Algérienne Démocratique et Populaire Ministère de l'Enseignement supérieur et de la Recherche scientifique

Université de Ghardaïa

N° d'ordre : N° de série :

Faculté des sciences et technologies Mémoire présenté en vue de l'obtention du diplôme de

MASTER

Domaine: Sciences et technologies

Filière: Hydraulique

Spécialité: Hydraulique urbaine

Par: MOHAMMED ABD ENNAFAA LEBCIR

Thème

Simulation du réseau de distribution d'eau potable (AEP) à l'aide d'EPANET Cas de la ville nouvelle de Meniaa

Soutenu publiquement le .../05/2025

Devant le jury :

MR.OULEDNAOUI NOUREDDINE	MCA	Univ. Ghardaïa	Président
MR.MECHRI BACHIR	MAA	Univ. Ghardaïa	Examinateur
MR. LACHEHEB Senna	MCB	Univ. Ghardaïa	Encadreur
MR .SELMANE Taher	MCB	Univ. Ghardaïa	Co-Encadreur

Année universitaire 2024/2025

Remerciement

Nous souhaitons exprimer notre profonde gratitude et nos sincères remerciements à :

ALLAH, le Tout-Puissant, pour m'avoir accordé la santé, le courage, la volonté d'étudier et la force nécessaire à l'accomplissement de ce travail.

Notre encadrant: M. Lacheheb Sena

Tous nos enseignants du Département d'Hydraulique, en particulier : M. CHEBIHI, M. OULEDBELKHIR, M. BOULMAIZ, M. BOUTELI, et M.SELMAN,

Mme HAFSI

Je remercie les membres du comité de discussion MR.OULED NAOUI NOUREDDINE ET MR.MECHRI BACHIR Je remercie toute l'équipe de Secteur Technique de l'Établissement de la Nouvelle Ville qui ne m'a rien refusé.

Un merci tout particulier à mon cher frère Zergat Moussa chef de service à la Direction des Ressources Hydrauliques, qui était toujours disponible.

Enfin, nous remercions toutes les personnes qui m'ont enseigné et soutenu tout au long de mon parcours académique.

Dédicace

Se dédie ce modeste travail à...

A mon exemple éternel, mon soutien moral et source de joie et de bonheur,

Celui qui s'est toujours sacrifié pour me voir réussir, à toi mon père.

A la lumière de mes jours, la source de mes efforts, ma raison d'être, le symbole de tendresse ma vie et mon bonheur, maman que j'adore.

A mes chers frères

A tout ma famille et mes amies

A mes chers collèques

En témoignage de l'amitié qui m'a uni et des souvenirs, de tous les moments passés ensemble, je vous dédié ce travail et je vous souhaite une vie pleine de bonheur.

Je vous aime tous

NAFAA LEBCIR

Résumé:

Ce travail vise la conception d'un réseau de distribution d'eau potable pour la nouvelle ville de la wilaya d'El Menia, située dans une région saharienne marquée par l'aridité, des ressources hydriques limitées et une topographie particulière. L'étude commence par une analyse détaillée des caractéristiques géographiques, climatiques, géologiques et démographiques de la zone, ainsi qu'une estimation des besoins actuels et futurs en eau, basée sur des normes techniques nationales et internationales.

Les logiciels **AutoCAD** et **EPANET** ont été utilisés respectivement pour le Extraction du plan général du réseau et pour la simulation hydraulique. La simulation a permis de vérifier la performance du réseau en termes de pression, de vitesse et de pertes de charge, en tenant compte des variations journalières et horaires de la consommation.

La capacité des réservoirs, le nombre de forages nécessaires et le dimensionnement des conduites ont été calculés en s'appuyant sur des méthodes analytiques comme la méthode de Hardy Cross. Les résultats obtenus confirment que le système proposé est capable de satisfaire les besoins actuels et prévus de la population, avec une marge d'expansion pour les phases futures.

Ce mémoire constitue ainsi un modèle de planification efficace des réseaux d'eau potable en milieu aride, intégrant des outils numériques et des approches scientifiques rigoureuses. **Keywords**:

Réseau d'alimentation d'eau potable. Ville nouvelle de Meniaa. Hydraulique urbaine. Calcul des besoins . Simulation hydraulique

Abstract:

This study focuses on the design of a potable water distribution network for the new city of El Menia, located in a Saharan region characterized by arid climate, limited water resources, and distinct topographical features. The research begins with a comprehensive analysis of the area's geographical, climatic, geological, and demographic conditions, followed by an estimation of current and future water demands based on both national and international technical standards.

The design process employed **AutoCAD** for general layout extraction and **EPANET** for hydraulic simulation. The EPANET simulation validated the system's performance in terms of pressure, velocity, and head loss under varying daily and hourly consumption patterns.

Storage capacity, the required number of wells, and pipeline dimensions were calculated using analytical approaches such as the **Hardy Cross method**. The results demonstrate that the proposed network can effectively meet the city's projected water needs, with flexibility for future expansion phases.

This thesis serves as a practical model for designing efficient water supply systems in arid environments by leveraging digital tools and advanced hydraulic engineering techniques.

Keywords:

Drinking water supply network .New city of Meniaa. Urban hydraulics .Calculation of needs . Hydraulic simulation

ملخص:

تهدف هذه الدراسة إلى تصميم شبكة توزيع مياه صالحة للشرب للمدينة الجديدة بولاية المنيعة، الواقعة في منطقة صحراوية تتميز هذه المنطقة بندرة الموارد المائية وخصوصية في التضاريس والمناخ. انطلقت الدراسة بتحديد الخصائص الجغرافية، المناخية، الجيولوجية والديمو غرافية للمنطقة، وتم تقدير حاجيات السكان الحاليين والمستقبليين من المياه، باعتماد معايير وطنية وولية.

تم استخدام البرامج الهندسية AutoCADلاستخراج المخطط العام، و EPANETلمحاكاة سلوك شبكة التوزيع، بما في ذلك حسابات الضغط، السرعة، والخسائر. أظهرت المحاكاة فعالية التصميم في تلبية الحاجيات اليومية القصوى، مع ضمان الضغط الكافي في النقاط العالية من الشبكة. كما تم دراسة تأثير التغيرات اليومية واللحظية في الاستهلاك.

تم حساب سعة الخزانات وعدد الآبار المطلوبة لتحقيق توازن بين الإنتاج والاستهلاك، وتحديد قطر الأنابيب وفقًا لمعادلات هيدروليكية دقيقة .(Hardy Cross) توصلت الدراسة إلى أن النظام المقترح قادر على تلبية حاجيات المدينة الجديدة الحالية والمستقبلية، مع إمكانية التوسعة لمراحل لاحقة.

توفر هذه المذكرة نموذجًا عمليًا لتخطيط الشبكات في المناطق الجافة، معتمدًا على أدوات رقمية دقيقة وأساليب تحليل هندسية متقدمة.

الكلمات المفتاحية:

شبكة االتزويد بالمياه الصالحة للشرب. مدينة المنيعة الجديدة. الري الحضري. حساب الاحتياجات المحاكاة الهيدروليكية

Sommaire

1.1Introduction:	5
1.11IIIOquetion.	J

	1.2	Situation géographies de la zone :	5
	1.3	Caractéristiques de la zone d'étude :	6
	1.3.1	Relief :	6
	1.3.2	2 Sources d'eau:	7
	1.3.3	Agriculture :	7
	1.3.4	Situation climatique :	7
	1.3.5	Températures :	9
	1.3.6	Pluviométrie:	10
	1.4	Géologie :	11
	1.5	Estimation de la population future :	11
	1.6	Estimation des besoins en eau potable :	13
	1.6.1	Les besoins domestiques:	15
	1.6.2	2 Les besoins scolaires :	16
	1.6.3	Besoins hospitaliers:	17
	1.6.4	Besoins administratifs:	17
	1.6.5	Estimation des besoins domestique et non domestique en eau potable :	18
	1.7	Etude des variations des débits :	19
	1.7.1	Variation de la consommation maximale journalière :	20
	1.7.2	Coefficient d'irrégularité horaire	20
	1.7.3	Variation de la consummation horaire	21
	1.7.4	Variation de la consommation débit de point Qp :	22
	1.8	OUVRAGE DE STOCKAGE	23
	1.8.1	RÔLE DU RÉSERVOIR	23
	1.8.2	Adductions :	24
	1.8.3	Stocker de l'eau	23
	1.8.4	Château d'eau et ses équipements	25
	1.8.5	Capacité de stockage de réservoir :	27
	1.8.6	HAUTEUR DU CHÂTEAU D'EAU	27
	1.9	Conclusion	30
2	Chap	itre II : Généralités Sur les Réseaux de Distribution d'Eau Potable	31
	2.1	Introduction :	31
	2.2	Cycle du transport d'eau potable	31
	2.2.1	Captage des eaux :	
	2.2.2	Station de traitement :	
	2.2.3	Adduction :	
	2.2.4	Pompage :	36
	2.2.5	Réservoir de stockage :	36
	2.2.6	Réseau de distribution :	36
	23	Structure d'un réseau d'AFP ·	37

2.4	Classification du réseau d'AEP :	41
2.4.1	1 Réseau ramifié:	41
2.4.2	2 Les réseaux maillés:	42
2.5	Paramètres de fonctionnement d'un réseau d'AEP :	44
2.5.1		
2.5.2	2 Limite de vitesse :	44
2.5.3	Pressions :	44
2.6	Calcul hydraulique :	45
2.6.1	Calcul du diamètre :	45
2.6.2	2 Calcul des pertes de charge totales :	45
2.7	Principe de calcul d'un réseau maillé :	48
2.7.1	La méthode de Hardy Cross :	48
2.7.2	2 Correction des débits :	49
2.8	Dimensionnement des réseaux de Distribution :	50
2.8.1	Calcul des débits :	50
2.9	Conclusion :	59
3 Chap	pitre III :Présentation Des Logiciels Utilisés	60
3.1	Les étapes d'utilisation d'AutoCAD :	
3.2	Présentation du logiciel Epanet :	
3.2.1		
3.2.2		
3.2.3	3 L'EPANET calcule	69
3.3	Conversion d'un fichier AutoCAD vers un fichier EPANET :	70
3.3.1	Les étapes d'utilisation :	70
3.4	Saisissant les informations	75
3.5	Principes hydrauliques régissant les calculs du logiciel :	76
3.5.1	Les lois de base du calcul :	76
3.5.2	2 Spécificités du logiciel :	78
3.6	Les étapes de l'utilisation d'Epanet :	79
3.6.1	·	
3.6.2	·	
4 Chap	pitre IV : Présentation de Résultats des logiciels Utilisés	85
4.1	Introduction:	
4.2	Affichago do la zono d'étudo par l'Auto CAD .	or.
	Affichage de la zone d'étude par l'Auto CAD :	
4.3	Affichage de Réseau AEP sur Epanet :	
4.3.1	Free Property of the Control of the	
4.3.2		
4.3.3		
4.4	Analyse synthétique :	96
4.5	Conclusion:	96

Liste des figures et tableaux

Liste des figures

Figure I.1 : Situation Géographique	5
Figure I.2: Image satellitaire de la zone d'étude [google earth]	6
Figure I.3 : Station météorologique d'El-Goléa (2008-2017) Error! Bookmark	not defined.
Figure I.4: présentation graphique de température (C°) par le temps	9
Figure I.5: précipitations annuelles (2008-2017)	10
Figure I.6 : Carte géologique local d'El-Goléa.	11
Figure I.7 : Equipements d'adduction d'un réservoir	24
Figure I.8 : le plan de complexe hydraulique	24
Figure II.1 : Schémas d'alimentation d'eau potable	32
Figure II.2 : Prise au milieu d'une rivière .	33
Figure II.3 : Prise dans le fond du lit d'une rivière .	33
Figure II.4: Prise sur berge.	33
Figure II.5: Captage direct de l'eau à partir d'une source .	34
Figure II.6 : Captage direct de l'eau par un forage	35
Figure II.7: Composants Physiques d'un Système de Distribution d'Eau.	38
Figure II.8: Emplacement d'un Poteau d'incendie	39
Figure II.9 : représentation d'un regard de ventouse	40
Figure II.10: Bouche à clé d'eau	41
Figure II.11: Réseau ramifié	42
Figure II.12: Réseau maillé.	42
Figure II .13: Réseau Etagés	44
Figure II.14 : Principe de calcul d'un réseau maillé	49
Figure III.1. la définition des espaces	62
Figure III.2. Le paramétrage de la grille	62
Figure III.3. Le paramétrage de calque	63
Figure III.4. Le paramétrage de orbite libre	64
Figure III.5. création d'un nouveau calque	65
Figure III.6. fenêtre de Propriétés.	65
Figure III.7. menu	66
Figure III.8. les palettes d'outils	67
Figure III.9. interface de l'Epanet	70

Figure III.9. interface d'AutoCAD	71
Figure III.10. Export to PDF	71
Figure III.11. L'enregistrement de fichier	72
Figure III.12. Troisième étape réglage de format du fichier	72
Figure III.13. La format du fichier	73
Figure III.14. Ajouté une backdrop	73
Figure III.15. Ouverture du fichier par EPANET	74
Figure III.16. configurer les paramètres par défaut.	74
Figure III.17. présentation de la barre d'outils	75
Figure III.18. exemple de paramètre de fonctionnement particulier	75
Figure III.19. Schéma illustratif de la loi des mailles dans un réseau d'eau potable	77
Figure III.20. diagramme de MOODY	81
Figure III.21. définie les unités des calculs de logiciel	83
Figure IV.1 : représentation du la zone d'étude avec Auto CAD	85
Figure IV.2 : représentation du réseau avant la simulation	86
Figure IV.3 : représentation du réseau après la simulation	87
Figure IV.4 : représentation que la simulation est succès	87
Figure IV.5 : présentation d'altitude des nœuds et le sens d'écoulement	87
Figure IV.6 : l'état de réseau après simulation (cas de pression)	88
Figure IV.7 : l'état de réseau après simulation (cas de vitesse)	88
Figure IV.8 : l'état de réseau après simulation (Friction Factor)	89
Figure IV.9 : courbe de répartition des pourcentages des pressions dans les nœuds	95
Figure IV.9 : courbe de répartition des pourcentages des vitesses	95
Figure IV.8 : courbe de répartition des pourcentages des Pertes de charge	96

Liste des tableaux:

Tableau I.1 la pluviométrie de la zone d'étude	8
Tableau I.2 la variation de température	9
Tableau I.3 : Station météorologique d'El-Goléa (2008-2017)	10
Tableau I.4 : nombre de logements de la nouvelle ville meniaa	12
Tableau I.5 : consommation des eaux de chaque Catégorie	15
Tableau 1.6 Besoins domestiques	16
Tableau 1.7 : besoins scolaire	16
Tableau 1.8: besoins hospitalier	17
Tableau 1.9: besoins administratifs	17
Tableau 1.9 : besoins des autre Equipment	18
Tableau I.10 : besoins total	19
Tableau I.11. Coefficient de point journal	20
Tableau I.12 : Les valeurs de β en fonction de la population	21
Tableau I.13 : Récapitulatif des différents besoins	23
Figure I.9 : les compositions d'un château	26
Tableau I.14 : les débit des forages	28
Tableau I.14: les données de complexe hydraulique	28
Tableau I.15: comparaison entre production et consommation	29
Tableau I.16: Hauteur du château	27
Tableau I.2 : qualités et faiblisses des réseaux maillés et ramifiés	43
Tableau I.3 : pression demandée de réseau AEP	45
Tableau I.4 : Coefficient d'écoulement de Hazen-Williams	46
Tableau II.5: facteur de frottement pour les tuyaux	47
Tableau II.6 Les débits de routes	51
Tableau II.6 : calcul le débit en route du réseau	54
Tableau II.7 : calcul le débit nœuds sur de réseau	59
Tableau IV.1 : Résultat d'Epanet (cas vitesse et perte de charge)	90
Tableau IV.2.: Résultat d'Epanet (cas de pression)	93

Liste des abréviations:

AEP Alimentation en Eau Potable

EPANET Environmental Protection Agency Network Simulation Tool

AutoCAD Automated Computer Aided Design

SHON Surface Hors Œuvre Nette

SAT Superficie Agricole Totale

ONS Office National des Statistiques

NVM Nouvelle Ville de Meniaa

EH Ensemble Hydraulique

Introduction Générale

Introduction générale

L'eau potable constitue l'une des ressources stratégiques les plus vitales pour la survie humaine et la stabilité des sociétés, en particulier dans les régions sahariennes confrontées à la rareté des ressources hydriques et à l'irrégularité des précipitations. Dans ce contexte, l'État algérien accorde une attention croissante au développement des infrastructures dans les wilayas du Sud, à travers de grands projets visant à renforcer l'équilibre régional et à assurer un développement durable.

La wilaya d'El Menia, récemment érigée en wilaya à part entière, a bénéficié d'un projet d'aménagement urbain de grande envergure, consistant en la création d'une nouvelle ville au nord de l'agglomération actuelle, comprenant des milliers de logements ainsi que des infrastructures sociales, administratives et sportives. Ce projet impose la mise en place d'un système d'alimentation en eau potable intégré, capable de satisfaire les besoins présents et futurs dans un environnement naturel difficile, marqué par une forte dépendance aux eaux souterraines et une baisse sensible de leur niveau, due à une surexploitation croissante et un faible taux de renouvellement naturel.

Par ailleurs, la wilaya d'El Menia se distingue par une vocation agricole marquée, reposant notamment sur la culture fourragère, qui constitue un poste de consommation d'eau important, accentuant ainsi la pression sur les ressources disponibles et appelant à une gestion plus rationnelle et planifiée.

Cette étude vise à concevoir un réseau de distribution d'eau potable conforme aux normes techniques et hydrauliques modernes, en tenant compte des spécificités locales en termes de climat, de topographie et de dynamique démographique. Pour ce faire, des outils numériques spécialisés ont été mobilisés, tels qu'AutoCAD pour l'élaboration des plans et EPANET pour la simulation hydraulique du réseau, permettant d'évaluer la performance du système en matière de pression, de vitesse et de pertes de charge.

Le présent mémoire comprend une analyse détaillée des caractéristiques géographiques, hydrologiques et démographiques de la zone d'étude, ainsi qu'une estimation rigoureuse des besoins en eau, tous usages confondus. Il propose également des solutions de stockage et de pompage flexibles, assurant la continuité et la qualité du service.

Ce travail constitue ainsi une contribution scientifique et technique au service des efforts nationaux visant à accompagner les grands projets de développement dans le sud

|--|

algérien, à travers la mise en œuvre de réseaux d'eau potable durables, performants et adaptés aux enjeux actuels et futurs.

Chapitre I : Présentation de la Zone D'étude et Estimation des Besoins

1.1 Introduction:

Les facteurs géographiques, climatiques et géologiques jouent un rôle essentiel dans la détermination de l'efficacité et de la durabilité des réseaux d'approvisionnement en eau potable. La nature de la région en termes de topographie, de climat et de ressources en eau affecte la conception du réseau, sa capacité à répondre à la demande et son efficacité opérationnelle, en analysant les facteurs naturels, sociaux et économiques qui peuvent affecter la performance du réseau. Ce chapitre fournit une description détaillée de la zone, y compris sa situation géographique, son climat, son sol, ses ressources en eau et son état de population. Il aborde également les sources d'eau disponibles et les méthodes de leur stockage, fournissant un cadre scientifique pour une analyse ultérieure des performances du réseau à l'aide d'EPANET.

1.2 Situation géographies de la zone :

La wilaya d'El-Menia (El-Goléa) est le point le plus central de l'Algérie à 900 km au sud de la capitale Alger. Situé à une latitude de30°35'Nord et une longitude de 02°52'Est, son altitude moyenne atteint 396m. Sa superficie est de 62 215 km2. (Figure 1)

El-Menia est créé le 26 novembre 2019 et officialisée en 2021, auparavant, une wilaya déléguée créée selon la loi no 15-140 du 27 mai 2015, elle était rattachée à la wilaya de Ghardaïa. La wilaya est constituée de trois communes : (d'après le journal officiel) (01)

El Menia

Hassi Fehal

Hassi Gara

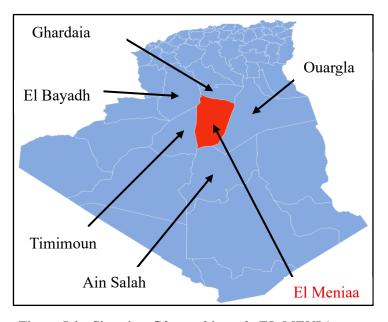


Figure I.1 : Situation Géographique de EL-MENIA

La willaya de El-Menia est délimitée :

Au nord par la wilaya de Ghardaïa (270km).

À l'est par la wilaya d'Ouargla (410km).

À l'ouest par la wilaya d'El Bayadh(630km) et celle de Timimoun(360km).

Et au sud par la wilaya d'In Salah(401km).

