Please use this identifier to cite or link to this item: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9790
Title: Stabilité Exponentielle Globale des Réseaux de Neurones Récurrents Généralisés à Retards Discrets et Distribués
Authors: KECHAR, Youcef
Merabet, Brahim Encadreur
Keywords: :Generalized recurrent neural networks; Discrete and distributed delays; Lyapunov- Krasovskii functional; Global exponential stability; Global asymptotic stability.
:Réseaux de neurones récurrents généralisés ; Retards discrets et distribués ;fonc- tionnelle Lyapunov-Krasovskii ; Stabilité exponentielle globale ; Stabilité asymptotique globale.
Issue Date: 2025
Publisher: université Ghardaia
Abstract: In this memoir, we deal with the problem of analyzing the global exponential stability of a class of recurrent neural networks (RNNs) with discrete and distributed mixed delays, let us consider the existence and uniqueness of équilibriste points. use a new Lyapunov-krasvsckii functional and develop a linear matrix inequality (LMI) approach to make RNNs exponentially global stable.
Description: Spécialité : Analyse Fonctionnelle et Applications
URI: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9790
Appears in Collections:Mémoires de Master

Files in This Item:
File Description SizeFormat 
Mémoire Master 22-23 YoucefKechar - youcef kechar.pdf1.43 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.