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Abstract

In this memory, we focus on studying the issue of the existence, uniqueness and stability of solutions
for a coupled systems of nonlinear integral equations under the ψ-RiemannLiouville fractional integral
in some spaces endowed with vector-valued norms (generalized Banach spaces in the sense of Perov).
The desired results are achieved by using a combination of fixed point theorems with vector-valued
norms technique as well as convergent to zero matrices. More specifically, we essentially confirm
the existence of at least one solution for the suggested problems via Schauder’s fixed-point theorem
whereas the existence of a unique solution for the underlying systems is proved by Perov’s fixed-point
theorem. While the concept of the matrices converging to zero is implemented to examine different
types of stabilities in the sense of Ulam-Hyers (UH) of the given problems. Finally, some illustrative
examples are provided to demonstrate the validity of our theoretical findings.
Key words and phrases: Integral Equations, Coupled system, ψ-Caputo fractional derivative,
fixed-point theorems, existence and uniqueness, Ulam-Hyrs stability, Bielecki norm, Banach space,
Generalized Banach space, Vector-Valued Norms.

AMS Subject Classification : 26A33, 34A08, 34B15, 45G15.



Résumé

Dans ce mémoire, nous nous intéressons à l’étude de l’existence, de l’unicité et de la stabilité
des solutions pour un système couplé d’équations intégrales non linéaires sous l’intégrale fraction-
naire de ψRiemann-Liouville dans certains espaces munis de normes vectorielles (espaces de Banach
généralisés au sens de Perov). Les résultats souhaités sont obtenus en utilisant une combinaison de
théorèmes du point fixe avec la technique des normes vectorielles ainsi que des matrices convergentes
vers zéro. Plus précisément, nous confirmons essentiellement l’existence d’au moins une solution
pour les problèmes suggérés via le théorème du point fixe de Schauder, tandis que l’existence d’une
solution unique pour les systèmes sous-jacents est prouvée par le théorème du point fixe de Perov.
Le concept de matrices convergentes vers zéro est mis en uvre pour examiner différents types de
stabilités au sens d’Ulam-Hyers (UH) des problèmes donnés. Enfin, quelques exemples illustratifs
sont fournis pour démontrer la validité de nos résultats théoriques.
Mots clés et expressions : Équations intégrales, Système couplé, Dérivée fractionnaire de ψ-
Caputo, théorèmes du point fixe, existence et unicité, stabilité d’Ulam-Hyrs, norme de Bielecki,
espace de Banach, espace de Banach généralisé, normes vectorielles.
Classification AMS : 26A33, 34A08, 34B15, 45G15.



ׂڪٌמۘ
رஓ୷؇ن ψ Ⴄၽّ݁ܭ ොູب ۰َଫଐ݁گ ۊޚ٭۰ ଫଃ༚ Ⴄၽّܹ݁٭۰ ݁أ؇د৖৑ت أَޙ۰݄ ༡ߺࠊل واݿٺگݠار وۏިد,ّڰݠد ᄭᄟ؊݁ފ دراݿ۰ আॻ༟ ஼ߵணߖ اৎ৊ڍாணة, ۱ڍه ሒᇭ
༇຀؇اܳٷٺ ොູگ٭ݑ لࡤࡲ .( ଫଃًوف ৎ৊ڰ۳ިم وڣگ؇ اৎ৊أ۰݄݄ ً؇َ؇خ (ڣݯ؇ءات اܳگ٭۰݄ ݁ٺ۰۳۠ ଫଃأ؇لஓ୾ اৎ৊ݞودة اܳڰݯ؇ءات ًأݥ ሒᇭ اܳـܝ๤ཏي -ܳ٭ިڣ٭ܭ
႟ၽ૰૖و . اܳݱڰݠ ሌᇿا ݁ٺگ؇ر۰ً ݁ݱڰިڣ؇ت ሌᇿا اܳگ٭৖৑؇ً,۰݄ݪ؇ڣ۰ اৎ৊ٺ۰۳۠ ଫଃأ؇لৎ৊ا ّگٷ٭۰ ؕ݁ ۰ਐಸ؇اܳټ اܳٷگޚ۰ ل؇ت َޙݠ ݆݁ ༇຃ਲ਼ਦ ً؇ݿٺ༱ڎام اৎ৊ݠۏިة
཯ྦྷٴب ,྘ྲྀٷ݄؇ ۰ਐಸ؇اܳټ ይዧٷگޚ۰ ނ؇ودر ل۰ َޙݠ ఈః༠ل ݆݁ ۰༡ଫଐگৎ৊ا గጻዧފ؇فܭ ا৖৑ڢܭ আॻ༟ وا༡ڎ ༡ܭ وۏިد ๴ང؇اݿ ႟ၽ૰૖و ᄕც؇َ , ොູڎࢴࣖا ଫ଒ا܋

.۰ਐಸ؇اܳټ ይዧٷگޚ۰ ଫଃًوف ل۰ َޙݠ ఈః༠ل ݆݁ ا৙৑ݿ؇ݿ٭۰ ఈዳዧَޙ۰݄ ڣݠࢴࣖ ༡ܭ وۏިد
. اৎ৊أޚ؇ة గጻዧފ؇فܭ (UH) او৖৑م-۱؇ߌߵز ৎ৊ڰ۳ިم وڣگ؇ ا৖৑ݿٺگݠار ݆݁ ෛ੼ٺܹڰ۰ أَިاع ᄴᄟراݿ۰ اܳݱڰݠ ሌᇿا اৎ৊ݱڰިڣ؇ت ّگ؇رب ݁ڰ۳ިم لޚٴݑ ྘ྲྀٷ݄؇

ل۰. اܳٷޙݠ ෠ຩ؇ਐ಻ٷ؇ ۰ොේ ਊು৖৑؇ت اܳٺިݪ٭ۜ٭۰ ᄭᄥ݁ټ৙৑ا ًأݥ ,َگڎم وأଫଃ༠ا
-ቕረاو واܳٺڰݠد,اݿٺگݠار ,اܳިۏިد ۰ਐಸ؇اܳټ اܳٷگޚ۰ ل؇ت ل۰,َޙݠ ๤ཏاܳـܝ اৎ৊گଫଐن,اৎ৊ލٺگ۰ ,اܳٷޙ؇م اܳٺႤၽܹ݁٭۰ اৎ৊أ؇د৖৑ت اिऻء׫ոؼמ١: اڤոஈ࿦࿮ت

اৎ৊ٺ۳۠؇ت. ଫଃأ݄ܾ,݁أ؇لৎ৊ا ً؇َ؇خ ً؇َ؇خ,ڣݯ؇ء ڣݯ؇ء ,௧ௌܹ٭ਃಸ ݁أ٭؇ر ۱؇ߌߵز,
45G15. 34B15, 34A08, 26A33, : AMS ڲܙۛܙع ༓ׂۢמ؉
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List of symbols
We use the following notations throughout this memory:

Acronyms
• FODs: fractional ordinary differential equations.

• FDEs: Fractional differential equations.

• ODE:ordinary differential equation.

• MLF: Mittag-Leffler function.

• GBS: generalized Banach space.

• UH: Ulam–Hyers stability.

• FPT: fixed point theorem.

Notation
• N: Set of natural numbers.

• R: Set of real numbers.

• Rn : Space of n-dimensional real vectors.

• sup : Supremum

• max : Maximum

• n! : Factorial (n), n ∈ N : The product of all the integers froml to n.

• Γ(·) : Gamma function.

• B(·) : Beta function.

• Eα(.):Mittag-Leffler function

• Iα,ψa+ : The fractional ψ-integral of order α > 0.

• fαa+ : The Riemann-Liouville fractional integral of order α > 0.

• RLDα
a+ : The Riemann-Liouville fractional derivative of orde α > 0.

• CDα
a+ : The Caputo fractional derivative of orde α > 0.

• C(J,E) : Space of continuous functions on J .

• AC(J,E) : Space of absolutely continuous functions on J .

• L1(J,R) : space of Lebesgue integrable functions on J .

• Lp(J,E) : space of measurable functions u with |u|p belongs to L1(J,R).

• L∞(J,E) : space of functions u that are essentially bounded on J .

8



Introduction

The origins of fractional calculus trace back to a letter dated September 30, 1695, in which the Ger-
man mathematician Gottfried Wilhelm Leibniz posed a curious question to the Marquis de l’Hôpital:
what would happen if the order of a derivative were a fraction rather than an integer? This question
marked the formal beginning of what would later be known as fractional calculus. Over the 18th
and 19th centuries, mathematicians such as Euler, Laplace, Fourier, Liouville, and Riemann made
significant contributions toward defining and understanding fractional integrals and derivatives. In
particular, Liouville and Riemann independently developed definitions of fractional integrals in the
mid-1800s, leading to what is now known as the Riemann–Liouville fractional integral and
derivative [23, 22].

Despite its early development, fractional calculus remained a mathematical curiosity for over two
centuries. It was not until the mid-20th century that the theory began to gain traction in the context
of applied problems. The introduction of the Caputo fractional derivative in the 1960s by Michele
Caputo [7] marked a turning point, as it aligned better with physical initial conditions in real-world
systems, particularly in viscoelasticity and diffusion processes. Since then, fractional calculus has
evolved into a rich and active field of research, with applications spanning physics, biology, control
theory, signal processing, and finance [27, 17].

In recent decades, fractional differential equations (FDEs) have emerged as robust tools for mod-
eling complex systems with memory and hereditary characteristics. Unlike classical differential
models, FDEs accommodate nonlocality by involving weakly singular convolution kernels of the form
(t− τ)−α, where 0 < α < 1. This feature enables them to capture anomalous diffusion, relaxation,
and long-range dependence behaviors more accurately than integer-order models.

Solving fractional differential equations analytically, however, presents significant challenges due
to the nonlocal and often nonlinear nature of the fractional operators involved. This has led to the
increasing use of functional analysis tools, particularly those based on fixed point theory, to establish
existence, uniqueness, and stability results for solutions of FDEs.

At the heart of these analytical tools lies the concept of a Banach space, a complete normed vector
space that provides a natural framework for discussing convergence and continuity. However, with the
increasing complexity of modern problems, especially in nonlinear and infinite-dimensional settings
classical Banach spaces may no longer be adequate. To overcome these limitations, mathematicians
have developed the concept of generalized Banach spaces, which extend the classical theory through
the use of vector valued norms, cone structures, and matrix based convergence criteria.

One important class of such generalizations involves vector-valued norms, where the norm of
an element is not a scalar but a vector in an ordered Banach space. This allows for the analysis
of problems involving multiple interacting components or anisotropic behavior. Another fruitful
approach introduces matrix norms, particularly those based on convergent-to-zero matrices, to define
more refined notions of contractivity. These generalized norms enable the extension of classical fixed
point theorems such as Banach’s contraction principle, Schauder’s theorem, and Krasnoselskii’s
theorem to a broader class of operators that arise naturally in the study of fractional differential and
integral equations.

In particular, fixed point theory in generalized Banach spaces has proven to be a powerful
framework for addressing the question of whether a given nonlinear operator equation, such as those
arising from fractional differential equations, has a solution, whether that solution is unique, and how
it behaves under small perturbations. These questions are central to ensuring that the mathematical
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models are not only solvable but also well-posed and stable.
A particularly important notion in this regard is the concept of Ulam–Hyers stability, which

investigates whether a function that approximately satisfies a functional equation is necessarily
close to a true solution. In the context of fractional differential equations, such stability results
help ensure that numerical or approximate solutions remain reliable, even under uncertain data or
modeling imperfections.

In this work, we focus on the existence and uniqueness of solutions for certain systems of nonlinear
fractional integral equations in some spaces endowed with vector-valued norms (generalized Banach
spaces in the sense of Perov). While the concept of the matrices converging to zero is implemented
to examine different types of stabilities in the sense of Ulam-Hyers (UH) of the given problems. The
organization of our work is outlined below:

• The first chapter summarizes some basic definitions, helpful lemmas, and theorems that are
necessary for proving our main outcomes.

• The second chapter deals with some existence, uniqueness and stability results for the following
problem: 

u(t) − θ1 =
∫ t

0

φ′(s)(φ(t) − φ(s))α1−1

Γ (α1)
F1(s, u(s), v(s))ds

+
∫ t

0

φ′(s)(φ(t) − φ(s))α1+α2−1

Γ (α1 + α2)
F2(s, u(s), v(s))ds

v(t) − θ2 =
∫ t

0

φ′(s)(φ(t) − φ(s))β1−1

Γ (β1)
G1(s, u(s), v(s))ds

+
∫ t

0

φ′(s)(φ(t) − φ(s))β1+β2−1

Γ (β1 + β2)
G2(s, u(s), v(s))ds

, t ∈ J. (1)

where T > 0, αi, βi ∈ (0, 1], θ1, θ2 ∈ R, i = 1, 2, and the nonlinear functions involved in the
above system satisfy certain conditions that will be specified hereafter.

• In the third chapter, we give a generalization of the previous system. More precisely, we focus on
the problem of the existence and uniqueness of solutions for the following system:

u(x, y) = a1(x, y) +
∫ x

0

∫ y

0

(x− s)α1−1(y − t)α2−1

Γ (α1) Γ (α2)
f1(s, t, u(s, t), v(s, t))dtds

+
∫ x

0

∫ y

0

(x− s)α1+β1−1(y − t)α2+β2−1

Γ (α1 + β1) Γ (α2 + β2)
f2(s, t, u(s, t), v(s, t))dtds,

v(x, y) = a2(x, y) +
∫ x

0

∫ y

0

(x− s)γ1−1(y − t)γ2−1

Γ (γ1) Γ (γ2)
g1(s, t, u(s, t), v(s, t))dtds,

+
∫ x

0

∫ y

0

(x− s)γ1+δ1−1(y − t)γ2+δ2−1

Γ (γ1 + δ1) Γ (γ2 + δ2)
g2(s, t, u(s, t), v(s, t))dtds,

(x, y) ∈ Ĩ

(2)
where Ĩ := [0, T1]×[0, T2] , T1, T2 > 0, (α1, α2) , (β1, β2) , (γ1, γ2), (δ1, δ2) ∈ (0, 1]×(0, 1],
and a1, a2 : Ĩ → R, f1, f2, g1, g2 : Ĩ× R2 → R are given continuous functions.

