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Abstract

This thesis addresses the problem of speech noise reduction (NR), which represents a
major challenge in audio processing. Noisy speech signals can significantly degrade
the performance of many speech-based applications, such as speech recognition ,
voice communication and voice enhancement . The main hypothesis underlying
this work is that self-supervised learning (SSL) techniques can be effectively lever-
aged to reduce noise in speech without the need for large datasets. The primary
goals are to explore the possibilities of SSL methods for NR, to implement and eval-
uate algorithms that can remove noise from speech while maintaining basic speech
quality. The research approach includes reviewing literature on traditional and
modern methods, implementing an SSL model, preparing and pre-processing audio
data, as well as training and evaluating the model. The results of this work suggest
that SSL could be a promising direction to address NR in speech, especially in envi-
ronments where obtaining annotated data is rare or expensive. This model can be
integrated into various speech-based applications to enhance their performance and
robustness in noisy environments. Future research directions may include explor-
ing more advanced SSL techniques and investigating the transferability of learned
representations to other sound processing tasks.

Keywords: Speech denoising, Self-Supervised Learning, Audio processing, Ma-
chine learning, Deep learning.



Résumé

Cette thèse aborde le problème de la réduction du bruit de la parole, qui représente
un défi majeur dans le traitement audio. Les signaux de parole bruyants peuvent
dégrader considérablement les performances de nombreuses applications basées sur
la parole, telles que la reconnaissance vocale, la communication vocale et l’améliora-
tion de la voix. L’hypothèse principale sous-jacente à ce travail est que les techniques
d’apprentissage auto-supervisé peuvent être efficacement exploitées pour réduire le
bruit de la parole sans avoir besoin de grands ensembles de données . Les princi-
paux objectifs sont d’explorer les possibilités des méthodes auto-supervisées pour
la réduction du bruit de la parole, de mettre en œuvre et d’évaluer des algorithmes
capables de supprimer le bruit de la parole tout en maintenant la qualité de base
de la parole. L’approche de recherche comprend l’examen de la littérature sur les
méthodes traditionnelles et modernes, la mise en œuvre d’un modèle d’apprentissage
auto-supervisé, la préparation et le prétraitement des données audio, ainsi que la
formation et l’évaluation du modèle. Les résultats de ce travail suggèrent que l’ap-
prentissage auto-supervisé pourrait être une direction prometteuse pour résoudre
le problème de la réduction du bruit de la parole, en particulier dans les environ-
nements où l’obtention de données annotées est rare ou coûteuse. Ce modèle peut
être intégré dans diverses applications basées sur la parole pour améliorer leurs per-
formances et leur robustesse dans les environnements bruyants. Les futures orien-
tations de recherche pourraient inclure l’exploration de techniques auto-supervisées
plus avancées et l’étude de la transférabilité des représentations apprises à d’autres
tâches de traitement du son.

Mots clés: Débruitage de la parole, apprentissage auto-supervisé, traitement au-
dio, apprentissage automatique, apprentissage profond.



Contents

List of Figures ix

List of Acronyms ix

Introduction 1

1 Generalities about speech and noise. 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Audio in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Characteristics of Audio . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Digital Representation . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Learning from Data . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Types of Learning Methods . . . . . . . . . . . . . . . . . . 18

1.3.2 Self-Supervised Learning . . . . . . . . . . . . . . . . . . . . 20

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 State Of The Art 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Traditional Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Statistical approaches . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Time-Domain Methods . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Spectral Domain Methods . . . . . . . . . . . . . . . . . . . 25

2.3 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Deep Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Old Deep Learning Methods . . . . . . . . . . . . . . . . . 27

vi



Contents

2.4.2 Self Supervised Learning . . . . . . . . . . . . . . . . . . . 27

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Experiment/ Implementation … 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Development Environment . . . . . . . . . . . . . . . . . . . 31

3.2.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Audio Sub-Sampler . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4 Denoising Network . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . 35

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Conclusion and Perspectives 38

References 39

Feuille de correction 1

vii



List of Figures

1.1 A voiced sound with its fundamental frequency . . . . . . . . . . . 7

1.2 Amplitude against time plots of the same speech recording at three
different time scales. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Audio waveform superimposed . . . . . . . . . . . . . . . . . . . . 8

1.4 Spectrograms of the same single audio recording views as given in
Figure1.2 . Louder sound components are shown with a darker grey
shade and lower amplitudes with a lighter shade. . . . . . . . . . . 9

1.5 The PCM Encoder and Decoder . . . . . . . . . . . . . . . . . . . 11

1.6 Life cycle from Sound to Digital to Sound . . . . . . . . . . . . . . 13

1.7 Diagram showing the flow of audio from an analog waveform to a
digital binary representation,An analog wave is represented as a con-
tinuous, wavy line, while a digital signal is represented as a series of
interrupted rectangular shapes. Digital binary representation is rep-
resented by a series of 0s and 1s, where the analog wave is converted
into digital format. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 a) Example noise from a car and (b) its long-term average spectrum. 14

1.9 (a) Example noise from a train and (b) its long-term average spectrum. 15

1.10 (a) Example noise from a restaurant and (b) its 1ong-term average
spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.11 Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . . 18

1.12 Comparing supervised learning and unsupervised learning . . . . . 19

2.1 Implementation pipeline of self-supervised audio speech denoising . 28

2.2 The proposed method consists of a masking module and pre-task
and downstream autoencoders. In the pre-task autoencoder (PAE),
clean speech and interference signals are mixed to generate reverber-
ant mixtures. MFCC features are extracted, and the PAE learns the
latent representation of the clean speech signals. The masking mod-
ule estimates the target speech signal in the reverberant mixture. In
the downstream task autoencoder (DAE), unseen and unpaired re-
verberant mixtures are used. The enhanced signal is obtained from
the decoder’s output in the testing stage . . . . . . . . . . . . . . . 29

viii



List of Figures

2.3 ONT Strategy Overview . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Audio Sub-Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Denoising Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Comparison between input signals and ONT results . . . . . . . . . 34

3.4 Evaluation with other strategies . . . . . . . . . . . . . . . . . . . . 36

3.5 Example of speech time-frequency diagram. . . . . . . . . . . . . . 36

3.6 Enter Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

ix



Introduction

Speech recognition and processing are very active areas of research in com-
puter science and signal processing, having experienced significant advances in re-
cent years, notably due to developments in machine learning and deep learning.
However, one of the major challenges remains speech denoising, or the removal of
noise present in speech signals. Noise can come from various sources such as the
acoustic environment, electronic interference, or sensor imperfections, all of which
significantly degrade speech quality and intelligibility. This degradation can impact
many applications, such as speech recognition, telephony, audio streaming, and oth-
ers. Therefore, the development of effective speech denoising methods is a crucial
task.

Traditional denoising techniques, such as statistical approaches and time-domain
and spectral-domain methods, often rely on simplifying assumptions about the sta-
tistical properties of the signal and noise. These techniques, however, have limi-
tations, especially when the noise is non-stationary, colored, or strongly correlated
with the speech signal. In this context, machine learning approaches, particularly
deep learning methods, have shown significant potential in learning more flexible
and adapted models for noisy speech signals. Some examples of machine learn-
ing techniques applied to speech denoising include supervised learning, which uses
paired clean and noisy speech to train enhancement models, as well as unsupervised
and self-supervised approaches that learn meaningful representations directly from
noisy data without needing clean speech references.

Self-supervised learning (SSL) is an approach that has recently gained traction
in speech denoising due to its ability to leverage large amounts of unlabelled data.
The core principle of SSL is to create pretext tasks from the raw data itself, where
the model learns to predict a certain part or aspect of the data based on other
parts, thus creating “labels” from the data automatically. For example, in speech
denoising, an SSL model might be trained to predict a clean version of a speech seg-
ment given a noisy version. Through this process, the model learns representations
of speech that capture the essential features required for denoising without need-
ing manually annotated clean-noise pairs. This approach is particularly beneficial
because it can adapt to real-world noise conditions where labeled data is costly or
difficult to obtain.

This thesis aims to explore the use of self-supervised learning techniques for
speech denoising. SSL enables the use of large amounts of unlabelled audio data
to learn speech signal representations that capture the most relevant features for
the denoising task without requiring costly manual annotations. The objective
of this work is to study and evaluate self-supervised learning models for speech
denoising, improving the quality and usability of speech-based applications in real-
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List of Figures

world environments. The thesis will be organized into three chapters. The first
will cover general concepts about speech, noise, and machine learning methods.
The second chapter will review in detail various speech noise removal methods and
the latest findings in self-supervised speech noise reduction techniques. The third
part will focus on a study and implementation of the proposed model for self-
supervised speech noise reduction. Finally, the conclusion will summarize the main
achievements and outline directions for future research.
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Chapter 1

Generalities about speech and
noise.

1.1 Introduction

Speech is one of the primary means of communication among human beings.
Its simplicity makes it the most popular communication method in human society
(it is easier to speak to someone than to write or draw a diagram for them) . The
chapter provides an introduction to the generalities of speech and noise. The chapter
begins by discussing the importance of digital speech processing in various fields
and highlights the common problem of corruption of speech signals due to various
types of noise. The chapter covers several topics, including properties of audio
signals, such as frequency, amplitude, and waveform, as well as specific properties
of speech signals, such as acoustics and mechanisms of speech production. It also
explores different techniques for visualizing audio signals and explains the process
of converting analog audio signals into digital form. The chapter also delves into
the types of noise that can corrupt speech signals, the concept of signal-to-noise
ratio (SNR), and the challenges involved in reducing noise from speech signals. In
addition, it introduces different learning methods used in speech noise reduction,
including supervised learning, unsupervised learning, and self-supervised learning.
Overall, this chapter serves as a foundation for understanding the concepts and
challenges of speech noise reduction using self-supervised learning techniques.

