

Thesis

To obtain the master's degree

Field: Mathematics and Computer Science

Faculty: Science and Technology

Specialty: Intelligent Systems for Knowledge Extraction

By

Bayoub REDDAH

Nessreddin DAOUDI

Before the jury composed of:

Slimane OULAD-NAOUI MCB Univ. Ghardaia Examiner

Houssem Eddine DEGHA MAA Univ. Ghardaia Examiner

Nacera BRAHIM MAA Univ. Ghardaia Supervisor

University Year 2020 / 2021

 الجمهوریة الجزا�ریة ا�يمقراطیة الشعبیة
People’s Democratic Republic of Algeria

 وزارة التعليم العالي والبحث العلمي

Ministry of Higher Education and Scientific Research
 �امعة غـردایة

University of Ghardaïa
العلوم والتك�ولوج�ا كلیة

Faculty of Science and Technology
ا�ليٓ والإ�لام الر�ضیات قسم

Department of Mathematics and Computer

Theme

:security Machine Learning for smartphone
Android botnet detection

Registration No.
 / … / … / … / … / …

Abstract

Android is the most used mobile operating system in the world and since it is
open source, hackers exploit it to perform different attacks such as executing bot-
net attack which allow them to control the compromised device remotely from a
Command and control (C&C) server and perform other attacks such as distributed
denial of service (DDOS) from the device itself without the owners’ knowledge.

The aim of our study is to find a model that allows us to detect Android botnets
efficiently.

Our proposed method uses a single layer and multi-layer Perceptron models trained
on 342 features to classify application as benign or botnet using ICSX dataset.

We obtained great results from our experimental study with an accuracy of 99%.

Keywords: Botnet detection, Android Botnets, Mobile Botnet, Machine learning,
Perceptron, Multi-layer Perceptron, Static Analysis, Smartphone Security .

Résumé

Android est le système d’exploitation mobile le plus utilisé au monde du fait qu’il
est open source, raison pour laquelle les pirates tentent de plus en plus de l’exploi-
ter pour lancer différentes attaques telles que la mise en place d’un botnet qui leur
permet de contrôler l’appareil compromis à distance à partir d’un serveur Com-
mand and control (C&C) et ainsi s’en servir comme support pour lancer d’autres
attaques telles que le déni de service distribué (DDOS) à partir de l’appareil lui-
même à l’insu de son propriétaire.

L’objectif de notre étude est de trouver un modèle qui nous permet de détecter les
botnets Android de manière efficace.

Notre solution a été implémentée en utilisant des Perceptron à couche unique et
multicouches qui a été entrainé sur 342 caractéristiques pour distinguer les appli-
cations bénignes des botnet en se servant de la base de données (corpus d’entrai-
nement) ICSX.

Les résultats obtenus de notre éxperimentaion sont très encourageants avec un
taux de précision de teste qui a atteint 99%.

Mots clés : Détection des botnets, botnets Android, botnet mobile, apprentissage
automatique, Perceptron, Perceptron multicouches, analyse statique, sécurité des
smartphones

P�l�

�wtf� ¢�wk� �r\�¤ ,��A`�� ¨� A��d�tF� r��±� �y�Kt�� �A\� w¡ d§¤Cd��

Botnet �w�¡ ��� �Am�h�� �lt�� �K� ¢�®�tF� �y�rt�m�� �¤A�§ ,CdOm��

�k�t�� ry�ryF ��d�tFA� d`� �� Ty�S�� EAh� ¨� �k�t�� �� �huniÌkamu§ ©@��¤

Distributed) �w�¡ ��� «r�� �Am�¡ �J �� �huniÌkamu§ �y� (Command & Control)
.EAh��� ��A� �l� ¤d� ¢sf� EAh��� �� (Denial of Service

d§¤Cd�±� �A\� Yl� Botnet �AqybW� �AKt�A� An� �ms� Tq§rV A�§� w¡ An�d¡

.Ty�A� ºAfk�

�AqbV d� ¤Ð ¤ d��¤ TqbV ¤Ð Perceptron �Ðwm� �d�tts� T�rtqm�� Antq§rV

Botnet ¤� TmylF Ah�� Yl� �AqybWt�� �ynOt� Ty}A� 342 Yl� ¢b§Cd� �� ©@��

.ICSX �A�Ayb�� T�wm�� ��d�tFA�

99% T�d� Tyb§r�t�� AntF�C �®� �� T`¶�C �¶At� Yl� AnlO��

�A\n� Ty�w�¤r�� �AkbK�� ,Ty�w�¤r�� �AkbK�� �� �Kk�� :Ty�Atfm�� �Amlk��

 d`t� , ¤rtbFry� ,¨�±� �l`t�� ,�wm�m�� ��Ahl� Ty�w�¤r�� �AkbK�� ,d§¤Cd�±�

���wh�� A�� ,�A� �yl�� , ¤rtbFry� �AqbW��

Dedication

We thank Allah who helped us achieve this accomplishment and he has been
with us from the beginning.

We dedicate this work to our family and our friends. A special feeling of
gratitude to our loving parents, brothers and sisters, who have been a constant

source of support and encouragement.

i

Acknowledgement

First, we thank Allah for helping us complete this thesis.

Next, we would like to express our special gratitude to our supervisor Mrs.
Nacera BRAHIM, for her follow-up, guidance and support, Which helped us in

writing this thesis with her suggestions and encouragement.

Moreover, we would also like to thank with great appreciation Dr. Selimane
BELLAOUAR as well as Dr. Selimane OULADNAOUI for their assistance and

guidance in this paper.

Finally, we would like to express our deep appreciation to everyone that helped
us complete this report without forgetting our teachers who taught us since the

first grade because we wouldn’t be here without them.

ii

Contents

List of Figures 6

List of Tables 7

List of abbreviations and acronyms 8

Introduction 1

Chapter 1 Background 2

1.1 Introduction . 2

1.2 Android operating system . 2

1.2.1 Definitions . 2

1.2.2 Platform architecture . 3

1.2.3 Risks . 5

1.3 Machine Learning & Deep Learning 7

1.3.1 Architectures . 9

1.3.2 Evaluation . 11

1.4 Conclusion . 14

Chapter 2 Botnet 15

2.1 Introduction . 15

2.2 Definitions . 15

2.3 Topologies . 16

3

2.3.1 Centralized topology . 16

2.3.2 Peer To Peer topology . 17

2.3.3 Hybrid topology . 17

2.4 Protocols . 17

2.5 Botnet attack . 18

2.5.1 Attack steps . 18

2.5.2 Attack risks . 19

2.6 Existing botnets . 20

2.6.1 Matryosh - 2021 . 20

2.6.2 Chamois - 2016 . 21

2.6.3 WireX - 2017 . 22

2.6.4 Geost - 2016 . 23

2.7 Conclusion . 24

Chapter 3 State of the art 25

3.1 Introduction . 25

3.2 Static analysis . 25

3.2.1 Detection using Convolutional Neural Networks 26

3.2.2 Detection using Random forest 28

3.3 Dynamic analysis . 30

3.3.1 Detection using PSO-SVM 30

3.3.2 Detection using Random Forest 33

3.4 Hybrid analysis . 35

3.5 Conclusion . 38

Chapter 4 Conception & Implementation 40

4.1 Introduction . 40

4.2 Dataset . 40

4

4.3 Environment . 42

4.4 Network architecture . 43

4.5 Results And Discussion . 46

4.6 Conclusion . 49

Conclusion 50

Bibliography 51

Appendices 57

Dataset Features . 58

5

List of Figures

1.1 Android platform architecture [3] 4
1.2 Types of cyber attacks [6] . 5
1.3 Man In The Middle attack [9] . 6
1.4 The difference between (AI-ML-DL) [12] 7
1.5 SVM hyper-planes [13] . 8
1.6 Decision tree method example [15] 8
1.7 Deep neural network [18] . 10
1.8 CNN architecture [19] . 11
1.9 Binary classifier confusion matrix [21] 12

2.1 Botnet architecture overview. 16
2.2 Botnet topologies [26] . 16
2.3 Botnet attack steps overview. 19
2.4 Matryoshka: russian nesting dolls [36] 20
2.5 Premium SMS warning [41] . 21
2.6 WireX botnet growth [43] . 23
2.7 Geost botnet: attack steps [44] . 23

3.1 Hojjatinia et al. [47] image representation of (a) benign and (b)
botnet android applications. 26

3.2 Hojjatinia et al. [47] CNN model architecture 26
3.3 Hojjatinia et al. [47] The proposed CNN model configuration . . . 27
3.4 Hojjatinia et al. [47] CNN model accuracy by epochs 27
3.5 Anwar et al. [50] method diagram 29
3.6 Moodi et al. [17] method overview 31
3.7 da Costa et al. [64] method overview 34
3.8 da Costa et al. [64] method ROC curve 35
3.9 Karim et al. [66] method overview 36

4.1 A diagram showing how the Perceptron works [77] 44
4.2 Proposed method using the Preceptron model diagram 44
4.3 Original Preceptron model accuracy and loss over 100 epochs . . . 47

6

4.4 MLP model accuracy over 100 epochs 47
4.5 MLP model loss over 100 epochs 48

List of Tables

1.1 Classification metrics. 13

3.1 Application analysis types comparison. 38

4.1 Dataset families. 41
4.2 Dataset feature types. 41
4.3 Dataset most important features. 42
4.4 Preceptron model summery. 45
4.5 MLP-1 hidden layer model summery. 45
4.6 MLP-2 hidden layers model summery. 46
4.7 MLP-3 hidden layers model summery. 46
4.8 Detailed metrics of our proposed models. 48
4.9 Our proposed models compered with similar models. 48

7

List of abbreviations and acronyms

API Application Programming Interface

SVM Support Vector Machine

ROC Receiver operating characteristic

CSV Comma-separated values

PSO Particle Swarm Optimization

BRF Radial Basis Function

OS Operating System

C&C Command and Control

DDoS Distributed Denial of Service

CNNs Conventional Neural Networks

ART Android RunTime

HAL Hardware Abstraction Layer

APK Android package kit

AI Artificial Intelligence

ML Machine Learning

8

DL Deep Learning

P2P Peer to Peer

IRC Internet Relay Chat

HTTP Hypertext Transfer Protocol

CPU Central Processing Unit

RAM Random-Access Memory

SMS Short Message Service

ADB Android Debug Bridge

TCP Transmission Control Protocol

ICMP Internet Control Message Protocol

UDP User Datagram Protocol

NB Naïve Bayes

KNN K-Nearest Neighbors

RF Random Forest

ISCX Information Security Center of Excellence

IDC International Data Corporation

DNS Domain Name System

AAPT Android Asset Packaging Tool

SMO Sequential Minimal Optimization

SLR Simple Logistic Regression

9

IG Information Gain

CV Cross Validation

ANNs Artificial Neural Networks

MLP Multi-Layer Perceptron

ReLU Rectified Linear Unit

Tanh Hyperbolic tangent

GAN Generative Adversarial Network

NLP Natural Language Processing

PCA Principal Component Analysis

MitM Man in the Middle

10

Introduction

Smartphones are advanced mobile devices that help users perform their daily tasks
faster, however doing so means that most of their private information is stored on
their smartphones, which are running usually on iOS or Android operating system.

Android is the most dominant operating system in the smartphone market, and
in 2020 the market share of android is 72.72% followed by iOS with a share of
26.47%. [1]

Android has a high market share because it is an open source operating system,
but that allows hackers to find vulnerabilities easily, which helps them to develop
advanced malware to attack it. According to McAfee’s Threat Report for 2021
[2] the number of new malware on mobile devices has increased to 3.4 million
as of the fourth quarter of 2020. The advanced malware can be used to execute
botnet attack which allows them to control the compromised device remotely from
a Command and control (C&C) server to perform other attacks such as distributed
denial of service (DDOS) from the device itself without the owners’ knowledge. So
we need efficient methods that can detect Android botnet applications.

