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ڲــــڪــــٌـــۘ

۱ڍه ّگڎم اৎأگڎة. اَޙ۰݄ دا༠ܭ ᄎჼٺ݄؇ݿৎا اܳڰݠ٭۰ ปฃُاܳٴ ݆ ይዧـܝލژ اᆇᆅ٭۰ ؐܳ؇ً ਵਦأ ا௯௫௵ٺ݄ؕ ا܋ྥލ؇ف
اܳލٴႤၽت ොູܹ٭ܭ ݁ټܭ ؇ت ሒᇭ ༠؇ݬ۰ ڢ٭۰݄ ذا لܝިن أن ஓ୷ܝ݆ ؇ᆙᆘ اଫଐৎاًޚ۰، اശܳ؇َ؇ت ༟ިᆇ؇ت ۋިل رؤى ا௯௫௵ٺ݄أ؇ت
ا௯௫௵ٺ݄ؕ ا܋ྥލ؇ف ݿ؇ܳ٭ص ّݱྡྷ٭ڰً؇ َگଫଐح اᄴᄟراݿ۰، ۱ڍه ሒᇭ ل۰. ଫଐ݁ިاܳٴٴܹ٭ واညܝٺٴ؇ت اৎأߺࠊ݁؇ت، واݿ༥ଫଐ؇ع اۏٺ݄؇٭۰،
ຶݠي اৎލڰݠ. ۰༥دوਲ਼ਦ وஓ؇ذج ૭٭ޔ ݁ލڰݠ ஓ؇ذج ሌᇿإ وَݱٷڰ۳؇ (GAEs)، ۰ਃಾاᄳᄟا ۰ਃ؇اܳٴ٭ اෂීݿިم ݁ލڰݠات আॻ༟ ً ಸ؇ء
૭ٺ༱ڎم اᄴᄟڢ٭ݑ، ይዧٺگ٭ࡗࡲ اࠍگ٭گ٭۰. اܳލٴႤၽت আॻ༟ ؇ዛኔأدا وّگ٭ࡗࡲ اৎލڰݠ ྲྀྡྷ٭۰ َިع আॻ༟ ଃ܋ଫଐܳا ؕ݁ ،ඔ൹اܳڰ٪ٺ ඔ൹ّ؇ୖ ؇ً࿖݁گ؇ر ఈًఃܹ٭ොູ
اܳأݱިر. ሌᇿإ اݿྥٷ؇داً ஓިذج ႟ၽܳ اܳྥލ؞٭ܭ وڢب ܋ڰ؇ءة َڰۜݧ ،ዻዧذ ሌᇿإ ً؇ݪ؇ڣ۰ F1. و ARI و NMI ݁گ؇ݴ
༠؇ݬ۰ ،؇ً݁ިᆇᅦ ݁ٺڰިڢً؇ ً أداء ّޙ۳ݠ اཹྥٴ؇ه، آܳ٭؇ت আॻ༟ ොູٺިي มฆܳا ጥّ ؇ಣಈᕬ  اৎލڰݠ، ۰༥دوਲ਼ਦ اࡺࢦ؇ذج أن ሌᇿإ ༇؇اܳٷٺ ଫଃ૰
اৎލڰݠ ۰༥دوਲ਼ਦ اࡺࢦ؇ذج إႤၽَ݁؇ت আॻ༟ ༇؇اܳٷٺ ۱ڍه ᄕცّޝ .আॻ༟ا ۰ਃಸ؇ފاࠍ اৎٺޚܹٴ؇ت رܾؗ اৎأگڎة، اܳٴ٭؇َ؇ت ༟ިᆇ؇ت ሒᇭ
ଫଃٔ؊ّو ّگڎً݁؇ ଫ܋ا اܳأݱྟ٭۰ اܳލٴႤၽت ّݱ݄٭݄؇ت دراݿ۰ اৎފٺگٴܹ٭۰ اܳٺިݬ٭؇ت ૰݄ܭ اৎٺگڎ۰݁. اܳލٴႤၽت ොູܹ٭ܭ ዛᔻ؇م ሒᇭ