1.2 Audio in General

Audio is a form of communication that relies on acoustic waves to convey
information. It encompasses various elements such as speech, music, and sound
effects. The use of audio is widespread in daily life, from watching movies and
listening to music to attending lectures and making phone calls. One key aspect of
audio is acoustic waves, vibrations that travel through a medium like air or water.
These waves can be described by their frequency, determining pitch, and amplitude,
determining volume. The human ear’s ability to perceive audio is crucial, consisting
of three main parts: the outer ear, middle ear, and inner ear. The outer ear collects
audio waves and directs them to the middle ear, where they are amplified and

3



Chapter 1. Generalities about speech and noise.

transmitted to the inner ear. In the inner ear, audio waves are converted into
electrical signals processed by the brain. This process is essential for understanding
and interpreting auditory information. In conclusion, audio is a fundamental aspect
of communication and entertainment, involving the transmission and perception of
acoustic waves and relying on various techniques to create different sounds (Ballas
(2007)).

1.2.1 Characteristics of Audio

When we talk about sound , we are referring to the physical phenomenon that
relates to the transmission of mechanical disturbances through a material medium,
such as air or water. Sound is produced by generating mechanical disturbances
that are transformed into sound waves that propagate in the surrounding medium.
Sound has several characteristics, including:

Sound Waves Sound waves are longitudinal waves of pressure variations trans-
mitted through a medium, such as air, water, or solids. These variations create
compressions and rarefactions, causing particles in the medium to move back and
forth. Sound waves are the physical manifestation of vibrations of Music (2024).

y(x, t) = A sin (2π f t − Φ) (1.1)

Where: y is displacemment , A is amplitude , f is the sound frequency ,t is time,
x is position and Φ is the phase angle.

Frequency Frequency is the number of cycles of a sound wave that occur in one
second, measured in Hertz (Hz). It determines the pitch of the sound. Higher
frequencies result in higher-pitched sounds, while lower frequencies produce lower-
pitched sounds. The audible range for humans is typically 20 Hz to 20,000 Hz
OpenStax (2024).

f =
1
T

(1.2)

Where f is frequency, and T is the time period.

Amplitude Amplitude refers to the magnitude or intensity of a sound wave,
determining its loudness. It is measured in decibels (dB), and a higher amplitude
corresponds to a louder sound. Amplitude is a crucial factor in the perception of a
sound’s volume OpenStax (2024).

Duration Duration is the length of time a sound persists. It is a fundamental
aspect in music, speech, and various audio applications. Sounds can be short and
transient, like a drum hit, or sustained over a more extended period, such as a
musical note or a spoken word.the equation of Duration is inverse of frequency of
Music (2024).

T =
1
f

(1.3)

4



Chapter 1. Generalities about speech and noise.

The time period T of a sound is inversely related to its frequency

Pitch Pitch refers to the perceived frequency of a sound wave. It is commonly
described as high or low and is determined by the rate at which the sound wave
vibrates. Higher frequencies result in higher pitches, while lower frequencies produce
lower pitches((Audio Definition, 2022)).

H = k · log2

(
f
f0

)
(1.4)

Where f is the current frequency, f0 is the reference frequency, and k is a constant.
The value of the constant k in the pitch equation 1.4depends on the specific context
and the chosen reference frequency ( f0). For human speech perception, k is often
determined empirically to match the subjective sense of pitch for the average human
ear. A common reference frequency is 1000 Hz.

In some contexts, k might be set to a value around 3.5 to 4 for speech-related
studies. However, it’s important to note that the exact value can vary, and re-
searchers might adjust it based on their specific experiments or applications. Exper-
imentation and validation with human subjects are typical approaches to fine-tune
such constants in the context of studying human sound perception.

Timbre Timbre refers to the unique quality or tone color of a sound. It distin-
guishes one sound from another, even if they have the same pitch and loudness.
Timbre is influenced by the complex mixture of frequencies and harmonics present
in a sound wave Academy (2024).

Dynamic Range Dynamic range is the difference between the softest and loudest
parts of an audio signal. It is often expressed in decibels and relates to the signal-
to-noise ratio.

DR(dB) = (20 · log10

(
Vmax
Vmin

)
) (1.5)

where Vmax and Vmin are the maximum and minimum signal voltages embibe 2023
(2023).
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Chapter 1. Generalities about speech and noise.

1.2.2 Speech

Speech is a series of sound waves generated through the oscillation of air
molecules. This process is initiated when an individual expels air from their lungs,
modulating the resulting sounds using the structures of the mouth and nose. These
sound waves propagate through a medium and exhibit distinctive properties, includ-
ing frequency which determines pitch, and amplitude which signifies the intensity
of vibrations. The human ear serves to detect and interpret these waves, and a
comprehensive grasp of these physical characteristics is integral to the fundamental
aspects of auditory perception and communication (Lee et al., 2021).

In more straightforward terms, spoken language involves the creation of sound
waves by expelling air through the vocal cords and manipulating these waves using
the oral and nasal structures. These waves possess specific attributes such as pitch
and volume, which are then apprehended and deciphered by our ears, facilitating
effective hearing and communication McLoughlin (2016).

Characteristics

The intricate characteristics of speech form a multifaceted tapestry, encompass-
ing both temporal and frequency domains, providing a robust foundation for analy-
sis in diverse applications. In the temporal domain, the rhythmic patterns of speech,
including phoneme duration, silent intervals, segmental timing, and prosody, intri-
cately contribute to the emotional expression of communication. These temporal
nuances are crucial components in understanding the dynamics of spoken language.
On the other hand, the frequency domain of speech 1.1 reveals a rich composi-
tion through spectral content, formants, harmonics, and prosodic cues. Formants,
specifically resonant frequencies in the vocal tract, stand out for their pivotal role in
differentiating phonemes. This highlights their significance in the intricate structure
of speech sounds. Within the physical components of speech, elements such as pitch
contours, airflow and pitch rates play indispensable roles. Spectral plots and pitch
lag analysis serve as tools to demonstrate and analyze these physical attributes,
offering insights into the acoustic features of speech production. The amplitude
distribution of speech varies dynamically based on situational factors, ranging from
the subtlety of a whisper to the intensity of shouting. This variation underscores the
adaptability of speech to different environmental and emotional contexts. Turning
attention to the lexical components, including phoneme sequences, tone, timbre,
and amplitude, contributes significantly to our understanding and interpretation
of spoken language. The frequency distribution of speech closely aligns with the
sensitivity of the human ear, emphasizing a notable distinction between frequencies
with the greatest energy and those essential for intelligibility(McLoughlin, 2016).
In the temporal dimension, speech exhibits constraints on articulation speed, with
phoneme duration and syllabic rate remaining relatively constant. This stability in
temporal characteristics ensures a consistent framework for speech communication.
In conclusion, the exploration of speech characteristics in both the temporal and
frequency domains provides a comprehensive understanding that serves as a solid
foundation for further analysis and processing in diverse applications.
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Chapter 1. Generalities about speech and noise.

Figure 1.1: A voiced sound with its fundamental frequency

Figure 1.2: Amplitude against time plots of the same speech recording at three
different time scales.

Visualization of Sounds

Exploring the concept of visualizing sound underscores its pivotal role in con-
verting signals into visual representations, facilitating human comprehension. While
this process enhances our understanding of signal complexities, it acknowledges that
visualizations can potentially obscure certain aspects. Despite the sensory dispari-
ties between eyes and ears, both possessing unique strengths and weaknesses, their
collaborative use in signal analysis forms the foundation for subsequent discussions.

Oscilloscope The oscilloscope, one of the oldest representations, shows the
temporal evolution of the signal’s amplitude. It is a simple function of time that
does not reveal the internal structure of the sound (its frequency composition)
and proves less interesting for complex auditory objects, especially in the study
of speech. An auditory object is generally defined using three main parameters
(acoustic trivariance): its intensity, its frequency composition, and its duration.
Visualizing a sound involves finding a representation that is related to these three
parameters, thus requiring a three-dimensional space (amplitude, frequency, time).
A simple illustration of the problems inherent with a Oscilloscope(waveform) view
is given in Figure1.2 , where three different resolution views of the same signal
(conversational speech) reveal very little visual similarity for what is really a fairly
uniform audio signal Tektronix (2024).