The rest of the thesis will be organized as follows: The first chapter provides basic
information about the Android operating system and the major attacks on it. It
also provides some basic information about machine learning techniques and their
metrics. The second chapter explains botnets and their attacks. The third chapter
presents the latest methods that can detect Android botnet applications. Finally,
the last chapter explains our proposed method for detecting Android botnet ap-
plications.

1

Chapter 1

Background

1.1 Introduction

Android is among the most used operating systems because it is an open source
system but that makes it vulnerable to multiple attacks and to fight that. Artificial
intelligence systems are used because they can detect new attacks better than other
methods.

In this chapter we present Android operating system architecture, the different
existing attacks, and machine learning techniques with their metrics.

1.2 Android operating system

1.2.1 Definitions

Android is an open source operating system based on Linux that can be used on
different devices and form factors. [3]

Android Package Kit (apk) is a file format used to distribute and install android
applications, it usually contains the following files [4]:

• AndroidManifest.xml file which contains the application information such as
application name, required permissions, broadcast receivers, intents.

2

• classes.dex file which contains the application source code compiled in the
dex file (a bytecode format created specially for Android and it is optimized
to reduce memory usage).

• lib directory which contains compiled code for specific platforms such as
armeabi-v7a, arm64-v8a, ...etc.

• res directory which contains non-compiled resources.

• assets directory which contains applications assets.

• resources.arsc file which contains pre-compiled resources.

1.2.2 Platform architecture

The architecture of the Android system is shown in figure 1.1 and according to [3]
the major components of an Android system are:

• Linux Kernel is the foundation of the Android platform that helps Android
to take advantage of key security features while allowing device manufactur-
ers to develop hardware drivers for a well-known kernel.

• Hardware Abstraction Layer (HAL) provides a Java API interface to
the device’s hardware, it contains library modules for each type of hardware
such as Audio, Bluetooth, ...etc.

• Android Runtime it can run multiple virtual machines on the device by
executing DEX files (a bytecode format created specially for Android and it
is optimized to reduce memory usage).

• Native C/C++ Libraries is a set of libraries written in C and C++ that
can be accessed directly from native code in any application.

• Java API Framework is an application interface to all Android OS features
written in Java, it allows app developers to write simple and reusable code.

• System Apps is a set of core apps that allows users to have basic func-
tionalities pre-installed into their phone while allowing app developers to use
Android OS key features without the need to write code from scratch.

3

Figure 1.1: Android platform architecture [3]

4

1.2.3 Risks

John Chambers, the former CEO of Cisco, once said: “There are two types of
companies: those that have been hacked, and those that don’t yet know that they
have been hacked". According to Cisco’s annual Cybersecurity Report, the total
number of attacks has nearly quadrupled between January 2016 and October 2017
[5].

Figure 1.2: Types of cyber attacks [6]

According to [5, 7, 8] there are several methods and many types of electronic
attacks. Among the most well-known attacks are the following:

Malware is every software with bad intent such as spyware, ransomware, viruses,
Trojans, and worms. In other words, it is malicious software programs that when
they get installed into the victim’s system they can send the victim’s data to the
hacker, lock the victim’s files, serve fraud advertisement, divert traffic, sniff the
victim’s data, spread to other devices, etc.

Trojans are different than viruses and worms because they are not meant to
damage or delete files on your system. Their principal task is to provide a backdoor
gateway for malicious programs/users to steal your valuable data without your
knowledge and permission.

Viruses have the ability to replicate themselves and they damage files on the

5

victim’s device. They stick themselves to songs, videos, and executable files and
travel all over the internet. Their main weakness lies in the fact that viruses can
get into action only if they have the support of a host program. W32.Sfc!mod,
ABAP.Rivpas.A, Accept.3773 are some examples of virus programs.

Phishing is a hacking technique used by hackers to replicate the most accessible
websites and traps the victims by sending a spoofed link to the replicated website.
Along with social engineering, it becomes one of the most common and most lethal
attacks. The primary objective of the attack is to steal sensitive victim’s data such
as credit card and login information or install malware on the victim’s device.

Denial of Service (DoS) A denial of service attack is a technique used to take
down a site, network, or server by flooding that site or server with so much traffic
that the server cannot process all requests in real time and finally crashes, The
attacker floods the target machine with tons of requests to flood the resources,
which in turn limits the fulfillment of legitimate clients requests.

Distributed Denial of Service (DDoS) For DDoS attacks, attackers can use
several compromised devices to launch this attack, so often hackers deploy botnets
or zombie devices that have the sole act of flooding the target system with requests.
The scale of DDoS attacks is increasing with each passing year.

Figure 1.3: Man In The Middle attack [9]

Man-in-the-middle (MitM) the attacker inserts himself between the communi-

6

cation of two devices to read the nonencrypted traffic without alerting the involved
devices as shown in figure 1.3, which allows him to steal financial details and pri-
vate information.

1.3 Machine Learning & Deep Learning

According to [10, 11] the field of Machine Learning is used to solve many problems
such as identifying spam, making product recommendations, and forecasting de-
mand. Deep Learning (DL) is part of Machine Learning which is part of Artificial
Intelligence as shown in Figure 1.4.

Figure 1.4: The difference between (AI-ML-DL) [12]

Machine learning is more expert and innovative compared to artificial intelligence,
as machine learning is used to solve many big problems such as: making product
recommendations, customer segmentation, demand forecasting, identifying spam,
categorizing news articles according to their fields (politics, sports, economics...),
...etc.

Machine learning consists of several algorithms such as: Naïve Bayes Classifica-
tion(NB), Decision Trees, Logistic Regression, linear Regression, Particle Swarm
Optimization (PSO), Support Vector Machines (SVM), Clustering Algorithms,
Principal Component Analysis (PCA), etc. Some of them are shown below:

Support Vector Machine (SVM): is a supervised learning model that uses ker-
nel tricks such as Radial Basis Function (RBF) kernel, Sigmoid kernel, Polynomial

7

kernel, etc. SVMs create a set of hyper-planes in a infinite dimensional space, which
can be used for classification and regression problems.

Figure 1.5: SVM hyper-planes [13]

When the hyper-plane has the great-
est distance to the nearest training data
points of any category (functional mar-
gin) good separation is achieved. The
generalization error of the classifier is
lower if the margin is greater. Figure
1.5 shows the decision function for a
linearly separable problem, having sev-
eral samples on the margin boundaries
(support vectors). [13]

Random forest (RF): is a supervised
learning algorithm. It constructs a for-
est which is a set of decision trees that
are trained independently on data’s
random subset, usually trained using
the “bagging” method which is a ran-
dom sampling technique with replace-
ment. [14] Figure 1.6 shows an example
of a decision tree.

Figure 1.6: Decision tree method example [15]

8

Particle Swarm Optimization (PSO): Eberhat and Kennedy [16] introduced
a method to solve optimization problems after they observed the social behavior
of birds and schools of fish. The main advantages of this method is the fact that
it converges quickly to the global best point, has a simple execution, has only few
of adjustable parameters, it uses very little computation power and it can find the
optimal solution for continuous and discrete mathematical problems. [17]

1.3.1 Architectures

Perceptron: the perceptron is the name given by the neuroscientist Frank Rosen-
blatt to a group of experiments that he began to simulate the human mind in the
thought process between 1957-1962, and it led to his creation of the first Artificial
Neural Network(ANN) in history, the Perceptron Neural Network has only the
input and output layer, and uses the Heaviside step activation function on the
output node which is defined as follows:

h(x) =

{
1, w ∗ x+ b > 0

0, otherwise

Perceptron neural Network is a supervised learning algorithm, and a linear binary
classifier which means that the network solves problems that can only be separated
in a linear form, after the original model was introduced many updated models
emerged.

Deep learning models are more accurate than traditional machine learning algo-
rithms however, it requires a large datasets. Deep learning is used to solve many
complex problems such as speech recognition, computer vision, autonomous driv-
ing, and natural language processing (NLP).

Every deep learning model uses activation functions which are responsible for
calculating the sum of the product of weights with different inputs in a given
range to determine the value of the final output of the current layer, which will be
the inputs for the next if not the last layer. They are used to get the output of the
node, in the design of the neural network, the activation functions are an important
part of it and some of the popular activation functions are: Identity, Binary step,
sigmoid, Hyperbolic tangent(tanh), Rectified linear unit (ReLU), Leaky rectified
linear unit (Leaky ReLU), Softmax, etc. The ability and performance of the neural
network is affected by the choice of the activation function, Therefore, a careful

9

selection of the activation function must be made.

Deep learning consists of several algorithms such as Artificial Neural Network(ANN),
Convolutional Neural Network(CNN), Multi-Layer perceptron (MLP), Recurrent
neural network(RNN), Generative Adversarial Network(GAN), etc. some of which
are explained below:

Figure 1.7: Deep neural network [18]

• Artificial Neural Network (ANN): it simulates the human brain by
learning from observational data. the figure 1.7 shows the architecture of
a deep neural network. The difference between artificial neural networks
and deep learning networks is the depth of the hidden layers in the neural
network.

Multi-Layer Perceptron (MLP): is a class of feedforward Artificial Neu-
ral Networks (ANN), consisting of an input layer and an output layer like a
perceptron with other layers between them which are called hidden layer(s),
MLP uses the Backpropagation method to update the weights of neurons,
however this method requires non-linear activation functions such as ReLU,
Sigmoid, ...etc, due to that MLP can solve non-linear problems and the main
use cases for MLP are prediction, identification, and classification.

10

Figure 1.8: CNN architecture [19]

• Convolutional Neural Network (CNN): is a neural network that are
mainly used to solve image and video recognition problems by extracting the
high-level features, it consists of three distinct operational layers : convolu-
tional layer, pooling layer, fully connected layer, as shown in figure 1.8.

1.3.2 Evaluation

According to [20–22] we can verify and evaluate our model using some techniques
such as:

Cross-Validation (CV): is a statistical method used to test and estimate the
effectiveness of machine learning models.

The Cross Validation’s goal is to test the ability of model to predict new data
that was not used in estimating it, so as to solve problems such as selection bias
or overfitting and give an insightful vision to how the model will generalize to
an independent dataset. Cross-validation’s One of the tours involves Splitting a
sample of data into complementary subsets, proceeding the analysis on one subset
(training set), and validation of the analysis over the other subset (testing set).
To decrease variability, mostly, cross-validation’s multiple rounds are made using
different partitions, and the validation results are combined (e.g. median) over the
rounds to give an estimate the predictive performance of the model. [23]

We can also study the performance of a classification model by calculating the

11

model metrics using the confusion matrix which is a table layout that describes
the performance of a classification model, usually a supervised learning one.

Figure 1.9: Binary classifier confusion matrix [21]

Figure 1.9 shows the confusion matrix of a binary classifier, we define the following
terms:

Predicted Values: is the values that are predicted by the model.

Actual Values: is the values that are actually in a dataset.

True Positive(TP): is the values that are actually positive and predicted positive.

False Positive(FP): is the values that are actually negative but predicted to
positive.

False Negative(FN): is the values that are actually positive but predicted to
negative.

12

True Negative(TN): is the values that are actually negative and predicted to
negative.

Table 1.1 shows the different metrics of machine learning algorithms.

Table 1.1: Classification metrics.

