

Thesis

For obtaining the master’s degree

Domain: Artificial Intelligence and Linguistics

Field: Computer Science

Specialty: Intelligent Systems for Knowledge Extraction

Submitted on 29/09/2021

By
Ahmed ITBIRENE and Brahim CHIHANI

Examined by the jury composed of:

Examiner University of Ghardaia MCB Dr. Slimane OULAD-NAOUI

Examiner University of Ghardaia MAB Dr. Houssem Eddine DEGHA

Advisor University of Ghardaia MCA Dr. Slimane BELLAOUAR

Academic Year: 2020/2021

ّةةّالشعبي ّةّالديمقراطي ّةّالجزائري ّالجمهوري ّ
People’s Democratic Republic of Algeria

ّوزارةّالتعليمّالعاليّوالبحثّالعلمي

Ministry of High Education and Scientific Research
ّجامعةّغـرداية

University of Ghardaiaّّ
 العلومّوالتكنولوجياةّكلي ّ

Faculty of Science and Technology
 علامّاللٓيالرياضياتّوالّ قسمّ

Mathematics and Computer Science Department

Registration N°:
 /…../…../.…./…../…..

Theme

Topic Modeling with Word Embeddings

(Topic Modeling)

 ملخص

المواضيع من خلال المعلومات التي تكون في ستخراجافإن ع التطور الكبير في مجال الرقمنةم

شكل نصوص غير موسومة ليس بالأمر الهين, لذلك فإننا نحتاج إلى تقنيةالآحيان على أغلب

.للإشراف غير خاضعة خوارزمياتوالتي بدورها تستند إلى نمذجة المواضيع

 بينها: من نذكر ,اهب المرتبطة والمناهج عيضاالمو نمذجة مفهوم نقوم بتوضيح مذكرتنا من خلال

Latent Dirichlet Allocation (LDA), Embedded Topic Model (ETM), Gaussian LDA (G-LDA),

 LDA with Word2Vec (LDA2Vec).

(ETM) مجموعة على و (LDA) الطريقتين بين مقارنة بإجراء نقوم التجريبي، ناحية العمل من

 .20 newsgroups

.(MTE) لصالح طريقة المواضيعوتناسق التنفيذوقت من حيث كانت النتائج التي تحصلنا عليها حيث

 Latent Dirichlet Allocation (LDA) , ,Embedded Topic Model (ETM),المواضيعتناسق ,عيضاالمو نمذجة: المفتاحية الكلمات

LDA with Word2Vec (LDA2Vec) ,Gaussian LDA (G-LDA) .

Abstract

With the great development in the field of digitization, the extraction of topics through

information that is in the form of unmarked texts, is not an easy matter. Therefore, we

need a topic modeling technique, which is based on unsupervised algorithms.

In our thesis, we clarify the concept of topic modeling and the inherent approaches, such as

Latent Dirichlet Allocation (LDA), Embedded Topic Model (ETM), Gaussian LDA (G-LDA),

and LDA with Word2Vec (LDA2Vec).

In the experimental work, we make an empirical comparison between both LDA and ETM

methods on the 20 newsgroups, in terms of runtime and topic coherence. The results are in

favor of the ETM method.

Keywords: topic modeling, topic coherence, Latent Dirichlet Allocation (LDA), Embedded

Topic Model (ETM), Gaussian LDA (G-LDA), LDA2Vec.

Résumé

Avec le grand développement dans le domaine de la numérisation, l’extraction des sujets

à travers des informations qui se présentent sous forme de textes non étiqueté, n’est pas une

tache facile. Par conséquent, nous avons besoin d’une technique de modélisation thématique

basée sur des algorithmes non supervisés.

Dans notre thèse, nous clarifions le concept de modélisation thématique et les approches

associées tel que Latent Dirichlet Allocation (LDA), Embedded Topic Model (ETM), Gaussian

LDA (G-LDA), et LDA avec Word2Vec (LDA2Vec).

Dans le travail expérimental, nous faisons une comparaison empirique entre les deux

méthodes LDA et ETM, sur le 20 newsgroups, en termes de temps d’exécution et de cohérence

thématique,

Les résultats que nous avons obtenus sont en faveur de la méthode ETM.

Mots clés: modélisation thématique, cohérence thématique, Latent Dirichlet Allocation

(LDA), Embedded Topic Model (ETM), Gaussian LDA (G-LDA), LDA2Vec.

Dedications

First of all, I thank the Almighty God for the guidance, strength, power of the

mind, protection, and skills, and for healthy living.

This thesis is wholeheartedly dedicated to my beloved parents, who have been

my source of inspiration and gave me strength in my weaknesses, who

continually provide their moral, spiritual, emotional, and financial support,

To my amazing wife, whose sacrificial care for me made it possible for me to

complete this work,

To my dear grandparents and my mother and father in law,

To my brothers, sisters, relatives, mentor, friends, and classmates who shared

their words of advice and encouragement to finish this study,

I hope that this achievement will complete the dream that you had for me all

those many years ago.

Ahmed

Dedications

I dedicate this modest work to the soul of my dear mother, may God have

mercy on her in his vast paradise.

My deepest feelings for my dear father, i wish him a speedy recovery.

To my very dear wife.

To my beautiful children Mohammad, Hammu and Ali.

To all my brothers and sisters and family.

To all my friends and everyone who loves me.

To all my colleagues at work, especially the office of Computer Science of the

municipality of Ghardaia.

Brahim

Acknowledgment

We thank God first and foremost for giving us the courage and health to accomplish this

Modest work.

This work could not have led to results without the help and encouragement of the many

people we thank.

We thank our supervisor Dr. Slimane BELLAOUAR, for his help, understanding, advice,

criticism and encouragement. We would like to thank the members of the jury for the honor

they have given us by accepting to judge our work.

We also thank our co-workers for their encouragement and support. Finally, we wish

everyone who helped and encouraged us from near or far in the realization of this work to find

here our gratitude and sincere thanks.

CONTENTS CONTENTS

Contents

List of Tables iii

List of Figures iv

List of Algorithms vi

Listings vii

Introduction 1

1 Background 2

1.1 Machine Learning . 2

1.1.1 Supervised Learning . 2

1.1.2 Unsupervised Learning . 3

1.2 Natural Language Processing (NLP) . 4

1.3 Text Pre-Processing . 5

1.4 Word Vectors and NLP Modeling . 7

1.4.1 Traditional Word Vectors . 7

1.4.2 Word Embeddings . 10

1.5 Topic Coherence Measures . 15

2 Related Work 16

2.1 Latent Dirichlet Allocation (LDA) . 16

2.2 Topic Modeling with LDA and Word Embeddings 19

2.2.1 Embedded Topic Model (ETM) . 21

2.2.2 Gaussian LDA (G-LDA) . 24

2.2.3 LDA with Word2Vec (LDA2Vec) . 27

3 Implementation 30

3.1 Introduction . 30

i

CONTENTS CONTENTS

3.2 Environment . 30

3.3 Data Preprocessing . 31

3.4 Results and Discussion . 35

3.4.1 LDA Evaluation . 35

3.4.2 ETM Evaluation . 38

3.4.3 Comparison Between LDA and ETM . 41

4 Conclusion 45

References 46

ii

LIST OF TABLES LIST OF TABLES

List of Tables
1.1 Document-term matrix. 8

3.1 LDA performance metrics. 37

3.2 ETM performance metrics. 40

iii

List of Figures LIST OF FIGURES

List of Figures
1.1 Machine learning structure. 3

1.2 Topic modeling diagram (Rani and Kumar (2021)). 4

1.3 Text pre-processing techniques. 5

1.4 Stemming example (Vijayarani et al. (2015)). 6

1.5 Linear word analogies. 10

1.6 The parallelogram structure of the linear analogy (king,queen)::(man,woman). . 11

1.7 Softmax function graph. 12

1.8 Architecture of Word2Vec models: CBOW and Skip-Gram. 12

1.9 Continuous bag-of-words example. 13

1.10 Continuous bag-of-words architecture. 13

1.11 Skip-gram example. 14

1.12 Skip-gram architecture. 14

2.1 The intuition behind LDA: (Right) each document is a probability distribution

over topics. (Left) each topic is a probability distribution over words (Blei et al.

