component of the displacement, with c2 controlling

the particle’s social fitness. The velocity of every particle is updated. The two best values found
so far control this velocity, which is influenced by inertia. [25] Random terms are used to weight
acceleration at each iteration. The weights r1 and r2 are used to change the cognitive and social
accelerations stochastically. [8] Every particle and iteration have two distinct weights, r1 and r2.
The hyperparameter w (Inertia Weight) balance between exploring and exploiting the greatest solu-
tions discovered thus far, which allows to set the swarm’s ability to shift direction. A low coefficient
w makes it easier to use the best solutions found so far, which means It implies a higher level of
convergence as illustrated in (Figure 2.12: W Comparison). [8] While a higher coefficient w makes
it easier to explore these solutions.
Note:(w >1) should be avoided because it can cause our particles to diverge. [8]
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Figure 2.12: W Comparison.[8]

The C1, C2 (Acceleration Coefficients) hyperparameter defines the group’s ability to be influenced
by the best individual solutions for the first Coefficients and the best global solution for the second
Coefficients obtained over iterations. [8]

Figure 2.13: C1 and C2 Comparison.[8]

When C1 is high, we see that the swarm particles become more individualized, no convergence
occurs because each particle is exclusively concerned with its own best solutions. When C2 is high,
then, the swarm’s particles will be more impacted by others as illustrated in (Figure 2.13 : C1 and
C2 comparison). [8] As a result, the coefficients C1 and C2 are complimentary. Exploration and
exploitation are both boosted when the two are combined. [8]
Algorithm:
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Algorithm 1: Particle swarm optimisation algorithm
1 1. Initialize N particles at random with their positions and velocities.
2 while For each particle i do
3 • Evaluate particle positions: fitness f (Pi) at current position Pi
4 if f (Pi) is better than f (Pbest(i)) then
5 update Pbest(i) and f (Pbest(i))
6 end
7 if f (Pi) is better than f (Pbestglobal(i)) then
8 update Pbestglobal (i) and f (Pbestglobal (i))
9 end

10 For each particle i Update Velocity Vi and position Pi using: Figure: Particle update
11 end

Notation:
Pi: a vector denoting its position.
vi: the vector denoting its velocity.
f (Pi): denotes the fitness score of Pi.
Pbest(i): the best position that it has found so far.
f (Pbest(i)): denotes the fitness of Pbest(i).
Pbestglobal (i): the best position that has been found so far in its Neighborhood.
f (Pbestglobal(i)): denotes the fitness of Pbestglobal (i).

2.5.6 Auto Hyperparameters:
We can take it a step further by updating coefficients as we go through the iterations. Beginning
with a strong C1, strong W, and weak C2 to enhance search space exploration, we want to converge
to a weak C1, weak w, and strong C2 to exploit the best results after exploration by converging to
the global minimum.[8]

Figure 2.14: Auto Hyperparameters Over Iterations.[8]

The optimal static parameters are W=0.72984 and C1 + C2 > 4 Specifically, C1 = C2 = 2.05 accord-
ing to M.Clerc and J. Kennedy’s paper [27] to create a standard for Particle Swarm Optimization.
[8]

2.5.7 Convolutional Neural Network Architecture Optimized by PSO :
This section discusses optimization techniques that use the PSO algorithm to improve the parameters
of CNN architectures. After evaluating the performance of a CNN through an experimental study
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in which the parameters were updated manually, the parameters to be optimized were picked.[9] For
the same task, various CNN parameter choices provide a difference of outcomes; the goal is to find
the best architectures. In this study, the parameters stated below were chosen to be optimized.
• The number of convolutional layers;
• The filter size or filter dimension used in each convolutional;
• The number of filters;
• The batch size number (the number of images that are entered; into CNN in each training block);
The general scheme is introduced in (Figure 2.15 : General CNN Optimization Process Using The
PSO Algorithm).