ا؇௵௯௫ت. ෛٺܹژ ଫଊ༟ ا௯௫௵ٺ݄ؕ ا܋ྥލ؇ف আॻ༟ اܳٴ٭؇َ؇ت و༟ᎂڎاد ۰༥اࡺࢦڍ ިا݁ܭ

ਲ਼ਦدوج. ݁ލڰݠ ૭٭ޔ، ݁ލڰݠ اৎިݬިڣ۰، اܳލٴႤၽت ،ሒᆶ؇اܳٺܹگ ۰ਃ؇اܳٴ٭ اෂීݿިم ݁ލڰݠ ا௯௫௵ٺ݄أ؇ت، ڲءոؼמ١:܋ލژ ոஈ྾ت



Abstract

Community detection is crucial for uncovering cohesive substructures within com-

plex systems. These communities provide insights into clusters of interconnected enti-

ties, which can be particularly valuable in various domains such as social network anal-

ysis, information retrieval, and bibliometrics. In this study, we propose a taxonomy

of community detection methods based on graph autoencoders (GAEs), categorizing

them into simple encoder and dual encoder models. We conduct a comparative analy-

sis of these two categories, focusing on the type of encoder architecture and assessing

their performance on real networks. For a more precise evaluation, we use NMI, ARI,

and F1-measure as evaluation metrics. Additionally, we examine the running time

efficiency of each model based on epochs. The findings indicate that dual encoder

models, especially those with attention mechanisms, generally exhibit superior per-

formance, particularly in complex datasets, despite higher computational demands.

These results underscore the potential of dual encoder models in advanced network

analysis tasks. Future recommendations include examining more advanced neural net-

work designs and the impact of modeling and data preparation factors on community

detection across various domains.

Keywords: Community detection, Graph Autoencoder, Attributed networks,

Simple encoder, Dual encoder.



Résumé

La détection des communautés est cruciale pour découvrir des sous-structures

cohésives au sein de systèmes complexes. Ces communautés fournissent des infor-

mations sur les clusters d’entités interconnectées, ce qui peut être particulièrement

précieux dans divers domaines tels que l’analyse des réseaux sociaux, la recherche

d’informations et la bibliométrie. Dans cette étude, nous proposons une taxonomie

des méthodes de détection de communautés basée sur des autoencodeurs de graphes

(GAEs), les classant en modèles à encodeur simple et modèles à encodeur double. Nous

réalisons une analyse comparative de ces deux catégories, en nous concentrant sur le

type d’architecture d’encodeur et en évaluant leur performance sur des réseaux réels.

Pour une évaluation plus précise, nous utilisons la NMI, l’ARI et la F1-mesure comme

métriques d’évaluation. De plus, nous examinons l’efficacité du temps d’exécution

de chaque modèle en fonction des époques. Les résultats indiquent que les mod-

èles à encodeur double, en particulier ceux avec des mécanismes d’attention, affichent

généralement une performance supérieure, notamment dans les ensembles de données

complexes, malgré des exigences computationnelles plus élevées. Ces résultats soulig-

nent le potentiel des modèles à encodeur double dans les tâches avancées d’analyse de

réseaux. Les recommandations futures incluent l’examen de conceptions de réseaux

neuronaux plus avancées et l’impact des facteurs de modélisation et de préparation

des données sur la détection des communautés dans divers domaines.

Mots clés: Détection de communautés, Autoencodeur de graphe, Réseaux at-

tribués, Encodeurs simples, Encodeurs doubles.
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Chapter 1

Introduction

1.1 Context and Motivations

The investigation of networks constitutes a significant area within the broader

framework of complex systems. Networks serve as a means to examine the intricate

relationships inherent within diverse systems, including social, biological, and others.

In this paradigm, nodes represent the fundamental elements of a system, while links

denote the interactions between them.Within these networks, complex systems often

exhibit a modular organization, wherein distinct compartments, known as communi-

ties. These communities are characterized by dense internal connections, distinguish-

ing them from the sparser connections between compartments.

The identification of communities, known as community detection, is instrumental

in unraveling the underlying organizational structures of networks. However, the lack

of a universally accepted definition of what constitutes a community poses a notable

challenge in this field. To address this challenge, numerous methods and algorithms

have been proposed, each offering distinct approaches to uncovering communities in

networks. Notable among these are hierarchical methods like the GN algorithm [18],

dynamic methods such as the label propagation algorithm (LPA) [44], and algorithms

like InfoMap [46] . Moreover, optimization techniques, as demonstrated by Louvain
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algorithm [5], aim to enhance the precision of community detection by maximizing

modularity.