Parameters Formula

True-Positive Rate (TPR)
Recall
Sensitivity

TP

TP + FN

True-Negative Rate (TNR)
Specificity

TN

TN + FP

False-Positive Rate (FPR)
1 - Specificity

FP

FP + TN

False-Negative Rate (FNR) FN

FN + TN

Positive Predictive Value (PPV)
Precision

TP

TP + FP

Accuracy TP + TN

TP + TN + FP + FN

F_Measure
F1_score

2 ∗ Precision ∗Recall
Precision+Recall

13

1.4 Conclusion

In this chapter, we presented Android operating system, its main components and
different attacks. Furthermore we introduced machine learning techniques and
their metrics.

In the next chapter we explain botnet attacks and their threats to users and
servers.

14

Chapter 2

Botnet

2.1 Introduction

Cyber attacks have increased greatly, especially in recent time, which led re-
searchers to look for new ways to protect users by detecting and preventing such
attacks.

There are multiple types of attacks such as: malware attack, botnet attack, phish-
ing attack, etc.

In this chapter we explain botnet attacks and their threats to users, finally we list
some existing android botnets that affected the world greatly.

2.2 Definitions

A bot is a compromised host that can be controlled from external servers/devices
by a master (botmaster) to conduct different malicious attacks such as Distributed
Denial of Service(DDOS) attack, spam distribution, private information theft,
etc.[24]

A botnet is a network that contains the bots and a Command and Control (C&C)
infrastructure that allows the bots to get commands, receive updates, and send
their current status information to the botmaster(s), an overview of the botnet
architecture is shown in Figure 2.1. [25]

15

Figure 2.1: Botnet architecture overview.

2.3 Topologies

According to [26] there are multiple topologies for botnets and each one has its
advantages and disadvantages.

Figure 2.2: Botnet topologies [26]

2.3.1 Centralized topology

This topology consists of a dedicated C&C server connected directly to each bot
as shown in Figure 2.2-a.

The advantage of this topology is that it is easy to deploy and has low latency also
it is highly scalable.

16

The disadvantage is that it is easy to take down, by shutting down the C&C
server(s) the whole botnet will be crippled.

2.3.2 Peer To Peer topology

This topology consists of bots connected to each other and each one can act as a
C&C server as shown in Figure 2.2-b.

The advantage of this topology is that it is hard to cripple the botnet because
taking down some bots doesn’t mean taking down the whole botnet.

The disadvantage is that it is hard to implement, hard to add or remove a bot,
also fully connected network doesn’t scale due to the number of connection that
is required for each bot which is limited by operating systems.

2.3.3 Hybrid topology

This topology takes advantages of both Centralized and Peer to Peer topologies
by combining them into layers to enforce the botnet and avoid some disadvantages
of the two topologies as shown in Figure 2.2-c.

The advantage of this topology is that it is hard to take down and it is highly
scalable.

The disadvantage is that it is complex and requires to design the botnet into layers
to make it hard to take down.

2.4 Protocols

Botnets can be categorized depending on the communication protocol used be-
tween C&C servers and client bots. [27]

The early generations of botnets use Internet Relay Chat (IRC) protocol where
botmaster(s) push commands to the bots [28] but this communication is central-
ized and by banning the IRC C&C server the whole botnet will be down. [29]

17

Later generations of botnets use Hypertext Transfer Protocol (HTTP) where bots
pull commands from botmaster(s) periodically to check for new commands [28].
This protocol allows them to hide their traffic in the enormous amount of legitimate
web traffic and avoid being detected by basic firewalls, but this communication is
also centralized and by banning the C&C web server the whole botnet will be
down. [27, 29]

Another generation of botnets appeared in 2004 and 2005 use Peer to Peer (P2P)
schemes and protocols and due to its decentralized structure there are no dedicated
C&C servers and every node acts as a bot and as a C&C server thus allowing them
to continue working properly even if some nodes have been banned but this type
of communication has high latency and thus impacting the bots synchronization.
[28, 29]

The latest generations of botnets use hybrid infrastructure which allows them
to take the benefits and avoid the limitations of centralized and decentralized
structures. [29]

2.5 Botnet attack

2.5.1 Attack steps

Haddadi et al. [30] mentioned in their paper that earlier generations of botnets had
a list of commands that were set at the infection time, but current generations of
botnets use five stages to create and maintain a botnet which is listed below:

1. Infection stage the attacker tries to find the vulnerabilities of a host after
infecting it using different exploits (malware applications).

2. Injection stage the attacker uses the discovered vulnerability to execute
a shellcode that downloads the bot binary and installs it into the infected
host.

3. Connection stage: the bot binary connects to a C&C channel then tries
to infect other devices and waits for further commands from the botmaster.

4. Attack stage: the bot binary execute other attacks after receiving com-
mands from the botmaster.

18

5. Maintenance stage: the attacker can issue updates to the bot binary
through the C&C channel.

An overview of botnet attack steps is shown in Figure 2.3

Figure 2.3: Botnet attack steps overview.

2.5.2 Attack risks

According to [24, 31] smartphone botnets can be used to launch different attacks
such as:

• Distributed Denial of Service (DDoS): each bot tries to access the
target server at the same time, which makes the server unable to serve all
the incoming request including legitimate requests from real clients and by
doing so the server owner loses traffic quota and his clients. [32]

• Phishing: the bot tries to lure the device owner into providing his personal
information such as credit card details and passwords by redirecting him to
fake websites which are owned by the botmaster. [33]

19

• Click fraud: the bot shows to the device owner or clicks automatically on
pay-per-click advertisements to exhaust the advertiser budget or to make a
profit on websites that are owned by the botmaster. [34]

• Generation and distribution of spam: the bot can generate spam emails
and SMS messages, then send them to other peoples while avoiding the email
being marked as spam by email servers, due to the fact that such emails are
sent from legitimate devices.

• Cryptojacking: the bot can use the host resources such as CPU, RAM,
disk space to mine cryptocurrency and generate revenue for the botmaster.
[35]

• Brute-force: the bot can use the host to brute force passwords on external
servers.

2.6 Existing botnets

2.6.1 Matryosh - 2021

Figure 2.4: Matryoshka: russian nesting
dolls [36]

According to [37, 38] 360 netlab Bot-
Mon system detected a new botnet
on January 25, 2021 that reused Mi-
rai framework, the new botnet tar-
geted Android devices and it prop-
agates through the Android Device
Bridge (ADB) interface.

The new botnet is named Matryosh be-
cause the encryption algorithm which
is implemented in it and the process of
obtaining C&C are nested in layers like
Russian nesting dolls see Figure 2.4.

Matryosh supports many CPU archi-
tectures and its main functionality is
launching DDoS attacks via TCP, ICMP, and UDP protocols.

After infecting a device Matryosh follows the following steps:

20

1. It changes the name of its process.

2. It prints "pipe failed" on the stdin to confuse Log-based botnet detection
methods.

3. It sends a DNS TXT request to the remote hostname to obtain a TOR C&C
and a TOR proxy.

4. It establishes a connection with the TOR proxy.

5. It communicates with the TOR C&C through the TOR proxy.

6. It waits for the commands that are sent by C&C to execute them.

2.6.2 Chamois - 2016

According to [39, 40] Chamois malware appeared on Google Play in August 2016,
in March 2018 Chamois had already infected 20.8 million devices but the current
Google Play security measures reduced the number of devices in the botnet by
91%, despite that researchers found 12,800 new samples just between March 2018
and March 2019.

Figure 2.5: Premium SMS warning [41]

Chamois developers created benign
apps that contain Chamois malware to
trick Google Play users into installing
them, but Google play’s app check-
ing tools evolved and started block-
ing Chamois malware, in response later
versions of Chamois mislead app devel-
opers and phone manufacturers to in-
corporate the code directly into their
apps thinking that Chamois is a mo-
bile payment solution while develop-
ers thought Chamois is an advertis-
ing software development kit thus these
tainted apps started to appear on
Google Play.

The Chamois botnet served malicious
advertisements and directed phone owners to premium SMS scams.

21

The Android security team required apps to obtain explicit permission to text a
premium number to prevent premium SMS fraud, however Chamois developers
added a check to see if the device was rooted. If it was, the malware used the
root privileges to disable premium SMS warnings as shown in Figure 2.5, if it was
disabled they used the Accessibility service to automatically click the Send button
As a result, the phone owners learned about those messages only after their bills
arrive.

Recent versions of Chamois checks if the device contains antivirus, anti-debugging,
or anti-analysis tools if it is the malware doesn’t execute the malicious code. the
botnet included also a mechanism called feature flags, which is used in software
development to enable and disable particular features in different parts of the
world, Chamois developers use feature flags to test updates to confirm that the
updated version is working as expected before pushing the update globally.

Google currently uses several detection methods to identify Chamois, includ-
ing signature-based flags, machine-learning assessment, and behavioral analytics.
Google also uses Google Play Protect app to scan pre-installed apps to check for
situations where Chamois is incorporated in a legitimate package, Google also en-
courages phone manufacturers to audit third-party code before shipping it on to
their phones.

2.6.3 WireX - 2017

According to Kaspersky Lab’s DDoS Intelligence Report for the third quarter of
2017 [42] WireX a botnet with several hundred thousand bots at its peak, was
taken down.

WireX had been working undercover on Android devices and replicating through
legitimate Google Play applications. WireX perform volumetric DDoS attacks
which can overwhelm DDoS mitigation systems by the high volumes of the mali-
cious traffic.

The WireX indicators were first available on August 2nd 2017 as minor attacks that
went unnoticed at the time, until the researchers began looking for the 26-character
user-agent string in the logs. These initial attacks indicated that the malware was
under development and more prolonged attacks were identified starting August 15
2017, as shown in Figure 2.6.

22

Figure 2.6: WireX botnet growth [43]

2.6.4 Geost - 2016

Figure 2.7: Geost botnet: attack steps [44]

23

According to [45] the Geost botnet has been in operation since at least 2016 and
it consists of at least 140 (C&C) servers, 140 domains, more than 140 Android
packages, more than 800k infected Android devices. The botmasters of Geost
botnet are researchers from the Czech Technical University with researchers from
UNCUYO university.

Geost botnet targets online banking users, it was mainly focused on five banks in
Eastern Europe and Russia. the attack of the Geost botnet steps are shown in
Figure 2.7.

Geost botnet was discovered after using HtBot to manage infected hosts without
knowing that Avast themselves created HtBot.

2.7 Conclusion

Attackers preform botnet attacks on Android devices due to the never ending
increase in the smartphone market.

In the next chapter we present different types of Android applications analysis,
furthermore we list the latest Android botnet detection methods.

24

Chapter 3

State of the art

3.1 Introduction

Botnet attack allows attackers to manipulate and control user’s devices through
a Command and control (C&C) server to launch other attacks on behalf of the
attacker.

There are different methods for analyzing Android applications, which are: static,
dynamic, and hybrid analysis.

In this chapter we present the latest techniques used to detect Android botnets.

3.2 Static analysis

According to [46], in static analysis, the application’s apk file is analyzed without
executing it and some go beyond that by reverse engineering the apk file to extract
the source code also.

The advantages of this method are that it can identify suspicious code that only
executes under specific conditions and also this method uses less resources than
other methods.

The disadvantage is that it can’t detect encrypted content or any downloaded
content from external servers.

25

3.2.1 Detection using Convolutional Neural Networks

Hojjatinia et al. [47] proposed a new method based on Android permissions using
convolutional neural networks (CNN) to classify botnets and benign Android ap-
plications. They also proposed a new method to represent each application as an
image created based on the co-existence of the permissions used in that application.

The researchers use the ISCX dataset [48] then they selected 1,800 Android Botnet
samples from 14 different families.

To collect benign samples, they developed a tool to crawl the Google Play store
then they downloaded 3650 samples from 24 different categories. All benign sam-
ples have been scanned using VirusTotal [49] to ensure that the benign category
doesn’t include any malware sample.

a

b

Figure 3.1: Hojjatinia et al. [47] image representation of (a) benign and (b) botnet
android applications.