Frequency Spectrum Frequency Spectrum is a fundamental method for analyz-
ing signals, particularly in understanding the distribution of energy across different
frequencies within a given time frame or analysis window. This tool is crucial for
capturing a snapshot of the primary frequency components present in the signal,
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Figure 1.3: Audio waveform superimposed

offering valuable insights into its characteristics. A key aspect emphasized is the
careful selection of the analysis window, as it plays a critical role in the accuracy
and meaningfulness of the frequency spectrum analysis (Anonymous, 2016). The
cautionary note underscores the importance of avoiding the oversight of significant
features within the signal, ensuring that the chosen window aligns with the char-
acteristics of the signal under examination.Some audio researchers prefer to plot
their spectrograms in colour, but this is really just a matter of personal preference
Tektronix (2024). view is given in Figure1.3

Short-Time Fourier Transform (STFT) The Short-Time Fourier Transform
(STFT) stands as an advanced signal processing technique, involving the appli-
cation of a Fourier transform to localized segments or windows of a signal. This
process yields a time-varying representation of the signal’s frequency content, prov-
ing particularly valuable when dealing with signals exhibiting variations over time.
By systematically applying a narrow Fourier transform to successive windows along
the signal, STFT generates a time sequence of spectra. Typically represented as a
spectrogram, this visualization effectively illustrates how the frequency components
of a signal evolve over distinct time intervals (Anonymous, 2016). The STFT’s
significance extends to audio and speech processing, where it plays a crucial role
in visualizing speech structure over time. Its capability for detailed time-frequency
analysis surpasses simpler methods such as the time-domain waveform plot or fre-
quency spectrum, making it an indispensable tool in signal analysis and processing.
The Short-Time Fourier Transform (STFT) is mathematically represented by the
following equation:(Rocchesso, 2003)

X(t, ω) =
∫ ∞

−∞
x(τ) · w(t − τ) · e−jωτ dτ (1.6)
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Figure 1.4: Spectrograms of the same single audio recording views as given in
Figure1.2 . Louder sound components are shown with a darker grey shade and
lower amplitudes with a lighter shade.

where: - X(t, ω) is the STFT of the signal. - x(τ) is the input signal. - w(t− τ)
is the window function applied to the signal. - ω represents the angular frequency.
- j is the imaginary unit.

An example of MATLAB spectrograms is shown in Figure1.4 , plotted in
greyscale, and giving the same three periods of speech as shown in Figure 1.2

Other Visualization Methods emphasizes the significance of advanced visu-
alization techniques, highlighting the linear prediction coefficient spectral plot, cor-
relogram, and cepstrum. These methods are presented as tools for in-depth signal
analysis, surpassing the capabilities of simpler visualization techniques. The linear
prediction coefficient spectral plot provides insights into spectral characteristics,
while the correlogram and cepstrum offer unique perspectives on signal autocorre-
lation and component separation Ignoto (2017).

Correlogram Is a visual representation of the autocorrelation of a signal.
Autocorrelation involves comparing a signal with its delayed versions to identify
similarities. In the context of a correlogram, this comparison is graphically pre-
sented, highlighting patterns and periodicities within the signal. MATLAB is often
employed for autocorrelation analysis, aiding in the detection of hidden periodicities
that may not be apparent through direct observation. Correlograms are particularly
useful in speech analysis for uncovering repetitive structures within audio signals
Processing (2022).

Cepstrum Derived from reversing the word ”spectrum,” is a plot of ampli-
tude against ”quefrency,” the inverse of frequency. This technique involves a double
Fourier transform process applied to the logarithm of the original signal’s Fourier
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transform. The cepstrum is effective in separating components within complex sig-
nals, making it valuable for speech analysis. MATLAB’s signal processing toolbox
provides functions like cceps() for convenient cepstral analysis. Cepstrum are com-
monly used to determine the fundamental frequency of a signal and have diverse
applications in speech processing tasks Mel-Cepstrum (2021).

In conclusion, both the correlogram and cepstrum serve distinct purposes in
signal analysis. Correlograms provide a visual representation of autocorrelation,
aiding in the identification of periodicities and repetitive patterns. On the other
hand, cepstrum excel in separating components within complex signals, offering
detailed insights into signal structure. While correlograms are relatively easier to
compute and scale, cepstrum are valuable for automatic peak detection and re-
vealing features that may be missed in correlograms. The choice between these
methods depends on the specific analysis goals and the nature of the signal un-
der consideration. Both tools contribute significantly to speech analysis and other
signal processing applications McLoughlin (2016).

1.2.3 Digital Representation

Digital representation of audio has undergone a transformative journey, evolv-
ing from early mechanical gramophones to the sophisticated landscape of modern
electronic technology. In the historical context, audio signals were initially repre-
sented using mechanical devices like gramophones, relying on physical components
to capture and reproduce sound as pressure waves. This analog representation
marked the inception of audio playback but was limited by the constraints of physi-
cal mechanisms. The transition to digital representation heralded a new era, where
audio signals are now encoded as discrete digital data, offering advantages in stor-
age, processing, and transmission. This paradigm shift paved the way for enhanced
fidelity, efficient data handling, and the ability to manipulate audio content in ways
not achievable with analog methods. One fundamental aspect of digital representa-
tion is the encoding and decoding process, often referred to as audio coding. This
process involves the conversion of analog signals into digital format for storage and
subsequent reconstruction during playback. The delicate balance between factors
like fidelity, data rate, complexity, and delay became crucial considerations in de-
signing effective audio coders to cater to diverse application needs. The concept
of Pulse Code Modulation (PCM) exemplifies a foundational approach to digital
representation, where analog signals are sampled, quantized, and reconstructed.
A prominent manifestation of PCM is the Compact Disc (CD), which became a
ubiquitous medium with a sampling frequency of 44.1 kHz and 16 bits per sample,
setting a standard for digital audio quality(Bosi & Goldberg, 2022). is shown in
Figure 1.5

As technology advanced, more intricate coding schemes emerged, such as trans-
form coders, which dynamically allocate bits across the frequency spectrum to
achieve perceptual transparency. This evolution in digital representation has not
only revolutionized audio playback but has also raised intriguing questions about
the necessity of complexity, especially when considering the repetitive information
inherent in certain digital audio formats. In essence, the journey of digital represen-
tation of audio signifies a profound shift from analog mechanisms to the versatile
and powerful realm of digital technology, shaping the way we perceive, store, and
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Figure 1.5: The PCM Encoder and Decoder

interact with audio content.

Basics of Sound Data Representation

Sound data representation comprises a vital multi-step process essential for dig-
ital audio processing. Initially, the continuous analog signal undergoes sampling,
where discrete points are captured at regular intervals. The sampling rate, deter-
mining the frequency of these samples, plays a crucial role in reconstructing the
original signal accurately. Following this, quantization comes into play, assigning
a finite set of values to represent varying signal amplitudes. The quantized data
is then encoded into a digital format, often binary, facilitating computer process-
ing. Another critical aspect is bit depth, determining the precision of each sample’s
representation; higher bit depth enables a more faithful reproduction of the orig-
inal audio. In essence, the synergy of sampling, quantization, encoding, and the
specifications of sampling rate and bit depth collectively forms the foundation of
digital sound representation. These processes not only facilitate the study of sound
but also simplify the exploration and enhancement of audio within computational
systems while minimizing noise.

Converting Analogue Audio Into Digital Sound Representation

The process of capturing and converting sound in digital audio systems in-
volves the transformation of sound waves into electrical signals through a micro-
phone, which detects membrane deflection caused by molecular vibrations in the
air. Subsequently, an analog-to-digital converter (ADC) translates these electrical
signals into coded digital data, commonly using pulse-coded modulation. Once the
coded data undergoes processing, it is fed through a digital-to-analog converter
(DAC) to produce sound through a loudspeaker. The voltage applied to the loud-
speaker corresponds to the computer’s sample values, leading to the deflection of
the loudspeaker’s cone and the initiation of a sound pressure wave. Key steps in
digital audio processing encompass sound capture, amplification, ADC conversion,
signal processing, DAC conversion, and loudspeaker output. The process of cap-
turing and converting sound in digital audio systems involves two essential compo-
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nents: the Analog-to-Digital Converter (ADC) and the Digital-to-Analog Converter
(DAC)(Bosi & Goldberg, 2022).

ADC (Analog-to-Digital Converter): ADC is responsible for translating ana-
log signals, such as those captured by a microphone, into digital data suitable for
processing by a computer. This process involves three key steps:

1. Sampling The process of sampling involves taking discrete points or
samples of a continuous analog signal at regular intervals, known as the sampling
rate, measured in samples per second (Hz). A higher sampling rate enhances the
accuracy of representing the original analog signal(Rocchesso, 2003). This procedure
aligns with the sampling theorem, also known as the Nyquist-Shannon theorem 1,
a fundamental principle in signal processing.

Theorem 1 (Nyquist Theorem) For lossless digitization, the sampling rate ( fs)
should be at least twice the maximum frequency response (2 fm), where fs is the
sampling frequency and fm is the maximum frequency in the signal.

2. Quantization The continuous range of each sampled value is converted
into a discrete set of digital values. This step involves assigning a digital code
(usually in binary form) to each analog sample. The precision and dynamic range
of the converted signal are influenced by the bit-depth of the ADC, which determines
the number of bits in each digital code(Rocchesso, 2003).

3. Encoding After quantization, the digital values obtained from the ADC
are encoded into a specific digital format. Pulse Code Modulation (PCM) is a
common method used for this encoding. PCM assigns a unique binary code to each
quantized amplitude value. These binary codes represent the digital equivalent of
the analog signal at specific points in time. The encoded digital data can then be
further processed, transmitted, or stored in various digital audio formats(Rabiner
& Schafer, 2007).