(2010)). 16

2.2 LDA graphical model (Blei and Lafferty (2009)). 18

2.3 Word embedding examples. 20

2.4 ETM word embedding space. (Dieng et al. (2020)) 22

2.5 ETM graphical model. 23

2.6 The first two principal components for the word embeddings some topics from

Gaussian LDA on the 20 newsgroups dataset has been visualized. Each point

represents a word color according to its topic (Das et al. (2015)). 25

2.7 G-LDA graphical model (Ozaki and Kobayashi (2018)). 26

2.8 LDA2Vec network architecture (Moody (2016)). 29

3.1 20 newsgroups dataset. 31

3.2 The corpus before and after data preprocessing. 34

3.3 LDA vs ETM - Cv measure. 41

iv

LIST OF FIGURES LIST OF FIGURES

3.4 LDA vs ETM - UCI measure. 42

3.5 LDA vs ETM - NPMI measure. 42

3.6 LDA vs ETM - UMass measure. 43

3.7 LDA vs ETM - runtime measure. 43

v

LIST OF ALGORITHMS LIST OF ALGORITHMS

List of Algorithms
1 Generative process of LDA model (Blei and Lafferty (2009)) 19

2 Generative process of ETM model (Dieng et al. (2020)). 24

3 Generative process of G-LDA model (Das et al. (2015)) 26

vi

LIST OF LISTINGS Listings

List of Listings
1 Importing dataset . 32

2 Data preprocessing . 32

3 Dictionary constructing . 34

4 Dictionary filtering . 35

5 Document-term matrix constructing . 35

6 LDA model . 35

7 LDA coherence scores . 36

8 Word2Vec model . 38

9 Corpus transformation for ETM instance . 38

10 ETM model . 39

11 ETM coherence scores . 39

vii

Introduction Introduction

Introduction
Since the explosion of information with the advent of the third generation of web sites, classic

data analysis approaches have become helpless in front of the massive flow of information. Then

it is necessary to find more effective and smarter ways to confront this phenomenon, especially

when the information is unlabeled text type. But is not easy to classify this information in a

specific topics, thus it is advantageous to make reference to unsupervised algorithms, namely

topic modeling.

Topic modeling is a field of text mining that uses unsupervised machine learning techniques

for extracting the meanings of words according to their context. It can take huge collection of

documents, grouping words into bag of words, identifying topics, by using a similarity process.

In our work, we present different approaches of topic modeling starting with the classical

method named Latent Dirichlet Allocation (LDA) (Blei et al. (2003)), and passing through

several new methods that are devised from the combination of LDA model and Word Embedding

technique. Those methods are Embedded Topic Model (ETM) (Dieng et al. (2020)), Gaussian

LDA (G-LDA) (Das et al. (2015)), and finally LDA with Word2Vec (LDA2Vec) (Moody (2016)).

As a contribution to this thesis, we made an experimental comparison between both LDA

and ETM methods, using the corpus of 20Newsgroups. The results we obtained in terms of

runtime and topic coherence, are in favor of the ETM method.

We divided this thesis into three chapters. In the first chapter we present some basic concepts

and definitions about Natural Language Processing (NLP), Machine Learning (ML), and then

some detail of topic modeling with touching on word embedding. In the second chapter we

present a detailed study of the different approaches of topic modeling. In the last chapter we

make an experimental comparison between LDA and ETM methods. We choose as a corpus the

20 newsgroups and as a word embedding model the pre-trained Google’s Word2Vec. Finally,

the conclusion summarizes what we passed through in our thesis.

1

1 BACKGROUND

Chapter 1

1 Background
In this chapter, we present the necessary information for understanding the continuation of this

work. We base first on Machine Learning (ML), then Natural Language Processing (NLP), and

then text pre-processing, and finally text representation with word vectors and NLP modeling,

which are used by different approaches of topic modeling.

1.1 Machine Learning
Machine Learning (ML) is a field of Artificial Intelligence (AI) that relies on mathematical

and statistical approaches to give computers the ability to learn from data, improving their

performance in solving tasks without being programmed (Jordan and Mitchell (2015)).

1.1.1 Supervised Learning

In supervised learning, we train the machine using data that is well labeled. It means supervised

learning algorithms learns from labeled training data, and help us to predict outcomes for

unforeseen data. Supervised machine learning is split into two main branches:

• Classification (categorical)

Classification means grouping the output into a class (or multiple classes). If the algorithm tries

to label the input in two separate classes, this is called a binary classification. The selection

between more than two classes is called a multiclass classification.

• Regression (quantitative)

The regression technique uses the training data to predict a single continuous output value.

2

1 BACKGROUND 1.1 Machine Learning

1.1.2 Unsupervised Learning

Unsupervised learning is a machine learning technique in which the model does not need

supervision. We let the model to work on its own to discover information. It mostly deals

with data that has not been labled.

• Clustering

Clustering is a field of unsupervised learning. It can find a structure or pattern in a collection

of uncategorized data.

• Association (rules)

Association rules allow us to establish associations amongst data objects inside large databases.

This unsupervised technique is about discovering exciting relationships between variables in

large databases.

Figure 1.1 Describes the Machine learning structure.

Figure 1.1: Machine learning structure.

3

1.2 Natural Language Processing (NLP) 1 BACKGROUND

1.2 Natural Language Processing (NLP)
Natural Language Processing or NLP is the sub-field of machine learning that is focused on

enabling computers to understand and process human language (Vijayarani et al. (2015)). In

other words, with NLP computers are taught to understand human language, their meanings

and sentiments.

Some applications of natural language processing are:

• Chatbots.

• Speech Recognition.

• Audio Processing.

• Text Classification.

• Topic Modeling.

Topic Modeling

Topic modeling is an NLP approach that is used for automatically discover the abstract topics

that occur in a collection of documents (corpus of text data).

This process is an unsupervised technique similar to clustering on numeric data, which means

that we do not have to provide a labeled dataset to topic modeling algorithms, and topics are

identified automatically by the model.

A document can be part of multiple topics (Rani and Kumar (2021)), like in fuzzy clustering

(soft clustering) in which each instance (document) can belong to each cluster (topic) with a

certain degree. Figure 1.2 explains the working principle of topic modeling.

Figure 1.2: Topic modeling diagram (Rani and Kumar (2021)).

4

1 BACKGROUND 1.3 Text Pre-Processing

Topic modeling provides methods for automatically organizing, understanding, searching,

and summarizing large electronic archives.

It can help with the following:

• Discovering the hidden themes in the collection,

• Classifying the documents into the discovered themes,

• Using the classification to organize/summarize/search the documents.

Let us say a document belongs to the topics (food, dogs and health). So if a user queries “dog

food”, they might find the above-mentioned document relevant because it covers those topics

(among other topics). We are able to figure its relevance with respect to the query without

even going through the entire document. Therefore, by annotating the document, based on the

topics predicted by the modeling method, we are able to optimize our search process.

1.3 Text Pre-Processing
Text preprocessing is traditionally an important step for natural language processing (NLP)

tasks. It transforms text into a more digestible form (Vijayarani et al. (2015)) so that machine

learning algorithms can perform better as shown in Figure 1.3.

Figure 1.3: Text pre-processing techniques.

Normalization

Normalization is the process of lowercasing and cleaning the corpus from non-alphabetic

characters (e.g., numbers, punctuations, and special characters).

5

1.3 Text Pre-Processing 1 BACKGROUND

Tokenization

Tokenization is the process of splitting documents into units of observations. We usually

represent the tokens as n-gram; where n represent the consecutive words occurring in a

document. In the case of unigram (one word token), the sentence “David works here” will

be tokenized into: “David”, “works”, “here”. In the case of bigram (two words token), the

sentence “David works here” will be tokenized into: “David works”, “works here”.

Stopwords Removal

Stopwords removal is the process of removing all words that are semantically meaningless in

the corpus. A list of stopwords should be provided.

Lexicon Normalization

Aside from stopwords, a different type of noise can arise in NLP. For example, collect, collection,

collected, and collecting are all similar words. Using stemming and lemmatization would reduce

all variations of the same word (noun, verb, adverb, adjective, etc.) to a common base form.

• Stemming

Stemming allows us to remove different variations of the same word. For example, change,

changes, changed and changing will all be reduced to the same single word “chang”. Figure 1.4

illustrates it.

• Stemming is the process of reducing inflection in words to their root form, such as mapping

a group of words to the same stem even if the stem itself is not a valid word in the language.

• Stemming often leads to incorrect meanings and spelling.

• Stems are created by removing the suffixes or prefixes used with a word.

Figure 1.4: Stemming example (Vijayarani et al. (2015)).

6

1 BACKGROUND 1.4 Word Vectors and NLP Modeling

• Lemmatization

The only difference between lemmatization and stemming is that lemmatization returns

meaningful base form.

For example, instead of returning “chang” like stemming would. “change” will be returned.