Figure 3.2: Hojjatinia et al. [47] CNN model architecture

26

Figure 3.3: Hojjatinia et al. [47] The proposed CNN model configuration

The researchers extracted the permissions of both botnet and benign applica-
tions into two different lists sorted by the frequency of the permissions, then they
merged the two lists into one list sorted by the frequency of the permissions,
next they selected the top 41 frequently used permissions from the merged list.

Figure 3.4: Hojjatinia et al. [47] CNN
model accuracy by epochs

The image representation of each app
is a matrix of 41 x 41 where the [i, j]
element shows the co-occurrence of the
ith and the jth permissions in the appli-
cation which mean if both permissions
are used by the application, the [i, j]
element is set to 0, otherwise, it is set
to 255. The figure 3.1 shows some sam-
ples of images created for botnets and
benign applications.

The researchers trained a CNN model
to distinguish Botnet applications from
benign ones using the image represen-
tation of the applications. The figure
3.2 illustrates the architecture of the
CNN model.

The researchers trained and tested the proposed CNN model in 10, 15, 20, 25, 30,
and 35 epochs as shown in figure 3.4. The researchers used 10-fold cross validation
to evaluate their proposed method and the results indicate that their proposed
method is quite successful in classifying benign and botnet applications with an
accuracy of 97.2%.

The researchers achieved an accuracy of 97.2% using only Android permissions
which is pretty impressive.

27

3.2.2 Detection using Random forest

Anwar et al. [50] proposed a new framework to detect botnet applications using
static analysis.

Initially, the researchers obtained 1865 benign applications from Google Play, then
they used VirusTotal tool [49] to confirm their cleanness, next they used the Monte
Carlo method [51] to remove duplicated applications, as a result they obtained in
total 1330 benign applications.

The researchers collected botnet applications from different datsets such as DREBIN
[52], ISCX Android Botnet Dataset [48], Android Malware Genome Project [53]
and to simplify machine-learning modelling they obtained only 1330 botnet appli-
cations to match the total number of benign applications.

The researchers proposed a framework that has five layers as shown in figure
3.5 which are the decompiler, extractor, smart learner, features refiner, and the
machine learning module.

1. App Decompiler: is responsible for converting the apk file into a readable
format which is used for further analysis, in their study they used the Android
asset packaging tool (AAPT) for this task.

2. Feature Extractor: is responsible for generating a CSV file for each de-
compiled app. The CSV file contains the extracted features after reverse
engineering the app using the Androguard open-source tool [54], the ex-
tracted features are permissions, activities, broadcast receivers, services, and
API calls. The researchers found out that botnet applications usually use
more features, permissions and API calls than benign applications.

3. Smart Learner: is responsible for generating feature patterns from the
generated CSV files using the Apriori algorithm in the WEKA tool [55].
The researchers used the Apriori algorithm to extract significant features
combination after indexing all the extracted features.

4. Feature Refiner: is responsible for selecting the most related features to
botnet applications, in their study they used information gain (IG) algorithm
on the botnet applications dataset to rank application features, then they
selected only the high ranked features to be used in the machine learning
model.

28

Figure 3.5: Anwar et al. [50] method diagram

5. Machine Learning Modelling: is responsible for training the Machine
Learning classifier, for this study they chose support vector machine (SVM),
Random Forest, J-48, simple logistic regression (SLR), and Naïve Baye algo-
rithms to test their framework. As an input, they used the selected features
from the Feature Refiner stage.

The performance of the proposed framework was evaluated using the following met-
rics True Positive Rate (TPR), False Positive Rate (FPR), Precision, F-measure,
and the Accuracy metric.

The researchers conducted the experiment separately on the permissions, the ac-
tivities, the broadcast receivers, the services, and the API calls features then on
the combined features set.

29

The researchers found that random forest algorithm and using the combined fea-
tures set has the highest accuracy of 0.9820, while TPR is 0.7880, precision is
0.8893 and FPR is 0.1140 but, the experiment produced also a low F-measure of
0.7457.

The researchers proposed a framework that can detect botnet application with an
accuracy of 98.2% using random forest algorithm because it can ignore unrelated
features to Android botnet attacks however it can be improved by introducing
dynamic features.

3.3 Dynamic analysis

According to [46, 56, 57], in dynamic analysis, the application is analyzed while
executing it by monitoring network traffic, system logs, etc.

The advantage is that it can detect encrypted content or any downloaded content
from external servers and it provides better accuracy over pure static analysis
methods.

The disadvantages are that it requires a lot of resources to emulate a full Android
system and also it can’t detect any suspicious code that only executes under spe-
cific conditions that weren’t met while executing the application, also there are
applications that they can detect that they are being monitored or are running
under an emulated device.

3.3.1 Detection using PSO-SVM

Moodi et al. [17] proposed a dynamic approach to detect Android botnet ap-
plications using Smart Self-Adaptive Learning-based PSO-SVM (SSLPSO-SVM)
method.

The researchers used the 28 standard Android botnet dataset [58], which is cre-
ated after collecting 14 million packets of network traffic and contains 85 different
features from 336,111 application, 189,842 of the applications are benign (59.57%)
and 146.269 are botnet applications (40.43%).

The researchers used SVM with radial basis function (RBF) kernel for classifica-
tion, while RBF requires a parameter σ that has to be set. SVM has a parameter

30

Figure 3.6: Moodi et al. [17] method overview

31

called Penalty (C) and its value has to be set also; however, to obtain the best
results the researchers used their method SSLPSO-SVM to find the best value of
the parameters σ and Penalty (C) to achieve accurate results.

The input of SVM is the application features and for optimal results in less time,
only the important features must be selected, for that the researchers used Binary
PSO (BPSO) method [59]. In BPSO each particle in feature selection has one of
two states either Selecting the feature (1) or Lack of selecting the feature (0).

SSLPSO method uses five different algorithms to update the particle velocity as
shown in Figure 3.6. The algorithms that SSLPSO method uses are introduced
below:

• Difference-based Velocity (DBV): [60] this method can avoid sudden
changes in velocity by updating the particle velocity based on multiple infor-
mation from the search space which results in particles looking for a larger
space to update their velocity.

• Comprehensive Learning PSO (CLPSO): [61] this method can update
the velocity on multi-modal issues by allowing each particle to affect other
particles Pbest.

• PSO-CL-Pbest: [62] CLPSO method has a low convergence velocity, to
fix that this method reduces the algorithm complexity by using a random
function to select Pbest for all particles in all dimensions.

• Estimation-based Velocity (EbV): [62] the PSO main algorithm has
a high convergence rate however after a few steps the particles lose their
efficiency by getting trapped in local optimal points, to fix that this method
use speed upgrades for complex multi-modal issues which allows it to have
a high convergence velocity.

• Smart Adaptive PSO (SAPSO): [63] this method selects the core pa-
rameters (, c1 and c2) of the velocity formula dynamically, if we assume that
particles can experience during the execution.

While Smart Adaptive PSO (SAPSO) [63] method uses Roulette Wheel Selec-
tion(RWS) method for algorithm selection which relies on a random function mak-
ing it possible that the best algorithm may not be selected in every iteration. The
SSLPSO method uses an approach called Smart Selection Strategies(SSS) which
selects from the five algorithms the best preferment algorithm(s) and it provides
them with more particle while less preferment algorithm(s) get less particles for

32

the next iteration, the best preferment algorithm(s) are the ones that made the
largest number of changes in Particle best (Pbest) and Global best (Gbest).

The researchers compared their method SSLPSO against three other methods:
SLPSO, CLPSO and PSO-CL-Pbest. for fair results they assumed that the three
methods can optimize SVM parameters while selecting the important features.

For the experiment the researchers studied the effect of the data volume and the
balance of the data, as a result they found that SSLPSO preformed better or
equally to some other algorithms in every scenario.

The researchers found that SSLPSO method has the highest Sensitivity, Specificity,
Precision and Accuracy while being the most time-efficient amongst the other three
algorithms.

The researchers claims that in average SSLPSO achieves the Accuracy of 98.2829%,
the Precision of 97.7386%, the Specificity of 95.5300%, the Sensitivity of 96.7604%.

SSLPSO method can achieve great results because it optimizes SVM parameters
(σ and C) while selecting only the important features.

3.3.2 Detection using Random Forest

da Costa et al. [64] presented an anomaly-based and host-based approach for de-
tecting mobile botnets. The proposed approach uses machine learning algorithms
to identify anomalous behaviors in statistical features extracted from system calls.

To extract system calls the researchers rooted their Samsung Galaxy tablet with
Android 4.1.2, then they installed the Strace tool [65] on it. The tablet is connected
via USB to a Windows 10 laptop and is also connected via WiFi to a network
hosted by the computer, which has Internet access.

The researchers collected botnet applications from ICSX Android Botnet dataset,
which contains different families of botnets. They chose 31 botnet applications,
divided into 13 different families. For legitimate apps the researchers installed
apps from Google Play directly into their tablet.

The researchers proposed a system that consists of three parts as shown in Figure
3.7:

33

Figure 3.7: da Costa et al. [64] method overview

1. Monitoring and Acquisition module: this module is used to collect the
data needed in the other modules.

2. Pre-processing module: this module is used to extract information from
the data and creating instances of classifiers.

3. Classifier module: this module is used to classify benign and botnet ap-
plications activity.

Using the Monitor and Acquisition module, The researchers collected data from
the device while only legitimate applications were running. Then, they introduced
31 botnet applications one by one, next they sampled a random set of botnet
applications and installed them together in the device.

The researchers analyzed the Strace files generated by the Monitoring and Acquisi-
tion module file to extracting system calls, then the pre-processor module grouped
the system calls by different time windows, (500ms, 1s, 5s, and 10 s), next, they
created a feature vector for each time window.

In the classifier module, The researchers used two machine learning algorithms,
namely Random Forest and SVM with linear kernels and SVM with RBF kernels.

The researchers used 60% of the dataset for the training process and the rest,
40%, was used for testing. The experiment was repeated 50 times, taking several
random samples from the dataset.

The researchers compared the performance of the different machine learning algo-
rithms using the receiver operating characteristic (ROC) curve which is created
by plotting the true positive rate (TPR) against the false positive rate (FPR) at
various threshold settings.

34

Figure 3.8: da Costa et al. [64] method
ROC curve

The researchers found from the plot-
ted ROC curve in Figure 3.8 that ran-
dom forest algorithm achieved bet-
ter results compared to the other ma-
chine learning algorithms.

The researchers achieved a precision
of 0.866 within a 500ms time window
using random forest algorithm.

3.4 Hybrid analysis

In hybrid analysis, we try to elim-
inate some limitations in static and
dynamic analysis by combining them
together.

The advantage of this method is that
we can take the advantages of static
and dynamic analysis to achieve a
high accuracy.

The disadvantages are that it requires more resources and thus it is hard to train
on a big dataset. [46]

Karim et al. [66] Proposed a proof of concept framework to detect botnet applica-
tions using hybrid analysis, their purpose is to prove that hybrid analysis is more
effective for detecting botnet applications.

The researchers used two datasets:

1. Evaluation dataset: this dataset is used to study and analyze benign,
malware, botnet applications and their related features. this dataset contains
10 application from each category (benign, malware, botnet).

2. Validation dataset: this dataset is used to validate their classifier model.
The dataset contains 1371 botnet applications collected from ICSX dataset
[48] and 500 benign application collected from Androtracker dataset. [67]

35

Figure 3.9: Karim et al. [66] method overview

The researchers used Androguard tool [54] for static analysis and they extracted
the following features: permissions and API calls.