Despite their contributions, traditional community detection methods confront

challenges persist, particularly with the increasing accumulation of data and the emer-

gence of large-scale networks. These limitations highlight the need for innovative ap-

proaches that can address these issues more effectively. In response, emerging method-

ologies, such as deep learning-based community detection algorithms, have garnered

attention. Among these, autoencoder architectures have emerged as promising alter-

natives, leveraging deep learning techniques to potentially overcome these challenges

and extract more accurate community structures from network data.

1.2 Objectives

This project aims to conduct a comprehensive comparative study of various au-

toencoder architectures, specifically tailored to the challenge of community detection

within complex networks. To achieve this, we propose a taxonomy of community detec-

tion methods based on graph autoencoders (GAEs), categorizing them into two main

categories: GAE-Based Simple Encoder and GAE-Based Dual Encoder. Furthermore,

within each of these categories, we classify the approaches based on whether they uti-

lize Graph Convolutional Networks (GCNs) or Graph Attention Networks (GATs).

The primary objective is to investigate and comprehend the applicability of different

autoencoder architectures in this context, aiming to discern their respective strengths

and weaknesses.

1.3 Thesis Organization

This thesis comprises three chapters, each focusing on distinct aspects of commu-

nity detection in complex networks.
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Chapter 2 In this chapter, we delve into the foundational principles of graph

theory and its practical applications in various network domains like social networks,

citation networks, and biological networks. We introduce the concept of community

detection, covering both static and dynamic methods. Furthermore, we explore the in-

tersection of graph theory and machine learning, discussing different types of machine

learning and the emergence of Graph Neural Networks (GNNs) for network analy-

sis. Finally, we investigate autoencoder technology, detailing its architectures and

applications in network analysis.

Chapter 3 This chapter provides a comprehensive survey of community detection

methods. We explore the evolution of community detection approaches, from tradi-

tional methodologies to advanced deep learning techniques, with a particular focus on

autoencoder-based community detection.

Chapter4 In this chapter, we conduct a comparative analysis of graph autoen-

coder models for community detection. We distinguish between simple and dual en-

coders and evaluate their performance across various datasets. We detail the exper-

imental setup, methodologies, and comparative results to assess the efficacy of each

encoder type in identifying community structures.

As we delve into the realm of network analysis, our focus lies on the pivotal task

of community detection. Through a comprehensive exploration of graph autoencoder

models, we aim to uncover optimal strategies for delineating community structures

within complex networks. Our journey through this study promises to unveil valuable

insights, guiding future advancements in network analysis methodologies.
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Chapter 2

Basic Concepts

G raph theory is all about understanding the connections between objects and

offers a solid foundation for modeling diverse complex networks, such as social

and biological networks. Understanding the structure and dynamics of these networks

is crucial for applications like community detection.

In this chapter, we explore the basics of complex networks and their close con-

nection to graph theory. Additionally, our inquiry extends beyond these foundational

notions as we venture into the realm of Graph Neural Networks (GNNs), a potent and

sophisticated tool that has emerged as a cornerstone in the field of network analysis.

We introduce autoencoders, a powerful deep learning technique, to complement

existing methods for community detection in complex networks. By exploiting autoen-

coder architecture, we aim to achieve a deeper understanding of network structures

and uncover hidden communities.

2.1 Graph Theory Fundamentals

This part establishes a foundation in graph theory by examining its historical de-

velopment, fundamental terminology, and multifaceted applications. We elucidate the
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significance of graph algorithms and their tangible implications in real-world networks

encompassing social media, citation analysis, and biological systems.

2.1.1 History of Graph Theory

Graph theory originated in 1736 with the groundbreaking work of Swiss math-

ematician Leonhard Euler (1707–1783). Euler’s exploration of the famous ”Seven

Bridges of Königsberg” problem serves as the foundation of graph theory [27].

