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Abstract 

In this memoir, we have investigated solutions to stochastic fractional differential 

equations (SFDE), encompassing existence and uniqueness analysis. We have presented 

fundamental concepts of fractional calculus (fractional differentiation and integration) as 

well as stochastic calculus (SFDE and SDE), followed by solving a stochastic fractional 

differential equation. 

Keywords: Special functions, fractional calculus, Caputo, FDE, stochastic calculus, SDE, 

fractional stochastic differential equations (FSDE). 

Résumé 

Dans ce  mémoire,  nous avons étudié les solutions des équations différentielles 

fractionnaires stochastiques, y compris les questions d'existence et d'unicité. Nous avons 

présenté les concepts fondamentaux du calcul différentiel et intégral fractionnaire, ainsi 

que du calcul différentiel et intégral stochastique (EDF et EDS). Ensuite, nous avons résolu 

une équation différentielle fractionnaire stochastique. 

Mots-clés :Fonctions spéciales, calcul fractionnaire,  caputo, EDF, calcul  stochastique, EDS, 

équations différentielles stochastiques d’ordre fractionnaire (EDFS). 

 

 ملخص

قدمنا أهم  حيث    الوحدانيةضلية الكسرية العشوائية بما فيه الوجود وادلات التفاهذه المذكرة قمنا بدراسة حلول المعفي  

حل معادلة  ، ثم   EDS) و   EDF)التكامل العشوائيو   الكسري وكذلك التفاضل  التكامل  المفاهيم الأساسية حول التفاضل و

 .تفاضلية كسرية عشوائية

، معادلات تفاضلية عشوائية  EDS، حساب عشوائي،  EDFالكلمات المفتاحية: دوال خاصة، حساب كسري، كابوتو،  

 EDFS .من الرتبة الكسرية 
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INTRODUCTION

With the advancement of mathematical sciences and their applications, mathemati-
cians and researchers see that the field of calculus is not limited to integer orders alone, but
even extends to non-integer orders, known as fractional calculus.

Fractional calculus is a generalization of traditional calculus to include arbitrary non-integer
orders.This topic dates back to the era when Leibniz and Newton invented differential calculus.
One owes to Leibniz in a letter to L’Hôpital, dated September 30, 1695 [32], the exact birthday
of the fractional calculus and the idea of the fractional derivative, who sought to understand
the meaning of Leibniz’s currently popular notation, dny

dxn , for the nth derivative when n is a
real number. L’Hôpital wondered what would happen if n took on a fractional value, such as 1

2

or even 1
12

.

The concept of differentiation and integration to noninteger order is by no means new.
Interest in this subject was evident almost as soon as the ideas of the classical calculus were
known Leibniz (1695) mentions it in a letter to L’Hôpital in 1695. The earliest more or less
systematic studies seem to have been made in the beginning and middle of the 19th century by
Liouville (1832), Riemann (1847), and Holmgren (1864), Euler (1730), Lagrange (1772), and
others made contributions even earlier.

In the letters to J. Wallis and J. Bernoulli (in 1697), Leibniz mentioned the possible approach
to fractional-order differentiation in that sense that for non-integer values of n the definition
could be the following :

dnemx

dxn
= mnemx,

In 1730, Euler mentioned interpolating between integral orders of a derivative and suggested
to use the following relationship :

dnxm

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n,

where Γ(·) is the (Eulers) Gamma function defined by

Γ(α) =

∫ ∞

0

tα−1e−tdt,

α > 0. Also for negative or non-integer (rational) values of n : Taking m = 1 and n = 1
2
, Euler

obtained :
d

1
2x

dx
1
2

=

√
4x

π
=

2√
π
x1/2.

While traditional calculus is based on integer-order differentiation and integration, the concept

vii



of fractional calculus has enormous potential to transform how we perceive, model, and control
the ’nature’ around us. Numerous theoretical and experimental studies demonstrate that certain
electrochemical [16], thermal [5], and viscoelastic [37] systems are governed by non-integer-order
differential equations. Consequently, classical models based on integer-order derivation prove
inadequate. For this reason, models based on non-integer-order differential equations have been
developed .[14]

It’s theory of stochastic integrals and stochastic differential equations can be traced back
to the 1940s, beginning with an early important paper (worldcat, 1942) written by Kiyosi It.
Differential calculus establishes the theory of ordinary differential equations, which describes
a class of models of systemsthat change with time. Random perturbations were introduced in
these equations through a non-differentiable Brownian motion .

Stochastic differential equations have been used in science, geometry, biology, and nearly
all applied sciences. There are many articles about the existence and uniqueness of solutions of
stochastic differential equations inthe existing literature (see, e.g., [4, 24, 12, 13]).
More recently, Chang et al. Using a semi group theory and a fixed-point technique, [11] investi-
gated mean-square almost automorphic mild solutionsto non-autonomous stochastic differential
equations in Hilbert spaces. El-Borai et al. [23] considered the uniqueness and continuity of so-
lutions for a fractional stochastic integral equation.
In [22], the authors studiedan abstract fractional-order stochastic differential equations with
delay driven by Brownian motion and stablished existence and uniqueness of the solution. Mou-
rad K Zhou study the existence and uniqueness of mild solutions offractional order stochastic
differential equation in hilbert space.
With the stochastic component, these equations gain another layer, capturing the uncertainty
and stochasticity foundin countless natural systems. Itis then natural to apply stochastic frac-
tional differential equations to model such phenomena whose dy namic behavior is driven jointly
by deterministic and random drivers. The first chapter of this thesis constitutes a brief intro-
duction and history of the concept of stochastic fractional differential equation ofthe Caputo
type. Thisis done through a progression of step by step concepts.

In this section, we presented fundamental definitions and concepts that enable us to unders-
tand and solve stochastic fractional differential equations. We discussed specific functions such
as the Gamma function, the Beta function, and certain properties related to Laplace transforms.
Additionally, we explored the (Banach) fixed-point theorem and addressed fractional calculus,
which includes definitions of fractional derivatives such as Caputo, Riemann-Liouvilleand frac-
tional differential equations (FDEs) with examples
Chapter 02 :We established fundamental definitions for stochastic calculus, which included
general reminders about probabilities, expectations, conditional expectations, filtrations, sto-
chastic processes, and more. We also covered Brownian motion and stochastic integrals, along
with some examples of stochastic equations.
Chapter 03
We began with basic definitions of stochastic calculus, which includes general reminders on
probability,expectation, conditional expectation, etc. We also covered Brownian motion and
stochastic integrals, along with some examples of stochastic equations.
Chapter 4 In this chapter, we studied solutions (existence, uniqueness, and stability) under
specific conditions for fractional-order stochastic differential equations of the Caputo type using
various methods. Additionally, we examined the continuity of the solution along the domain
[0,∞).
We also studied the solutions of neutral fractional stochastic functional differential equations,
focusing on proving the existence of a unique solution to these equations under specific condi-
tions, thereby ensuring both existence and uniqueness of the solution.

viii



CHAPITRE 1
FRACTIONAL CALCULUS AND FRACTIONAL

DIFFERENTIAL EQUATIONS

1.1 Préliminaire(Useful function)
In this section, we highlight the significant roles of the Gamma, Beta, and Mittag-Leffler

functions in the theory of fractional calculus as well as in their respective applications[19].

1.1.1 Gamma Function
One of the basic functions of fractional calculus is the Gamma function denoted Γ.

Definition 1.1.1
The Gamma function Γ is defined by the following integral :

Γ(α) =

∫ +∞

0

tα−1e−tdt, α > 0

For positive integer values n, the Gamma function becomes Γ(α) = (α − 1)! and thus can be
seen as an extension of the factorial function to real values.

Example 1.1.1
We have Γ

(
1
2

)
=

√
π.Indeed :

Γ

(
1

2

)
=

∫ +∞

0

t−
1
2 e−tdt =

∫ +∞

0

e−t

√
t
dt.

Let u =
√
t, then t = u2 and dt = 2udu, thus :∫ +∞

0

e−t

√
t
dt = 2

∫ +∞

0

e−u2

u
udu

= 2

∫ +∞

0

e−u2

du.

Knowing that
∫ +∞
0

e−u2
du =

√
π
2

(Gaussian integral), it follows that :

Γ

(
1

2

)
=

√
π.

1



Proposition 1.1.1
An important property of the Gamma function is the following recurrence relation :

Γ(α + 1) = αΓ(α), α > 0

Proof :
we have Γ(α + 1) =

∫ +∞
0

tαe−tdt.
An integration by parts aplied to the definition of gamma function :

u = tα −→ u′ = αtα−1

v′ = e−t −→ v = −e−t

Γ(α + 1) =

∫ ∞

0

tαe−tdt

=
[
−tαe−t

]∞
0
+ α

∫ ∞

0

tα−1e−tdt

= αΓ(α).

Proposition 1.1.2
∀α ∈ N, Γ

(
n+ 1

2

)
=

√
π(2n)!
22nn!

Proof :
According to Proposition 1.1.1 for all n ∈ N :

Γ

(
n+

1

2

)
=

(
n− 1

2

)
Γ

(
n− 1

2

)
=

(
n− 1

2

)(
n− 3

2

)
Γ

(
n− 3

2

)
...

=

(
n− 1

2

)(
n− 3

2

)
· · ·
(
1

2

)
Γ

(
1

2

)
=

1

2n
(2n− 1)(2n− 3) · · · (1)

√
π

=
(2n)(2n− 1)(2n− 2) · · · 2× 1

2n(2n)(2n− 2) · · · 2
√
π

=
(2n)!

22nn!

√
π

=
(2n)!

√
π

22nn!
.

This remains true when n = 0, therefore :

Γ

(
n+

1

2

)
=

(2n)!
√
π

22nn!
, ∀n ∈ N.

Proposition 1.1.3

Γ

(
n+ 1 +

1

2

)
=

√
π(2n+ 2)!

4n+1(n+ 1)!
.

2



Proof :
Γ
(
n+ 1 + 1

2

)
= Γ

(
n+ 3

2

)
=

√
π(2n+2)!

4n+1(n+1)!
,

Γ

(
n+ 1 +

1

2

)
= Γ

(
n+

1

2
+ 1

)
=

(
n+

1

2

)
Γ

(
n+

1

2

)
=

(
n+

1

2

) √
π(2n)!

4nn!

=
(2n+ 1)

√
π(2n)!

2× 4nn!

=
(2n+ 1)(2n+ 2)

√
π(2n)!

2(2n+ 2)× 4nn!

=

√
π(2n+ 2)!

2× 2(n+ 1)× 4nn!

=

√
π(2n+ 2)!

4n+1(n+ 1)!
.

Proposition 1.1.4
Taking into account that the Γ function can be written as

Γ(n) =
Γ(n+ 1)

n
,

it results that the Γ function can be defined also for negative values of n, in the interval
−1 < n < 0.
-The following particular values for the Γ function can be useful for calculation purposes :

Γ(1) = 1,

Γ(0) = +∞,

Γ

(
−1

2

)
= −2

√
π,

Γ

(
3

2

)
= Γ

(
1

2
+ 1

)
=

1

2
Γ

(
1

2

)
=

1

2

√
π,

Γ

(
5

2

)
= Γ

(
3

2
+ 1

)
=

3

2
Γ

(
3

2

)
=

3

4

√
π.

Proposition 1.1.5
By the principle of analytic continuation, the function can be extended over C \ Z. For α > 0
and α /∈ N, we have :

(−1)j
(
α

j

)
=

Γ(j − α)

(j + 1)Γ(−α)
.

3



1.1.2 Beta Function
Definition 1.1.2
For α > 0, γ > 0, the Euler Beta function is defined by

β(α, γ) =

∫ 1

0

tα−1(1− t)γ−1dt.

Proposition 1.1.6 [30]
the Beta function is linked to the Gamma function by the following relationship :

β(α, γ) =
Γ(α)Γ(γ)

Γ(α + γ)
α > 0, γ > 0

Proof :
Γ(α)Γ(γ) =

∫ ∞

0

∫ ∞

0

tα−1
1 e−t1tγ−1

2 e−t2dt1dt2

=

∫ ∞

0

tα−1
1

(∫ ∞

0

e−(t1+t2)tγ−1
2 dt2

)
dt1,

By performing the change of variable t′2 = t1 + t2, we find

Γ(α)Γ(γ) =

∫ ∞

0

tα−1
1

∫ ∞

t1

(t′2 − t1)
γ−1

e−t′2dt′2dt1

=

∫ ∞

t1

e−t′2

∫ ∞

0

(t′2 − t1)
γ−1

tα−1
1 dt1dt

′
2,

if we set t′1 = t1
t2

, we obtain

Γ(α)Γ(γ) =

∫ ∞

0

e−t′2dt′2

∫ 1

0

(t′2 − t′1t
′
2)

γ−1
(t′1t

′
2)

α−1
t′2dt

′
1

=

∫ ∞

0

e−t′2dt′2

∫ 1

0

(t′2 (1− t′1))
γ−1

(t′1t
′
2)

α−1
t′2dt

′
1

=

∫ ∞

0

e−t′2dt′2

(
(t′2)

γ−1
(t′2)

α−1
t′2

∫ 1

0

(1− t′1)
γ−1

(t′1)
α−1

dt′1

)
=

∫ ∞

0

e−t′2dt′2

(
(t′2)

α+γ−1
β(α, γ)

)
=

∫ ∞

0

e−t′2 (t′2)
α+γ−1

dt′2β(α, γ)

= Γ(α + γ)β(α, γ).

this gives the desired result
Remark 1.1.1
The Beta function is symmetric, that is : β(α, γ) = β(γ, α), ∀ Re(α), Re(γ) > 0.

Proof :
From the definition of the Beta function, γ have :

β(α, γ) =

∫ 1

0

tα−1(1− t)γ−1dt.

Let : u = 1− t =⇒ t = 1− u and dt = −du. We then obtain :∫ 1

0

tα−1(1− t)γ−1dt = −
∫ 0

1

(1− u)α−1uγ−1du

=

∫ 1

0

(1− u)α−1uγ−1du

= β(γ, α).

4



1.1.3 Mittag-Leffler Function
The exponential function eα holds a fundamental position in the theory of integer-order

differential equations.G.M. Mittag-Leffler introduced a generaliαof this exponential function
using a single parameter, which is represented by the following function :

Definition 1.1.3 [8]
For α ∈ C and α a strictly positive real number, the Mittag-Leffler function Eγ(α) is defined
by the following series expansion :

Eγ(α) =
+∞∑
k=0

αk

Γ(γk + 1)
,

For any γ > 0 and β > 0, the generaliα Mittag-Leffler function Eγ,β(α) can be defined with two
parameters γ and β as follows :

Eγ,β(α) =
+∞∑
k=0

αk

Γ(γk + β)
α > 0, β > 0

Example 1.1.2

E1,1(α) =
+∞∑
k=0

αk

Γ(k + 1)
=

+∞∑
k=0

αk

k!
= eα.

E1,2(α) =
+∞∑
k=0

αk

Γ(k + 2)
=

+∞∑
k=0

αk

(k + 1)!
=

1

α

+∞∑
k=0

αk+1

(k + 1)!
=

1

α
(eα − 1) .

E1,3(α) =
+∞∑
k=0

αk

Γ(k + 3)
=

1

α2

+∞∑
k=0

αk+2

(k + 2)!
=

1

α2
(eα − α− 1) .

Remark 1.1.2
for all γ > 0 and k ∈ N we have :

Eγ,1(α) =
+∞∑
k=0

αk

Γ(αk + 1)
= Eγ(α).

1.1.4 The Laplace Transform
In this section, we will discuss the Laplace transform along with its fundamental proper-

ties. The Laplace[29] transform is a wonderful tool for solving ordinary and partial differential
equations and systems.

Definition 1.1.4
A function f has exponential order α if there exist constants M > 0 and α such that for some
t0 ≥ 0, |f(t)| ≤Meαt, t ≥ t0..we define the Laplace Transform of f

F (s) = L{f(t)} =

∫ ∞

0

e−stf(t)dt,

is called the Laplace transform of the function f .

Definition 1.1.5
The inversion of the Laplace transform is performed by means of an integral in the complex
plane, for t positive,

f(t) = L−1{F (s)} =
1

2πi

∫ γ+∞

γ−∞
estF (s)ds.

Where γ is chosen such that the integral converges, which implies that γ is greater than the real
part of the singularity of F (s).
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Proposition 1.1.7
Linearity : One of the most basic and useful properties of the Laplace operator L is that of
linearity, namely, if f1 ∈ L for Re(s) > α, f2 ∈ L for Re(s) > β, then f1 + f2 ∈ L for
Re(s) > max{α, β}, and

L(c1f1 + c2f2) = c1L(f1) + c2L(f2) (1.11)

for arbitray constants c1 + c2
Derivation : The Laplace transform of an integer-order derivative is :

L
{
f (n)(t)

}
= snL{f(t)} −

n−1∑
k=0

sn−k−1f (k)(0)

= snL{f(t)} −
n−1∑
k=0

skf (n−k−1)(0).

Integration :

L

{∫ t

a

f(u)du

}
=

1

s
L{f}+ 1

s

∫ 0

a

f(u)du.

Convolution :
L{f ∗ g} = L{f} × L{g}.

- The Laplace transform of the function tα−1 is :

L
{
tα−1

}
(s) = Γ(s)s−α.

1.2 Riemann-Liouville Fractional Integral
This section introduces the elementary definitions and some properties of the Riemann-

Liouville fractional integral.
Let f be a real, continuous, and integrable function on the interval [a, b]. We consider the
integral

I1f(t) =

∫ t

a

f(τ)dτ,

I2f(t) =

∫ t

a

I1f(u)du,

=

∫ t

a

(∫ u

a

f(s)ds

)
du,

=

∫ t

a

(∫ t

s

du

)
f(s)ds,

=

∫ t

a

(t− s)f(s)ds.

By repeatedly applying this process n times, we obtain, according to Cauchy’s formula :

Inf(t) =

∫ t

a

dt1

∫ t1

a

dt2...

∫ tn−1

a

f(tn)dtn =
1

(n− 1)!

∫ t

a

(t− s)n−1f(s)ds.