• Unlike stemming, lemmatization reduces the inflected words properly ensuring that the root

word belongs to the language.

• In lemmatization, the root word is called “lemma”.

• A lemma (plural lemmas) is the canonical form, dictionary form, or citation form of a set of

words, we note that stemmers and lemmatizers work on individual words so we have to tokenize

the data first so that we can apply stemming or lemmatization to it.

1.4 Word Vectors and NLP Modeling
Computers are unable to understand the concepts of words. In order to process natural language,

a mechanism for representing text is required.

The standard mechanism for text representation are word vectors where words or documents

from a given language vocabulary are mapped into vectors of real numbers.

1.4.1 Traditional Word Vectors

Before diving directly into Word2Vec it is worth while to do a brief overview of some of the

traditional methods that pre-date word embeddings.

Bag-Of-Words (BOW)

Bag-Of-Words (BOW) model (Kim et al. (2017)) is a text representation that describes the

occurrence of words within a document. It involves two elements:

• A vocabulary of known words.

• A measure of the presence of known words.

It is called “bag of words” because any information about the order or structure of words in

the document is discarded. The model is only concerned with whether known words occur in

the document, not where in the document. This process is often referred to as vectorization.

7

1.4 Word Vectors and NLP Modeling 1 BACKGROUND

Let us understand this concept with an example. Suppose we want to vectorize the following:

Doc1: “I am great”.

Doc2: “Tom is very lazy”.

Doc3: “George is good and active person”.

For this small example, let us treat each line as a separate “document” and the three lines

as our entire corpus of documents.

Step 1: Determine the vocabulary: We first define our vocabulary, which is the set of all words

found in our document set. The only words that are found in the three documents above are:

(I, Tom, George, am, is, great, good, lazy, active, very, and, person).

Step 2: Counting to vectorize our documents. All we have to do is counting how many times

each word appears as shown in Table 1.1.

Documents I Tom George am Is great Good lazy active Very and person

Doc1 1 0 0 1 0 1 0 0 0 0 0 0

Doc2 0 1 0 0 1 0 0 1 0 1 0 0

Doc3 0 0 1 0 1 0 1 0 1 0 1 1

Table 1.1: Document-term matrix.

The bag-of-words model is very simple to understand and implement and offers a lot of

flexibility for customization on your specific text data. It has been used with great success

on prediction problems like language modeling and document classification. Nevertheless, it

suffers from some shortcomings (Kim et al. (2017)), such as:

• Sparsity: Sparse representations are harder to model both for computational reasons (space

and time complexity) and for information reasons, where the challenge is for the model to

harness so little information in such a large representational space.

• Meaning: Discarding the word order ignores the context and consequently the meaning of

words inside documents (loss of semantics and contextual information). Context and meaning

can offer a lot to the model, that if modeled could detect synonyms (“good” vs. “great”),

antonyms (“active” vs. “lazy”), and much more.

8

1 BACKGROUND 1.4 Word Vectors and NLP Modeling

Term Frequency - Inverse Document Frequency (TF-IDF)

TF-IDF (Ramos et al. (2003)) is a text representation that is intended to reflect how important

a word is to a given document inside a collection (corpus). It provides some weighting to a given

word based on its occurrence inside documents. The TF-IDF value increases proportionally to

the number of times the word appears in a document, but is offset by the number of documents

in the corpus that contain that word, which helps to adjust the fact that some words appear

more frequently than others.

• TF (Term Frequency)

TF is simply the frequency of words in a document, and it can be represented as the number

of times a term shows up in a document.

• IDF (Inverse Document Frequency)

IDF represents the measure of how much information the word provides, i.e., if it is common

or rare across all documents.

idf (w) = log(number of docs

number of docs containing w
).

TF-IDF is the product of term frequency and inverse document frequency, or TF*TDF.

The TF-IDF formula:

Wi,j = tfi,j × log(N

dfi
).

where:

• tfi,j: number of occurrence of term i inside document j.

• dfi: number of documents containing the term i.

• N : total number of documents.

However, even though BOW and TF-IDF representations provide weights to different words

they are unable to capture the word meaning.

9

1.4 Word Vectors and NLP Modeling 1 BACKGROUND

1.4.2 Word Embeddings

Word embedding is trying to teach computers or machines the meaning of words. Recently, the

NLP field has developed new linguistic models that rely on a neural network architecture instead

of more traditional n-gram models. These new techniques are a set of language modeling and

feature learning techniques where words are transformed into vectors of real numbers; hence,

they are called word embeddings.

Word embedding models map all the words in a given language into numerical vectors of

a given dimension. These models have quickly become popular because, once we have real

numbers instead of strings, we can perform calculations. For example, we can find words that

have the same context (synonyms) by calculating the distance between vectors.

Word2Vec

Word2Vec is the standard method for training word embeddings, which gained its popularity

since 2013 (Mikolov et al. (2013)). It is the first method that demonstrated vector arithmetics

to solve word analogies (Allen and Hospedales (2019); Ethayarajh et al. (2019)). Figure 1.5

illustrates some examples of the concept.

Figure 1.5: Linear word analogies.

Word2Vec tries to make the words with similar contexts have similar embeddings. In other

words, instead of mapping the meaning of words (like dictionaries) we can rather infer the

meaning of words that frequently appear around it. Therefore, when a word appears in a

document its context is the set of words that appear nearby usually within a fixed size window.

Let us consider an example to understand the concept better.

Example

• The kid said he would grow up to become a man.

10

1 BACKGROUND 1.4 Word Vectors and NLP Modeling

• The child said he would grow up to become a man.

We can observe that the words kid and child are two different words with same context, and

since Word2Vec makes words with similar context have similar embeddings then kid and child

will have similar vectors when we iterate through a large corpus we would get a lot of sentences

where kid is replaceable by child and hence these vectors will have similar embeddings.

Word2Vec converts word into vectors and with those vectors, we can have multiple operations

like add, subtract and calculate distance between vectors to perform linear word analogies, and

that is how the relationship among the words are preserved. Therefore, one example of this

relationship is a very famous result of Word2Vec, which says:

⃗king − m⃗an + ⃗woman = ⃗queen.

This form is a parallelogram structure of the linear analogy in the vector space (Figure 1.6).

Figure 1.6: The parallelogram structure of the linear analogy (king,queen)::(man,woman).
(Ethayarajh et al. (2019))

Definitions

• One-hot vector means one bit is set to 1 and all others are set to 0.

• Softmax is a non-linear function (Figure 1.7) that is used in neural networks as an activation function.

It works in multi-class classification problems. The values outputted by nodes in a softmax layer will

always sum to 1. When we are performing classification, these values are directly interpretable as

probabilities.

The mathematical formula corresponding to the softmax function is given as follows:

f (xi) = e(xi)∑k
c=1 e(xc)

.

11

1.4 Word Vectors and NLP Modeling 1 BACKGROUND

Figure 1.7: Softmax function graph.

Word2Vec has proven to be successful on a variety of downstream natural language processing

tasks. It provides two main architectures that are used to produce a distributed representation of

words; Continuous Bag-Of-Words (CBOW) and Skip-Gram (SG) (Figure 1.8).

Figure 1.8: Architecture of Word2Vec models: CBOW and Skip-Gram.
(Mikolov et al. (2013))

Notes

• The only activation function that is used in Word2Vec neural network models is Softmax function,

and there is no other activation functions used like Sigmoid, Tanh or ReLU.

• Softmax is used in Word2Vec models in the output layer for calculating probability distributions.

Now, let us take a look at some more details about Word2Vec models.

12

1 BACKGROUND 1.4 Word Vectors and NLP Modeling

• Continuous Bag-Of-Words (CBOW)
The model uses a context to predict target word. The context consists of a few words before and after

the current word (Figure 1.9).

Example:

Figure 1.9: Continuous bag-of-words example.

The architecture of continuous bag-of-words neural network model is given in Figure 1.10:

Figure 1.10: Continuous bag-of-words architecture.
(Rong (2014))

• The input layer has C one-hot encoded vectors of size V for the context words.

• The hidden layer contains N neurons (the size of the embedded vector).

• The output layer is a V length vector that contains the predicted probability distribution for the

target word calculated by softmax activation function.

• Wvn is the weight matrix that maps the input x to the hidden layer (V × N dimensional matrix).

• W ′nv is the weight matrix that maps the hidden layer outputs to the final output layer (N × V

dimensional matrix).

We Note that the input weights matrix W is shared by all the context words.

13

1.4 Word Vectors and NLP Modeling 1 BACKGROUND

• Skip-Gram (SG)
The model uses a word to predict target context, i.e., predict words within a certain range before and

after the current word (Figure 1.11).