• Finally, our work closes with conclusions and some possible future work.
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Chapter 1

Preliminaries

1.1 Functional spaces
1.1.1 introdiction
functional spaces are used to study different types of functions. These spaces allow us to understand
how functions behave, especially when we deal with equations involving functions like differential or
integral equations.

We will now introduce three important functional spaces:

Let E be a Banach space endowed with the norm ∥.∥E and let J := [a, b] be a compact inter-
val of R. We present some functional spaces:

1.1.2 Space of Continuous Functions
Definition 1 Let C(J,E) be the Banach space of vector-valued continuous functions u :
J −→ E, equipped with the norm

∥u∥∞ = sup{∥u(t)∥ /t ∈ J}

Analogously, Cn( J, ) is the Banach space of functions u : J −→ E, where u is n time continu-
ously differentiable on J.

∥f∥Cn :=
n∑
k=0

∥ f (k)
∥∥∥
C

:=
n∑
k=0

max
t∈J

∣∣∣f (k)(t)
∣∣∣ , n ∈ N

In particulier if n = 0, C◦(J,E) ≡ C(J,E).

1.1.3 Spaces of Lebesgue’s Integrable Functions Lp

Denote by L1(J,R) the Banach space of functions u Lebesgues integrable with the norm

∥x∥L1 =
∫

J
|x(r)|dt

while Lp(J,R) denote the space of Lebesgue integrable functions on J where |u|p belongs to L1(J,R),
endowed with the norm

∥u∥Lp =
[∫ T

0
|u(t)|pdt

] 1
p

, 1 < p < ∞

In particular, if p = ∞, L∞(J,R) is the space of all functions u that are essentially bounded on
J with essential supremum

11



∥u∥L∞ = ess sup
t∈J

|u(t)| = inf{c ≥ 0 : |u(t)| ≤ c for a.e. t}.
.

1.1.4 Spaces of Absolutely Continuous Functions
Definition 2 A function u : J → E is said to be absolutely continuous on J if for all ε > 0 there
exists a number δ > 0 such that ; for all finite partitions [ai, bi]ni=1 ⊂ J then ∑n

k=1 (bk− ak) < δ
implies that ∑n

k=1 |f (bk) − f (ak)| < ε
We denote by AC(J,E) ( or AC1(J,E)) the space of all absolutely continuous functions defined

on J . It is known that AC(J,E) coincides with the space of primitives of Lebesgue summable
functions:

u ∈ AC(J,E) ⇔ u(t) = c+
∫ t

a
ϕ(s)ds, ϕ ∈ L1(J,R) (1.1)

and therefore an absolutely continuous function u has a summable derivative u′(t) = ϕ(t) almost
everywhere on J. Thus ( (1.1) ) yields

u′(t) = ϕ(t) and c = u(0).

.

Definition 3 For n ∈ N∗ we denote by ACn(J,E) the space of functions u : J −→ E which have
continuous derivatives up to order n− 1 on J such that u(n−1) belongs to AC( J,E) :

ACn(J,E) =
{
u ∈ Cn−1(J,E) : u(n−1) ∈ AC(J,E)

}
=
{
u ∈ Cn−1(J,E) : u(n) ∈ L1(J,E)

}
The space ACn(J,E) consists of those and only those functions u which can be represented in

the form
u(t) = 1

(n− 1)!

∫ t

0
(t− s)n−1ϕ(s)ds+

n−1∑
k=0

ckt
k (1.2)

where ϕ ∈ L1(J,R), cj(k = 1, . . . , n− 1) ∈ R. It follows from (1.2) that

ϕ(t) = u(n)(t) and ck = u(k)(0)
k! , (k = 1, . . . , n− 1)

and
ACn

δ ([a; b],E) = h : [a; b] → E : δn−1h(t) ∈ AC([a; b],E).

where δ = t
d

dt
is the Hadamard derivative.

Interested reader can find more details in [16, 17].

1.2 Special Functions
Before introducing the basic facts on fractional operators, we recall two types of functions that
are important in Fractional Calculus: the Gamma and Beta functions. Some properties of these
functions are also recalled. More details about these functions can be found in [26, 14, 27].

12



1.2.1 Gamma function
The Euler Gamma function is an extension of the factorial function to real numbers and is considered
the most important Eulerian function used in fractional calculus because it appears in almost every
fractional integral and derivative definitions.

Definition 4 ([26, 14]) The Gamma function, or second order Euler integral, denoted Γ(·) is
defined as:

Γ(α) =
∫ +∞

0
tα−1e−tdt, α > 0.. (1.3)

For positive integer values n, the Gamma function becomes Γ(n) = (n− 1)! and thus can be seen
as an extension of the factorial function to real values.

Proposition 1 The basic properties of the Gamma function are:

1. The function Γ(α) is continuos for α > 0.

2. The integral (1.3) is convergent for α > 0 and divergent for α ≤ 0.

3. An important property of the gamma function Γ(α) is that it satisfies :

Γ(α + 1) = αΓ(α), α > 0.

4. The following relations are also valid:

Γ(n+ 1) = n!, ∀n ∈ N,
Γ(1) = 1,
Γ(0) = +∞.

5. Taking account that the Γ function can be written as Γ(α) = Γ(α+1)
α

, it results that the Γ
function can be defined also for negative values of α, in the interval −1 < α < 0.

6. The following particular values for Γ function can be useful for calculation purposes:

Γ
(1

2

)
=

√
π,

Γ
(

−1
2

)
= −2

√
π,

Γ
(3

2

)
= Γ

(1
2 + 1

)
= 1

2Γ
(1

2

)
= 1

2
√
π,

Γ
(5

2

)
= Γ

(3
2 + 1

)
= 3

2Γ
(3

2

)
= 3

4
√
π.

1.2.2 Beta Function
Definition 5 ([26, 14]) The Beta function, or the first order Euler function, can be defined as

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1dt, p, q > 0.

In the following we will enumerate the basic properties of the Beta function:

Proposition 2 1. The following formula which expresses the Beta function in terms of the
Gamma function:

B(p, q) = Γ(p)Γ(q)
Γ(p+ q) , p, q > 0.
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2. For every p > 0 and q > 0, we have:

B(p, q) = B(q, p).

3. For every p > 0 and q > 1, the Beta function B satisfies the property:

B(p, q) = q − 1
p+ q − 1B(p, q − 1).

4. For any natural numbers m,n we obtain:

B(m,n) = (n− 1)!(m− 1)!
(n+m− 1)! .

1.2.3 Mittag-Leffler Function
Definition 6 [14] For α > 0 and z ∈ R, the one-parameter Mittag-Leffler function (MLF) is defined
as follows:

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
Especially, when α = 1 the one-parameter Mittag-Leffler function coincides with the exponential
function, that is

E1(z) =
∞∑
k=0

zk

Γ(k + 1) =
∞∑
k=0

zk

k! = ez.

Moreover, the one-parameter MLF plays an important role in solving fractional ordinary differen-
tial equations (FODEs). Indeed, as u(t) = uae

−λt is the unique solution of the ordinary differential
equation (ODE) {

u′(t) + λu(t) = 0, t > a,
u(a) = ua,

so the MLF

u(t) = uaEα (−λ(ψ(t) − ψ(a))α) , t > a, α ∈ (0, 1),
solves the homogeneous linear FODE with constant coefficients{

cDα;ψ
a+ u(t) + λu(t) = 0, t > a,

u(a) = ua,

where cDα;ψ
a+ represents the ψ-Caputo fractional derivative. The previous equation was studied

by Almeida [3]. It has been used to model some population growth and the proof of its solution is
obtained by using the standard technique of successive approximation.

Remark 1 It is important to note that several generalizations of the one-parameter MLF are avail-
able in the literature; such as a two-parameter Mittag-Leffler function, three-parameter Mittag-Leffler
function, and the Mittag-Leffler function for matrix arguments. They have been used to solve some
FODEs. But here we are not interested in them.

Lemma 1 [14] Let α ∈ (0, 1) and z ∈ C. Among the numerous properties of the MLF , we
mention that

(1) The function Eα is nonnegative,

(2) Eα(0) = 1

(3) Eα(·) is an increasing function on R+.
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1.3 Fractional Calculus
Fractional calculus is a generalization of classical calculus, where the concepts of differentiation and
integration are extended to non-integer (fractional) orders. Instead of taking the first, second, or
n-th derivative of a function, we can define derivatives of arbitrary real or complex order.

This theory dates back to the 17th century and has gained much attention in recent decades
due to its applications in various fields such as physics, control theory, biology, and engineering.
Fractional differential equations, which involve derivatives of fractional order, are particularly useful
in modeling processes with memory and hereditary properties.

Several definitions of fractional derivatives exist, such as the Riemann–Liouville and Caputo
derivatives. Among them, the Caputo derivative is commonly used in physical models because it
allows for initial conditions to be expressed in the same form as in classical differential equations.

1.3.1 ψ Riemann–Liouville Fractional Integral
We denote by C(J,R) the set of all real-valued continuous functions defined on the interval J, and
by AC(J,R) the space of absolutely continuous functions on J. The space C1(J,R) consists of all
functions u : J → R that have a continuous first derivative on J.

Moreover, C([a, b],Rn) refers to the Banach space of all continuous mappings ϖ : [a, b] → Rn,
equipped with the norm:

∥ϖ∥ = sup
ζ∈[a,b]

∥ϖ(ζ)∥.

For vectors ϖ = (ϖ1, . . . , ϖn) and ω = (ω1, . . . , ωn) in Rn, we write ϖ ≤ ω to mean ϖi ≤ ωi for
all i = 1, . . . , n, and ϖ ≤ c (for c ∈ R) means ϖi ≤ c for all components.

The non-negative cone in Rn is defined by:

Rn
+ = {ϖ ∈ Rn : ϖi ≥ 0, i = 1, . . . , n}.

We also use the notations:

|ϖ| = (|ϖ1|, . . . , |ϖn|), max(ϖ,ω) = (max(ϖ1, ω1), . . . ,max(ϖn, ωn)).

The space AC(J,R) is precisely the collection of functions that are primitives of Lebesgue
integrable functions. That is,

u ∈ AC(J,R) ⇐⇒ u′(t) exists a.e. on J, u′ ∈ L1(J,R), and u(t)−u(a) =
∫ t

a
u′(s) ds for all t ∈ J.

From now on, let ψ ∈ C1(J,R) be a strictly increasing, positive function such that ψ′(t) > 0
for all t ∈ J.

We now define certain functional spaces associated with fractional calculus in terms of ψ. The
space L1

ψ(J,R) is given by:

L1
ψ(J,R) =

{
u : J → R

∣∣∣∣∣u is measurable and
∫ b

a
|u(t)|ψ′(t) dt < ∞

}
,

and
C1
ψ(J,R) = {u ∈ C(J,R) | Dψu ∈ C(J,R)} ,

where the ψ-derivative is defined by:

Dψu(t) =
(

1
ψ′(t)

d

dt

)
u(t) = lim

h→0

u(t+ h) − u(t)
ψ(t+ h) − ψ(t) .
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The space ACψ(J,R) contains all functions u such that Dψu exists almost everywhere on J,
belongs to L1

ψ(J,R), and satisfies:

u(t) − u(a) =
∫ t

a
Dψu(s)ψ′(s) ds for all t ∈ J.

For α ∈ (0, 1), we define the space:

Cα
ψ(J,R) =

{
u ∈ C(J,R)

∣∣∣ cDα;ψ
a+ u ∈ C(J,R)

}
,

where cDα;ψ
a+ stands for the Caputo-type fractional derivative with respect to ψ.

Definition 7 [2, 17] Let α > 0. The ψ-Riemann-Liouville fractional integral of order α of a function
u ∈ L1

ψ(J,R) with respect to ψ is defined is defined for a.e. t by
(
Iα;ψ
a+ u

)
(t) = 1

Γ(α)

∫ t

a
ψ′(s)(ψ(t) − ψ(s))α−1u(s)ds

Moreover, for α = 0, we set Iα;ψ
a+ u := u.

Remark 2 Notice that, for suitably chosen ψ, we obtain some well-known definitions of fractional
integrals, for example,

• The Riemann-Liouville integral [17] when ψ(t) = t

• the Hadamard integral [17] when ψ(t) = ln t,

• the fractional integral with Sigmoid function [20] when ψ(t) = 1
1+e−t ,

• the fractional integral with exponential memory [12] when ψ(t) = e−σt.

Lemma 2 [2, 3] Let α, β > 0, and u ∈ C(J,R). Then for each t ∈ J we have

(1) Iα;ψ
a+ : C(I,R) → C(J,R) is a continuous operator.

(2)
(
Iα;ψ
a+ u

)
(a) = limt→a+

(
Iα;ψ
a+ u

)
(t) = 0,

(3) Iα;ψ
a+ is a linear bounded operator from C(J,R) into C(J,R) and

∥∥∥Iα;ψ
a+ u

∥∥∥
∞

≤ (ψ(b) − ψ(a))α

Γ(α + 1) ∥u∥∞

(4) Iα;ψ
a+ Iβ;ψ

a+ u(t) = Iβ;ψ
a+ Iα;ψ

a+ u(t) = Iα+β;ψ
a+ u(t),

(5) Iα;ψ
a+ (ψ(t) − ψ(a))β−1 = Γ(β)

Γ(α+β)(ψ(t) − ψ(a))α+β−1,

(6) Iα;ψ
a+

(
Eα (λ(ψ(t) − ψ(a))α) = 1

λ
(Eα (λ(ψ(t) − ψ(a))α − 1) , λ > 0 .

Let us now present a special case of the previous integral where ψ(t) = t.

Definition 8 [2] Let α > 0, J := [0, T]; T > 0. The Riemann-Liouville (R-L) fractional integral
of order α of a function u ∈ L1(J,R) is defined for almost everywhere x ∈ J by

(Iα0+u) (x) = 1
Γ(α)

∫ x

0
(x − t)α−1u(t)dt.

Analogously, we define the mixed R-L fractional integral as follows:
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Definition 9 [17] Let β = (β1, β2) ∈ (0,+∞)×(0,+∞), Ĩ := [0, T1]× [0, T2] ,T1, T2 > 0. The
mixed R-L fractional integral of order β of a function u ∈ L1(̃I,R) is defined for almost everywhere
( x, y ) ∈ Ĩ by

(
Iβ0+u

)
(x, y) =

∫ x

0

∫ y

0

(x − s)β1−1(y − t)β2−1

Γ (β1) Γ (β2)
u( s, t)dtd.