Figure I.2: Image satellitaire de la zone d'étude [google earth]

En ce qui concerne la zone désignée pour le projet bien étudié de nouvelle ville d'El Menia, elle est située à l'entrée nord de la ville, à côté de la zone industrielle et derrière la prison d'El Menia, sur une grande zone surélevée au-dessus de la ville d'El Menia d'environ 25 mètres en moyenne, et elle a une surface relativement plate

Localisation du projet par rapport à la ville

Comme le montre l'image : le site du projet est à l'intérieur du cercle. En rouge, une pente de 40 à 75 mètres de hauteur.

1.3 Caractéristiques de la zone d'étude :

1.3.1 *Relief*:

La topographie de la région de El-Menia est relativement plaine dans ses endroits et correspond à un plan incliné vers le sud Est.

On observe une variation négligeable de la cote terraine naturel dans la partie Est et Sud La cité de «**NVM**» pose un relief relativement plat avec une altitude minimale de 452 mètres et une altitude maximale de 461 mètres au-dessus du niveau de la mer. **(02)**

1.3.2 Sources d'eau:

La région de **El Menia** dépend principalement des **eaux souterraines** comme source essentielle pour couvrir les besoins de la population et des activités économiques, en raison de sa localisation dans une zone aride saharienne, caractérisée par une faible pluviométrie et l'absence de ressources superficielles permanentes.

Les principales sources d'eau dans la région sont les suivantes :

Eaux souterraines: C'est la ressource principale, exploitée à travers des puits
profonds qui captent des nappes comme celle de l'Albien ou les formations du Tassili.
Ces eaux sont utilisées pour l'alimentation en eau potable, l'irrigation et les usages
domestiques.

Sebkhas et lacs saisonniers: Notamment la Sebkha d'El Menia et le lac El Rabrein, qui sont des dépressions naturelles où l'eau s'accumule temporairement pendant les rares épisodes pluvieux. Bien qu'elles ne soient pas exploitées directement pour la

- Consommation humaine, elles contribuent parfois à la recharge des nappes superficielles.
- Oued intermittents (cours d'eau temporaires) : Comme l'Oued El Menia ou l'Oued Zelmat, qui présentent un écoulement occasionnel et limité lors des rares pluies, et peuvent être exploités pour la recharge artificielle ou comme ressource complémentaire.
- **Puits traditionnels** : Encore utilisés dans certaines zones agricoles pour des besoins limités, bien qu'ils souffrent souvent d'un manque de profondeur ou de l'épuisement de la ressource.

1.3.3 Agriculture:

La wilaya d'El-Menia (El-Goléa), ville oasis à vocation agricole, dispose d'un périmètre agricole important caractérisée la région par un cachet traditionnel à vocation essentiellement agricole. Si dans l'ensemble des communes : Menia, Hassi El-Gara, et Hassi el fehal la superficie agricole totale (S.A.T) s'étend sur 649299 hectares. **(03)**

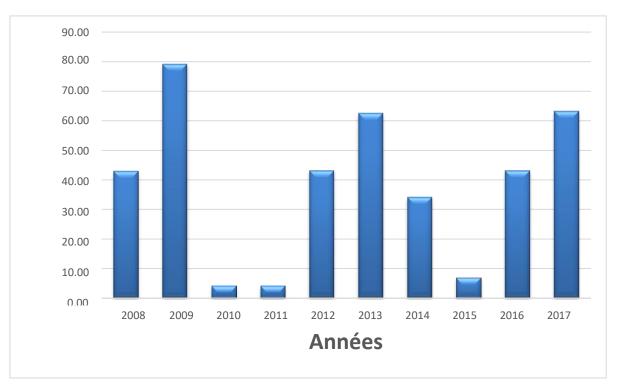
1.3.4 Situation climatique:

Le climat de la région de El-Menia se caractérise par une grande sécheresse de l'atmosphère laquelle se traduit par un énorme déficit de sa saturation et d'évaporation considérable ainsi la très forte insolation due à la faible nébulosité qui sous cette altitude donne l'importance

accrue aux phénomènes thermiques.

Le climat Saharien se caractérise par des étés aux chaleurs torrides et des hivers doux, surtout pendant la journée.

La très faible pluviosité l'extrême fait disparaitre la couverture végétale, accroît l'importance du moindre souffle de vent et lui permet des actions mécaniques toujours notables


Précipitations:

L'analyse de la pluviométrie de la zone d'étude constitue probablement le moyen le plus important et le plus efficace pour étudier l'impact du changement climatique sur le fonctionnement de la nappe phréatique (rechargée par les eaux de pluies) d'où l'importance de s'appesantir sur la pluviométrie.

L'analyse de la courbe des variations annuelles des précipitations, sur une période de 10 ans (2008-2017), montre que l'année 2009 est la plus arrosée avec 79 mm et l'année 2010 et2011 sont les plus sèches avec 4.2 mm Notons que les précipitations moyennes annuelles s'évaluent à 43.38 mm

Année	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Moyen
P (mm)	42,90	79,10	4.20	4.20	43,20	62,50	34,10	7,00	43,20	63,20	38,36

Tableau I.1 la pluviométrie de la zone d'étude Station météorologique d'El-Goléa (2008-2017)

1.3.5 Températures :

La température est un élément fondamental du climat. Elle est liée à la radiation solaire. Sa variation influe sur la transformation des eaux en vapeur, que ce soit à la surface ou dans le sous-sol. De ce fait, elle influe sur le degré d'évapotranspiration et par conséquent elle agit sur le taux de salinité des eaux. Toutefois, la température a un rôle important dans la variation des composantes du bilan hydrologique.

Mois Sept Oct Nov Déc. Jan Fév Mars Avril Mai Juin Juil Août Année T $^{\circ}C$ 16.16 27,44 34,36 22,41 30.18 23,46 12,60 9,88 11.06 16,56 21.06 32,92 33,26 m°C 22,33 16,22 8.14 4.11 4,70 8,43 13,75 18,65 23.37 25,82 / 2.72 26.21 $M^{\circ}C$ 37,91 31,73 23.38 18,27 18.04 20,50 25.05 30,42 34,99 39,80 42,97 41,86 /

Tableau I.2 la variation de température (Station météorologique d'El-Goléa)

T: température moyenne mensuelle.

m : température minimale de chaque mois.

M: température maximale de chaque mois.

Les variations de température moyenne mensuelle sont représentées sur la (fig.1.5) qui montre une grande amplitude thermique entre l'hiver et l'été ; les mois de juin, juillet et août sont les mois les plus chauds en général avec des moyennes mensuelles de l'ordre de 32 à 34 °C et le mois le plus froid est janvier avec une moyenne de température de 9.38°C.

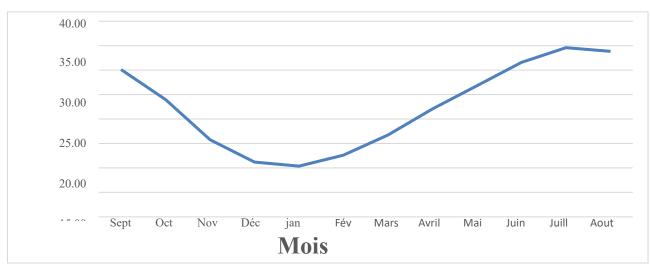


Figure I.4: présentation graphique de température (C°) par le temps

1.3.6 Pluviométrie:

Selon l'office national de la météo la pluviométrie moyenne est l'ordre de 43.38 mm sur une durée d'observation des dix dernières années (2008-2017).

Tableau I.3 : la pluviométrie moyenne Station météorologique d'El-Goléa (2008-2017)

Année	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Moyen
P (mm)	42,90	79,10	4.20	4.20	43,20	62,50	34,10	7,00	43,20	63,20	38,36

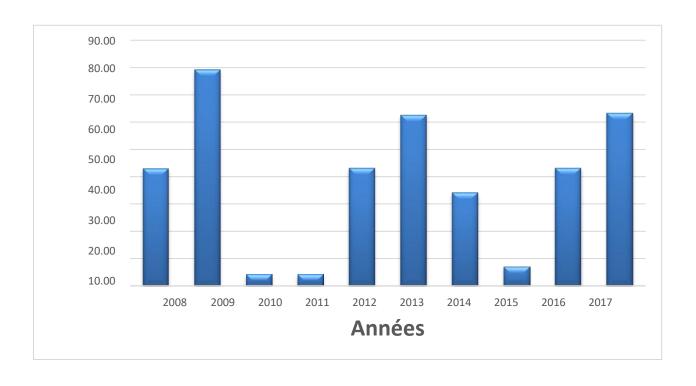


Figure I.5: précipitations annuelles (2008-2017)

1.4 Géologie :

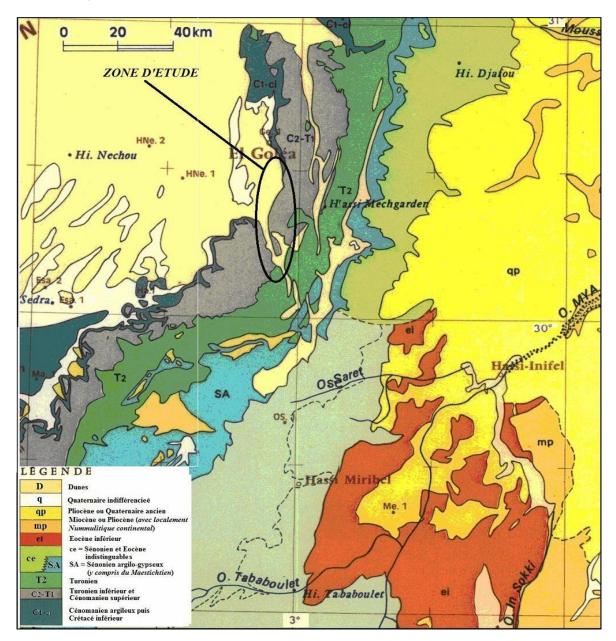


Figure I.6 : Carte géologique local d'El-Goléa.

On rencontre à El-Goléa deux structures naturelles caractéristiques du milieu désertique :

La falaise et les "cours" plateaux d'âge cénomanien inférieur constituées par des calcaires et des marnes grises avec intercalation d'argile bigarrée.

La plaine ou la dépression allongée formée d'albien et de quaternaire qui recouvre les marnes, les grés et les sables rouges.

Le dépôt du la quaternaire continental présente des épaisseurs zonalement très variables. (03)

1.5 Estimation de la population future :

Les données du derniers recensement, réalisé par l'ONS en 2008, indique que le nombre d'habitants de la zone (El-Menia) est de l'ordre de 40,195 habitants. (04)

Remarque:

Étant donné que la ville est en construction avec une capacité qui s'appuie sur le chemin de distribuer des logements, le tableau suivant a été conçu

Tableau I.4 : nombre de logements de la nouvelle ville meniaa

Type d'aménagement	N° aménagement
Habitat individuel	
Habitat mixte individuel /	(500 I
collectif	6500 Logement
Habitat collectif	

Nous poursuivrons notre étude, compte tenu du logement des habitants collectivement, car, selon la dernière distribution par l'État à la zone civilisée, la population a été distribuée dans l'ordre, D'abord pour les couples mariés et les familles, puis pour les veuves et les femmes divorcées, ce qui signifie qu'une distribution sera souvent au profit des familles Si c'est selon cet argument, la famille sera moyenne de 3 à 4 personnes.

Selon les données du Bureau national des statistiques (ONS) et du recensement de la population, la taille moyenne de la famille en Algérie se situe entre 4,8 et 5,5 individus, selon les zones urbaines et rurales.

Le ministère du Logement et de la ville adopte des indicateurs normatifs pour la taille du logement familial:

Habitat individuel : de 5 à 6 personnes. Ces informations sont basées sur le décret exécutif n $^{\circ}$ 97-

26 en date du 4 février 1997, concernant les normes techniques du logement et de l'organisation urbaine.

Donc, Je prendrai 6 habitants pour un logement et en utilisant la prochaine équation pour calculer la population future de ces familles :

 $N(f)=N^{\circ}Logement\times 6$

Application numérique :

 $N=6,500\times6=39,000$ habitants

1.6 Estimation des besoins en eau potable :

L'estimation des besoins en eau d'une agglomération nous exige de donner une norme fixe pour chaque catégorie de consommateur. Cette norme unitaire (dotation) est définie comme un rapport entre le débit journalier et l'unité de consommateur (agent, élève, lit, etc.....).

Cette estimation en eau dépend de plusieurs facteurs (de l'évolution de la population, des équipements sanitaires, du niveau de vie de la population, etc.....). Elle diffère aussi d'une période à une autre et d'une agglomération à une autre.

Dans cette étude, les valeurs des classes individuelles de consommateurs ont été approuvées sur la base d'une étude technique précédente préparée par le bureau des études françaises EGIS International en 2016, qui est consacrée à la même région géographique. Il est également proche des normes internationales et nationales qui sont conformes à la région et ces valeurs sont venues comme suit :

Type d'aménagement	Ratios de base	Ratios de base
	Eau potable	Arrosage
- HABITAT -		
Habitat individuel	250 L/j/habitant	4 L/j/m²d'arrosage
Habitat mixte individuel /	$200 \ L/j$ / habitant	4 L/j/m²d'arrosage
collectif		
- ACTIVITES / TOURISME /		
INDUSTRIES -		
Mixte Commerces /	$5 L/j/m^2 de$	4 $L/j/m^2 d'arrosage$
Tertiaire	SHON	
Commerces divers / galerie	6 $L/j/m^2 de$	4 $L/j/m^2$ d'arrosage
	SHON	
Tertiaire, petits bâtiments	50 L/j/employé	4 $L/j/m^2$ d'arrosage
Tertiaire, grands ensembles	$100\ L/j$ / employé	4 L/j/m²d'arrosage
Activités	50 L/j/employé	4 L/j/m²d'arrosage
diverses		
Agricultu	$80\ L/j$ / employé	6 L/j/m²d'arrosage
re		

Type d'aménagement	Ratios de base	Ratios de base
	Eau potable	Arrosage
Hôtels 3	400 L/j/client	$4 L/j/m^2 d'arrosage$
ou 4*		
Hôtels 1	300 L/j/client	4 $L/j/m^2 d'arrosage$
ou 2*		
Restauran	20 L/j/place	$4 L/j/m^2 d'arrosage$
ts		4.7.7.7.2.11
Club de vacances	600 L/j/client	4 L/j/m² d'arrosage
Parc des expositions	3 $L/j/m^2 de$	4 $L/j/m^2 d'arrosage$
	SHON	
Entrepôts	$1 L/j/m^2 loti$	$4 L/j/m^2 d'arrosage$
Industries légères / Ateliers	$2,5 L/j/m^2 loti$	$4 L/j/m^2 d'arrosage$
Industries moyennes	$10 L/j/m^2 loti$	$4 L/j/m^2 d'arrosage$
Industries lourdes		
- EQUIPEMENTS PUBLICS -		
Administr	50 L/j/employé	$4 L/j/m^2 d'arrosage$
ations		
Locaux Cultuels / Culturels	6 $L/j/m^2$ de SHON	4 L/j/m²d'arrosage
Rue / Avenue / Boulevard,	0 L/j	$4 L/j/m^2 d'arrosage$
etc.		
Enseignement (sans	60 L/j/élève	$4 L/j/m^2 d'arrosage$
hébergement)		
Enseignement (avec	150 L/j/élève	$4 L/j/m^2 d'arrosage$
hébergement)		
Equipements techniques	$2,5 L/j/m^2 loti$	$4 L/j/m^2 d'arrosage$
Marché	0 L/j	$4 L/j/m^2 d'arrosage$
Parc / Espaces vert	$0 \ L/j$	$4 L/j/m^2 d'arrosage$
Place /	0 L/j	$4 L/j/m^2 d'arrosage$
Parking		
Etablissement hospitalier	400 <i>L/j/lit</i>	$4 L/j/m^2 d'arrosage$

Type d'aménagement	Ratios de base	Ratios de base
	Eau potable	Arrosage
Stade		1900
	10 L/j/place	0 L/j/unité
Terrain		1100
de sport	$3000 \ L/j/terrain$	$0 L/j/unit\acute{e}$
Salle de	3000 L/j/salle	$4 L/j/m^2 d'arrosage$
sport		
Piscine	$4000 \ L/j/bassin$	4 L/j/m² d'arrosage
couverte		
Autre		$4 L/j/m^2 d'arrosage$

Tableau I.5 : consommation des eaux de chaque Catégorie

À ce stade, j'ai calculé tous les besoins à l'aide d'Excel.

1.6.1 Les besoins domestiques:

L'estimation des besoins domestiques en eau potable dépend de l'accroissement démographique et de l'amélioration du niveau de vie.

La consommation moyenne journalière est le produit de la norme unitaire moyenne journalière (dotation) par le nombre de consommateur exprimé en mètre cube par jour :

$$Qmoy.j = \frac{1}{1000} * Dot * N$$
....eq (1.2)

Avec:

 $Q_{\text{moy,j}}$: débit moyen journalier en (m^3/j)

Dot: dotation moyenne en (l/j/hab)

N : nombre d'habitants (hab)

Étant donné que nos travaux nécessitent le premier semestre de l'étude, le nombre total de logements est de 6500 unités de logement, ce qui est égal au tableau

Type d'aménagement	Ratios de base	Ratios de base	N°Aménagement	Habitants par amenagemenet	Qmoy(m3/j)	Qmoy(l/s)
			- HABITAT -			
Habitat individuel	$250 \frac{L/j/}{habitant}$	$ \begin{array}{ccc} & L/j/m^2 \\ & d'arrosage \end{array} $	/	/	/	,
Habitat mixte individuel /	$200 \frac{L/j}{habitant}$	$4 \frac{L/j/m^2}{d'arrosage}$	6500	6	7800	90.27777778

Tableau 1.6 Besoins domestiques Préparé par l'élève à l'aide du programme Excel

$$Q_{moy \cdot \bar{J}} = \frac{200 * 39000}{1000} = 7800 \, m^3 / J$$

La consommation estimée a été calculée selon les règles suivantes :

$$Q_{Am\'enagement} = Dotation \times N_{Am\'enagement} * N^0_{consommation}$$

 $Q_{Arrossage} = Dotation \times Surface_{availabele} * N^0_{Am\'enagement}$

1.6.2 Les besoins scolaires :

Les besoins des différents équipements scolaires recueillis au niveau de la zone concernée par notre étude sont regroupés dans le tableau ci-dessous :

	Type d'aménagement	Ratios de base		Ratios de base		N°Aménage ment	Surface d'arrosage	Type de consommation	Habitants par amenagemenet	Qmoy(m3/j)	Qmoy(l/s)										
ſ				A I / i / m² d'arrosago	4 L/j/m²d'arrosage	4 L/j/m²d'arrosage	4 L/j/m²d'arrosage	A 1/i/m² diarrosago			7 écoles	335									
1	Enseignement (sans hébergement)	60	L/j/élève						A I /i /m² dlarrasaga			8 Cem	415	491.5	5.6886574						
ı	enseignement (sans nebergement)	lebergement) 60 L/J/eleve	4 L/J/III d'allosage	L/J/III a arrosage					20	2 lycée	650	451.5	3.00003741								
l							26	m²/Ensignemen	3 Cfp	400											
1		nt) 150 L/j/élève															t	5 écoles	335		
1	Enseignement (avec hébergement)		4 L/j/m²d'arrosage				1 Lycée	650	409.31	4.7373843											
į								1 Cfp	400												
					TOTAL					900.81	10.426042										

Tableau 1.7 : besoins scolaire Préparé par l'élève à l'aide du programme Excel

1.6.3 Besoins hospitaliers:

Les besoins des différents équipements hospitaliers recueillis au niveau de la zone concernée par notre étude sont regroupés dans le tableau ci-dessous :

Type d'aménagement	Rat	ios de base		Ratios de base	N Aménagement	Surface d'arrosage	Type de consommation	Lit	N° émploi	Qmoy(m3/j)	Qmoy(l/s)
	400	L/j/lit					1 Hospital	120	50	50.5	0.58449074
Etablissement hospitalier	400	L/]/ III	4	L/j/m²d'arrosage	8	20	2 Polyclinique	1	25	2.5	0.02893519
	50	L/J/emploi		•		m²/Ensignement	5 Center de Santé	1	15	3.75	0.04340278
	TOTAL								0.64 d'arrosage	57.39	0.6568287

Tableau 1.8 : besoins hospitalier Préparé par l'élève à l'aide du programme Excel

1.6.4 Besoins administratifs:

Les besoins des différents équipements administratifs recueillis au niveau de la zone tous les projets programmés liés aux secteurs administratifs et gouvernementaux ont été collectés et concernée par notre étude sont regroupés dans le tableau ci-dessous :

Type d'aménageme nt	Rati	os de base	Ra	itios de base	N Aménagement	Surface d'arrosage	Type de consommation	émploi	Qmoy (m3/j)	Qmoy (I/s)
Administrations	50	L/J/emploi	4	L/j/m² d'arrosage	40	20 m²/Ensignement	Directions	25	50	0.5787
	TOTAL								53.2	0.6157

Tableau 1.9 : besoins administratifs Préparé par l'élève à l'aide du programme Excel

Il existe également un stade d'une capacité de 10 000 spectateurs dans le programme du complexe sportif, qui comprend également une piscine et des stades