The researchers used DroidBox tool [68] for dynamic analysis and they extracted
the following features: file activities, network operations, Information Leaks, Ser-
vices, SMS operations, Cryptographic Operations, DNS Traffic, HTTP Traffic,
unknown Conversations.

The researchers split their study in two steps:

1. Analysis step: in this step the researchers used the evaluation dataset and
extracted the static and dynamic features of each app then they compared
the results of each application category (botnet, malware, benign) to extract
only the important features that is used by most botnet applications, after
that they used multiple classifiers such as J48, Naïve Bayes, Random Forest,
and Logistic Regression to demonstrate that they can classify botnets using
the extracted important features.

2. Validation Step: in this step the researchers used the Validation dataset to
demonstrate that their model using the selected features can detect Android
botnet on a large dataset, for this they used multiple classifiers such as J48,
Naïve Bayes, Random Forest, and Logistic Regression.

The researchers used multiple classifiers such as J48, Naïve Bayes, Random Forest,
and Logistic Regression with static only, dynamic only, hybrid features to prove
that hybrid analysis is the best way to classify Android botnet applications.

36

In the analysis step and using the evaluation dataset the researchers found that
Random Forest classifier performed better than other classifiers with an accuracy
of 90% using the hybrid analysis.

In the validation step and using the validation dataset the researchers found that
Random Forest classifier performed better than other classifiers with an accuracy
of 98% using the hybrid analysis.

Yusof et al. [69] tried a similar method to Karim et al. [66] method, however Yusof
et al. [69] collected for their experiment 1,527 botnet application from Drebin
dataset [52] and they downloaded 800 application from Google Play then tested
them using VirusTotal tool [49] to verify their cleanliness before using them as
benign application after that they extracted permissions, API calls, and system
calls as features from each application in the their dataset as a result they achieved
an accuracy of 97.9% using Random Forest algorithm which their best classifier
among other classifiers.

The researchers tried to prove that hybrid analysis is the best way to classify
Android botnet applications however looking at their experiment results we can
see that their best classifier which is Random Forest has an accuracy of 98% using
only static features which is the same when using hybrid features.

.

37

Table 3.1: Application analysis types comparison.

Analysis Type Advantages Disadvantages
Static Analysis

• It can identify suspi-
cious code that only
executes under spe-
cific conditions.

• It uses less resources
than other methods.

It can’t detect encrypted
content or any downloaded
content from external
servers.

Dynamic Analysis
• It can detect en-
crypted content or
any downloaded con-
tent from external
servers.

• It provides better
accuracy over pure
static analysis.

• It requires a lot of re-
sources to emulate a
full Android system.

• It can’t detect any
suspicious code that
only executes under
specific conditions
that weren’t met
while executing the
application.

• There are applica-
tions that can de-
tect that they are
being monitored or
are running under an
emulator device.

Hybrid Analysis It takes the advantages of
static and dynamic analy-
sis to achieve the best ac-
curacy.

It requires more resources
and thus it is hard to use a
big dataset for testing and
training.

3.5 Conclusion

There are different methods to detect Android botnet applications and each one has
it’s advantages and disadvantages as shown in Table 3.1, therefore it is important

38

to find a model that can detect Android botnet applications with a high accuracy.

In the next chapter we propose a model that can detect Android botnet applica-
tions efficiently.

39

Chapter 4

Conception & Implementation

4.1 Introduction

Android botnet detection methods are a major topic in the smartphone security
field, and we need methods that achieve high accuracy to protect smartphone users
against botnet attack.

In this chapter we propose a model that depends on static analysis to detect
Android botnet applications, furthermore we introduce the dateset we use in our
experiment, the environment, the architecture. finally we discuss the obtained
results and compare our models against similar models from other methods.

4.2 Dataset

After searching for an Android botnet datasets that contains only Android botnet
applications we found the ICSX dataset [48] which contains 1929 botnet application
from 14 different families which are listed in Table 4.1.

The ICSX dataset contains only botnet application however to train a classifier
we need also benign applications and the most used way in other researches to get
them is download application from Google Play Store then scan each application
using VirusTotal [49].

40

Table 4.1: Dataset families.

Family Year of discovery No. of samples
AnserverBot 2011 244
Bmaster 2012 6
DroidDream 2011 363
Geinimi 2010 264
MisoSMS 2013 100
NickySpy 2011 199
Not Compatible 2014 76
PJapps 2011 244
Pletor 2014 85
RootSmart 2012 28
Sandroid 2014 44
TigerBot 2012 96
Wroba 2014 100
Zitmo 2010 80

In our study we use static analysis due to time limitations and lack of resources
because dynamic analysis is time consuming and requires powerful CPUs and too
much RAM to emulate full Android system.

Yerima and Alzaylaee [25] collected 1929 botnet application from ICSX dataset
[48], and 4873 benign application from Google Play for 24 categories after that
the researchers scanned benign applications using VirusTotal [49] to ensure their
safety, and after preforming a static analysis on each application they extracted 342
static features with five different types as shown in table 4.2, the most important
feature are shown in table 4.3, all the feature are listed in the appendix 4.6.

Table 4.2: Dataset feature types.

Feature type Number
API calls 135
Permissions 130
Commands 19
Extra files 5
Intents 53
Total 342 features

In our study we use Yerima [70] dataset because it has the largest amount of

41

features, it was a result of studying of the whole ICSX Android botnet dataset
[48], it contains a very large amount of benign applications, and also it allows
us to compare our model directly with the powerful CNN model of Yerima and
Alzaylaee [25].

Table 4.3: Dataset most important features.

Feature name Type
TelephonyManager.*getDeviceId

API

TelephonyManager.*getSubscriberId
abortBroadcast
Ljava.net.InetSocketAddress
io.File.*delete(
System.*LoadLibrary
SEND_SMS

Permission

DELETE_PACKAGES
PHONE_STATE
SMS_RECIVED
READ_SMS
ACCESS_FINE_LOCATION
INSTALL_PACKAGES
CAMERA
Android.intent.action.BOOT_COMPLETED

Intentandroid.intent.action.POWER_CONNECTED
android.intent.action.BATTERY_LOW
chown

Commandchmod
Mount
.apk

Extra File
.zip
.dex
.jar
.so

4.3 Environment

We implemented our models in Google Collab without any GPU acceleration and
using an Intel Xeon CPU @ 2.30GHz with 13GB of RAM.
Google Colaboratory [71] offers a free Environment that contains pre-installed

42

libraries for machine learning and data analysis, it also allows the users to write
and execute Python code directly from the browser.

To implement our model, we use:

• Python v3.7.10: it is a high-level programming language and it is heavily
used in artificial intelligence field because it has an active community, a huge
library set and also it easy to learn. [72]

• TensorFlow v2.5.0: it is a open source library developed by Google to
make machine learning and deep learning easier and approachable. [11]

• Keras v2.5.0: it is an open source library for Python and it offers an inter-
face to machine learning backends such as TensorFlow and it helps developers
write easy to understand and maintainable code. [73]

• Scikit-learn v0.22.2: it is an open source library for Python and it offers a
set of helpful methods to deal with data also it can perform various machine
learning algorithms. [74]

• Pandas v1.1.5: it is an open source library for Python and it offers a set
of helpful methods for data manipulation and analysis. [75]

4.4 Network architecture

Most researchers in the field Android botnet detection relied on SVM, Random
Forest, CNN however we tried different solutions using Perceptron neural networks.

Perceptron neural network are introduced by Rosenblat [76] after being inspired
by biological neurons and their ability to learn, the original Preceptron uses the
Heaviside step activation function and it consists of one input layer and one output
node as shown in Figure 4.1, due to that it can classify only linearly separable data,
later on Multi-layer Preceptron (MLP) was introduced to solve the problem of the
original Preceptron of classifying only linearly separable data.

Multi-layer Preceptron consists of one input layer and n hidden layers and one
output layer and uses non-linear activation functions, MLP are considered to be
one of deep learning models because it can have many hidden layers.

In our comparative study we implement four different models, all models have an
input layer that consist of 342 node and the output layer consists of one node

43

Figure 4.1: A diagram showing how the Perceptron works [77]

Figure 4.2: Proposed method using the Preceptron model diagram

which returns the probability of an application is a botnet as a value between 0
and 1. the different implemented models are listed below:

44

1. Preceptron: this model has no hidden layers as shown in Figure 4.2 and the
model summery is shown in Table 4.4, we use the hard sigmoid activation
function from TensorFlow because Keras doesn’t support the Heaviside step
activation and also it allows our model to classify non linearly separable data.
the hard sigmoid activation is defined in TensorFlow as follows:

f(x) =

0, if x < −2.5

1, x > 2.5

0.2x+ 0.5, otherwise

2. MLP-1 hidden layer: this model has one hidden layer that consist of 170
node, and it uses the ReLU activation function, the output node uses the
sigmoid activation function. The model summery is shown in Table 4.5.

3. MLP-2 hidden layers: this model uses the ReLU activation function in
hidden layers and has two hidden layers, the first one consist of 170 node, the
second one consist of 80 node, the output node uses the sigmoid activation
function. The model summery is shown in Table 4.6.

4. MLP-3 hidden layers: this model uses the ReLU activation function in
hidden layers and has three hidden layers, the first one consist of 170 node,
the second one consist of 80 node, the third one consist of 40 node, the output
node uses the sigmoid activation function. The model summery is shown in
Table 4.7.

Table 4.4: Preceptron model summery.

Layer type Output Shape Param #
Dense (None, 1) 343

Total params 343
Trainable params 343

Table 4.5: MLP-1 hidden layer model summery.

Layer type Output Shape Param #
Dense (None, 170) 58310
Dense (None, 1) 171

Total params 58481
Trainable params 58481

45

Table 4.6: MLP-2 hidden layers model summery.

Layer type Output Shape Param #
Dense (None, 170) 58310
Dense (None, 80) 13680
Dense (None, 1) 81

Total params 72071
Trainable params 72071

Table 4.7: MLP-3 hidden layers model summery.

Layer type Output Shape Param #
Dense (None, 170) 58310
Dense (None, 80) 13680
Dense (None, 40) 3240
Dense (None, 1) 41

Total params 75271
Trainable params 75271

4.5 Results And Discussion

As recommended by data scientists we divided our dataset to 3 sets as follows:

1. Training set: a set that consists of 4896 sample which is used to train the
model.

2. Validation set: a set that consists of 545 sample which used to fine tune the
model hyper-parameters, in our case it is used to find the optimal number
of epochs.

3. Test set: a set that consists of 1361 which used to test the model.

To find the optimum number of epochs we train each model on 100 epochs then
we draw the graph of the accuracy and loss of the model at each epoch.

Figure 4.3-a and Figure 4.3-b shows the accuracy and loss respectively over 100
epoch of the original Perceptron model, we can see from the Figure that the
optimum epochs required is 60.

46

: (a) original Preceptron model accu-
racy by epochs

: (b) original Preceptron model loss by
epochs

Figure 4.3: Original Preceptron model accuracy and loss over 100 epochs

Figure 4.4-a and Figure 4.4-b and Figure 4.4-c shows the accuracy of the MLP
model with 1 hidden layer, MLP model with 2 hidden layers, MLP model with
3 hidden layers respectively over 100 epoch. we can see from the Figure that it
doesn’t show any significant difference between the three models.