The following inequality has an important tool in the forthcoming analysis.

Lemma 3 [17] Let α, λ > 0. Then for all x ∈ J we have

1
Γ(α)

∫ x

0
(x − t)α−1eλtdt ≤ eλx

λα
.

Proof 1 Actually, using the change of variable τ = x − t in the above integral expression we can
get

1
Γ(α)

∫ x

0
(x − t)α−1eλtdt = eλx

Γ(α)

∫ x

0
τα−1e−λτdτ

Using now the variable substitution ω = λτ in the just-above equation, we can acquire

Iα0+eλx = eλt

Γ(α)λα
∫ x

0
ωα−1e−ωdω

≤ eλx

Γ(α)λα
∫ ∞

0
ωα−1e−v dω

= eλx

λα

As a result, we finish this proof.
Repeating the same procedure as in the proof of Lemma (3), one gets the following inequality:

∫ x

0

∫ y

0

(x − s)β1−1(y − t)β2−1

Γ (β1) Γ (β2)
eλ(s+t)dtd ≤ eλ(x+y)

λβ1+β2
.

1.3.2 Caputo-type fractional derivative
Definition 10 [2] Let α > 0, n ∈ N, I is the interval −∞ ≤ a < b ≤ ∞, f, ψ ∈ Cn(I) two
functions such that ψ is increasing and ψ′(x) ̸= 0, for all x ∈ I. The left ψ-Caputo fractional
derivative of f of order α is given by

CDα,ψ
a+ f(x) := In−α,ψ

a+

(
1

ψ′(x)
d

dx

)n
f(x)

and the right ψ-Caputo fractional derivative of f by

CDα,ψ
b− f(x) := In−α,ψ

b−

(
− 1
ψ′(x)

d

dx

)n
f(x)

where

n = [α] + 1 for α /∈ N, n − α for a ∈ N.

To simplify notation, we will we the abbreviated symbol

f
[n]
ψ f(x) :=

(
1

ψ(x)
d

dx

)n

f(x)
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From the definition, it ls clear that, given α = m ∈ N,

CDα,ψ
a+ f(x) = f

[m]
ψ (x) and CDα,ψ

b− f(x) = (−1)mf
[m]
ψ (x)

and If α ∈ N, then

CDα,ψ
a+ f(x) = 1

Γ(n− α)

∫ x

a
ψ′(t)(ψ(x) − ψ(t))n−α−1f

[n]
ψ (t)dt

and

CDα,ψ
b− f(x) = 1

Γ(n− α)

∫ b

x
ψ′(t)(ψ(t) − ψ(x))n−α−1(−1)nf [n]

ψ (t)dt

In particular, when α ∈ (0, 1), we have

CDα,ψ
a+ f(x) = 1

Γ(1 − α)

∫ x

a
(ψ(x) − ψ(t))−αf ′(t)dt

and

CDα,ψ
b− f(x) = −1

Γ(1 − α)

∫ b

x
(ψ(t) − ψ(x))−αf ′(t)dt

For some special cases of ψ, we obtain the Caputo fractional derivative [31], the Caputo-Hademard
fractional derivative [13, 15] and the Caputo–Erdélyi–Kober fractional derivative [21]. From now
on, we will restrict to the case α /∈ N and we study some features of this ψ-Caputo type fractional
derivative. Also, to be concise, we will prove the results only for the left fractional derivative, since
the methods are similar for the right fractional derivatives, doing the necessary adjustments.

Theorem 1 [2] Suppose that f, ψ ∈ Cn+1[a, b] . Then, for all α > 0,

CDα,ψ
a+ f(x) = (ψ(x) − ψ(a))n−α

Γ(n+ 1 − α) f
[n]
ψ (a) + 1

Γ(n+ 1 − α)

∫ x

a
(ψ(x) − ψ(t))n−α d

dx
f

[n]
ψ (t)dt

and

CDα,ψ
b− f(x) = (−1)n (ψ(b) − ψ(x))n−α

Γ(n+ 1 − α) f
[n]
ψ (b) − 1

Γ(n+ 1 − α)

∫ b

x
(ψ(t) − ψ(x))n−α(1)n

d

dx
f

[n]
ψ (t)dt

Theorem 2 [2] The ψ-Caputo fractional derivatives are bounded operators. For all α > 0,∥∥∥CDα,ψ
a+ f

∥∥∥
C

≤ K∥f∥
C

[n]
ψ

and
∥∥∥CDα,ψ

b− f
∥∥∥
C

≤ K∥f∥
C

[n]
ψ

where
K = (ψ(b) − ψ(a))n−α

Γ(n+ 1 − α)

Theorem 3 [2] If f ∈ Cn[a, b] and α > 0, then

CDα,ψ
a+ f(x) = Dα,ψ

a+

[
f(x) −

n−1∑
k=0

1
k! (ψ(x) − ψ(a))kf [k]

ψ (a)
]

and
CDα,ψ

b− f(x) = Dα,ψ
b−

[
f(x) −

n−1∑
k=0

(−1)k

k! (ψ(b) − ψ(x))kf [k]
ψ (b)

]
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Lemma 4 [2] Given β ∈ R, consider the functions

f(x) = (ψ(x) − ψ(a))β−1 and g(x) = (ψ(b) − ψ(x))β−1

where β > n. Then, for α > 0,

CDα,ψ
a+ f(x) = Γ(β)

Γ(β − α)(ψ(x) −ψ(a))β−α−1 and CDα,ψ
b− g(x) = Γ(β)

Γ(β − α)(ψ(b) −ψ(x))β−α−1.

Proof 2 Since

f
[n]
ψ (x) = Γ(β)

Γ(β − n)(ψ(x) − ψ(a))β−n−1

we have

CDα,ψ
a+ f(x) = Γ(β)

Γ(n− α)Γ(β − n)(ψ(x) − ψ(a))n−α−1

×
∫ z

a
ψ′(t)

(
1 − ψ(t) − ψ(a)

ψ(x) − ψ(a)

)n−α−1

(ψ(t) − ψ(a))β−n−1dt.

With the change of variables u = (ψ(t) − ψ(a))/(ψ(x) − ψ(a)), and with the help of the Beta
function

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt, x, y > 0

we obtain

cDα,ψ
a+ f(x) = Γ(β)

Γ(n− α)Γ(β − n)(ψ(x) − ψ(a))β−α−1B(n− α, β − n).

Using the following property of the Beta function

B(x, y) = Γ(x)Γ(y)
Γ(x+ y)

we prove the formula.
For example, for f(x) = (ψ(x)−ψ(0))2, we have CDα,ψ

0+ f(x) = 2/Γ(3−α)(ψ(x)−ψ(0))2−α. Note
that, when α = 1, we have CD1,ψ

0+ = 2(ψ(x) − ψ(0)).
In particular, given n ≤ k ∈ N, we have

CDα,ψ
a+ (ψ(x) − ψ(a))k = k!

Γ(k + 1 − α)(ψ(x) − ψ(a))k−a

and

CDα,ψ
b− (ψ(b) − ψ(x))k = k!

Γ(k + 1 − α)(ψ(b) − ψ(x))k−α.

On the other hand, for n > k ∈ N0, we have

CDα,ψ
a+ (ψ(x) − ψ(a))k = CDα,ψ

b− (ψ(b) − ψ(x))k = 0

since

Dn
ψ(ψ(x) − ψ(a))k = Dn

ψ(ψ(b) − ψ(x))k = 0.
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Lemma 1 [17] Let α, λ > 0. Then for all t ∈ [a, b] we have

Iα;ψ
a+ e

λ(ψ(t)−ψ(a)) ≤ eλ(ψ(t)−ψ(a))

λα
.

Proof 1 In the light of the definition of the ψ-Riemann-Liouville fractional integral, we have

Iα;ψ
a+ e

λ(ψ(t)−ψ(a)) = 1
Γ(α)

∫ t

a
ψ′(s)(ψ(t) − ψ(s))α−1eλ(ψ(s)−ψ(a))ds

Using the change of variables y = ψ(t) − ψ(s) we get

Iα;ψ
a+ e

λ(ψ(t)−ψ(a)) = eλ(ψ(t)−ψ(a))

Γ(α)

∫ ψ(t)−ψ(a)

0
yα−1e−λydy

Using now the change of variables v = λy in the above equation we get

Iα;ψ
a+ e

λ(ψ(t)−ψ(a)) = eλ(ψ(t)−ψ(a))

Γ(α)λα
∫ λ(ψ(t)−ψ(a))

0
vα−1e−vdv

≤ eλ(ψ(t)−ψ(a))

Γ(α)λα
∫ ∞

0
vα−1e−vdv

= eλ(ψ(t)−ψ(a))

λα
.

This completes the proof.

Remark 1 ([10, 9]) On C(Jba,Rn) we describe a Bielecki type norm ∥ · ∥D as follows

∥ϖ∥D := sup
ς∈Jba

∥ϖ(ς)∥
eϑ(Θ(ς)−Θ(a)) , ϑ > 0. (1.4)

Therefore, we possess the below characteristics.

1.
(
C(Jba,Rn), ∥ · ∥D

)
is a Banach space.

2. On C(Jba,Rn), the norms ∥ · ∥D and ∥ · ∥∞ are equivalent, where ∥ · ∥∞ represented the
Chebyshev norm on C(Jba,Rn), i.e;

ι1∥ · ∥D ≤ ∥ · ∥∞ ≤ ι2∥ · ∥D,

where
ι1 = 1, ι2 = eϑ(Θ(b)−Θ(a)).

Additional informations of Bielecki type norms can be found in [8, 10, 9].

1.3.3 The relation between derivatives and integrals.
Lemma 5 [2] Let τ, ρ > 0, ϖ ∈ C([a, b],R),f ∈ Cn[a, b]. Then for ς ∈ Jba we get

1. CDτ ;φ
a+ I

τ ;φ
a+ f(ς) = f(ς),

2. Iτ ;φC
a+ Dτ ;φ

a+ f(ς) = f(ς) − f(a), 0 < τ ≤ 1,

3. Iτ ;φ
a+ (φ(ς) − φ(a))ρ−1 = Γ(ρ)

Γ(ρ+τ)(φ(ς) − φ(a))ρ+τ−1,
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4. CDτ ;φ
a+ (φ(ς) − φ(a))ρ−1 = Γ(ρ)

Γ(ρ−τ)(φ(ς) − φ(a))ρ−τ−1,

5. CDτφ
a+(φ(ς) − φ(a))k = 0,∀k ∈ {0, . . . , n− 1}.

Proof 3 We shall provide a proof for the first and second equations:

1. Using the semigroup law and the integration by parts formula repeatedly, we get

Iα,ψCa+ Dα,ψ
a+ f(x) = Ia,ψa+ I

n−α,ψ
a+ f

[n]
ψ (x) = In,ψa+ f

[n]
ψ (x)

= 1
(n− 1)!

∫ x

a
ψ′(t)(ψ(x) − ψ(t))n−1f

[n]
ψ (t)dt

= 1
(n− 1)!

∫ x

a
(ψ(x) − ψ(t))n−1 · d

dt
f

[n−1]
ψ (t)dt

= 1
(n− 2)!

∫ x

a
(ψ(x) − ψ(t))n−2 · d

dt
f

[n−2]
ψ (t)dt−

f
[n−1]
ψ (a)

(n− 1)! (ψ(x) − ψ(a))n−1

= 1
(n− 3)!

∫ x

a
(ψ(x) − ψ(t))n−3 · d

dt
f

[n−3]
ψ (t)dt−

n−1∑
k=n−2

f
[k]
ψ (a)
k! (ψ(x) − ψ(a))k

= . . . =
∫ x

a

d

dt
f(t)dt−

n−1∑
k=1

f
[k]
ψ (a)
k! (ψ(x) − ψ(a))k

= f(x) −
n−1∑
k=0

f
[k]
ψ (a)
k! (ψ(x) − ψ(a))k

In particular, given α ∈ (0, 1), we have

Iα,ψCa+ Dα,ψ
a+ f(x) = f(x) − f(a) and Iα,ψCb− Dα,ψ

b− f(x) = f(x) − f(b).

2. By definition,

CDα,ψ
a+ I

α,ψ
a+ f(x) = 1

Γ(n− α)

∫ z

a
ψ′(t)(ψ(x) − ψ(t))n−α−1F

[n]
ψ (t)dt (1.5)

where F (x) = Iα,ψa+ f(x). By direct computations, we get

F
[n−1]
ψ (x) = 1

Γ(α− n+ 1)

∫ x

a
ψ′(t)(ψ(x) − ψ(t))α−nf(t)dt

= f(a)
Γ(α− n+ 2)(ψ(x) − ψ(a))α−n+1 + 1

Γ(α− n+ 2)

∫ z

a
(ψ(x) − ψ(t))α−n+1f ′(t)dt,

and thus

F
[n]
ψ (x) = f(a)

Γ(α− n+ 1)(ψ(x) − ψ(a))α−n + 1
Γ(α− n+ 1)

∫ x

a
(ψ(x) − ψ(t))α−nf ′(t)dt.
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Replacing this last formula into Eq. ( (1.5)), using the change of variables
u = (ψ(t) − ψ(a))/(ψ(x)− ψ(a)) and the Dirichlet’s formula, we deduce

CDα,ψ
a+ Iα,ψa+ f(x) = f(a)

Γ(n− α)Γ(α− n+ 1)

∫ z

a
ψ′(t)(ψ(x) − ψ(t))n−α−1(ψ(t) − ψ(a))α−ndt

+ 1
Γ(n− α)Γ(α− n+ 1)

∫ x

a

∫ t

a
ψ′(t)(ψ(x) − ψ(t))n−a−1(ψ(t) − ψ(τ))α−nf ′(τ)dτdt

= f(a)(ψ(x) − ψ(a))n−α−1

Γ(n− α)Γ(α− n+ 1)

∫ z

a
ψ′(t)

(
1 − ψ(t) − ψ(a)

ψ(x) − ψ(a)

)n−α−1
(ψ(t) − ψ(a))α−ndt

+ 1
Γ(n− α)Γ(α− n+ 1)

∫ x

a

∫ x

z
ψ(τ)(ψ(x) − ψ(τ))n−α−1(ψ(τ) − ψ(t))α−nf ′(t)dτdt

= f(a)
Γ(n− α)Γ(α− n+ 1)

∫ 1

0
(1 − u)n−α−1uα−ndu

+ 1
Γ(n− α)Γ(α− n+ 1)

∫ x

a
f ′(t)

∫ z

t
ψ′(τ)(ψ(x) − ψ(τ))n−α−1(ψ(τ) − ψ(t))α−ndτdt

= f(a)
Γ(n− α)Γ(α− n+ 1) · Γ(n− α)Γ(α− n+ 1)

+ 1
Γ(n− α)Γ(α− n+ 1)

∫ x

a
f ′(t)dt− Γ(n− α)Γ(α− n+ 1)

= f(x).