Example:

Figure 1.11: Skip-gram example.

The architecture of skip-gram neural network model is depicted Figure 1.12.

Figure 1.12: Skip-gram architecture.
(Rong (2014))

• The input layer is the one-hot encoded vector of size V for the middle word.

• The hidden layer contains N neurons (the size of the embedded vector).

• The output layer has C vectors of length V that contains the predicted probability distributions for

each word from the target context words calculated by softmax activation function.

• Wvn is the weight matrix that maps the input x to the hidden layer (V × N dimensional matrix).

• W ′
nv is the weight matrix that maps the hidden layer outputs to the final output layer (V × N

dimensional matrix).

We note that the output weights matrix W ′ is shared by all the context words.

14

1 BACKGROUND 1.5 Topic Coherence Measures

1.5 Topic Coherence Measures
Topic coherence measures are used for evaluating topic models to extract the best in terms of semantic

similarity of words in a topic. We introduce four metrics:

1. The UCI coherence is an extrinsic measure introduced by Newman et al. (2010). It uses the

Pointwise Mutual Information (PMI) as a pairwise score function of all the n-top words pairs. The

UCI is calculated as follows:

UCI(wi, wj) = log
P (wi, wj) + 1
P (wi).P (wj)

.

• One was added to avoid the logarithm of zero.

where:

• P (wi): the probability of seeing the term wi in a random document.

• P (wi, wj): the probability of seeing both terms wi and wj co-occurring in a random document.

2. The NPMI coherence measure is an enhanced version of the UCI coherence using the

Normalized Pointwise Mutual Information (NPMI) (Aletras and Stevenson (2013)). It is calculated

as follows:

NPMI(wi, wj) =
log P (wi,wj+1)

P (wi).P (wj)

−log(P (wi, wj) + 1)
.

3. The Cv coherence measure combines the indirect cosine measure with the Normalized Pointwise

Mutual Information (NPMI) and the boolean sliding window (Röder et al. (2015)).

4. The UMass coherence measure is an intrinsic measure based on document co-occurrence. It is

calculated as follows:

UMass(wi, wj) = log
D(wi, wj) + 1

D(wi)
.

where:

•D(wi): the number of documents containing the term wi.

•D(wi, wj): the number of documents containing both terms wi and wj .

15

2 RELATED WORK

Chapter 2

2 Related Work
In this chapter, we discuss different topic modeling approaches. We start with Latent Dirichlet

Allocation (LDA) and pass through three other approaches: labeled Embedded Topic Model

(ETM), Gaussian LDA (G-LDA), and finally LDA with Word2Vec (LDA2Vec). These methods

are the combination of LDA and word embeddings. We mention that there is another LDA

method in supervised machine learning called Linear Discriminant Analysis. It is used for

classification problems in statistics and other fields.

2.1 Latent Dirichlet Allocation (LDA)
LDA is a Bayesian generative probabilistic model that is used to discover the abstract topics

that occur in a collection of documents. It was originally proposed by Blei et al. (2003).

The main idea behind LDA is that each document can be described by a distribution of

topics and each topic can be described by a distribution of words (Figure 2.1).

Figure 2.1: The intuition behind LDA: (Right) each document is a probability distribution
over topics. (Left) each topic is a probability distribution over words (Blei et al. (2010)).

16

2 RELATED WORK 2.1 Latent Dirichlet Allocation (LDA)

Let us say we have a collection of different newspapers (our corpus of documents), and we

assume that we have a fixed number of topics within our corpus. Our goal is to find out what

they are! To get there we make two key assumptions:

• Each document is a mixture of small number of topics.

• Each topic is a mixture of small number of words.

The intuition is that documents are similar if they have similar content. Further, when we

see that some documents are connected to same set of words, we know they discuss the same

topic. This idea is based on the distribution hypothesis, which says: words that appear together

frequently are likely to be close in meaning. Therefore, what LDA does is connect the words to

the topics depending on how well each word fall in a given topic, and then connect the topics

to the documents based on what topics each document touch upon.

We note that LDA does not give importance to the order of words or the semantic in the

document. Usually, LDA uses the bag-of-words feature representation to represent a document.

That makes sense, because, when we take a document and jumble its words, we can still extract

the topics that are discussed in the document.

We can describe the formal task of LDA as; given a collection of text documents as bag-of-

words:

nwd is a count of the word w in the document d.

The model trains to find:

• Probability distribution of words for each topic: ϕwt = p(w | t).

• Probability distribution of topics for each document: θtd = p(t | d).

Before diving into the details, we present some definitions and notations.

Definitions and notations

• K: total number of topics.

• D: total number of documents in the corpus.

• N : total number of words in a given document.

• V : vocabulary size.

• α: hyper parameter for θ; encouraging sparseness of document-topics distribution (small

number of topics associated with each document).

• β: hyper parameter for ϕ; encouraging sparseness of topic-words distribution (small number

of words associated with each topic).

• ϕk: per-topic distribution over words, K × V matrix.

17

2.1 Latent Dirichlet Allocation (LDA) 2 RELATED WORK

• θd: per-document distribution over topics, D × K matrix (one row for each document from

the corpus).

• zd,n: per-word topic assignment, N × K matrix (one row for each word from the document).

• wd,n: observed word drawn from topic’s word distribution (the nth word in the dth document).

To recap the aforementioned, α and β are Dirichlet-prior parameters, ϕ and θ are Dirichlet

distributions, z and w are multinomials.

Figure 2.2 represents the graphical model of LDA.

Figure 2.2: LDA graphical model (Blei and Lafferty (2009)).

Based on the previous definitions and notations, we present the corresponding mathematical

formula for LDA:

p(ϕ, θ, z, w | α, β) =
K∏

k=1
p(ϕk | β)

D∏
d=1

p(θd | α)
N∏

n=1
p(zd,n | θd)p(wd,n | ϕ1:k, zd,n).

18

2 RELATED WORK 2.2 Topic Modeling with LDA and Word Embeddings

The generative process of LDA model (Algorithm 1):

Algorithm 1: Generative process of LDA model (Blei and Lafferty (2009))

1 for each topic k ∈ {1, . . . , K} do

2 Choose a distribution over words: ϕk ∼ Dir(β)

3 for each document d ∈ {1, . . . , D} do

4 Choose a distribution over topics: θd ∼ Dir(α)

5 for each word n ∈ {1, . . . , N} inside document d do

6 Choose a topic from document’s distribution: zd,n ∼ Mult(θd)

7 Choose a word from topic’s distribution: wd,n ∼ Mult(ϕzd,n)

2.2 Topic Modeling with LDA and Word Embeddings
LDA is a powerful model and it is used very widely in topic modeling. However, it suffers

from some limitations, but we are going to focus on a particular problem and that is when

we treat every word type (term) as a distinct entity. To clarify a little bit: each topic is

a categorical distribution over the terms of our vocabulary. Therefore, the model learns a

separate probability for each term, then we have a separate parameter for the probability of

the word “cat” and the word “kitten” given a particular topic, i.e., there is no sharing between

these distributions, although they are synonyms.

p(cat | t) ̸= p(kitten | t).

The problem here is that if we have a corpus where we see the word “cat” a lot in our

documents, but we hardly see the word “kitten”. Consequently, the model learns very little

about the word “kitten”, i.e., it does not recognize which topic it is associated with. This

problem appears when we have rare terms (terms that we do not see much in our training

corpus) because we have unreliable signal for associating that word with a particular topic.

An alternative solution for this problem is word embeddings. The idea of word embeddings

came in parallel with LDA model (Dieng et al. (2020)). The research started with a neural

probabilistic language model that was proposed by Bengio et al. (2003), published in the same

year and journal as LDA model, which was itself, proposed by Blei et al. (2003). Since then

researchers have been extending and developing word embeddings, and nowadays it is considered

as a standard technique in natural language processing.

19

2.2 Topic Modeling with LDA and Word Embeddings 2 RELATED WORK

Word embedding technique has become crucial in many applications of NLP sutch as

sentiment analysis (Maas et al. (2011); Dos Santos and Gatti (2014)), text classification (Ahmad

and Amin (2016); Zhao et al. (2018)), text extraction (Zeng et al. (2015)), machine translation

(Bahdanau et al. (2014)), etc. This technique is capable to capture the context of a word in

a document, relation with other words, etc. The idea is instead of modeling words we model

continuous vector-space embeddings. These are feature representations for text where we can

think of words as vectors in a vector space, and the words that have the same meaning have a

similar representation. In other words, if the words are similar then they have similar features

and they end up close together in the vector space as shown in Figure 2.3.