Figure 2.15: General CNN Optimization Process Using The PSO Algorithm. [9]

The PSO technique is used to integrate the parameter optimization into the CNN. The PSO is started
per the execution parameter, and the particles are generated as a result. Each particle provides a
complete CNN training since it offers a possible solution and each position has the parameter to be
optimized.[9] The steps for using the PSO algorithm to optimize the CNN are depicted in (Figure
2.16 : Flowchart Of CNN Optimization Process Using PSO) and described in following:
• Input database: picking the database to be processed and classified.
• Generate the particle population for the PSO algorithm: The number of iterations and particles,
inertial weight, cognitive constant (W1), and social constant (W2) are all PSO parameters that were
employed in the experiment. The design of the particles is involved in this step.
• Construct the CNN architecture: The CNN is set and prepared to train the input database with
the parameter given by the PSO.
• CNN training and validation.
• Evaluate the objective function: To obtain the best value, the PSO algorithm examines the
objective function.
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• Update PSO parameters: Every particle changes its velocity and position in the search space based
on its best position (Pbest) and best position in the swarm (Gbest) during every iteration.
• The process continues until the stop condition are reached by evaluating all of the particles (number
of iterations).
• Lastly, the best solution is chosen: (Gbest) represents a particle in this process.[9]

Figure 2.16: Flowchart Of CNN Optimization Process Using PSO .[9]

2.6 Conclusion
In this chapter we present different Learning Techniques experiments for Identifying Spam from
Ham Images and its result and we did discussion this results. Support vector machines (SVM)
and two Neural Network-based approaches, Multilayer Perceptron (MLP) and Convolutional Neural
Networks(CNN), were explicitly addressed. Also the Particle Swarm Optimization (PSO) algorithm,
which was inspired by the world of animals (bird species), has had exceptional success since its
beginnings Due to its simplicity.
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Chapter 3

Implementation

3.1 Introduction :
I n this chapter, we present an experimental part. When trying to design CNN architectures, we
face several challenges, such as high computational costs for information processing and determining
the best CNN parameters (architecture) for every issue. To address these issues, we will recommend
the PSO algorithm, which is used to automatically design CNN architectures in order to get best
result

3.2 Runtime Environment :
I n this section, we’ll go over the software and hardware that make up the development environment
of our implementation’s.
• Python: is the most ideal programming language since it is utilized in artificial intelligence. It has
made significant advancements in programming, and is recognized an accurate, strong, and simple
to learn language. Python is also a wonderful approach to apply deep learning to classify images
with using some library.
• Keras: is a high-level neural networks simple and powerful free open source Python library that
allows easy and fast prototyping it is for defining and training practically all type of deep learning
model. Tensorflow, Theano, and CNTK are all able to operate on top of it. It was created to allow
for quick experimenting.
• Google Collab: is a Google Research product. Colab is a web-based Python editor that allows
anyone to write and run arbitrary Python code. It’s notably useful for machine learning, data
analysis, and education. Colab is a hosted Jupyter notebook service that requires no installation and
provides free access to computer resources such as GPUs. with Intel(R) Xeon(R)Intel(R) Xeon(R)
CPU @ 2.30GHz, about 13 GB of RAM.

3.3 Image Spam Dataset :
T here are only a few of publicly available image spam databases. As part of this study, we looked
at some:
• ISH Dataset (Image Spam Hunter): Researchers at Northwestern University collected this data[28].
There are 928 spam photos as the spam sample collection, taken from real spam emails and 810 ham
images 20 scanned documents were randomly collected from “Flickr.com” in this dataset and is
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available at [29].
• Dredze Dataset: Dredze et. al [30] created an image spam corpus which is publicly available [31].
The data set consists of a large corpus with different formats (JPEG, GIF, PNG). We used a simple
criterion: if an image appears in a spam email, it is spam. It’s ham if it appears in a ham message.
We use the standard definitions of spam and ham email. The data is clearly labeled according to this
standard. created two spam datasets, one depending on individual spam and the other depending
on spam that was publicly available. Over the course of a month, we collected spam emails from 10
email accounts across 10 domains. A two-year period of time was used to collect mails and extract
all accompanying images for ham. Our ham images are more realistic because they come from actual
user emails. Due to the absence of public email image data, it was unable to create a public ham
corpus.
• Challenge Dataset 1: The authors of [32] developed this challenge dataset and available in [33].
They use image processing techniques to spam images to make them look as ham-like. The spam
images were taken from the Dredze spam repository public corpus [31]. This dataset contains 1000
images. From the spammer’s perspective, this dataset has been "enhanced.". These spam images
were mixed with the ham images from the ISH [29] dataset using a weighted overlay technique in
a suitability study, a weighted overlay is the intersection of standardized and differently weighted
layers. The weights represent the relative relevance of the various suitability criteria. [10]

Figure 3.1: Weighted overlay. [10]

• Challenge Dataset 2: The dataset for this challenge was created as part of a study in [34]. the
objective of this dataset is to provide a challenge to the detection of increasingly advanced kinds of
image spam that are sure to be observed in the coming days employing an alternative method of
overlaying like in [32]. ISH [29] and the Dredze [31] datasets were used for our spam corpus. In order
to create our spam images, we first extract the content of an existing spam image, then overlay it on
an existing ham, (Figure 3.2 : Challenge dataset example) illustrates an example of a spam image
created using The modified spam image like a ham.
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Figure 3.2: Challenge Dataset Example.