1.4 Some Classical Results in Matrix Analysis
In order to talk about the contribution of Perov, we need to fix some notations:
Let m be a fixed natural number such that m ≥ 2. By Mm×m (R+)we denote the set of all m×m
matrices with nonnegative elements. The unit matrix of Mm×m(R) will be denoted by I. In addition,
we use the symbol Θ to denote the zero m×m matrix.

Now, let u, v ∈ Rm with u = (u1, u2, . . . , um) , v = (v1, v2, . . . , vm). By u ⪯ v we mean ui ≤
vi, i = 1, . . . ,m and

Rm
+ = {u ∈ Rm : ui ∈ R+, i = 1, . . . ,m}

If c ∈ R, then x ⪯ c means xi ≤ c, i = 1, . . . ,m.

Definition 11 ([28]) Let E be a nonempty set. By a vector-valued metric (a generalized metric in
the sense of Perov) on E we mean a map d : E × E → Rm

+ with the following axioms:

(i) d(x, y) = 0Rm if and only x = y for all x, y ∈ E;

(ii) d(x, y) = d(y, x) for all x, y ∈ E;

(iii) d(x, z) ⪯ d(x, y) + d(y, z) for all x, y, z ∈ E.

We call the pair (E, d) a generalized metric space with

d(x, y) :=


d1(x, y)
d2(x, y)

...
dm(x, y)


Notice that d is a generalized metric space on E if and only if di, i = 1, . . . ,m, are metrics on

E.
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Remark 3 ([28]) Notice that for a generalized metric space in the sense of Perov, the notions of
convergence sequence, Cauchy sequence, completeness, open subset, and closed subset are similar
to those for usual metric spaces.

Similarly, we can define a vector-valued norm on a linear space X, as in the following defintion:

Definition 12 ([28]) Let X be a vector space over K = R or C. By a vector-valued norm (also
known as the generalized norm in the sense of Perov) on X, we mean a map

∥ · ∥ : X → Rm
+

satisfying the following statements:

(i) ∥x∥ = 0Rm if and only x = 0, for all x ∈ X;

(ii) ∥λx∥ = |λ|∥x∥ for all x ∈ X and λ ∈ K;

(iii) ∥x+ y∥ ⪯ ∥x∥ + ∥y∥ for all x, y ∈ X.

Remark 4 ([28]) To any vector-valued norm ∥ · ∥ one can associate the vector valued metric
d(x, y) := ∥x − y∥, and one says that ( X, ∥ · ∥ ) is a generalized Banach space if X is complete
with respect to the d .

Definition 13 ([28]) A square matrix A of nonnegative numbers is said to be convergent to zero
if An tend to the zero matrix Θ as n → +∞.

Convergent to zero matrices can be characterized as follows:

Theorem 4 ([28]) For any nonnegative square matrix A, the following statements are equivalent:

(i) A is convergent to zero;

(ii) the spectral radius ρ(A) is strictly less than 1 . In other words, this means that all the eigenvalues
of A are in the open unit disc, i.e., |λ| < 1 for every λ ∈ C with det(A− λI) = 0,

(iii) the matrix I − A is nonsingular and (I − A)−1 = I + A + · · · + An + · · · ;

(iv) I − A is nonsingular and (I − A)−1 is a nonnegative matrix.

Remark 5 ([29]) Some examples of matrices convergent to zero are:

1. Any matrix A ∈ M2×2 (R+)of the form A :=
(
a a
b b

)
or A :=

(
a b
a b

)
, with a+ b < 1.

2. Any matrix A ∈ M2×2 (R+)of the form A :=
(
a 0
0 b

)
, where max{a, b} < 1.

3. Any matrix A ∈ M2×2 (R+)of the form A :=
(
a b
0 c

)
, with max{a, c} < 1.

Remark 6 ([29]) Any matrix A ∈ M2×2 (R+)of the form A :=
(
a b
c d

)
, with a + b ≥ 1 and

c+ d ≥ 1 does not converges to zero.
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1.5 Some Fixed Point Theorems on Spaces Endowed with
Vector Valued Norms

The concept of fixed points has played a crucial role in mathematical analysis, topology, and func-
tional analysis for centuries. The earliest fixed point results can be traced back to Brouwer’s Fixed
Point Theorem (1912), which states that any continuous function mapping a convex compact sub-
set of Euclidean space to itself has at least one fixed point. Later, Banach introduced the famous
Banach Contraction Principle (1922), which provided a powerful tool for proving the existence and
uniqueness of fixed points for contractive mappings. Over time, mathematicians such as Schauder,
Perov, and Krasnoselskii extended and generalized these results to broader contexts, making fixed
point theory a fundamental tool in solving differential equations, optimization problems, and game
theory.

Definition 14 ([28]) A subset Ω of C( J,R) is uniformly bounded if there exists a constant k > 0
such that |ϖ(x)| ≤ k for each x ∈ J and each ϖ ∈ Ω.

Definition 15 ([28]) A subset Ω of C( J,R) is equicontinuous if for every ε > 0 there exists some
δ > 0 (which depends only on ε ) such that for all ϖ ∈ Ω and all x1, x2 ∈ J with | x1− x2 |< δ,
we have |ϖ (x1) −ϖ (x2)| < ε.

In the following, we state the Ascoli-Arzela theorem.

Theorem 5 ([28]) A subset Ω of C( J,R) is relatively compact if and only if it is uniformly bounded
and equicontinuous.

Definition 16 ([28]) Let ( E, d ) be a generalized metric space. An operator T : E → E is said to
be Perov contraction if there exists a matrix A ∈ Mm×m (R+)which converges to zero such that

d(T(x),T(y)) ⪯ Ad(x, y), for all x, y ∈ E

We end up this section by introducing the following fixed-point theorems whose involvements assist
us in achieving the desired results successfully.

Theorem 6 (Perov’s fixed point theorem [28]) Let ( E, d ) be a complete generalized metric space
and T : E → E be a Perov contraction operator with Lipschitz matrix A. Then T has a unique
fixed point x0, and for each x ∈ E, we have

d
(
Tk(x), x0

)
⪯ Ak(I − A)−1 d(x,T(x)) for all k ∈ N

Theorem 7 ( Schauder’s fixed point theorem in generalized Banach space [25] ) Let X be a gen-
eralized Banach space, D ⊂ X be a nonempty closed convex subset of X, and K : D → D be a
continuous operator with relatively compact range. Then K has at least a fixed point in D.

Theorem 8 (Krasnoselskii’s fixed point theorem in generalized Banach space [25]) Let Π be a
nonempty (Π ̸= ∅) convex closed subset of a GBS ϖ. Let V and U map Π into ϖ and that

(i) ∀ϖ,w ∈ Π, Uϖ + Vw ∈ Π;

(ii) V is an A-contraction mapping.

(iii) U is continuous and compact;

Then the operator Uϖ + Vϖ = ϖ possess at least one solution on Π.
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Chapter 2

Uniqueness and UH stability of solutions
for the coupled system of nonlinear
fractional ψ-integral equations

2.1 Qualitative Results
Throughout this section, we prove the existence, uniqueness and UH stability of solutions for the
coupled system of nonlinear fractional ψ-integral equations (1).

Now, in order to establish qualitative results of the mentioned system (1), we need to provide
the following lemma.

Lemma 2 If the solution of the coupled system of nonlinear fractional ψ-integral equations given
by 

Dα1,φu(t) = F1(t, u(t), v(t)) + Iα2,φF2(t, u(t), v(t)),

t ∈ J := [a, b], α ∈ [0, 1]
(2.1)

exists, then it’s equivalent to the integral equation

u(t) = θ1 +
∫ t

0

φ′(s)(φ(t) − φ(s))α1−1

Γ(α1)
F1(t, u(t), v(t))ds (2.2)

+
∫ t

0

φ′(s)(φ(t) − φ(s))α1+α2−1

Γ(α1 + α2)
F2(t, u(t), v(t))ds. (2.3)

In view of Lemma 2, we need to present the following lemma, which plays a key role in the main
theorems.

Lemma 3 Let (αi, βi) ∈ (0, 1] and Fi, Gi ∈ C(J × Rn × Rn,Rn), i = 1, 2. Then, the coupled
system of nonlinear fractional ψ-integral equations is given by

u(t) − θ1 =
∫ t

0

φ′(s)(φ(t) − φ(s))α1−1

Γ (α1)
F1(s, u(s), v(s))ds

+
∫ t

0

φ′(s)(φ(t) − φ(s))α1+α2−1

Γ (α1 + α2)
F2(s, u(s), v(s))ds

v(t) − θ2 =
∫ t

0

φ′(s)(φ(t) − φ(s))β1−1

Γ (β1)
G1(s, u(s), v(s))ds

+
∫ t

0

φ′(s)(φ(t) − φ(s))β1+β2−1

Γ (β1 + β2)
G2(s, u(s), v(s))ds

, t ∈ J. (2.4)
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Now, the product space X := C(J,Rn) × C(J,Rn) is a GBS with the following norm:

∥(u, v)∥X =
(

∥u∥
∥v∥

)
.

Also, let the operator T =
(
T1,T2

)
: X → X defines

T(u, v) =
(
T1(u, v),T2(u, v)

)
, (2.5)

with

(T1(u, v))(t) = θ1 +
∫ t

0

φ′(s)(φ(t) − φ(s))α1−1

Γ (α1)
F1(s, u(s), v(s))ds (2.6)

+
∫ t

0

φ′(s)(φ(t) − φ(s))α1+α2−1

Γ (α1 + α2)
F2(s, u(s), v(s))ds

and

(T2(u, v))(t) = θ2 +
∫ t

0

φ′(s)(φ(t) − φ(s))β1−1

Γ (β1)
G1(s, u(s), v(s))ds (2.7)

+
∫ t

0

φ′(s)(φ(t) − φ(s))β1+β2−1

Γ (β1 + β2)
G2(s, u(s), v(s))ds

Let’s list the following hypotheses:

(HP1) For i = 1, 2, the functions Fi and Gi are continuous on J × Rn × Rn

(HP2) There exist LZi > 0 and L̄Zi > 0, Z = (F,G), i = 1, 2, where

∥Fi(s, u1, v1) − Fi(s, u2, v2)∥ ≤ LFi∥u1 − u2∥ + L̄Fi∥v1 − v2∥,

∥Gi(s, u1, v1) −Gi(s, u2, v2)∥ ≤ LGi∥u1 − u2∥ + L̄Gi∥v1 − v2∥,

for all t ∈ J and each u1, v1, u2, v2 ∈ Rn.

(HP3) Āi, B̄i < 1, where

Ā1 = A1LF1 + B1LF2 , Ā2 = A2LG1 + B2LG2

B̄1 = A1L̄F1 + B1L̄F2 B̄2 = A2L̄G1 + B2L̄G2 .

For computational convenience, we introduce the following notations:

A1 := (φ(t) − φ(0))α1

Γ (α1 + 1) , B1 := (φ(t) − φ(0))α1+α2

Γ (α1 + α2 + 1) ,

A2 := (φ(t) − φ(0))β1

Γ (β1 + 1) , B2 := (φ(t) − φ(0))β1+β2

Γ (β1 + β2 + 1) ,

∆̄1 :=

[ (
LF2∥u∥ + L̄F2∥v∥

)
+ F2.max

]
Γ (α1 + α2 + 1) ,

∆̄2 :=

[ (
LG2∥u∥ + L̄G2∥v∥

)
+G2.max

]
Γ (α1 + α2 + 1) .

Next, we are in a position to investigate and prove the uniqueness result by using Perov’s fixed
point theorem.
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Theorem 9 Let the hypotheses (HP1)–(HP3) hold. Then, the coupled system of nonlinear frac-
tional ψ-integral equations (1) possesses one and only one solution.

Proof 2 In order to show that T has an exactly one fixed point, we will use the Perov’s fixed point
theorem. Indeed, we prove that the mapping T is AMAT-contraction on X.

Now, for given (u1, v1), (u2, v2) ∈ X and t ∈ J, using (HP1) and (HP2), we can get∥∥∥(T1(u1, v1)
)
(t) −

(
T1(u2, v2)

)
(t)
∥∥∥

≤
∫ t

0

φ′(s)(φ(t) − φ(s))α1−1

Γ (α1)

∥∥∥∥F1(s, u1(s), v1(s)) − F1(s, u2(s), v2(s))
∥∥∥∥ds

+
∫ t

0

φ′(s)(φ(t) − φ(s))α1+α2−1

Γ (α1 + α2)

∥∥∥∥F2(s, u1(s), v1(s)) − F2(s, u2(s), v2(s))
∥∥∥∥ds

≤
∫ t

0

φ′(s)(φ(t) − φ(s))α1−1

Γ (α1)
(
LF1∥u1(s) − u2(s)∥ + L̄F1∥v1(s) − v2(s)∥

)
ds

+
∫ t

0

φ′(s)(φ(t) − φ(s))α1+α2−1

Γ (α1 + α2)
(
LF2∥u1(s) − u2(s)∥ + L̄F2∥v1(s) − v2(s)∥

)
ds

≤ (φ(t) − φ(0))α1

Γ (α1 + 1)
(
LF1∥u1 − u2∥ + L̄F1∥v1 − v2∥

)
+ (φ(t) − φ(0))α1+α2

Γ (α1 + α2 + 1)
(
LF2∥u1 − u2∥ + L̄F2∥v1 − v2∥

)

≤ A1
(
LF1∥u1 − u2∥ + L̄F1∥v1 − v2∥

)
+ B1

(
LF2∥u1 − u2∥ + L̄F2∥v1 − v2∥

)
Hence, ∥∥∥T1(u1, v1) − T1(u2, v2)

∥∥∥ ≤
[
A1LF1 + B1LF2

]
∥u1 − u2∥

+
[
A1L̄F1 + B1L̄F2

]
∥v1 − v2∥

:= Ā1∥u1 − u2∥ + B̄1∥v1 − v2∥.