And, using the generalization of the factorial function via the Gamma function : Γ(n) = (n−1)!.
Riemann realized that the right-hand side could make sense even when n takes on non-integer
values. He defined the fractional integral as follows : Let f ∈ C[a, b], α ∈ R+. The Riemann-
Liouville fractional integral of f of order α, denoted by Iα

a+f , is defined by :
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Definition 1.2.1
let f ∈ C[a, b], α ∈ R+, we it the Riemann-Liouville fractional (left-sided) integral of order
α,denoted by Iα

a+f the function defined by :

Iα
a+f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, (1.1)

the right-sided Riemann-Liouville fractional integral of the function f of order α, denoted by
Iα
b f the function defined by :

Iα
b−f(t) =

1

Γ(α)

∫ b

t

(t− s)α−1f(s)ds, (1.2)

Remark 1.2.1
For the remainder of this work, we will exclusively utilize the left-sided integral and employ the
notation α.
throughout what follows, we will only use the left-sided integral and denote it as Iα

a .

Example 1.2.1
Calculate Iα

a t
µ, for µ > −1 :

Iα
a t

µ =
1

Γ(α)

∫ t

0

(t− s)α−1sµ ds for α > 0, µ > −1.

Let’s make the change of variable s = tτ , ds = t dτ , we have :

Iα
a t

µ =
1

Γ(α)

∫ 1

0

(t− τt)α−1(τt)µt dτ,

=
1

Γ(α)

∫ 1

0

tα−1(1− τ)α−1τµtµt dτ,

=
1

Γ(α)
tα+µ

∫ 1

0

(1− τ)α−1τµ dτ,

=
1

Γ(α)
tα+µB(µ+ 1, α),

=
1

Γ(α)
tα+µΓ(µ+ 1)Γ(α)

Γ(α + µ+ 1)
.

Therefore,
Iα
a t

µ =
Γ(µ+ 1)

Γ(α + µ+ 1)
tα+µ, α > 0, µ > −1.

Lemma 1.2.1
For α = 0,we have :

I0
af(x) = f(x).

Proof :

Iα
a f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt

=
1

Γ(α)

∫ x

a

f(t)d

(
−(x− t)α

α

)
=

1

Γ(α + 1)

[
f(a)(x− a)α +

∫ x

a

f ′(t)(x− t)αdt

]
.
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We obtain

I0
af(x) = 1

[
f(a)1 +

∫ x

a

f ′(t)dt

]
= f(a) + f(x)− f(a)

= f(x).

Therefore
I0
af(x) = f(x).

Proposition 1.2.1
Let f be an integrable and bounded function, and let α and µ be two strictly positive real numbers.
Then

Iα
a [Iµ

a f(t)] = Iα+µ
a f(t), (1.3)

Proof
Iα
a [Iµ

a f(t)] =
1

Γ(α)

∫ t−α

0

sµ−1Iα
a f(t− s)ds,

=
1

Γ(α)Γ (µ)

∫ t−a

0

sµ−1ds

∫ t−s

a

(t− s− u)α−1f(u)du,

=
1

Γ(α)Γ (µ)

∫ t

a

f(u)du

∫ t−u

a

tµ−1(t− u− s)α−1ds,

let s = v(t− u)
Then ds = (t− u)dv
Hence, it follows that :

=
1

Γ(α)Γ (µ)

∫ t

a

f(u)du

∫ 1

0

(v(t− u))µ−1(t− u− v(t− u))α−1(t− u)dv,

=
1

Γ(α)Γ (µ)

∫ t

a

(t− u)α+µ−1f(u)du

∫ 1

0

vµ−1(1− v)α−1dv,

=
1

Γ(α)Γ (µ)

∫ t

a

(t− u)α+µ−1f(u)duβ (µ, α) ,

=
1

Γ (α + µ)

∫ t

a

(t− u)α+µ−1f(u)du,

= Iα+µ
a f(t).

Proposition 1.2.2
For α > 0, the Riemann-Liouville integral is linear, i.e. :

Iα
a (λf(t) + µg(t)) = λIα

a f(t) + µIα
a g(t). (1.4)

Proof

Iα
a (λf + µg)(x) =

1

Γ(α)

∫ x

a

(x− τ)α−1(λf + µg)(τ)dτ

=
1

Γ(α)

[∫ x

a

(x− τ)α−1λf(τ)dτ +

∫ x

a

(x− τ)α−1µg(τ)dτ

]
=

λ

Γ(α)

∫ x

a

(x− τ)α−1f(τ)dτ +
µ

Γ(α)

∫ x

a

(x− τ)α−1g(τ)dτ

= λIα
a f(x) + µIα

a g(x).

Therefore, Iα
a is a linear operator.

Proposition 1.2.3
the Laplace transform of the Riemann-liouville fractional integral for a = 0 of a function f ,that
has the Laplace transform F (s) in the half-plane Re(s) > 0, is given by :

L (Iαf) (s) = s−αF (s). (1.5)
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1.3 fractional derivative in the sense of Riemann-Liouville
Definition 1.3.1 [18]
let f be an integrable function over [a, b] then the fractional derivative of order α (with
n− 1 < α < n, n ∈ N∗ ) in the sense of Riemann-Liouville RLDα

a f is defined by :

RLDα
a f(t) =

dn

dtn
{
In−α
a f(t)

}
=

1

Γ(n− α)

dn

dtn

∫ t

a

f(s)

(t− s)α−n+1
ds. (1.6)

Example 1.3.1
The Riemann-Liouville fractional derivative of f(t) = (t − a)p. Let α be a non-integer with
0 ≤ n− 1 < α < n and p > −1, then we have :

RLDα
a f(t) =

RLDα
a (t− a)p,

=
1

Γ(n− α)

dn

dtn

∫ t

a

(τ − a)p

(t− τ)α−n+1
dτ,

By changing the variable τ = a+ s(t− a) we have :

RLDα
a (t− a)p =

1

Γ(n− α)

dn

dtn
(t− a)n+p−α

∫ 1

0

(1− s)α−n+1spds,

=
Γ(n+ p− α + 1)β(n− α, p+ 1)

Γ(n− α)Γ(p− α + 1)
(t− a)p−α,

=
Γ(n+ p− α + 1)β(n− α, p+ 1)Γ(p+ 1)

Γ(n− α)Γ(p− α + 1)Γ(n+ p− α + 1)
(t− a)p−α,

=
Γ(p+ 1)

Γ(p− α + 1)
(t− a)p−α.

Special case
if p = 0

RLDα
a (t− a)0 = RLDα

a 1 =
1

Γ(1− α)
(t− a)−α

Remark 1.3.1
The non-integer order derivative of a constant function in the Riemann-Liouville sense is nei-
ther zero nor constant, However, we have :

RLDα
aC =

C

Γ(1− α)
(t− a)−α, (1.7)

On note dn

dtn
by Dn.

Proposition 1.3.1 [30]
if α = n ∈ N we have :

RLD0
af(t) = f(t), RLD1

af(t) = f (1)(t), RLD2
af(t) = f (2)(t), . . . , RLDn

af(t) = f (n)(t). (1.8)

Composition with the fractional integral

Proposition 1.3.2 [30]
let α > 0 et n = [α] + 1 then for every integer m ∈ N∗ we have :

RLDα
a f(t) =

RLDm
a

(
Im−αf(t)

)
, for m > α (1.9)
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Proof
as m ≥ n, we have :

RLDm
a

(
Im−α
a f(t)

)
= RLDn

a
RLDm−n

a Im−n
a In−α

a f(t),

= RLDn
aIn−α

a f(t),

= RLDα
a f(t).

Lemma 1.3.1
let α > 0 and f ∈ L1[a, b], then the equality :

RLDα
aIα

a f(t) = f(t). (1.10)

is true almost every t ∈ [a, b]

Proof
Using the definition, we have :

RLDα
aIα

a f(t) =
RLDnIn−α

a Iα
a f(t),

= RLDn
aIn

a f(t),

= f(t).

Theorem 1.3.1
let α, β > 0 and n− 1 ≤ α < n,m− 1 ≤ α < m such that (n,m ∈ N) then :

1. if α > β > 0, then for f ∈ L1[a, b] the equality :
RLDβ

a (Iα
a ) f(t) = Iα−β

a f(t) (1.11)

is valid almost everywhere on [a, b].
2. if there exist a function φ ∈ L1[a, b] tel such that f = Iα

a φ then :

Iα
a
RLDα

a f(t) = f(t), (1.12)

for almost every x ∈ [a, b].
3. if β ≥ α > 0 and the fractional derivative Ds−α

a f exist, then :
RLDβ

a (Iα
a ) f(t) =

RLDβ−α
a f(t), (1.13)

Proof
Using definition 1.3.1 and proposition 1.2.1 we obtain :

1. for α > β > 0, then for all n ≥ m, we have :
RLDβ

a (Iα
a ) f(t) =

RLDn
aIn−β

a (Iα
a ) f(t),

= RLDn
a

(
In+α−β
a

)
f(t),

= RLDn
a

(
In
a

(
Iα−β
a

)
f(t)

)
,

= Iα−β
a f(t).

almost for every t ∈ [a, b]

2. by relation (1.20), we obtain :

Iα
a
RLDα

a f(t) = Iα
a

(
RLDα

aIα
a φ(t)

)
,

= Iα
a φ(t),

= f(t).

3. we have :
RLDβ

a (Iα
a ) f(t) =

RLDm
a Im−β

a Iα
a f(t),

= RLDm
a Im−(β−α)

a f(t),

= RLDβ−α
a f(t).

Exist for i− 1 ≤ β − α < i et i ≤ m
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Composition with integer order derivatives

Theorem 1.3.2
let α, β > 0 and n− 1 ≤ α < n,m− 1 ≤ α < m such that (n,m ∈ N) then : for α > 0, k ∈ N∗.
if the fractional derivatives Dα

a f and Dk+a
a f exist, then :

RLDk
a

(
RLDα

a f(t)
)
= RLDk+α

a f(t) (1.14)

Proof
we have :

RLDk
a

(
RLDα

a f(t)
)
= RLDk

aDn
aIn−α

a f(t),

= RLDk+n
a Ik+n−α+k−k

a f(t),

= RLDk+n
a Ik+n−(α+k)

a f(t),

= RLDk+α
a f(t).

Hence the result.

Proposition 1.3.3
for α > 0, n ∈ N∗. if the fractional derivative Dn+α

a f and 1 ≤ k ≤ n− 1 exist, then

RLDα
a

(
RLDnf(t)

)
=
(
RLDn+α

a f(t)
)
−

n−1∑
k=1

f (k)(a)(t− a)k−α−n

Γ(k − α− n+ 1)
. (1.15)

Remark 1.3.2
Fractional differentiation and conventional differentiation commute only if : f (k)(a) = 0 for all
k = 0, 1, 2, . . . , n− 1.

composition with fractional derivatives

Proposition 1.3.4
for all n− 1 ≤ α < n and m− 1 ≤ β < m we have :

RLDα
a

(
RLDβ

af(t)
)
= RLDα+β

a f(t)−
m∑
k=1

[
RLDβ−k

a f(t)
]
t=a

(t− a)−α−k

Γ(−α− k + 1)
. (1.16)

Proposition 1.3.5
for all n− 1 ≤ α < n and m− 1 ≤ β < m we have :

RLDβ
a

(
RLDα

a f(t)
)
= RLDα+β

a f(t)−
n∑

k=1

[
RLDα−k

a f(t)
]
t=a

(t− a)−β−k

Γ(−β − k + 1)
. (1.17)

assume that if α = β and
[
RLDβ−k

a f(t)
]
t=a

for all k = 1, 2, . . . ,m and
[
RLDα−k

a f(t)
]
t=a

for all k = 1, 2, . . . , n

11



1.4 fractional Derivation in the Grunwald-Letnikov sense
Fractional calculus is itself a sub-branch ofanalysis, which is a generalisation of differentia-

tion and integration to non-integer order.and fractional order integration and differentiation
operations. Several definitions of fractional derivatives which exist, unfortunately are notall
equal. In this chapter, the most following are listed commonly used definitions, such as Riemann-
Liouville, Liouville, Caputo, and Grunwald-Letnikov.
This definition is based on the calculation of derivatives using finite differences.[19]
let f : R → Rn. for h > 0, denote the τh left translation operator :

τhf(t) = f(t− h), (1.18)

thus, we have
f ′(t) = lim

h→0

1

h
(f(t)− f(t− h)) = lim

h→0

1

h
(id− τh) f(t).

By denoting τ 2h = τh ◦ τh, we have : τ 2hf(t) = f(t− 2h).
Regarding the second derivative

f ′′(t) = lim
h→0

(
1

h
(id− τh)

)2

f(t)

= lim
h→0

1

h2
(
id− 2τh − τ 2h

)
f(t)

= lim
h→0

1

h2
(f(t)− 2f(t− h) + f(t− 2h)).

More generally,the derivative nime of f is given by

f (n)(t) = lim
h→0

1

hn
(id− τh)

nf(t)

= lim
h→0

1

hn

n∑
k=0

(
n

k

)
idn−k(−τh)kf(t)

= lim
h→0

1

hn

n∑
k=0

(−1)k
(
n

k

)
f(t− kh)

(1.19)

where (
n
k

)
=

n!

k!(n− k)!
=
n(n− 1) . . . (n− k + 1)

k!
,

It is possible to extender to k > n, by setting
(
n
k

)
= 0. the formula 1.19 then becomes :

f (n)(t) = lim
h→0

1

hn

∞∑
k=0

(−1)k
(
n
k

)
f(t− kh).

the generalization of this formula using the Gamma function, for α non integer (with

0 ≤ n− 1 < α < n ) by setting for α ∈ R+/N et k ∈ N, Note that
(
α
k

)
= 0 even if k > α

GDα
a f(t) = lim

h→0

1

hα

∞∑
k=0

(−1)k
(
α
k

)
f(t− kh),

According to proposition 1.1.5, we have

(−1)k
(
α
k

)
=

Γ(k − α)

Γ(k + 1)Γ(−α)
,
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this gives us :
GDα

a f(t) = lim
h→0

1

hα

∞∑
k=0

Γ(k − α)

Γ(k + 1)Γ(−α)
f(t− kh),

and
GD−α

a f(t) = lim
h→0

1

h−α

∞∑
k=0

Γ(k + α)

Γ(k + 1)Γ(α)
f(t− kh),

=
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ.

if f is of class Cn then using integration by parts, we obtain :

GD−α
a f(t) =

n−1∑
k=0

f (k)(a)(t− a)k+α

Γ(k + α + 1)
+

1

Γ(n+ α)

∫ t

a

(t− τ)n+α−1f (n)(τ)dτ.

and also :

GDα
a f(t) =

n−1∑
k=0

f (k)(α)(t− a)k−α

Γ(k − α + 1)
+

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1f (n)(τ)dτ.

Example 1.4.1
The derivative g(t) = (t − b)q in the sense of Grunwald-Letnikov.Let q be non-integer and
0 ≤ m− 1 < β < m with q > m− 1.Then we have : g(k)(b) = 0, for k = 0, 1, . . . ,m− 1, and
g(m)(ξ) = Γ(q+1)

Γ(q−m+1)
(ξ − b)q−m. Thus

GDβ
b (t− b)q =

Γ(q + 1)

Γ(m− β)Γ(q −m+ 1)

∫ t

b

(t− ξ)m−β−1(ξ − b)q−mdξ.

Taking ξ = b+ s(t− b), we have :

GDβ
b (t− b)q =

Γ(q + 1)

Γ(m− β)Γ(q −m+ 1)
(t− b)q−β

∫ 1

0

(1− s)m−β−1sq−mds

=
Γ(q + 1)β(m− β, q −m+ 1)

Γ(m− β)Γ(q −m+ 1)
(t− b)q−β

=
Γ(q + 1)Γ(m− β)Γ(q −m+ 1)

Γ(m− β)Γ(q −m+ 1)Γ(q − β + 1)
(t− b)q−β

=
Γ(q + 1)

Γ(q − β + 1)
(t− b)q−β.

Remark 1.4.1
the derivative of a constant function in the sense of Grunwald-letnikov is neither zero nor
constant.
if f(t) = C and α is non integer we have : f (k)(t) = 0 for k = 1, 2, . . . , n

GDα
a f(t) =

C

Γ(1− α)
(t− a)−α +

n−1∑
k=1

f (k)(a)(t− a)k−α

Γ(k − α + 1)︸ ︷︷ ︸
0

+
1

Γ(n− α)

∫ t

a

(t− τ)n−α−1fn(τ)dτ︸ ︷︷ ︸
0

=
C

Γ(1− α)
(t− a)−α.
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Composition with derivatives of integer order

Proposition 1.4.1
for m a positive integer and α non integer with :

dm

dtm
(
GDα

a f(t)
)
= GDm+α

a f(t), (1.20)

And
GDα

a

(
dm

dtm
(f(t))

)
= GDm+α

a f(t)−
m−1∑
k=0

f (k)(a)(t− a)k−α−m

Γ(k − α−m+ 1)
. (1.21)

Proof
For m a positive integer and α non integer with (n− 1 < α < n) we have :

dm

dtm
(
GDα

a f(t)
)
=

m−1∑
k=0

f (k)(a)(t− a)k−(α+m)

Γ(k − (α +m) + 1)

+
1

Γ(n+m− (p+m))

∫ t

a

(t− τ)n+m−(p+m)−1f (n+m)(τ) dτ

then :
dm

dtm
(
GDα

nf(t)
)
= GDm+α

a f(t)

but :

GDα
a

(
dm

dtm
f(t)

)
=

m−1∑
k=0

f (m+k)(a)(t− a)(k−α)

Γ(k − α + 1)
+

1

Γ(n− p))

∫ t

a

(t− τ)n−α−1fn+m(τ)dτ,

=
m+m−1∑

k=0

f (k)(a)(t− a)k−(α+m)

Γ(k − (α +m) + 1)

+
1

Γ(n+m− (p+m))

∫ t

a

(t− τ)m+m−(p+m)−1fn+m(τ)dτ

−
n−1∑
k=0

f (k)(a)(t− a)k−(α+m)

Γ(k − (α +m) + 1)

=GDm+α
a f(t)−

n−1∑
k=0

f (k)(a)(t− a)k−α−m

Γ(k − α−m+ 1)
.