3.4 Tuning CNN Hyperparameters Using PSO :
Y ou must first choose the hyperparameters related with each layer of a deep neural network before
you can begin training it. In most cases, human logic, experience, or trial and error determines the
hyperparameters. Hyperparameters connected with deep neural networks and their ranges are listed
in Table below (table 3.1 : The various hyperparameters in CNN with their ranges).[24]
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Table 3.1: The various hyperparameters in CNN with their ranges.

3.5 Preparing The Data :
O ur experimental data is presented in this section, which begins with a description of the data set
that we have chosen for our experiment. Onto the preprocessing step of this dataset, which is a really
intriguing part of any data study project. The dataset we use is a collection of Spam Images and
Natural Images. This dataset is downloadable from the following link:[35] The dataset includes 808
of Natural Images and 929 of Spam Images we split the dataset into training and validation subset
(Listing A.1 – Data Generation). After splitting dataset, we Found 1356 images (training data) and
346 images (validation data) belonging to 2 classes.
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3.6 Class Particle :
I n each population, we initialize particle (Listing A.2 – Initialization Particle) with this parameter
(min-layer, max-layer, max-pool-layers, input-width, input-height, input-channels, conv-prob, pool-
prob, fc-prob, max-conv-kernel, max-out-ch, max-fc-neurons, output-dim). aim to Build particle
architecture, we Initial velocity and then we Update Particle. (Listing –A.3 Update Particle) and
compute Velocity (Listing –A.4 Compute Velocity) during the training. compile our CNN model
(Listing – A.5 Compile model), we start by create an object of the sequential class to initialize our
neural network model as a sequential network, we import Conv2D this is to perform the convolution
operation on the training images. Since we are working on images here, which a basically 2 Dimen-
sional arrays and MaxPooling2D, AveragePooling2D, MaxPooling2D which is used for pooling
operation, Dense which is used to perform the full connection of the neural network, after that we
fit the data to our model (Listing – A.6 Fit the model).

3.7 Class Utils :
I n this class, we define many functions as:
- add-conv: Use it to add convolution layer (Listing –A.7 add convolution) we pass to list layer,Maximum
output channel, convolution kernel and return list of layers.
- add-fc: Use it to add fully connected layer we pass list layer and maximum fully connected neurons,
return list of layers.
- add-pool: Use it to add fully connected layer we pass list of layer, maximum fully connected neu-
rons, return list of layers.
- differenceConvPool: Compute the difference only between the convolution and pooling layers.
- differenceFC: Compute the difference between the fully connected layers.
- computeDifference: Compute the difference between the best layers in particle or global best and
layers.
- velocityConvPool: Compute the velocity only between the convolution and pooling layers.
- velocityFC: Compute the velocity between the fully connected layers.
- update functions for ConvPool, FC (fully connected), Particle.

3.8 Generate The Particle Population :
I n this class(Listing –A.7 Population class) will create N particles with random CNN architectures,.
Each particle will have a random number of layers, but the first and end layers of each particle will
always be a convolution and a fully-connected layer, respectively, in order to generate workable CNN
architectures. Furthermore, fully-connected layers (FC) can only be used towards the end of the
architecture, not between convolutions or pooling layers.

3.9 Optimize CNN Architecture by PSO :
T his class as shown in (listing :A.9 PSOCNN) presents the optimization approaches where the
PSO algorithm is applied to optimize the parameters of CNN architectures is the main purpose of
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this the method , After searching and performed The fitness evaluation, the optimal architecture can
be used to classify all the data set.

3.10 The Main Method :
I n the main method as presented in the (listing :A.10 The main method) , we initialize all the
parameters that we need for the psoCNN method and call this method, and after that we display
the details of the results of our optimizer architecture.