Il y a aussi 3 postes de police et 2 centres de protection civile sont regroupés dans le tableau ci-dessous :

Chapitre I	Présentation de la Zone D'étude et Estimation des Besoins
Chapitre I	Présentation de la Zone D'étude et Estimation des Besoins

Type d'aménageme nt	Rati	os de base	Ratios de base		N Aménagement	Surface d'arrosage	Type de consommation	N°	Qmoy (m3/j)	Qmoy (I/s)
stade	10	L/J/place	1900	L/3 j / m² d'arrosage	1	20 m²/aménagement	place	10000		
postes de police	80	L/J/emploi			3	20 m²/aménagement	policein	25	113.75	1.3166
Poste	50	L/J/emploi	4	L/j/m² d'arrosage	5		émploi	15		
protection civile	80	L/J/emploi		a arrosage	2	m / umenagement	émploi	25		
	TOTAL									1.3328

Tableau 1.9 : besoins des autre Equipment Préparé par l'élève à l'aide du programme Excel

1.6.5 Estimation des besoins domestique et non domestique en eau potable :

Type d'aménagement		Ratios de base	Ratios de base		N°Amén agement	Habitants par amenagemen et	Qmoy(m3/j)	Qmoy(l/s)
				- HABITAT -				
Habitat individuel	250	L/j/habitant	4	L/j/m² d'arrosage	/	/		/
Habitat mixte individuel / collectif	200	L/j/habitant	4	L/j/m² d'arrosage	6500	6	7800	90.2777777
Habitat collectif	170	L/j/habitant	4	L/j/m² d'arrosage	1	/		/
		-	ACTIVIT	ES / TOURISME / INDU	JSTRIES -			
Mixte Commerces / Tertiaire	5	L/j/m² de SHON	4	L/j/m² d'arrosage		/		
Commerces divers / galerie	6	L/j/m² de SHON	4	L/j/m² d'arrosage	1	/		
			- E	QUIPEMENTS PUBLICS	S -			
Administrations	50	L/j/employé	4	L/j/m² d'arrosage	40	25	53,2	0.615740741
mosquée	15	L / j / fidèles	4	L/j/m² d'arrosage	6	1100	99	1.145833333
Enseignement (sans hébergement)	60	L/j/élève	4	L/j/m² d'arrosage	20	8165	491,5	5.688657407
Enseignement (sans hébergement)	60	L/j/élève	4	L/j/m² d'arrosage	20	8165	491,5	5.688657407
Enseignement (avec hébergement)	150	L/j/élève	4	L/j/m² d'arrosage	7	2725	409,31	4.737384259
Equipements techniques	2,5	L/j/m² loti	4	L/j/m² d'arrosage				0
Marché	0	L/j	4	L/j/m² d'arrosage	1		0,08	0.000925926

Type d'aménagement	Ratios de base		Ratios de base		N°Amén agement	Habitants par amenagemen et	Qmoy(m3/j)	Qmoy(l/s)
Etablissement hospitalier	400	L/j/lit	4	L/j/m² d'arrosage	8	120	57,39	0.664236111
Stade	10	L/j/place	1900	L/j/unité	1	10 000	100	1.157407407
Poste	50	L/j/émploi	4	L/j/m² d'arrosage	5	15	3,75	0.043402778
Salle de sport	3000	L/j/salle	4	L/j/m² d'arrosage	2		6	0.069444444
Piscine couverte	4000	L/j/bassin	4	L/j/m² d'arrosage	1		4	0.046296296
Postes de police	80	L/J emploi	4	L/j/m² d'arrosage	3	30	7.2	0.083333333
Protection civile	80	L/J emploi	4	L/j/m² d'arrosage	2	25	4	0.046296296
TOTAL					6597	Q D'arrosage =7.2 (m3/j)	9035.43 (m3/j)	104 576 (I/s)

Tableau I.10 : besoins total Préparé par l'élève à l'aide du programme Excel

On a la somme des besoins d'arrosage égal =

2.16pour les Enseignement + 0.64 d'arrosage pour les équipements hospitalier + 3.2 pour les équipements administratifs + 1.4 = 7.2 (m^3/j)

1.7 Etude des variations des débits :

Les débits de consommation sont soumis à plusieurs variations dans le temps :

- ➤ Variations annuelles qui dépendent du niveau de vie de l'agglomération considérée.
- > Variations mensuelles et saisonnières qui dépendent de l'importance de la ville.
- ➤ Variations journalières qui dépendent du jour de la semaine où la consommation est plus Importante au début de la semaine qu'en weekend.

En raison de cette irrégularité de Consommation, le débit exigé pour les consommateurs sera déterminé en attribuant au débit Moyen journalier les coefficients d'irrégularité.

1.7.1 Variation de la consommation maximale journalière :

Par rapport à la consommation moyenne journalière déterminée, nous pouvons mettre en évidence un rapport nous indiquant de combien de fois la consommation maximale dépassera la moyenne de consommation.

Ce rapport est désigné sous le terme de coefficient d'irrégularité journalière maximum K_{max, i}.

$$Q_{maxI} = K_{maxI} \times Q_{moy.i} \dots eq (1.5)$$

Avec:

 $Q_{\text{max j}}$: débit maximum journalier (m³/j)

Q_{moyj}: débit moyen journalier (m³/j)

K_{max, j}: facteur de point journalier varié entre 1.1 et 1.7

Type d'agglomération	(Coefficient de pointe journalière maximale)
Petites villes (< 10 000 habitants)	1,5 – 1,7
Villes moyennes (10 000 – 50 000 hab.)	1,3 – 1,5
Grandes villes (> 50 000 habitants)	1,1 – 1,3

Tableau I.11. Coefficient de point journal

Dans notre cas, la ville contient 39 000 résidents, nous allons donc prendre la valeur 1.3

Application Numérique:

$$Q_{\text{max, j}}$$
= 1.3 *9035.43 = 11746.059 (m³/j)
= 135.94976 (l/s)

1.7.2 Coefficient d'irrégularité horaire

Le débit moyen subit non seulement des variations journalières ou saisonnières mais aussi des variations horaires

$$Q_{moy \cdot h} = \frac{Q_{max \, j}}{24}$$

 $Q_{moy \cdot h}$: débit moyen horaire en (\mathbf{m}^3/\mathbf{h})

 $Q_{max j}$: débit maximum journalier en (m³/j)

$$Q_{mov \cdot h} m^3 / h. 489.42 \text{ (m}^3 / h)$$

1.7.3 Variation de la consummation horaire

Détermination de la consommation maximale horaire :

$$Q_{maxh} = k_{maxh} \times (Q_{moy \cdot h})$$

Avec:

 $oldsymbol{k_{maxh}}$: coefficient d'irrégularité horaire maximal qui est donné par :

$$K_{\max h} = \alpha_{max} \times \beta_{max}$$

Avec:

α: Coefficient qui dépend du niveau des conforts des conditions locales et du niveau de développement.

 α max= 1.2 ÷ 1.4; on prend α max=1.2

Tableau I.12 : Les valeurs de β en fonction de la population

Population (habitants)	βmax
500–2 000	1,80
2 000–5 000	1,60
5 000–10 000	1,40
10 000–20 000	1.20
20 000–50 000	1,15
50 000–100 000	1,10

Comme en nombre de habitent 39 000 a l'intervalle β max = 1.15

Application Numérique:

$$K_{\text{max }h} = 1.2 \times 1.15 = 1,38$$

$$Q_{\text{max }h} = 675.3984 \ m^3/h$$

$$= 0.18761 \ (\text{m}^3/\text{s})$$

$$= 187.61 \ (\text{l/s})$$

Avec:

Débits d'incendie = 17(l/s)

$$Q_{h.max}(l/s) + Q inc=187.61 (l/s) + 17 (l/s)$$

$$Q_{h.max}$$
 (1/s) + Q inc =204.61 (1/s)

$$=736.59 \text{ m}^3/\text{h}$$

1.7.4 Variation de la consommation débit de point Qp :

En raison des variations journalière et horaire, il y a lieu d'appliquer au débit moyen un coefficient de majoration afin d'obtenir le plus fort débit instantané que l'on peut avoir dans une conduite

$$Q_P = Q_{\text{mov}} \times K_p$$

Avec:

Qpt: débit de pointe(m3/j).

Kp: Coefficient de pointe.

$$K_p = K_j \times K_{maxh}$$

$$K_{j=1.3}$$

Application Numérique:

$$Kp = Kj \times Kmaxh = 1.38 \times 1.3 = 1.794$$

$$Q_P = 9035.434 \times 1.794$$

$$Q_P = 16209.56142_{(m^3/j)}$$

$$Q_P = 675.398.453 \text{ (m^3/h)}$$

$$= 187.61 \text{ (l/s)}$$

Tableau I.13 : Récapitulatif des différents besoins

Zones	Besoins moy journaliers		Besoins de pointe horaire (distribution)		Débit de point	
	m³/j	1/s	m³/h	1/s	m³/h	1/s
Nouvelle Ville (El-Menia)	9035.43	105,576	736 596	204,61	675.398	187.61

1.8 OUVRAGE DE STOCKAGE

1.8.1 RÔLE DU RÉSERVOIR

Le réservoir (Château d'eau) est un ouvrage intermédiaire entre le réseau d'adduction (Amenée) et celui de la distribution. Ces derniers possèdent des débits non uniformes durant la journée, d'où leur rôle qui permet de gérer les débits selon la demande. Le réservoir constitue ainsi, une réserve permettant d'assurer aux heures de pointe le débit maximal demandé, il peut aussi assurer une autonomie D'alimentation et garantir la disponibilité permanente de la réserve allouée à la lutte contre l'incendie. (05)

1.8.2 Stocker de l'eau

Dans notre cas, un Réservoir à budget élevé est déjà construit et Taux de progrès de la réussite est 60%.

Il est haut de la surface de la terre, qui est l'origine du béton armé, sur les colonnes ou l'axe cylindrique pour donner la beauté à la vue architecturale.

Il se compose de:

Réservoirs semi enterrés pour le stockage

Et réservoirs surélevés, appelés aussi châteaux d'eaux pour la mise en pression du réseau. Les réservoirs semi-enterrés sont alimentés à partir des forages via des adductions.

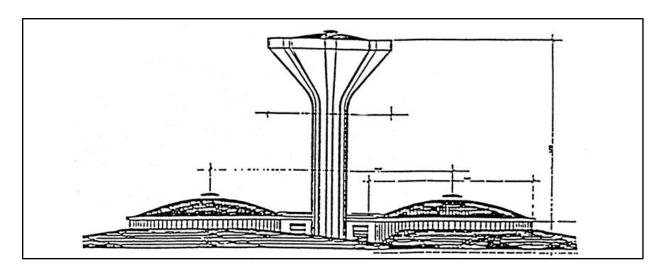


Figure I.8 : le plan de complexe hydraulique

Les châteaux d'eau sont approvisionnés depuis les réservoirs semi-enterrés par un petit pompage via des suppresseurs.

1.8.3 Adductions:

La conduite d'adduction ; à son débouché dans le réservoir ; doit pouvoir s'obturer quand l'eau atteint dans la cuve son niveau maximal obturation par robinet flotteur si l'adduction est gravitaire ou dispositif permettant l'arrêt du moteur si l'adduction s'effectue par refoulement.

L'adduction s'effectue par sur verse ou en pipe soit en prolongeant la conduite de façon que son extrémité soit toujours noyée, soit en chute libre.

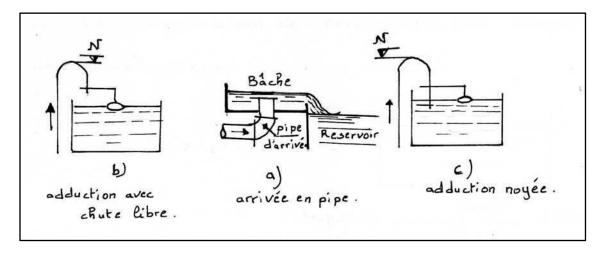


Figure I.7: Equipements d'adduction d'un réservoir

1.8.4 Château d'eau et ses équipements

Le château d'eau est considéré comme une solution économique pour le stockage de l'eau, car il est moins coûteux par unité de volume de capacité de stockage comparé au réservoir tubulaire. Il permet également d'assurer la pression nécessaire dans le réseau, ce qui est particulièrement important en présence de bâtiments à plusieurs étages dans la zone desservie.

Généralement, la canalisation d'alimentation du château d'eau est la même que celle reliant le réservoir au réseau de distribution, c'est-à-dire qu'elle sert à la fois à monter l'eau vers le réservoir et à la redescendre vers le réseauⁱ.(06)

Les équipements du château d'eau comprennent :

Une vanne de sectionnement (Sluice Valve) : installée à la base de la conduite verticale, elle permet d'isoler le réservoir en cas de nettoyage ou de réparation.

Un robinet à flotteur (Float Valve) : situé en haut de la conduite, il permet l'entrée d'eau dans le réservoir lorsque le débit de pompage dépasse la consommation. Il se ferme automatiquement une fois le niveau d'eau maximal atteint. Ce robinet doit être de grande taille et en matériau inoxydable.

Un clapet anti-retour (Non-Return Valve) : installé sur une dérivation entre la conduite verticale et le fond du réservoir, il permet l'écoulement de l'eau du réservoir vers le réseau, tout en empêchant le retour de l'eau. Une vanne de sectionnement sur la même dérivation, qui permet d'arrêter l'écoulement vers le réseau lors d'opérations de nettoyage ou de maintenance.

Conduite de trop-plein et de vidange: Le réservoir est également relié à une conduite verticale secondaire appelée conduite de trop-plein et de vidange, connectée de manière indirecte au réseau d'assainissement. La sortie de cette conduite doit être au moins 1 mètre au-dessus du niveau de la canalisation d'évacuation, assurant ainsi une évacuation libre des eaux usées lors du nettoyage.

Elle comprend les éléments suivants :

• Un déversoir de trop-plein : situé en haut de la conduite, il permet d'évacuer l'excédent d'eau lorsque le robinet à flotteur est défectueux, évitant ainsi le débordement du réservoir.

- Une vanne de vidange : installée sur une dérivation entre la conduite et le fond du réservoir, elle reste fermée pendant l'utilisation normale du réservoir et s'ouvre uniquement pour les opérations de vidange.
- Une dérivation horizontale reliant la conduite d'alimentation et celle du trop-plein**, équipée d'une soupape de sécurité qui s'ouvre automatiquement lorsque la pression dépasse une certaine limite (généralement équivalente à une pression de 10 m au-dessus du niveau du réservoir), suite à un coup de bélier ou à un démarrage brutal des pompes.

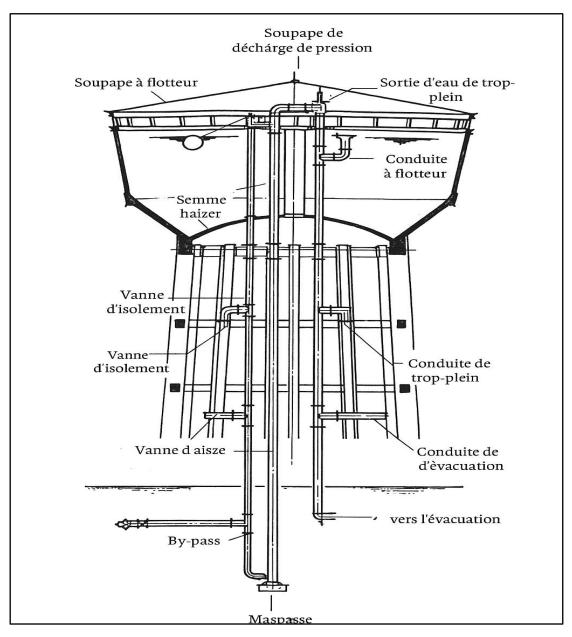


Figure I.9: les compositions d'un château

1.8.5 Capacité de stockage de réservoir :

Le nombre et capacités d'ouvrages de stockage utilisé (Ensemble hydraulique) ont été détaillés comme les données suivent :

EH1: (Château: 750 m^3 et deux réservoirs: $2000 \text{ m}^3 + 2000 \text{m}^3$)

EH2 : (Château : 1000m³ et deux réservoirs : 2000 m³+2000m³)

EH3 : (Château 1000 m³ et trois réservoirs : 2000 m³+2000m³+2000m³)

Stockage totale de: 16750 m³

Remarque:

La capacité totale est plus que les besoins max journal par ce que ces ouvrages sera alimenté aussi la deuxième phase de projet plus de 3500 logements et 150 hectares de plantation Mais les réservoirs sont équipés de systèmes permettant d'arrêter l'écoulement de l'eau au cas où le maximum serait atteint.

1.8.6 HAUTEUR DU CHÂTEAU D'EAU

Le château d'eau doit être d'une hauteur telle à assurer une pression suffisante sur l'étendue de chaque secteur.

Afin d'assurer la pression minimale requise (2,4 bars au minimum au niveau des habitations R+4), les châteaux auront les hauteurs suivantes :

Désignation R1 R2 R3 Cote Terrain Naturel 461,8 457 452.5 Cote radier 481,7 481,8 480 Hauteur jusqu'au radier 24,7 20 27.5

Tableau I.16: Hauteur du château

1.8.6.1 Méthode estimative:

Suppose l'hypothèse un débit transitant dans les conduites correspond au débit fictive continue multiplié par le facteur 20/24(durée de pompage 20 h sur 24 h). la valeur du débit horaire moyen de distribution (a=C/20) avec C la consummation journalière. Envisageons les

débits sortants. Nous savons qu'ils sont variables selon l'heure de la journée, le jour de la semaine, la saison etc...

Alors : la valeur du débit horaire moyen de distribution :

a = C/20 = 11746.059 / 20 = 588.2 (m³/h) (« a » chaque heure pour l'adduction).

Dans nos études. Nous avons trois puits pour alimenter trois complexes de stockage d'un volume de 16750 mètres cubes pour alimenter une ville qui consomme 11746.059 mètres cubes par jour, donc à partir d'ici ces trois puits doivent alimenter les réservoirs dans une période de 20 heures avec le même volume manquant. Pour ne pas oublier que les cuves contiendront tout de même quelques quantités pour un bon contrôle et éviter de tomber en cas de demande maximale.

Consommation horaire maximale moyenne 588.2 (m 3 /h) / 3 = débit requis du puits (m 3 /h) Débit requis du puits /3,6 = Débit limite du puits en (1/s)

Tableau I.14 : les débit des forages

	Q forage (m³/s)	Q forage (l/s)
Forage 01 et 02 et 03	196,07	54.46

Selon les études d'EGIS International, la profondeur des puits est supérieure à 250 mètres, et l'expérience de pompage continu est réussie et les propriétés de l'eau sont bonnes et le débit des puits peut atteindre 60 l/s

Dans notre cas, le débit de 54,46 l/s est acceptable.

1.8.6.2 Supposent un tour d'eau :

Tableau I.14: les données de complexe hydraulique

Élément	Valeur
Nombre de reservoirs	3

Capacité totale de stockage	16 750 m³
Nombre de forages	3 (par une ensemble hydraulique)
Débit de chaque forage	54,46 L/s
Durée de pompage quotidienne	20 hours/jour
Consummation journalière maximal	11746.059 m³/jour
Mauteur des châteaux d'eau	entre 20 et 27 m

Comparaison de la production à la consumation

Tableau I.15: comparaison entre production et consommation

Élément	Valeur
Consommation journalière maximal	11746.059 m³
♦ Production réelle (3 forages × 20h)	11763.36 m³

11763.36 - 11746.059 = +16.77 m

On a un équilibrage entre la production et la consommation

Donc le cycle de l'eau sera de 20 heures par jour, avec pompage de l'eau dans les réservoirs et deux heures de repos, et en tenant compte des cas de consommation minimale, ce sera beaucoup moins.

Dans les cas normaux, le pompage se fera tel quel, mais il y aura un jour par semaine sans pompage en raison de la grande capacité de stockage.

1.9 Conclusion

Ce chapitre nous a permis de déterminer les données nécessaires concernant la zone d'étude du point de vue, géographique, démographie, précipitations, climatique, Et les calculer des besoins. Ces données nous serviront pour entamer notre étude du projet.

Chapitre II : Généralités

Sur les Réseaux de

Distribution d'Eau Potable

2 <u>Chapitre II : Généralités Sur les Réseaux de Distribution d'Eau</u> <u>Potable</u>

2.1 Introduction:

Ouvrir un robinet d'eau potable à domicile est aujourd'hui un geste simple, aussi bien en zone rurale qu'en agglomération. La disponibilité de cet élément vital demande la mise en œuvre de moyens techniques et humains considérables. C'est le rôle des services de distribution d'eau potable.

En matière d'eau potable, la mission essentielle de la collectivité est de garantir une desserte satisfaisante de tous les usagers, avec les quatre objectifs suivants :

- Qualité : La qualité de l'eau ne doit pas nuire à la santé du consommateur. Elle doit être conforme à la réglementation sanitaire.
- Quantité : L'usager doit disposer d'une quantité d'eau suffisante pour couvrir ses besoins, dans un souci permanent de maîtrise de la consommation et de lutte contre le gaspillage.
- Continuité du service : Le service de distribution doit être assuré 24 heures sur 24 avec le minimum d'interruptions.
- **Pression**: La pression, ni trop forte, ni trop faible, doit garantir un confort d'utilisation l'usager.