Figure 2.3: Word embedding examples.

The idea of training these embeddings is that, the features are based on the context in

which a word gets used in the training corpus, and it exploits what is called the distributional

hypothesis, which is essentially the words that tend to appear in similar contexts (in terms of

words appearing around them) are likely to have a similar meaning.

20

2 RELATED WORK 2.2 Topic Modeling with LDA and Word Embeddings

Mixing LDA and word embeddings to gain powerful topic models

What we are going to do is instead of modeling the probability of words as we do in basic

LDA, we are going to model the probability of the features associated with words that is the

dimension of these embeddings. We can use pre-trained model of word embeddings that is

trained on very large corpus, and that is easily available for English and some other languages.

The basic idea is that we train our embedding model on a large, general-domain corpus,

and then we train our topic model on typically much smaller target corpus (the corpus that

we are interested in modeling the topics of). We train this model in such a way that we

take into account the information in the embeddings, and by doing this we benefit from the

generalizations over word meanings that the embedding model make for us. For example, in

case of the example we have mentioned earlier (“cat” and “kitten”), our model will learn from

the embedding model that “cat” and “kitten” have a very similar meaning, and they get very

similar features in the embedding space, and so it can then take advantage of that and learn

similar probabilities for these words.

There are several topic models proposed by the researchers that make use of this idea. In

this thesis, we are going to talk through a few of them. They are all assuming the availability

of some set of embeddings E(w) that is trained on some broad-domain corpus so that it has an

embedding for each word w.

2.2.1 Embedded Topic Model (ETM)

ETM is a topic model that marries the probabilistic topic modeling of Latent Dirichlet

Allocation (LDA) with the contextual information brought by word embeddings, most

specifically, Word2Vec using CBOW model. It was originally published by Dieng et al. (2020).

ETM benefits from the good properties of both topic models and word embeddings. As a topic

model, it discovers the hidden topics inside documents; as a word embedding model, it provides

the meaning of words. The result is a powerful document model that robustly accommodates

large vocabularies including rare words, and maintains good performance over LDA.

ETM is like LDA, a generative probabilistic model, where each document is a mixture of

topics, and each observed word is assigned to a specific topic. However, unlike LDA, each word

is defined by an embedding, and each topic is a point in the same embedding space Figure 2.4.

Therefore, the per-topic distribution over words is relative to the exponentiated inner product

of the topic’s embedding and each word’s embedding. In other words, the likelihood of a word

21

2.2 Topic Modeling with LDA and Word Embeddings 2 RELATED WORK

under ETM is a categorical whose natural parameter is given by the dot product between the

word embedding and its assigned topic’s embedding.

ETM models topics as points in the word embedding space, arranging together topics and

words with similar context. Consequently, ETM can either learn word embeddings alongside

topics or be given pre-trained embeddings to discover the topic patterns on the corpus.

(a) A topic about Christianity found by the
ETM on TheNewY orkT imes. The topic is a
point in the word embedding space.

(b) Topics about sports found by the ETM on
The NewY orkT imes. Each topic is a point in
the word embedding space.

Figure 2.4: ETM word embedding space. (Dieng et al. (2020))

We can describe the formal task of ETM as; given a corpus of D text documents containing V

distinct words, and K latent topics.

The model trains to:

• Find the probability distribution of topics for each document θd.

• Embed each word in an L-dimensional space Ev ∈ RL.

• Embed each topic in an L-dimensional space αk ∈ RL.

ETM uses a log-linear model (softmax function) that takes as parameter the inner product of

the word embedding matrix E and the topic’s embedding αk, to form a per-topic distribution

over words, i.e., under ETM the assignment probability of a word to a specific topic is measured

by the agreement between the word’s embedding and the topic’s embedding:

wd,n ∼ softmax(ET αd,n).

22

2 RELATED WORK 2.2 Topic Modeling with LDA and Word Embeddings

Definitions and notations

• K: total number of topics.

• D: total number of documents in the corpus.

• N : total number of words in a given document.

• V : vocabulary size.

• L: dimensional space.

• E: embedding matrix of size L × V whose columns contain the embedding representations

of the vocabulary; Ev is a vector of size L that contains the embedding of the word v.

• αk: topic embedding vector of size L.

• θd: per-document distribution over topics, D × K matrix (one row for each document from

the corpus).

• zd,n: per-word topic assignment, N × K matrix (one row for each word from the document).

• wd,n: observed word drawn from a distribution defined by the softmax of the dot product

of the word embedding matrix E and the topic’s embedding αk (the n-th word in the d-th

document).

ETM is similar in structure to LDA as shown in Figure 2.5.

Figure 2.5: ETM graphical model.

23

2.2 Topic Modeling with LDA and Word Embeddings 2 RELATED WORK

The generative process of ETM model (Algorithm 2):

Algorithm 2: Generative process of ETM model (Dieng et al. (2020)).

1 for each document d ∈ {1, . . . , D} do

2 Choose a distribution over topics: θd ∼ LN (0, I)

3 for each word n ∈ {1, . . . , N} inside document d do

4 Choose a topic from document’s distribution: zd,n ∼ Cat(θd)

5 Choose a word: wd,n ∼ softmax(ET αzd,n)

We note that LN (.) in line 2, indicates the logistic-normal distribution (Blei and Lafferty

(2007)). A drawn θd from this distribution is acquired as:

δd ∼ N(0, I); θd ∼ softmax(δd).

2.2.2 Gaussian LDA (G-LDA)

LDA is a statistical method where the corpus is considered as the collection of a small number

of topics and these topics are considered as a distribution of words. Although this method

produces good results, however, as we know that documents are a mixture of topics; are these

topics semantically coherent?

Topics in LDA are semantically incoherent and this is one of the Limitations of LDA model,

according to (Newman et al. (2009); Chang et al. (2009)). In order to solve this problem, the G-

LDA method that was originally proposed by Das et al. (2015) can find the semantic coherence

between topics using word embeddings technique that has shown its efficacy in capturing the

lexico-semantic regularities in language. In other terms, words with similar syntactic and

semantic properties are close to each other in the embedding space (Mikolov et al. (2013);

Agirre et al. (2009)).

G-LDA is a topic model and it is considered as an extension of LDA, which replaces

categorical distributions over word in LDA with multivariate gaussian distributions over the

word embedding space.

The main idea of G-LDA is that it replaces the opaque word modeled in LDA with continuous

space embeddings of these words, which are generated as draws from a multivariate gaussian,

as shown in Figure 2.6.

24

2 RELATED WORK 2.2 Topic Modeling with LDA and Word Embeddings

G-LDA considers topics K as multivariate gaussian distributions with mean µk and

covariance Σk on the continuous embedding space distributions over words. It is based on

the following values: a gaussian distribution µk centered at zero for the mean and an inverse

wishart distribution for the covariance matrix Σk, where the inverse wishart is used as the

conjugate prior for the covariance matrix of a multivariate normal distribution and it ensures

positive definiteness of this matrix. The inverse wishart function was discovered for the first

time by John Wishart in 1928, it defined with a matrix of r × r dimension and a number of

degrees of freedom df , with df > (r − 1) according to (Sawyer (2007)).

Figure 2.6: The first two principal components for the word embeddings some topics from
Gaussian LDA on the 20 newsgroups dataset has been visualized. Each point represents a word
color according to its topic (Das et al. (2015)).

Definitions and notations:

• K: total number of topics.

• D: total number of documents in the corpus.

• N : total number of words in a given document.

• θd: per-document distribution over topics.

• vd,n: indexing a vector v of word (w) in a document d at position n.

• m, k, Ψ, ν: hyper parameters for gaussian topics .

• (µk, Σk): represents the mean and covariance of a multidimensional gaussian distribution.

25

2.2 Topic Modeling with LDA and Word Embeddings 2 RELATED WORK

Figure 2.7 represents the graphical model of G-LDA.

Figure 2.7: G-LDA graphical model (Ozaki and Kobayashi (2018)).

The generative process of G-LDA model (Algorithm 3):

Algorithm 3: Generative process of G-LDA model (Das et al. (2015))

1 for k = 1 to K do

2 Draw topic covariance Σk ∼ W −1(Ψ, ν)

3 Draw topic mean µk ∼ N(µ, 1
k
Σk)

4 for each document d in corpus D do

5 Draw topic distribution θd ∼ Dir(α)

6 for each word index n from 1 to Nd do

7 Draw a topic zn ∼ Categorical(θd)

8 Draw vd,n ∼ N(µzn, Σzn)

26

2 RELATED WORK 2.2 Topic Modeling with LDA and Word Embeddings

2.2.3 LDA with Word2Vec (LDA2Vec)

A topic model’s main objective is to create interpretable document representations which are

used to find topics in a large number of unlabeled documents. For example, in a document X

we have 20% of topic A, and 40% of topic B and 40% of topic C.