The city of Königsberg, situated in Prussia (now Kaliningrad, Russia), boasted

two significant islands, Kneiphof and Lomse, interconnected by seven bridges, including

connections to the city’s mainland. The intriguing puzzle revolved around discovering

a path through the city, ensuring that each bridge was crossed precisely once.

Euler’s brilliance resided in his ability to recognise that the four unique land areas

and seven bridges were the most important aspects of the problem. He presented the

problem with the first known graphic representation of a modern network. A modern

graph consists of a collection of points known as vertices or nodes, joined by a series

of lines known as edges. [27].

Figure 2.1: Königsberg in 1652[37].
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2.1.2 Definitions

Graph: A graph G is defined as a pair of vertices V and edges E linking them.

E ⊆ V ×V implies that each edge in E is a subset of the Cartesian product of V. In

finite graphs, the number of vertices and edges is indicated by n = |V| (also known as

graph order) and m = |E| [10].

Vertex (or Vertices): Also known as nodes, vertices are the points or objects

represented in the graph. Each vertex in the graph represents an individual element

or entity [27].

Edge: Edges are the connections between pairs of vertices. An edge e = {a, b}

represents a link between vertices a and b [27].

Degree of a Vertex: The degree of a vertex v in a graph G is the count of edges

that have v as one of their endpoints [7].

Figure 2.2: Simple graph Representation of order 6 .

Walk: A walk in G is a finite non-null sequence W = v1, e1, v2, e2, v3, e3, . . . , ek, vk

whose terms are alternately vertices and edges (possibly revisiting vertices and using

the same edge multiple times) [7].

Trail: A trail is a type of walk in a graph that visits each edge at most once [7].

Path: A path is a type of walk that visits each vertex and each edge in the graph

exactly once [7].
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Distance: In a graph G, the distance between two vertices x and y, denoted as

dG(x, y), is the minimum number of edges in any path connecting x to y.[14].

Diameter of G, denoted by diam G, is the greatest distance between any pair

of vertices in G[14].

Subgraphs: A graph H is a subgraph of a graph G, denoted as H ⊆ G, if the

vertex set and edge set of H are subsets of the vertex set and edge set of G, respectively.

When H is not identical to G, it is referred to as a proper subgraph, written as H ⊂ G.

An induced subgraph is a subgraph of G that contains a specific subset of

vertices from G, as well as all edges that exist between those selected vertices. Finally,

a spanning subgraph is a subgraph of G that contains all the vertices in the original

graph [7].

Figure 2.3 illustrates an example of a subgraph within the graph G, including

induced and spanning subgraphs.

Figure 2.3: Subgraphs.

2.1.3 Graph types

There are indeed various types of graphs and graph-related concepts. We present

a diverse range of graph types, each illustrating distinct structural characteristics and
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relationships within the field of graph theory.

Multigraph: is a graph where each edge e ∈ E is associated with a pair of

vertices (v, w) ∈ V×V, and there can exist multiple edges that connect the same pair

of vertices [21].

Directed Graph: A directed graph, also known as a digraph, is a type of graph

where each edge has a direction associated with it. Such edges will be called arcs [21].

Pseudograph: A graph that allows edges to begin and end at the same vertex

(loop) [21].

Figure 2.4: Multigraph, Digraph, and Pseudograph Representations.

Weighted graph: A graph denoted by a triple G = (V, E, w), where V represents

a collection of vertices, E ⊆ V × V represents a set of edges, and w : E → R+ gives

a non-negative weight to each edge e ∈ E (as depicted in Figure 2.5). To simplify

notation, w(u, v) = 0 if (u, v) /∈ E.
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Figure 2.5: Weighted graph.

Complete Graph: A graph that contains an edge between all pairs of vertices.

The complete graph of order p is denoted as Kp [21]

Figure 2.6: Complete graphs.

R-partite Graph: A graph is r-partite if its vertex set V can be divided into r

classes V1, V2, . . . , Vr where no edge connects vertices within the same class[14].

Figure 2.7: Two 3-partite graphs.

Bipartite Graph: is a specific type of graph that can be categorized as an

r-partite graph with r = 2 [14].
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Figure 2.8: bipartite graph.

Planar Graph:A planar graph is a graph that may be formed on a plane so that

its edges only overlap at their endpoints. [7].

