Please use this identifier to cite or link to this item: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9790
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKECHAR, Youcef-
dc.contributor.authorMerabet, Brahim Encadreur-
dc.date.accessioned2025-09-14T08:29:42Z-
dc.date.available2025-09-14T08:29:42Z-
dc.date.issued2025-
dc.identifier.urihttps://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9790-
dc.descriptionSpécialité : Analyse Fonctionnelle et ApplicationsEN_en
dc.description.abstractIn this memoir, we deal with the problem of analyzing the global exponential stability of a class of recurrent neural networks (RNNs) with discrete and distributed mixed delays, let us consider the existence and uniqueness of équilibriste points. use a new Lyapunov-krasvsckii functional and develop a linear matrix inequality (LMI) approach to make RNNs exponentially global stable.EN_en
dc.publisheruniversité GhardaiaEN_en
dc.subject:Generalized recurrent neural networks; Discrete and distributed delays; Lyapunov- Krasovskii functional; Global exponential stability; Global asymptotic stability.EN_en
dc.subject:Réseaux de neurones récurrents généralisés ; Retards discrets et distribués ;fonc- tionnelle Lyapunov-Krasovskii ; Stabilité exponentielle globale ; Stabilité asymptotique globale.EN_en
dc.titleStabilité Exponentielle Globale des Réseaux de Neurones Récurrents Généralisés à Retards Discrets et DistribuésEN_en
dc.typeThesisEN_en
Appears in Collections:Mémoires de Master

Files in This Item:
File Description SizeFormat 
Mémoire Master 22-23 YoucefKechar - youcef kechar.pdf1.43 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.