: (a) MLP with 1 hidden
layer model accuracy by
epochs

: (b) MLP with 2 hidden
layers model accuracy by
epochs

: (c) MLP with 3 hidden
layers model accuracy by
epochs

Figure 4.4: MLP model accuracy over 100 epochs

Figure 4.5-a and Figure 4.5-b and Figure 4.5-c shows the loss of the MLP model
with 1 hidden layer, MLP model with 2 hidden layers, MLP model with 3 hidden
layers respectively over 100 epoch. we can see from the figure that the optimum
epochs required is 20 in each MLP model.
In our study we used two methods for each model(cross validation method &
test set method), and we found that the best method for all models was cross
validation. So we use 10 fold cross validation technique to evaluate our models
then we calculate the average of the following metrics : Recall, Precision, Accuracy,
F_Measure, FPR, TNR, FNR. the results are shown in table 4.8 and we can see

47

: (a) MLP with 1 hid-
den layer model loss by
epochs

: (b) MLP with 2 hid-
den layers model loss by
epochs

: (c) MLP with 3 hid-
den layers model loss by
epochs

Figure 4.5: MLP model loss over 100 epochs

from the table that our Multi-layer Perceptron with 1 hidden layer model performs
better then the other models in most metrics.

Table 4.8: Detailed metrics of our proposed models.

Model Recall Precision Accuracy F1 FPR TNR FNR
Original Perceptron 0.967 0.984 0.986 0.976 0.006 0.994 0.033
MLP with 1 hidden layer 0.980 0.984 0.990 0.982 0.006 0.994 0.020
MLP with 2 hidden layers 0.981 0.982 0.990 0.982 0.007 0.993 0.019
MLP with 3 hidden layers 0.978 0.978 0.988 0.978 0.009 0.991 0.022

The table 4.9 shows a comparison between our model with similar models that are
using static analysis, we can see that our MLP with 1 hidden layer model performs
better in most metrics.

Table 4.9: Our proposed models compered with similar models.

Reference ML/DL method Botnets /Benign Performance
ACC Prec. Rec. F1

Our method Original Perceptron 1929/4873 0.986 0.984 0.967 0.976
Our method MLP-1 hidden layer 1929/4873 0.990 0.984 0.980 0.982
Our method MLP-2 hidden layers 1929/4873 0.990 0.982 0.981 0.982
Our method MLP-3 hidden layers 1929/4873 0.988 0.978 0.978 0.978

[25] CNN 1929/4873 0.989 0.983 0.978 0.981
[47] CNN 1800/3650 0.972 0.955 0.96 0.957
[50] Random Forest 1330/1330 0.982 0.8893 - 0.7457

By comparing Perceptron model with MLP with 1 hidden layer model, we can see
that Perceptron model is simple because it has only 343 trainable parameters and

48

it achieves acceptable results, however MLP with 1 hidden layer model achieved
the best results but it has 58481 trainable parameters.

4.6 Conclusion

In this chapter, we preformed an experiment to detect Android botnet applications
based on static analysis and using Perceptron neural networks, we achieved great
results compared to similar static-based methods and after comparing different
models we see that Perceptron model achieved acceptable results while it is very
simple, however MLP with 1 hidden layer achieved the best results.

49

Conclusion

We aim in this thesis to detect Android botnet applications efficiently using a
model that can achieve high results to protect Android users from botnet applica-
tions.

In this work we presented the role of smartphones in our lives, and how important
their security is exponentially increasing due to the widespread of malware and
botnets. Then we explained machine learning techniques and their metrics, next
we provided a background on botnets and their attacks and how they affect other
users/servers. after that we listed the latest methods that are being used to detect
Android botnet applications, finally we performed an experimental study to detect
Android botnet applications using a Perceptron models and we were able to achieve
an accuracy of 99%.

For future works we can try to implement our method in real Android devices
as an application that analyses every newly installed application, extract required
features by reverse engineering it then classify it as benign or botnet using our
trained model.

50

Bibliography

[1] Mobile operating system market share worldwide from may 2020 to may 2021.
URL https://gs.statcounter.com/os-market-share/mobile/worldwide. Ac-
cessed on June 13, 2021.

[2] Christiaan Beek et al. Mcafee labs threats report apr 2021. URL https://www.
mcafee.com/enterprise/en-us/lp/threats-reports/apr-2021.html. Accessed
on May 20, 2021.

[3] Android platform architecture. URL https://developer.android.com/guide/
platform. Updated on Mar 11, 2021.

[4] Application fundamentals. URL https://developer.android.com/guide/
components/fundamentals. Updated on Feb 23, 2021.

[5] The most common cyber attacks. URL https://www.cisco.com/c/en/us/
products/security/common-cyberattacks.html. Accessed on June 13, 2021.

[6] John Lehmann. Cyber crime awareness: Types of cyber attacks. URL https:
//www.techuseful.com/types-of-cyber-attacks/. Published on Jan 31, 2020.

[7] Jeff Melnick. Top 10 most common types of cyber attacks. URL https://blog.
netwrix.com/2018/05/15/top-10-most-common-types-of-cyber-attacks/. Up-
dated on May 18, 2021.

[8] Types of cyber attacks. URL https://www.fortinet.com/resources/
cyberglossary/types-of-cyber-attacks. Accessed on June 13, 2021.

[9] Noor Qureshi. How to make sure no man-in-the-middle at-
tack can harm you. URL https://thehacktoday.com/
how-to-make-sure-no-man-in-the-middle-attack-can-harm-you/. Published
on Oct 11, 2019.

[10] Alexander Amini. Introduction to deep learning. URL http://
introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf. Pub-
lished on Jun 18, 2021.

[11] Tensorflow: an end-to-end open source platform for machine learning. URL https:
//www.tensorflow.org/. Accessed on June 12, 2021.

[12] Alexander Amini. Introduction to deep learning. MIT, 6:S191, 2019.

51

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.mcafee.com/enterprise/en-us/lp/threats-reports/apr-2021.html
https://www.mcafee.com/enterprise/en-us/lp/threats-reports/apr-2021.html
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://www.cisco.com/c/en/us/products/security/common-cyberattacks.html
https://www.cisco.com/c/en/us/products/security/common-cyberattacks.html
https://www.techuseful.com/types-of-cyber-attacks/
https://www.techuseful.com/types-of-cyber-attacks/
https://blog.netwrix.com/2018/05/15/top-10-most-common-types-of-cyber-attacks/
https://blog.netwrix.com/2018/05/15/top-10-most-common-types-of-cyber-attacks/
https://www.fortinet.com/resources/cyberglossary/types-of-cyber-attacks
https://www.fortinet.com/resources/cyberglossary/types-of-cyber-attacks
https://thehacktoday.com/how-to-make-sure-no-man-in-the-middle-attack-can-harm-you/
https://thehacktoday.com/how-to-make-sure-no-man-in-the-middle-attack-can-harm-you/
http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf
http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf
https://www.tensorflow.org/
https://www.tensorflow.org/

[13] Support vector machines. URL https://scikit-learn.org/stable/modules/
svm.html. Accessed on Jun 16, 2021.

[14] Explain the random forest algorithm. URL https://www.sciencedirect.com/
topics/engineering/random-forest. Accessed on Jun 07, 2021.

[15] Random forest: a machine learning algorithm. URL https://qr.ae/pGMcS7. Ac-
cessed on Jun 16, 2021.

[16] R Eberhat and James Kennedy. A new optimizer using particle swarm theory. In
Sixth international symposium on micro machine and human science, Piscataway,
pages 39–43, 1995.

[17] Mahdi Moodi, Mahdieh Ghazvini, and Hossein Moodi. A hybrid intelligent ap-
proach to detect android botnet using smart self-adaptive learning-based pso-svm.
Knowledge-Based Systems, 222:106988, 2021.

[18] Deep neural network. URL https://www.ibm.com/cloud/learn/
neural-networks. Published on Aug 17, 2020.

[19] Panadda Kongsilp. Cnn: Step 3— flattening. URL https://medium.com/@PK_
KwanG/cnn-step-2-flattening-50ee0af42e3e/. Published on Jul 22, 2019.

[20] Prashant Gupta. Cross-validation in machine
learning. URL https://towardsdatascience.com/
cross-validation-in-machine-learning-72924a69872f. Published on Jun
05, 2017.

[21] Namratesh Shrivastav. Confusion matrix(tpr,fpr,fnr,tnr), precision,
recall, f1-score. URL https://medium.datadriveninvestor.com/
confusion-matric-tpr-fpr-fnr-tnr-precision-recall-f1-score-73efa162a25f.
Published on Jan 18, 2020.

[22] Jason Brownlee. How to choose an activation function for
deep learning. URL https://machinelearningmastery.com/
choose-an-activation-function-for-deep-learning/. Updated on Jan
22, 2021.

[23] Cross-validation: evaluating estimator performance. URL https://scikit-learn.
org/stable/modules/cross_validation.html. Accessed on July 03, 2021.

[24] Suleiman Y Yerima, Mohammed K Alzaylaee, Annette Shajan, et al. Deep learning
techniques for android botnet detection. Electronics, 10(4):519, 2021.

[25] Suleiman Y Yerima and Mohammed K Alzaylaee. Mobile botnet detection: A deep
learning approach using convolutional neural networks. In 2020 International Con-
ference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA),
pages 1–8. IEEE, 2020.

[26] Gernot Vormayr, Tanja Zseby, and Joachim Fabini. Botnet communication patterns.
IEEE Communications Surveys & Tutorials, 19(4):2768–2796, 2017.

[27] Wei Wang, Yaoyao Shang, Yongzhong He, Yidong Li, and Jiqiang Liu. Botmark:
Automated botnet detection with hybrid analysis of flow-based and graph-based

52

https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://www.sciencedirect.com/topics/engineering/random-forest
https://www.sciencedirect.com/topics/engineering/random-forest
https://qr.ae/pGMcS7
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://medium.com/@PK_KwanG/cnn-step-2-flattening-50ee0af42e3e/
https://medium.com/@PK_KwanG/cnn-step-2-flattening-50ee0af42e3e/
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f
https://medium.datadriveninvestor.com/confusion-matric-tpr-fpr-fnr-tnr-precision-recall-f1-score-73efa162a25f
https://medium.datadriveninvestor.com/confusion-matric-tpr-fpr-fnr-tnr-precision-recall-f1-score-73efa162a25f
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html

traffic behaviors. Information Sciences, 511:284–296, 2020.
[28] Byungha Choi, Sung-Kyo Choi, and Kyungsan Cho. Detection of mobile botnet

using vpn. In 2013 Seventh International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, pages 142–148. IEEE, 2013.

[29] David Zhao, Issa Traore, Bassam Sayed, Wei Lu, Sherif Saad, Ali Ghorbani, and
Dan Garant. Botnet detection based on traffic behavior analysis and flow intervals.
computers & security, 39:2–16, 2013.

[30] Fariba Haddadi, Duc Le Cong, Laura Porter, and A Nur Zincir-Heywood. On the
effectiveness of different botnet detection approaches. In International conference
on information security practice and experience, pages 121–135. Springer, 2015.

[31] What’s a botnet? URL https://www.kaspersky.com/resource-center/threats/
botnet-attacks. Accessed on June 13, 2021.

[32] Haodi Zhang, Jianye Hao, and Xiaohong Li. A method for deploying distributed de-
nial of service attack defense strategies on edge servers using reinforcement learning.
IEEE Access, 8:78482–78491, 2020.

[33] Eduardo Benavides, Walter Fuertes, Sandra Sanchez, and Manuel Sanchez. Clas-
sification of phishing attack solutions by employing deep learning techniques: A
systematic literature review. Developments and advances in defense and security,
pages 51–64, 2020.

[34] GS Thejas, Surya Dheeshjith, SS Iyengar, NR Sunitha, and Prajwal Badrinath. A
hybrid and effective learning approach for click fraud detection. Machine Learning
with Applications, 3:100016, 2021.

[35] Keshani Jayasinghe and Guhanathan Poravi. A survey of attack instances of cryp-
tojacking targeting cloud infrastructure. In Proceedings of the 2020 2nd Asia pacific
information technology conference, pages 100–107, 2020.