2.2 Cycle du transport d'eau potable

Depuis son captage dans le milieu naturel jusqu'au robinet du consommateur, l'eau nécessite de nombreuses infrastructures pour son transport. Ces infrastructures constituant le cycle de distribution d'eau potable (figure) à savoir :

- Les ouvrages de captage;
- Les ouvrages de traitement;
- Les stations de pompage;
- Les ouvrages de stockage (réservoirs);
- Le réseaux de distributions.

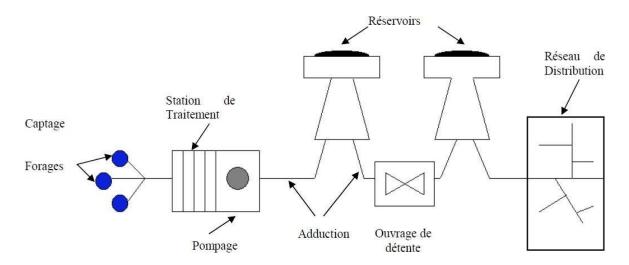


Figure II.1 : Schémas d'alimentation d'eau potable.

2.2.1 Captage des eaux :

On a trios type de Captages à savoir :

a) Captage des eaux de surface :

L'eau destinée à être traitée puis distribuée dans les réseaux publics peut être prélevée par prise d'eau dans les rivières, dans des retenues d'eau, ou dans des lacs ⁱⁱ.

Lorsque la source d'eau est une rivière, la prise d'eau ne doit qu'après avoir une connaissance du maximum d'information relative aux régimes d'écoulement des eaux et aux débits.

Une prise d'eau de surface représente une structure qui permet de capter l'eau naturelle (l'eau brute) du lac ou rivière dans laquelle on a émergée le dispositif de captage (pompe de captage). On doit:

- L'installer là où l'eau brute est de la meilleure qualité possible.
- Eviter de la placer en aval d'un émissaire d'égout, même si celui-ci déverse l'effluent d'une station d'épuration.

La prise d'eau peut être effectuée soit :

- ➤ Dans le fond du lit (figure), après dragage et remplissage avec de gros graviers autour de la crépine d'aspiration.
- Sur la berge (figure), à une profondeur convenable, dans le but d'éviter d'une part, l'influence de la sédimentation du fond du lit, et d'autre part, la présence éventuelle d'hydrocarbures ou de mousses à la surface de l'eau.

Les débits des cours d'eau – y compris les débits de crue (débit maximum) et, surtout les débits d'étiage (débits minimaux) qui permettent d'évaluer la quantité d'eau dont on dispose est suffisante, il faut en outre connaître les niveaux de l'eau correspondant aux divers débits d'un cours d'eau afin de déterminer à quel niveau installer la prise d'eau . ⁱⁱⁱ(06)

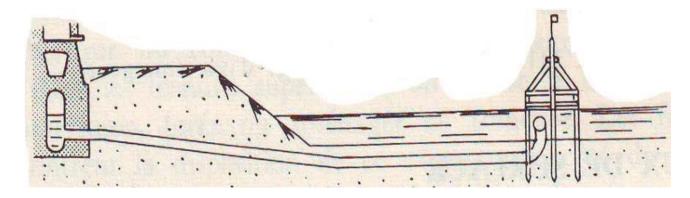


Figure II.2 : Prise au milieu d'une rivière.

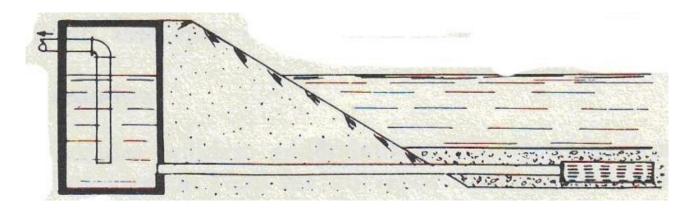


Figure II.3 : Prise dans le fond du lit d'une rivière.

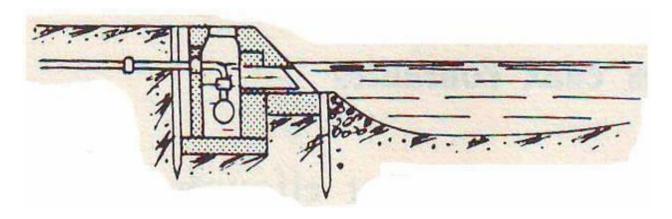


Figure II.4: Prise sur berge.

b) Captage des eaux souterraines

En l'absence d'eau de surface en quantité suffisante et de qualité acceptable, on doit tenter d'utiliser les eaux souterraines. Les eaux souterraines peuvent être prélevées par des puits ou des forages dans des nappes d'eau souterraine. Ces eaux sont captées soit :

- A leur source (figure).
- Au cœur de la nappe (figure).
- Dans le gisement pour les eaux circulant en terrains fissurés.

Parfois, on sera amené à capter les eaux circulant à grande profondeur. Les procédés de captage varient selon la configuration du site.

Une aquifère est une couche de terrain perméable qui contient un volume d'eau.

L'exploitation des eaux souterraines dépend principalement du type de nappe. iv(07)

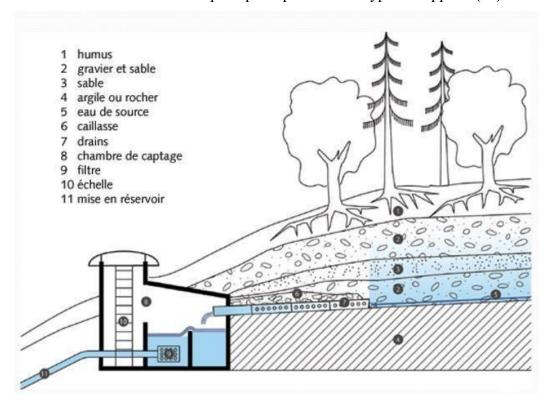


Figure II.5: Captage direct de l'eau à partir d'une source.

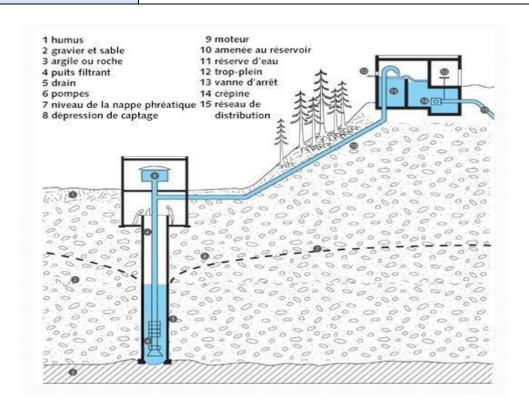


Figure II.6 : Captage direct de l'eau par un forage.

2.2.2 Station de traitement :

Selon la qualité de la source d'approvisionnement en eau, on peut devoir soumettre l'eau à un traitement plus ou moins élaboré. Par exemple, dans le cas d'une eau souterraine de bonne qualité, une désinfection seule peut produire une eau de consommation qui satisfait eaux normes en vigueur ; en revanche, une eau de la cou rivière exige habituellement un traitement plus complet : coagulation- floculation, décantation, filtration et désinfection, par exemple .

2.2.3 Adduction:

L'adduction d'eau regroupe les techniques permettant d'amener l'eau depuis sa source à travers un réseau de conduites vers les lieux de consommation.

D'après leur fonctionnement, les adductions peuvent être classées en trois groupes :

- Adduction gravitaire: L'écoulement de l'eau est causé par la différence des niveaux hydrauliques: l'altitude de la source est supérieure celle du point de consommation, et se déplace donc grâce à la force de gravité d'où son nom.
- Adduction par refoulement : Quand la source se trouve à un niveau bas par rapport au point d'arrivée, l'acheminement de l'eau d'un point à l'autre se fait à l'aide de pompes .

Adduction mixte : C'est une adduction où la conduite par refoulement se transforme en conduite gravitaire ou l'inverse. Le relais entre les deux types de conduites est assuré par un réservoir appelé réservoir tampon .

Le choix de la conduite d'adduction doit tenir compte de certains impératifs que l'on se forcera dans la mesure du possible de respecter

- Le tracé doit être le plus court possible;
- Aux points hauts du tracé, peuvent se conformés des contentements d'air difficile à évacuer où des ventouses seront exigés ainsi apparait la nécessité d'éviter autant que possible les contres pentes;
- Eviter les profils horizontaux, qui peuvent perturber le régime d'écoulement;
- Il serait préférable de suivre les accotements des routes, pour faciliter les travaux ainsi que l'acheminement des matériaux . (08)

2.2.4 Pompage :

Dans un système de distribution d'eau potable, l'eau peut être pompée à plusieurs occasions : entre la ressource et le traitement, pour l'ach eminer vers un réservoir ou pour desservir directement certains usagers .

2.2.5 Réservoir de stockage :

Les réservoirs constituent les organes régulateurs de pression et de débit entre le régime de production et le régime de consommation.

Ils permettent d'emmagasiner l'eau lorsque la consommation est inférieure à la production, et la restituent lorsque la consommation devient supérieure à la production. En milieu rural ou pour des villes de petite importance, avec une installation correctement conçue, la capacité du ou des réservoirs oscille aux alentours du volume moyen journalier d'eau consommée.

Les réservoirs permettent, outre une régularité de fonctionnement des groupes de pompage, de profiter au maximum du tarif de nuit en énergie électrique.

Les réservoirs, à partir d'une certaine capacité, comportent deux compartiments pour les facilités du nettoyage (minimum une fois par an) et des réparations. vi(09)

2.2.6 Réseau de distribution :

Le réseau de distribution d'eau potable est un ensemble de conduites interconnectées fonctionnant sous pression, et qui assurent l'alimentation de la ville à partir des réservoirs. A

cela, il faut ajouter les accessoires du réseau qui permettent une bonne exploitation et un bon entretien de ce dernier. Parmi ceux-ci on peut citer les vannes de sectionnement, les vannes de réduction de pression, les poteaux d'incendie, les compteurs, les ventouses etc.

Un réseau de distribution d'eau potable sur le plan physique se caractérise essentiellement par la mesure en tous points de deux paramètres :

- La Vitesse.
- La pression.

Ces paramètres dépendent des conditions de mise en charge du réseau, de son profil altimétrique et de la demande résultant des consommations aux points de livraison.

Les canalisations devront en conséquence présenter un diamètre suffisant, de façon à assurer le débit maximal avec une pression au sol compatible avec la hauteur des immeubles . vii(10)

2.3 Structure d'un réseau d'AEP:

Un réseau est la représentation schématique des différents nœuds d'un réseau et de leurs liaisons physiques (conduites, pompes, vannes). La disposition des nœuds et des conduites dépend de la localisation des abonnés,' présence de routes, obstacles naturels, présence d'autres réseaux.

Le réseau de desserte est l'ensemble des équipements (canalisations et ouvrages annexe acheminant de manière gravitaire ou sous pression l'eau potable issue des unités de potabilisation jusqu'aux points de raccordement des branchements des abonnés ou des appareils publics (les bornes d'incendie, d'arrosage, de nettoyage...) et jusqu'aux points de livraison d'eau en gros. Il constitué de réservoirs, d'équipements hydrauliques, de conduites de transfert, de conduites distribution mais ne comprend pas les branchements

- a. Nœud: point de rencontre de plusieurs conduites (1 par exemple)
- b. Tronçon : portion de conduite comprise entre deux nœuds successifs (entre les Nœuds1 et 2 par exemple)
- c. La Conduite maîtresse ou principale : c'est canalisation assurant la jonction entre l'alimentation réservoir et le premier branchement de conduites secondaires (3 par exemple)

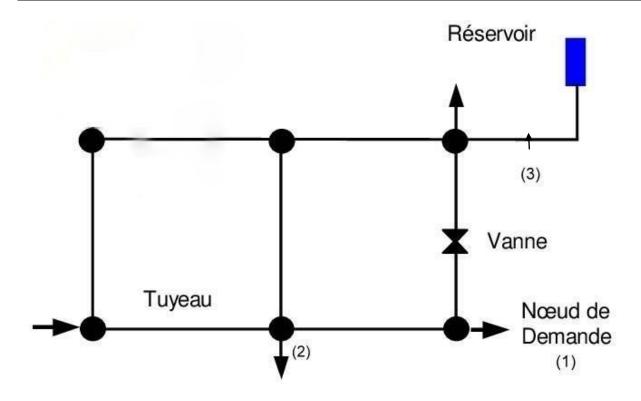


Figure II.7: Composants Physiques d'un Système de Distribution d'Eau.

d. Poteaux d'incendie:

Leur diamètre est normalisé à **100 ou 125 mm. Ils** doivent être alimentés par des conduites de même diamètre qui doit assurer un débit minimal de **17 L/s** sous **1 bar**; la disposition du réseau (réserve d'incendie) doit permettre aux pompiers de disposer de 120 m³.

Quand ils ne sont pas en service, les poteaux d'incendie sont mis hors gel par vidange de leur corps, commandée par la fermeture de leur vanne. Ils peuvent, dans certains cas, prendre la forme d'une bouche d'incendie et/ou de lavage. (11)

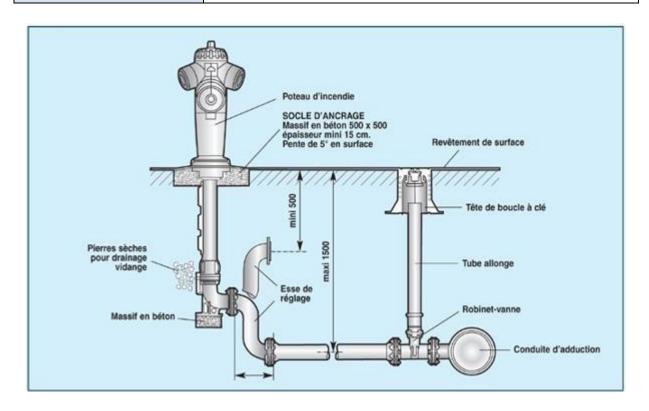


Figure II.8: Emplacement d'un Poteau d'incendie

e. Ventouse

Une accumulation d'air peut se faire aux points hauts d'une conduite. La poche d'air provoque des perturbations qu'il s'agit d'éviter : diminution de la section, arrêt complet des débits, diminution de la pression, coups de bélier.

L'évacuation de l'air se fait par l'intermédiaire d'une ventouse qui peut être manuelle ou automatique

Une ventouse manuelle est un simple robinet que l'on manœuvre périodiquement.

Les ventouses automatiques sont des pièces évacuant l'air dès qu'il se forme une poche notable.

Toutes ces ventouses sont disposées dans des regards visitables et leur bon fonctionnement doit être vérifié périodiquement.

Ces ventouses automatiques, en dehors de la suppression des poches d'air en fonctionnement normal, permettent également l'évacuation de l'air lors de la mise en eau de la canalisation et, réciproquement, l'admission de l'air lors de la vidange provoquée de la canalisation, ce qui permet d'éviter la mise en dépression de cette dernière.

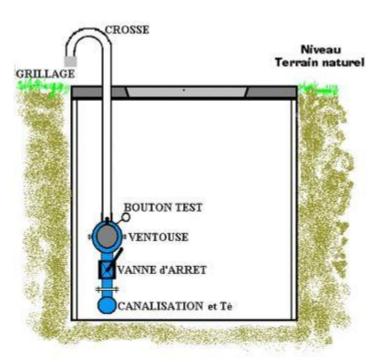


Figure II.9: représentation d'un regard de ventouse

f. Bouches à clés:

Elles seront en fonte rondes réglables et de 19 kg sur robinet vanne.

Elles devront être posées sur un ensemble composé d'un tabernacle rehaussé d'un tube allonge de diamètre 125 mm en PVC.

La bouche à clef sera posée sur un matériau d'apport compacté afin de ne pas reposer sur le tube PVC, avant serrage avec le corps de chaussée.

Figure II.10: Bouche à clé d'eau

2.4 Classification du réseau d'AEP:

Les réseaux de distribution constituent l'ensemble du circuit hydraulique qui permet de véhiculer l'eau potable depuis le réservoir jusqu'à l'abonné, On distingue trois types de réseaux :

On distingue 4 types principaux de réseau de distribution à savoir :

- > Le réseau ramifié.
- ➤ Le réseau maillé
- ➤ Le réseau combiné (mixtes)

 Le réseau étagé.

2.4.1 Réseau ramifié:

On les appelle grâce à leur structure arborisant (figure), sont fréquemment utilisés dans les petites agglomérations rurales. Dans le réseau ramifié les conduites ne comportent aucune alimentation en retour, présente l'avantage d'être économique, mais il manque de sécurité et de souplesse en cas de rupture : un accident sur la conduite principale prive d'eau tous les abonnés d'aval . viii

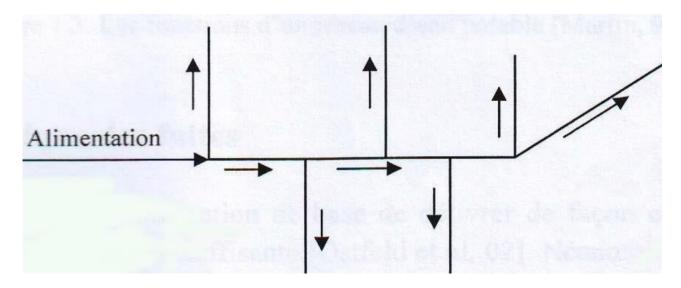


Figure II.11: Réseau ramifié.

2.4.2 Les réseaux maillés:

Pour la distribution en eau des agglomérations de moyenne et de grande importance, ils présentent une solution plus adéquate grâce à leur sécurité et leur souplesse d'utilisation.

Ils sont utilisés en général dans les zones urbaines, et tend à se généraliser dans les agglomérations rurales sous forme associée aux réseaux ramifiés (limitation de nombres de mailles en conservant certaines ramifications).

Les réseaux maillés sont constitués principalement d'une série de canalisation (**Figure**) disposée de telle manière qu'il soit possible de décrire des boucles fermées ou maillées.

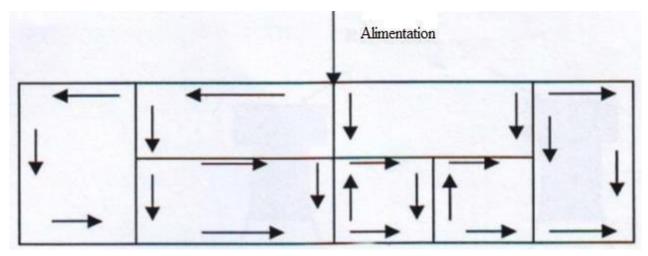


Figure II.12: Réseau maillé.

Ce réseau permet, au contraire de réseau ramifié, une alimentation en retour. Une simple manœuvre de robinets permet d'isoler le tronçon accidenté et de poursuivre néanmoins

l'alimentation des abonnés d'aval. Il est, bien entendu, plus coûteux d'établissement, mais, en raison de la sécurité qu'il procure, il doit être toujours préféré au réseau ramifié. (12)

Tableau I.1 : Avantages et inconvénients des réseaux maillés et des réseaux ramifiés

	Réseau ramifié	Réseau maillé
Avantages	➤ Plus simple et plus ➤ Economique	 Il y a plusieurs trajets Possibles entre le réservoir Et le point d'alimentation. La sécurité d'approvisionnement est beaucoup plus grande Puisque les consommateurs Aval peuvent être alimentés.
Inconvénients	 Il y a un seul trajet Possible entre le réservoir Et le point d'alimentation. Privation d'eau de tous les consommateurs en cas d'incident. 	> Plus, couteux et plus Complexe.

Tableau I.2 : qualités et faiblisses des réseaux maillés et ramifiés

Aspect	Réseau Ramifié	Réseau Maillé
Perte de charge	Elevées	Faibles
Ecoulement	Risque des zones mortes Aux extrémités	Satisfaisant
Réparations	Risque de mise hors service d'une zone Importantes suivant le point d'intervention	Risque plus faible de mis Hors service d'une zone Importante suivant le point d'intervention
Frais de pompages	Elevées	Faibles

Frais de mise en place	Faibles	Elevées
------------------------	---------	---------

Les réseaux étagés :

Avec le réseau étagé il est possible de constituer des réseaux indépendants avec une pression limitée aux environs de 40 mètres d'eau

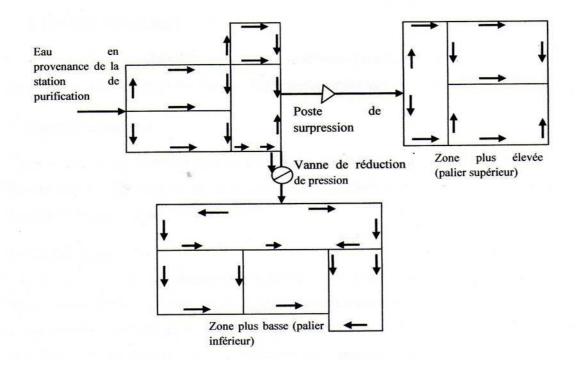


Figure II .13: Réseau Etagés

2.5 Paramètres de fonctionnement d'un réseau d'AEP:

2.5.1 Diamètre Des conduites :

Pour le choix du diamètre des canalisations, il faut se référer au diamètre normalises toutes en évitant les diamètres inferieur à (0.05m), $\Phi[50mm]$. (13)

2.5.2 Limite de vitesse :

En respectant la gamme des vitesses (0.5 à 1.5 m/s).

