Please use this identifier to cite or link to this item:
https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/602
Title: | Sur l’existence et la stabilité de solutions du problème de Cauchy dans certains espaces fonctionnels |
Authors: | Boukarou, Aissa |
Keywords: | Approximate conservation law, Uniform radius of spatial analyticity, Well-posedness , Gevrey spaces, Bourgain spaces, Time regularity Loi de conservation , l’analyticité , bien posé, les espaces de Gevrey, les espaces de Bourgain, la régularité temporelle قانون الحفظ التقريبي ، نصف القطر الموحد للتحليل المكاني ، مساحات جوفري ، فضاء بورقن ، انتظام الوقت |
Issue Date: | 2021 |
Publisher: | university ghardaia |
Abstract: | The main objective of this thesis is to study the well-posedness and temporal regularity in Gevrey spaces and anisotropic Gevrey spaces for some partial differential equations. This thesis is divided into two parts: First one is to study the local and global well-posedness for the Kawahara equation and the m-Korteweg-de Vries system with the initial data in analytical Gevrey spaces. In addition, the Gevrey regularity of the solutions in variable time is provided. The second part consists in studying the local well-posedness and the time regularity for the Kadomtsev-Petviashvili I equation and the global well-posedness for the Kadomtsev Petviashvili II equation with initial data in anisotropic Gevrey space |
URI: | https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/602 |
Appears in Collections: | Thèses de Doctorat |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Thesis Aissa Boukarou 12-2021.pdf | 1.07 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.