Please use this identifier to cite or link to this item: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/8924
Title: Autoencoder Based Community Detection
Authors: Zita, Kaoutar
Keywords: Community detection, Graph Autoencoder, Attributed networks, Simple encoder, Dual encoder.
Détection de communautés, Autoencodeur de graphe, Réseaux at- tribués, Encodeurs simples, Encodeurs doubles.
Issue Date: 2024
Publisher: université Ghardaia
Abstract: Community detection is crucial for uncovering cohesive substructures within com- plex systems. These communities provide insights into clusters of interconnected enti- ties, which can be particularly valuable in various domains such as social network anal- ysis, information retrieval, and bibliometrics. In this study, we propose a taxonomy of community detection methods based on graph autoencoders (GAEs), categorizing them into simple encoder and dual encoder models. We conduct a comparative analy- sis of these two categories, focusing on the type of encoder architecture and assessing their performance on real networks. For a more precise evaluation, we use NMI, ARI, and F1-measure as evaluation metrics. Additionally, we examine the running time efficiency of each model based on epochs. The findings indicate that dual encoder models, especially those with attention mechanisms, generally exhibit superior per- formance, particularly in complex datasets, despite higher computational demands. These results underscore the potential of dual encoder models in advanced network analysis tasks. Future recommendations include examining more advanced neural net- work designs and the impact of modeling and data preparation factors on community detection across various domains.
URI: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/8924
Appears in Collections:Mémoires de Master

Files in This Item:
File Description SizeFormat 
Autoencoder_based_Community_Detection__Copy_ - kaoutar Zita.pdf6.03 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.