2.5.3 Pressions:

Les réseaux doivent être calculer pour satisfaire aux conditions de pression. Pour la bonne tenue des canalisations en village et notamment de leurs joints, il faut éviter les hauteurs de pression supérieure à 50 m, qui risque d'apporter des désordres (fuites) et certain effet désagréable dans les installations d'abonnés selon la hauteur des maisons.

Pour cette raison on prévoit les pressions maximales mentionné sur le tableau cidessous :

Pression demandée[m] pression demandée [m] Bâtiment Bâtiment 8-10 **RDC** 24-27 4ème Etage 1ère Etage 12-15 30-35 5ème Etage 2ème Etage 16-19 33-36 6ème Etage 20-23 37-40 3ème Etage 7ème Etage

Tableau I.3 : pression demandée de réseau AEP

2.6 Calcul hydraulique:

2.6.1 Calcul du diamètre :

Dans le Dans le cas d'un écoulement gravitaire, le diamètre est déduit de l'équation :

$$Q = V \times S$$
 eq (2.1)

On obtient :
$$S = \frac{Q}{v}$$
 et on a : $S = \frac{\Pi D^2}{4}$, donc : $D = \sqrt{\frac{Q \times 4}{\Pi \cdot v}}$ eq (2.2)

Avec : S : Surface de la conduite (m²)

Q : Débit du tronçon (m^3/s) .

V: Vitesse de dimensionnement (m/s).

D: Diamètre nominal (mm).

2.6.2 Calcul des pertes de charge totales :

On distingue deux types de pertes de charge dans un réseau de distribution.

Les pertes de charge linéaires ou régulières et les pertes de charge singulières ou locales.

$$h_t = h_\ell + h_S$$
 Eq (2.3)

Avec:

h_ℓ : Pertes de charge linéaires

hs : Pertes de charge singulières

a) Pertes de charge linéaires he:

$$h_{\ell} = R \times Q^2 \dots eq (2.4)$$

Les pertes de charge linéaire sont dues d'une part, au frottement des filets d'eau en mouvements les uns sur les autres, et d'autre part, à leurs contacts avec les parois internes tout au long de la conduite.

Pour les évaluer, on a utilisé depuis un temps une multitude de formules plus ou moins complexes. La plupart d'entre elles ont été abandonnées peu à peu à cause de la difficulté de leur application. En revanche, d'autres auteurs ont essayé de les transformer en tables pour faciliter leur utilisation, mais les plus connues restent les suivantes :

2.6.2.1 Formule de Hazen-Williams:

C'est la plus utilisée aux Etats-Unis, et elle n'est applicable que pour les écoulements d'eau. Son expression est la suivante :

$$R = \frac{1^{1.85}}{C_{HW}x\beta} \times \frac{L}{D^{4.87}}$$
eq (2.5)

Avec:

L : longueur du tuyau, en m.

D : diamètre du tuyau, en m. β: est le coefficient d'unités

$$[\beta=0,2785 \text{ (S.I)}, \beta=0,4322. \text{ (S.A)}]$$

C_{H-W}: coefficient de rugosité de Hazen-Williams.

Le coefficient d'écoulement de Hazen-Williams est directement proportionnel au débit et dépend de la rugosité de la conduite, qui peut varier avec l'âge de cette dernière, en voici quelques exemples types :

Tableau I.4 : Coefficient d'écoulement de Hazen-Williams

Type de Matériau	Сн-w
Fonte revêtue	120
Béton	130
Plastic (PVC, PEHD)	150
Acier	110
Céramique	140

Formule de Darcy-Weisbach:

La perte de charge et l'écoulement peuvent aussi se calculer de façon plus précise avec la formule de **Darcy-Weisbach** dans laquelle, contrairement à la formule précédente, le coefficient de frottement varie en fonction du régime hydraulique caractérisé par le nombre de Reynolds : **(14)**

$$h_l = \frac{\lambda L v^2}{D \cdot 2 g}$$
....eq (2.6)

he: perte de charge linéaire.

L: longueur du tronçon (m).

V: vitesse d'écoulement du tronçon (m/s).

 $g : pesanteur = 9.81 \text{ m/s}^2$.

D: diamètre nominal (m).

→: Facteur de frottement peut être déterminé sur le diagramme de Moody ou encore par les formules suivantes:

•
$$\frac{1}{\sqrt{\lambda}} = -2\log\left(\frac{\varepsilon}{3.7.D} + \frac{2.51}{\text{Re}.\sqrt{\lambda}}\right)$$
 (formule de Colebrook) eq (2.7)

•
$$\lambda = (1.14 - 0.86 \ln \frac{\varepsilon}{D})$$
 (formule de Nikuradzé)eq (2.8)

ε: La rugosité absolue est déterminée en mesurant l'épaisseur de rugosité des parois du tuyau, en voici quelques exemples types :

Tableau II.5: facteur de frottement pour les tuyaux

Matériau	3
Fonte revêtue	0.25
Béton	0.3-3
Plastic (PVC, PEHD)	0.0015
Acier	0.03
Céramique	0.3

Re: nombre de Reynolds, calculé comme suit:

$$Re = \frac{v \cdot D}{9}$$
eq (2.9)

artheta : viscosité cinématique de l'eau, donnée par la formule de STOCKS.

$$\vartheta = \frac{0.0178}{(1+0.0337.t+0.00221.t^2)}.....eq (2.10)$$

t: température de l'eau en degré : A t= 20° c : θ =0.01, Stocks =10-6 m²/s

Température (°C)	viscosité cinématique
0 °C	1.79
10 °C	1.31
20 °C	1.00
30 °C	0.80
40 °C	0.66

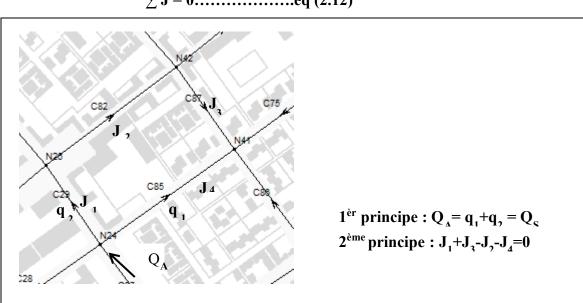
b) Pertes de charge singulières hs:

Elles sont générées par les singularités telles que les coudes, les vannes, les clapets, les Branchements, les diaphragmes etc....et pour les conduites de distribution d'eau, les pertes sont estimées de 10% à 15% des pertes de charge linaires

2.7 Principe de calcul d'un réseau maillé :

2.7.1 La méthode de Hardy Cross:

La méthode de calcul d'un réseau maillé est la méthode de Hardy Cross proposé en 1936 qui de base sur une méthode de calcul par approximation successives, cette méthode repose sur 2 Principes qui sont : (15)


> 1^{ére} principe:

Dans un nœud la somme des débits qui arrivent à ce nœud (Q_e) est égale à la somme des débits qui partent (Q_s).

$$\sum Q_e = \sum Q_s$$
....eq (2.11)

➤ 2^{éme} principe:

Le long d'un parcours orienté est fermé (une maille) la somme algébrique des pertes de charge est nulle.

$$\sum J = 0$$
....eq (2.12)

Figure II.14 : Principe de calcul d'un réseau maillé

2.7.2 Correction des débits :

Calcul de la correction ΔQ pour chaque maille à l'aide de la relation suivante :

$$\Delta \mathbf{Q} = \frac{\sum h_i}{-n\Sigma \frac{h_i}{o}}.....eq (2.13)$$

n = 2 pour Darcy-Weisbach

n = 1.85 pour Hazen-Williams

2.8 Dimensionnement des réseaux de Distribution :

2.8.1 Calcul des débits :

2.8.1.1 Calcul de débit spécifique :

C'est le rapport entre les débits pointe et la somme des longueurs des tronçons

$$Q_{sp} = \frac{Q_{pte}}{\Sigma l_i}$$
..... Eq (2.14)
 $Q_{sp} = \frac{187.61}{21425}$

Avec:

Qsp: débit spécifique (l/s/m)

Qpte : débit de pointe en (1/s)

 \sum Li = la somme des longueurs des tronçons du réseau assurant un service en route

$$Q_{sp}$$
=0.0087576 (1/s/m)

2.8.1.2 Calcul de débit en route :

Ce débit est réparti uniformément le long d'un réseau et calculé d'après la relation

suivante :
$$Q_r = L \times Q_{sp} \dots eq$$
 (2.15)

Qr: débit en route pour chaque tronçon (l/s)

L: longueur de tronçon (m)

Q: Débit spécifique en (1/s/m).

D : diamètre normalisée de la conduite par le \sqrt{Q} .

Tableau II.6 Les débits de routes

Mailles	Troncos	Longueurs (m)	Qspé (I/s/m)	Qroute(I/s)
	1_2	440		3.853344
	2_3	610		5.342136
A1	3_12	520	0.0087576	4.553952
	12_1	240		2.101824
	12_13	160		1.401216
A2	3_12	520	0.0087576	4.553952
	13_3	380		3.327888
	13_3	380		3.327888
A3	3_4	160	0 0087576	1.401216
713	4_14	390	0.0007370	3.415464
	14_13	175		1.53258
	4_14	390		3.415464
A4	14_5	345	0.0087576	3.021372
	5_4	490		4.291224
	1_6	280		2.452128
A5	6_7	230	0.0087576	2.014248
	7_15	225		1.97046
	15_12	240		2.101824
	12_1	240		2.101824
	15_12	240		2.101824
	12_13	160		1.401216
A6	13_14	175	0.0087576	1.53258
	14_16	235	0.0087576 0.0087576 0.0087576 0.0087576 0.0087576 0.0087576 0.0087576 0.0087576 0.0087576 0.0087576 0.0087576	2.058036
	16_15	350		3.06516
	7_15	225		1.97046
A7	8_7	210	0.0087576	1.839096
	9_8	155		1.357428

Mailles	Troncos	Longueurs (m)	Qspé (l/s/m)	Qroute(I/s)
	16_9	216		1.8916416
	15_16	350		3.06516
	16_14	235		2.058036
A8	14_5	345	0 0087576	3.021372
Ao	5_17	250	0.0087570	2.1894
	17_16	353		3.0914328
	9_16	216		1.8916416
A9	16_17	353	0.0087576	3.0914328
, 6	17_10	225	0.000,070	1.97046
	10_9	359		3.1439784
	11_10	190		1.663944
A10	10_17	225	0 0087576	1.97046
AIO	17_5	250	0.0087370	2.1894
	5_11	590		5.166984
	28_6	220		1.926672
B1	6_7	(m) Qspe (l/s/m) 216 350 235 345 250 353 216 353 216 353 216 359 190 225 250 590 0.0087576	2.014248	
	7_27	275		2.40834
	27_28	226		1.9792176
	28_29	255		2.233188
B2	29_34	208	0.0087576	1.8215808
	34_27		0.000,070	2.320764
	27_28			1.9792176
	27_7	275		2.40834
В3	7_8	210	0 0087576	1.839096
53	8_24	282	0.0007370	2.4696432
	24_27	221		1.9354296
	34_27	265		2.320764
B4	27_24	221	0 0007576	1.9354296
D4	24_41	263	0.008/3/0	2.3032488
	41_34	218		1.9091568
	8_24	282		2.4696432
B5	9_8	155	350 235 345 0.0087576 250 353 216 0.0087576 353 0.0087576 225 0.0087576 250 0.0087576 250 0.0087576 275 0.0087576 226 0.0087576 226 0.0087576 221 0.0087576 221 0.0087576 221 0.0087576 221 0.0087576 221 0.0087576 221 0.0087576 221 0.0087576 230 0.0087576 230 0.0087576 241 0.0087576 252 0.0087576 263 0.0087576 263 0.0087576	1.357428
	25_9	294		2.5747344
	24_25	179		1.5676104
	24_25	179		1.5676104
В6	41_24	263	0 0087576	2.3032488
50	42_41	170	0.0007570	1.488792
	25_42	262		2.2944912

Mailles	Troncos	Longueurs (m)	Qspé (I/s/m)	Qroute(I/s)
	25_9	294		2.5747344
5.7	9_10	359	0.0007576	3.1439784
В7	10_22	285	0.008/5/6	2.495916
	22_26	275		2.40834
	25_42	262		2.2944912
	42_43	400		3.50304
B8	43_22	266	0.0087576	2.3295216
	22_26	375		3.2841
	22_10	285		2.495916
	10_11	190		1.663944
В9	11_23	292	0.0087576	2.5572192
	23_22	201		1.7602776
	43_22	266		2.3295216
	22_23	201		1.7602776
B10	23_18	158	0.0087576	1.3837008
	18_44	100		0.87576
	44_43	192		1.6814592
	29_30	217		1.9003992
C1	30_33	194	0.0007576	1.6989744
CI	33_34	209	0.0087576 0.0087576 0.0087576	1.8303384
	34_29	208		1.8215808
	34_33	209		1.8303384
C2	33_35	225	0.0027576	1.97046
CZ	35_41	207	0.0087370	1.8128232
	41_34	218		1.9091568
	41_35	207		1.8128232
C3	35_36	197	0.0027576	1.7252472
C3	36_42	204	0.0087370	1.7865504
	42_41	170		1.488792
	42_36	204		1.7865504
C4	36_20	410	0.0087576	3.590616
C4	20_43	205	0.0087370	1.795308
	43_42	400		3.50304
	43_20	205		1.795308
C5	20_19	188	262 400 266 0.0087576 375 285 190 0.0087576 292 201 266 201 158 0.0087576 100 192 217 194 209 208 209 225 207 218 207 197 204 170 204 410 205 400 205 188 216 192 300 215	1.6464288
23	19_44	216		1.8916416
	44_43	192		1.6814592
	33_32			2.62728
C6	32_38	215	0.0087576	1.882884
	38_35		3.300,370	2.5747344
	35_33	225		1.97046

Mailles	Troncos	Longueurs (m)	Qspé (I/s/m)	Qroute(I/s)
	35_38	294		2.5747344
C 7	38_37	209	0.0007576	1.8303384
C7	37_36	293	0.0087576	2.5659768
	36_35	197		1.7252472
	36_37	293		2.5659768
C8	37_39	416	0.0087576	3.6431616
Co	39_20	300	0.0087576	2.62728
	20_36	410		3.590616
	30_31	760		6.655776
D1	31_32	292	0.0007576	2.5572192
D1	32_33	300	0.0087576	2.62728
	33_30	194		1.6989744
	32_31	292		2.5572192
	31_40	436		3.8183136
D2	40_37	278	0.0087576	2.4346128
	37_38	209		1.8303384
	38_32	215		1.882884
	37_40	278		2.4346128
D2	40_21	447	0.0007576	3.9146472
D3	21_39	300	0.008/5/6	2.62728
	39_37	416		3.6431616
	39_21	300		2.62728
D4	21_19	722	0.0087576 0.0087576 0.0087576 0.0087576	6.3229872
D4	19_20	188	0.008/5/6	1.6464288
	20_39	300		2.62728

Tableau II.6 : calcul le débit en route du réseau Préparé par l'élève à l'aide du programme Epanet

2.8.1.3 Débits nodal Q (nœuds):

Le débit soutire ou bien on l'appelle le débit nodal c'est le débit qui sort au niveau de chaque nœud pour alimenter la population qui se trouve au tour de ce nœud.

On détermine le débit au nœud par la formule suivante :

$$Q_{ndi} = (\frac{1}{2}) \sum Q_{ri} + Q_{conc} \dots eq (2.16)$$

Dans notre cas en prendre \mathbf{Q} conc = 0

Pour simplifier les calculs initiaux.

Nous nous concentrons sur l'équilibrage de la décharge dans les boucles afin que la somme des pertes =0. Hard Cross Méthode

Noeuds	Troncons	Longueurs (m)	Qroute(m²/s)	Qneouds (I/s)
N1	1_2	440	3.853344	4.203648
	1_6	280	2.452128	
	1_12	240	2.101824	
N2	2_1	440	3.853344	4.59774
	2_3	610	5.342136	
N3	3_2	610	5.342136	7.312596
	3_4	160	1.401216	
	3_12	520	4.553952	
	3_13	380	3.327888	
N4	4_3	160	1.401216	4.553952
	4_5	490	4.291224	
	4_14	390	3.415464	
N5	5_4	490	4.291224	7.33449
	5_14	345	3.021372	
	5_17	250	2.1894	
	5_11	590	5.166984	-
N6	6_1	280	2.452128	3.196524
	6_7	230	2.014248	
	6_28	220	1.926672	
N7	7_6	230	2.014248	4.116072
	7_27	275	2.40834	
	7_15	225	1.97046	
	7_8	210	1.839096	
N8	8_24	282	2.4696432	2.8330836

Noeuds	Troncons	Longueurs (m)	Qroute(m²/s)	Qneouds (I/s)
	8_7	210	1.839096	
	8_9	155	1.357428	
N9	9_8	155	1.357428	4.4838912
	9_16	216	1.8916416	
	9_10	359	3.1439784	
	9_26	294	2.5747344	
N10	10_9	359	3.1439784	4.6371492
	10_17	225	1.97046	
	10_22	285	2.495916	
	10_11	190	1.663944	
N11	11_10	190	1.663944	4.6940736
	11_5	590	5.166984	
	11_23	292	2.5572192	
N12	12_1	240	2.101824	5.079408
	12_3	520	4.553952	<u> </u>
	12_15	240	2.101824	
	12_13	160	1.401216	
N13	13_12	160	1.401216	3.130842
	13_3	380	3.327888	
	13_14	175	1.53258	
N14	14_4	390	3.415464	5.013726
	14_5	345	3.021372	
	14_13	175	1.53258	
	14_16	235	2.058036	
N15	15_12	240	2.101824	3.568722
	15_7	225	1.97046	
	15_16	350	3.06516	
N16	16_15	350	3.06516	5.0531352
	16_14	235	2.058036	
	16_9	216	1.8916416	
	16_17	353	3.0914328	
N17	17_5	250	2.1894	3.6256464
	17_16	353	3.0914328	1
	17_10	225	1.97046	
N18	18_23	158	1.3837008	1.1297304
	18_44	100	0.87576	
N19	19_44	216	1.8916416	4.9305288

Noeuds	Troncons	Longueurs (m)	Qroute(m²/s)	Qneouds (I/s)
	19_20	188	1.6464288	
	19_21	722	6.3229872	
N20	20_19	188	1.6464288	4.8298164
	20_43	205	1.795308	Ī
	20_36	410	3.590616	7
	20_39	300	2.62728	Ī
N21	21_39	300	2.62728	6.4324572
	21_40	447	3.9146472	Ī
	21_19	722	6.3229872	
N22	22_26	275	2.40834	4.4970276
	22_10	285	2.495916	
	22_23	201	1.7602776	
	22_43	266	2.3295216	
N23	23_22	201	1.7602776	2.8505988
	23_11	292	2.5572192	
	23_18	158	1.3837008	
N24	24_26	179	1.5676104	4.137966
	24_8	282	2.4696432	
	24_27	221	1.9354296	
	24_41	263	2.3032488	
N26	26_42	262	2.2944912	4.422588
	26_24	179	1.5676104	
	26_9	294	2.5747344	
	26_22	275	2.40834	
N27	27_7	275	2.40834	4.3218756
	27_24	221	1.9354296	
	27_34	265	2.320764	
	27_28	226	1.9792176	
N28	28_6	220	1.926672	3.0695388
	28_29	255	2.233188	
	28_27	226	1.9792176	
N29	29_28	255	2.233188	2.977584
	29_30	217	1.9003992	
	29_34	208	1.8215808	
N30	30_29	217	1.9003992	5.1275748
	30_33	194	1.6989744	
	30_31	760	6.655776	
N31	31_40	436	3.8183136	6.5156544
	31_32	292	2.5572192	
	31_30	760	6.655776	
N32	32_38	215	1.882884	3.5336916

Noeuds	Troncons	Longueurs (m)	Qroute(m²/s)	Qneouds (I/s)
	32_33	300	2.62728	
	32_31	292	2.5572192	
N33	33_32	300	2.62728	4.0635264
	33_30	194	1.6989744	
	33_35	225	1.97046	
	33_34	209	1.8303384	
N34	34_33	209	1.8303384	3.94092
	34_41	218	1.9091568	
	34_29	208	1.8215808	
	34_27	265	2.320764	
N35	35_33	225	1.97046	4.0416324
	35_41	207	1.8128232	
	35_36	197	1.7252472	
	35_38	294	2.5747344	
N36	36_35	197	1.7252472	4.8341952
	36_42	204	1.7865504	
	36_37	293	2.5659768	
	36_20	410	3.590616	
N37	37_38	209	1.8303384	5.2370448
	37_36	293	2.5659768	
	37_40	278	2.4346128	
	37_39	416	3.6431616	
N38	38_32	215	1.882884	3.1439784
	38_35	294	2.5747344	
	38_37	209	1.8303384	
N39	39_21	300	2.62728	4.4488608
	39_20	300	2.62728	
	39_37	416	3.6431616	
N40	40_31	436	3.8183136	5.0837868
	40_21	447	3.9146472	
	40_37	278	2.4346128	
N41	41_35	207	1.8128232	3.7570104
	41_34	218	1.9091568	
	41_42	170	1.488792	
	41_24	263	2.3032488	1
N42	42_41	170	1.488792	4.5364368
	42_36	204	1.7865504	1
	42_26	262	2.2944912	
	42_43	400	3.50304	1
N43	43_20	205	1.795308	4.6546644
	43_44	192	1.6814592	1
	43_22	266	2.3295216	
	<u> </u>		J	1

Chapitre II	Généralités Sur les Réseaux de Distribution d'Eau Potable
-------------	---

Noeuds	Troncons	Longueurs (m)	Qroute(m²/s)	Qneouds (I/s)
	43_42	400	3.50304	
N44	44_18	100	0.87576	2.2244304
	44_19	216	1.8916416	
	44_43	192	1.6814592	

Tableau II.7 : calcul le débit nœuds sur de réseau Préparé par l'élève à l'aide du programme Epanet

2.9 Conclusion:

Dans ce chapitre, nous avons décrit d'une manière générale le cycle du transport d'eau potable, on a défini la structure, les types, les paramètres de fonctionnement d'un réseau d'eau potable ainsi les calculs hydrauliques et la répartition des débits dans ce réseau.