LDA2Vec is a combination of LDA and Word2Vec model. It was originally published by

Moody (2016). We know that the document is a mixture of topics, and the topic is a mixture

of words. In the words level, Word2Vec is used to obtain vector representations of words.

LDA2Vec is based specifically on the Skip-Gram model of Word2Vec to generate word

vectors, who trains the word embeddings using the input word to predict the words context.

LDA2Vec utilizes a modified version of Skip-Gram named Skip-Gram Negative-Sampling

(SGNS), objective to using document-wide feature vectors while simultaneously learning

continuous document weights loading onto topic vectors.

LDA2Vec learns word vector in parallel with document vector (Figure 2.8). It makes the

sum between them to predict the context vector (i.e., the context vector is generated from

the sum of the two other vectors: the word and document vectors). Word vector is generated

by Skip-Gram (see section 1.4.2), while the document vector is divided into the document

weights vector and the topics matrix; the document weights vector represents the percentages

of each topic in the document, calculated by the soft max function, which converts weights

into percentages (see section 1.4.2), and the topics matrix represents the various topic vectors.

Figure 2.8 represent LDA2Vec network architecture.

Skip-Gram Negative-Sampling (SGNS) uses the loss function to improve the quality of the

results.

The loss function formula is as follows:

L = Ld +
∑
ij

Lneg
ij

Lneg
ij = log σ(c⃗j · w⃗i) +

K∑
l=0

log σ(−⃗cj · w⃗l)

27

2.2 Topic Modeling with LDA and Word Embeddings 2 RELATED WORK

where:

L: total loss.

(j, i): pairs of pivot and target words.

K: total number of topics.

c⃗j: context vector.

w⃗j: pivot word vector.

w⃗i: target word vector.

w⃗l: negatively-sampled word vector.

Ld: Dirichlet-probability over document weights.

The Ld encourages document proportions vectors to become more concentrated (sparser)

over time.

calculation formula of Ld is as follows:

Ld = λ
∑
jk

(α − 1)logPjk

where:

λ: tuning parameter.

K: total number of topics.

α = K−1.

Pjk: document weights.

(j, k): the document j in topic k.

28

2 RELATED WORK 2.2 Topic Modeling with LDA and Word Embeddings

Figure 2.8: LDA2Vec network architecture (Moody (2016)).

29

3 IMPLEMENTATION

Chapter 3

3 Implementation

3.1 Introduction
In this chapter, we carry out an experimental study that represents a comparison between two

methods of topic modeling, namely LDA and ETM. The evaluation is carried out according to

runtime and different topic coherence measures (Cv, UCI, NPMI, UMass).

We choose LDA because it is the most commonly used topic model, and it has a similar

generative process as the ETM, we also considered ETM because it is a new document model

technique that benefits from LDA properties and word embeddings, which makes it a powerful

and an interesting model to work with in topic modeling. We apply this study on the

20Newsgroups dataset.

3.2 Environment
In this section, we present the software and hardware of the environment we used to develop

our experimental study.

For implementation purpose, we choose Python as a programming language due to its

efficient, robust and powerful performances in the field of natural language processing (NLP),

most specifically, topic modeling. Moreover, Python provides several libraries that allow us to

make our experiments in a very easy and efficient way.

Concerning needed packages, we use NLTK (Natural Language Toolkit) library for data

preprocessing, more precisely, stop words removal, tokenization and lemmatization. As regards

topic modeling, we use Gensim, an open-source library, specialized major in topic modeling,

which has shown its efficiency and flexibility for constructing multiple text representations

(e.g., Bag-of-Words and Word2Vec), and training multiple topic models, like LDA, on text

30

3 IMPLEMENTATION 3.3 Data Preprocessing

document corpora in order to extract semantic structures, and also evaluating topic models by

calculating their topic coherence scores (e.g., Cv, UCI, UMass, NMPI). In connection with topic

modeling, we use also embedded-topic-model package, that was made to easily run embedded

topic modelling on a given corpus.

To train our models, we use Google Colab, a free cloud service provided by Google, that

offers Jupyter Notebooks with easy sharing and allows users to write and execute Python. We

use this platform for our experiments under the following features:

• 2.2 Ghz CPU.

• 12.72 GB of RAM.

• 107.77 GB of disk.

3.3 Data Preprocessing
The dataset we used in our experimental study is the 20 Newsgroups. This dataset is a collection

of nearly about 18,000 newsgroup documents partitioned across 20 different newsgroups

(Figure 3.1). It has become popular and widely used for experiments of machine learning

techniques in text applications like topic modeling.

Figure 3.1: 20 newsgroups dataset.

We can upload the dataset from the scikit-learn library by importing the fetch_20newsgroups

function from sklearn.datasets module (Listing 1), or we can download it manually from

31

3.3 Data Preprocessing 3 IMPLEMENTATION

Kaggle datasets (https://www.kaggle.com/crawford/20-newsgroups), and then upload it to the

environment.

1 from sklearn.datasets import fetch_20newsgroups

2

3 full_dataset = fetch_20newsgroups(

4 subset='all',

5 remove=('headers', 'footers', 'quotes'),

6 shuffle=True,

7 random_state=42

8)

9 data = pd.DataFrame()

10 data['text'] = full_dataset.data

11 data['source'] = full_dataset.target

12 label = []

13 for i in data['source']:

14 label.append(full_dataset.target_names[i])

15 data['label'] = label

Listing 1: Importing dataset

Data preprocessing is a fundamental task in natural language processing applications like

topic modeling. This process essentially is beneficial for obtaining good and more accurate

results. To reach this goal, before diving into experiments, we accomplish the aforementioned

with some preprocessing techniques on the corpus to prepare it for the topic models.

First of all, we clean the dataset from any non-alphabetic characters (numbers, punctuations,

line breaks, etc.) using regular expressions (called REs, or regexes, or regex patterns).

Therefore, Python has a built-in package called re, which is intended to handle regular

expression operations, and provides full support for Perl programming language. We also

proceed lower casing, deletion of words that have at most three characters, stop words removal

and lemmatization (Listing 2).

1 import re, nltk

2 from nltk.corpus import stopwords

3 from nltk.stem import WordNetLemmatizer

4

5 nltk.download('punkt')

6 nltk.download('wordnet')

7 nltk.download('stopwords')

8

32

https://www.kaggle.com/crawford/20-newsgroups

3 IMPLEMENTATION 3.3 Data Preprocessing

9 # cleaning dataset

10 def cleaned_text(text):

11 clean = re.sub('\n', ' ', text)

12 clean = clean.lower()

13 clean = re.sub(r'[~.,%/:;?_&+*=!-]', ' ', clean)

14 clean = re.sub('[^a-z]', ' ', clean)

15 clean = clean.lstrip()

16 return clean

17

18 data['cleaned_text'] = data['text'].apply(cleaned_text)

19

20 data['cleaned_text'] = data['cleaned_text'].apply(

21 lambda x: ' '.join([word for word in x.split() if len(word)>3])

22)

23

24 # stop words removal

25 stop = stopwords.words('english')

26 stop.append('also')

27 data['stopwords_removed_text'] = data['cleaned_text'].apply(

28 lambda x: ' '.join([word for word in x.split() if word not in (stop)])

29)

30

31 # tokenization

32 data['tokenized'] = data['stopwords_removed_text'].apply(

33 lambda x: nltk.word_tokenize(x)

34)

35

36 # lemmatization

37 def word_lemmatizer(text):

38 lem_text = [WordNetLemmatizer().lemmatize(word, pos='v') for word in text]

39 return lem_text

40

41 data['lemmatized'] = data['tokenized'].apply(

42 lambda x: word_lemmatizer(x)

43)

44

45 data['lemmatize_joined'] = data['lemmatized'].apply(

46 lambda x: ' '.join(x)

47)

Listing 2: Data preprocessing

33

3.3 Data Preprocessing 3 IMPLEMENTATION

Figure 3.2 shows the first and the last five documents of the corpus before and after data

preprocessing using the mentioned operations.

(a) Corpus before preprocessing (original text).

(b) Corpus after preprocessing (text cleaning, lower casing, stop words removal and lemmatization).

Figure 3.2: The corpus before and after data preprocessing.