Remark 1.4.2
It is deduced that fractional differentiation and conventional differentiation commute only if :
f (k)(a) = 0 for all k = 0, 1, 2, . . . ,m− 1.

composition with fractional derivatives

Proposition 1.4.2

1. if α′ < 0 and α ∈ R then :

GDα
a

(
GDα′

a (f(t))
)
= GDα+α′

a f(t),

2. if 0 ≤ m− 1 < α′ < m and α < 0 then :

GDα
a

(
GDα′

a (f(t))
)
= GDα+α

a
′f(t),

only if f (k)(a) = 0 for all k = 0, 1, 2, . . . ,m− 2
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3. if 0 ≤ m− 1 < α′ < m and 0 ≤ n− 1 < α < n then :

GDα
a

(
GDα′

a (f(t))
)
= GDα

a

(
GDα′

a (f(t))
)

= GDα+α′

a f(t),

only if f (k)(a) = 0 for all k = 0, 1, 2, . . . , r − 2 with r = max(m,n)

Proof
1. if α < 0 and α′ < 0 then :

GDα
a

(
GDα′

a (f(t))
)
=

1

Γ(−α)

∫ t

a

(t− τ)−α−1
(
GDα′

a (f(τ))
)
dτ,

=
1

Γ(−α)Γ (−α′)

∫ t

a

(t− τ)−α−1dτ

∫ t

a

(τ − s)−α′−1f(s)ds,

=
1

Γ(−α)Γ (−α′)

∫ t

a

f(s)ds

∫ t

a

(τ − s)−α′−1(t− τ)−α−1dτ,

=
1

Γ (− (α + α′))

∫ t

a

(t− s)−α−α′−1f(s)ds,

= GDα+α′

α f(t).

if α′ < 0 and 0 ≤ n− 1 < α < n we have α = n+ (α− n)with (α− n) < 0 then :

GDα
a

(
GDα′

a (f(t))
)
=

dn

dtn

{
CDα−n

a

(
GDα′

a (f(t))
)}

,

=
dn

dtn

(
GDα′+α−n

a (f(t))
)
,

= GDα+α′

a f(t).

2. for 0 ≤ m− 1 < α′ < m and α < 0 we have :

GDα′

a f(t) =
m−1∑
k=0

f (k)(a)(t− a)k−α′

Γ (k − α′ + 1)
+

1

Γ (m− α′)

∫ t

a

(t− τ)m−α′−1f(m)(t)dτ,

and (t− a)k−α′ they have non integrable singularities then GDα
a

(
GDα

a (f(t))
)

only exists
f(k)(a) = 0 for all k = 0, 1, 2, . . . ,m− 2 this case we have :

GDα′

a f(t) =
f (m−1)(a)(t− a)m−1−α′

Γ (m− α′)
+ GDα′−m

a fm(t),

then :

GDα
a

(
GDα′

a (f(t))
)
=
f (m−1)(a)(t− a)m−1−α′−α

Γ (m− α′ − α)
+ GDα+α′−m

a fm(t),

=
f (m−1)(α)(t− a)m−1−(α′+α)

Γ (m− α′ − α)
,

+
1

Γ (m− (α′ + α))

1

Γ (m− α′)

∫ t

a

(t− τ)m−(α+α′)−1f(m)(t)dτ,

= GDα+α′

a f(t).

3. for 0 ≤ m− 1 < α′ < m and 0 ≤ n− 1 < α < n we have :

GDα
a

(
GDα′

a (f(t))
)
=

dn

dtn

{
GDα−n

a

(
GDα′

a (f(t))
)}

.
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if f (k)(a) = 0 for all k = 0, 1, 2, . . . ,m− 2 then :

GDα−n
a

(
GDα′

a (f(t))
)
= GDα+α′−m

a f(t),

therefore :
GDα

a

(
GDα′

a (f(t))
)
=

dn

dtn
GDα+α′−n

a f(t),

= GDα+α′

a f(t).

The Laplace transform of fractional derivative in the sense of Grunwald-Letnikov

let f be a function that has the Laplace transform F (s). for 0 ≤ α < 1 we have :

GDα
0 f(t) =

f(0)t−α

Γ(n− α)
+

1

Γ(n− α)

∫ t

0

(t− τ)−αf ′(τ)dτ, (1.22)

then :
L
[
GDα

0 f(t)
]
(s) =

f(0)

s1−α
+

1

s1−α
[sF (s)− f(0)]

= sαF (s),
(1.23)

for α ≥ 1 there does not exist a Laplace transform in the classical sense, but in the sense of
distributions, we also have :

L
[
GD∞

0 f(t)
]
(s) = sαF (s). (1.24)

1.5 Fractional Derivative in the Caputo sense
The de nition of the Riemann-Liouville type fractional derivation played an impor tant role

in the development of the theory of fractional derivatives and integrals be cause of their appli-
cations in pure mathematics (solution of integer order di erential equations, de nition of new
classes function, summation of series, etc.). However, modern technology requires some revision
of the well-known pure mathematical ap proach. Much work has appeared, especially on the
theory of viscoelasticity and solid mechanics, where fractional derivatives are used for a good
description of material properties. Mathematical modeling based on rheological models natu-
rally leads to di erential equations of fractional order, and to the need to formulate the initial
conditions of such equations.The applied problems require de nitions of fractional derivatives
authorizing the use of physically interpretable initial conditions, which contain f(a) ;f(b),etc...
Despite the fact that initial value problems with such initial conditions can be solved mathe-
matically, the solution of this problem was proposed by M.Caputo(in the sixties) in his de
nition which he adapted with Mainardi in the structure of the theory of viscoelastics :Therefore
we introduces a fractional deriva tive which is more restrictive than that of Riemann-Liouvile
derivative.[18]

Definition 1.5.1
for any α , a strictly positive real number,the caputo fractional derivative CDα

a f of order α on
[a, b], is defined as :

CDα
a f(t) =

1

Γ(n− α)

∫ t

a

fn(s)

(t− s)α−n+1
ds,

= In−α
a f (n)(t).

(1.25)

16



Example 1.5.1
the caputo derivative of f(t) = (t − a)p . let α be non integer 0 ≤ n − 1 < α < n and p > −1
then we have :

CDα
a f(t) =

CDα
a (t− a)p,

=
Γ(p+ 1)

Γ(n− α)Γ(p− n+ 1)

∫ t

a

(τ − a)p−n(t− τ)n−α−1dτ,

Taking τ = a+ s(t− a) we get :

CDα
a (t− a)p =

Γ(p+ 1)

Γ(n− α)Γ(p− n+ 1)
(t− a)p−α

∫ 1

0

(1− s)n−α−1sp−nds,

=
Γ(p+ 1)β(n− α, p− n+ 1)

Γ(n− α)Γ(p− n+ 1)
(t− a)p−α,

− Γ(p+ 1)Γ(n− α)Γ(p− n+ 1)

Γ(n− α)Γ(p− α + 1)Γ(p− α + 1)
(t− a)p−αm

=
Γ(p+ 1)

Γ(p− α + 1)
(t− a)p−α.

composition with the fractional integral

Theorem 1.5.1 [41]
let α > 0, and f is a continuous function on [a,+∞) in R we have :

Iα
a

(
CDα

a f(t)
)
= f(t)−

n−1∑
k=1

f (k)(a)(t− a)k

k!
. (1.26)

Theorem 1.5.2 [26]
let α > 0 and f be a continuous function on [a,+∞) in R we have :

CDα
a (Iα

a f) (t) = f(t). (1.27)

Remark 1.5.1
the caputo derivative operator can be considered as a left-inverse of the fractional integration
operator, but it does not constitute a right-inverse.

Remark 1.5.2
the conclusion of theorem 1.5.1 indicates that differentiating a function f in the Caputo is
equivalent to a fractional derivative of the remainder in the Taylor expansion of f .

Theorem 1.5.3
Si α = n ∈ N we have :

CDα
a f(t) = f (n)(t). (1.28)

that is to say :

CD0
af(t) = f(t), CD1

af(t) = f (1), CD2
af(t) = f (2), . . . , CDn

af(t) = f (n)(t). (1.29)
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1.6 Relationship between the Riemann-Liouville Frac-
tional Derivative and the Caputo Fractional Deriva-
tive

The following theorem establishes the connection between the caputo fractional and Riemann-
Liouville fractional derivatives.

Theorem 1.6.1
let α ≥ 0 (with m − 1 ≤ α < n and m ∈ N∗) if f has m − 1 derivatives at and if CDα

a f and
Dα

a f exist, then : for almost every t ∈ [a,+∞) :

CDα
a f(t) =

RLDα
a f(t)−

m−1∑
j=1

(t− a)j−α

Γ(−α + 1 + j)
f (j)(a). (1.30)

Proof
we have :

Iα
a f(t) =

(t− a)α

Γ(α + 1)
f(a) +

1

Γ(α + 1)

∫ t

a

(t− s)αf ′(s)ds,

=
(t− a)α

Γ(α + 1)
f(a) + Iα+1

a f ′(t),

Iα
a f(t) =

m−1∑
j=1

(t− a)α+j

Γ(α + 1 + j)
f(j)(a) + Iα+n

a fn(t),

Setting n = m and α = m− α we find :

Im−α
a f(t) = I2m−α

a f (m)(t) =
m−1∑
j=1

(t− a)m−α+j

Γ(m− α + 1 + j)
f (j)(a),

then
dm

dtm
[
Im−α
a f(t)

]
=

dm

dtm

[
I2m−α
a f(t)(m) +

m−1∑
j=1

(t− a)m−α+j

Γ(m− α + 1 + j)
f (j)(a)

]
,

=
dm

dtm
[
I2m−α
a f (m)(t)

]
+

m−1∑
j=1

(t− a)j−α

Γ(−α + 1 + j)
f (j)(a),

= Im−α
a f (m)(t) +

m−1∑
j=1

(t− a)j−α

Γ(−α + 1 + j)
f (j)(a),

Therefore

Dα
a f(t) =

RLDα
a f(t)−

m−1∑
j=1

(t− a)j−α

Γ(−α + 1 + j)
f (j)(a).

Corrolaire 1.6.1
for α > 0, we deduce that if f (k)(a) = 0for k = 0, 1, 2, . . . , n− 1, (n = [α] + 1) then we will have

Dα
a f(t) =

CDα
a f(t). (1.31)
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1.7 General properties of fractional derivatives
Linearity

Proposition 1.7.1 [10]
let f, g be two continuous functions on [a, b], Fractional differentiation is a linear operation,i.e.,
for any : ∀γ, λ ∈ R, α > 0, we have

Dα
a [λf(t) + γg(t)] = λDα

a f(t) + γDα
a g(t). (1.32)

Where Dα denotes any sense of fractional derivative.

Example 1.7.1
- the linearity of fractional derivative in the sense of Grunwald-Letnikov :
let α, β ∈ C we have :

GDα
a [λf(t) + γg(t)] = lim

h→0

1

hα

n∑
k=0

(−1)k
(
α
k

)
[λf(t− kh) + γg(t− kh)],

=λ lim
h→0

1

hα

n∑
k=0

(−1)k
(
α
k

)
f(t− kh),

+ γ lim
h→0

1

hα

n∑
k=0

(−1)k
(
α
k

)
g(t− kh),

=λGDα
a f(t) + γGDα

a g(t),

- the linearity of fractional derivative in the sense of Riemann-Liouville :
Let α, β ∈ C we have :

RLDα
a [λf(t) + γg(t)] =

1

Γ(n− α)

dn

dtn

∫ t

a

[λf(s) + γg(s)]

(t− s)α−n+1
,

=
λ

Γ(n− α)

dn

dtn

∫ t

a

f(s)

(t− s)α−n+1
,

+
γ

Γ(n− α)

dn

dtn

∫ t

a

g(s)

(t− s)α−n+1
m

=λRLDα
a f(t) + γRLDα

a g(t).

Leibniz Rule

for an integer n we have

dn

dtn
(f(t)g(t)) =

n∑
k=0

(
n
k

)
fk(t)gn−1(t). (1.33)

the generalization of this formula gives us

Dα(f(t)g(t)) =
n∑

k=0

(
α
k

)
fk(t)Dα−kg(t) + Rα

n(t), (1.34)

where n ≥ α + 1 and

Rα
n(t) =

1

n!Γ(−α)

∫ t

a

(t− τ)−α−1g(τ)dτ

∫ t

τ

(τ − ξ)nf (n+1)(ξ)dξ, (1.35)
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with limn→∞Rα
n(t) = 0

if f and g are continuous on [a, t] include all their derivatives ,the formula becomes :

Dα(f(t)g(t)) =
n∑

k=0

(
α
k

)
fk(t)Dα−kg(t) + Rα

n(t). (1.36)

Dα is the fractional derivative in the sense of Grunwald-Letnikov and in the sense of Riemann-
Liouville.

Definition 1.7.1 [25]
let α > 0, α /∈ N, n = [α] + 1 and f : A ⊂ R2 → R, then :

RLDαy(t) = f(t, y(t)), (1.37)

is called a Riemann-Liouville fractional differential equation.
Similarly,

CDαy(t) = f(t, y(t)), (1.38)

is called a caputo fractional differential equation.

1.8 Riemann-Liouville fractional differential equation
Starting with the homogeneous Riemann-Liouville type equation.

Lemma 1.8.1 [27]
let α > 0. If we assume that u ∈ C(0, 1) ∩ L(0, 1), then the Riemann-Liouville fractional
differential equation is :

Dα
0+u(t) = 0, 0 < t < 1, (1.39)

admits a unique solution

u(t) = C1t
α−1 + C2t

α−2 + ...+ Cnt
α−n.

where Cm ∈ R, with m = 1, 2, ..., n.

Lemma 1.8.2 [27]
Suppose that

u ∈ C(0, 1) ∩ L(0, 1), and Dα
0+u ∈ C(0, 1) ∩ L(0, 1).

Then :
Iα
0+Dα

0+u(t) = u(t) + C1t
α−1 + C2t

α−2 + ...+ Cnt
α−n, (1.40)

where Cm ∈ R, with m = 1, 2, ..., n.

Proof
Let α > 0. For all u ∈ C(0, 1) ∩ L(0, 1), we have :

Iα
0+Dα

0+u(t) = u(t)−
n∑

k=1

(In−α
0+ un−k)(0)

Γ(α− k + 1)
tα−k,

= u(t)−
[
(In−α

0+ u(n−1))(0)

Γ(α)
tα−1 +

(In−α
0+ u(n−2))(0)

Γ(α− 1)
tα−2 + ...+

(In−α
0+ u)(0)

Γ(α− n+ 1)
tα−n

]
,

We define Cm = −
(In−α

0+ u(n−m))(0)

Γ(α−m+ 1)
∈ R, for each m = 1, 2, ..., n, we find the equality (1.40).
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Lemma 1.8.3
Let 1 < α ≤ 2, and y ∈ C([0, 1]).
Then the unique solution to the boundary value problem{

Dα
0+u(t) + y(t) = 0, 0 < t < 1

u(0) = u(1) = 0.
(1.41)

is given by :

u(t) =

∫ 1

0

G(t, s)y(s)ds,

such as :

G(t, s) =


[t(1− s)]α−1 − (t− s)α−1

Γ(α)
, if 0 ≤ s ≤ t ≤ 1

[t(1− s)]α−1

Γ(α)
, if 0 ≤ s ≤ t ≤ 1

(1.42)

Proof
Applying Iα

0+ , to equation 1.41, we obtain :

Iα
0+ [Dα

0+u(t) + y(t)] = 0 ↔ Iα
0+Dα

0+u(t) + Iα
0+y(t) = 0.

According to Lemma 1.8.2, for 1 < α ≤ 2 (n = [α] + 1 = 2), we have :

Iα
0+Dα

0+u(t) = u(t) + C1t
α−1 + C2t

α−2, C1, C2 ∈ R

Thus,
u(t) + C1t

α−1 + C2t
α−2 + Iα

0+y(t) = 0.

which implies
u(t) = −Iα

0+y(t)− C1t
α−1 − C2t

α−2,

Therefore, the general solution of equation 1.41 is given by :

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds− C1t
α−1 − C2t

α−2. (1.43)

The boundary conditions imply that :u(0) = 0 ⇒ 0 = −0− 0− limt→0C2t
α−2 ⇒ C2 = 0,

u(1) = 0 ⇒ 0 = − 1

Γ(α)

∫ 1

0
(1− s)α−1y(s)ds− C1 ⇒ C1 = − 1

Γ(α)

∫ 1

0
(1− s)α−1y(s)ds.

The integro-differential equation 1.43 is equivalent to :

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
tα−1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds,

= − 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
tα−1

Γ(α)

∫ t

0

(1− s)α−1y(s)ds+
tα−1

Γ(α)

∫ 1

t

(1− s)α−1y(s)ds

=
1

Γ(α)

∫ t

0

[tα−1(1− s)α−1 − (t− s)α−1]y(s)ds+
tα−1

Γ(α)

∫ 1

t

(1− s)α−1y(s)ds,

=

∫ t

0

[t(1− s)]α−1 − (t− s)(α−1)

Γ(α)
y(s)ds+

∫ 1

t

[t(1− s)]α−1

Γ(α)
y(s)ds,

=

∫ 1

0

G(t, s)y(s)ds.

The proof is complete.
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1.9 Caputo fractional differential equation
Starting with the homogeneous Caputo-type equation.

Lemma 1.9.1 [30]
Let α > 0. If we assume that u ∈ C(0, 1) ∩ L(0, 1), then the Caputo-type fractional differential
equation is :

CDα
0+u(t) = 0, (1.44)

admits a unique solution

u(t) = C0 + C1t+ C2t
2 + · · ·+ Cn−1t

n−1.

where Cm ∈ R, with m = 0, 1, 2, . . . , n− 1.

Proof
let α > 0, we have :

CDα
0+t

m = 0, for m = 0, 1, 2, . . . , n− 1.

So the fractional differential equation 1.44 admits a particular solution, such as

u(t) = Cmt
m, for m = 0, 1, 2, . . . , n− 1. (1.45)

where Cm ∈ R. The general solution of 1.44, given as a sum of particular solutions 1.45, i.e.,

u(t) = C0 + C1t+ C2t
2 + · · ·+ Cn−1t

n−1.

Lemma 1.9.2 [30]
Assume that u ∈ Cn([0, 1]). then :

Iα
0+ + CDα

0+u(t) = u(t) + C0 + C1t+ C2t
2 + ...+ Cn−1t

n−1. (1.46)

where Cm ∈ R, with m = 0, 1, 2, . . . , n− 1.