DAC (Digital-to-Analog Converter) The Digital-to-Analog Converter (DAC)
plays a pivotal role in the audio reproduction process, seamlessly transforming dig-
ital signals into analog signals for playback through a speaker. The intricate DAC
process unfolds as follows: Upon receiving digital data, which embodies the quan-
tized and sampled values derived from the original analog signal, the DAC initiates
its transformative journey. Through the decoding phase, the DAC meticulously
translates the binary codes embedded in the digital data, seamlessly restoring them
to discrete digital values. The heart of the process lies in analog reconstruction,
where the DAC skillfully transforms the discrete digital values into a continuous
analog signal. This critical step ensures the faithful reproduction of the original
waveform with precision. Subsequently, the meticulously reconstructed analog sig-
nal is channeled to a speaker or audio output device. The speaker, acting as the
final emissary in this chain of transformations, faithfully translates the analog signal
into sound waves that closely mirror the nuances of the initially captured sound. In
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Figure 1.6: Life cycle from Sound to Digital to Sound

Figure 1.7: Diagram showing the flow of audio from an analog waveform to a digital
binary representation,An analog wave is represented as a continuous, wavy line,
while a digital signal is represented as a series of interrupted rectangular shapes.
Digital binary representation is represented by a series of 0s and 1s, where the
analog wave is converted into digital format.

essence, the DAC’s proficiency in decoding, analog reconstruction, and delivering
the final output to the speaker ensures a coherent and accurate transition from the
digital realm to a perceptually rich analog soundscape.

In summary, the complete process involves the ADC capturing analog signals
through sampling and quantization, followed by encoding the digital values. The
DAC then decodes and reconstructs the original analog signal for output through
a speaker1.6. This seamless interplay between ADC and DAC ensures the accu-
rate and faithful conversion of analog sound into digital data and its subsequent
reconstruction for human perceptionRabiner & Schafer (2007).

Importance of Digital Representation

In Enhancing Sound Quality Converting sound into digital format has revolu-
tionized the audio industry, primarily due to the enhanced sound quality it provides.
Digital representation mitigates hiss, distortion, and noise typically associated with
analogue audio formats.The figure1.7 shows the representation of sound.It ensures
the audio quality remains unchanged despite repeated playback or copying.It facili-
tates audio storage and transfer without loss of quality. Moreover, it paves the way
for advanced audio processing techniques, such as equalization, noise reduction, and
sound synthesis?.
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Figure 1.8: a) Example noise from a car and (b) its long-term average spectrum.

1.2.4 Noise

Noise, in the context of sound, refers to unwanted or disruptive sounds that can
interfere with desired signals, often leading to a decrease in overall sound quality.
Sources of noise are diverse and ubiquitous, ranging from environmental factors
like traffic and wind to human activities such as machinery or conversations. The
levels of noise vary significantly across different environments. For instance, in
tranquil settings like classrooms or homes, noise levels tend to be lower, allowing
for clearer communication. On the contrary, environments like restaurants, trains,
or airplanes are characterized by higher noise levels, posing challenges for effective
communication(Loizou, 2012).

Understanding and managing noise in various settings is crucial for developing
strategies, including speech denoising algorithms, to mitigate its impact on com-
munication quality. This involves recognizing different types of noise and studying
their temporal and spectral characteristics. For example, wind noise predominantly
concentrates on low frequencies, while restaurant noise extends over a broader fre-
quency range. The spectral profile of noise is of utmost importance, and Figures
1.8 , 1.9 , 1.10 illustrate the time waveforms and long-term average spectra of car,
train, and restaurant noise.

Noise is commonly measured in decibels (dB), which represents the ratio or
attenuation of the signal being measured compared to the level of noise present.
Decibels provide a standardized scale for quantifying sound intensity and are essen-
tial for assessing the impact of noise in various environments.

Types of Noises

Noise encompasses a variety of types, each uniquely characterized, playing a
pivotal role in fields like signal processing and audio engineering. White Noise
(contributors, 2021a), represented by random signals with equal intensity at diverse
frequencies, resembles the static on a TV or radio. This type of noise can be
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Figure 1.9: (a) Example noise from a train and (b) its long-term average spectrum.

Figure 1.10: (a) Example noise from a restaurant and (b) its 1ong-term average
spectrum.
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mathematically expressed as

W(t) = A · N(t) (1.7)

where A is the amplitude and N(t) is a random signal with zero mean and unit
variance. Pink Noise (“Spectral Content (colour) of Noise Exposure Affects Work
Efficiency”, 2024) is akin to white noise but exhibits reduced intensity at higher
frequencies, analogous to the soothing sounds of ocean waves. Its power spectral
density at frequency f is given by

P( f ) =
A
f β

(1.8)

where A is a constant, and β determines the rate of decrease with frequency. Brow-
nian Noise (Brown Noise)(contributors, 2021b), following a 1/frequency² power den-
sity, showcases a decline in intensity with increasing frequency, akin to the calming
ambiance of waterfalls. It can be represented as

B(t) =
∫ t

0
W(τ) dτ (1.9)

where B(t) is the Brownian noise and W(t) is the white noise. Gaussian Noise
(Lakin, 2013), adhering to a Gaussian distribution, embodies randomness, typified
by thermal noise in electronic circuits. Its probability density function is given by

G(x) =
1

σ
√

2π
e−

1
2

(
x−µ

σ

)2

(1.10)

where µ is the mean, and σ is the standard deviation. Impulse Noise introduces
sudden, brief disturbances, like clicks in audio signals or pixel errors in images. It
can be expressed as

I(t) = ∑
k

akδ(t − tk) (1.11)

where ak are the amplitudes, and δ(t − tk) is the Dirac delta function. Uniform
Noise maintains constant intensity across all frequencies, similar to electronic noise
from devices, and can be represented as

U(t) =
1

2A
(1.12)

where U(t) is the uniform noise, and A is the amplitude. Periodic Noise (Lakin,
2013)showcases repeating patterns over time, exemplified by the humming of electri-
cal appliances..Transients represent short-duration disturbances with sudden onsets
and decay, as found in clapping hands or a door slam. Understanding these types
is foundational for effective noise reduction strategies.

SNR Concept

The Signal-to-Noise Ratio (SNR) is a crucial parameter in signal processing,
communication systems, and various scientific disciplines, providing a quantitative
measure of a desired signal’s prominence amidst background noise. Calculated in
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decibels (dB) using the formula:

SNR(dB) = 10 · log10

(
Signal Power
Noise Power

)
(1.13)

a higher SNR indicates a more favorable ratio between the desired signal and un-
wanted noise, often correlating with improved signal quality and system perfor-
mance(Bosworth et al., 2008).

In the realm of speech processing, SNR is of paramount importance. Back-
ground noise during speech recording or transmission can hinder clarity. Speech
enhancement algorithms, such as those that utilize learning data, leverage SNR in-
formation to distinguish target speech from noise. For example, through methods
such as spectral subtraction or adaptive filtering, these algorithms estimate noise
spectra by subtracting them from the observed spectra, thereby isolating speech
components. This approach not only improves intelligibility, but also improves
the overall quality of the speech signal by mitigating the impact of noise Removal
(2022).

Challenges of Denoising

The process of reducing the noise from speech signals, known as denoising, is a
complex but crucial task. Traditional methods like spectral subtraction and Wiener
filtering, effective for stationary or semi-stationary noise, have been complemented
and, in many cases, surpassed by advancements in deep neural networks. While
neural network-based techniques demonstrate superior performance, they introduce
challenges such as the black-box nature of advanced models, limiting interpretabil-
ity. The presence of various noise types, each with distinct spectral and temporal
characteristics, poses difficulties in designing denoising algorithms effective across a
wide range. Striking a balance between noise reduction and preserving vital speech
features is essential, as overly aggressive denoising can lead to speech distortion.
Furthermore, challenges encompass the need for diverse training data, real-time
processing constraints, adapting to dynamic noise characteristics, subjective evalu-
ation, and ensuring robustness to unknown noise types. In conclusion, while neural
network-based methods hold promise for speech denoising, addressing challenges
related to interpretability, dataset diversity, real-time processing, and robustness
to dynamic noise conditions is crucial for their effective deployment in practical
applications.

1.3 Learning from Data

Learning from data is a fundamental process in machine learning, involving
the systematic acquisition of knowledge or prediction capabilities by a system, of-
ten represented by a machine learning model1.11. This iterative journey comprises
distinct stages, starting with data collection, where relevant information is gath-
ered for the learning process. The system undergoes training, exposed to labeled
examples to discern patterns and relationships between input and output. Subse-
quently, a model is constructed to encapsulate these underlying patterns, ensuring
generalization to new, unseen data. The model’s performance is rigorously eval-
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Figure 1.11: Machine Learning Model

uated through testing, gauging its accuracy in making predictions on unfamiliar
data. This evaluation phase provides feedback for iterative improvement, refining
the model and repeating the process to continually enhance its predictive capabili-
ties. Overall, learning from data empowers machine learning models with the ability
to extract insights, recognize patterns, and make informed decisions across diverse
applications in artificial intelligenceG. Li & Zhou (2022).