By the same technique, we can also get∥∥∥T2(u1, v1) − T2(u2, v2)
∥∥∥ ≤

[
A2LG1 + B2LG2

]
∥u1 − u2∥

+
[
A2L̄G1 + B2L̄G2

]
∥v1 − v2∥

:= Ā2∥u1 − u2∥ + B̄2∥v1 − v2∥.

This implies that ∥∥∥T(u1, v1) − T(u2, v2)
∥∥∥
X

≤ AMAT∥(u1, v1) − (u2, v2)∥X,

where
AMAT =

(
Ā1 B̄1
Ā2 B̄2

)
. (2.8)

According to (HP3), we have An
MAT → 0 as n → ∞. Thus T is contractive and due to the Perov’s

theorem, T has exactly one fixed point. Thus, the coupled system of nonlinear fractional ψ-integral
equations (1) possesses a unique solution in X.
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The following result is achieved based on the Krasnoselskii’s Theorem 8 in GBS.

Theorem 10 Let (HP1) and (HP2) hold. Then, the coupled system of nonlinear fractional ψ-
integral equations (1) admits at least one solution.

Proof 3 In order to use Theorem (8), we need to take a set Qξ ⊆ X such that Qξ is closed, convex,
bounded and define it as

Qξ = {(u, v) ∈ X : ∥(u, v)∥X ≤ ξ} ,
with ξ := (ξ1, ξ2) ∈ R2

+ such that ξ1 ≥ ρ1M1 + ρ2M2,

ξ2 ≥ ρ3M1 + ρ4M2,

where M1,M2 and ρi, i = 1, 4 are non-negative real numbers that will be specified later.
Now, consider the mappings U = (U1,U2) and V = (V1,V2) on Qξ as

U1(u, v)(t) =
∫ t

0

φ′(s)(φ(t) − φ(s))α1+α2−1

Γ (α1 + α2)
F2(s, u(s), v(s))ds,

U2(u, v)(t) =
∫ t

0

φ′(s)(φ(t) − φ(s))β1+β2−1

Γ (β1 + β2)
G2(s, u(s), v(s))ds,

and 
V1(u, v)(t) = θ1 +

∫ t
0
φ′(s)(φ(t)−φ(s))α1−1

Γ(α1) F1(s, u(s), v(s))ds,

V2(u, v)(t) = θ2 +
∫ t

0
φ′(s)(φ(t)−φ(s))β1−1

Γ(β1) G1(s, u(s), v(s))ds.

It is obvious that both U and V are well-defined. Moreover, by Lemma 3 the mappings form the
system (2.4) as

T(u, v) := (U1(u, v),U2(u, v)) + (V1(u, v),V2(u, v)). (2.9)

Our purpose is to confirm this fact that U and V fulfill all properties of Theorem 8. For simplicity,
we set

Fi.max := sup
t∈J

∥Fi(t, 0, 0)∥, Gi.max := sup
t∈J

∥Gi(t, 0, 0)∥,

and for better clarity, the proof is broken down into three steps.
Step 1 : U(u, v) + V(ū, v̄) ∈ Qξ, ∀ (u, v), (ū, v̄) ∈ Qξ.
In fact, from (HP2), for (u, v), (ū, v̄) ∈ X, ∀t ∈ J, we can obtain

∥U1(u, v)(t)∥

≤
∫ t

0

φ′(s)(φ(t) − φ(s))α1+α2−1

Γ (α1 + α2)
(∥∥∥F1(s, u(s), v(s)) − F1(s, 0, 0)

∥∥∥+∥∥∥F1(s, 0, 0)
∥∥∥)ds

≤
∫ t

0

φ′(s)(φ(t) − φ(s))α1+α2−1

Γ (α1 + α2)

[ (
LF1∥u(s)∥ + L̄F1∥v(s)∥

)
+ F1.max

]
ds

≤ B1

[ (
LF1∥u∥ + L̄F1∥v∥

)
+ F1.max

]

≤ B1LF1∥u∥ + B1L̄F1∥v∥ + B1F1.max.

Hence,

∥U1(u, v)∥ ≤ A1∥u∥ + B1∥v∥ + C1. (2.10)
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By similar procedure, we get

∥U2(u, v)∥ ≤ A2∥u∥ + B2∥v∥ + C2, (2.11)

with

A1 = B1LF1 , B1 = B1L̄F1 , C1 = B1F1.max,

A2 = B2LG2 , B2 = B2L̄G1 , C2 = B2G2.max.

Thus, the inequalities (2.10) and (2.10), implies that

∥∥∥U(u, v)
∥∥∥
X

:=
 ∥∥∥U1(u, v)

∥∥∥∥∥∥U2(u, v)
∥∥∥
 ≤ BMAT

(
∥u∥
∥v∥

)
+
(

C1
C2

)
, (2.12)

where
BMAT =

(
A1 B1
A2 B2

)
.

In a similar way, we get

∥∥∥V(ū, v̄)
∥∥∥
X

:=
 ∥∥∥V1(ū, v̄)

∥∥∥∥∥∥V2(ū, v̄)
∥∥∥
 ≤ DMAT

(
∥ū∥
∥v̄∥

)
+
(
θ1
θ2

)
, (2.13)

where
DMAT =

(
A1 Ā1

A2 Ā2

)
.

Recombine (2.12) and (2.13), it implies that

∥∥∥U(u, v)
∥∥∥
X

+
∥∥∥V(ū, v̄)

∥∥∥
X

≤ BMAT

(
∥u∥
∥v∥

)
+ DMAT

(
∥ū∥
∥v̄∥

)
+
(

C1 + θ1
C2 + θ2

)
. (2.14)

Therefore, we check for ξ = (ξ1, ξ2) ∈ R2
+ such that U(u, v) + V(ū, v̄) ∈ Qξ. Regarding to this, in

view of (2.14), it is sufficient to verify that

CMAT

(
ξ1
ξ2

)
+
(
M1
M2

)
≤
(

ξ1
ξ2

)
,

where CMAT = BMAT + DMAT, and (
M1
M2

)
=
(

C1 + θ1
C2 + θ2

)
.

Equivalently (
M1
M2

)
≤ (I − CMAT)

(
ξ1
ξ2

)
. (2.15)

Since the spectral radius of CMAT is < 1. According to Theorem 4, we have the matrix (I−CMAT)
is non-singular and (I − CMAT)−1 has positive elements. So, (2.15) is equal to(

ξ1
ξ2

)
≥ (I − AMAT)−1

(
M1
M2

)
.

In addition, if we take
(I − AMAT)−1 =

(
ρ1 ρ2
ρ3 ρ4

)
,
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thus, we find ξ1 ≥ ρ1M1 + ρ2M2,

ξ2 ≥ ρ3M1 + ρ4M2.

Therefore, U(u, v) + V(ū, v̄) ∈ Qξ.

Step 2 : The mapping V is DMAT-contraction on Qξ.
Indeed, ∀t ∈ J and for any (u1, v1), (u2, v2) ∈ Qξ. By similar procedure in the proof of Theorem 9,
it is not difficult to verify that∥∥∥V(u1, v1) − V(u2, v2)

∥∥∥
X,B

≤ DMAT∥(u1, v1) − (u2, v2)∥X.

Since the spectral radius of DMAT is < 1. Hence, the mapping V is an DMAT-contraction on Qξ.

Step 3 : The mapping U is continuous and compact.
By the continuity of G1 and G2, we deduce that U is continuous. Moreover, we show that U is
uniformly bounded on Qξ. From (2.12), and ∀(u, v) ∈ Qξ, we find that

∥∥∥U(u, v)
∥∥∥
X

:=
 ∥∥∥U1(u, v)

∥∥∥∥∥∥U2(u, v)
∥∥∥
 ≤ BMAT

(
ξ1
ξ2

)
+
(

C1
C2

)
< ∞.

This means that the mapping U is uniformly bounded on Qξ.
At the last step, we are going to prove that U(Qξ) is equicontinuous. From the hypotheses

(HP1) and (HP2), for (u, v) ∈ Qξ, and t1 ≤ t2 for any t1, t2 ∈ J, we obtain

∥U1(u, v)(t2) − U1(u, v)(t1)∥

=∥
∫ t2

0

φ′(s)(φ(t2) − φ(s))α1+α2−1

Γ (α1 + α2) F1(s, u(s), v(s))ds

−
∫ t1

0

φ′(s)(φ(t1) − φ(s))α1+α2−1

Γ (α1 + α2) F1(s, u(s), v(s))ds∥

=∥
∫ t1

0

φ′(s)(φ(t2) − φ(s))α1+α2−1

Γ (α1 + α2) F1 (s, u(s), v(s)) ds

+
∫ t2

t1

φ′(s)(φ(t2) − φ(s))α1+α2−1

Γ (α1 + α2) F1 (s, u(s), v(s)) ds

−
∫ t1

0

φ′(s)(φ(t1) − φ(s))α1+α2−1

Γ (α1 + α2) F1 (s, u(s), v(s)) ds∥

≤
∫ t1

0

φ′(s)[(φ(t2) − φ(s))α1+α2−1 − (φ(t1) − φ(s))α1+α2−1]
Γ (α1 + α2) ∥F1 (s, u(s), v(s)) ∥ds

+
∫ t2

t1

φ′(s)(φ(t2) − φ(s))α1+α2−1

Γ (α1 + α2) ∥F1 (s, u(s), v(s)) ∥ds

≤

[ (
LF2∥u∥ + L̄F2∥v∥

)
+ F2.max

]
Γ (α1 + α2 + 1)

[∣∣∣(φ (t2) − φ(a))α1+α2 − (φ (t2) − φ (t1))α1+α2 − (φ (t1)φ(a))α1+α2
∣∣∣]

+

[ (
LF2∥u∥ + L̄F2∥v∥

)
+ F2.max

]
Γ (α1 + α2 + 1) (φ (t2) − φ (t1))α1+α2

≤

[ (
LF2∥u∥ + L̄F2∥v∥

)
+ F2.max

]
Γ (α1 + α2 + 1)

[
2 (φ (t2) − φ (t1))α1+α2 +

∣∣∣(φ (t2) − φ(a))α1+α2 − (φ (t1)φ(a))α1+α2
∣∣∣] .
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Then

∥U1(u, v)(t2) − U1(u, v)(t1)∥ ≤ ∆̄1
[
2 (φ (t2) − φ (t1))α1+α2 +

∣∣∣(φ (t2) − φ(a))α1+α2 − (φ (t1)φ(a))α1+α2
∣∣∣] .

Similarly,

∥U2(u, v)(t2) − U2(u, v)(t1)∥ ≤ ∆̄2
[
2 (φ (t2) − φ (t1))β1+β2 +

∣∣∣(φ (t2) − φ(a))β1+β2 − (φ (t1)φ(a))β1+β2
∣∣∣] .

Therefore,

∥U(u, v)(t2) − U(u, v)(t1)∥ :=

 ∥U1(u, v)(t2) − U1(u, v)(t1)∥

∥U2(u, v)(t2) − U2(u, v)(t1)∥



≤

 ∆̄1
[
2 (φ (t2) − φ (t1))α1+α2 +

∣∣∣(φ (t2) − φ(a))α1+α2 − (φ (t1)φ(a))α1+α2
∣∣∣] .

∆̄2
[
2 (φ (t2) − φ (t1))β1+β2 +

∣∣∣(φ (t2) − φ(a))β1+β2 − (φ (t1)φ(a))β1+β2
∣∣∣] .

 .
Thus, we deduce that T(Qξ) is equicontinuous. Due to Arzelà–Ascoli’s theorem, we conclude that

the mapping U is compact. Hence, the requirements of Theorem 8 are fulfilled. Thus, in view of
the Krasnoselskii’s FPT, we derive that the mapping T = U + V defined by (2.9) possesses at
least one fixed point (u, v) ∈ Qξ, which is the solution of the coupled system of nonlinear fractional
ψ-integral equations (1).

Now, we end this section by discussing the UH stability of the coupled system of nonlinear
fractional ψ-integral equations (1) by utilizing its solution in the sense of integral form given as

u(τ) = T1(u, v)(τ), v(τ) = T2(u, v)(τ),

such that T1 and T2 are given in (2.6) and (2.7).
Let us define the following mappings S1,S2 : X → C(J,R) as:

Dα1,φũ(t) − F1(t, ũ(t), ṽ(t)) − Iα2,φF2(t, ũ(t), ṽ(t)) = S1(ũ, ṽ)(t), ,

Dβ1,φṽ(t) −G1(t, ũ(t), ṽ(t)) − Iβ2,φG2(t, ũ(t), ṽ(t)) = S2(ũ, ṽ)(t),
t ∈ J.

In addition, we assume that the next inequalities
∥∥∥S1(ũ, ṽ)(τ)

∥∥∥ ≤ ϵ1,∥∥∥S2(ũ, ṽ)(τ)
∥∥∥ ≤ ϵ2,

τ ∈ J, (2.16)

for some ϵ1, ϵ2 > 0, are to be held.

Definition 17 [4] The coupled system of nonlinear fractional ψ-integral equations (1) is UH stable
if there are constants ωi > 0, i = 1, 4 such that ∀ϵ1, ϵ1 > 0 and for all solution (ũ, ṽ) ∈ X of
inequality (2.16), ∃ a solution (u, v) ∈ X of (1) such that

∥∥∥ũ(τ) − u(τ)
∥∥∥ ≤ ω1ϵ1 + ω2ϵ2,∥∥∥ṽ(τ) − v(τ)
∥∥∥ ≤ ω3ϵ1 + ω4ϵ2,

τ ∈ J.