3.11 Discuss The Results :
T he accuracy and loss graphs for the ISH dataset for simple CNN architecture are given in (Figure
3.3: CNN Lose and Accuracy) and for PSO-CNN architecture are given in (Figure 3.4: PSO-CNN
Lose)

Figure 3.3: CNN loss and accuracy

Figure 3.4: PSO-CNN loss and accuracy

According to (Figure:3.5 the result), the model performed well throughout the test the accuracy rate
was 99.6%and the error rate was 0.018% and number of trainable parameters: 2381853 , indicating
that it is stable (no sign of over-fitting) because it performed well during the test.
The optimal CNN testing accuracies for the datasets under consideration are given in (Figure:3.6
PSO-CNN and CNN Result). From these results, we see that our PSO-CNN performs better than
simple CNN in ISH dataset.
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Figure 3.5: The Result

Figure 3.6: CNN and PSO-CNN Result

the architecture of model PSO-CNN in illustrated in (Figure:3.7 PSO-CNN Architecture ).

Figure 3.7: PSO-CNN Architecture

3.12 Conclusion :
In this chapter, we describe the procedures we took in the Experimental study to construct a spam
model based on a data collection of image spam and natural images. Our model performed well,
with an accuracy of 98 percent and a 3The results were satisfactory, but we believe that they may
be improved further if we used a data set with a large number of images.

41



General Conclusion

In this thesis, we focus in image spam detection using a deep learning approach and bio-inspired
algorithms. We started with Artificial Neural Networks, bio-inspired algorithms, Twitter, and meta-
heuristics, with such a focus on Convolutional Neural Networks we employed it to build our model
before moving on to PSO to generate fully trained CNN architectures for the (spam image /natural
picture) Dataset. The proposed method has been shown to be capable of choosing important hy-
perparameters and building an optimal CNN architecture. We would have preferred working on a
larger and more important data set, but the absence of data structure on Image Spam stopped us
from doing so.



Appendix A

Python code to solve the optimization
problem

1 from keras. preprocessing .image import ImageDataGenerator
2 import keras
3

4 train_datagen = ImageDataGenerator ( rescale =1./255 ,
5 shear_range =0.2 ,
6 zoom_range =0.2 ,
7 horizontal_flip =True ,
8 validation_split =0.2) # set validation split
9

10 train_generator = train_datagen . flow_from_directory (
11 r"/ content /drive/ MyDrive / datasetsIHM ",# dataset path in drive
12 target_size = (28, 28) ,
13 color_mode =" grayscale ",
14 shuffle =True ,
15 batch_size =32,
16 class_mode =’categorical ’,
17 subset =’training ’) # set as training data
18

19 validation_generator = train_datagen . flow_from_directory (
20 r"/ content /drive/ MyDrive / datasetsIHM ", # dataset path in drive
21 target_size = (28, 28) ,
22 color_mode =" grayscale ",
23 batch_size =32,
24 shuffle =True ,
25 class_mode =’categorical ’,
26 subset =’validation ’) # set as validation data

Listing A.1: Data Generation

1 class Particle :
2 def __init__ (self , min_layer , max_layer , max_pool_layers , input_width ,

input_height , input_channels , \
3 conv_prob , pool_prob , fc_prob , max_conv_kernel , max_out_ch ,

max_fc_neurons , output_dim ):
4 self. input_width = input_width
5 self. input_height = input_height
6 self. input_channels = input_channels
7

8 self. num_pool_layers = 0
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9 self. max_pool_layers = max_pool_layers
10

11 self. feature_width = input_width
12 self. feature_height = input_height
13

14 self. depth = np. random . randint (min_layer , max_layer )
15 self. conv_prob = conv_prob
16 self. pool_prob = pool_prob
17 self. fc_prob = fc_prob
18 self. max_conv_kernel = max_conv_kernel
19 self. max_out_ch = max_out_ch
20

21 self. max_fc_neurons = max_fc_neurons
22 self. output_dim = output_dim
23

24 self. layers = []
25 self.acc = None
26 self.vel = [] # Initial velocity
27 self. pBest = []
28

29 # Build particle architecture
30 self. initialization ()

Listing A.2: Initialization Particle

1 def update (self):
2 new_p = updateParticle (self.layers , self.vel)
3 new_p = self. validate (new_p)
4

