Please use this identifier to cite or link to this item: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/602
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoukarou, Aissa-
dc.date.accessioned2022-02-02T08:54:01Z-
dc.date.available2022-02-02T08:54:01Z-
dc.date.issued2021-
dc.identifier.urihttps://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/602-
dc.description.abstractThe main objective of this thesis is to study the well-posedness and temporal regularity in Gevrey spaces and anisotropic Gevrey spaces for some partial differential equations. This thesis is divided into two parts: First one is to study the local and global well-posedness for the Kawahara equation and the m-Korteweg-de Vries system with the initial data in analytical Gevrey spaces. In addition, the Gevrey regularity of the solutions in variable time is provided. The second part consists in studying the local well-posedness and the time regularity for the Kadomtsev-Petviashvili I equation and the global well-posedness for the Kadomtsev Petviashvili II equation with initial data in anisotropic Gevrey spaceEN_en
dc.publisheruniversity ghardaiaEN_en
dc.subjectApproximate conservation law, Uniform radius of spatial analyticity, Well-posedness , Gevrey spaces, Bourgain spaces, Time regularityEN_en
dc.subjectLoi de conservation , l’analyticité , bien posé, les espaces de Gevrey, les espaces de Bourgain, la régularité temporelleEN_en
dc.subjectقانون الحفظ التقريبي ، نصف القطر الموحد للتحليل المكاني ، مساحات جوفري ، فضاء بورقن ، انتظام الوقتEN_en
dc.titleSur l’existence et la stabilité de solutions du problème de Cauchy dans certains espaces fonctionnelsEN_en
dc.typeThesisEN_en
Appears in Collections:Thèses de Doctorat

Files in This Item:
File Description SizeFormat 
Thesis Aissa Boukarou 12-2021.pdf1.07 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.