Theorem 11 Consider the hypotheses of Theorem 9 to be held. Then the coupled system of
nonlinear fractional ψ-integral equations (1) is UH stable.
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Proof 4 Let (u, v) ∈ X bee the solution of the coupled system of nonlinear fractional ψ-integral
equations (1) satisfying (2.6) and (2.7). Assume that (ũ, ṽ) is any solution verifying (2.16):

Dα1,φũ(t) = F1(t, ũ(t), ṽ(t)) + Iα2,φF2(t, ũ(t), ṽ(t)) + S1(ũ, ṽ)(t), ,

Dβ1,φṽ(t) = G1(t, ũ(t), ṽ(t)) + Iβ2,φG2(t, ũ(t), ṽ(t)) + S2(ũ, ṽ)(t),
t ∈ J.

So

ũ(τ) =T1(ũ, ṽ)(t) +
∫ t

0

φ′(s)(φ(t) − φ(s))α1−1

Γ(α1)
S1(ũ, ṽ)(s)ds, (2.17)

and

ṽ(τ) =T2(ũ, ṽ)(t) +
∫ t

0

φ′(s)(φ(t) − φ(s))α2−1

Γ(α2)
S2(ũ, ṽ)(s)ds. (2.18)

Now, (2.17) and (2.18) give∥∥∥ũ(τ) − T1(ũ, ṽ)(τ)
∥∥∥ ≤

∫ t

0

φ′(s)(φ(t) − φ(s))α1−1

Γ(α1)
∥∥∥S1(ũ, ṽ)(s)

∥∥∥ds

≤ A1ϵ1, (2.19)
and ∥∥∥ṽ(t) − T2(ũ, ṽ)(t)

∥∥∥ ≤
∫ t

0

φ′(s)(φ(t) − φ(s))α2−1

Γ(α2)
∥∥∥S2(ũ, ṽ)(s)

∥∥∥ds

≤ A2ϵ2. (2.20)
Thus, by (H2) and inequalities (2.19), (2.20), we get∥∥∥ũ(t) − u(t)

∥∥∥ =
∥∥∥ũ(t) − T1(ũ, ṽ)(t) + T1(ũ, ṽ)(t) − u(t)

∥∥∥
≤
∥∥∥ũ(t) − T1(ũ, ṽ)(t)

∥∥∥+
∥∥∥T1(ũ, ṽ)(t) − T1(u, v)(t)

∥∥∥
≤ A1ϵ1 +

(
Ā1∥ũ− u∥ + B̄1∥ṽ − v∥

)
.

Hence we get

∥ũ− u∥ ≤ A1ϵ1 +
(
Ā1∥ũ− u∥ + B̄1∥ṽ − v∥

)
. (2.21)

Similarly, we have

∥ṽ − v∥ ≤ A2ϵ2 +
(
Ā2∥ũ− u∥ + B̄2∥ṽ − v∥

)
. (2.22)

Inequalities (2.21) and(2.21) can be rewritten in a matrix form as

(I − AMAT)
(

∥ũ− u∥
∥ṽ − v∥

)
≤
(

A1ϵ1
A2ϵ2

)
, (2.23)

where AMAT is the matrix given by (2.8). Since the spectral radius of AMAT is < 1; by Theorem 4,
we deduce that (I − AMAT) is non-singular and (I − AMAT)−1 possesses positive elements. Hence,
(2.23) is equivalent to the form(

∥ũ− u∥
∥ṽ − v∥

)
≤ (I − AMAT)−1

(
A1ϵ1
A2ϵ2

)
,

which yields that 
∥ũ− u∥ ≤ ρ1A1ϵ1 + ρ2A2ϵ2,

∥ṽ − v∥ ≤ ρ3A1ϵ1 + ρ4A2ϵ2,

where ρi, i = 1, 4 are the elements of (I−AMAT)−1. Consequently, the coupled system of nonlinear
fractional ψ-integral equations (1) is UH stable.

32



2.2 Applications
We provide an example in this part to investigate and guarantee the validity of the results.

Exemple 1 Consider the following coupled system of nonlinear fractional ψ-integral equationsD 3
4 ,φu1(t) = F1 (t, u(t), v(t)) + I

1
3 ,φF2(t, u(t), v(t)),

D 1
3 ,φu2(t) = G1 (t, u(t), v(t)) + I

1
4 ,φG2(t, u(t), v(t)),

t ∈ J := [0, 1], (2.24)

with (φ)–Caputo fractional integrals conditionsu(0) = 1,
v(0) = 2,

(2.25)

Here, α1 = 3
4 , α2 = 1

3 , β1 = 1
2 , β2 = 1

4 , θ1 = 1, θ2 = 2, φ(t) = t2, J := [0, 1], and the functions

F1 (t, u(t), v(t)) = t|u(t)|
100(1 + |u(t)|) + t3

49 sin(v(t)) + 3t;

F2 (t, u(t), v(t)) = 1
10et

|u(t)|
4 + |u(t)| + 1

9 cos(v(t));

G1 (t, u(t), v(t)) = cos−1
(

|u(t)|
4

)
+

1
3e

−t

1 + |v(t)| ;

G2 (t, u(t), v(t)) = sin (|u3(t)|)√
t2 + 9

+ sin−1
(
t

2

)
cos

(
|v3(t)|

)
+ 4t.

Obviously, the functions Fi, Gi, (i = 1, 2) are continuous. Furthermore, for all t ∈ J and each
u1, v1, u2, v2 ∈ Rn, we have (HP2) satisfied as follows:

∥Fi(t, u1, v1) − Fi(t, u2, v2)| ≤ LFi∥u1 − u2∥ + L̄Fi∥v1 − v2∥,

∥Gi(t, u1, v1) −Gi(t, u2, v2)| ≤ LGi∥u1 − u2∥ + L̄Gi∥v1 − v2∥,

where LF1 = 1
100 ,LF2 = 1

10 , L̄F1 = 1
49 , L̄F2 = 1

9 ,

LG1 = 1
4 ,LG2 = 1

3 , L̄G1 = 1
3 , L̄G2 = 1

2 .
and we can calculate that

A1 = 1.08807,A2 = 0.963259,B1 = 1.12838,B2 = 1.08807.

Thus, we get
Ā1 =

[
A1LF1 + B1LF2

]
< 0.123718,

Ā2 =
[
A2LG1 + B2LG2

]
< 0.60350475,

B̄1 =
[
A1L̄F1 + B1L̄F2

]
< 0.1475796372,

B̄2 =
[
A2L̄G1 + B2L̄G2

]
< 0.8651213333.

Hence, all conditions of Theorem 9 are satisfied. Therefore the coupled system of nonlinear fractional
ψ-integral equations (2.24)-(2.25) has one and only one solution. Consequently, by referring to
Theorem 11, we easily conclude that the solution is UH stable.
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Chapter 3

Existence and Uniqueness of Solutions for
a coupled system of nonlinear fractional
integral equations in two Variables

Fractional integral equations have gained significant attention in recent years due to their ability
to accurately model processes involving memory and hereditary properties. In this chapter, we
investigate the existence and uniqueness of solutions for a coupled system of nonlinear fractional
integral equations involving two variables. The system is considered under the framework of the
ψ-Riemann–Liouville fractional integral, with particular focus on the special case ψ(t) = t, which
corresponds to the classical Riemann–Liouville integral. By employing tools from fixed point theory in
generalized Banach spaces, we establish sufficient conditions ensuring the existence and uniqueness
of solutions. These results contribute to the broader understanding of nonlinear fractional systems
and provide a foundation for further analytical and numerical studies.

3.0.1 Statement of the problem and main results
This chapter discusses the existence as well as uniqueness of solutions for the following system:

u(x, y) = a1(x, y) +
∫ x

0

∫ y

0

(x− s)α1−1(y − t)α2−1

Γ (α1) Γ (α2)
f1(s, t, u(s, t), v(s, t))dtds

+
∫ x

0

∫ y

0

(x− s)α1+β1−1(y − t)α2+β2−1

Γ (α1 + β1) Γ (α2 + β2)
f2(s, t, u(s, t), v(s, t))dtds,

v(x, y) = a2(x, y) +
∫ x

0

∫ y

0

(x− s)γ1−1(y − t)γ2−1

Γ (γ1) Γ (γ2)
g1(s, t, u(s, t), v(s, t))dtds,

+
∫ x

0

∫ y

0

(x− s)γ1+δ1−1(y − t)γ2+δ2−1

Γ (γ1 + δ1) Γ (γ2 + δ2)
g2(s, t, u(s, t), v(s, t))dtds,

(x, y) ∈ Ĩ

(3.1)
where Ĩ := [0, T1] × [0, T2] , T1, T2 > 0, (α1, α2) , (β1, β2) , (γ1, γ2), (δ1, δ2) ∈ (0, 1] × (0, 1],

and a1, a2 : Ĩ → R, f1, f2, g1, g2 : Ĩ× R2 → R are given continuous functions.
Our first result on the uniqueness is based on the Perov’s fixed point theorem coupled with the

Chebyshev vector-valued norm.
Theorem 12 Let the following assumptions hold:
( H ′

1 ) The functions f1, f2, g1, g2 : Ĩ × R2 → R are continuous.

( H ′
2 ) There exist constants pi, qi, p̊i, q̊i, i = 1, 2 such that

|fi (x, y, u1, v1) − fi (x, y, u2, y2)| ≤ p̊i |u1 − u2| + q̊i |v1 − v2|

|gi (x, y, u1, v1) − gi (x, y, u2, y2)| ≤ pi |u1 − u2| + qi |v1 − v2|
for all (x, y) ∈ Ĩ and each (u1, v1) , (u2, v2) ∈ R2.
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Then the coupled system (2) possesses a unique solution provided that the spectral radius of the
matrix A is less than one, where the matrix A is defined as below

A =

 Tα1
1 Tα2

2
Γ(α1+1)Γ(α2+1) p̊1 + Tα1+β1

1 Tα2+β2
2

Γ(α1+β1+1)Γ(α2+β2+1) p̊2
Tα1

1 Tα2
2

Γ(α1+1)Γ(α2+1) q̊1 + Tα1+β1
1 Tα2+β2

2
Γ(α1+β1+1)Γ(α2+β2+1) q̊2

Tγ1
1 Tγ2

2
Γ(γ1+1)Γ(γ2+1)p1 + Tγ1+δ1

1 Tγ2+δ2
2

Γ(γ1+δ1+1)Γ(γ2+δ2+1)p2
Tγ1

1 Tγ2
2

Γ(γ1+1)Γ(γ2+1)q1 + Tγ1+δ1
1 Tγ2+δ2

2
Γ(γ1+δ1+1)Γ(γ2+δ2+1)q2


(3.2)

Proof 4 Consider the Banach space C (̃I,R) equipped with the norm

∥u∥∞ = sup
(x,y)∈Ĩ

|u(x, y)|.

Consequently, the product space X := C(Ĩ,R)×C(Ĩ,R) is a generalized Banach space, endowed
with the vector-valued norm

∥(u, v)∥X,∞ :=
(

∥u∥∞

∥v∥∞

)
.

In order to transform the problem (2) into a fixed point problem, we define an operator S =
(S1,S2) : X → X as:

S(u, v) = (S1(u, v),S2(u, v)) (3.3)
where

(S1(u, v)) (x, y) = a1(x, y) +
∫ x

0

∫ y

0

(x− s)α1−1(y − t)α2−1

Γ (α1) Γ (α2)
f1(s, t, u(s, t), v(s, t))dtds

+
∫ x

0

∫ y

0

(x− s)α1+β1−1(y − t)α2+β2−1

Γ (α1 + β1) Γ (α2 + β2)
f2(s, t, u(s, t), v(s, t))dtds,

and

(S2(u, v)) (x, y) = a2(x, y) +
∫ x

0

∫ y

0

(x− s)γ1−1(y − t)γ2−1

Γ (γ1) Γ (γ2)
g1(s, t, u(s, t), v(s, t))dtds,

+
∫ x

0

∫ y

0

(x− s)γ1+δ1−1(y − t)γ2+δ2−1

Γ (γ1 + δ1) Γ (γ2 + δ2)
g2(s, t, u(s, t), v(s, t))dtds,

We will use Perov’s fixed point theorem to demonstrate that S has a unique fixed point. To
underline this fact, it is enough to show that S is A-contraction mapping on X. In fact, for all
(u1, v1) , (u2, v2) ∈ X and (x, y) ∈ Ĩ, keeping in mind the definition of the operator S1 together
with assumption (H ′

2), we can write
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|(S1 (u1, v1)) (x, y) − (S1 (u2, v2)) (x, y)|

≤
∫ x

0

∫ y

0

(x− s)α1−1(y − t)α2−1

Γ (α1) Γ (α2)
(̊p1 |u1(s, t) − u2(s, t)| + q̊1 |v1(s, t) − v2(s, t)|) dtds

+
∫ x

0

∫ y

0

(x− s)α1+β1−1(y − t)α2+β2−1

Γ (α1 + β1) Γ (α2 + β2)
(̊p2 |u1(s, t) − u2(s, t)| + q̊2 |v1(s, t) − v2(s, t)|) dtds

≤ (̊p1 ∥u1 − u2∥∞ + q̊1 ∥v1 − v2∥∞)
(∫ x

0

∫ y

0

(x− s)α1−1(y − t)α2−1

Γ (α1) Γ (α2)
dtds

)

+ (̊p2 ∥u1 − u2∥∞ + q̊2 ∥v1 − v2∥∞)
(∫ x

0

∫ y

0

(x− s)α1+β1−1(y − t)α2+β2−1

Γ (α1 + β1) Γ (α2 + β2)
dtds

)

≤
(

Tα1
1 Tα2

2
Γ(α1 + 1)Γ(α2 + 1)

)
(̊p1 ∥u1 − u2∥∞ + q̊1 ∥v1 − v2∥∞)

+
(

Tα1+β1
1 Tα2+β2

2
Γ(α1 + β1 + 1)Γ(α2 + β2 + 1)

)
(̊p2 ∥u1 − u2∥∞ + q̊2 ∥v1 − v2∥∞) .

