Please use this identifier to cite or link to this item:
https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9555
Title: | Estimating the inside greenhouse temperature using artificial neural networks : a case study of Ghardaia |
Authors: | DEFFAF, Chaima Djemoui, LALMI Supervisor |
Keywords: | Temperature prediction, Artificial Neural Networks (ANN), Greenhouses, Ghardaïa, Desert climate Prédiction de la température, Réseaux de neurones artificiels (ANN), Serres, Ghardaïa, Climat désertique. |
Issue Date: | 2025 |
Publisher: | université Ghardaia |
Abstract: | Agriculture in desert regions, such as the Ghardaïa area, faces climatic challenges that require smart and sustainable solutions. This study aims to predict the temperature inside greenhouses using Artificial Neural Networks (ANN) to improve thermal stability and support intelligent climate control. The experiment was conducted on a single greenhouse, where internal and external climate data were collected to train and test the ANN model. The results showed good performance, with the model demonstrating acceptable accuracy in temperature prediction, which supports its use as a decision- Page | IV support tool for greenhouse climate management. This study highlights the effectiveness of artificial intelligence—particularly Artificial Neural Networks—as an innovative solution to improve greenhouse climate conditions in desert areas. |
URI: | https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9555 |
Appears in Collections: | Mémoires de Master |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Document1.pdf | 21.34 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.