Please use this identifier to cite or link to this item: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/602
Title: Sur l’existence et la stabilité de solutions du problème de Cauchy dans certains espaces fonctionnels
Authors: Boukarou, Aissa
Keywords: Approximate conservation law, Uniform radius of spatial analyticity, Well-posedness , Gevrey spaces, Bourgain spaces, Time regularity
Loi de conservation , l’analyticité , bien posé, les espaces de Gevrey, les espaces de Bourgain, la régularité temporelle
قانون الحفظ التقريبي ، نصف القطر الموحد للتحليل المكاني ، مساحات جوفري ، فضاء بورقن ، انتظام الوقت
Issue Date: 2021
Publisher: university ghardaia
Abstract: The main objective of this thesis is to study the well-posedness and temporal regularity in Gevrey spaces and anisotropic Gevrey spaces for some partial differential equations. This thesis is divided into two parts: First one is to study the local and global well-posedness for the Kawahara equation and the m-Korteweg-de Vries system with the initial data in analytical Gevrey spaces. In addition, the Gevrey regularity of the solutions in variable time is provided. The second part consists in studying the local well-posedness and the time regularity for the Kadomtsev-Petviashvili I equation and the global well-posedness for the Kadomtsev Petviashvili II equation with initial data in anisotropic Gevrey space
URI: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/602
Appears in Collections:Thèses de Doctorat

Files in This Item:
File Description SizeFormat 
Thesis Aissa Boukarou 12-2021.pdf1.07 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.