Chapitre III:

Présentation Des Logiciels Utilisés

3 Chapitre III : Présentation Des Logiciels Utilisés

3.1 Introduction

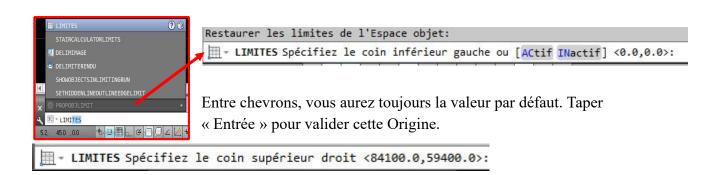
Dans ce chapitre, nous allons présenter les différents logiciels utilisés pour le dimensionnement du réseau d'AEP de la zone de la ville nouvel El-Menia en détaillant les étapes d'utilisation, Où nous avons importé le fichier AutoCAD et l'avons tourné vers les Epanet, les données saisies et les principes hydraulique de calcul du chaque logiciel.

3.2. Définition du logiciel utilisé :

3.2.1. Présentation du logiciel AutoCAD :

AutoCAD est un programme de conception assistée par ordinateur développé par Autodesk (d'où le nom AutoCAD). Il vous permet de dessiner et de modifier des conceptions numériques 2D et 3D plus rapidement et plus facilement qu'en dessinant à la main. Les fichiers peuvent également être enregistrés et stockés Facilement dans le cloud, vous permettant d'y accéder à tout moment, n'importe où. Voici quelques autres fonctionnalités d'AutoCAD :

Modifications faciles : Avant l'ère des ordinateurs, les concepteurs devaient réviser manuellement les conceptions. Vous devrez créer un tout nouveau brouillon ou modifier celui que vous aviez, ce qui pourrait devenir complexe et difficile à interpréter. Avec AutoCAD, vous pouvez facilement modifier et modifier vos conceptions.


Production plus rapide : vous pouvez créer une bibliothèque de blocs réutilisables pour répliquer les pièces de conception. Avez-vous un système Windows fonctionnel ? Utilisez-le à nouveau. Avez-vous un composant de fabrication dont vous aurez besoin encore et encore ? Enregistrez-le dans une bibliothèque de blocs pour une efficacité accrue. Les fichiers enregistrés peuvent être utilisés et réutilisés ultérieurement, ce qui rend le processus de conception plus rapide que la conception manuelle.

Précision supérieure : vous ne pouvez pas dessiner quelque chose d'aussi petit à la main, mais AutoCAD vous permet de concevoir avec précision jusqu'aux fractions. Cela produit une conception plus précise dans toutes les dimensions.

Les zones de son utilisation : Dans le domaine des réseaux d'eau, AutoCAD est utilisé pour dessiner des plans d'ingénierie pour le réseau de distribution d'eau mais dans cette étude, cela a été utilisé pour le programme car il n'y avait pas d'image de l'endroit pour l'utiliser comme référence, et les études précédentes étaient basées sur elle, nous avons donc pu collecter des informations telles que les longueurs et les hausses dans les nœuds. (16)

3.2 Les étapes d'utilisation d'AutoCAD :

➤ **Définir sa feuille :** taper « LIMITES » dans la ligne de commande en bas de l'écran puis « Entrée ».

Ici, rentrer 420,297 puis « Entrée » pour avoir un format type A3 mais c'est surtout la proportion qui est importante. Noter l'importance du respect la syntaxe : il faut bien séparer le x du y par une virgule, en dessous du point d'interrogation. Le point étant réservé à la séparation des décimales.

Pour voir votre feuille dans l'écran, dans l'onglet « Vue », choisir l'icône « Tout ». Quand vous déplacez maintenant votre curseur dans l'écran, les coordonnées évoluent bien entre les valeurs précédemment rentrées.

Les outils : fonctions en bas à gauche

Rend actif l'accrochage aux objets (F3)

(Choix des modes d'accrochage en cliquant droit)

Rend visible ou non la grille (F7)

(Choix des paramètres en cliquant droit)

Rend actif ou non le mode ortho (F8)

Résolution (F9) : le curseur s'accroche sur une grille : clic droit puis « paramètres » pour définir les espaces

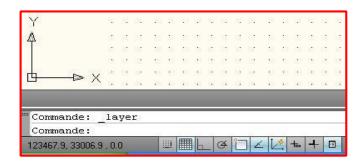


Figure III.1. la définition des espaces

- Les menus fondamentaux : Onglet « Début » pour dessiner et modifier.
- ▶ Dessin : cliquez sur ligne d'autres choix vont se proposés ici, les choix sont nombreux.
 Penser à « Polygone » en entrant le nombre de cotés désiré.
- ➤ **Modifier :** cliquez sur la flèche tournée vers le bas pour faire apparaître les autres fonctions proposées

Figure III.2. Le paramétrage de la grille

Calques : cliquez sur l'icône en haut à gauche : la fenêtre de gestion des calques apparaît
Fonctionne en bas à droite :

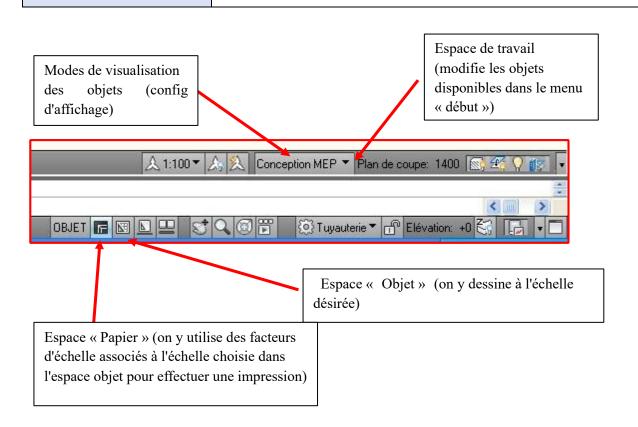


Figure III.3. Le paramétrage de calque

> La sélection d'objets par une fenêtre :

Sélectionner des objets est impératif pour les déplacer ou les modifier. Pour sélectionner le plus rapidement possible, il existe une différence quand on trace la fenêtre de sélection.

- **De gauche à droite :** sélectionne ce qui est entièrement dans la fenêtre bleue.
- > De droite à gauche : sélectionne ce qui est en partie ou entièrement dans la fenêtre appelée « fenêtre capture » (verte)

Normalement, il suffit de sélectionner d'autres objets pour les ajouter à la sélection mais si vous voulez en enlever, sélectionner l'objet à désélectionner en maintenant la touche MAJ appuyée.

> Important : pour travailler vite, préférer la sélection par les fenêtres, ne jamais sélectionner en visant.

Rappel: pour sortir d'une fonction, utiliser la touche ESC

Les vues disponibles et le changement de repères : on à alors :

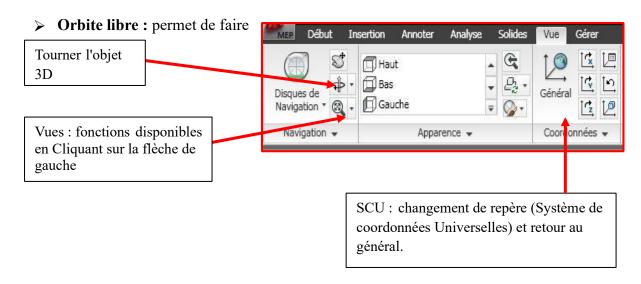


Figure III.4. Le paramétrage de orbite libre

> Les petites astuces : Attention : primordial

ESC : si la ligne de commande est en demande et que vous appelez une fonction type zoom ou que vous voulez sélectionnez un objet

F3: Mode accrochage aux objets

F7 : Grille

F8: Mode ortho (permet de ne faire que des horizontales ou verticales)

F9 : Résolution (permet de ne déplacer le curseur que sur une grille (possibilité de définir des écarts différents que pour la grille).

La Fonction « PEDIT » permet d'accéder aux options des poly lignes.

Pour le paramétrage de ces fonctions, cf « les outils » plus haut.

Les calques : Attention : primordial, c'est la base du travail sur Autocad

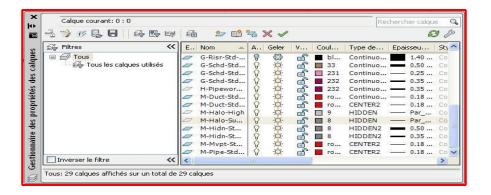


Figure III.5. création d'un nouveau calque

Cliquez droit ici pour pouvoir créer un nouveau calque dont vous pourrez définir le nom, la couleur, le trait et que vous pourrez rendre actif ou bloquer.

Remarque : On peut définir autant de calques que désirés, avec la couleur de son choix.

Les objets dont la couleur est « du calque » verront leur couleur changer si on applique une autre couleur au calque.

Les propriétés :

Sélectionner l'objet + cliquez droit une fenêtre de dialogue apparaît + Propriétés :

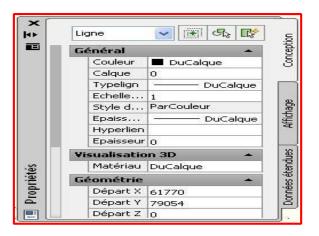


Figure III.6. fenêtre de Propriétés

Remarque :_si vous cliquez droit sans avoir sélectionné un objet, la fenêtre « Propriétés » que vous appelez donnera la configuration active actuelle : couleur du tracé, calque actif, ...

➤ Elaborer son dessin : toujours dessiner dans l'espace Objet (Modèle) Pour dessiner, il existe plein d'outils essentiels. Dans l'ordre d'importance :

- **a.** Le mode ortho (touche F8 ou icône en bas à gauche) : permet de ne tracer que des horizontales ou verticales (ou sur l'axe z en 3D : essentiel pour les tuyauteries),
- **b.** Le mode accroche objet (touche F3 ou icône en bas à gauche + paramètres) : ne jamais dessiner sur AutoCAD sans utiliser l'accroche objet qui relativise les coordonnées d'un objet par rapport aux autres,
- c. Ajuster et prolonger (dans sous menu modifier) : permet de couper un objet (trait ou autre) délimité par un trait. Permet de prolonger un trait jusqu'à un objet. Idéal pour nettoyer un dessin.

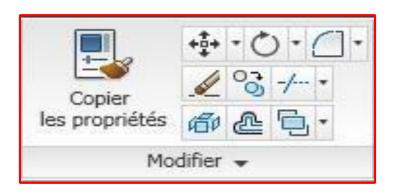


Figure III.7. menu

- **d.** Epaissir ses traits: si vous tracez des lignes, elles ne peuvent être épaissies, c'est l'apanage des poly lignes. A n'importe quel instant, vous pouvez modifier une ligne en polyligne. Choisir poly ligne, tracer une succession de segments. La ligne de dialogue vous offre des options. Tapez-la puis entrée. Entrez une valeur puis entrée. La largeur de la polyligne est modifiée. Fonction facilement copiable à d'autres poly lignes avec le pinceau. Rappeler les options du tracé des poly lignes avec la fonction PEDIT
- e. Etirer: votre schéma vous paraît trop petit et il faut le recoin figurer, pensez à la fonction « Etirer ». Les objets à déplacer doivent être sélectionnés par une fenêtre type capture « de droite à gauche ». Les objets se déplacent mais les connexions avec les objets extérieurs restent.
 - ➤ Possibilité d'imprimer directement votre dessin Objet : En cliquant sur l'icône précédent et en choisissant Imprimer, sélectionner l'imprimante, le format, et fenêtre parmi les choix étendu, affichage, ... AutoCAD vous permet alors de sélectionner la partie ou le dessin que vous désirez imprimer par une fenêtre. En ajustant l'échelle au format, vous pouvez trouver une échelle appropriée et repositionner votre dessin.

Essentiel: En choisissant d'imprimer votre dessin sur un fichier PDF (« DWG to PDF »), vous verrez des traits qui ne correspondent ni en couleur non en épaisseur aux traits vus à l'écran. Normal: AutoCAD prend en compte des styles de traits prédéfinis: pour ne pas en tenir compte, faites « A »+ « Imprimer »+ « Mise en page »+ « Nouvelle configuration » + « OK » + Choisir la feuille, le fenêtre, etc., et surtout décocher « Style de trait » pour qu'AutoCAD prenne en compte les caractéristiques des traits du dessin. Refaire ensuite la manip en choisissant « Tracer » et en sélectionnant la configuration préalablement définie.

Utiliser les palettes d'outils :

Très simple d'utilisation surtout pour les schémas hydrauliques et autres, ces palettes permettent de stocker sous forme visuelle des éléments que vous aurez fabriquez voir que vous aurez transformé en bloc. Cliquer droit sur le bandeau du haut et sélectionner « Afficher le groupe de palettes ». Une fenêtre s'ouvre avec las palettes existantes. Cliquer droit et choisissez « Nouvelle Palette ». Donnez un nom puis « Entrée ».

Figure III.8. les palettes d'outils

3.3 Présentation du logiciel Epanet :

3.3.1 Historique du logiciel Epanet :

Le logiciel Epanet est né suite à une initiative du Congrès des Etats-Unis qui visait à protéger les ressources naturelles du pays. Dès lors, l'EPA (US Environnemental Protection Agency) a été chargée de développer des techniques permettant de mieux appréhender les écoulements et les transformations de l'eau dans un réseau d'adduction d'eau potable. Depuis 1993, le logiciel est disponible gratuitement pour tous les bureaux d'études et les sociétés d'affermage qui souhaitent l'utiliser.

Afin d'augmenter la convivialité du logiciel pour les sociétés francophones, la Compagnie Générale des Eaux a financé la version française sur laquelle j'ai travaillé tout au long de mon stage. Enfin, le logiciel a connu des améliorations depuis sa création. La dernière version date de l'année 2001. (17)

3.3.2 Présentation :

EPANET est un logiciel de simulation du comportement hydraulique et qualitatif de l'eau sur de longues durées dans les réseaux sous pression. Un réseau est un ensemble de tuyaux, nœuds, pompes, vannes, bâches et réservoirs. EPANET calcule le débit, la vitesse et les pertes de charge dans chaque tuyau, la pression à chaque nœud, le niveau d'eau dans les réservoirs et la concentration en substances chimiques dans les différentes parties du réseau, au cours d'une durée de simulation divisée en plusieurs étapes. Il a été développé par l'Environnemental Protection Agency.

EPANET a pour objectif une meilleure compréhension de l'écoulement et de l'usage de l'eau dans les systèmes de distribution Il peut être utilisé pour différents types d'application dans l'analyse des systèmes de distribution. (ROSSMAN, 2003)

Les zones de son utilisation : EPANET a de nombreux avantage tel que :

- Taille de réseau illimitée.
- Formules de Hazen-Williams, Darcy-Weisbach et Chezy-Manning.
- Sait calculer les pertes de charge singulières aux coudes, joints.
- Sait modéliser les pompes (même à vitesse variable), l'énergie consommée et le coûtde
- Fonctionnement.
- Sait modéliser différents types de vannes (clapets anti retour, vannes de contrôle dépression, vannes d'arrêt, etc.).
- Sait modéliser les réservoirs à forme variable.

- Sait modéliser un profil de consommation variable à un nœud ou une consommation
- Dépendante de la pression (asperseur).
- Permet la simulation du réseau par commandes simples ou horodatées.

Le logiciel présente également un module qualité qu'on ignorera dans notre étude, qui permet de calculer les concentrations en substances chimiques et les temps de séjourde l'eau dans différentes parties du réseau.

3.3.3 L'EPANET calcule

Plus de ces avantages, EPANET calcule:

Le débit dans chaque tuyau.

La pression à chaque nœud.

Le niveau d'eau dans les reservoirs.

La concentration en substances chimiques dans les différentes parties de réseau et le temps de séjour

Le logiciel EPANET permet une analyse hydraulique de réseau à partir des caractéristiques physiques des tuyaux et dynamiques des nœuds. Il peut être utilisé pour différents types d'application dans l'analyse de systèmes de distribution. EPANET offre aussi une aide à la recherche de stratégies alternatives pour gérer un réseau (modification du régime de pompage, précision d'usage des stations de recoloration, planification des entretiens et des remplacements des éléments du réseau, etc.). Il propose aussi de maintenir et d'améliorer la qualité d'eau distribuée aux consommateurs. (ARNALICH, 2016).

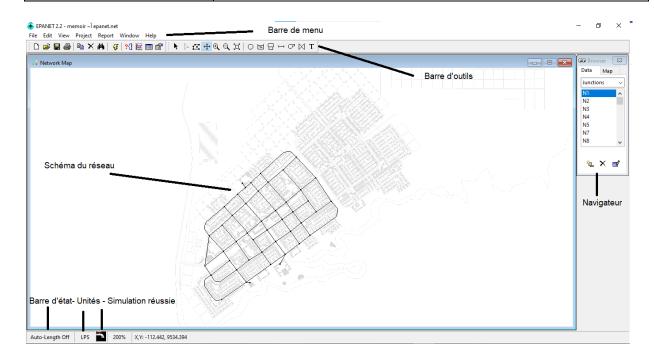


Figure III.9. interface de l'Epanet

3.4 Conversion d'un fichier AutoCAD vers un fichier EPANET :

3.4.1 Les étapes d'utilisation :

L'image suivante est une capture écran d'un dessin AutoCAD que nous voulons convertir en fichier EPANET.

Dans le dessin suivant Nous sommes accueillis par cette interface lors de l'ouverture du fichier dans le programme, après avoir supprimé l'ancien maillage et les autres éléments dont nous n'avons pas besoin. Comme nous l'avons expliqué précédemment dans la méthode de modification des fichiers.

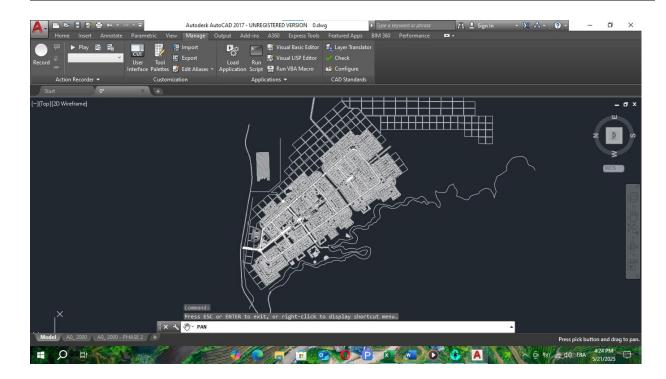


Figure III.9. interface d'AutoCAD

Ensuite Pour ce faire allez et cliquez sur la commande **Output**. Dans la fenêtre qui apparaît sélectionner *Export DWF PDF* dans les champs *Type de fichier* et ensuite cliquer sur le bouton *Save*.

Figure III.10. Export to PDF

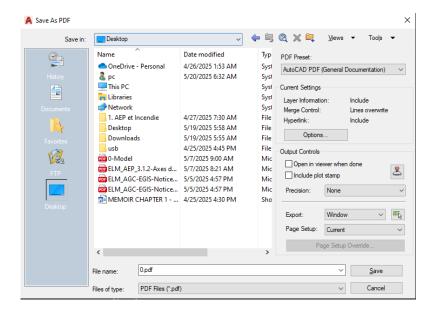


Figure III.11. L'enregistrement de fichier

Dans la troisième étape, nous avons ouvert le fichier PDF sur le site "J'aime PDF" et nous avons converti le format du fichier en image JBG de haute qualité, comme indiqué sur l'image. Avec une taille de 192 Mo et une résolution de 10200 x 6600. Ensuite, nous utilisons le programme Paint pour convertir l'image et améliorer sa qualité au format BMP.