Proof
Let α > 0. for all u ∈ Cn([0, 1]) we have

Iα
0+

CDα
0+u(t) = u(t)−

n−1∑
k=0

uk(0)

k!
tk

= u(t)−
[
u(0) + u′(0)t+

u′′(0)

2
t2 + ...+

u(n−1)(0)

(n− 1)!
tn−1

]

We pose Cm = −u
(m)(0)

m!
∈ R, for each m = 0, 1, 2, ..., n− 1,We easily find the equality 1.46

Lemma 1.9.3
let 1 < α ≤ 2, and y ∈ C([0, 1]).
Then the unique solution to the boundary value problem is :{

CDα
0+u(t) = y(t), 0 < t < 1

u(0) + u′(0) = 0, u(1) + u′(1) = 0
, (1.47)

is given by :

u(t) =

∫ 1

0

G(t, s)y(s)ds,

such as :

G(t, s) =

{
(1−t)(1−s)α−1+(t−s)α−1

Γ(α)
+ (1−t)(1−s)α−2

Γ(α−1)
if 0 ≤ s ≤ t ≤ 1

(1−t)(1−s)α−1

Γ(α)
+ (1−t)(1−s)α−2

Γ(α−1)
if 0 ≤ t ≤ s ≤ 1

(1.48)
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Proof
Applying Iα

0+ , to equation 1.47 we obtain :

Iα
0+

[
CDα

0+u(t)− y(t)
]
= 0 ⇔ Iα

0+
CDα

0+u(t)− Iα
0+y(t) = 0.

According to Lemma 1.9.2, for 1 < α ≤ 2 (n = [α] + 1 = 2),we have :

Iα
0+

CDα
0+u(t) = u(t) + C0 + C1t, C0, C1, C2 ∈ R,

thus,
u(t) + C0 + C1t− Iα

0+y(t) = 0,

which implies
u(t) = Iα

0+y(t)− C0 − C1t,

Therefore, the general solution of equation 1.47is given by :

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds− C0 − C1t. (1.49)

The boundary conditions imply that :{
u(0) + u′(0) = 0 ⇒ C0 + C1 = 0
u(1) + u′(1) = 0 ⇒ C0 + 2C1 = (Iα

0+y)(1) + (Iα
0+y)

′(1)

thus 

C0 =− (Iα
0+y)(1)− (Iα

0+y)
′(1)

=− 1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds− 1

Γ(α− 1)

∫ 1

0

(1− s)α−2y(s)ds

C1 =(Iα
0+y)(1)− (Iα

0+y)
′(1)

=
1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds+
1

Γ(α− 1)

∫ 1

0

(1− s)α−2y(s)ds

The integro-differential equation 1.47 is equivalent to :

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds

+
1

Γ(α− 1)

∫ 1

0

(1− s)α−2y(s)ds− t

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds

− t

Γ(α− 1)

∫ 1

0

(1− s)α−2y(s)ds

=
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
(1− t)

Γ(α)

∫ t

0

(1− s)α−1y(s)ds

+
(1− t)

Γ(α)

∫ 1

t

(1− s)α−1y(s)ds+
(1− t)

Γ(α− 1)

∫ t

0

(1− s)α−2y(s)ds

+
(1− t)

Γ(α− 1)

∫ 1

t

(1− s)α−2y(s)ds

=

∫ t

0

[
(t− s)α−1 + (1− t)(1− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)

]
y(s)ds

+

∫ 1

t

[
(1− t)(1− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)

]
y(s)ds

=

∫ 1

0

G(t, s)y(s)ds.

The proof is complete.
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1.10 Existence and uniqueness of the solution
This section constitutes a preliminary part in which fundamental concepts and results of

the theory of functional analysis are recalled (Banach contraction principle, equicontinuity,
Schauder’s theorem, Arzela-Ascoli theorem,...). Subsequently, the question of existence and
uniqueness of the solution for the boundary value problem of fractional order differential equa-
tion will be addressed.

1.10.1 Fixed point theory
In this part, we have revisited some definitions and theorems from [34]

1.10.2 Banach fixed point theorem
Let us consider the following initial value problem

u′ = f(t, u), u(t0) = u0. (1.1)

By applying the integral operator, we obtain the equivalent integral equation :

u(t) =

∫ t

t0

f(s, u(s))ds+ u0, (1.2)

and let {un} be a sequence of functions, with

u1(t) =

∫ t

t0

f(s, u0)ds+ u0, u(t0) = u0, (1.3)

and, in general,

un+1(t) =

∫ t

t0

f(s, un(s))ds+ u0. (1.4)

This is called Picard’s method of successive approximations. One can show that converges
uniformly on some interval |t− t0| ≤ k to some continuous function, say u(t). Taking the limit
in the equation defining un+1(t), we pass the limit through the integral and have

u(t) = u0 +

∫ t

t0

f(s, u(s))ds,

so that u(t0) = u0 and, upon differentiation, we obtain u′
(t) = f(t, u(t)). Thus, u(t) is a solution

of the initial value problem. Banach realized that this was actually a fixed point theorem with
wide application. Let us define an operator B on a complete metric space C([t0, t0+k],R) with
the supremum norm ‖ · ‖ by u ∈ C as

(Bu)(t) = u0 +

∫ t

t0

f(s, u(s))ds,

then a fixed point of B, say Bϕ = ϕ, is a solution of the initial value problem.

Definition 1.10.1 [10]
Let (E, d) be a complete metric space and B : E −→ E. The operator B is a contraction if
there is a λ ∈ [0, 1) such that u, v ∈ E imply

d(Bu,Bv) ≤ λd(u, v).

24



Theorem 1.10.1 ([10] (Contraction Mapping Principle))
Let (E, d) be a complete metric space and B : E −→ E a contraction operator. Then there is a
unique u ∈ E with Bu = u. Furthermore, if v ∈ E and if {vn} is defined inductively by v1 = Bv
and vn+1 = Bvn, then vn −→ u, the unique fixed point. In particular, the equation Bu = u has
one and only one solution.

Theorem 1.10.2 [10]
Let (E, d) be a complete metric space and suppose that B : E −→ E such that Bm is a
contraction for some fixed positive integer m. Then B has a fixed point in E.

Theorem 1.10.3 [10]
Let (E, d) be a compact metric space,

B : E −→ E and d(Bu,Bv) < d(u, v), for u 6= v. (1.5)

Then B has a unique fixed point.

Theorem 1.10.4 [10]
If (E, d) is a complete nonempty metric space and B : E −→ E is a contraction operator with
fixed point u, then for any v ∈ E we have :

(a) d(u, v) ≤ d(Bv,v)
(1−λ)

,

(b) d(Bnv, u) ≤ λnd(Bv,v)
(1−λ)

.

Theorem 1.10.5 (Arzelà Ascoli)[2]
Let A be a subset of C(J ;E);A is relatively compact in C(J ;E) if and only if the following
conditions are satisfied :

1. The set A is bounded, i.e., there exists a constant k > 0 such that :

||f || ≤ k for every x ∈ J and f ∈ A.

2. The set A is equicontinuous, i.e., for every ϵ > 0, there exists δ > 0 such that

|t1 − t2| < δ ⇒ |f(t1)− f(t2)| ≤ ϵ for every t1, t2 ∈ J and f ∈ A.

3. for every x ∈ J the set {f(x), f ∈ A} ⊂ Eis relatively compact.

1.11 Cauchy problem fractional order differential equa-
tion

The existence and uniqueness of the solution to a Cauchy problem for fractional-order
differential equations (using the Caputo derivative) will be studied, where the problem is given
in the following form : {

CDαy(t) = f(t, y(t)) t ∈ [0, T ], 0 < α < 1
y(0) = y0, y0 ∈ R (1.50)

tell that f : [0, T ] ∈ R → R is a continuous function.

Lemma 1.11.1 [31]
Let 0 < α < 1 and let h : [0, T ] → R be a continuous function. A function y is a solution to the
Cauchy problem
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y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1h(s)dx. (1.51)

Proof
We apply operator Iα to equation 1.50 and we find

IαCDαCDαy = Iαf(t) ⇒ y(t) + c0 = Iαh(t)

⇒ y(t) = Iαh(t)− c0

The initial condition gives

y(0) = (Iαh)(0)− c0 = −c0 ⇒ c0 = −y0.

Thus,
y(t) = Iαh(t)− (y0)

=
1

Γ(α)

∫ t

0

(t− s)α−1h(s)dx+ y0.

in return
y(t) = y0 +

1

Γ(α)

∫ t

0

(t− s)α−1h(s)dx

= Iαh(t) + y0.

we apply CDα to the integral equation 1.51.

CDαy(t) = CDα(Iαh)(t) + CDα(y0)

= h(t).

Thus, it remains to verify that y(0) = y0,

y(0) = Iαh(0) + y0 = 0 + y0

= y0.

Then y is a solution to the problem 1.51.

Theorem 1.11.1 [10]
Let 0 < α < 1 and f : [0;T ]× R → R and satisfies the following Lipschitz condition :

|f(t, y)− f(t, z)| ≤ k|y − z|, ∀t ∈ [0, T ], and y, z ∈ R.

kT α

Γ(α + 1)
< 1,

There exists a unique solution to the Cauchy problem 1.50.

Proof
We use the Banach fixed point theorem 1.10.1.
We transform problem 1.50 into a fixed point problem (Lemma 1.11.1), considering the operator

F : C([0, T ],R) → C([0, T ],R)

y → F (y)(t) = y0 +
1

Γ

∫ t

0

(t− s)α−1f(s, y(s))dx.

where C([0, T ],R) is the Banach space of continuous functions y defined on [0, T ] in R, equipped
with the norm

||y|| = sup
t∈[0,T ]

|y(t)|.
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It is clear that the fixed points of the operator F are the solutions to problem 1.50. F is well
defined, indeed : if y(t) ∈ C([0, T ],R), Then Fy(t) ∈ C([0, T ],R).
To show that F has a fixed point, it suffices to demonstrate that F is a contraction ; indeed, if
y1, y2 ∈ C([0, T ],R), t ∈ [0, T ] By using the Lipschitz condition, we obtain :

|Fy1 − Fy2| =
∣∣∣∣ 1

Γ(α)

∫ t

0

(f(s, y1(s)))− (f(s, y2(s)))(t− s)α−1ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(|f(s, y1(s)))− (f(s, y2(s)))|(t− s)α−1ds

≤ k

Γ(α)

∫ t

0

|y1(s)− y2(s)|(t− s)α−1ds

≤ k

Γ(α)
||y1 − y2||

∫ t

0

(t− s)α−1ds

≤ kT α

Γ(α + 1)
||y1 − y2||

It states that due to the property kT α

Γ(α + 1)
< 1, F is a contraction, and according to Banach’s

Fixed Point Theorem, F has a unique fixed point, which is the solution to problem 1.50.
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CHAPITRE 2
STOCHASTIC CALCULUS AND STOCHASTIC DIFFERENTIAL

EQUATIONS

Introduction
Probability theory constitutes the foundational building block of the mathematical and

statistical sciences, as it enables us to handle phenomena characterized by uncertainty and
ambiguity. Initially, the theory emerged in the 17th century to study games of chance and
gambling. However, it quickly evolved into a powerful tool with significant roles across various
fields, including the natural sciences, engineering, economics, and social sciences.

Probability provides a measure of the likelihood that a specific event will occur when per-
forming a given experiment. Rather than offering definitive answers about expected outcomes,
probability equips us with tools to assess the plausibility of each possible result. For example,
when tossing a fair coin, the probability of obtaining heads is 50%, as is the probability of
obtaining tails.

With the advancement of sciences and their applications, and the increasing complexity of
phenomena under study, it became necessary to develop analytical tools capable of offering a
deeper understanding of complex and uncertain systems, particularly in representing systems
that evolve randomly over time. This led to the emergence of stochastic process theory as a
natural extension of classical probability theory.

Stochastic processes are families of random variables indexed by time or by a particular
space, focusing on the study of sequences of events that evolve in a random manner. These
processes consist of collections of random variables, where the current state of the process
depends on the previous state and certain probabilities governing future changes. A classical
example of stochastic processes is the Brownian motion or Wiener process, and the study of
such processes helps in predicting the future behavior of dynamic systems.

Famous examples of stochastic processes include the motion of particles suspended in a fluid
(Brownian motion) and the fluctuation of stock prices in financial markets.

In this chapter, we focus on establishing the theoretical foundations necessary for understan-
ding and applying stochastic differential equations (SDE). This study will provide a comprehen-
sive review of basic probability concepts, including probability spaces, random variables, and
mathematical expectation. We will then move on to the study of stochastic processes, covering
concepts such as filtration, martingales, and Brownian motion, which serve as the fundamental
building blocks for constructing stochastic models.

Subsequently, we will discuss stochastic integration, with particular emphasis on the Itô
integral, which is an essential tool for solving stochastic differential equations. We will also
examine Itô’s formula and its important properties, such as the isometry property.

In the final part of the chapter, we will present stochastic differential equations and their
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applications, offering prominent practical examples such as the Ornstein–Uhlenbeck process, the
geometric Brownian motion widely used in financial modeling, and the Black–Scholes model,
which revolutionized the theory of option pricing.

2.1 probability Basics

2.1.1 probability space
In this section, we have revisited some definitions and theorems from [35].

Definition 2.1.1
A sigma-algebra (or σ-algebra) the probability space Ω is defined as a family F of subsets of Ω
(called events) satisfying the following properties :

1. the empty set ∅ belongs toF .
2. if an event A is in F , then its complement Ac is also in F .
3. if (An)

∞
n=1 is a sequence of events belonging to F , then the union of all these events,⋃∞

n=1An, is also in F .

Definition 2.1.2
the probability measure on the probability space (Ω,F) is defined as a function P de F to the
interval [0, 1], satisfying the following conditions :

1. the probability of the certain event, P(Ω), is equal to 1.
2. for any sequence of events An belonging to F and pairwise disjoint, the probability of the

union of these events, P (
⋃∞

n=0An), is equal to the infinite sum of individual probabilities,∑∞
n=0 P(An).

Definition 2.1.3
A probability space is defined as a triplet (Ω,F ,P) where : - Ω is a set, - F is a sigma-algebra
(or σ-tribe) on Ω, - P is a probability measure defined on (Ω,F).

2.1.2 Random variable
Definition 2.1.4
let (Ω,F ,P) be a probability space. A random variable on (Ω,F ,P) , is any function X : Ω → R
such that :

{ω ∈ Ω : X(ω) ∈ B} = {X ∈ B} ∈ F , ∀B ∈ B(R) (2.1)

2.1.3 Expectation of a Random variable
Definition 2.1.5 (cumulative distribution function)[35]
the cumulative distribution function of a random variable X defined on (Ω,F ,P) is the function
FX(x) defined on R by :

FX(x) = P(X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}) (2.2)

Definition 2.1.6 [35]
If the cumulative distribution function FX(x) is differentiable, the derivative of this function,
denoted fX(x), is called the probability density function of the random variable X :

∂FX(x)

∂x
= fX(x) (2.3)
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Definition 2.1.7 [35]
the mathematical expectation or mean, denoted E(X),is defined as follows :

1. Discrete case, when the random variable X takes discrete values (i.e., integers) in a
given interval, whether bounded or unbounded.

E(X) =
∞∑

K=1

xKP (X = xK) (2.4)

2. continuous case Si X is a real-valued random variable (absolutely continuous)

E(X) =

∫ +∞

−∞
xfX(x)dx (2.5)

Definition 2.1.8
let X and Y defined :

Var(X,Y ) = E
(
(X − E(X))2

)
= E

(
X2
)
− E(X)2 ≥ 0

(2.6)

Cov(X,Y ) = E((X − E(X))(Y − E(Y )))

= E(XY )− E(X)E(Y )
(2.7)

Conditional Expectation

1. Conditioning with respect to an event B ∈ F :

let A ∈ F :
P(A/B) =

P(A ∩B)

P(B)
(2.8)

let X be an integrable random variable defined E(|X|) <∞ ) :

E(X/B) =
P (X1B)

P(B)
si P(B) 6= 0 (2.9)

2. Conditioning for a random variable ( taking values in the countable set) :
let X be an integrable random variable :

E(X/Y ) = ψ(Y ) (2.10)

where
ψ(y) = E(X/Y = y), y ∈ D (2.11)

3. Conditioning with respect to a sigma-algebra F1

let X be an integrable random variable defined on (Ω,F ,P) and F1 be a sub-sigma-
algebra of F

Definition 2.1.9
the conditional expectation of X with respect to F1. denoted E(X/F1) is any random variable
Z such that E(|z|) <∞ that satisfies :
i) Z is a random variable F1-measurable.
ii) E(XU) = E(ZU),for all bounded ∀U measurable random variables F1.

Proposition 2.1.1
let X and Y be to integrable random variables and F1 ⊂ F , then :

1. E (aX + Y/F1) = aE (X/F1) + E (Y/F1).

30



2. If X ≤ Y then E (X/F1) ≤ E (Y/F1).
3. E (E (X/F1)) = E(X) (taking A = Ω in the definition).
4. If X is independent of F1 then E (X/F1) = E(X), meaning that in the absence of any

information about X,the best estimate of X is its expectation.
5. If X is F1 measurable, then E (X/F1) = X. this expresses the fact that F1 already

contains all the information about X.
6. If X is F1− measurable and E(|XY |) < +∞, then E (XY/F1) = XE (Y/F1).
7. If F1 ⊂ F2 ⊂ F , then E (E (X/F2) /F1) = E (X/F1).

2.1.4 Convergence of sequences of random variables
let (Xn)

∞
n=1 be a sequence of random variables and X another random variable, all defined

on ( Ω,F ,P). there are several ways to the sequence (Xn) to X.
— Convergence in probability :

Xn

P−→−−−→
n→∞

X si : ∀ϵ > 0, lim
n→∞

P (ω ∈ Ω : Xn(ω)−X(ω) > ϵ) = 0 (2.12)

— Almost sure convergence :

Xn
−→−−−→

n→∞
X p.s si : P

(
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

)
= 1 (2.13)

— Convergence in mean (or convergence in L1 ) :

lim
n→∞

E
(
|Xn −X|1

)
= 0 (2.14)

— Quadratic convergence (or convergence in L2) :

lim
n→∞

E
(
|Xn −X|2

)
= 0 (2.15)

2.2 Filtration and Stochastic Processes

2.2.1 Filtration
Definition 2.2.1 [28]
A filtration the context of a probability space (Ω, B,P), is defined as an increasing sequence
(Fn)n≥0 sub-sigma algebras of B, i.e., Ft is contained in Fs for all t ≤ s.