Hence

∥S1 (u1, v1) − S1 (u2, v2)∥∞ ≤
(

Tα1
1 Tα2

2
Γ(α1 + 1)Γ(α2 + 1)p̊1 + Tα1+β1

1 Tα2+β2
2

Γ(α1 + β1 + 1)Γ(α2 + β2 + 1)p̊2

)
∥u1 − u2∥∞

+
(

Tα1
1 Tα2

2
Γ(α1 + 1)Γ(α2 + 1)q̊1 + Tα1+β1

1 Tα2+β2
2

Γ(α1 + β1 + 1)Γ(α2 + β2 + 1)q̊2

)
∥v1 − v2∥∞

In a similar way, we get:

∥S2 (u1, v1) − S2 (u2, v2)∥∞ ≤
(

Tγ1
1 Tγ2

2
Γ(γ1 + 1)Γ(γ2 + 1)p1 + Tγ1+δ1

1 Tγ2+δ2
2

Γ(γ1 + δ1 + 1)Γ(γ2 + δ2 + 1)p2

)
∥u1 − u2∥∞

+
(

Tγ1
1 Tγ2

2
Γ(γ1 + 1)Γ(γ2 + 1)q1 + Tγ1+δ1

1 Tγ2+δ2
2

Γ(γ1 + δ1 + 1)Γ(γ2 + δ2 + 1)q2

)
∥v1 − v2∥∞

By the previous two inequalities we arrive at

∥S (u1, v1) − S (u2, v2)∥X,∞ ⪯ A ∥(u1, v1) − (u2, v2)∥X,∞ ,

where A is the matrix given by (3.2). Since the spectral radius ρ(A) < 1, then S is a Perov
contraction. As a result of Perov’s fixed point theorem, there exists a unique fixed point for the
operator S, which corresponds to a unique solution for the coupled system (2) X.

Our second result on the uniqueness is based on the Perov’s fixed point theorem combined with
the Bielecki vector-valued norm.

Theorem 13 Let the assumptions (H ′
1) and (H ′

2) are satisfied. Then the the coupled system
formulated in 2 has a unique solution.

Proof 5 Before moving further, let us consider on the space C (̃I,R) the Bielecki norm ∥·∥B defined
as below:

∥u∥B := sup
(x,y)∈Ĩ

|u(x, y)|
eλ(x+y) , λ > 0. (3.4)
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It is obvious that C (̃I,R) is a Banach space with this norm ∥ · ∥B since it is equivalent to the
infinity norm ∥ · ∥∞. Consequently, the product space X := C (̃I,R) × C (̃I,R) is a generalized
Banach space, endowed with the Bielecki vector-valued norm

∥(u, v)∥X,B =
(

∥u∥B

∥v∥B

)
.

Now, we apply Perov’s fixed point theorem to prove that S has a unique fixed point. Indeed,
it is enough to show that S is X-contraction mapping on X via the Bielecki’s vector-valued norm.
For this end, given (u1, v1) , (u2, v2) ∈ X and (x, y) ∈ Ĩ, using (H ′

2), and Lemma 3, we can get

|(S1 (u1, v1)) (x, y) − (S1 (u2, v2)) (x, y)|

≤
∫ x

0

∫ y

0

(x− s)α1−1(y − t)α2−1

Γ (α1) Γ (α2)
(̊p1 |u1(s, t) − u2(s, t)| + q̊1 |v1(s, t) − v2(s, t)|) dtds

+
∫ x

0

∫ y

0

(x− s)α1+β1−1(y − t)α2+β2−1

Γ (α1 + β1) Γ (α2 + β2)
(̊p2 |u1(s, t) − u2(s, t)| + q̊2 |v1(s, t) − v2(s, t)|) dtds

≤ (̊p1 ∥u1 − u2∥∞ + q̊1 ∥v1 − v2∥∞)
(∫ x

0

∫ y

0

(x− s)α1−1(y − t)α2−1

Γ (α1) Γ (α2)
eλ(s+t)dtds

)

+ (̊p2 ∥u1 − u2∥∞ + q̊2 ∥v1 − v2∥∞)
(∫ x

0

∫ y

0

(x− s)α1+β1−1(y − t)α2+β2−1

Γ (α1 + β1) Γ (α2 + β2)
eλ(s+t)dtds

)

≤ eλ(x+y)

λα1+α2
(̊p1 ∥u1 − u2∥ ∥B + q̊1∥ v1 − v2∥B)

+ eλ(x+y)

λα1+β1+α2+β2
(̊p2 ∥u1 − u2∥ ∥B + q̊2∥ v1 − v2∥B) .

Hence

∥S1 (u1, v1) − S1 (u1, v2)∥B ≤
(

p̊1

λα1+α2
+ p̊2

λα1+β1+α2+β2

)
∥u1 − u2∥B

+
(

q̊1

λα1+α2
+ q̊2

λα1+β1+α2+β2

)
∥v1 − v2∥B

As previously, we can derive

∥S2 (u1, v1) − S2 (u1, v2)∥B ≤
( p1
λγ1+γ2

+ p2
λγ1+δ1+γ2+δ2

)
∥u1 − u2∥B

+
( q1
λγ1+γ2

+ q2
λγ1+δ1+γ2+δ2

)
∥v1 − v2∥B

This implies that

∥S (u1, v1) − S (u2, v2)∥X,B ⪯ X ∥(u1, v1) − (u2, v2)∥X,B

where
X =

( p̊1
λα1+α2 + p̊2

λα1+β1+α2+β2
q̊1

λα1+α2 + q̊2
λα1+β1+α2+β2

p1
λγ1+γ2 + p2

λγ1+δ1+γ2+δ2
q1

λγ1+γ2 + q2
λγ1+δ1+γ2+δ2

)
. (3.5)

Taking λ large enough it follows that the matrix X is convergent to zero and thus, an application
of Perov’s theorem shows that S has a unique fixed point. So the coupled system (2) has a unique
solution in X.

Now we give our existence result for the problem (2). The arguments are based on the Schauder’s
fixed point theorem in generalized Banach spaces.
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Theorem 14 Assume that (H ′
1) holds. In addition assume that:

( H ′
3 ) There exist positive real constants ai, bi, ci, a∗

i , b∗
i , c∗

i , i = 1, 2, such that

|fi(x, u, v)| ≤ ai + bi|u| + ci|v|,
|gi(x, u, v)| ≤ a∗

i + b∗
i |u| + c∗

i |v|,

for all (x, y) ∈ Ĩ and each (u, v) ∈ R2.
Also, if ρ(D) < 1, such that

D =

 Tα1
1 Tα2

2
Γ(α1+1)Γ(α2+1)b1 + Tα1+β1

1 Tα2+β2
2

Γ(α1+β1+1)Γ(α2+β2+1)b2
Tα1

1 Tα2
2

Γ(α1+1)Γ(α2+1)c1 + Tα1+β1
1 Tα2+β2

2
Γ(α1+β1+1)Γ(α2+β2+1)c2

Tγ1
1 Tγ2

2
Γ(γ1+1)Γ(γ2+1)b

∗
1 + Tγ1+δ1

1 Tγ2+δ2
2

Γ(γ1+δ1+1)Γ(γ2+δ2+1)b
∗
2

Tγ1
1 Tγ2

2
Γ(γ1+1)Γ(γ2+1)c

∗
1 + Tγ1+δ1

1 Tγ2+δ2
2

Γ(γ1+δ1+1)Γ(γ2+δ2+1)c
∗
2

 .
(3.6)

Then the coupled system mentioned in (2) has at least one solution.

Proof 6 We shall show that the operator S defined in (3.3) satisfies the hypotheses of the
Schauder’s fixed point theorem generalized Banach space ( Theorem 7). Define a subset Bϱ of
X by

Bϱ = {(u, v) ∈ X : ∥(u, v)∥X,∞ ≤ ϱ} (3.7)
with ϱ := (ϱ1, ϱ2) ∈ R2

+ such that{
ϱ1 ≥ σ∗

1N∗
1 + σ∗

2N∗
2,

ϱ2 ≥ σ∗
3N∗

1 + σ∗
4N∗

2.

Where N1,N2 and σ∗
i ; i = 1, 2 are non-negative real numbers that will be specified later. More-

over, notice that Bϱ is closed, convex and bounded subset of the generalized Banach space X. For
clarity, we will divide the remain of the proof into several steps.

Step 1: S(u, v) ∈ Bϱ, for any (u, v). Indeed, for (u, v), (x̄, ȳ) ∈ X and for each (x, y) ∈ Ĩ,
from the definition of the operator S1 and assumption (H ′

3), we can get

|S1(u, v)(x, y)| ≤ |a1(x, y)| +
∫ x

0

∫ y

0

(x− s)α1−1(y − t)α2−1

Γ (α1) Γ (α2)
(a1 + b1|u(s, t)| + c1|v(s, t)|) dtds

+
∫ x

0

∫ y

0

(x− s)α1+β1−1(y − t)α2+β2−1

Γ (α1 + β1) Γ (α2 + β2)
(a2 + b2|u(s, t)| + c2|v(s, t)|) dtds

≤ ∥a1∥∞ + (a1 + b1∥u∥∞ + c1∥v∥∞)
∫ x

0

∫ y

0

(x− s)α1−1(y − t)α2−1

Γ (α1) Γ (α2)
dtds

+ (a2 + b2∥u∥∞ + c2∥v∥∞)
∫ x

0

∫ y

0

(x− s)α1+β1−1(y − t)α2+β2−1

Γ (α1 + β1) Γ (α2 + β2)
dtds

≤ ∥a1∥∞ + Tα1
1 Tα2

2
Γ(α1 + 1)Γ(α2 + 1) (a1 + b1∥u∥∞ + c1∥v∥∞)

+ Tα1+β1
1 Tα2+β2

2
Γ(α1 + β1 + 1)Γ(α2 + β2 + 1) (a2 + b2∥u∥∞ + c2∥v∥∞) .

Hence

∥S1(u, v)∥∞ ≤ ∥a1∥∞ + Tα1
1 Tα2

2
Γ(α1 + 1)Γ(α2 + 1)a1 + Tα1+β1

1 Tα2+β2
2

Γ(α1 + β1 + 1)Γ(α2 + β2 + 1)a2

+
(

Tα1
1 Tα2

2
Γ(α1 + 1)Γ(α2 + 1)b1 + Tα1+β1

1 Tα2+β2
2

Γ(α1 + β1 + 1)Γ(α2 + β2 + 1)b2

)
∥u∥∞

+
(

Tα1
1 Tα2

2
Γ(α1 + 1)Γ(α2 + 1)c1 + Tα1+β1

1 Tα2+β2
2

Γ(α1 + β1 + 1)Γ(α2 + β2 + 1)c2

)
∥v∥∞

38



By similar procedure, we can obtain

∥S1(u, v)∥∞ ≤ ∥a∗
1∥∞ + Tγ1

1 Tγ2
2

Γ(γ1 + 1)Γ(γ2 + 1)a∗
1 + Tγ1+δ1

1 Tγ2+δ2
2

Γ(γ1 + δ1 + 1)Γ(γ2 + δ2 + 1)a∗
2

+
(

Tγ1
1 Tγ2

2
Γ(γ1 + 1)Γ(γ2 + 1)b∗

1 + Tγ1+δ1
1 Tγ2+δ2

2
Γ(γ1 + δ1 + 1)Γ(γ2 + δ2 + 1)b∗

2

)
∥u∥∞

+
(

Tγ1
1 Tγ2

2
Γ(γ1 + 1)Γ(γ2 + 1)c∗

1 + Tγ1+δ1
1 Tγ2+δ2

2
Γ(γ1 + δ1 + 1)Γ(γ2 + δ2 + 1)c∗

2

)
∥v∥∞

Thus the above inequalities can be written in the vectorial form as follows

∥S(u, v)∥X,∞ :=
(

∥S1(u, v)∥∞
∥S2(u, v)∥∞

)

D

(
∥u∥∞

∥v∥∞

)
+
(∥a1∥∞ + Tα1

1 Tα2
2

Γ(α1+1)Γ(α2+1)a1 + Tα1+β1
1 Tα2+β2

2
Γ(α1+β1+1)Γ(α2+β2+1)a2

∥a2∥∞ + Tγ1
1 Tγ2

2
Γ(γ1+1)Γ(γ2+1)a

∗
1 + Tγ1+δ1

1 Tγ2+δ2
2

Γ(γ1+δ1+1)Γ(γ2+δ2+1)a
∗
2

)
,

where D is the matrix given by (3.6)
Now we look for ϱ = (ϱ1, ϱ2) ∈ R2

+ such that S(u, v) ∈ Bϱ for any (u, v) ∈ Bϱ. To this end,
according to (3.7), it is sufficient to show

D
(
ϱ1

ϱ2

)
+
(∥a1∥∞ + Tα1

1 Tα2
2

Γ(α1+1)Γ(α2+1)a1 + Tα1+β1
1 Tα2+β2

2
Γ(α1+β1+1)Γ(α2+β2+1)a2

∥a2∥∞ + Tγ1
1 Tγ2

2
Γ(γ1+1)Γ(γ2+1)a

∗
1 + Tγ1+δ1

1 Tγ2+δ2
2

Γ(γ1+δ1+1)Γ(γ2+δ2+1)a
∗
2

)
⪯
(
ϱ1

ϱ2

)
,

Equivalently (
N∗

1
N∗

2

)
⪯ (I − D)

(
ϱ1

ϱ2

)
. (3.8)

Where

(
N∗

1
N∗

2

)
=
(∥a1∥∞ + Tα1

1 Tα2
2

Γ(α1+1)Γ(α2+1)a1 + Tα1+β1
1 Tα2+β2

2
Γ(α1+β1+1)Γ(α2+β2+1)a2

∥a2∥∞ + Tγ1
1 Tγ2

2
Γ(γ1+1)Γ(γ2+1)a

∗
1 + Tγ1+δ1

1 Tγ2+δ2
2

Γ(γ1+δ1+1)Γ(γ2+δ2+1)a
∗
2

)
.

Since the matrix D is convergent to zero. It yields, from Definition 11 that the matrix (I − D)
is nonsingular and (I − D)−1 has nonnegative elements. So, (3.8) is equivalent to

(
ϱ1

ϱ2

)
⪰ (I − D)−1

( Tα1
1 Tα2

2
Γ(α1+1)Γ(α2+1)a1 + Tα1+β1

1 Tα2+β2
2

Γ(α1+β1+1)Γ(α2+β2+1)a2

Tγ1
1 Tγ2

2
Γ(γ1+1)Γ(γ2+1)a

∗
1 + Tγ1+δ1

1 Tγ2+δ2
2

Γ(γ1+δ1+1)Γ(γ2+δ2+1)a
∗
2

)
.