1.3.1 Types of Learning Methods

Supervised

Supervised machine learning involves training machines on labeled datasets, al-
lowing them to predict outputs based on provided training. The labeled dataset con-
tains mapped input and output parameters, facilitating the training of machines by
associating inputs with corresponding outputs. In subsequent phases, the machine
utilizes test datasets to predict outcomes. The primary goal of supervised learn-
ing is to establish a mapping between input variables and output variables. This
technique is broadly categorized into two main types: classification and regression.
Classification algorithms address scenarios where the output variable is categorical,
such as binary outcomes (yes or no) or gender classification. Notable classification
algorithms include Random Forest, Decision Tree, Logistic Regression, and Sup-
port Vector Machine. On the other hand, regression algorithms handle situations
where input and output variables exhibit a linear relationship, predicting contin-
uous output variables. Applications include weather prediction and market trend
analysis, with popular regression algorithms including Simple Linear Regression,
Multivariate Regression, Decision Tree, and Lasso Regression Spiceworks (2020).
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Figure 1.12: Comparing supervised learning and unsupervised learning

Unsupervised

Unsupervised learning refers to a learning technique that’s devoid of supervi-
sion. Here, the machine is trained using an unlabeled dataset and is enabled to
predict the output without any supervision. An unsupervised learning algorithm
aims to group the unsorted dataset based on the input’s similarities, differences, and
patterns. Unsupervised machine learning is further classified into two types: Clus-
tering: The clustering technique refers to grouping objects into clusters based on
parameters such as similarities or differences between objects. For example, group-
ing customers by the products they purchase. Some known clustering algorithms
include the K-Means Clustering Algorithm, Mean-Shift Algorithm, DBSCAN Al-
gorithm, Principal Component Analysis, and Independent Component Analysis.
Association: Association learning refers to identifying typical relations between the
variables of a large dataset. It determines the dependency of various data items and
maps associated variables. Typical applications include web usage mining and mar-
ket data analysis. Popular algorithms obeying association rules include the Apriori
Algorithm, Eclat Algorithm, and FP-Growth Algorithm TechTarget (2016). Both
supervised learning and unsupervised 1.12learning have their respective challenges,
which have led to the development and exploration of Self Supervised Learning
(SSL) as a middle ground. Here are some problems associated with each type:

Supervised Learning Challenges Supervised learning encounters several chal-
lenges when applied to speech denoising. Firstly, the acquisition of large sets of
labeled clean-noisy speech pairs for training poses a resource-intensive task. The
need for manual annotation of speech data is another obstacle, involving costs and
requiring domain expertise, particularly for nuanced audio characteristics. Addi-
tionally, there is a risk of overfitting to specific noise patterns in the training data,
which limits the generalization capability of supervised models.

Unsupervised Learning Challenges On the unsupervised learning front, speech
denoising faces distinct challenges. The lack of clear objectives without labeled data
is a primary hurdle, making it difficult to define denoising goals (Nguyen et al.,
2023). Evaluation complexity adds to the challenges, as assessing the performance
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of unsupervised models becomes intricate due to the absence of ground truth labels.
Unsupervised approaches must also effectively identify relevant noise patterns and
clean speech structures (Chen, 2018).

Self Supervised Learning (SSL) as a Solution: To address these challenges,
self-supervised learning emerges as a promising solution for speech denoising. By
efficiently utilizing large amounts of unlabeled speech data, which is often more
abundant than labeled pairs, self-supervised learning tackles the limited labeled
data challenge. Contrastive learning is employed, allowing models to distinguish
between clean and noisy versions of the same speech signal. Pretext tasks, such
as predicting missing parts of audio signals, guide the model to implicitly learn de-
noising features. Operating in the time or frequency domain, self-supervised models
enhance their ability to distinguish noise from clean speech patterns. Techniques
like autoencoders, where the model learns to reconstruct clean speech, and the use
of Generative Adversarial Networks (GANs) for generating denoised speech sig-
nals contribute to the efficacy of self-supervised learning in speech denoising. In
conclusion, while supervised and unsupervised learning face challenges in speech
denoising, self-supervised learning emerges as a comprehensive solution by lever-
aging unlabeled data and incorporating diverse denoising strategiesPopović et al.
(2022).

1.3.2 Self-Supervised Learning

Self-supervised learning is a machine learning paradigm where a model learns
to represent and understand data by training on a pretext or auxiliary task that can
be automatically generated from the data itself, without the need for explicit human
annotation or labeling. In other words, the data itself provides supervision for the
model to learn meaningful representations. The key idea behind self-supervised
learning is to design tasks that don’t require human-labeled data but instead use
various techniques to create labels or targets from the dataIrvin et al. (2023). Self-
supervised learning of speech denoising involves training a model to remove noise
from audio signals without relying on external clean-noise pairs for supervision.
Instead, the model learns from the inherent structure of the audio data itself. Here’s
a simplified overview of how self-supervised learning for speech denoising might
work:

1. Contrastive Learning: The model is trained to differentiate between clean and
noisy versions of the same speech signal. It learns to generate embeddings that
are close for clean signals and far apart for noisy signals.

2. Time-domain or Frequency-domain Representations: The model may work di-
rectly on the waveform or transform the audio signals into frequency-domain
representations (e.g., spectrograms). The learning objective involves enhanc-
ing the ability of the model to distinguish noise patterns from clean speech
patterns.Nguyen et al. (2023)

3. Pretext Tasks: The model is presented with various pretext tasks that guide
it to implicitly learn denoising features. For example, predicting missing or
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corrupted parts of the audio signal, understanding temporal context, or dif-
ferentiating between original and time-altered signals.

4. Autoencoders: Using autoencoder architectures where the model is trained
to reconstruct clean speech from noisy versions. The difference between the
reconstructed and original signals serves as a signal for learning denoising
features.

5. Generative Adversarial Networks (GANs): Employing GANs in a self-supervised
manner where the generator is tasked with producing denoised speech signals,
and the discriminator guides the training by distinguishing between clean and
generated signals.Popović et al. (2022)

The advantage of self-supervised learning for speech denoising is its ability to lever-
age large amounts of unlabeled data efficiently, which is often more abundant than
labeled clean-noisy pairs. The learned denoising features can then be fine-tuned or
transferred to specific speech denoising tasks, contributing to improved performance
in real-world scenarios with diverse noise conditions.Mohamed et al. (2022)
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1.4 Conclusion

In conclusion, this introductory chapter has set the stage for a comprehen-
sive exploration of the field of digital speech processing, with a specific focus on the
critical domain of speech denoising. It has underscored the pivotal role of speech de-
noising in enhancing the quality of spoken communication by eliminating unwanted
noise, a challenge encountered in various real-world applications. By outlining the
significance of speech denoising, delving into the intricacies of different noise types
that can degrade speech clarity, and providing insights into the multifaceted compo-
nents that constitute speech signals, this chapter has established a solid foundation.
It equips readers with the essential knowledge and context necessary to delve deeper
into the forthcoming chapters, where a diverse range of methods and techniques for
effective speech denoising will be explored.
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Chapter 2

State Of The Art

2.1 Introduction

Speech denoising is a vital signal processing technique aimed at enhancing
communication by removing unwanted noise from speech signals. Various methods,
including statistical approaches , as well as time-domain techniques , have been
developed to extract clean speech from noisy signals. In recent years, deep learning
methods such as convolutional and recurrent neural networks, along with gener-
ative adversarial networks and waveform-based approaches , have shown promise
in capturing complex speech characteristics and improving denoising performance.
By leveraging these diverse techniques, speech denoising enhances the quality and
intelligibility of speech signals.

2.2 Traditional Methods

Traditional speech denoising methods, incorporating statistical, time-domain,
and spectral domain approaches, play a crucial role in removing undesired noise
from speech signals. Statistical methods utilize signal properties to distinguish be-
tween speech and noise, with techniques such as spectral subtraction and MMSE
estimation being prominent examples. Time-domain techniques, exemplified by
SS-ITD and MVDR beamformer, operate directly on speech waveforms. In con-
trast, spectral domain methods, like spectral subtraction and Non-negative matrix
factorization (NMF)(Mohammadiha et al., 2013), process signals in the frequency
domain.

2.2.1 Statistical approaches

Statistical approaches in speech denoising leverage the statistical properties of
speech and noise signals to estimate and distinguish between them, enhancing the
quality of noise-corrupted speech. By leveraging spectral characteristics and statis-
tical distributions, these methods proficiently isolate speech and noise components,
resulting in improved speech signals.
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Spectral Subtraction

Spectral subtraction is a widely used method for speech denoising and restora-
tion of the power or magnitude spectrum of a signal observed in additive noise.
It involves subtracting an estimate of the average noise spectrum from the noisy
signal spectrum(Karam et al., 2014) . This technique is commonly employed in
speech processing applications to enhance speech intelligibility and reduce the ef-
fects of background noise . In the field of speech processing, various filter designs
and algorithms have been developed to address the challenges posed by background
noise. Spectral subtraction is one such approach that focuses on removing noise
from corrupted speech signals . The process begins by segmenting the noisy speech
signal into half-overlapped time domain data buffers, which are then multiplied
by a Hanning window and transformed into the frequency domain using the fast
Fourier transform (FFT). Once in the frequency domain, the average magnitude of
the noise spectrum is estimated and subtracted from the noisy speech spectrum.
Negative values resulting from the subtraction are zeroed out using half-wave rec-
tification. The resulting spectrum represents the denoised speech signal. Finally,
the denoised speech is reconstructed back to the time domain using the inverse fast
Fourier transform (IFFT). To evaluate the effectiveness of spectral subtraction, the
Speech to Noise Ratio (SNR) is often calculated as a measure of the improvement
in speech quality . Additionally, techniques such as frames averaging and varying
the overlapping lengths of the data buffers and Hanning windows can be applied to
further enhance the SNR Boll (1979) .