Secondly, we construct a dictionary that contains the vocabulary corresponding to all

newsproup documents in the dataset, in order to encapsulate the mapping between each word

from the vocabulary and its unique integer id. At this phase, the vocabulary size achieves

74,404 unique words (Listing 3).

1 from gensim import corpora

2

3 # Collection of docs

4 docs = data['lemmatized']

5

6 # Turn our tokenized documents into a dictionary

34

3 IMPLEMENTATION 3.4 Results and Discussion

7 dictionary = corpora.Dictionary(docs)

Listing 3: Dictionary constructing

Thirdly, we filter out the words in the dictionary by their frequency to remove the words

that they are not valuable in identifying the topics from documents. We apply this idea by

eliminating all the words that rarely appear in the corpus (words that are contained in less than

50 documents). In the other hand, we also exclude all the words that appear very frequently

in the corpus (words that are contained in more than 75% of documents). On the fulfillment

of this task, the vocabulary size reduces to become 3,224 unique words (Listing 4).

1 # Filter out the rarely and the very frequently words

2 dictionary.filter_extremes(no_below=50, no_above=0.75)

Listing 4: Dictionary filtering

Finally, we create a document-term-matrix by converting each document from the corpus

into a bag-of-words format (Listing 5).

1 # Convert tokenized documents into a document -term matrix

2 doc_term_matrix = [dictionary.doc2bow(doc) for doc in docs]

Listing 5: Document-term matrix constructing

3.4 Results and Discussion
After the implementation of both LDA and ETM models and data preprocessing, we finally get

to the main task of our study, which is the comparison between the two mentioned topic models

using the evaluation by multiple topic coherence measures (Cv, UCI, NPMI and UMass) and

the runtime factor.

For each approach, we consider a different number of topics (100, 150, 200, 250, 300), and

then we calculate the Cv, UCI, NPMI, UMass coherence scores, and finally the runtime.

3.4.1 LDA Evaluation

We start with training LDA model on the preprocessed corpus. To illustrate the process, we

present an example considering the number of topics equals to 100 (Listing 6).

1 %%time

2

3 from gensim.models.ldamodel import LdaModel

35

3.4 Results and Discussion 3 IMPLEMENTATION

4

5 # LDA model

6 lda_model = LdaModel(

7 corpus=doc_term_matrix ,

8 id2word=dictionary ,

9 num_topics=100,

10 passes=100,

11 chunksize=2500,

12 alpha='auto',

13 eta='auto'

14)

Listing 6: LDA model

After training the model we calculate the desired topic coherence scores (Listing 7).

1 from gensim.models.coherencemodel import CoherenceModel

2

3 lda_topics = [

4 [term for term, wt in lda_model.show_topic(n, topn=20)]

5 for n in range(0, lda_model.num_topics)

6]

7

8 # Cv coherence

9 cv_coherence_model = CoherenceModel(

10 topics=lda_topics ,

11 texts=docs,

12 dictionary=dictionary ,

13 coherence='c_v'

14)

15 cv_coherence = cv_coherence_model.get_coherence()

16

17 # UCI coherence

18 uci_coherence_model = CoherenceModel(

19 topics=lda_topics ,

20 texts=docs,

21 dictionary=dictionary ,

22 coherence='c_uci'

23)

24 uci_coherence = uci_coherence_model.get_coherence()

25

36

3 IMPLEMENTATION 3.4 Results and Discussion

26 # NPMI coherence

27 npmi_coherence_model = CoherenceModel(

28 topics=lda_topics ,

29 texts=docs,

30 dictionary=dictionary ,

31 coherence='c_npmi'

32)

33 npmi_coherence = npmi_coherence_model.get_coherence()

34

35 # UMass coherence

36 umass_coherence_model = CoherenceModel(

37 topics=lda_topics ,

38 corpus=doc_term_matrix ,

39 dictionary=dictionary ,

40 coherence='u_mass'

41)

42 umass_coherence = umass_coherence_model.get_coherence()

Listing 7: LDA coherence scores

We repeat the same process considering each time new number of topics (100, 150, 200, 250,

300). The acquired results are displayed in Table 3.1.

Number of Topics Cv Score UCI Score NPMI Score UMass Score Runtime Score

100 0.4892 -2.5879 -0.0416 -3.3551 1741

150 0.4447 -3.3807 -0.0943 -3.6061 1859

200 0.4173 -4.7760 -0.1333 -3.8150 2015

250 0.3982 -5.4577 -0.1637 -3.9794 2277

300 0.3900 -6.0864 -0.1898 -4.2436 2520

Table 3.1: LDA performance metrics.

37

3.4 Results and Discussion 3 IMPLEMENTATION

3.4.2 ETM Evaluation

Before we run ETM model on the corpus, we need to pass through two important operations.

1- Pretrain the embeddings on the corpus to create a Word2Vec model or load a pretrained

one (Listing 8). In this case, we must set the train_embeddings parameter to False when

training the ETM instance (Listing 10).

In our experiments, we choose to work with Google’s Word2Vec pre-trained model named

Word2Vec-GoogleNews-vectors. The model was trained on a corpus of 3 billion words, and

contains 3 million English word vectors of size 300-dimension (Listing 8 - Choice 2).

1 from embedded_topic_model.utils import embedding

2 import gensim.downloader as api

3

4 # Choice 1: Training word2vec embeddings on the corpus

5 documents = [doc for doc in data['cleaned_text']]

6 word_vectors = embedding.create_word2vec_embedding_from_dataset(documents)

7

8 # Choice 2: Load pre-trained word vectors from gensim-data

9 word_vectors = api.load('word2vec -google-news -300')

Listing 8: Word2Vec model

We can rather avoid the first operation, and instead learn the embeddings alongside topic

modeling, by setting train_embeddings parameter to True (Listing 10).

2- Transform the corpus into a format understandable by the model (Listing 9).

1 from embedded_topic_model.utils import preprocessing

2

3 corpus = [doc for doc in data['lemmatize_joined']]

4

5 # Preprocessing the dataset

6 vocabulary , train_dataset , _, = preprocessing.create_etm_datasets(

7 corpus,

8 min_df=50,

9 max_df=0.75,

10 train_size=1

11)

Listing 9: Corpus transformation for ETM instance

38

3 IMPLEMENTATION 3.4 Results and Discussion

Now that we have the pretrained Word2Vec model, and the corpus transformed in a format

understandable by the ETM instance, we can run the models on the preprocessed corpus. To

illustrate the process, we present an example considering the number of topics equals to 100

(Listing 10).

1 %%time

2

3 from embedded_topic_model.models.etm import ETM

4

5 # Training an ETM instance

6 etm_model = ETM(

7 vocabulary ,

8 embeddings=word_vectors ,

9 num_topics=100,

10 epochs=100,

11 debug_mode=True,

12 train_embeddings=False,

13)

14

15 # ETM model

16 etm_model.fit(train_dataset)

Listing 10: ETM model

After training the model we calculate the desired topic coherence scores (Listing 11).

1 from gensim.models.coherencemodel import CoherenceModel

2

3 etm_topics = etm_model.get_topics(20)

4

5 # Cv coherence

6 cv_coherence_model = CoherenceModel(

7 topics=etm_topics ,

8 texts=docs,

9 dictionary=dictionary ,

10 coherence='c_v'

11)

12 cv_coherence = cv_coherence_model.get_coherence()

13

14 # UCI coherence

15 uci_coherence_model = CoherenceModel(

16 topics=etm_topics ,

39

3.4 Results and Discussion 3 IMPLEMENTATION

17 texts=docs,

18 dictionary=dictionary ,

19 coherence='c_uci'

20)

21 uci_coherence = uci_coherence_model.get_coherence()

22

23 # NPMI coherence

24 npmi_coherence_model = CoherenceModel(

25 topics=etm_topics ,

26 texts=docs,

27 dictionary=dictionary ,

28 coherence='c_npmi'

29)

30 npmi_coherence = npmi_coherence_model.get_coherence()

31

32 # UMass coherence

33 umass_coherence_model = CoherenceModel(

34 topics=etm_topics ,

35 corpus=doc_term_matrix ,

36 dictionary=dictionary ,

37 coherence='u_mass'

38)

39 umass_coherence = umass_coherence_model.get_coherence()

Listing 11: ETM coherence scores

We repeat the same process considering each time new number of topics (100, 150, 200, 250,

300). The acquired results are displayed in Table 3.2.