5 self. layers = new_p
6 self. model = None

Listing A.3: Update Particle

1 def velocity (self , gBest , Cg):
2 self.vel = computeVelocity (gBest , self.pBest.layers , self.layers , Cg)

Listing A.4: Compute Velocity

1

2 def model_compile (self , dropout_rate ):
3 list_layers = self. layers
4 self. model = Sequential ()

Listing A.5: Compile model

1

2 def model_fit (self ,train , batch_size , epochs ):
3 hist = self.model.fit( train_generator , validation_split =0.0 , batch_size =

None , epochs = epochs )
4

5 return hist
6

7 def model_fit_complete (self , train_generator , batch_size , epochs ):
8 hist = self.model.fit( train_generator , validation_split =0.0 , batch_size =

None , epochs = epochs )
9
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10 return hist

Listing A.6: Fit the model

1

2 def add_conv (layers , max_out_ch , conv_kernel ):
3 out_channel = np. random . randint (3, max_out_ch )
4 conv_kernel = np. random . randint (3, conv_kernel )
5

6 layers . append ({"type": "conv", "ou_c": out_channel , " kernel ": conv_kernel })
7

8 return layers

Listing A.7: Add convolution

1 class Population :
2 def __init__ (self , pop_size , min_layer , max_layer , input_width , input_height ,

input_channels , conv_prob , pool_prob , fc_prob , max_conv_kernel , max_out_ch ,
max_fc_neurons , output_dim ):

3 # Compute maximum number of pooling layers for any given particle
4 max_pool_layers = 0
5 in_w = input_width
6

7 while in_w > 4:
8 max_pool_layers += 1
9 in_w = in_w /2

10

11 self. particle = []
12 for i in range( pop_size ):
13 self. particle . append ( Particle (min_layer , max_layer , max_pool_layers ,

input_width , input_height , input_channels , conv_prob , pool_prob , fc_prob ,
max_conv_kernel , max_out_ch , max_fc_neurons , output_dim ))

Listing A.8: Population class

1 class psoCNN :
2 def __init__ (self , dataset , n_iter , pop_size , batch_size , epochs , min_layer ,

max_layer , \
3 conv_prob , pool_prob , fc_prob , max_conv_kernel , max_out_ch ,

max_fc_neurons , dropout_rate ):
4

5 self. pop_size = pop_size
6 self. n_iter = n_iter
7 self. epochs = epochs
8

9 self. batch_size = None
10 self. gBest_acc = np.zeros( n_iter )
11 self. gBest_test_acc = np.zeros( n_iter )
12 def fit(self , Cg , dropout_rate )
13 def fit_gBest (self , batch_size , epochs , dropout_rate )
14 def evaluate_gBest (self , batch_size )

Listing A.9: PSOcnn class

1

2

3 # ####### Algorithm parameters ##################
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4

5

6

7 number_runs = 10
8 number_iterations = 10
9 population_size = 20

10

11 batch_size_pso = 32
12 batch_size_full_training = 32
13

14 epochs_pso = 1
15 epochs_full_training = 100
16

17 max_conv_output_channels = 256
18 max_fully_connected_neurons = 300
19

20 min_layer = 3
21 max_layer = 20
22 for i in range( number_runs ):
23 print("Run number : " + str(i))
24 start_time = time.time ()
25 pso = psoCNN ( dataset =dataset , n_iter = number_iterations , pop_size =

population_size ,
26 batch_size = batch_size_pso , epochs =epochs_pso , min_layer =

min_layer , max_layer =max_layer ,
27 conv_prob = probability_convolution , pool_prob =

probability_pooling ,
28 fc_prob = probability_fully_connected , max_conv_kernel =

max_conv_kernel_size ,
29 max_out_ch = max_conv_output_channels , max_fc_neurons =

max_fully_connected_neurons ,
30 dropout_rate = dropout )
31

32 pso.fit(Cg=Cg , dropout_rate = dropout )
33 print(pso. gBest_acc )
34

35 # Plot current gBest
36 matplotlib .use(’Agg ’)
37 plt.plot(pso. gBest_acc )
38 plt. xlabel (" Iteration ")
39 plt. ylabel ("gBest acc")
40 plt. savefig ( results_path + "gBest -iter -" + str(i) + ".png")
41 plt.close ()
42

43 print(’gBest architecture : ’)
44 print(pso.gBest)

Listing A.10: Main method
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