[36] Alicia Enterman. The matryoshka doll in russian culture. URL https://www.
macalester.edu/russian/about/resources/miscellany/matryoshka/. Pub-
lished on Dec 15, 2009.

[37] Alex Turing, Hui Wang, and Liuyang. New threat: Matryosh botnet is spread-
ing. URL https://blog.netlab.360.com/matryosh-botnet-is-spreading-en/.
Published on Feb 02, 2021.

[38] Pieter Arntz. Android devices caught in matryosh botnet. URL
https://blog.malwarebytes.com/malwarebytes-news/2021/02/
android-devices-caught-in-matryosh-botnet/. Published on Feb 09, 2021.

[39] Fahmida Y. Rashid. Chamois: the big botnet you didn’t hear about. URL https:
//duo.com/decipher/chamois-the-big-botnet-you-didnt-hear-about. Pub-
lished on Apr 09, 2019.

[40] Lihy Hay Newman. How android fought an epic botnet—and won. URL https:
//www.wired.com/story/google-android-chamois-botnet. Published on Apr 09,
2019.

53

https://www.kaspersky.com/resource-center/threats/botnet-attacks
https://www.kaspersky.com/resource-center/threats/botnet-attacks
https://www.macalester.edu/russian/about/resources/miscellany/matryoshka/
https://www.macalester.edu/russian/about/resources/miscellany/matryoshka/
https://blog.netlab.360.com/matryosh-botnet-is-spreading-en/
https://blog.malwarebytes.com/malwarebytes-news/2021/02/android-devices-caught-in-matryosh-botnet/
https://blog.malwarebytes.com/malwarebytes-news/2021/02/android-devices-caught-in-matryosh-botnet/
https://duo.com/decipher/chamois-the-big-botnet-you-didnt-hear-about
https://duo.com/decipher/chamois-the-big-botnet-you-didnt-hear-about
https://www.wired.com/story/google-android-chamois-botnet
https://www.wired.com/story/google-android-chamois-botnet

[41] Sms trojan. URL https://blog.malwarebytes.com/threats/sms-trojan/. Pub-
lished on June 09, 2016.

[42] Kaspersky lab quarterly report highlights botnet ddos attack growth.
URL https://usa.kaspersky.com/about/press-releases/2017_
kaspersky-lab-quarterly-report-highlights-botnet-ddos-attack-growth.
Published on Nov 06, 2017.

[43] Jaime Cochran. The wirex botnet: How industry collaboration disrupted a ddos
attack. URL https://blog.cloudflare.com/the-wirex-botnet. Published on
Aug 28, 2017.

[44] Sebastian García, Maria Jose Erquiaga, and Anna Shirokova. Geost botnet. the
story of the discovery of a new android banking trojan from an opsec error.

[45] Jeff Elder. Pulling back the curtain on a banking botnet. URL https://blog.
avast.com/avast-researcher-helps-expose-banking-botnet-geost. Published
on Oct 2, 2019.

[46] Saba Arshad, Munam A Shah, Abdul Wahid, Amjad Mehmood, Houbing Song,
and Hongnian Yu. Samadroid: a novel 3-level hybrid malware detection model for
android operating system. IEEE Access, 6:4321–4339, 2018.

[47] Sina Hojjatinia, Sajad Hamzenejadi, and Hadis Mohseni. Android botnet detection
using convolutional neural networks. In 2020 28th Iranian Conference on Electrical
Engineering (ICEE), pages 1–6. IEEE, 2020.

[48] Icsx dataset: Android botnet dataset 2015. URL https://www.unb.ca/cic/
datasets/android-botnet.html. Accessed on June 10, 2021.

[49] Virustotal: A free online virus scanner. URL https://www.virustotal.com/. Ac-
cessed on June 17, 2021.

[50] Shahid Anwar, Mohamad Fadli Zolkipli, Vitaliy Mezhuyev, and Zakira Inayat. A
smart framework for mobile botnet detection using static analysis. KSII Transac-
tions on Internet and Information Systems (TIIS), 14(6):2591–2611, 2020.

[51] P. H. PESKUN. Optimum monte-carlo sampling using markov chains. Biometrika,
60(3):607–612, 1973.

[52] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad
Rieck. Drebin: Effective and explainable detection of android malware in your
pocket. Proceedings of the Network and Distributed System Security Symposium
2014. San Diego, USA, 1:15, 2014.

[53] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and
evolution. In 2012 IEEE symposium on security and privacy, pages 95–109. IEEE,
2012.

[54] Androguard: android app reverse engineering tool. URL https://github.com/
androguard/androguard. Accessed on June 08, 2021.

[55] Weka: Machine learning software in java. URL https://www.cs.waikato.ac.nz/
ml/weka/. Accessed on June 08, 2021.

54

https://blog.malwarebytes.com/threats/sms-trojan/
https://usa.kaspersky.com/about/press-releases/2017_kaspersky-lab-quarterly-report-highlights-botnet-ddos-attack-growth
https://usa.kaspersky.com/about/press-releases/2017_kaspersky-lab-quarterly-report-highlights-botnet-ddos-attack-growth
https://blog.cloudflare.com/the-wirex-botnet
https://blog.avast.com/avast-researcher-helps-expose-banking-botnet-geost
https://blog.avast.com/avast-researcher-helps-expose-banking-botnet-geost
https://www.unb.ca/cic/datasets/android-botnet.html
https://www.unb.ca/cic/datasets/android-botnet.html
https://www.virustotal.com/
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/

[56] Michelle Y Wong and David Lie. Intellidroid: A targeted input generator for the
dynamic analysis of android malware. In NDSS, volume 16, pages 21–24, 2016.

[57] Michael Bierma, Eric Gustafson, Jeremy Erickson, David Fritz, and Yung Ryn Choe.
Andlantis: Large-scale android dynamic analysis. arXiv preprint arXiv:1410.7751,
2014.

[58] Mahdi Moodi and Mahdieh Ghazvini. A new method for assigning appropriate
labels to create a 28 standard android botnet dataset (28-sabd). Journal of Ambient
Intelligence and Humanized Computing, 10(11):4579–4593, 2019.

[59] J. Kennedy and R.C. Eberhart. A discrete binary version of the particle swarm
algorithm. In C.,“A discrete binary version of the particle swarm algorithm,” in
Proc. 1997 Conf. Systems, Man, Cybernetics, Piscataway, NJ, pages 4104–4108.
IEEE, 1997.

[60] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. Differential evolu-
tion algorithm with strategy adaptation for global numerical optimization. IEEE
transactions on Evolutionary Computation, 13(2):398–417, 2008.

[61] Jing J Liang and Ponnuthurai N Suganthan. Dynamic multi-swarm particle swarm
optimizer with a novel constraint-handling mechanism. In 2006 IEEE International
Conference on Evolutionary Computation, pages 9–16. IEEE, 2006.

[62] Yu Wang, Bin Li, Thomas Weise, Jianyu Wang, Bo Yuan, and Qiongjie Tian. Self-
adaptive learning based particle swarm optimization. Information Sciences, 181(20):
4515–4538, 2011.

[63] Mahdi Moodi, Mahdieh Ghazvini, Hossein Moodi, and Behnam Ghavami. A smart
adaptive particle swarm optimization–support vector machine: android botnet de-
tection application. The Journal of Supercomputing, 76(12):9854–9881, 2020.

[64] Victor GT da Costa, Sylvio Barbon, Rodrigo S Miani, Joel JPC Rodrigues, and
Bruno B Zarpelão. Detecting mobile botnets through machine learning and system
calls analysis. In 2017 IEEE International Conference on Communications (ICC),
pages 1–6. IEEE, 2017.

[65] Strace: Diagnostic and debugging tool for linux. URL https://en.wikipedia.org/
wiki/Strace. Updated on Apr 26, 2021.

[66] Ahmad Karim, Victor Chang, and Ahmad Firdaus. Android botnets: A proof-of-
concept using hybrid analysis approach. In Research Anthology on Securing Mobile
Technologies and Applications, pages 75–92. IGI Global, 2021.

[67] Hyun Jae Kang, Jae-wook Jang, Aziz Mohaisen, and Huy Kang Kim. Androtracker:
Creator information based android malware classification system. In Information
Security Applications-15th International Workshop, WISA, volume 8909, page 545,
2014.

[68] Droidbox: android app dynamic analysis tool. URL https://github.com/pjlantz/
droidbox. Accessed on June 08, 2021.

[69] Muhammad Yusof, Madihah Mohd Saudi, and Farida Ridzuan. Mobile botnet clas-

55

https://en.wikipedia.org/wiki/Strace
https://en.wikipedia.org/wiki/Strace
https://github.com/pjlantz/droidbox
https://github.com/pjlantz/droidbox

sification by using hybrid analysis. International Journal of Engineering and Tech-
nology (UAE), 2018.

[70] Suleiman Yerima. Android botnet detection dataset for machine learning,
Feb 2021. URL https://figshare.com/articles/dataset/Android_botnet_
detection_dataset_for_machine_learning/14079581/1.

[71] Google colaboratory: a python development environment in your browser. URL
https://colab.research.google.com/. Accessed on June 12, 2021.

[72] Python: a high level programming language. URL https://www.python.org/.
Accessed on June 12, 2021.

[73] Keras: Python deep learning api. URL https://keras.io/. Accessed on June 12,
2021.

[74] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[75] Pandas: an open source data analysis and manipulation tool for python. URL
https://pandas.pydata.org/. Accessed on June 12, 2021.

[76] F Rosenblat. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386–408, 1958.

[77] Andrey Kurenkov. A brief history of neural nets and deep learning. Skynet Today,
2020. URL https://skynettoday.com/overviews/neural-net-history.

56

https://figshare.com/articles/dataset/Android_botnet_detection_dataset_for_machine_learning/14079581/1
https://figshare.com/articles/dataset/Android_botnet_detection_dataset_for_machine_learning/14079581/1
https://colab.research.google.com/
https://www.python.org/
https://keras.io/
https://pandas.pydata.org/
https://skynettoday.com/overviews/neural-net-history

Appendices

57

Used dataset features

N° Feature name N° Feature name
1 ACCESS_CHECKIN_PROPE-

RTIES
172 CONNECTIVITY_CHANGE

2 ACCESS_COARSE_LOCATI-
ON

173 UMS_CONNECTED

3 ACCESS_FINE_LOCATION 174 UMS_DISCONNECTED
4 ACCESS_LOCATION_EXTR-

A_COMMANDS
175 BATTERY_LOW

5 ACCESS_MOCK_LOCATION 176 BATTERY_OKAY
6 ACCESS_NETWORK_STATE 177 BATTERY_CHANGED_ACT-

ION
7 ACCESS_SURFACE_FLING-

ER
178 INPUT_METHOD_CHANGE-

D
8 ACCESS_WIFI_STATE 179 SIG_STR
9 ACCOUNT_MANAGER 180 SIM_FULL
10 ADD_VOICEMAIL 181 SEND_MESSAGE
11 AUTHENTICATE_ACCOUN-

TS
182 UID_REMOVED

12 BATTERY_STATS 183 CAMERA_BUTTON
13 BIND_ACCESSIBILITY_SER-

VICE
184 .zip

14 BIND_APPWIDGET 185 .apk
15 BIND_DEVICE_ADMIN 186 .dex
16 BIND_INPUT_METHOD 187 .exe
17 BIND_REMOTEVIEWS 188 .so
18 BIND_TEXT_SERVICE 189 abortBroadcast
19 BIND_VPN_SERVICE 190 HttpPost.*init
20 BIND_WALLPAPER 191 HttpGet.*init
21 BLUETOOTH 192 HttpUriRequest
22 BLUETOOTH_ADMIN 193 setRequestMethod(
23 BRICK 194 getInputStream(
24 BROADCAST_PACKAGE_R-