Number of Topics Cv Score UCI Score NPMI Score UMass Score Runtime Score

100 0.5049 -0.0376 0.0308 -2.1721 1366

150 0.4924 -0.1281 0.0250 -2.2050 1523

200 0.4854 -0.1522 0.0224 -2.2273 1686

250 0.4729 -0.3281 0.0147 -2.3120 1961

300 0.4799 -0.3630 0.0139 -2.3042 2204

Table 3.2: ETM performance metrics.

40

3 IMPLEMENTATION 3.4 Results and Discussion

3.4.3 Comparison Between LDA and ETM

After the evaluation of LDA and ETM models, we compare the results to examine which

approach dominates the other, i.e., we use the performance measures calculated earlier.

• Figure 3.3 displays the results concerning the Cv measure.

• Figure 3.4 displays the results concerning the UCI measure.

• Figure 3.5 displays the results concerning the NPMI measure.

• Figure 3.6 displays the results concerning the UMass measure.

• Figure 3.7 displays the results concerning the runtime measure.

In what follows, the five graphs that depict the behavior of LDA and ETM models

concerning the performance measures over a specific number of topics. They give us a clear

comparison between the approaches and a clear vision of which approach is best.

Figure 3.3: LDA vs ETM - Cv measure.

41

3.4 Results and Discussion 3 IMPLEMENTATION

Figure 3.4: LDA vs ETM - UCI measure.

Figure 3.5: LDA vs ETM - NPMI measure.

42

3 IMPLEMENTATION 3.4 Results and Discussion

Figure 3.6: LDA vs ETM - UMass measure.

Figure 3.7: LDA vs ETM - runtime measure.

43

3.4 Results and Discussion 3 IMPLEMENTATION

We can clearly observe that Cv (Figure 3.3), UCI (Figure 3.4), NPMI (Figure 3.5), and

UMass scores (Figure 3.6) decrease with every increase in the number of topics for both LDA

and ETM models.

Regarding the runtime (Figure 3.7), we can see that it is proportional to the number of

topics, and it is obvious that ETM is better than LDA.

Considering all five measures we find that ETM absolutely outperforms LDA under the

circumstances we performed our experimental study. We clarify the obtained result because

of the semantic of words that are provided in the ETM model thanks to the word embedding

technique (in our study, Word2Vec model). In opposite to the LDA model, which provides no

support to the semantic of words.

44

4 CONCLUSION

4 Conclusion

Our thesis focused on an unsupervised machine learning technique called Topic Modeling, also

classified as a Natural Language Processing (NLP) technique. This technique is meant for

extracting the hidden topics discussed in a collection of documents (corpus).

In our study, we demonstrated a standard approach in the domain named Latent Dirichlet

Allocation (LDA), and three other approaches referenced as Embedded Topic Model (ETM),

Gaussian LDA (G-LDA), and LDA with Word2Vec (LDA2Vec). These approaches are the

combination between LDA and the word embedding technique.

In this thesis, we performed a comparative study between LDA and ETM approaches. We

used the 20 newsgroups dataset as a corpus, and Google’s pre-trained Word2Vec as a word

embedding model. The results we got in terms of runtime and topic coherence measures were

all in favor of the ETM approach.

Word embedding is a powerful technique that helped with the tremendous improvement of

Natural Language Processing (NLP) in general and topic modeling in particular.

As future suggestions, we would like to work on an Arabic corpus, and also perform the

study in larger corpora in order to get more efficient and accurate results. We would like also

to create a multiple languages topic model that is robust to noise.

45

REFERENCES REFERENCES

References
Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., and Soroa, A. (2009). A study on

similarity and relatedness using distributional and wordnet-based approaches.

Ahmad, A. and Amin, M. R. (2016). Bengali word embeddings and it’s application in solving
document classification problem. In 2016 19th International Conference on Computer and
Information Technology (ICCIT), pages 425–430. IEEE.

Aletras, N. and Stevenson, M. (2013). Evaluating topic coherence using distributional semantics.
In Proceedings of the 10th International Conference on Computational Semantics (IWCS
2013)–Long Papers, pages 13–22.

Allen, C. and Hospedales, T. (2019). Analogies explained: Towards understanding word
embeddings. In International Conference on Machine Learning, pages 223–231. PMLR.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic language
model. The journal of machine learning research, 3:1137–1155.

Blei, D., Carin, L., and Dunson, D. (2010). Probabilistic topic models. IEEE signal processing
magazine, 27(6):55–65.

Blei, D. M. and Lafferty, J. D. (2007). A correlated topic model of science. The annals of
applied statistics, 1(1):17–35.

Blei, D. M. and Lafferty, J. D. (2009). Topic models. In Text mining, pages 101–124. Chapman
and Hall/CRC.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022.

Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., and Blei, D. M. (2009). Reading tea
leaves: How humans interpret topic models. In Advances in neural information processing
systems, pages 288–296.

Das, R., Zaheer, M., and Dyer, C. (2015). Gaussian lda for topic models with word embeddings.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 795–804.

Dieng, A. B., Ruiz, F. J., and Blei, D. M. (2020). Topic modeling in embedding spaces.
Transactions of the Association for Computational Linguistics, 8:439–453.

Dos Santos, C. and Gatti, M. (2014). Deep convolutional neural networks for sentiment analysis
of short texts. In Proceedings of COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages 69–78.

Ethayarajh, K., Duvenaud, D., and Hirst, G. (2019). Towards understanding linear word

46

REFERENCES REFERENCES

analogies. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 3253–3262, Florence, Italy. Association for Computational Linguistics.

Jordan, M. I. and Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.
Science, 349(6245):255–260.

Kim, H. K., Kim, H., and Cho, S. (2017). Bag-of-concepts: Comprehending document
representation through clustering words in distributed representation. Neurocomputing,
266:336–352.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. (2011). Learning word
vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association
for computational linguistics: Human language technologies, pages 142–150.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Moody, C. E. (2016). Mixing dirichlet topic models and word embeddings to make lda2vec.
arXiv preprint arXiv:1605.02019.

Newman, D., Karimi, S., and Cavedon, L. (2009). External evaluation of topic models. In in
Australasian Doc. Comp. Symp., 2009. Citeseer.

Newman, D., Lau, J. H., Grieser, K., and Baldwin, T. (2010). Automatic evaluation of topic
coherence. In Human language technologies: The 2010 annual conference of the North
American chapter of the association for computational linguistics, pages 100–108.

Ozaki, K. and Kobayashi, I. (2018). A study on stochastic variational inference for topic
modeling with word embeddings.

Ramos, J. et al. (2003). Using tf-idf to determine word relevance in document queries. In
Proceedings of the first instructional conference on machine learning, volume 242, pages
29–48. Citeseer.

Rani, S. and Kumar, M. (2021). Topic modeling and its applications in materials science and
engineering. Materials Today: Proceedings, 45:5591–5596.

Röder, M., Both, A., and Hinneburg, A. (2015). Exploring the space of topic coherence
measures. In Proceedings of the eighth ACM international conference on Web search and
data mining, pages 399–408.

Rong, X. (2014). word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.

Sawyer, S. (2007). Wishart distributions and inverse wishart sampling. URL: www. math. wustl.
edu/sawyer/hmhandouts/Whishart. pdf.

Vijayarani, S., Ilamathi, M. J., Nithya, M., et al. (2015). Preprocessing techniques for text
mining-an overview. International Journal of Computer Science & Communication Networks,
5(1):7–16.

Zeng, D., Liu, K., Chen, Y., and Zhao, J. (2015). Distant supervision for relation extraction via
piecewise convolutional neural networks. In Proceedings of the 2015 conference on empirical
methods in natural language processing, pages 1753–1762.

Zhao, J., Zhou, Y., Li, Z., Wang, W., and Chang, K.-W. (2018). Learning gender-neutral word
embeddings. arXiv preprint arXiv:1809.01496.

47

	List of Tables
	List of Figures
	List of Algorithms
	Listings
	Introduction
	Background
	Machine Learning
	Supervised Learning
	Unsupervised Learning

	Natural Language Processing (NLP)
	Text Pre-Processing
	Word Vectors and NLP Modeling
	Traditional Word Vectors
	Word Embeddings

	Topic Coherence Measures

	Related Work
	Latent Dirichlet Allocation (LDA)
	Topic Modeling with LDA and Word Embeddings
	Embedded Topic Model (ETM)
	Gaussian LDA (G-LDA)
	LDA with Word2Vec (LDA2Vec)

	Implementation
	Introduction
	Environment
	Data Preprocessing
	Results and Discussion
	LDA Evaluation
	ETM Evaluation
	Comparison Between LDA and ETM

	Conclusion
	References