Definition 2.2.2
Given a measurable space (Ω,F) ,a real-valued random variable X is said to be a measurable
function from (Ω,F) to R if :

X−1(B) ∈ F ∀B ∈ B(R) (2.16)

Definition 2.2.3
the sigma algebra generated by a family of random variables (Xt, t ∈ [0, T ]) is the smallest
sigma algebra containing the sets X−1

t (B) for all t ∈ [0, T ] and B ∈ B(R). It is denoted as
σ (Xt, t ≤ T )

Definition 2.2.4
let (Ft)t≥0 is said to be right continuous if :

Ft =
⋂
e>0

Ft+e∀t ≥ 0 (2.17)
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It is left-continuous if :

Ft = σ

( ⋃
0<s<t

Fs

)
∀t > 0 (2.18)

the same sequence of filtration is termed complete with respect to a probability measure P when
F0 includes all subsets of F with probability measure zero according to P.

Definition 2.2.5
A filtrated probability space,denoted as (Ω,F , {Ft, t ≥ 0} ,P),is the probability space (Ω,F ,P)
equipped with the compatible filtration {Ft, t ≥ 0}.

Definition 2.2.6
A filtration (Ft) t ≥ 0 is said to satisfy the usual conditions if it is both right-continuous and
complete.

2.2.2 stochastic process
this section, we explore some fundamental concepts related to stochastic processes and

begin by defining them.[35]

Definition 2.2.7
let T be anon-empty subset of R. A stochastic process (Xt)t∈T in Rn is a family of random
variables taking values in Rn indexed by T . for fixed ω ∈ Ω t 7−→ Xt(ω) is called trajectory.

Definition 2.2.8 ( natural filtration)
the natural filtration of a stochastic process X = {Xt, t ≥ 0}, denote by FX , is the increasing
family of generated sigma-algebras generatedby{X(s), 0 ≤ s ≤ t}. t ≥ 0 that is :

FX =
{
FX
t = σ({X(s), 0 ≤ s ≤ t}), t ≥ 0

}
(2.19)

Definition 2.2.9
A process X = (X)t≥0 is measurable if the mapping :

X : R× Ω → Rn

(t, ω) 7→ Xt(ω)

is measurable with respect B (R+)⊗F and B (Rn)

Definition 2.2.10
A process (Xt)t∈T is said to be continuous if for almost every w ∈ Ω, t → Xt(w) is continuous
(i.e., the trajectories are continuous ).

Definition 2.2.11
Let (Xt) be a process and (Ft) a filtration of (Ω,F ,P). We say that X = (X)t ≥ 0 is adapted
to the filtration (Ft) t ≥ 0 if, for all t ≥ 0, Xt is Ft-measurable.

Definition 2.2.12
Let X = (X)t ∈ T be a stochastic process. The finite-dimensional laws of the process X are
the laws of vectors of the type (Xt1, . . . , Xtn) where n ≥ 1 and t1, . . . , tn ∈ T . Two processes
(X)t ≥ 0 and (Y )t ≥ 0 are said to have the same law if they have the same finite-dimensional
laws.

Definition 2.2.13
The process X = (X)t ≥ 0 has independent increments if, for all n ≥ 1 and for all t1 < t2 <
. . . < tn ∈ T , the vectors

(
Xt1, Xt2 −Xt1 , . . . , Xtn −Xtn−1

)
are independent.
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Definition 2.2.14
A progressive process Xt, t ∈ T (with respect to F) is a process such that, for all t ∈ T , the
function (s, ω) ∈ [0, t]× Ω 7→ Xs(ω) is measurable.

Definition 2.2.15
For all p ≥ 1 and a stochastic process X = (Xt) t ≥ 0, X is said to be bounded in Lp if its Lp

norm is finite, that is, if sup t ≥ 0E [|Xt|p] <∞.

Definition 2.2.16
Given a filtration (Ft) and a function T : Ω → R+ ∪∞, T is said to be a stopping time with
respect to (Ft) t ≥ 0 if, for all t ∈ R+, the event T ≤ t is measurable by Ft.

Theorem 2.2.1
Let (Xt, t ≥ 0) be an adapted process with continuous trajectories, and let T be a stopping time.
Then, we have the following equality :∫ T

0

E |Xt| dt = E
(∫ T

0

|Xt| dt
)

Moreover, if this quantity is finite, we also have :∫ T

0

EXtdt = E
(∫ T

0

Xtdt

)
Definition 2.2.17
Given a filtered probability space (Ω,F , (Ft) t ≥ 0,P), an adapted and integrable process X =
(Xt)t≥0 is :

Martingale

Definition 2.2.18

— A martingale if, for all 0 ≤ s ≤ t, E (Xt/Fs) = Xs.
— A supermartingale if, for all 0 ≤ s ≤ t, E (Xt/Fs) ≤ Xs.
— A submartingale if, for all 0 ≤ s ≤ t, E (Xt/Fs) ≥ Xs.

Proposition 2.2.1

— Any continuous martingale is a local martingale.
— A positive local martingale is a supermartingale.
— A bounded local martingale is a martingale.

Some inequalities

Theorem 2.2.2 [33] (Hölder’s inequality)
If X ∈ Lq, Y ∈ Lp, such that q > 1 and 1

q
+ 1

p
= 1, then :

E[|XY |] ≤ E [|X|q]
1
q E [|Y |p]

1
p

Theorem 2.2.3 (Cauchy-Schwarz inequality)
Let X and Y be two square-integrable random variables. Then :

1. XY is integrable.
2.

(E(|XY |))2 ≤ E
(
X2
)
E
(
Y 2
)
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Theorem 2.2.4 (Doob’s inequality)
Let (Mn, n ∈ N) be a real square-integrable martingale. Then :

E
[
max
0≤k≤n

M2
k

]
≤ 4E

[
M2

n

]
In particular,

E
[
sup
n∈N

M2
n

]
≤ 4 sup

n∈N
E
[
M2

n

]
2.3 Brownian motion

2.3.1 Gaussian vector
In all that follows, (Ω,F ,P) denotes a complete probability space.[35]

Definition 2.3.1
A random variable X defined on (Ω,F ,P) is said to be a Gaussian or normal random variable
with parameters (m,σ2) ,

(
m ∈ R, σ ∈ R∗

+

)
if its density function fX is given by :

fX =
1

σ
√
2π
e

(
− 1

2(
x−m

σ )
2
)

In this case, its law PX is given by

∀A ∈ B(R) PX(A) =

∫
F
fX(x)dx

And it is noted
X ∼ N

(
m,σ2

)
If m = 0, the vector X is said to be centered.

Remark 2.3.1
When the standard deviation σ is zero, the random variable X is constant, meaning that X is
almost surely equal to the mean m, i.e., P.

Proposition 2.3.1
A random variable X following the normal distribution N (m,σ2) has :

— Expected value : E[X] = m.
— Variance : Var(X) = σ2.
— Cov (Xs, Xt) = min(s, t) ∀0 ≤ s, t < T .

Definition 2.3.2
X = (X1, X2, . . . , Xn) is a Gaussian random vector if all linear combinations of its compo-
nents are Gaussian, that is, for any choice of coefficients a1, . . . , an ∈ R, the random variable∑n

i=1 aiXi is Gaussian.

Definition 2.3.3
A process X = (Xt)t∈T is a Gaussian process if all its finite-dimensional distributions are
Gaussian, i.e., for all n ≥ 1 and for any choice of times t1 < t2 < . . . < tn ∈ T , the vector
(Xt1 , . . . , Xtn) is Gaussian.

Proposition 2.3.2
If the random vector (X1, X2) is Gaussian, then the random variables X1 and X2 are inde-
pendent if and only if their covariance Cov(X1, X2) is zero.

Proposition 2.3.3
Any vector of independent Gaussian random variables is a Gaussian vector.
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2.3.2 Brownian motion
Historical Remarks and Basic Definitions. In 1828, Robert Brown published a brief account

of the microscopical observations made in the months of June, July and August, 1827 on the
particles contained in the pollen of plants [9].
In 1900, Bachelier [3] postulated that stock prices execute Brownian motion, and he developed
a mathematical theory which was similar to the theory which Einstein [21] developed.In 1923,
Norbert Wiener proved the existence of Brownian motion and made significant contributions
to related mathematical theories, so Brownian motion is often called a Wiener process [40].
Definition 2.3.4 (Standard Brownian Motion)
A standard Brownian motion in dimension d over a time interval T = [0, T ] or over the set
of positive real numbers R+ is a continuous process with values in Rd, denoted by (Wt)t∈T =(
W 1

t , . . . ,W
d
t

)
t∈T , which satisfies the following properties :

W0 = 0 almost surely. For all 0 ≤ s < t in T , the increment Wt −Ws is independent of
the information up to time s, σ (Wu, u ≤ s). For all 0 ≤ s < t in T , the increment Wt −Ws

follows a centered normal distribution, with a variance-covariance matrix (t− s)Id, where Id is
the identity matrix of size d.

Definition 2.3.5 (Brownian motion with respect to a filtration)
A vectorial Brownian motion in dimension d over a time interval T = [0, T ] or over the set
of positive real numbers R+ with respect to a filtration F = (Ft)t∈T is a continuous process
F-adapted taking values in Rd, denoted by (Wt)t∈T =

(
W 1

t , . . . ,W
d
t

)
t∈T , which satisfies the

following properties :
W0 = 0 almost surely. For all 0 ≤ s < t in T , the increment Wt −Ws is independent of Fs.

For all 0 ≤ s < t in T , the increment Wt −Ws follows a centered normal distribution, with a
variance-covariance matrix of (t− s)Id, where Id is the identity matrix of size d.

Remark 2.3.2
Un mouvement brownien standard est un mouvement brownien par rapport à sa propre filtration
naturelle.

Lemma 2.3.1

E[Wt] = 0 and E[W 2
t ] = t− t0 for each time t ≥ t0.

Proof. We observe that :
Wt −Wt0 ∼ N(0, t− t0)

and that :
E[Wt −Wt0 ] = E[Wt] = 0.

Moreover :

E[W 2(t)] = E[W 2(t)]− (E[Wt])
2

= V[Wt]

= V[Wt −Wt0 ]

= t− t0.

This concludes the proof.

Proposition 2.3.4
Let W = (Wt)t≥0 be a Brownian motion defined on a probability space (Ω,F ,P). Then :

1. Symmetry : The process (−W ) = (−Wt)t≥0 is also a Brownian motion.
2. Scale Change : For all λ > 0, the process W λ =

(
W λ

t

)
t≥0

defined by W λ
t =

(
1
λ

)
Wλ2t is

a Brownian motion.
3. Simple Markov Property : For all s ≥ 0, if Fs := σ (Wu, u ≤ s) and W (s)

t = Wt+ s−Ws,
then the process W (s) = (W s

t )t≥0 is a Brownian motion independent of Fs.
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2.3.3 Stochastic Integral
Langevin’s 1908 approach to Brownian motion, rooted in mechanical equations with ran-

dom forces, offers an alternative and more concrete perspective compared to earlier models.
This method has since gained wider recognition.
We first define the integral for elementary processes. Then, leveraging a result on complete
spaces, we extend this definition to adapted processes with a second-order moment. Finally, we
explore Itôs formula and the integral associated with an Itô process.

Definition 2.3.6 (Wiener Integral)
The Wiener integral is simply an integral of the form :∫ t

0

XsdWs

Lemma 2.3.2 [7]
If f ∈ H2

0 is an elementary function, and we define It(ω) =
∫ t

0
f(ω, s)dBs, then It is a martin-

gale with respect to Ft.

Theorem 2.3.1
Let f ∈ H2. The continuous process

∫ t

0
fdB is a martingale with respect to àFt.

One major advantage of the Itô integral is that it implies :

∀f ∈ H2, t ≥ 0, E

[∫ t

0

f(·, s)dBs

]
= 0

Itô’s Formula

Introduction
When performing a change of variable in an integral, setting y = f(x), we generally use the
notation dy = f ′(x)dx. This relation follows directly from Leibniz’s notation, where dy = df

dx
dx.

When dealing with a composite function, for instance when x depends on time t, we can still
apply the chain rule in integrals, which gives :

dy =
df

dx

dx

dt
dt

Since the Itô integral, like the Riemann integral, is defined as an infinite sum of infinitesimal
increments dBt, and because this definition aligns with Leibniz’s notation and related manipu-
lations, it seems reasonable to apply the same rules in this context.
However, if we take f(x) = x2 as an example, we would have :

Yt = B2
t , dYt = 2BtdBt, and

∫ t

0

2BsdBs =

∫ t

0

dYs = Yt − Y0 = B2
t (FALSE)

This is incorrect since
∫ t

0
2BsdBs is a martingale.

Using Itô’s formula, an additional term appears :

B2
t =

∫ t

0

2BsdBs +

∫ t

0

ds

and the rules of variable substitution must be adjusted.
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Definition 2.3.7 [7](Itô’s Formula)
Let Bt be a Ft Brownian motion on (Ω,A, P ). An Itô process is a stochastic process Xt of the
form :

Xt(ω) = X0(ω) +

∫ t

0

u(ω, s)ds+

∫ t

0

v(ω, s)dBs(ω)

where u and v are Ft-adapted, and the involved integrals are well-defined a.s.,
i.e.

∫ t

0
|u(ω, s)|ds <∞ a.s., and v ∈ H2.

We use the following notation :

dXt = udt+ vdBt

which leads to Itô’s formula in dimension 1.

Theorem 2.3.2 [7]
Let Xt be an Itô process defined by :

Xt = X0 +

∫ t

0

usds+

∫ t

0

vsdBs

where we denote us = u(ω, s) and vs = v(ω, s). Let f(t, x) : [0,∞[×R → R be a C2 function.
Then :

Yt = f (t,Xt)

is an Itô process satisfying :

Yt = f (0, X0) +

∫ t

0

∂f

∂s
(s,Xs) ds+

∫ t

0

∂f

∂x
(s,Xs) (usds+ vsdBs) +

1

2

∫ t

0

∂2f

∂x2
(s,Xs) v

2
sds

Example

We consider the Itô process Bt. It satisfies the integral equation :

Bt =

∫ t

0

dBs

or equivalently, it is the solution of :
dXt = dBt

where u = 0 and v = 1. We consider the function f(t, x) = x2. Itô’s formula gives :

d
(
X2

t

)
= 2XtdBt + 1 · dt

The last term related to ∂2f
∂x2 = 1 is essential. Indeed, when taking expectations, we obtain :

E
[
dX2

t

]
= 2E [XtdBt] + 1 · dt = 1 · dt

Since the Itô integral is a martingale, the middle term cancels out. Thus, we get the deterministic
equation for Bt = Xt :

dE
[
B2

t

]
= 1 · dt, E

[
B2

0

]
= 1, so E

[
B2

t

]
= t

Itô Isometry

Theorem 2.3.3 [7]
Let f ∈ H2[0, T ]. Then :

‖I(f)‖L2(dP ) = ‖f‖L2(dP×dt)

Proof
Let fn be elementary functions such that ‖f − fn‖L2(dP×dt) → 0.
By definition of the integral, ‖I (fn)− I(f)‖L2(dP ) → 0.
Moreover, ‖fn‖L2(dP×dt) = ‖I (fn)‖L2(dP ) ∀n ≥ 0.
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2.3.4 Stochastic differential equations (SDE)
Stochastic differential equations (SDE) are an extension of traditional deterministic diffe-

rential equations, making it possible to incorporate uncertainty, noise, or random disturbances
into dynamic models. That is, a stochastic element is included to represent uncertain or random
phenomena that affect dynamic systems.
SDE first emerged in the twentieth century with the development of stochastic process theory by
Robert Brown and were later mathematically formulated by Einstein and Wiener. The modern
theory was largely built on Itô calculus, developed by Kiyoshi Itô in the 1940s, which provides
a precise mathematical framework for defining stochastic integrals and differential equations
driven by Brownian motion.
They were first used in statistical physics to describe the diffusion of particles in fluids.
Stochastic differential equations are applied in various fields, including economics and finance,
physics and electronics, engineering, and biology.

Definition 2.3.8
A Stochastic Differential Equation (SDE) is an equation for the process X (with values in Rd)
of the form :

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (2.20)

Theorem 2.3.4
Let T > 0 and b : [0, T ] × R → R, σ : [0, T ] × R → R be measurable functions satisfying, on
[0, T ]× R :

|b(t, x) + σ(t, x)| ≤ C(1 + |x|), |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y|

where C > 0 is a constant, and Z is a random variable in L2(dP ) independent of the -algebra
generated by (Bs)s≥0. Then, the SDE (2.20) admits a unique t-continuous solution in L2(dP×dt)
adapted to the filtration generated by Z and Bs.

2.3.5 Example
We will now provide some applied examples to help better understand stochastic differential

equations.
Let’s consider the following SDE :

dXt = a(b−Xt)dt+ σdW (t)

We need to verify :
1. |b(x, t)− b(y, t)|+ |a(x, t)− a(y, t)| ≤ K|x− y|, ∀t ≥ 0

2. |b(x, t)|2 + |a(x, t)|2 ≤ K2 (1 + x2) , ∀t ≥ 0

3. E [X2
0 ] <∞

We have :

|b(x, t)− b(y, t)|+ |a(x, t)− a(y, t)| = |a(b− x)− a(b− y)|+ |σ − σ|
= |a||x− y|

since :

|x| ≤

{
1 if |x| ≤ 1
x2 if |x| ≥ 1

≤

{
1 + x2 if |x| ≤ 1

1 + x2 if |x| ≥ 1
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thus
|b(x, t)|2 + |a(x, t)|2 = |a(b− x)|2 + |σ|2

= a2(b− x)2 + σ2

= a2
(
b2 − 2bx+ x2

)
+ σ2

≤ a2
(
b2 + 2|b||x|+ x2

)
+ σ2

≤ a2
(
b2 + 2|b|

(
1 + x2

)
+ x2

)
+ σ2

= a2
(
b2 + 2|b|

)
+ σ2 + (2|b|+ 1)x2

≤ max
(
a2
(
b2 + 2|b|

)
+ σ2(2|b|+ 1

) (
1 + x2

)
So let’s set K = max

(
|a|,
√
a2 (b2 + 2|b|) + σ2,

√
2|b|+ 1

)
.