Figure 2.9: Planar and Non-Planar Graph Representation.

Cycle: A cycle is a sequence of vertices and edges that forms a closed loop, where

the initial and final vertices are the same [10]. Formally, a path S is a cycle if:

S = {(v, v1), (v1, v2), . . . , (vk−1, v)}

Circuit: A circuit is a directed cycle[10]. Formally, a path T is a circuit if:

T = {(v→ v1), (v1 → v2), . . . , (vk−1 → v)}

Acyclic Graph: An acyclic graph is a type of graph that does not contain any

cycles [7].

Tree: A tree is a linked, acyclic graph. The figure depicts trees with six ver-
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tices. [7].

Figure 2.10: The Trees on Six Vertices.

2.1.4 Graph representations

When working with graphs in a computer program, it becomes essential to choose

an appropriate representation method to efficiently store and manipulate the graph

data. We will explore two standard ways of representing or maintaining a graph G in

a computer’s memory.

Adjacency Matrix

The adjacency matrix of a graph G = (V, E) is a matrix A = (aij) of size n× n,

where n is the number of vertices in G. The element aij at the intersection of row i

and column j represents the adjacency relationship between vertices i and j [51]. Each

entry aij is defined as follows:

aij =


1 if (i, j) ∈ E

0 otherwise
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Adjacency list

An adjacency list is a memory-based data structure utilized for graph represen-

tation. It comprises a series of lists or arrays, where each element represents a node

in the graph. For directed graphs, each list contains the nodes directly reachable from

the corresponding node, while for undirected graphs, each list contains neighboring

nodes connected by edges.

The list adjacency representation offers advantages over the sequential represen-

tation (adjacency matrix) by being more memory-efficient for sparse graphs and fa-

cilitating easier insertion and deletion of nodes and edges. It is widely used in graph

algorithms and applications due to its flexibility and efficiency for various graph-related

operations [51].

Figure 2.11: Two Representations of an Undirected Graph.

Figure 2.12: Two Representations of a directed Graph.
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2.1.5 Graph algorithms

Graphs are valuable tools for representing different problems, and there’s a wide

range of techniques to solve various issues. Below, we present a few of these methods.

Breadth-First Search (BFS) algorithm

Breadth-First Search is is a methodical graph traversal algorithm employed to

systematically traverse the vertices and edges of a graph. It emphasizes visiting vertices

at increasing distances from a selected source vertex, ensuring thorough exploration of

the graph’s structure.[49].

Algorithm 1 Breadth-First Search
procedure BFS(G : Graph, s : Integer)

queue : Queue of Integer
marked : Array of Boolean
edgeTo : Array of Integer
for v in G.vertices do

marked[v]← false
edgeTo[v]← NULL

end for
marked[s]← true
queue.enqueue(s)
while not queue.isEmpty() do

v← queue.dequeue()
for w in G.adj(v) do

if not marked[w] then
edgeTo[w]← v
marked[w]← true
queue.enqueue(w)

end if
end for

end while
end procedure

The time complexity of BFS is denoted as O(V + E), where V is the number of

vertices and E is the number of edges in the graph. his complexity arises from the

necessity to visit each vertex and edge at least once in the worst-case scenario.
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Depth-First Search (DFS) algorithm

Depth-First Search (DFS) is a graph traversal algorithm used to systematically

explore all the vertices and edges of a graph. It follows a systematic approach of

visiting a vertex and then recursively exploring as far as possible along each branch

before backtracking. This process continues until all vertices have been visited. DFS

can be used to discover various properties of a graph, including connected components,

cycles, and paths[49].

Algorithm 2 Depth-First Search
function DFS(G, v)

marked[v]← true
id[v]← count
for w in G.adj(v) do

if not marked[w] then
DFS(G, w)

end if
end for

end function

O(V + E),each vertex and edge is visited at most once. The time complexity of

visiting a vertex and processing its adjacent vertices is proportional to the number of

adjacent vertices (the degree of the vertex). In the worst case, you visit every vertex

and process all of its adjacent vertices.