Minimum Mean Square Error (MMSE) Estimation

Minimum Mean Square Error (MMSE) is one of the most important techniques
used in sound purification and noise removal. This technique is based on estimat-
ing the audio spectrum of noise and using it to improve the quality of distorted
sound. This is achieved by applying statistical operations to the noisy audio signal
and using a noise model to improve the sound. The minimum mean square error
process involves several basic steps. First, the collected audio signal is divided into
small time frames. Each time frame is then transformed into the frequency domain
using the Fast Fourier Transform (FFT). Next, the noise spectrum is estimated
by calculating the mean square mean of the time frames containing only the noise.
This estimate is used to optimize other time frames for the noisy audio signal. After
the audio noise spectrum is estimated, it is used to enhance other time frames of
the noisy audio signal. This is done by adjusting the level of the distorted audio
signal at each frequency point based on the difference between the audio spectrum
of the noise and the audio spectrum of the distorted audio signal. This optimiza-
tion is applied using the minimum mean square error (MMSE) equation Ephraim
& Malah (1984). After optimizing the time windows, the enhanced audio signal is
reconstructed in the time domain using the inverse Fourier transform (IFFT). This
results in an improved, distortion-free audio signal. The Minimum Mean Square
Error (MMSE) technique is effective and commonly used in audio cleansing, but it
may face some challenges. It can be difficult to accurately estimate the acoustic
spectrum of noise in the presence of non-stationary or heterogeneous noise. This
may introduce noise or distortions into the enhanced audio signal. Therefore, these
floats must be taken into account. Minimum Mean Square Error (MMSE) is a
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widely used statistical audio refinement technique. This technology relies on esti-
mating the noise audio spectrum and the distorted sound spectrum, then calculating
the difference between them and making the necessary adjustments to the distorted
sound to obtain improved sound. The MMSE technique involves several basic steps.
First, the collected audio signal is divided into small time frames. Each time frame
is then transformed into the frequency domain using a fast Fourier transform (FFT).
Next, the noise spectrum and the noise spectrum are calculated using appropriate
estimation techniques. After estimating the noise spectrum, the modulation matrix
necessary to reduce the effect of noise on the distorted sound is calculated. This
is done using the MMSE equation which aims to minimize the mean square error
between distorted sound and clean sound. After calculating the modulation matrix,
it is multiplied by the noise spectrum to obtain the enhanced sound. The enhanced
sound is then converted from the frequency domain to the time domain using an
inverse Fourier transform (IFFT(Fodor et al., 2015)). MMSE technology is effective
in purifying sound and improving its quality, but it may face some challenges. For
example, if the noise is inconsistent or if the noise spectrum estimate is inaccurate,
additional noise may be introduced to the augmented sound. Therefore, these fac-
tors must be taken into consideration and the accuracy of noise estimation must be
improved to achieve better performance of MMSE technology in sound purification.

2.2.2 Time-Domain Methods

Time-domain methods for speech denoising focus on manipulating the time-
domain representation of the speech signal to suppress noise. Two commonly
used time-domain methods are SS-ITD (Short-Time Spectral Intensity and Tem-
poral Dynamics) and MVDR (Minimum Variance Distortionless Response) beam-
former(Murthi & Rao, 1997). SS-ITD utilizes short-time spectral intensity and
temporal dynamics to estimate and reduce noise. It estimates the noise power
spectral density (PSD) using short-time segments of the noisy speech signal and
attenuates the noisy components in the time domain. SS-ITD exploits the fact that
the noise energy tends to be concentrated in certain frequency bands and adapts
its noise reduction strength accordingly. MVDR beamformer, on the other hand,
employs advanced beamforming techniques using microphone arrays to enhance
the desired speech component while suppressing noise from multiple microphones.
MVDR beamforming adapts the beamformer weights to minimize the output power
while maintaining the desired speech signal. Time-domain methods can be effective
in suppressing noise, especially in scenarios where the noise is non-stationary or
spatially correlatedKiong et al. (2014).

2.2.3 Spectral Domain Methods

Spectral domain methods involve denoising the speech signal in the frequency
domain. Techniques like spectral subtraction and non-negative matrix factorization
(NMF) are commonly used in the spectral domain. Spectral subtraction, as dis-
cussed earlier, estimates the noise spectrum and subtracts it from the noisy speech
spectrum to obtain the enhanced speech spectrum. The estimation of the noise
spectrum can be done using various methods, such as averaging the spectra of
noise-only segments or tracking the noise characteristics over time. Non-negative
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matrix factorization (NMF) is another spectral domain method that can be used
for speech denoising(Wilson et al., 2008). NMF decomposes the spectrogram of
the noisy speech into a basis matrix and an activation matrix. By assuming that
the noise component has a sparser representation, NMF separates the noise and
speech components in the frequency domain, allowing for denoising. Spectral do-
main methods can provide good denoising performance, particularly when the noise
and speech components have distinct spectral characteristics(Mohammadiha et al.,
2013). These statistical approaches provide effective means of denoising speech sig-
nals by leveraging the statistical properties of the speech and noise components.
By estimating and suppressing the noise, these methods enhance the quality and
intelligibility of the speech signal, making them valuable tools in various applica-
tions such as telecommunications, voice recognition systems, and audio process-
ingLudeña-Choez & Gallardo-Antolín (2012).

2.3 Machine Learning Methods

Machine learning methods have made significant advancements in the field of
speech denoising. These methods utilize deep neural networks, such as Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), to extract
clean speech from noisy environments . These deep learning approaches have shown
promising results in noise reduction, speech separation, and enhancement. One pop-
ular approach in machine learning-based speech denoising is the use of mask-based
models. These models compute masks in the time/frequency domain based on the
input noisy speech to attenuate the noises in the signal(Sivaram, 2024) . By apply-
ing these masks, the model can effectively remove unwanted noise while preserving
the quality of the speech. Another approach is mapping-based models, which aim to
directly obtain cleaned speech from the noisy speech. These models require a large
amount of training data consisting of both noisy and cleaned speech. By learning the
mapping between the two, these models can effectively denoise speech signals(Diehl
et al., 2023) . One notable machine learning model for speech enhancement is the
Facebook Denoiser. This model utilizes an encoder-decoder U-Net architecture with
skip-connections and a sequence modelling network. It works with raw wave files
in the time domain and optimizes in both time and frequency domains. The Face-
book Denoiser has been shown to perform well in real-time on a laptop CPU(Ke et
al., 2021). Overall, machine learning methods have revolutionized speech denoising
by providing more accurate and efficient ways to remove noise from speech sig-
nals. These advancements have the potential to greatly improve applications such
as audio/video calls, hearing aids, and automatic speech recognition systems.

2.4 Deep Learning Methods

Deep learning methods have revolutionized speech noise reduction through the
use of various models such as CNNs, RNNs ,and GANs. These models capture
spectral and temporal patterns, preserve speech intelligibility, generate high-quality
speech. However, traditional deep learning methods rely on supervised learning,
which requires access to clean speech signals during training. To overcome this
limitation, self-supervised learning techniques have emerged, taking advantage of
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the inherent structure and patterns within noisy speech signals.

2.4.1 Old Deep Learning Methods

Deep learning has revolutionized speech denoising, leveraging diverse models
tailored to specific aspects of the task. Convolutional Neural Networks (CNNs)
(Hepsiba & Justin, 2022)excel in capturing local dependencies crucial for analyz-
ing spectral and temporal patterns, significantly enhancing denoising performance
by efficiently capturing such dependencies. Conversely, Recurrent Neural Networks
(RNNs) (Abdulbaqi et al., 2020), particularly Long Short Term Memory Networks
(LSTMs) (Strake et al., 2020), specialize in preserving speech intelligibility by cap-
turing temporal dependencies, effectively denoising speech signals while maintaining
natural flow and intelligibility (Liu et al., 2014). Additionally, Generative Adversar-
ial Networks (GANs) (Duan et al., 2023)have made significant strides in generating
high-quality denoised signals closely resembling clean ones, while waveform-based
approaches like WaveNet and SampleRNN capture fine-grained details and tempo-
ral nuances at the waveform level, delivering denoised speech of superior naturalness
and intelligibility. Overall, deep learning has transformed speech denoising, with
each model offering unique capabilities in capturing various aspects of speech sig-
nalsAzarang & Kehtarnavaz (2020).

2.4.2 Self Supervised Learning

In the field of speech denoising, traditional methods have often relied on super-
vised learning approaches that require access to clean speech signals for training.
However, these approaches face challenges when clean speech signals are not readily
available. To overcome this limitation, researchers have turned to self-supervised
learning techniques as an alternative solution for speech denoising.Self-supervised
learning approaches in speech denoising aim to leverage the inherent structure and
patterns within noisy speech signals to train neural networks. These approaches
eliminate the need for explicitly labeled clean speech signals during training, mak-
ing them more practical and applicable in real-world scenarios.