Since the initial condition wasn’t specified, we only need to choose X0 to be square-integrable
to fulfill condition (3).

Ornstein-Uhlenbeck Process as a Solution to the Langevin Equation

[7] The Langevin equation d
dt
V = −γV + L(t) in the Itô formalism can be written as :

dVt = −γVtdt+ σdBt

V (0) = v0

which has a solution according to theorem 2.3.4.
Here, dBt replaces a mathematically ill-defined random force L(t). So we have :

dVt = −γVtdt+ L(t)

For each trajectory Vt(ω), we would use the method of variation of constants. This method is
compatible with our formalism. By setting

Ct = Vte
γt

we have, applying Itô’s formula to f(t, x) = eγtx :

dCt = γCtdt+ eγt (−γVtdt+ σdBt) = eγtσdBt

and thus
Vt = e−γtv0 +

∫ t

0

e−γ(t−s)σdBs

Application to Finance : Geometric Brownian Motion and the Black-Scholes Model

[7] In this model, the price of a stock is governed by the SDE

dSt = St(µdt+ σdBt)

S0 = s0

We set :
Yt = log(St)

As we have no guarantee that St does not vanish, we will perform a formal calculation without
justification. We apply Itô’s formula with the function f(t, x) = log x. We get

d log (St) = (µdt+ σdBt)− σ2dt =
(
µ− σ2/2

)
dt+ σdBt

By integrating both sides, we obtain

Yt = log (s0) +
(
µ− σ2/2

)
t+ σBt or St = s0e

(µ−σ2/2)t+σBt
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CHAPITRE 3
FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATION

INTRODUCTION
A fractional stochastic differential equation is a concept used to numerically solve this type of

equation. Fractional differential equations are generalizations of classical differential equations,
where the derivatives are fractional operators. Fractional stochastic differential equations add
a stochastic component, i.e., a random element, to the process.

Fractional differential equations are now receiving increasing attention due to their applica-
tions in various disciplines such as mechanics, physics, chemistry, biology, electrical engineering,
control theory, heat, etc. There have been only a few articles dealing with stochastic differential
equations of fractional Caputo order, and most of these articles have attempted to establish a
result on the existence and uniqueness of solutions. Here, we distinguish two types of solutions :
The first concerns mild solutions ; for more details, see [6] on the existence and uniqueness of
this type of solution. The other type of solution is defined as a solution to a stochastic problem
associated with integral equations. We have the following fractional equation :

CDαx(t) = Ax(t) + f(t), 0 < α < 1, t ≥ 0,

x(0) = η,
(3.1)

To solve 3.1, we use the Laplace transform.
Equation 3.1 is equivalent to :

L{CDαx(t)} = L{Ax(t) + f(t)}

Thus :
Sαx̂(s)− Sα−1η = L{Ax(t) + f(t)}

⇒ Sαx̂(s) = Ax̂(s) + f̂(s) + Sα−1η (by linearity)

⇒ (Sα − A)x̂ = Sα−1η + f̂(s)

⇒ x̂(s) = (Sα − A)−1[Sα−1η + f̂(s)]
Now, we apply L−1

L−1(x̂(s)) = L−1{(Sα − A)−1[Sα−1η + f̂(s)]}

⇒
x(t) = L−1{(Sα − A)−1[Sαη + f̂(s)} (3.2)
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Lemma 3.0.1 [29]
Let C be the complex plane, for all α > 0, β > 0 and A ∈ Cn×n. The Laplace transform of
tβ−1Eα,β (At

α) is given by sα−β (sα − A)−1, valid for <(s) > |A|1/α, where <s represents the
real part of the complex number s.

Proof : For <(s) > ‖A‖1/α, we have
∑∞

k=0A
kS−(k+1)α = (sα − A)−1. Then

I
[
tβ−1Eα,β (At

α)
]
= I

[
tβ−1

∞∑
k=0

(Atα)k

Γ(αk + β)

]

=
∞∑
k=0

AkI
[
tαk+β−1

]
Γ(αk + β)

= sα−β

∞∑
k=0

Aks−(k+1)α

= sα−β (sα − A)−1 .

We have :
0 < α < 1 et β = 1
Thus : sα−1 (sα − A)−1 = I{t1−1Eα,1 (At

α)}

x(t) =I−1{(Sα − A)−1[S(α−1)η}
=I−1{ηI{t0Eα,1 (At

α)}
=ηEα,1 (At

α)

Therefore : I{tα−1Eα,α (At
α)} = sα−α (sα − A)−1

⇔ I{tα−1Eα,α (At
α)} = (sα − A)−1

We have :
I−1{(Sα − A)−1f̂(s)} =I−1{I{tα−1E(α,α)A(t

α)}f̂(s)}
=I−1{I{tα−1E(α,α)A(t

α)}I{f(t)}
=I−1{I{tα−1E(α,α)A(t

α) ⋆ f(t)}}
=tα−1E(α,α)(At

α) ⋆ f(t)

Definition 3.0.1
When the product f(x−t)g(t) is integrable over any interval [0, x] of R+, the convolution product
of f and g is defined by :

(f ∗ g)(x) =
∫ x

0

f(x− t)g(t)dt

I−1{(Sα − A)−1f̂(s)} =tα−1E(α,α)(At
α) ⋆ f(t)

=

∫ t

0

(t− τ)α−1Eα,α(A(t− τ)α)f(τ)dτ

Finally ;
CDαx(t) = Ax(t) + f(t), 0 < α < 1, t ≥ 0,

x(0) = η,
⇔

x(t) = Eα,1(t)η +

∫ t

0

(t− τ)α−1Eα,α(A(t− τ)α)f(τ)dτ

Lemma 3.0.2 [38]
For all α > 1

2
and γ > 0, the following inequality holds :

γ

Γ(2α− 1)

∫ t

0

(t− τ)2α−2E2α−1

(
γτ 2α−1

)
dτ ≤ E2α−1

(
γt2α−1

)
.
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Proof :
Let γ > 0 Consider the corresponding linear Caputo fractional differential equation of the
following form :

CD2α−1
0+ x(t) = γx(t) (3.3)

The Mittag-Leffler function E2α−1 (γt
2α−1) is a solution of 4.3 (see [18] page 135), hence the

following equality :

E2α−1

(
γt2α−1

)
= 1 +

γ

Γ(2α− 1)

∫ t

0

(t− τ)2α−2E2α−1

(
γτ 2α−1

)
dτ,

Thus, by 3.0.2, we note for all t > 0 :

γ

Γ(2α− 1)

∫ t

0

(t− τ)2α−2E2α−1

(
γτ 2α−1

)
dτ ≤ E2α−1

(
γt2α−1

)
3.1 Caputo Fractional Stochastic Differential Equation

Consider a Caputo FSDE of order α ∈ [1
2
; 1] :{

CDα
0+X(t) = AX(t) + b(t,X(t)) + σ(t,X(t))dW (t)

dt
,

X(0) = η,
(3.4)

where (W )t is a standard scalar Brownian motion on a complete filtered probability space
(Ω,F ,F := Ft,P),
A ∈ Rd×d and b, σ : [0;T ] × Rd → Rd are measurable functions satisfying the following condi-
tions :

1. (H1) ∃L > 0 tel que pour tout x, y ∈ Rd, t ∈ [0, T ]

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ L‖x− y‖

2. (H2)
∫ T

0
‖b(s, 0)‖2ds <∞, ess sup

s∈[0,T ]

‖σ(s, 0)‖ <∞

For each t ∈ [0;∞), let Dt := L2(Ω,Ft,P).
The space of square-integrable functions f : Ω → Rd

Definition 3.1.1 [1] (Classical solution of Caputo FSDE)
Let η ∈ D0 be an F-adapted process. X is called a solution of 3.4 for t ∈ [0, T ]

X(t) =η +
1

Γ(α)

∫ t

0

(t− τ)α−1 (AX(τ) + b (τ,X (τ))) dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1σ(τ,X(τ))dW
(3.5)

For all ∀η ∈ D0, there exists a unique solution to 3.5, denoted : φ(t, η)

Proof :
We have the problem 3.4 :

CDα
0+X(t) = AX(t) + b(t,X(t)) + σ(t,X(t))

dW (t)

dt
, andX(0) = η,
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Applying Iα to both sides :

Iα
(
CDα

0+X(t)
)
= Iα

(
AX(t) + b(t,X(t)) + σ(t,X(t))

dW (t)

dt

)
,

X(t)−X(0) =
1

Γ(α)

∫ t

0

(t− τ)α−1 (AX(τ) + b(τ,X(τ))) dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1σ(τ,X(τ))dW

becomes

X(t) = η +
1

Γ(α)

∫ t

0

(t− τ)α−1 (AX(τ) + b(τ,X(τ))) dτ +
1

Γ(α)

∫ t

0

(t− τ)α−1σ(τ,X(τ))dW

Theorem 3.1.1 (Variation of constants for Caputo FSDE)
Let η ∈ D0. We have :

φ(t, η) = Eα (t
αA) η +

∫ t

0

(t− τ)α−1Eα,α ((t− τ)αA) b (τ,Φ(τ, η)) dτ

+

∫ t

0

(t− τ)α−1Eα,α ((t− τ)αA) σ (τ,Φ(τ, η)) dWτ .

(3.6)

∀t ∈ [0, T ]

Remark 3.1.1 [1]
1. σ(t,X(t)) = 0

2. Note that : E1(M) = E1,1(M) = eM for M ∈ Rd×d

3.6 becomes
dX(t) = (AX(t) + b(t,X(t)))dt+ σ(t,X(t))dWt (3.7)

By applying the previous theorem, we obtain an explicit representation of the solution to the
linear inhomogeneous FSDE of the form :

CDα
0+X(t) = AX(t) + b(t) + σ(t)

dWt

dt
, X(0) = η (3.8)

Corrolaire 3.1.1
Assume that b ∈ L2

(
[0, T ],Rd

)
and σ ∈ L∞ ([0, T ],Rd

)
.

With T > 0 ; Then, the explicit solution of 3.8 on [0;T ] is given by :

X(t) =Eα (t
αA) η +

∫ t

0

(t− τ)α−1Eα,α ((t− τ)αA) b(τ)dτ

+

∫ t

0

(t− τ)α−1Eα,α ((t− τ)αA) σ(τ)dWτ

Definition 3.1.2 (Weak solution of Caputo FSDE)
An F-adapted process X is called a weak solution of 3.4 with the condition X(0) = η if the
following equality holds for t ∈ [0;T ] :

X(t) =Eα (t
αA) η +

∫ t

0

(t− τ)α−1Eα,α ((t− τ)αA) b(τ,X(τ))dτ

+

∫ t

0

(t− τ)α−1Eα,α ((t− τ)αA) σ(τ,X(τ))dWτ .

(3.9)
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We will now discuss the existence and uniqueness of weak solutions to 3.4.
In this result, we stipulate that the system coefficients must satisfy both conditions (H1) and
(H2).

Theorem 3.1.2 [1] (Existence and uniqueness of weak solutions) Assume that (H1) and (H2)
hold. For all η ∈ D0, there exists a unique weak solution Y of 3.4 satisfying Y (0) = η, which is
denoted ψ(t, η)3.6.

Proof : Let H2
η

(
[0, T ],Rd

)
:=
{
ξ ∈ H2

(
[0, T ],Rd

)
: ξ(0) = η

}
Define the corresponding Lyapunov-

Perron operator Tη : H2
η

(
[0, T ],Rd

)
→ H2

η

(
[0, T ],Rd

)
by :

TηY (t) =Eα (t
αA) η +

∫ t

0

(t− τ)α−1Eα,α ((t− τ)αA) b(τ, Y (τ))dτ

+

∫ t

0

(t− τ)α−1Eα,α ((t− τ)αA) σ(τ, Y (τ))dWτ

We know that the operator Tη is well-defined.
For complete the proof, it suffices to show that Tη is contractive with respect to an appropriate
metric on H2

η

(
[0, T ],Rd

)
.

For this, we consider H2
(
[0, T ],Rd

)
with a weighted norm ‖·‖γ, where γ > 0, defined as follows :

‖ξ‖γ := sup
t∈[0,T ]

√
E (‖ξ(t)‖2)

E2α−1 (γt2α−1)
pour tous ξ ∈ H2

(
[0, T ],Rd

)
(3.10)

Clearly,
‖ · ‖H2 et ‖ · ‖γ are equivalent.
Thus,

(
H2
(
[0, T ],Rd

)
, ‖ . ‖γ) is also a Banach space.

Then :
The set H2

η

(
[0, T ],Rd

)
with the metric induced by ‖ cdot‖γ is complete. By the compactness

of [0, T ] and the continuity of the function t 7→ Eα,α (t
αA),

there exists MT := maxt∈[0,T ] ‖Eα,α (t
αA)‖ > 0.

Now, we choose and fix a positive constant γ such that :

2L2M2
T (T + 1)

Γ(2α− 1)

γ
< 1 (3.11)

Therefore, by (H1)

‖ TX − TY ‖= ‖
∫ t

0

(t− τ)α−1Eα,α((t− s)αA)b(X)dS

+

∫ t

0

(t− τ)α−1Eα,α((t− s)αA)σ(X)dWS

−
∫ t

0

(t− τ)α−1Eα,α((t− s)αA)b(Y )dS

−
∫ t

0

(t− τ)α−1Eα,α((t− s)αA)σ(Y )dWS ‖

≤ (L2
b + L2

σ) ‖ (

∫ t

0

(t− τ)α−1Eα,α((t− s)αA)[X(s)− Y (s)]dWs) ‖2

By the definition of Tη, (H1), the Ito isometry andMT , we have

‖TηX(t)− TηY (t)‖2ms ≤2L2M2
T

∥∥∥∥∫ t

0

(t− τ)α−1

∥∥∥∥X(τ)− Y (τ)‖dτ‖2ms

+ 2L2M2
T

∫ t

0

(t− τ)2α−2‖X(τ)− Y (τ)‖2msdτ
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Using Hölder’s inequality, we obtain :

‖TηX(t)− TηY (t)‖2ms ≤ 2L2M2
T (T + 1)

∫ t

0

(t− τ)2α−2‖X(τ)− Y (τ)‖2msdτ

and by the definition of ‖ · ‖γ we have :

‖TηX(t)− TηY (t)‖2ms

E2α−1 (γt2α−1)

≤2L2M2
T (T + 1)

∫ t

0
(t− τ)2α−2E2α−1 (γτ

2α−1) dτ

E2α−1 (γt2α−1)
‖X − Y ‖2γ

Thus

‖TηX − TηY ‖γ ≤

√
2L2M2

T (T + 1)
Γ(2α− 1)

γ
‖X − Y ‖γ

3.2 Study of Unique Solutions and Their Stability in
Fractional Stochastic Equations

Introduction
Consider a Caputo fractional stochastic differential equation (for short Caputo FSDE) of

order β ∈ (1
2
, 1) of the following form :

CDβ
0+X(t) = b(t,X(t)) + σ(t,X(t))

dW (t)

dt
, (3.12)

where b, σ : [0,∞)Rd → Rd are measurable and (Wt)t ∈ [0,∞] is a standard scalar Brownian
motion on an underlying complete filtered probability space (Ω,F ,F := {Ft}t∈[0,∞),P). For
each t ∈ [0,∞), let Xt := L2(Ω,Ft,P) denote the space of all Ft -measurable, mean square
integrable functions f = (f1, ..., fd)

T : Ω → Rd with

||f ||ms :=

√√√√ d∑
i=1

E(|fi|2) =
√

E||f ||2,

where Rd is endowed with the standard Euclidean norm.A process X : [0,∞) → L(Ω,F ,P) is
said to be F−adapted if X(t) ∈ Xt for all t ≥ 0.For each κ ∈ X0, a F-adapted process X is
called a solution of (3.12) with the initial condition X(0) = κ if the following equality holds for
t ∈ [0,∞]

X(t) = κ+
1

Γ(β)

(∫ t

0

(t− s)β−1b(s,X(s))ds+

∫ t

0

(t− s)β−1σ(s,X(s))dWs

)
(3.13)

we assume that the coefficients b and σ satisfy the following standard conditions :
(H1) There exists L > 0 such that for all x, y ∈ Rd, t ∈ [0,∞)

||b(t, x)− b(t, y)||+ ||σ(t, x)− σ(t, y)|| ≤ L||x− y||.

(H2) σ(., 0) is essentially bounded,i.e.

||σ(., 0)||∞ := ess sup
s∈[0,∞)

||σ(s, 0)|| <∞

and b(., 0) is L2 integrable, i.e. ∫ ∞

0

||b(s, 0)||2ds <∞
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Our first result in this article is to show the global existence and uniqueness solutions of (3.12)
when (H1) and (H2) hold. Furthermore, we also show the continuity dependence of solutions
on the initial values.

We need this lemma : Here, the weight function is the Mittag–Leffler function E2β−1(·)
defined as :

E2β−1(t) :=
∞∑
k=0

tk

Γ((2β − 1)k + 1)
for all t ∈ R.

The following result is a technical lemma which is used later to estimate the operator Tκ.

Lemma 3.2.1
For any β > 1

2
and γ > 0, the following inequality holds :

γ

Γ(2β − 1)

∫ t

0

(t− s)2β−2E2β−1(γt
2β−1)ds ≤ E2β−1(γt

2β−1).

Proof.
Let γ > 0 be arbitrary. Consider the corresponding linear Caputo fractional differential equation
of the following form :

CD2β−1
0+ x(t) = γx(t). (3.14)

The Mittag–Leffler function E2β−1(γt
2β−1) is a solution of 3.14, Hence, the following equality

holds :
E2β−1(γt

2β−1) = 1 +
γ

Γ(2β − 1)

∫ t

0

(t− s)2β−2E2β−1(γt
2β−1)ds,

which completes the proof.

