Please use this identifier to cite or link to this item:
https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/6527
Title: | Prévision de l’Irradiance Solaire à l’aide des Techniques de l’Intelligence Artificiel |
Authors: | EL GAROUI Mustapha & GHERSLIA Taha Yassine |
Keywords: | Dimensionnement, optimisation, cout, système photovoltaïque, autonome |
Issue Date: | 2023 |
Publisher: | university Ghardaia |
Abstract: | L'intelligence artificielle joue un rôle important dans le secteur de l'énergie, comme l'analyse des données, la prévision de la demande d'énergie, l'amélioration de l'efficacité énergétique des bâtiments, l'amélioration des réseaux électriques et l'amélioration des opérations de distribution et de stockage. Dans ce mémoire, Des modèles hybrides ont été proposés basés sur l'algorithme d'Extrême Learning Machine (ELM) et la machine à vecteurs support (SVM), en utilisant la décomposition en ondelettes (W-ELM & W-SVM), pour la prévision du rayonnement solaire horaire dans la ville de Ghardaïa, en Algérie. Le problème est abordé en prenant en compte à la fois des données météorologiques (variables exogènes) et des données de rayonnement solaire précédant l'heure prédite (variables endogènes) comme entrées pour estimer le modèle optimal. Les données horaires sur une période allant de 2012 à 2015 sont utilisées pour l'apprentissage, tandis que les données de 2016 sont réservées aux tests. Les résultats mettent en évidence l'efficacité du modèle hybride, en particulier du WP-ELM, par rapport aux autres modèles. Lorsque les variables endogènes sont utilisées comme entrées, le modèle affiche d'excellentes performances. |
URI: | https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/6527 |
Appears in Collections: | Mémoires de Master |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
mémoire_master juin 2023_ ELGAROUI_GHERASLIA 30-05-2023 V3.pdf | 6.66 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.