Dijkstra’s algorithm

Dijkstra is a method for determining the shortest pathways between nodes in a

network that have non-negative edge weights. The algorithm assigns a distance label

to each node, which initially reflects an upper bound on the shortest path length to

that node. It works iteratively by growing the set of permanently labelled nodes,

beginning with the source node. At each step, the algorithm selects the node with the

least temporary label, makes it permanent, and updates the labels of its neighbouring

nodes if a shorter path is discovered.[1].
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Algorithm 3 Dijkstra’s Algorithm
function Dijkstra(Graph, source)

S← ∅
for each node i ∈ Graph do

d(i)← ∞
end for
d(source)← 0
pred(source)← 0
while |S| < n do

i← node in Graph for which d(i) = min{d(j) : j ∈ S}
S← S ∪ {i}
for each (i, j) ∈ A(i) do

if d(j) > d(i) + cij then
d(j)← d(i) + cij
pred(j)← i

end if
end for

end while
return d

end function

Dijkstra’s algorithm efficiently finds shortest paths in graphs, taking O(n2) time

for dense networks due to unbalanced node selections and distance updates.

2.1.6 Exploring Graph Theory and Network Applications

Graphs are versatile data structures that are used to represent and analyze a wide

variety of relationships and information in different fields.Here, we present some key

common applications of graphs to underscore their significance.

Social network

Social networks is a representation of people and their connections. Each person

is a node, and the links between nodes show real-world or online interactions. People

can trust each other based on their interactions, like rating movie recommendations.

Since everyone interacts with many others, the network becomes complex[30].
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Figure 2.13: Visualization of a simple social network [30].

Citation Networks

Citation networks are like academic trails connecting research papers. When

a paper mentions or cites another paper, a link is formed between them. These links

create a network where papers are connected based on who references whom[15].

Figure 2.14: Visualization of a Citation Network[43].

Biological networks

Networks play a significant role in various aspects of biology, helping scientists

and researchers better understand complex biological systems. We focus on protein-

protein interactions (PPI) and food webs, but it’s important to note that there are
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numerous other valuable applications of networks in this field as well.

• Ecological food Web Networks Web food networks portray the intercon-

nected relationships between species in a specific environment based on who

eats whom. These networks encompass a wide range of organisms, from plants

to bacteria and animals. Links in these networks show how energy and nutrients

move through different trophic levels, including herbivores, predators, and par-

asites. At the core of every food web are autotrophs, like plants, that produce

their own energy[16].

Figure 2.15: Visualization of food Web Networks [57].

• Protein networks are intricate structures resembling vast interconnected webs.

They consist of components from genomic regulatory systems forming vertices,

linked by directed edges that signify regulatory relationships. Key to gene func-

tion is protein-protein interactions, where proteins act as vertices connected by

directed edges representing pairwise interactions. These networks can display

both bidirectional connections and self-interactions, resembling food webs [15].

Figure 2.16: Protein-Protein Interaction Networks[8].
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2.2 Community detection

In this section, we dive into the realm of community detection, unveiling the

techniques and methods used to identify hidden structures within networks.

2.2.1 Communities

The main challenge in graph clustering is finding a clear way to define a com-

munity. No definition is broadly accepted. In truth, the definition typically depends

on the specific system and/or application one has in mind. The core idea, which

guides how we define communities in graphs, is that a community should have more

connections between its own members than with the outside of the group[17].

A strong community in a graph, as proposed by Radicchi et al [42], refers to a

subset where each vertex has more connections within the subset than outside it, with

internal degrees surpassing external degrees.

Kin
i (V) > Kout

i (V), ∀i ∈ V.

Alternatively, a weak community is characterized by the subgraph having a higher

sum of internal degrees compared to external degrees.

∑
i∈V

Kin
i (V) > ∑

i∈V
Kout

i (V).

Notably, a strong community also fulfills the criteria for a weak community, though

the opposite relationship does not always hold true[42].

Fortunato [17] classifies community definitions into three categories: local defini-

tions, global definitions, and definitions based on vertex similarity. In the context of

local definitions, communities are characterized as segments of the graph that exhibit

limited connections to the rest of the system. Within this framework, the focus is
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placed on understanding the internal composition of communities, disregarding inter-

actions with the larger graph.