Theorem 3.2.1
(Global existence and uniqueness and Continuity dependence on the initial values of solutions

of Caputo FSDE). Suppose that (H1) and (H2) hold. Then
(i) for any κ ∈ X0, the initial value problem 3.12 with the initial condition X(0) = κ has a

unique global solution on the whole interval [0,∞) denoted by φ(., κ) ;
(ii) on any bounded time interval [0, T ], where T > 0, the solution φ(., κ) depends conti-

nuously on κ, i.e.
lim
ζ→κ

sup
t∈[0,T ]

||φ(t, ζ)− φ(t, κ)||ms = 0

we give an application of the main results concerning the mean square Lyapunov exponent of
non-trivial solutions to a bounded bilinear Caputo FSDE. To formulate this result, we consider
the following equation :

CDβ
0+x(t) = A(t)x(t)) + B(t)x(t)

dW (t)

dt
, (3.15)

where A,B : [0,∞) → Rd×d are measurable and essentially bounded, i.e.,

ess sup
t∈[0,∞)]

||A(t)||, ess sup
t∈[0,∞)]

||B(t)|| <∞

for each κ ∈ X0 \ {0}, there exists a unique solution of 3.15, denoted by Φ(., κ), satisfying the
initial condition X(0) = κ. The mean square Lyapunov exponent of Φ(., κ) is defined by

λms(Φ(
., κ)) := lim sup

t→∞

1

t
log ||Φ(t, κ)||ms (3.16)

In the following corollary, we show the non-negativity of the mean square Lya- punov exponent
of an arbitrary non-trivial solution.
Corrolaire 3.2.1 (Non-negativity of mean square Lyapunov exponent for solutions of linear
Caputo fsde). The mean square Lyapunov exponent of a nontrivial solution of 3.15 is always
non-negative, i.e.,

λms(Φ(
., κ)) ≥ 0 for all κ ∈ X0 \ {0}
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3.2.1 Existence and uniqueness results
Existence, uniqueness, and continuity dependence on the initial values of solutions

Our aim in this subsection is to prove the result on global existence, uniqueness, and continu-
ity dependence on the initial values of solutions to the equation 3.12. In fact, in order to prove
Theorem 3.2.1(i) it is equivalent to show the existence and uniqueness solutions on an arbitrary
interval [0, T ], where T > 0 is arbitrary. In what follows, we choose and fix a T > 0 arbitrarily.
Let H2([0, T ]) be the space of all the processes X which are measurable, FT -adapted, where
FT := {F}t∈[0,T ], and satisfies that

||X||H2 := sup
0≤t≤T

||X(t)||ms <∞

Obviously, (H2([0, T ]), ||.||H2) is a Banach space. For any κ ∈ X0, we define an operator Tκ :
H2([0, T ]) → H2([0, T ]) by

Tκψ(s) := κ+
1

Γ(β)

(∫ t

0

(t− s)β−1b(s, ψ(s)ds+

∫ t

0

(t− s)β−1σ(s, ψ(s))dWs

)
. (3.17)

The following lemma is devoted to showing that this operator is well-defined.

Lemma 3.2.2
For any κ ∈ X0, the operator sκ is well-defined.

Proof.
Let ψ ∈ H2([0, T ]) be arbitrary. From the definition of Tκψ as in 3.17 and the inequality
‖x+ y + z‖2 ≤ 3(‖x‖2 + ‖y‖2 + ‖z‖2) for all x, y, z ∈ Rd, we have for all t ∈ [0, T ]

‖Tκψ(t)‖2ms ≤ 3‖κ‖2ms +
3

Γ(β)2
E

(∥∥∥∥∫ t

0

(t− s)β−1b(s, ψ(s))ds

∥∥∥∥2
)

+
3

Γ(β)2
E

(∥∥∥∥∫ t

0

(t− s)β−1−σ(s, ψ(s))dWs

∥∥∥∥2
)
.

(3.18)

By the Hölder inequality, we obtain

E

(∥∥∥∥∫ t

0

(t− s)β−1b(s, ψ(s))ds

∥∥∥∥2
)

≤
∫ t

0

(t− s)2β−2dsE
(∫ t

0

‖b(s, ψ(s))‖2ds
)

=
t2β−1

2β − 1
E
(∫ t

0

‖b(s, ψ(s))‖2ds
)
.

(3.19)

From (H1), we derive

‖b(s, ψ(s))‖2 ≤ 2(‖b(s, ψ(s))− b(s, 0)‖2 + ‖b(s, 0)‖2)

≤ 2L2‖ψ(s)‖2 + 2‖b(s, 0)‖2.

Therefore,

E
(∫ t

0

‖b(s, ψ(s))‖2ds
)

≤ 2L2E
(∫ t

0

‖ψ(s)‖2ds
)
+ 2

∫ t

0

‖b(s, 0)‖2ds.

≤ 2L2T sup
t∈[0,T ]

E(‖ψ(s)‖2) + 2

∫ T

0

‖b(s, 0)‖
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which together with 3.19 implies that

E

(∥∥∥∥∫ t

0

(t− s)β−1b(s, ψ(s))ds

∥∥∥∥2
)

≤ 2L2T 2β

2β − 1
‖ψ‖2H2 +

2T 2β−1

2β − 1

∫ T

0

‖b(s, 0)‖2ds. (3.20)

Now, using Itô’s isometry , we obtain

E

(∥∥∥∥∫ t

0

(t− s)β−1σ(s, ψ(s))dWs

∥∥∥∥2
)

=
∑
1≤i≤d

E
(∫ t

0

(t− s)β−1σi(s, ψ(s))dWs

)2

=
∑
1≤i≤d

E
(∫ t

0

(t− s)2β−2|σi(s, ψ(s))|2ds
)
.

= E
(∫ t

0

(t− s)2β−2‖σ(s, ψ(s))‖2ds
)
.

From (H1), we also have

‖σ(s, ψ(s))‖2 ≤ 2L2‖ψ(s)‖2 + 2‖σ(s, 0)‖2 ≤ 2L2‖ψ(s)‖2 + 2‖σ(·, 0)‖2∞.

Therefore, for all t ∈ [0, T ] we have

E

(∥∥∥∥∫ t

0

(t− s)β−1σ(s, ψ(s))dWs

∥∥∥∥2
)

≤ 2L2E
(∫ t

0

(t− s)2β−2‖ψ(s)‖2ds
)
+ 2‖σ(·, 0)‖2∞

∫ t

0

(t− s)2β−2ds

≤ 2L2 T
2β−1

2β − 1
‖ψ(s)‖2H2 +

2T 2β−1

2β − 1

∫ T

0

‖σ(·, 0)‖2∞.

This together with 3.18 and 3.20 implies that ‖Tκψ‖H2 <∞. Hence, the map Tκ is well-defined.
To prove existence and uniqueness of solutions, we will show that the operator Tκ defined as
above is contractive under a suitable temporally weighted norm for the same method to prove
the existence and uniqueness of solutions of stochastic differential equations). We are now in a
position to prove Theorem 3.2.1.
Proof of Theorem. 3.2.1. Let T > 0 be arbitrary. Choose and fix a positive constant γ such
that

γ >
3L2(T + 1)Γ(2β − 1)

Γ(β)2
. (3.21)

On the space H2([0, T ]), we define a weighted norm ‖ · ‖γ as below

‖X‖γ := sup
t∈[0,T ]

√
E(‖X(t)‖2)
E2β−1(γt2β−1)

for all X ∈ H2([0, T ]). (3.22)

Obviously, two norms ‖ · ‖H2 and ‖ · ‖γ are equivalent. Thus, (H2([0, T ]), ‖ · ‖γ) is also a Banach
space.

(i) Choose and fix κ ∈ X0. By virtue of Lemma 3.2.2, the operator Tκ is well-defined. We
will prove that the map Tκ is contractive with respect to the norm ‖ · ‖γ.

For this purpose, let ψ, ψ̂ ∈ H2([0, T ]) be arbitrary. From 3.17 and the inequality
‖x+y‖2 ≤ 2(‖x‖2+‖y‖2) for all x, y ∈ Rd, we derive the following inequalities for all t ∈ [0, T ] :

E
(
‖Tκψ(t)− Tκψ̂(t)‖2

)
≤ 2

Γ(β)2
E

(∥∥∥∥∫ t

0

(t− s)β−1(b(s, ψ(s))− b(s, ψ̂(s)))ds

∥∥∥∥2
)

+
2

Γ(β)2
E

(∥∥∥∥∫ t

0

(t− s)β−1(σ(s, ψ(s))− σ(s, ψ̂(s)))dWs

∥∥∥∥2
)
.
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Using the Hölder inequality and (H1), we obtain

E

(∥∥∥∥∫ t

0

(t− s)β−1(b(s, ψ(s))− b(s, ψ̂(s)))ds

∥∥∥∥2
)

≤ L2t

∫ t

0

(t− s)2β−2E(‖ψ(s)− ψ̂(s)‖2)ds.

On the other hand, by Itô’s isometry and (H1), we have

E

(∥∥∥∥∫ t

0

(t− s)β−1(σ(s, ψ(s))− σ(s, ψ̂(s)))dWs

∥∥∥∥2
)

= E
(∫ t

0

(t− s)2β−2‖σ(s, ψ(s))− σ(s, ψ̂(s))‖2ds
)

≤ L2

∫ t

0

(t− s)2β−2E(‖ψ(s)− ψ̂(s)‖2)ds.

Thus, for all t ∈ [0, T ] we have

E
(
‖Tκψ(t)− Tκψ̂(t)‖2

)
≤ 2L2(t+ 1)

Γ(β)2

∫ t

0

(t− s)2β−2E(‖ψ(s)− ψ̂(s)‖2)ds.

which together with the definition of ‖ · ‖γ as in (3.22) implies that

E
(
||Tκψ(t)− Tκψ̂(t)||2

)
E2β−1(γt2β−1)

≤ 2L2(t+ 1)

Γ(β)2

∫ t

0
(t− s)2β−2E2β−1(γs

2β−1) ds

E2β−1(γt2β−1)
‖ψ − ψ̂‖2γ.

In light of Lemma 3.2.2, we have for all t ∈ [0, T ]

E
(
||Tκψ(t)− Tκψ̂(t)||2

)
E2β−1(γt2β−1)

≤ 2Γ(2β − 1)L2(T + 1)

Γ(β)2γ2
‖ψ − ψ̂‖2γ.

Consequently,

‖Tκψ − Tκψ̂‖γ ≤ κ‖ψ − ψ̂‖γ, where κ :=

√
2Γ(2β − 1)L2(T + 1)

Γ(β)2γ2
.

By (3.21), we have κ < 1 and therefore the operator Tκ is a contractive map on H2([0, T ]), ‖·‖γ.
Using the Banach fixed point theorem, there exists a unique fixed point of this map inH2([0, T ]).
This fixed point is also the unique solution of (3.12) with the initial condition X(0) = κ. The
proof of this part is complete.

(ii) Choose and fix T > 0 and κ, ζ ∈ X0. Since φ(·, κ) and φ(·, ζ) are solutions of (3.12) it
follows that

φ(t, κ)− φ(t, ζ) = κ− ζ +
1

Γ(β)

∫ t

0

(t− s)β−1(b(s, φ(s, κ))− b(s, φ(s, ζ))) ds

+
1

Γ(β)

∫ t

0

(t− s)β−1(σ(s, φ(s, κ))− σ(s, φ(s, ζ))) dWs.

Hence, using the inequality ‖x+ y + z‖2 ≤ 3(‖x‖2 + ‖y‖2 + ‖z‖2) for all x, y, z ∈ Rd, (H1),
the Hölder inequality and Itô’s isometry (see Part (i)), we obtain

E
(
‖φ(t, κ)− φ(t, ζ)‖2

)
≤ 3L2(t+ 1)

Γ(β)2

∫ t

0

(t− s)2β−2E(‖φ(s, κ)− φ(s, ζ)‖2) ds

+ 3E(‖κ− ζ‖2).
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By definition of ‖ · ‖γ, we have

E
(
‖φ(t, κ)− φ(t, ζ)‖2

) E2β−1(γt
2β−1)

Γ(β)2γ2
≤ 3L2(t+ 1)

Γ(β)2

∫ t

0

(t− s)2β−2E2β−1(γs
2β−1) ds

× ‖φ(·, κ)− φ(·, ζ)‖2γ + 3E(‖κ− ζ‖2).

By virtue of Lemma 3.2.2, we have

‖φ(·, κ)− φ(·, ζ)‖2γ ≤ 3L2(T + 1)Γ(2β − 1)

γΓ(β)2
‖φ(·, κ)− φ(·, ζ)‖2γ + 3‖κ− ζ‖2ms.

Thus, by (3.21) we have

‖φ(·, κ)− φ(·, ζ)‖2γ ≤ 3L2(T + 1)Γ(2β − 1)

γΓ(β)2
‖φ(·, κ)− φ(·, ζ)‖2γ + 3‖κ− ζ‖2ms.

Hence,
lim
κ→ζ

sup
t∈[0,T ]

‖φ(t, κ)− φ(t, ζ)‖ms = 0.

The proof is complete.
We conclude this section with a discussion on the gap in the proof of global existence of solutions
for Caputo fractional stochastic differential equation in 3.14.

3.2.2 Exemple
Consider the following caputo fractional stochastic differential equation :

CD
4
5
0+X(t) =

(
2 1
3 4

)
X(t) +

[
sinX1

X2 + 3

]
+

[
cosX1

tanX2

]
dW (t)

dt
, t ∈ (0, 1],

X(0) =

[
4
5

]
,

(3.23)

is a Brownian motion with
— X(t) =

(
X1(t)
X2(t)

)
— W (t) is a Brownian motion

— A =

(
2 1
3 4

)
— b(t,X(t)) =

[
sinX1

X2 + 3

]
, σ(t,X(t)) =

[
cosX1

tanX2

]
. are measurable functions

Then,
by 3.6, the unique solution of 3.23 is :

X(t) =E 4
5
t
4
5Aη +

∫ t

0

(t− τ)−
1
5E 4

5
, 4
5

(
(t− τ)

4
5A
)
b(τ,X(τ))dτ

+

∫ t

0

(t− τ)−
1
5E 4

5
, 4
5

(
(t− τ)

4
5A
)
σ(τ,X(τ))dW (τ).

3.2.3 Exemple
Consider the following caputo fractional stochastic differential equation :

CD
3
2

0+X(t) =

(
1 −2
0 3

)
X(t) +

[
e−X1

X
1/3
2

]
+

[√
1 +X2

1

arctanX2

]
dW (t)

dt
, t ∈ (0, 1],

X(0) =

[
2
−1

]
,

(3.24)

where :
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— X(t) =

(
X1(t)
X2(t)

)
— W (t) is a standard Brownian motion

— B =

(
1 −2
0 3

)
— b(t,X(t)) =

[
e−X1

X
1/3
2

]
, σ(t,X(t)) =

[√
1 +X2

1

arctanX2

]
are measurable functions

Then,
by 3.6, the unique solution of 3.24s :

X(t) = E 3
2
,1(t

3
2B)η

+

∫ t

0

(t− τ)
1
2E 3

2
, 3
2

(
(t− τ)

3
2B
)
f(τ,X(τ))dτ

+

∫ t

0

(t− τ)
1
2E 3

2
, 3
2

(
(t− τ)

3
2B
)
g(τ,X(τ))dW (τ).

3.3 Analysis of stochastic neutral fractional functional
differential equations

3.3.1 Problem formulation
Let (Ω,F ,P) be a complete filtered probability space with a family {Ft, t ∈ [0, T ]} of

increasing sub- σ-algebras called filtration. The filtration is stated as right continuous if Ft =⋂
s>t Fs for all t ∈ [0, T ]. Let X and H be separable Hilbert spaces. Let L(X) be the space

of all bounded linear operators and W (t) be an H-valued Wiener process with a finite trace
nuclear covariance operator Q ≥ 0. Furthermore, consider the Hilbert space H0 = Q1/2H with
the inner product (X,Y )0 =

(
Q−1/2X,Q−1/2Y

)
for all X,Y ∈ H0, and the corresponding norm

is denoted by ‖ · ‖0. Let LQ be the space of all Hilbert-Schmidt operators from H0 to X. Also,
we denote the expectation with respect to probability P by E. Consider the stochastic neutral
fractional functional differential equation of the form{

CDα (x(t)− g (t, x(t))) = Ax(t) + f (t, x(t)) + σ (t, x(t)) dW (t)
dt

, t ∈ [0, T ],
x(0) = x0, t ∈ X (3.25)

where 1/2 < α ≤ 1. The solution x(t, ω), t ∈ [0, T ], ω ∈ Ω, represented as x(t) : Ω → X, takes
values in a real separable Hilbert space X. We represent x(t) : Ω → Cτ , t ∈ [0, T ] by defining
x(t) = {x(t + θ) : θ ∈ [0, T ]}, Further, the initial condition x0. denote the Borel measurable
functions which are continuous and satisfy the Lipschitz condition : for all x1, x2 ∈ X and
t ∈ [0, T ], there exist L1, L2 > 0 such that

‖f (t, x1)− f (t, x2)‖X ≤ L1 (‖x1 − x2‖X) (3.26)
‖σ (t, x1)− σ (t, x2)‖LQ

≤ L2 (‖x1 − x2‖X) (3.27)

Also, f and σ satisfy the linear growth condition : for all x ∈ Cτ and t ∈ [0, T ], there exist
positive constants L3, L4 > 0 such that

‖f(t, x)‖2X ≤ L3

(
1 + ‖x‖2X

)
(3.28)

‖σ(t, x)‖2LQ
≤ L4

(
1 + ‖x‖2X2

)
(3.29)

We impose some hypothesis on the continuous function g as follows : Assume there is a constant
γ > 0 such that, for all x ∈ Cτ and t ∈ [0, T ],

‖g(t, x)‖2X ≤ γ2
(
1 + ‖x‖2X

)
(3.30)
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Also, let the function g be a contraction, that is, there exists a constant η ∈ (0, 1) such that,
for all x1, x2 ∈ Cτ and t ∈ [0, T ],

‖g (t, x1)− g (t, x2)‖X ≤ η ‖x1 − x2‖X . (3.31)

We now present some well-known standard definitions in fractional calculus that are used
frequently in establishing our results. For α > 0, with n− 1 < α < n and n ∈ N, we state the
following well-known definitions.
For simplicity, the bounds of Mittag-Leffler functions with one and two parameters when acting
on the bounded linear operator A of 3.25 are represented as follows :

S1 = sup
t∈[0,T ]

‖Eα (At
α)‖L(X) , S2 = sup

t∈[0,T ]

‖Eα,α (At
α)‖L(X) (3.32)

Our next intention is to find a solution representation of 3.25 based on the approach followed
in [36]. In order to find the solution representation, we need the following hypothesis.
(H1) The operator A ∈ L(X) commutes with the fractional integral operator Iα on X and
‖A‖2L(X) <

(2α−1)(Γ(α))2

T 2α .