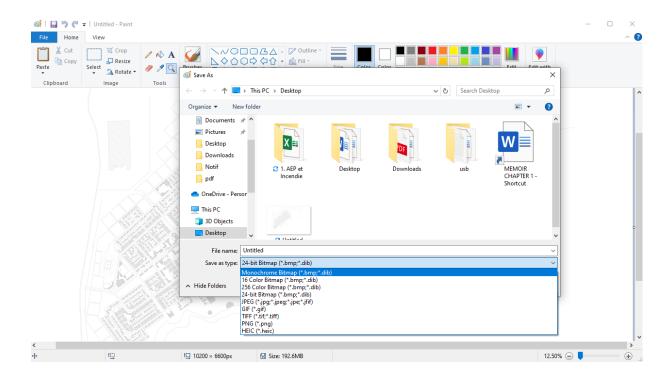


Figure III.12. Troisième étape réglage de format du fichier

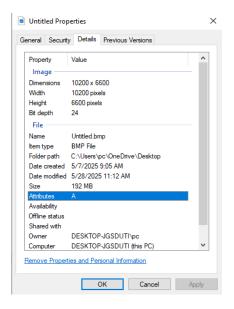


Figure III.13. La format du fichier

Enfin, nous sommes prêts à exécuter notre application EPANET et cliquer sur le bouton *View*. Dans la fenêtre qui apparaît choisir *Backdrop* et après cliqué *Load* dans les champs *Types de fichiers* choisie *BMP* ensuite sélectionner le fichier à ouvrir et cliquer sur le bouton *Open*.

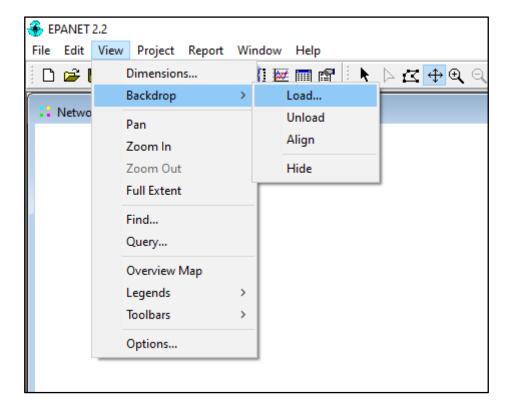


Figure III.14. Ajouté une backdrop

Après le travail, j'enregistre ma progression et, en revenant, j'ouvre le fichier comme indiqué sur l'image suivent :



Figure III.15. Ouverture du fichier par EPANET

La première étape consiste à configurer les paramètres par défaut.

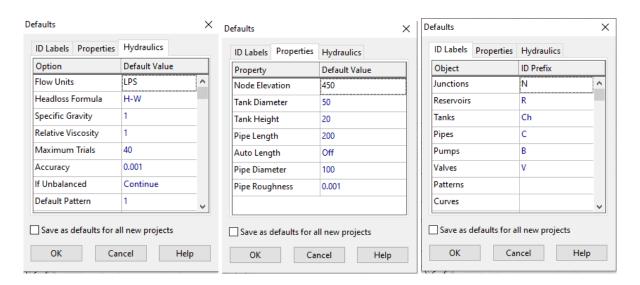


Figure III.16. configurer les paramètres par défaut.

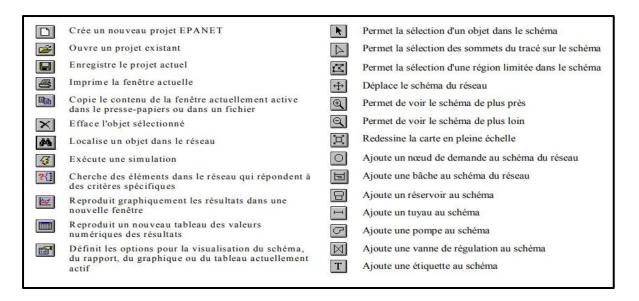


Figure III.17. présentation de la barre d'outils

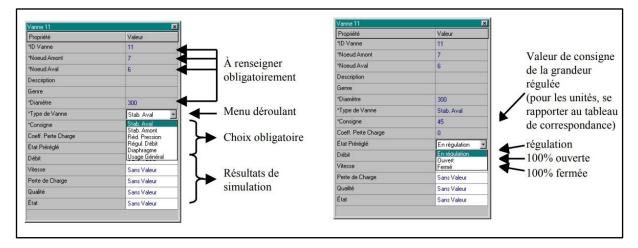


Figure III.18. exemple de paramètre de fonctionnement particulier

3.5 Saisissant les informations

Après avoir compris ces informations, nous pouvons commencer à tracer notre réseau sur l'image préparée, en commençant par dessiner les réservoirs, puis les nœuds, tout en saisissant les informations propres à chacun.

À partir de là, nous poursuivons le tracé du reste du réseau.

Cependant, ce dessin ne doit pas être fait de manière aléatoire, mais doit respecter certaines conditions :

1. Définir avec précision les sources d'eau

• Le réseau commence toujours par les réservoirs ou stations de pompage.

• Il faut indiquer la hauteur (altitude) du réservoir et sa capacité.

2. Identifier clairement les nœuds (nœuds de consommation ou de jonction)

- Chaque point de branchement ou de consommation est représenté par un nœud.
- Le débit demandé à chaque nœud doit être précisé.
- Une numérotation cohérente est essentielle pour faciliter les calculs.

3. Organiser le réseau de manière logique

- Éviter de complexifier inutilement le réseau.
- Suivre autant que possible les routes ou les tracés urbains existants.

4. Respecter le sens naturel de l'écoulement (gravitaire si possible)

- L'eau s'écoule toujours du nœud ayant la charge la plus élevée vers celui avec la charge la plus basse.
- Il est important de prendre en compte les altitudes entre les différentes zones.

5. Choisir les diamètres en fonction des débits attendus

- Tous les tuyaux ne doivent pas avoir le même diamètre.
- Les diamètres sont déterminés selon le débit à transporter.

3.6 Principes hydrauliques régissant les calculs du logiciel :

3.6.1 Les lois de base du calcul :

Les lois des nœuds et la loi des mailles constituent la base du calcul hydraulique. La loi des nœuds affirme que le débit entrant dans un nœud est quoiqu'il arrive égal au débit sortant de ce nœud et ce quel que soit le nombre d'entrées et de sorties dans ce nœud. La loi des mailles dit, quant à elle, que la différence de charges ΔH (égale à la somme de la pression et de la côte au sol au point considéré) entre deux nœuds est égale à la perte de charge entre ces nœuds.

Cependant, pour pouvoir obtenir les charges et débits pour chaque nœud et chaque tronçon, il est nécessaire que certains débits et certaines charges soient préalablement connus.

Il s'agit des nœuds à charge fixée (réservoirs, bâches) qui imposent la charge de départ et ainsi permet le calcul de la charge à chaque nœud de proche en proche.

Il s'agit aussi des nœuds à débit fixé (définition des demandes à chaque nœud) qui permettent de connaître les débits dans les tronçons satisfaisants cette demande. Enfin, l'écoulement se fait du nœud ayant la charge la plus élevée vers le nœud ayant un potentiel de charge moins important. Le calcul des débits et des charges est lié et ne peut se faire indépendamment. Dès lors, il est nécessaire de connaître l'une ou l'autre des données à chaque nœud pour permettre l'aboutissement du calcul

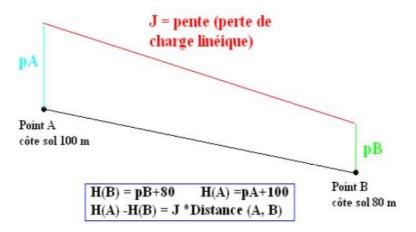


Figure III.19. Schéma illustratif de la loi des mailles dans un réseau d'eau potable 3.6.1.1 Le calcul des pertes de charge linéaires :

Le calcul des pertes de charges linéaires sur le logiciel peut se faire par le biais de trois formules différentes (Hazan-Williams, Darcy-Weis Bach, Chézy-Manning).

La formule de Hazan-Williams est fortement utilisée aux Etats-Unis et présente la particularité de n'être utilisable que pour l'eau et de n'avoir été développée à la base que pour les écoulements turbulents.

La formule de Chézy-Manning est plus souvent utilisée pour les canaux à découvert et pour les grands diamètres. J'ai choisi d'utiliser la formule de Darcy Weis Bach qui est la plus utilisée en Europe et qui traite les écoulements de tout type et pour tout liquide.

$$h = A*q^B$$

Avec:

h : la perte charge en unités de longueur,

A : le coefficient de résistance.

Q : le débit

B: l'exposant du débit.

Les coefficients A et B varient suivant les formules. Pour la formule de Darcy Weis Bach,

 $A = 0.0827 * f (\epsilon, d, q) * d - 5 * L$

Avec:

L: longueur en m du tronçon,

D: diamètre du tuyau en m,

Q: débit en m3/s

ε: coefficient de rugosité de la conduite en m.

La rugosité correspond à la hauteur des aspérités à la surface de la paroi intérieure d'une canalisation. Plus cette rugosité est importante, plus la perte de charge croît. La rugosité, représentative de l'état intérieur d'une conduite, croît selon la nature de la canalisation et avec l'âge de la canalisation.

3.6.1.2 Le calcul des pertes de charges singulières :

Les pertes de charges singulières représentent la présence ponctuelle d'un obstacle à l'écoulement (vanne partiellement ou totalement ouverte, coude, té ou obstacle non identifié). La formule utilisée est la suivante :

$$H = \lambda *v2/2g$$

Avec:

V : vitesse de l'écoulement en m/s,

Λ: coefficient de perte de charges singulières

G: l'accélération de la pesanteur en (m.s⁻²).

Le coefficient λ définit la nature de l'obstacle.

3.6.2 Spécificités du logiciel :

Le logiciel possède les mêmes fonctionnalités et possibilités que les autres logiciels de modélisation des réseaux d'eau potable tels que Portaux ou Piccolo. Il présente une convivialité au niveau de son interface qui permet de le rendre assez facilement accessible. Cependant, une

formation était nécessaire pour ne pas tomber dans le piège représenté par cette facilité de manipulation des éléments d'Epanet.

On peut également travailler un réseau saisi sur Epanet avec le logiciel Portaux grâce à une passerelle permettant le transfert des fichiers. En termes de calcul, Epanet présente quelques particularités. Par exemple, sur le logiciel Piccolo, il est possible de demander au logiciel de revoir une demande à la baisse tandis que sur Epanet, une demande est toujours desservie à 100%. Dès lors, lorsqu'on obtient des pressions négatives sur un nœud, ceci signifie que la demande n'est pas satisfaite.

3.7 Les étapes de l'utilisation d'Epanet :

Pour modéliser notre système de distribution d'eau, nous avons suivi les étapes suivantes :

Dessin du réseau représentant le système de distribution à l'aide d'un fond d'écran. :

Epanet peut afficher un fond d'écran derrière le schéma du réseau. Le fond d'écran peut être une carte routière, un plan de services publics, une carte topographique, un plan d'aménagement du territoire ou n'importe quel autre dessin. Il doit être un méta fichier amélioré ou un bitmap créé hors EPANET. Ainsi, une fois importé il ne peut être modifié.

Pour l'ajout des tuyaux au réseau, nous avons procédé comme suit :

- Nous couper le schéma AUTOCAD du réseau et l'enregistrer sous format BMP.
- > Ouvrir Epanet ensuite sélectionner affichage » Fond d'écran » importer et choisir le fichier enregistré.
- Les éléments du réseau (nœuds, conduites, vannes etc.) sont ajoutés directement sur le plan constituant le fond d'écran.
- ➤ Les nœuds : Les données introduites pour chaque nœud sont l'altitude et la demande de base
- Les conduites: La longueur en mètres, le diamètre en millimètres et la rugosité sont les données introduites pour chaque conduite. Les longueurs peuvent être majorées de 10 % pour tenir compte des pertes de charge singulières.
- ➤ La bâche : La bâche est un réservoir circulaire et semi enterré à grande capacité. Elle Est alimentée par gravité.

Les réservoirs : Les réservoirs sont constitués du réservoir de tête et des réservoirs d'équilibre. Les données à insérer sont :

La côte du radier

Le niveau initial

Le niveau minimal

Le niveau maximal

Le rayon (forme circulaire)

Les vannes : Leurs principaux paramètres d'entrée sont : les nœuds d'entrée et de sortie, le diamètre, la consigne de fonctionnement et l'état de la vanne.

3.7.1 Sélection des options de simulation :

La courbe de modulation ou variation de la consommation :

La détermination des pointes de consommation s'avère d'une grande importance dans le dimensionne ment des réseaux de distribution ou dans la détermination de la capacité de la station de pompage. La consommation varie selon les heures du jour, au rythme des activités urbaines. Dans nos villes, le minimum se situe entre 20 et 3 heures du matin. Le maximum se situe généralement entre 6 heures et 8 heures. Nous avons fourni trois types de courbes de modulation.

Les Formule de Darcy -Weisbach :

Les chercheurs Darcy et Weisbach ont proposé des équations qui permettent de déterminer, la résistance, les pertes de charge, la vitesse et le débit dans les conduites d'eau potable.

• Le

débit : Selon Darcy -Weisbach nous avons l'expression suivante

$$Q = \frac{\pi * D^2}{4} \sqrt{\frac{8g * R_h * S}{f}}$$

Avec:

f : facteur de frottement, [sans dimension]

Q : débit dans la conduite

R_h: rayon hydraulique

S : perte de charge par unité de longueur (gradient hydraulique).

g : accélération de la pesanteur

Le rayon hydraulique : c'est le rapport de la section de l'écoulement de la conduite sur le périmètre mouillé.

Détermination du facteur de frottement :

Pour déterminer le facteur de frottement on peut utiliser :

Le diagramme de Moody : Si le régime d'écoulement est laminaire dans ce cas :

$$f = \frac{64}{R_e}$$

Cependant si nous sommes en présence d'un régime turbulent, dans ce cas on utilise le diagramme de Moody, la formule de White - Colebrooke et d'autres formules approchées.

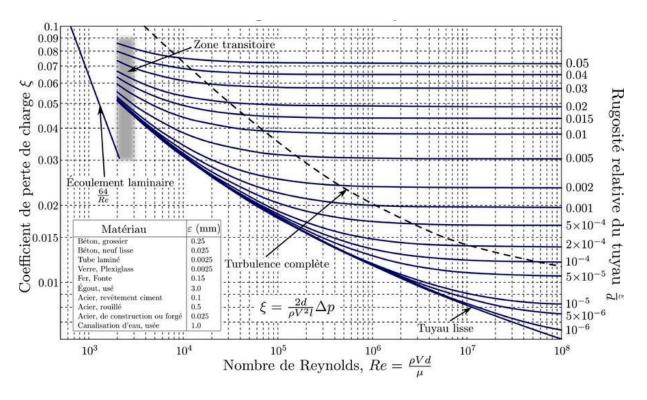


Figure III.20. diagramme de MOODY

➤ La formule de White -Colebrooke : La formule de White -Colebrooke est utilisée pour calculer la partie turbulente du diagramme de Moody.

$$\frac{1}{\sqrt{f}} = -2log_{10} \quad (\frac{\mathcal{E}}{3.7d} + \frac{2.51}{R * \sqrt{f}})$$

3.7.2 Nos applications

Dans notre travail, nous avons basé le programme sur la loi de Darcy-Weisbach, qui est l'une des lois fondamentales de la mécanique des fluides. Cette loi nous aide à calculer la perte de pression dans les tuyaux en raison de la friction, ce qui contribue à améliorer la conception des systèmes hydrauliques et à augmenter leur efficacité.

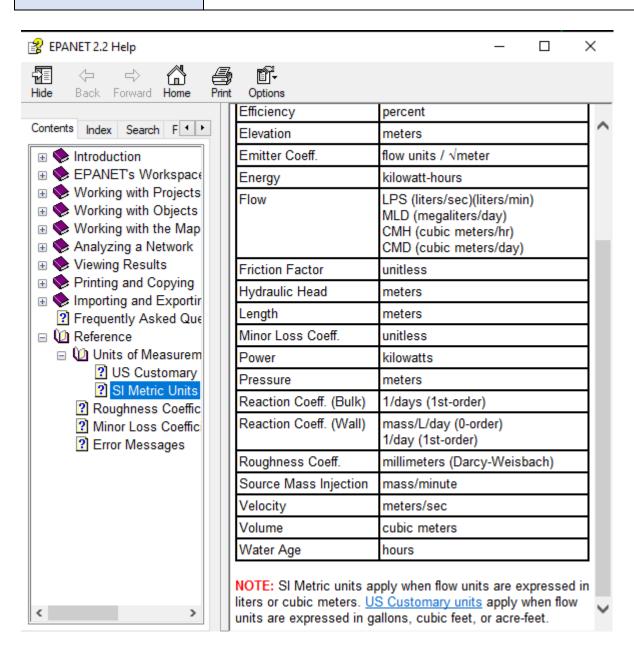


Figure III.21. définie les unités des calculs de logiciel

3.7. Conclusion:

Les potentialités du logiciel Epanet ont pu être vérifiées tout au long du stage même si cependant, certaines limites de calcul ont également été relevées. L'efficacité du logiciel est permise par une connaissance quasi-parfaite des spécificités du terrain. Toutes les manipulations sur le logiciel doivent se justifier sur le terrain. Plus cette cohérence sera respectée, plus le modèle utilisé sera précis. A défaut de dire que le modèle réalisé au cours de notre stage est parfait, on peut affirmer qu'il a été façonné en interprétant et vérifiant toutes les suppositions faites lors du calage.

Chapitre IV:

Présentation de Résultats des logiciels Utilisés

4 <u>Chapitre IV : Présentation de Résultats des logiciels</u> <u>Utilisés</u>

4.1 Introduction:

Ce chapitre présente les résultats obtenus à partir de la simulation hydraulique du réseau de distribution d'eau potable de la zone d'étude « La nouvelle Ville El Menia ». La simulation a été réalisée à l'aide du logiciel **EPANET**.

Cette simulation a pour objectif d'évaluer l'efficacité du réseau en termes de répartition des pressions, de vitesses et de débits à travers les différentes sections, et de vérifier la capacité du système à satisfaire la demande en eau dans les conditions de fonctionnement définies.

Le chapitre inclut une analyse des résultats relatifs aux pressions aux nœuds, aux vitesses d'écoulement dans les conduites, ainsi que l'identification des points critiques nécessitant éventuellement des interventions techniques pour améliorer les performances du réseau.

4.2 Affichage de la zone d'étude par l'Auto CAD :

Après notre travail sur AutoCAD, voici le résultat après les modifications

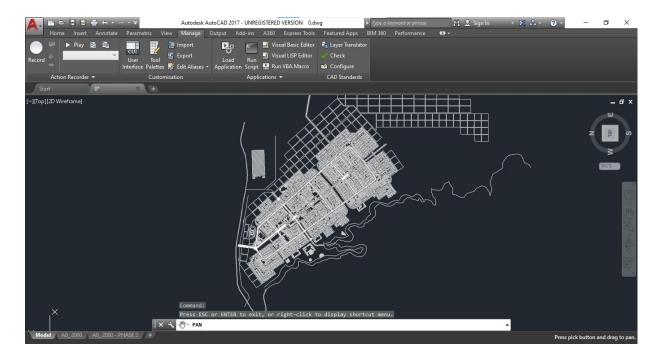


Figure IV.1 : représentation du la zone d'étude avec Auto CAD

4.3 Affichage de Réseau AEP sur Epanet :

4.3.1 4.1. Résultat de la simulation par Epanet :

La simulation hydraulique du réseau a été réalisée à l'aide du logiciel EPANET, sur la base du modèle géométrique préalablement importé et préparé. Cette simulation a permis d'analyser plusieurs paramètres essentiels au bon fonctionnement du système de distribution d'eau potable, notamment :

- La répartition des pressions au niveau des nœuds (points de consommation),
- Les vitesses d'écoulement dans les conduites,
- Les débits transportés à travers le réseau,
- L'identification des points critiques (pressions insuffisantes, vitesses excessives, stagnation...).

Dans un premier temps, une fois que toutes les données ont été saisies et intégrées dans le modèle...