The paper titled ”Self-Supervised Deep Learning-Based Speech Denoising”(Alam-
dari et al., 2019) addresses the problem of speech denoising without access to clean
speech signals during network training. The objective is to propose a self-supervised
deep neural network solution for speech denoising that eliminates the need for clean
speech signals during training. The paper introduces a self-supervised approach
using a Fully Convolutional Neural Network (FCN) to map a noisy speech signal to
another noisy version of the speech signal. Inspired by image denoising techniques,
this approach leverages the dependencies between adjacent frames of clean speech
signals to predict clean speech from noisy input. To evaluate the effectiveness of
the self-supervised approach, the researchers utilize three public domain datasets
of speech signals and one public domain dataset of noise signals. They compare
the results of the self-supervised approach with the commonly used fully-supervised
approach, which assumes access to clean speech signals for training. Four objec-
tive performance measures are employed, and the results indicate that the self-
supervised approach outperforms the fully-supervised approach in terms of these
measures. While the self-supervised approach is more suitable for field deployment
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Figure 2.1: Implementation pipeline of self-supervised audio speech denoising

compared to conventional deep learning-based solutions, the paper acknowledges the
challenge of not having simultaneous access to both noise-only and speech+noise
signal samples, which is assumed in the approachAlamdari et al. (2019).

The paper titled ”Deep Self-Supervised Learning of Speech Denoising from
Noisy Speeches” addresses the problem of speech denoising using deep learning
techniques. The objective of the paper is to develop a self-supervised learning
method that surpasses existing state-of-the-art approaches. The paper introduces a
novel method called Self-supervised Deep Speech Denoising (SDSD), which leverages
a WaveU-Net model. The method involves a two-step training process that utilizes
masking to generate additional noisy data and a specially designed loss function
that is minimized using Stochastic Gradient Descent (SGD). The trained model
serves as the denoiser. While the paper does not provide specific details about the
datasets used or the obtained results in terms of metrics, the paper claims that the
proposed method outperforms existing methods on average for both synthetic and
real-world noises.Sanada et al. (2022).

The paper titled ”Self-Supervised Learning and Multi-Task Pre-Training Based
Single-Channel Acoustic Denoising” by Yi Li, Yang Sun, and Syed Mohsen Naqvi
addresses the problem of single-channel speech denoising. The objective of the
research is to enhance the performance of denoising algorithms in self-supervised
learning by reducing the performance gap between estimated and target speech sig-
nals. The authors propose a multi-task pre-training method utilizing a pre-training
autoencoder (PAE) and a downstream task autoencoder (DAE). The PAE learns
speech latent representations from a limited set of unpaired and unseen clean speech
signals. A masking module is introduced to denoise the mixture as a new pre-task,
leveraging dereverberated and estimated ratio masks. The DAE generates esti-
mated mixtures using unlabeled and unseen reverberant mixtures while sharing a
latent representation with the clean examples from the PAE. Experimental evalua-
tion on a benchmark dataset demonstrates that the proposed method outperforms
state-of-the-art approaches in terms of speech denoising performance. However,
the lack of detailed information about the datasets used and the absence of dis-
cussions on computational complexity, scalability, limitations, and implementation
challenges are limitations of the paper. Additional information on the benchmark
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Figure 2.2: The proposed method consists of a masking module and pre-task and
downstream autoencoders. In the pre-task autoencoder (PAE), clean speech and
interference signals are mixed to generate reverberant mixtures. MFCC features are
extracted, and the PAE learns the latent representation of the clean speech signals.
The masking module estimates the target speech signal in the reverberant mixture.
In the downstream task autoencoder (DAE), unseen and unpaired reverberant mix-
tures are used. The enhanced signal is obtained from the decoder’s output in the
testing stage .

dataset and further exploration of limitations and future directions would enhance
the comprehensiveness of the studyY. Li et al. (2022).

The paper introduces a groundbreaking self-supervised approach, Only-Noisy
Training (ONT), for speech denoising, aiming to achieve denoising performance
comparable or superior to traditional methods using only noisy audio signals for
training. ONT comprises two core modules: a training audio pairs generation mod-
ule and a speech denoising module. The former generates training pairs by sub-
sampling noisy audio inputs randomly, while the latter utilizes a complex-valued
speech denoising module incorporating a complex transformer module to capture
magnitude-phase correlations, along with regularization loss during training. The
dataset utilized combines clean audio from Voice Bank + DEMAND with noise gen-
erated from white Gaussian noise and UrbanSound8K, facilitating comprehensive
evaluation. Experimental evaluations, encompassing synthetic and real-world noisy
datasets, underscore ONT’s efficacy. Performance is benchmarked against other
training approaches and state-of-the-art methods using metrics like SNR, SSNR,
and PESQ-WB, with ONT consistently exhibiting superior denoising performance
and garnering favorable subjective assessments via MOS scores. Despite the paper’s
omission of explicit limitations, potential constraints could include ONT’s adapt-
ability to diverse noise and speech conditions, its resilience to input variations, and
computational overheads. Additionally, the absence of assessments using real-world
speech and noise datasets may hinder its practical utility (Wu et al., 2023).

29



Chapter 2. State Of The Art

Figure 2.3: ONT Strategy Overview .

2.5 Conclusion

In conclusion, the field of speech denoising involves a wide range of methods
and techniques that aim to remove unwanted noise from speech signals. In our
exploration, we discussed statistical approaches such as spectral subtraction and
MMSE estimation, which manipulate the spectral and time-domain properties of
speech to enhance its quality. We also delved into the realm of deep learning, in-
cluding CNNs, RNNs, GANs, and waveform-based approaches, which have brought
about significant advancements in speech denoising by capturing intricate speech
characteristics and improving denoising performance.

Speech denoising faces several challenges that make it a complex task. One
major challenge is the variability of real-world noise, as noise characteristics can
differ greatly across different environments and scenarios. Balancing noise reduction
with speech distortion is another hurdle, as denoising algorithms need to strike a
delicate balance to preserve speech intelligibility and naturalness while effectively
suppressing noise. Acquiring clean speech data for training purposes can also be
quite challenging, and designing denoising algorithms that can handle unseen noise
conditions remains an important area of research.

Looking ahead, the future of speech denoising holds exciting prospects. One
pressing need is to improve the robustness of denoising models, enabling them to
handle diverse and previously unseen noise conditions. Additionally, enhancing real-
time processing capabilities to achieve low-latency denoising is crucial for various
applications. Another area of development involves the creation of novel evaluation
metrics that align with human perception, allowing for more precise assessment of
denoising quality and guiding further algorithmic advancements.

The significance of speech denoising cannot be overstated. Its applications
extend across diverse fields, including telecommunications, voice recognition, and
audio processing, where clear and intelligible speech is of utmost importance. By
reducing noise interference, speech denoising improves communication systems, en-
hances the accuracy of speech recognition, and elevates the overall quality of audio
recordings and broadcasts. It has the potential to revolutionize sectors such as
healthcare, multimedia, and teleconferencing, where the clarity of speech is crucial
for effective communication.
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Experiment/ Implementation …

3.1 Introduction

This chapter presents a novel self-supervised approach called Noisy-Only Train-
ing (ONT) for speech denoising,which addresses the challenge of limited access to
clean speech data in traditional supervised methods. ONT uses only noisy audio sig-
nals, eliminating the need for clean target data or additional noise information.The
method generates direct training pairs from noisy inputs via a random audio sub-
sampling strategy and uses a complex-valued speech denoising network for self-
supervised training. The detailed pre-existing implementation and experimental
evaluation reveal promising results, demonstrating the effectiveness of ONT com-
pared to state-of-the-art methods such as Clean Noisy Training (NCT) and Noisier
Noisy Training (NerNT). The study also investigates the impact of design choices,
such as audio subsampling device and network architecture, shedding light on the
practical feasibility and limitations of self-supervised speech denoising techniques,
thus providing valuable insights for real-world applications.

3.2 Implementation

This part is reserved for the details of the development environment and the
programming language used to create our system, as well as the data preparation.

3.2.1 Development Environment

The proposed self-supervised speech denoising approach, ”Only-Noisy Train-
ing” (ONT), was implemented using Python 3.8 and the PyTorch deep learning
library (version 1.10). The code was developed and tested on a system with an
NVIDIA GeForce RTX 3080 GPU, 32GB of RAM, and an Intel Core i9-10900K
CPU. ‘
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3.2.2 Data Preparation

UrbanSound8K (US8K) is a dataset specifically designed for urban sound clas-
sification tasks, containing 8,732 labeled sound excerpts from various urban envi-
ronments. These sounds include a wide range of categories such as sirens, dog barks,
and street music. This dataset serves as a valuable resource for training machine
learning models to recognize and classify different types of urban sounds, which are
often complex and overlapping in real-world scenarios (Salamon et al., 2014). In
a study evaluating the robustness of a training strategy, two different categories of
noisy signals were utilized. The first category involved overlapping white Gaussian
noise over clean speech to generate a synthetic noisy dataset. The second category
involved overlapping various kinds of UrbanSound8K (US8K) noises over clean sig-
nals to create a real-world noisy dataset. The clean speech data used in this process
was sourced from the Voice Bank dataset, which included 28 speakers for the train-
ing set and 2 speakers for the testing set. PyDub was employed to overlap the noise
with the clean audio samples, resulting in complete noisy speech samples generated
by truncating or repeating the noise to cover the entire speech segment.

3.2.3 Audio Sub-Sampler

The ”Audio Sub-Sampler” is a self-supervised learning approach for speech
denoising that leverages the inherent structure of audio signals to train a model
to effectively remove noise from speech. The input audio signal is divided into
overlapping subsegments, where the subsegment from index i to i+k-1 is considered
the ”training input” (s1(x)), and the subsegment from i+k to i+2k-1 is considered
the ”training target” (s2(x)). This means that the model is trained to predict the
second subsegment (i+k to i+2k-1) given the first subsegment (i to i+k-1).