Lemma 3.3.1 [39]
Suppose that A is a linear bounded operator defined on X, and assume that ‖A‖L(X) < 1. Then
(I − A)−1 is linear bounded and

(I − A)−1 =
∞∑
k=0

Ak

The convergence of the above series is in the operator norm and ‖(I − A)−1‖L(X) ≤ (1−
‖A‖L(X)

)−1. We now validate the inequality ‖IαA‖L(X) < 1. Then, by the above lemma, we
could reach the conclusion : (I − IαA)−1 is bounded and linear. Let x ∈ X ; we have

E
[
‖(IαA) x‖2C([0,T ];L2(Ω,X))

]
≤ T

(Γ(α))2
E

[
sup

t∈[0,T ]

∫ t

0

(t− s)2α−2‖Ax(s)‖2X ds

]

≤ T 2α

(2α− 1)(Γ(α))2
E

[
sup

t∈[0,T ]

‖Ax(t)‖2X

]
< E‖x‖2C([0,T ];L2(Ω,X))

by (H1), and hence we get the required inequality. Operating by Iα on both sides of 3.25, we
have

x(t) = x(0) + g (t, x(t))− g (0, x0) + IαAx(t) + Iαf (t, x(t)) + Iασ (t, x(t))
dW (t)

dt

and so

x(t) = (I − IαA)−1

{
x0 + g (t, x(t))− g(0, x0) + Iαf (t, x(t)) + Iασ (t, x(t))

dW (t)

dt

}
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By means of lemma 3.3.1, we obtain

x(t) =
∞∑
k=0

(IαA)k
{
x0 + g (t, x(t))− g(0, x0) + Iαf (t, x(t)) + Iασ (t, x(t))

dW (t)

dt

}
=

∞∑
k=0

IkαAk[x0 − g(0, x0)] + g (t, x(t)) +
∞∑
k=0

Ikα+αAk

{
f (t, x(t)) + σ (t, x(t))

dW (t)

dt

}
=

∞∑
k=0

1

Γ(kα)

∫ t

0

(t− s)kα−1Ak[x0 − g(0, x0)]ds+ g (t, x(t))

+
∞∑
k=0

1

Γ(kα + α)

∫ t

0

(t− s)kα+α−1Akf (s, x(s)) ds

+
∞∑
k=0

1

Γ(kα + α)

∫ t

0

(t− s)kα+α−1Akσ (s, x(s)) dW (s),

x(t) =
∞∑
k=0

Aktkα

Γ(kα + 1)
[x0 − g(0, x0)] + g (t, x(t)) +

∫ t

0

(t− s)α−1

∞∑
k=0

Ak(t− s)kα

Γ(kα + α)
f (s, x(s)) ds

+

∫ t

0

(t− s)α−1

∞∑
k=0

Ak(t− s)kα

Γ(kα + α)
σ (s, x(s)) dW (s).

The solution representation is

x(t) =Eα (At
α) [x0 − g(0, x0)] + g (t, x(t)) +

∫ t

0

(t− s)α−1Eα,α (A(t− s)α) f (s, x(s)) ds

+

∫ t

0

(t− s)α−1Eα,α (A(t− s)α) σ (s, x(s)) dW (s).

Since
E
∫ t

0

∥∥(t− s)α−1Eα,α (A(t− s)α) σ (s, x(s))
∥∥2
LQ

ds <∞ (3.33)

we can say that the stochastic integral is well defined by (H1) and the Hilbert-Schmidt operator
(see, Prato and Zabczyk [15]).

Theorem 3.3.1 (Gronwall’s inequality [33])
Let T > 0 and c ≥ 0. Let u(·) be a Borel measurable bounded non negative function on [0, T ],
and let v(·) be a non negative integrable function on [0, T ]. If

u(t) ≤ c+

∫ t

0

v(s)u(s)ds for all 0 ≤ t ≤ T

then
u(t) ≤ c exp

(∫ t

0

v(s)ds

)
for all 0 ≤ t ≤ T.

Theorem 3.3.2
(Holder’s inequality) Assume Υ to be a domain in Rn. Also let 1 < p < ∞ and p′ denote the
conjugate exponent defined by

p′ =
p

p− 1
, that is, 1

p
+

1

p′
= 1

which also satisfies 1 < p′ <∞. If u ∈ Lp(Υ) and v ∈ Lp′(Υ), then uv ∈ L1(Υ) and∫
Υ

|u(x)v(x)|dx ≤
(∫

Υ

|u(x)|p dx

)1/p(∫
Υ

|v(x)|p′dx
)1/p′

The equality holds if and only if |u(x)|p and |v(x)|p′ are proportional a.e. in Υ.

53



Lemma 3.3.2 [33]
For any a, b ≥ 0 and 0 < γ < 1, we have

(a+ b)2 ≤ a2

γ
+

b2

1− γ
(3.34)

The following inequality is the generalization of Doob’s martingale inequality, which will be
useful in our proofs to bound the stochastic integrals.

Theorem 3.3.3 [33]
Let p ≥ 2. Let v ∈ Lp(Ω× [0, T ];R) such that

E
∫ T

0

|v(s)|p ds <∞

Then

E
(

sup
0≤t≤T

∣∣∣∣∫ t

0

v(s)dW (s)

∣∣∣∣p) ≤
(

p3

2(p− 1)

)p/2

T
p−2
2 E

∫ T

0

|v(s)|p ds. (3.35)

3.3.2 Existence and uniqueness of solutions
The next lemma points us in the direction of establishing the solution’s existence and

uniqueness.

Lemma 3.3.3
Let x(t) be the solution of 3.25 for which assumptions 3.28-3.30, 3.32 and (H1) hold. Then

E
[
sup

0≤t≤T
‖x(t)‖2X

]
≤ c1e

3T2αS2
2(L3+4L4)

(1−γ)(2α−1) (3.36)

Moreover, the solution x(t) belongs to C ([0, T ];L2(Ω,X)).

Proof
Let τm be the stopping time defined as

τm = T ∧ inf {t ∈ [0, T ] : ‖x(t)‖X ≥ m}

for any m ≥ 1. Fix xm = x (t ∧ τm) for t ∈ [0, T ]. Then, for 0 ≤ t ≤ T , we have

xm(t) =Eα (At
α) [x0 − g(0, x0)] + g (t, x(t)m)

+

∫ t

0

(t− s)α−1Eα,α (A(t− s)α) f (s, x(s)m) I[[0,τm]](s)ds

+

∫ t

0

(t− s)α−1Eα,α (A(t− s)α) σ (s, x(s)m) I [0,τm]](s)dW (s)

Applying Lemma 3.3.2, assumptions 3.28-3.30, 3.32 and Doob’s martingale inequality, one can
derive that

E
[
sup
0≤r≤t

‖xm(r)‖2X
]

≤γE
[
sup
0≤r≤t

(
1 + ‖xm(r)‖2X

)]
+

6S2
1 (1 + γ2)

1− γ
‖x0‖2X

+
3T 2α−1S2

2 (L3 + 4L4)

(1− γ)(2α− 1)
E
∫ T

0

sup
0≤r≤s

(
1 + ‖xm(r)‖2X

)
ds
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Finally, by means of Gronwall’s inequality,

E
[
sup

0≤t≤T
‖xm(t)‖2X

]
≤ c1e

4T2αS2
2(∥A∥2LX)

2
+L3+4L4

)
(1−γ)(2α−1)

Thus,

E
[

sup
0≤t≤τm

‖x(t)‖2X
]
≤ c1e

4T2αS2
2(∥A∥2LXγ2+L3+4L4)

(1−γ)(2α−1) (3.37)

Hence, the required inequality is obtained by letting m→ ∞.

Theorem 3.3.4
Let assumptions 3.26-3.31,3.32 and (H1) hold. Then there exists a unique solution x(t) ∈
C ([0, T ], L2(Ω,X)) to system 3.25.

Proof Uniqueness :
Let x(t) and x̄(t) be the solutions of 3.25 with the initial data x(t) = x0(t) and x̄(t) = x0(t) for
t ∈ [0, T ]. Both the solutions belong to the solution space C ([0, T ], L2(Ω,X)) by Lemma 3.3.3
. Note that the difference in the solutions is

x(t)− x̄(t) = g (t, x(t))− g (t, x̄t) + J (t)

where

J (t) =

∫ t

0

(t− s)α−1Eα,α (A(t− s)α) (f (s, x(s))− f (s, x̄s)) ds

+

∫ t

0

(t− s)α−1Eα,α (A(t− s)α) (σ (s, x(s))− σ (s, x̄s)) dW (s)

Applying Lemmas 3.3.2 and 3.31, we get

‖x(t)− x̄(t)‖2X ≤ η ‖x(t)− x̄t‖2X +
1

1− η
‖J (t)‖2X

Therefore,

E
[
sup
0≤u≤t

‖x(u)− x̄(u)‖2X
]
≤ 1

(1− η)2
E
[
sup
0≤u≤t

‖J (u)‖2X
]

(3.38)

And one can easily derive that

E
[
sup
0≤u≤t

‖J (u)‖2X
]
≤ 2

T 2α−1

2α− 1
S2
2

(
L2
1 + 4L2

2

) ∫ t

0

E
[
sup

0≤u≤s
‖x(s)− x̄(s)‖2X

]
ds

Consequently, we have

E
[
sup
0≤u≤t

‖x(u)− x̄(u)‖2X
]

≤ 3T 2α−1S2
2 (L

2
1 + 4L2

2)

2α− 1

∫ t

0

E
[
sup

0≤u≤s
‖x(u)− x̄(u)‖2X

]
ds

Gronwall’s inequality implies

E
[
sup
0≤u≤t

‖x(u)− x̄(u)‖2X
]
= 0 (3.39)

Therefore, the solutions x(t) and x̄(t) are equal for 0 ≤ t ≤ T , hence for all 0 ≤ t ≤ T , almost
surely.
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Existence : Let us split the existence of the solution into the following two steps.
Step 1 : We consider T is sufficiently small so that it satisfies

ρ := γ +
3T 2αS2

2

(
‖A‖2L(Xγ2 + L2

1 + 4L2
2

)
(1− γ)(2α− 1)

< 1. (3.40)

Set x00 = x0 and x0 = x0 for 0 ≤ t ≤ T . In addition, let xn0 = x0 for each n = 1, 2, 3, . . ., and
define the Picard iterations as follows :

xn(t) =Eα (At
α) [x0 − g(0, x0)] + g

(
t, x(t)n−1

)
+

∫ t

0

(t− s)α−1Eα,α (A(t− s)α) f
(
s, x(s)n−1

)
ds

+

∫ t

0

(t− s)α−1Eα,α (A(t− s)α) σ
(
s, x(s)n−1

)
dW (s) (3.41)

It is self-evident that x0(t) is Ft-measurable and belongs to C ([0, T ];L2(Ω,X)). Then, by
induction, it is easy to say xn(t) ∈ C ([0, T ];L2(Ω,X)). Consequently, we have

sup
0≤t≤T

E
{∥∥x0(t)∥∥2X} <∞

Applying Lemma 3.3.2, linear growth conditions 3.28 3.29, 3.32, and Doob’s martingale inequa-
lity on 3.41, one can derive that

E
[
sup

0≤t≤T
‖xn(t)‖2X

]
≤ γE

[
sup

0≤t≤T

(
1 +

∥∥x(t)n−1
∥∥2
X

)]
+

3S2
1

(1− γ)
‖x0 − g(0, x0)‖2X

+ 3
T 2α−1

(1− γ)(2α− 1)
S2
2L3E

∫ T

0

sup
0≤s≤T

(
1 +

∥∥x(s)n−1
∥∥2
X

)
ds

+ 12
T 2α−1

(1− γ)(2α− 1)
S2
2L4E

∫ T

0

sup
0≤s≤T

(
1 +

∥∥x(s)n−1
∥∥2
X

)
ds

≤ γE
[
sup

0≤t≤T

(
1 +

∥∥xn−1(t)
∥∥2
X

)]
+

6S2
1 (1 + γ2)

1− γ
‖x0‖2X

+
3T 2α−1S2

2 (L3 + 4L4)

(1− γ)(2α− 1)
E
∫ T

0

sup
0≤s≤T

(
1 +

∥∥xn−1(s)
∥∥2
X

)
ds.

Note that, for 0 ≤ t ≤ T ,

E
[
sup

0≤t≤T

∥∥x1(t)− x0(t)
∥∥2
X

]
≤ 2γE‖x0‖2X +

2T 2α−1S2
2 (L

2
1 + 4L2

2)

(1− γ)(2α− 1)
E
∫ T

0

(
1 +

∥∥x0(s)∥∥2X) ds
≤ 2γE‖x0‖2X +

2T 2α−1S2
2 (L

2
1 + 4L2

2)

(1− γ)(2α− 1)

(
1 + E‖x0‖2X

)
T

:= K (3.42)

for n ≥ 1. Next, we claim that

E
[
sup

0≤t≤T

∥∥xn+1(t)− xn(t)
∥∥2
X

]
≤ Kρn (3.43)
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For any n ≥ 1,
xn+1(t)− xn(t) =g (t, x(t)n)− g

(
t, x(t)n−1

)
+

∫ t

0

(t− s)α−1Eα,α (A(t− s)α)
[
f (s, x(s)n)− f

(
s, x(s)n−1

)]
ds

+

∫ t

0

(t− s)α−1Eα,α (A(t− s)α)
[
σ (s, x(s)n)− σ

(
s, x(s)n−1

)]
dW (s).

Simplifying in the same way as above, we get

E
[
sup

0≤t≤T

∥∥xn+1(t)− xn(t)
∥∥2
X

]

≤ γE
[
sup

0≤t≤T

∥∥xn(t)− xn−1(t)
∥∥2
X

]
+

3T 2α−1S2
2 (L

2
1 + 4L2

2)

(1− γ)(2α− 1)

∫ T

0

E
[
sup

0≤s≤T

∥∥xn(s)− xn−1(s)
∥∥2
X

]
≤ ρE

[
sup

0≤t≤T

∥∥xn(t)− xn−1(t)
∥∥2
X

]
≤ ρnE

[
sup

0≤t≤T

∥∥x1(t)− x0(t)
∥∥2
X

]
≤ Kρn. (3.44)

In view of 3.44, we say that 3.43 holds for some n ≥ 0. Thereupon, by means of Chebyshev’s
inequality,

P
[
sup

0≤t≤T

∥∥xn+1(t)− xn(t)
∥∥2
X >

1

2n

]
≤ 1

(1/2n)2
E
[
sup

0≤t≤T

∥∥xn+1(t)− xn(t)
∥∥2
X

]
Thus, by applying 3.44 and summing up the resultant inequalities, we get

∞∑
n=0

P
[
sup

0≤t≤T

∥∥xn+1(t)− xn(t)
∥∥2
X >

1

2n

]
≤

∞∑
n=0

K(4ρ)n

Since the sum of series
∑∞

n=0K(4ρ)n is finite, using the Borel-Cantelli lemma we can conclude
that sup0≤t≤T ‖xn+1(t)− xn(t)‖2X converges to zero, almost surely. Thus, the Picard iterations
xn(t) converge almost surely to a limit x(t) on t ∈ [0, T ] defined by

lim
n→∞

[
x0(t) +

n−1∑
i=0

(
xi+1(t)− xi(t)

)]
= lim

n→∞
xn(t) = x(t)

From 3.41, we have

x(t) =Eα (At
α) [x0 − g(0, x0)] + g (t, x(t)) +

∫ t

0

(t− s)α−1Eα,α (A(t− s)α) f (s, x(s)) ds

+

∫ t

0

(t− s)α−1Eα,α (A(t− s)α) σ (s, x(s)) dW (s) (3.45)

Step 2 : We now eliminate condition 3.40. Take δ > 0 to be sufficiently small for

γ +
2δ2αS2

2 (L
2
1 + 4L2

2)

(1− γ)(2α− 1)
< 1 (3.46)

In consequence, there exists a solution on [0, δ] to system 3.25 by performing step 1 . Let us
now consider system 3.25 on [δ, 2δ] with the initial condition xδ. Again by step 1 , there exists a
solution on [δ, 2δ]. Subsequently, we repeat step 1 until the existence of solution on the interval
[pδ, T ] occurs. Hence, we conclude that there exists a solution on the entire interval [0, T ] as
desired.
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3.3.3 Example
The following examples illustrate the for stochastic neutral fractional differential equation

Example 3.3.1
Consider the following equation :{

CD3/5(x(t)− µx(t)) = − 1
1+t
x(t) + 1

1+t
dW (t)
dt

, t ∈ (0, T ],

x(0) = x0, t ∈ [0, T ]
(3.47)

where W (t) is a one-dimensional Brownian motion. Let us take the control to be v ∈ L2([0, T ];R),
and so the corresponding controlled equation is{

CD3/5(zv − µzv) = − 1
1+t
zv(t) + 1

1+t
v(t), t ∈ (0, T ],

zv(0) = x0, t ∈ [0, T ].
(3.48)

where
zv(t) = x0 +

1

Γ(3/5)

∫ t

0

(t− s)2/5

(1 + s)
zv(s)ds+

1

Γ(3/5)

∫ t

0

(t− s)2/5

(1 + s)
v(s)ds

is the unique solution of 3.48.

Example 3.3.2
Consider the stochastic neutral fractional differential equation with multiplicative noise{

CD2/3(x(t)− λx(t)) = − 1
1+t
x(t) + (3 + sin x(t))dW (t)

dt
, t ∈ (0, T ],

x(0) = x0, t ∈ [0, T ].
(3.49)

where infimum over an empty set is taken as ∞ and where zν(t), the solution of the equation

zν(t) = x0 +
1

Γ(2/3)

∫ t

0

(t− s)1/3
1

1 + s
zν(s)ds+

1

Γ(2/3)

∫ t

0

(t− s)1/3 (3 + sin zν(s)) v(s)ds,

is the unique solution of an appropriate controlled system of 3.49.
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CONCLUSION

In this paper, we studied some fractional differential equations of the caputo type. we
then extended them by adding a stochastic term, transforming them into fractional stochastic
differential equations of the caputo type. We proved the existence and uniqueness of solutions
using different methods. additionally, we examined the solutions of neutral fractional stochastic
functional differential equations and established the existence of a unique solution under specific
conditions.
As future prospects, these equations can be further developed and explored using numerical
methods.
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