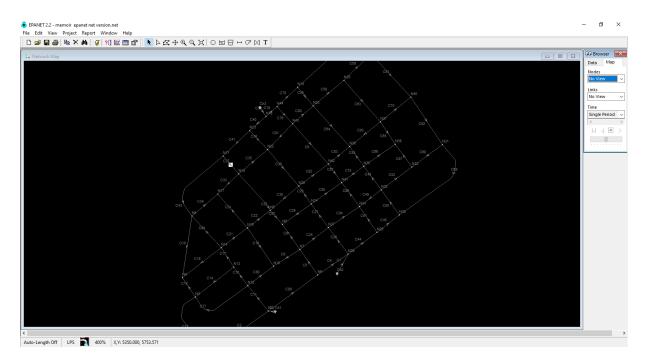


Figure IV.2 : représentation du réseau avant la simulation

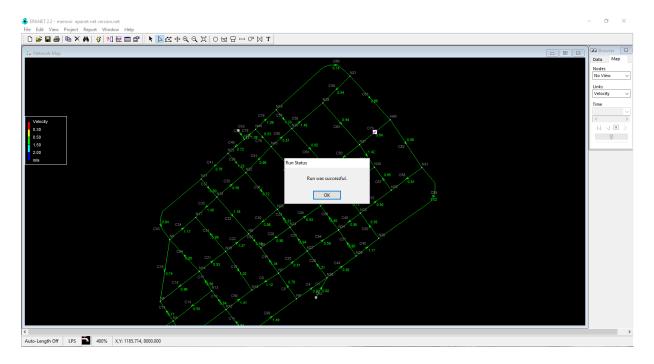
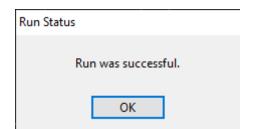



Figure IV.3: représentation du réseau après la simulation

La simulation hydraulique a été effectuée avec succès, ce qui signifie que EPANET a pu résoudre toutes les équations liées à l'équilibre des débits et des pressions sans erreurs de calcul ni problèmes de données.

*** East View Profest Report Windows Help

***Dear Report Windows Help

**Dear Report Windows Help

***Dear Report Windows Help

**Dear Report Windows Help

***Dear Report Windows Help

***Dear Report Windows Help

**Dear Report Windows H

Figure IV.4: représentation que la simulation est succès

Figure IV.5 : présentation d'altitude des nœuds et le sens d'écoulement

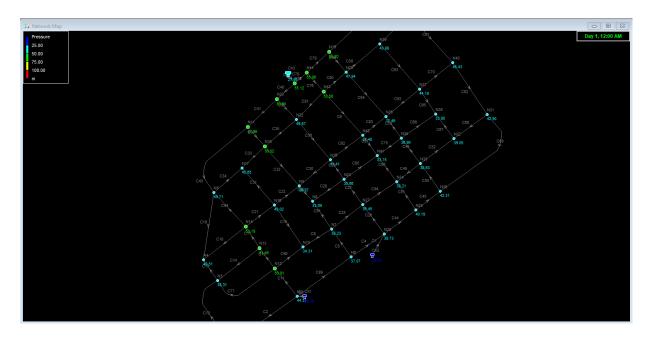


Figure IV.6 : l'état de réseau après simulation (cas de pression)

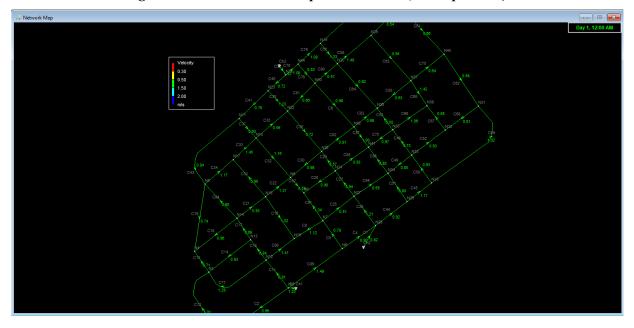


Figure IV.7 : l'état de réseau après simulation (cas de vitesse)

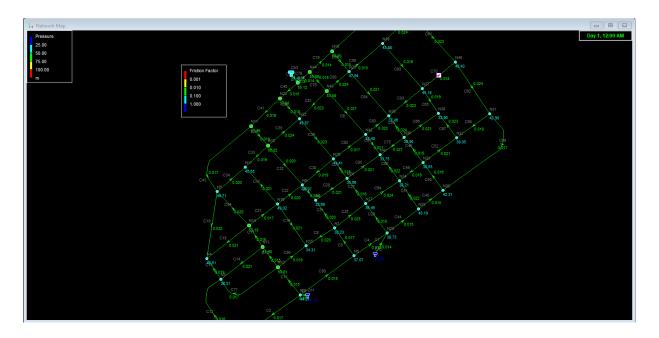


Figure IV.8 : l'état de réseau après simulation (Friction Factor)

Un facteur qui représente la résistance de la conduite à l'écoulement de l'eau à l'intérieur, et qui dépend de la rugosité de la conduite, de la vitesse de l'écoulement et du diamètre de la conduite.

Tableau IV.1 : Résultat d'Epanet (cas vitesse et perte de charge)

III Network Table - Links						
Link ID	Length m	Diameter mm	Roughness mm	Flow LPS	Velocity m/s	Unit Headloss m/km
Pipe C2	440	150	0.001	16.94	0.96	5.21
Pipe C3	30	350	0.001	115.64	1.20	2.86
Pipe C8	225	50	0.001	2.21	1.12	26.28
Pipe C10	160	250	0.001	41.27	0.84	2.23
Pipe C11	240	300	0.01	64.09	0.91	2.10
Pipe C12	610	100	0.001	7.94	1.01	9.36
Pipe C13	160	100	0.001	5.57	0.71	4.96
Pipe C14	380	50	0.001	-1.83	0.93	18.80
Pipe C16	350	50	0.001	-2.00	1.02	22.01
Pipe C17	175	250	0.001	33.32	0.68	1.52
Pipe C18	390	50	0.001	1.88	0.96	19.67
Pipe C19	490	50	0.001	-1.46	0.74	12.64
Pipe C21	235	150	0.001	16.51	0.93	4.98
Pipe C22	216	50	0.001	2.68	1.37	37.27
Pipe C25	275	50	0.001	1.00	0.51	6.46
Pipe C26	226	200	0.001	38.12	1.21	5.65
Pipe C27	221	200	0.001	29.50	0.94	3.56
Pipe C28	282	50	0.001	-1.76	0.90	17.65
Pipe C29	179	200	0.001	17.82	0.57	1.44
Pipe C30	294	80	0.001	4.95	0.98	11.69
Pipe C31	353	50	0.001	1.94	0.99	20.86
Pipe C33	225	50	0.001	2.86	1.45	41.63
Pipe C34	250	50	0.001	-2.30	1.17	28.23
Pipe C35	285	50	0.001	-1.09	0.56	7.53
Pipe C36	375	50	0.001	-1.41	0.72	11.91
Pipe C37	190	180	0.001	-15.31	0.60	1.81
Pipe C38	201	90	0.001	-7.83	1.23	15.11

Chapitre IV		Présentation de Résultats des logiciels Utilisés					
Pipe C39	96	350	0.001	-137.27	1.43	3.91	
Pipe C40	158	300	0.001	50.87	0.72	1.35	
Pipe C41	292	250	0.001	37.47	0.76	1.87	
Pipe C43	590	140	0.001	12.98	0.84	4.50	
Pipe C44	255	300	0.001	64.79	0.92	2.10	
Pipe C45	217	250	0.001	57.39	1.17	4.05	
Pipe C48	225	150	0.001	12.97	0.73	3.22	
Pipe C49	209	100	0.001	-6.64	0.85	6.79	
Pipe C50	194	200	0.001	-29.37	0.93	3.53	
Pipe C51	208	50	0.001	1.57	0.80	14.34	
Pipe C52	300	50	0.001	1.82	0.93	18.59	
Pipe C53	197	50	0.001	1.07	0.55	7.34	
Pine C55	188	200	0.001	-41.81	1.33	6.68	

165

0.001

31.69

1.48

10.21

300

Pipe C58

Chapitre IV		I	Présentation	n de Résulta	uts des logic	ciels Utilisés
1						
Pipe C59	300	50	0.001	-1.06	0.54	7.06
Pipe C60	722	160	0.001	14.94	0.74	3.05
Pipe C61	447	50	0.001	-1.30	0.66	10.22
Pipe C62	436	50	0.001	1.14	0.58	8.09
Pipe C63	416	180	0.001	24.04	0.94	4.08
Pipe C64	410	50	0.001	1.80	0.92	18.25
Pipe C65	209	50	0.001	2.78	1.42	39.64
Pipe C66	294	50	0.001	2.09	1.06	23.83
Pipe C67	215	50	0.001	-1.28	0.65	10.03
Pipe C68	292	100	0.001	-6.38	0.81	6.32
Pipe C69	760	150	0.001	17.99	1.02	5.81
Pipe C70	278	140	0.001	-9.79	0.64	2.71
Pipe C78	100	315	0.001	84.18	1.08	2.67
Pipe C79	216	280	0.001		1.08	
Pipe C80	205	50	0.001		0.57	8.01
Pipe C81	266	50	0.001		0.66	10.19
Pipe C82	262	150	0.001	14.29	0.81	3.84
Pipe C83	204	100	0.001	-5.36	0.68	4.63
Pipe C85	263	50	0.001	-1.82	0.93	18.68
Pipe C86	218	50	0.001	1.66	0.85	15.87
Pipe C87	170	50	0.001	-1.97	1.00	21.47
Pipe C1	60	400	0.001	102.67	0.82	1.21
Pipe C4	220	100	0.001	6.24	0.80	6.08
Pipe C5	230	150	0.001	-13.89	0.79	3.65
Pipe C75	207	50	0.001	-1.90	0.97	20.06
Pipe C76	192	180	0.001	13.45	0.53	1.44
Pipe C77	520	100	0.001	10.11	1.29	14.42
Pipe C84	345	100	0.001	5.13	0.65	4.28
Pipe C89	280	150	0.001	26.39	1.49	11.60
Pipe C90	240	50	0.001	2.78	1.41	39.57
Pipe C91	210	50	0.001	2.63	1.34	35.90

50

50

50

50

50

0.001

0.001

0.001

0.001

0.001

-1.15

-1.23

1.16

1.92

2.29

0.59

0.63

0.59

0.98

1.16

8.27

9.29

8.45

20.45

28.00

155

293

265

400

359

Pipe C92

Pipe C93

Pipe C94

Pipe C6

Pipe C32

Tableau IV.2. : Résultat d'Epanet (cas de pression)

Node ID	Elevation m	Base Demand LPS	Demand LPS	Head m	Pressure m
Junc N1	462	8.224008	8.22	481.64	19.64
Junc N2	460	8.995	8.99	479.32	19.32
Junc N3	460	14.3063	14.31	473.46	13.46
Junc N4	457	8.9093	8.91	472.60	15.60
Junc N5	454	14.34918	14.35	477.39	23.39
Junc N7	464	8.0526745	8.05	475.96	11.96
Junc N8	461	5.542638	5.54	472.00	11.00
Junc N9	457	8.772272	8.77	473.77	16.77
Junc N10	450	9.0721088	9.07	478.01	28.01
Junc N11	449	9.1834756	9.18	478.81	29.81
Junc N12	455	9.937343	9.94	481.12	26.12
Junc N13	454	6.125172625	6.13	480.74	26.74
Junc N14	452	9.808842875	9.81	479.91	27.91
Junc N15	462	6.981840	6.98	470.82	8.82
Junc N16	455	9.88594295	9.89	478.79	23.79
Junc N17	451	7.0932069	7.09	470.05	19.05
Junc N18	452	2.21020215	2.21	479.69	27.69
Junc N19	456	9.64607605	9.65	479.01	23.01
Junc N20	457	9.44904	9.45	477.54	20.54
Junc N21	451	12.58444558	12.58	477.64	26.64
Junc N22	454	8.797975225	8.80	471.96	17.96
Junc N23	453	5.576905425	5.58	479.30	26.30
Junc N24	464	8.095507875	8.10	480.15	16.15

Node ID	Elevation m	Base Demand LPS	Demand LPS	Head m	Pressure m
Junc N26	458	0	0.00	479.67	21.67
Junc N27	464	8.455308225	8.46	481.39	17.39
Junc N28	463	6.005239175	6.01	481.68	18.68
Junc N29	461	5.825339	5.83	481.08	20.08
Junc N30	458	10.03157643	10.03	480.08	22.08
Junc N31	453	12.7472124	12.75	474.39	21.39
Junc N32	455	6.913306725	6.91	472.38	17.38
Junc N33	461	7.9498744	7.95	479.33	18.33
Junc N34	460	7.7100075	7.71	477.98	17.98
Junc N35	460	7.907041025	7.91	478.46	18.46
Junc N36	460	9.4576092	9.46	474.59	14.59
Junc N37	456	10.2457433	10.25	472.01	16.01
Junc N38	458	6.15087265	6.15	468.35	10.35
Junc N39	458	8.7037418	8.70	474.36	16.36
Junc N40	454	9.945909675	9.95	469.97	15.97
Junc N41	461	7.35020715	7.35	473.81	12.81
Junc N42	461	8.8750753	8.88	475.74	14.74
Junc N43	453	9.106375525	9.11	479.27	26.27
Junc N44	451	4.3518709	4.35	479.55	28.55
Junc N6	466	6.25367	6.25	479.24	13.24
Tank Ch1	457	#N/A	-98.54	481.70	24.70
Tank Ch2	461.8	#N/A	-133.51	481.80	20.00
Tank Ch3	452.5	#N/A	-123.54	480.00	27.50

4.3.2 Courbes de distributions :

Cette courbe représente sur l'axe Y la fraction d'objets de valeurs inférieure à la valeur de l'axe X et s'applique à tous les nœuds ou tous les arcs à un instant donné.

La Figure représente la distribution de vitesses et la Figure affiche la distribution de pressions dans les nœuds.

Figure IV.9 : courbe de répartition des pourcentages des pressions dans les nœuds

Répartition des pressions dans les nœuds de consommation:

Les résultats de la simulation avec le modèle de consommation représentés sur les figures montrent que :

→70 %: des nœuds de consommation une pression compris entre10 et 19m →50 %: des nœuds de consommation une pression compris entre 19m et 30m

4.3.3 Courbe de vitesse :

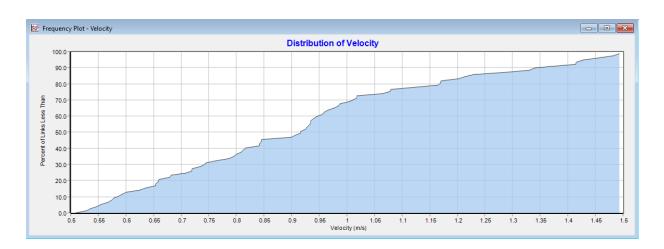


Figure IV.9 : courbe de répartition des pourcentages des vitesses

Les résultats de la simulation avec le modèle de consommation représentés sur les figures montrent que :

70%: des conduites de distribution ont une vitesse comprise entre 0.5 et 1 m/s 30 %: des conduites de distribution ont une vitesse comprise entre 1 et 1.5 m/s

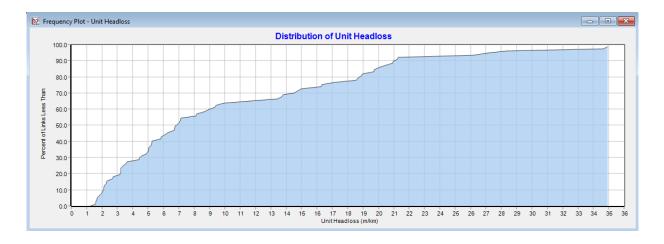


Figure IV.8 : courbe de répartition des pourcentages des Pertes de charge

NOUS Observé que là la perte de charge égal à 35 mètres par un kilomètre, Et on presque 20

4.4 Analyse synthétique :

La simulation hydraulique réalisée à l'aide du logiciel EPANET a montré que le réseau de distribution d'eau potable de la zone d'étude présente, dans l'ensemble, des performances acceptables, avec des pressions généralement conformes aux normes dans la majorité des nœuds.

Après simulation on constate que presque tous les réseaux présentent des pressions de service comprises entre 2,4 et 4,7 bars. La variation de pression au cours de la journée n'excède pas 0,55 bars. La vitesse maximale est de 1,47

Les hypothèses présentées aux chapitres précédents sont donc respectées avec les diamètres et natures de canalisations choisies.

4.5 Conclusion:

Le logiciel Epanet reste plus performent et rapidité d'exécution de la simulation ainsi que l'affichage de la répartition des pressions dans les nœuds et les vitesses dans les conduites.

Conclusion général

Conclusion générale

En conclusion de ce mémoire intitulé « Étude et simulation du réseau de distribution d'eau de la NVM », nous avons abordé une problématique centrale : concevoir un réseau de distribution d'eau efficace et durable, capable de répondre aux besoins actuels et futurs de la région.

Pour atteindre cet objectif, nous avons collecté des données auprès des institutions compétentes, notamment l'Établissement de la Nouvelle Ville et la Direction Locale des Ressources en Eau, en plus de nombreuses visites de terrain. L'analyse des données a été réalisée à l'aide du logiciel EPANET, ce qui nous a permis de simuler un réseau initialement fiable, malgré certaines difficultés techniques, telles que la panne d'ordinateur, la conversion des plans AutoCAD vers EPANET, ainsi que l'accès difficile à certaines informations. Les résultats obtenus montrent que la baisse du niveau des ressources en eau représente un risque important pour la région, particulièrement en raison de l'expansion urbaine prévue. De plus, la deuxième phase des travaux, encore non entamée, influencera la demande future ainsi que les dimensions du réseau, ce qui exigera une actualisation du modèle proposé.

Ainsi, nous recommandons:

- Une attention accrue aux ressources en eau souterraines, source principale d'approvisionnement.
- Un suivi régulier de l'évolution de la demande en eau, en parallèle avec l'avancement des travaux.
- Une coordination renforcée entre les acteurs concernés pour assurer l'intégration harmonieuse des réseaux actuels et futurs.

Ce travail constitue une première étape vers la mise en place d'un réseau de distribution d'eau durable, avec l'espoir qu'il contribuera à orienter les efforts locaux pour garantir la sécurité hydrique des habitants de la région.

Bibliographie

- 1. Tome1, eau dans la ville, alimentation eau, édition TEC et DOC, paris, p435.
- 2. EGIS International. (2016). *Étude technique pour l'alimentation en eau potable El Menia.*
- 3. Mémoire de Master AIAD Walid Etude de la salinisation du sol la région de El-Menia (El-Goléa) UNIVERSITE KASDI MERBAH OUARGLA-2019
- 4. Office National des Statistiques (ONS). (2008). *Recensement général de la population.*
- 5. Bonnin, J. (1982). Aide-mémoire Hydraulique urbaine. France: Édition Eyrolles.
- 6. François, G. (2000). Distribution et colecte des eaux 2ed. Presses internationales Polytechnique
- 7. AHSENE LYDIA, ALIMENTATION EN EAU POTABLE de la commune de Tizi N'Tleta, Université Abderrahmane MIRA de Bejaia,2014-2015.
- 8. Hugues, G. (2008). Adduction et distribution d'eau. Techniques de l'Ingénieur.
- 9. Guide technique de l'eau potable, direction de l'eau et d'assainissement, octobre 2014.
- 10. Dupont, A. (1979). Hydraulique urbaine, Tome 2. Paris: Edition Eyrolles.
- 11. Adour-Garonne, L. d. (2005). Connaissance et maîtrise des pertes dans les réseaux d'eau potable.
- 12. Chanson, H. (2004). *The Hydraulics of Open Channel Flow: An Introduction.* Elsevier.
- 13. Mays, L. W. (2000). *Water Distribution Systems Handbook.* McGraw-Hill.
- 14. Sincero, A. P., & Sincero, G. A. (2002). *Physical—Chemical Treatment of Water and Wastewater.* IWA Publishing.
- 15. Hardy Cross (1936). *Analysis of Flow in Networks of Conduits or Conductors.*
- 16. AutoDesk AutoCAD Manuel utilisateur, Autodesk Inc. Disponible sur : https://www.autodesk.com
- 17. EPANET 2.0 US Environmental Protection Agency (EPA), 2000. Disponible sur: https://www.epa.gov/water-research/epanet.

الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي والبحث العلمي

Ministère de L'enseignement Supérieur et de La recherche Scientifique

Université de Ghardaïa Faculté des Sciences et de la Technologie Département d'hydraulique et de génie civil

جامعة غرداية كلية الطوم والتكثولوجيا قسم الري والهندسة المدنية

إذن بطباعة مذكرة ماستر

بعد الاطلاع على التصحيحات المطلوبة لمحتوى المذكرة المنجزة من طرف الطالب (ة): ليصير محمد عبد القافع تخصص ري

حضري

الامضاء	الصفة	الرنبة والجامعة الأصلية أو المؤسسة	الاسم واللقسب
-8	مصحح1	أستاذ محاضر أبجامعة غرداية	أو لاد النوي نور الدين
18#	مصحح2	أستاذ مساعد أبجامعة غرداية	مٹري ہٹير
-See-	مؤطر	أستاذ محاضر ب بجامعة غرداية	لشهب السنة

الإذن بطباعة النسخة النهائية لمذكرة الماستر تحت عنوان:

Diagnostic et modélisation du réseau de distribution d'eau potable (AEP) à l'aide d'EPANET : Cas de la nouvelle ville de El-Meniaa

امضاء رنس القسم

وويون يو الطي رئيسر قسم الري راهندسة الدنير