In addition, if we take

(I − D)−1 =
(
σ∗

1 σ∗
2

σ∗
3 σ∗

4

)
,

we can arrive at {
ϱ1 ≥ σ∗

1N∗
1 + σ∗

2N∗
2,

ϱ2 ≥ σ∗
3N∗

1 + σ∗
4N∗

2

Which means that S(u, v) ∈ Bϱ.
Step 2: S is compact and continuous. Firstly, observe that the operator S is continuous, owing
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to the continuity of functions of f1, f2, g1 and g2. The next task is to show that S is uniformly
bounded on Bϱ. From (3.7), and for each (u, v) ∈ Bϱ we can get

∥S(u, v)∥X,∞ :=
(

∥S1(u, v)∥∞
∥S2(u, v)∥∞

)
⪯ D

(
ϱ1

ϱ2

)
+
(
N∗

1
N∗

2

)
< ∞.

This proves that S is uniformly bounded.
Finally, we show that S (Bϱ) is equicontinuous. Let (u, v) ∈ Bϱ and any (x1, y1) , (x2, y2) ∈ Ĩ, with
x1 < x2 and y1 < y2. Taking (H ′

3) into consideration we can find

|S1(u, v) (x2, y2) − S1(u, v) (x1, y1)| ≤ |a1 (x2, y2) − a1 (x2, y2)|

+ a1 + b1ϱ1 + c1ϱ2

Γα1) Γ (α2)

∫ x1

0

∫ y1

0

[
(x1 − s)α1−1 (y1 − t)α2−1 − (x2 − s)α1−1 (y2 − t)α2−1

]
dtds

+ a1 + b1ϱ1 + c1ϱ2

Γ (α1) Γ (α2)

∫ x2

x1

∫ y2

y1
(x2 − s)α1−1 (y2 − t)α2−1 dtds

+ a1 + b1ϱ1 + c1ϱ2

Γ (α1) Γ (α2)

∫ x2

x1

∫ y1

0
(x2 − s)α1−1 (y2 − t)α2−1 dtds

+ a1 + b1ϱ1 + c1ϱ2

Γ (α1) Γ (α2)

∫ x1

0

∫ y2

y1
(x2 − s)α1−1 (y2 − t)α2−1 dtds

+ a1 + b1ϱ1 + c1ϱ2

Γ (α1 + β1) Γ (α2 + β2)∫ x1

0

∫ y1

0

[
(x1 − s)α1+β1−1 (y1 − t)α2+β2−1 − (x2 − s)α1+β1−1 (y2 − t)α2+β2−1

]
dtds

+ a2 + b2ϱ1 + c2ϱ2

Γ (α1 + β1) Γ (α2 + β2)

∫ x2

x1

∫ y2

y1
(x2 − s)α1+β1−1 (y2 − t)α2+β2−1 dtds

+ a2 + b2ϱ1 + c2ϱ2

Γ (α1 + β1) Γ (α2 + β2)

∫ x2

x1

∫ y1

0
(x2 − s)α1+β1−1 (y2 − t)α2+β2−1 dtds

+ a2 + b2ϱ1 + c2ϱ2

Γ (α1 + β1) Γ (α2 + β2)

∫ x1

0

∫ y2

y1
(x2 − s)α1+β1−1 (y2 − t)α2+β2−1 dtds

≤ |a1 (x2, y2) − a1 (x2, y2)|

+ 2 a1 + b1ϱ1 + c1ϱ2

Γ (α1 + 1) Γ (α2 + 1) [xα1
2 (y2 − y1)α2 − (x2 − x1)α1 (y2 − y1)α2 + yα2

2 (x2 − x1)α1 ]

+ 2 a2 + b2ϱ1 + c2ϱ2

Γ (α1 + β1 + 1) Γ (α2 + β2 + 1)[
xα1+β1

2 (y2 − y1)α2+β2 − (x2 − x1)α1+β1 (y2 − y1)α2+β2 + yα2+β2
2 (x2 − x1)α1+β1

]
.

Similarly, it can be shown that

|S2(u, v) (x2, y2) − S2u (x1, y1)| ≤ |a2 (x1, y1) − a2 (x2, y2)|

+ 2 a∗
1 + b∗

1ϱ1 + c∗
1ϱ2

Γ (γ1 + 1) Γ (γ2 + 1) [xγ1
2 (y2 − y1)γ2 − (x2 − x1)γ1 (y2 − y1)γ2 + yγ2

2 (x2 − x1)γ1 ]

+ 2 a∗
2 + b∗

2ϱ1 + c∗
2ϱ2

Γ (γ1 + δ1 + 1) Γ (γ2 + δ2 + 1)[
xγ1+δ1

2 (y2 − y1)γ2+δ2 − (x2 − x1)γ1+δ1 (y2 − y1)γ2+δ2 + yγ2+δ2
2 (x2 − x1)γ1+δ1

]
.

As x1 → x2 and y1 → y2, the right-hand side of the above inequalities tends to zero indepen-
dently of (u, v) ∈ Bϱ. Hence, the operators S1 and S2 are equicontinuous and thus the operator
G is equicontinuous. By Arzelà-Ascoli’s theorem, we deduce that S is a compact operator. Thus
all the assumptions of (7) are satisfied. As a consequence of Schauder’s fixed point theorem, we
conclude that the operator S defined by (3.3) has at least one fixed point (u, v) ∈ Bϱ, which is just
the solution of system (2). This completes the proof of the Theorem(3.3).
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3.1 Applications
We finish this chapter by constructing examples regarding the above results.
Exemple 2 Consider the following system:

u(x, y) = (x − y)e−(x2+y2) +
∫ x

0

∫ y

0

(x− s)α1−1(y − t)α2−1

Γ (α1) Γ (α2) f1(s, t, u(s, t), v(s, t))dtds

+
∫ x

0

∫ y

0

(x− s)α1+β1−1(y − t)α2+β2−1

Γ (α1 + β1) Γ (α2 + β2) f2(s, t, u(s, t), v(s, t))dtds,

v(x, y) = sin(x + y) +
∫ x

0

∫ y

0

(x− s)γ1−1(y − t)γ2−1

Γ (γ1) Γ (γ2) g1(s, t, u(s, t), v(s, t))dtds,

+
∫ x

0

∫ y

0

(x− s)γ1+δ1−1(y − t)γ2+δ2−1

Γ (γ1 + δ1) Γ (γ2 + δ2) g2(s, t, u(s, t), v(s, t))dtds,

(x, y) ∈ Ĩ

(3.9)
where

α = (α1, α2) = (0.5, 0.6), β = (β1, β2) = (0.8, 0.75), γ = (γ1, γ2) = (0.25, 0.75),
δ = (δ1, δ2) = (0.75, 0.25),T1 = T2 = 1, Ĩ = [0, 1] × [0, 1],

and

ζ1(x, y) = (x − y)e−(x2+y2)

ζ2(x, y) = sin(x + y)

f1(x, y, u(x, y), v(x, y)) = sin (|u3(x, y)|)√
(x + y)2 + 16

+ sin−1
(

(x + y)
4

)
cos

(
|v3(x, y)|

)
+ 4(x + y)

f2(x, y, u(x, y), v(x, y)) = cos−1
(

|u(x, y)|
4

)
+

1
4e

−(x+y)

1 + |v(x, y)|

g1(x, y, u(x, y), v(x, y)) = u(x, y)
ex+y+4(1 + |u(x, y)|) + v(x, y)

x + y + 2

g2(x, y, u(x, y), v(x, y)) = 1
(x + y + 2)2

 u(x, y) +
√

1 + u2(x, y)
)

2 + sin |v(x, y)|


Clearly, the functions g1 and g2 are continuous. Moreover, for any (u1, v1) , (u2, v2) ∈ R2 and

(x, y) ∈ Ĩ we have

|f1 (x, y, u1, v1) − g1 (x, y, u2, v2)| ≤ 0.25 |u1 − u2| + 0.25 |v1 − v2|
|f2 (x, y, u1, v1) − g2 (x, y, u2, y2)| ≤ 0.25 |u1 − u2| + 0.25 |v1 − v2|
|g1 (x, y, u1, v1) − g1 (x, y, u2, v2)| ≤ e−2 |u1 − u2| + 0.25 |v1 − v2|
|g2 (x, y, u1, v1) − g2 (x, y, u2, y2)| ≤ 0.25 |u1 − u2| + 0.25 |v1 − v2| .

So assumption ( H ′
2 ) is satisfied with

p1 = e−2, q̊1 = q1 = p̊1 = p̊2 = q̊2 = p2 = q2 = 0.25.
Furthermore, the matrix A given by (3.2) has the following form

A =
( 1

4Γ(1.5)Γ(1.6) + 1
4Γ(2.3)Γ(2.35)

1
4Γ(1.5)Γ(1.6) + 1

4Γ(2.3)Γ(2.35)
1

e−2Γ(1.25)Γ(1.75) + 1
4Γ(2)Γ(2)

1
4Γ(1.75)Γ(1.25) + 1

4Γ(2)Γ(2)

)
Using the Matlab program we can get the eigenvalues of A as follows σ1 = 0.0698, σ2 = 0.9742.

This shows that A converges to zero. Therefore, by Theorem 12, the coupled system (3.9) has a
unique solution.
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Exemple 3 Consider the following system:

u(x, y) = x + y2 +
∫ x

0

∫ y

0

(x− s)α1−1(y − t)α2−1

Γ (α1+) Γ (α2)
f1(s, t, u(s, t), v(s, t))dtds

+
∫ x

0

∫ y

0

(x− s)α1+β1−1(y − t)α2+β2−1

Γ (α1 + β1) Γ (α2 + β2)
f2(s, t, u(s, t), v(s, t))dtds,

v(x, y) = xex + y +
∫ x

0

∫ y

0

(x− s)γ1−1(y − t)γ2−1

Γ (γ1) Γ (γ2)
g1(s, t, u(s, t), v(s, t))dtds,

+
∫ x

0

∫ y

0

(x− s)γ1+δ1−1(y − t)γ2+δ2−1

Γ (γ1 + δ1) Γ (γ2 + δ2)
g2(s, t, u(s, t), v(s, t))dtds,

(x, y) ∈ Ĩ

(3.10)
where
α = (α1, α2) = (0.25, 0.75), β = (β1, β2) = (0.75, 0.25), γ = (γ1, γ2) = (0.25, 0.75), δ = (δ1, δ2) =
(0.75, 0.25),T1 = 10, T2 = 20, Ĩ = [0, 10] × [0, 20],
and

ζ1(x, y) = x + y2

ζ2(x, y) = xex + y
f1(x, y, u(x, y), v(x, y)) =

(
1 + ex+y

)
ln(1 + |u(x, y)|) + exy arctan v(x, y)

f2(x, y, u(x, y), v(x, y)) = x + y
(1 + |u(x, y)| + |v(x, y)|)

g1(x, y, u(x, y), v(x, y)) =
(
1 + ex+y

)
ln(1 + |u(x, y)|) + exy arctan v(x, y)

g2(x, y, u(x, y), v(x, y)) = x + y
(1 + |u(x, y)| + |v(x, y)|) .

Observe that f1, f2, g1, g2 are continuous and satisfy the condition (H ′
2) with

p̊1 = p1 = 1 + e2, q̊1 = q1 = e, p̊2 = q̊2 = p2 = q2 = 2.

In addition, the matrix X given by (3.5) has the following form

X =
(1
λ

+ 1
λ2

)(
e2 + 3 e+ 2
e+ 3 e+ 2

)
.

Taking λ large enough it follows that the matrix X is convergent to zero and thus, an application
of Theorem 13 shows that the coupled system (3.10) has a unique solution.
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Conclusion and Perspectives

In this memory, we have conducted a comprehensive study on the existence, uniqueness, and sta-
bility of solutions for a class of coupled systems of nonlinear integral equations involving the ψ-
Riemann–Liouville fractional integral. Our investigation has been carried out within the framework
of generalized Banach spaces endowed with vector-valued norms, commonly referred to as Perov-
type spaces. This choice of analytical setting has allowed us to deal effectively with the complex
structure of the systems under consideration, particularly due to the nonlocal and memory-dependent
nature of the fractional integral operator. By combining the tools of fixed point theory with the
structure of vector-valued norms and convergent-to-zero matrices, we have been able to obtain
several important theoretical results. Using Schauder’s fixed point theorem, we established the ex-
istence of at least one solution under suitable compactness and continuity assumptions. Then, by
applying Perov’s fixed point theorem, which generalizes Banach’s contraction principle to the set-
ting of vector-valued norms, we proved the uniqueness of the solution. Moreover, we have extended
our analysis to address the concept of Ulam–Hyers stability, a crucial property that ensures the
robustness of solutions under small perturbations in the data. By employing the matrix convergence
technique, we derived sufficient conditions under which the system exhibits Ulam–Hyers and gen-
eralized Ulam–Hyers–Rassias stability. The theoretical findings were supported by carefully chosen
illustrative examples that confirm the effectiveness and applicability of our approach.

Beyond the results obtained, this work opens up several promising directions for further research.
One natural extension would be to apply similar analytical techniques to systems of nonlinear frac-
tional differential equations, particularly those involving Caputo or Hadamard derivatives, which are
also commonly used in modeling real-world phenomena with memory. Furthermore, incorporating
time-delay effects or impulsive dynamics into the fractional framework would offer a more realistic
representation of many physical, biological, and engineering systems. Another valuable direction
would be the development of numerical methods aligned with the theoretical conditions established
in this thesis, allowing for practical approximations of solutions while preserving properties such as
stability and convergence. Additionally, exploring stochastic variants of fractional integral equations
could be of great interest, especially in contexts where uncertainty and random fluctuations play a
significant role. Finally, applying the analytical tools developed here to specific models in population
dynamics, viscoelastic materials, control theory, or finance would further demonstrate the practical
relevance of this work. In conclusion, this thesis contributes to the growing literature on fractional
calculus and fixed point theory by bridging abstract mathematical analysis with applicable results,
providing a solid foundation for both theoretical advancement and real-world modeling.
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