The model is trained to learn a function that can map the ”training input” (the
corrupted/noisy speech subsegment) to the ”training target” (the corresponding
clean speech subsegment). This self-supervised approach allows the model to learn
effective speech denoising capabilities without the need for manually labeled clean-
noisy speech data, which can be challenging to obtain in practice.

The first subsample range is from index i to i+k-1, while the second subsample
range is from i+k to i+2k-1, enabling the model to learn the relationship between
adjacent subsegments of the audio signal, which is crucial for effective speech de-
noising. The self-supervised nature of the Audio Sub-Sampler approach is a signifi-
cant advantage, as it eliminates the requirement for paired clean-noisy speech data,
making the technique more accessible and applicable in real-world scenarios where
obtaining such data can be challenging .

3.2.4 Denoising Network

The denoising network in figure 3.2takes spectrograms derived from sampled
audio signals as input. The complex encoder and decoder modules are designed
based on the complex module in DCUnet-10, with the complex 2D convolution op-
eration controlling the complex information flow in the encoder layers. The network
extends the real TSTM (Temporal Squeezed and Transformed Median) to a com-
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Figure 3.1: Audio Sub-Sampler

Figure 3.2: Denoising Network

plex TSTM (cTSTM) in order to better model the correlation between magnitude
and phase. The final complex-valued speech denoising network is constructed by
inserting this cTSTM between the encoder and decoder layers of DCUnet.

The training loss consists of a basic loss, including time domain loss, frequency
domain loss, and weighted SDR(Signal-to-Distortion Ratio) loss, as well as a reg-
ularization loss to prevent over-smoothing. This regularization loss enforces the
constraint that the gap between the sub-sampled audio pairs should be small, as
the sub-sampled audio pairs are assumed to have conditional independence. Overall,
the network leverages complex-valued convolutions and the complex TSTM module
to better capture the amplitude and phase information in the speech spectrograms,
while the regularization loss helps train the network effectively from only noisy
audio signals.

3.3 Training and Evaluation

In this traning , I focused on processing raw audio waveforms through several
steps to enhance speech denoising. The initial audio samples were taken at a sam-
pling rate of 48 kHz, ensuring high-quality data capture. To perform frequency
analysis, I utilized the Short-Time Fourier Transform (STFT) with a Hamming
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Figure 3.3: Comparison between input signals and ONT results

window of 64 milliseconds and a hop size of 16 milliseconds, enabling a precise rep-
resentation of temporal changes in the audio signal. This method aids in extracting
the complex spectrum, which represents the frequency information of the sound.
During the training phase, I implemented the Only Noisy Training (ONT) strategy,
which eliminates the need for clean audio signals and relies solely on noisy audio
samples. The training process comprises two modules: a training sound pair gen-
eration module and a speech noise reduction module. In the sound pair generation
module, a random audio subsampler is applied to each noisy sound to create train-
ing pairs, which are then used as input to the speech denoising module. The length
of the training pairs was determined to be half that of the original noisy samples,
contributing to improved model effectiveness during training. The model architec-
ture consists of six two-stage transformer blocks (TSTBS), effective in processing
sequential data and enhancing overall performance. Regarding the loss function, the
parameters were set as follows: a = 0.8 as a weight in the loss function; β = 1

200 as
a learning rate or coefficient; and y = 2 in synthetic experiments and y = 1 in real-
world experiments, reflecting significant experimental variations. I employed the
Adam optimizer with a learning rate of 0.001, a widely used algorithm in training
neural networks due to its adaptability to data dynamics.

Various evaluation metrics were employed to assess the performance of this
work. These metrics help us measure the effectiveness of speech noise reduction
and the improvement in speech quality. Below are the evaluation metrics:

In figure 3.3A compares the Signal-to-Noise Ratio (SNR) between the original
noisy input signals and the denoised results using the ONT (Only-Noisy Training)
method. The x-axis shows different noise types, including White noise, Air Condi-
tioning noise (US8K-0), Car Horn noise (US8K-1), Children Playing noise (US8K-
2), and Dog Barking noise (US8K-3). The y-axis represents the SNR values, with
higher values indicating better denoising performance.

The box plots in the figure illustrate the SNR distributions. The orange boxes
represent the SNR values of the original noisy input signals, while the cyan boxes
represent the SNR values after applying the ONT denoising method. The results
show that for all noise types, the ONT method significantly improves the SNR
compared to the original noisy signals. The largest improvement is seen with White

34



Chapter 3. Experiment/ Implementation …

noise, where the SNR increases from an average of around 5 to approximately 20.
Even for more challenging noise types like Car Horn (US8K-1) and Children Playing
(US8K-2), the ONT method demonstrates substantial SNR improvements.

These findings suggest that the ONT method effectively enhances the SNR
across various noise types, demonstrating its robust denoising capability. The sig-
nificant improvements observed across different noise conditions highlight the ef-
fectiveness of the proposed self-supervised training strategy, which uses only noisy
audio signals without requiring clean target signals.

3.4 Experimental Results and Analysis

In this section, I studied and analyzed the results of the experiments con-
ducted to evaluate the performance of the proposed noise reduction model from
an article(Wu et al., 2023) . A variety of evaluation metrics were used, includ-
ing STOI, PESQ, SSNR, and SNR, which are key indicators for measuring sound
quality after noise reduction processing.The results are presented in Figure 13.4,The
”Only-Noisy Training” (ONT) method shows superior performance in sound quality
improvement compared to traditional methods like NCT and NNT. Higher STOI
values indicate better intelligibility, while ONT also achieves higher PESQ scores,
reflecting noticeable enhancements in perceived sound quality. Additionally, SSNR
and SNR values are significantly improved with ONT,despite not requiring clean
audio signals for training targets. ONT demonstrated efficiency by reducing reliance
on clean data, making it more applicable in real-world scenarios where clean data
is scarce. To visually see the effectiveness of the ONT strategy, an utterance of a
clean speech signal as well as its noisy version and its denoised version are exhibited
in Figure 23.5.Spectral analysis indicated that the ONT-trained model effectively
reduced noise while preserving speech clarity. The study highlights ONT’s innova-
tion in reducing the need for clean audio signals and suggests it can be integrated
with other denoising models without altering their core structure. However, the
study acknowledges that ONT’s performance might vary with unseen noise types,
necessitating further experimentation with diverse datasets. In conclusion, ONT
is a promising alternative to traditional speech denoising methods, with significant
potential for applications in noisy environments, such as speech-to-text systems and
phone call quality enhancement.

35



Chapter 3. Experiment/ Implementation …

Figure 3.4: Evaluation with other strategies

Figure 3.5: Example of speech time-frequency diagram.
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3.5 Conclusion

The proposed denoising system demonstrates a novel self-supervised approach
that overcomes the limitations of requiring clean speech data for training. By lever-
aging audio subsamplers to generate paired signals that have been subsampled from
noisy inputs, the complex-valued denoising network is able to effectively denoise au-
dio without accessing any clean reference signals. The experimental results of an
exisiting implementation I studied and analyzed demonstrate the competitiveness
of the noisy-only-training (ONT) strategy, with the noise-free output outperforming
other comparison methods on various objective evaluation metrics, even in scenarios
where clean speech data is scarce. The complex-valued network architecture and
subsampling components were found to be critical in achieving this robust denoising
performance. Future work will explore extending this self-supervised ONT approach
to multimodal denoising settings, where the availability of clean audio samples may
be limited. By leveraging complementary means, the proposed method has the
potential to enhance speech denoising capabilities in real-world noisy environments
where clear references are difficult to obtain. The self-supervised nature of this sys-
tem makes it a promising solution for practical speech enhancement applications.
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Conclusion and Perspectives

This thesis focused on the use of self-learning techniques for speech noise re-
moval. The main problem was to find effective and robust solutions for speech noise
removal, capable of improving the quality and reliability of speech-based applica-
tions in real-world environments that are often noisy.

The interest in this question lies in the importance of speech as a primary means
of communication between humans, and the challenges posed by the degradation of
speech quality due to various types of noise in real-world environments. The work
done in this thesis provides elements of response to this problem by exploring the
potential of self-learning techniques for speech noise removal.

The research process began with a review of the latest techniques in traditional
methods, machine learning-based methods and deep learning techniques for speech
noise removal. This made it possible to identify the limitations of existing methods
and highlight the importance of self-learning methods.

The implementation and evaluation of the ONT speech noise removal model
based on supervised self-learning, which consists of two main modules: the training
pair generation module and the speech noise removal module, were then studied,
their of an existing implementation , evaluation and analysis of their results were
studied. The experimental results showed the promising performance of this ap-
proach, especially in terms of improving the signal-to-noise ratio and perceived
quality.

However, there are still limitations, especially regarding the generalization of
the model to different types of noise and taking into account the variability of
speech signals. Research prospects are possible, such as exploring more advanced
neural network architectures, using more diverse datasets, or even expanding to
other related tasks.

Overall, this thesis has demonstrated the potential of self-supervised learning
techniques for removing noise from speech, paving the way for new innovative solu-
tions to improve the quality and reliability of speech processing applications in real
environments.
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