EMOVED
195 getOutputStream(

25 BROADCAST_SMS 196 Ljava.net.URLDecoder
26 BROADCAST_STICKY 197 System.*loadLibrary
27 BROADCAST_WAP_PUSH 198 Ljava\/lang\/Object.*getClass
28 CALL_PHONE 199 Ljava\/lang\/Class.*getMethod-

s(

58

N° Feature name N° Feature name
29 CALL_PRIVILEGED 200 Ljava\/lang\/Class.*forName
30 CAMERA 201 Ljava\/lang\/Class.*cast
31 CHANGE_COMPONENT_EN-

ABLED_STATE
202 Ljava\/lang\/Class.*getClasses

32 CHANGE_CONFIGURATION 203 Ljava\/lang\/Class.*getCanoni-
calName

33 CHANGE_NETWORK_STA-
TE

204 Ljava\/lang\/Class.*getDeclare-
dClasses

34 CHANGE_WIFI_MULTICAS-
T_STATE

205 Ljava\/lang\/Class.*getDeclare-
dField

35 CHANGE_WIFI_STATE 206 Ljava\/lang\/Class.*getField
36 CLEAR_APP_CACHE 207 Ljava\/lang\/Class.*getSigners
37 CLEAR_APP_USER_DATA 208 Ljava\/lang\/Class.*getResourc-

e
38 CONTROL_LOCATION_UP-

DATES
209 Ljava\/lang\/Class.*getPackage

39 DELETE_CACHE_FILES 210 DexClassLoader
40 DELETE_PACKAGES 211 DexFile.*loadClass
41 DEVICE_POWER 212 DexFile.*getName
42 DIAGNOSTIC 213 DexFile.*loadDex
43 DISABLE_KEYGUARD 214 ClassLoader
44 DUMP 215 findClass
45 EXPAND_STATUS_BAR 216 defineClass
46 FACTORY_TEST 217 PathClassLoader
47 FLASHLIGHT 218 URLClassLoader
48 FORCE_BACK 219 loadClass(
49 GET_ACCOUNTS 220 android.os.IBinder
50 GET_PACKAGE_SIZE 221 getCallingUid(
51 GET_TASKS 222 getCallingPid(
52 GLOBAL_SEARCH 223 transact(
53 HARDWARE_TEST 224 onBind
54 INJECT_EVENTS 225 IRemoteService
55 INSTALL_LOCATION_PRO-

VIDER
226 ServiceConnection

56 INSTALL_PACKAGES 227 Context.bindService
57 INTERNAL_SYSTEM_WIND-

OW
228 bindService

58 INTERNET 229 IBinder
59 KILL_BACKGROUND_PRO-

CESSES
230 Binder

59

N° Feature name N° Feature name
60 MANAGE_ACCOUNTS 231 getBinder
61 MANAGE_APP_TOKENS 232 MessengerService
62 MASTER_CLEAR 233 onServiceConnected(
63 MODIFY_AUDIO_SETTINGS 234 Ljavax\/crypto\/Cipher
64 MODIFY_PHONE_STATE 235 Ljavax\/crypto\/spec\/SecretK-

eySpec
65 MOUNT_FORMAT_FILESY-

STEMS
236 SecretKey

66 MOUNT_UNMOUNT_FILES-
YSTEMS

237 KeySpec

67 NFC 238 doFinal(
68 PERSISTENT_ACTIVITY 239 Runtime.*exec
69 PROCESS_OUTGOING_CAL-

LS
240 createSubprocess

70 READ_CALENDAR 241 Runtime.*load
71 READ_CALL_LOG 242 Runtime.*loadLibrary
72 READ_CONTACTS 243 ProcessBuilder
73 READ_EXTERNAL_STORA-

GE
244 Process.*start

74 READ_FRAME_BUFFER 245 Process.*myPid
75 READ_HISTORY_BOOKMA-

RKS
246 Runtime.*getRuntime

76 READ_INPUT_STATE 247 killProcess(
77 READ_LOGS 248 android.telephony.gsm.SmsMan-

ager
78 READ_PHONE_STATE 249 android.telephony.SmsManager
79 READ_PROFILE 250 divideMessage
80 READ_SMS 251 sendTextMessage(
81 READ_SOCIAL_STREAM 252 android.content.pm.PackageInfo
82 READ_SYNC_SETTINGS 253 android.content.pm.Signature
83 READ_SYNC_STATS 254 PackageInstaller
84 READ_USER_DICTIONARY 255 getInstalledPackages(
85 REBOOT 256 TelephonyManager.*getDeviceId
86 RECEIVE_BOOT_COMPLE-

TED
257 TelephonyManager.*getSubscri-

berId
87 RECEIVE_MMS 258 TelephonyManager.*getSimSeri-

alNumber
88 RECEIVE_SMS 259 TelephonyManager.*getLine1N-

umber

60

N° Feature name N° Feature name
89 RECEIVE_WAP_PUSH 260 TelephonyManager.*getNetwor-

kOperator
90 RECORD_AUDIO 261 TelephonyManager.*getSimOpe-

rator
91 REORDER_TASKS 262 TelephonyManager.*getCallStat-

e
92 RESTART_PACKAGES 263 TelephonyManager.*isNetwork-

Roaming
93 SEND_SMS 264 getCellLocation(
94 SET_ACTIVITY_WATCHER 265 TelephonyManager.*getSimCou-

ntryIso
95 SET_ALARM 266 Ljava.util.Timer
96 SET_ALWAYS_FINISH 267 Ljava.util.Timer.*schedule
97 SET_ANIMATION_SCALE 268 Ljava.util.TimerTask
98 SET_DEBUG_APP 269 Ljava.util.Date
99 SET_ORIENTATION 270 AssetManager
100 SET_POINTER_SPEED 271 getResources
101 SET_PREFERRED_APPLIC-

ATIONS
272 Landroid.content.res.AssetMana-

ger
102 SET_PROCESS_LIMIT 273 getAssets
103 SET_TIME 274 getContentResolver.*query
104 SET_TIME_ZONE 275 content:\/\/sms
105 SET_WALLPAPER 276 content:\/\/telephony
106 SET_WALLPAPER_HINTS 277 content:\/\/mail
107 SIGNAL_PERSISTENT_PRO-

CESSES
278 content:\/\/downloads

108 STATUS_BAR 279 content:\/\/browser
109 SUBSCRIBED_FEEDS_READ 280 content:\/\/contacts
110 SUBSCRIBED_FEEDS_WRI-

TE
281 Ljava.net.InetSocketAddress

111 SYSTEM_ALERT_WINDOW 282 getDataDir(
112 UPDATE_DEVICE_STATS 283 getApplicationInfo(
113 USE_CREDENTIALS 284 getSystemService(
114 USE_SIP 285 BatteryManager
115 VIBRATE 286 AudioManager
116 WAKE_LOCK 287 CameraManager
117 WRITE_APN_SETTINGS 288 NfcManager
118 WRITE_CALENDAR 289 SensorManager
119 WRITE_CALL_LOG 290 UsbManager
120 WRITE_CONTACTS 291 WifiManager

61

N° Feature name N° Feature name
121 WRITE_EXTERNAL_STOR-

AGE
292 BluetoothManager

122 WRITE_GSERVICES 293 addFlags(
123 WRITE_HISTORY_BOOKM-

ARKS
294 setFlags(

124 WRITE_PROFILE 295 getRunningServices(
125 WRITE_SECURE_SETTINGS 296 getMemoryInfo(
126 WRITE_SETTINGS 297 restartPackage(
127 WRITE_SMS 298 onActivityResult
128 WRITE_SOCIAL_STREAM 299 getNetworkInfo(
129 WRITE_SYNC_SETTINGS 300 getExtraInfo(
130 WRITE_USER_DICTIONARY 301 getTypeName(
131 android.intent.action.TIME_SE-

T
302 isConnected(

132 android.intent.action.TIMEZO-
NE_CHANGED

303 getState(

133 android.intent.action.BOOT_C-
OMPLETED

304 setWifiEnabled(

134 android.intent.action.PACKAG-
E_ADDED

305 getWifiState(

135 android.intent.action.PACKAG-
E_CHANGED

306 android.os.Handler

136 android.intent.action.PACKAG-
E_REMOVED

307 obtainMessage(

137 android.intent.action.PACKAG-
E_RESTARTED

308 sendMessage(

138 android.intent.action.PACKAG-
E_DATA_CLEARED

309 DataInputStream.*available(

139 android.intent.action.UID_RE-
MOVED

310 FileOutputStream.*write(

140 android.intent.action.ACTION-
_POWER_CONNECTED

311 io.File.*delete(

141 android.intent.action.ACTION-
_POWER_DISCONNECTED

312 io.File.*mkdir

142 android.intent.action.ACTION-
_SHUTDOWN

313 io.File.*exists(

143 android.intent.action.PACKAG-
E_REPLACED

314 ZipInputStream.*read(

144 android.intent.action.BATTER-
Y_LOW

315 ZipInputStream.*close(

62

N° Feature name N° Feature name
145 android.intent.action.BATTER-

Y_OKAY
316 ZipInputStream.*getNextEntry(

146 android.intent.action.CALL 317 getElementByTagName(
147 android.intent.action.CALL_B-

UTTON
318 getAttribute(

148 android.intent.action.CAMERA-
_BUTTON

319 getDocumentElement(

149 android.intent.action.NEW_O-
UTGOING_CALL

320 Landroid/location/LocationMan-
ager.*getAllProviders(

150 android.intent.action.REBOOT 321 android.hardware
151 android.intent.action.SCREEN-

_OFF
322 checkSignatures(

152 android.intent.action.SCREEN-
_ON

323 getSystemAvailableFeatures(

153 android.intent.action.SEND 324 chmod
154 android.intent.action.SENDTO 325 chown
155 android.intent.action.SET_WA-

LLPAPER
326 \/system\/app

156 android.settings.NETWORK_-
OPERATOR_SETTINGS

327 \/system\/bin

157 intent.action.RUN 328 \/system\/bin\/su
158 android.intent.action.SEND_M-

ULTIPLE
329 \/system\/bin\/sh

159 android.settings.APN_SETTIN-
GS

330 mount

160 NEW_OUTGOING_CALL 331 remount
161 USER_PRESENT 332 grep
162 SMS_RECEIVED 333 \/sh
163 PACKAGE_REPLACED 334 \/bin
164 PACKAGE_INSTALL 335 insmod
165 ACTION_MAIN 336 stdout
166 SEND_MULTIPLE 337 stderr
167 settings.APN_SETTINGS 338 killall
168 wifi.WIFI_STATE_CHANGED 339 reboot
169 PICK_WIFI_WORK 340 \/dev\/net
170 PHONE_STATE 341 \/system
171 WAP_PUSH_RECEIVED 342 pminstall

63

	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Introduction
	Background
	Introduction
	Android operating system
	Definitions
	Platform architecture
	Risks

	Machine Learning & Deep Learning
	Architectures
	Evaluation

	Conclusion

	Botnet
	Introduction
	Definitions
	Topologies
	Centralized topology
	Peer To Peer topology
	Hybrid topology

	Protocols
	Botnet attack
	Attack steps
	Attack risks

	Existing botnets
	Matryosh - 2021
	Chamois - 2016
	WireX - 2017
	Geost - 2016

	Conclusion

	State of the art
	Introduction
	Static analysis
	Detection using Convolutional Neural Networks
	Detection using Random forest

	Dynamic analysis
	Detection using PSO-SVM
	Detection using Random Forest

	Hybrid analysis
	Conclusion

	Conception & Implementation
	Introduction
	Dataset
	Environment
	Network architecture
	Results And Discussion
	Conclusion

	Conclusion
	Bibliography
	Appendices
	Dataset Features