In contrast, global definitions entail the utilization of an overarching criterion,

specific to the graph, to identify communities. Depending on the applied algorithm,

this criterion could involve clustering or distance-based metrics. Typically, such criteria

demonstrate the presence of a community structure in the graph that diverges from

what would be expected in a random graph.

The third approach, based on vertex similarity, interprets communities as collec-

tions of vertices that share notable similarities with one another.

2.2.2 Community detection

Community detection is the process of dividing a graph into densely intercon-

nected groups that share similar objects or interactions. This task is crucial for un-

derstanding hidden structures within networks and finds diverse applications across

fields, ranging from social media to biology and data analysis. This technique has

evolved from early research on work groups in government agencies to contemporary

algorithms used today[17].

An illustration of this concept can be observed in figure 2.17, where nodes have

been grouped into three distinct sets.

Figure 2.17: Visualization of a Network with 3 Distinct Communities.
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2.2.3 Static Community Detection

Static community detection is the technique of discovering groups of nodes in a

network that are more densely connected to one another than the rest of the network.

There are many algorithms for static community detection, which can be broadly cat-

egorized into classical clustering approaches and modularity-based methods. Classical

clustering approaches include graph partitioning, which involves dividing vertices into

predetermined groups to minimize inter-group edges, and hierarchical clustering, which

builds a tree-like structure of nested communities. Modularity-based methods aim to

maximize a quality function called modularity, which measures the degree of separa-

tion between communities and the density of connections within communities[17].

2.2.4 Dynamic Community Detection

Dynamic community detection is the process of recognizing groups of nodes in

a network that change over time [35]. In dynamic networks, communities can evolve

through various operations, such as birth, death, merging, splitting, growth, con-

traction, continue, and resurgence (Figure 2.18)[40]. Dynamic community detection

algorithms aim to capture these changes and track the evolution of communities over

time. There are two main approaches to dynamic community detection:

• Instant-optimal approaches treat each time step as a separate static network

and apply static community detection algorithms to each snapshot.

• Temporal trade-off approaches consider the past topology and previously

identified partitions to define communities at a given time as a compromise

between an optimal solution at that time and the known past[45].

Dynamic community detection is a challenging problem due to the complexity of net-

work dynamics and the need to balance accuracy and computational efficiency[45].
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Figure 2.18: Six basic Operations of Community Evolution in Dynamic Networks[17].

2.3 Machine learning

According to Arthur Samuel, machine learning is a subclass of artificial intelli-

gence that allows computers to learn from data without the need for explicit program-

ming.This technology is particularly valuable when dealing with vast datasets that

are challenging to interpret manually. Its primary goal is to uncover meaningful pat-

terns in data, facilitating the creation of data-driven models and applications. With

the growing availability of datasets, machine learning is increasingly in demand across

various industries, offering efficient ways to handle and extract valuable insights from

complex information[47].

2.3.1 Machine learning Types

Figure 2.19 illustrates the four primary types of machine learning, each with its

own approach and application. These categories are supervised learning, unsupervised

learning, semi-supervised learning, and reinforcement learning.

• Supervised Learning: Supervised learning is a fundamental notion in machine

learning in which models are taught to map inputs to outputs using labelled

input-output datasets. This involves learning a function from instances, usually
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using a dataset partitioned into training and testing subsets. Two important

tasks in supervised learning are:Regression and Classification[47].

Regression In regression, the goal is to predict a continuous numerical value,

like predicting house prices based on features such as size and location.

Classification: In classification, the aim is to categorize data into distinct

classes or categories, like classifying emails as spam or not spam based on their

content.

In both cases, supervised learning algorithms rely on external guidance from

labeled data to make predictions or classifications, forming the foundation for

various practical applications of machine learning.

• Unsupervised Learning:

Unsupervised learning, as opposed to supervised learning, occurs without the

presence of correct answers or external guidance. In this realm of machine

learning, algorithms autonomously uncover and reveal intriguing patterns and

structures within data. These algorithms learn essential features from the data,

and when faced with new data, they utilize the previously acquired features to

identify patterns or classify data into relevant groups. Unsupervised learning

is primarily used for clustering (grouping data points based on similarities) and

dimensionality reduction (simplifying complex datasets for efficient analysis by

reducing features while preserving vital information, such as Principal Compo-

nent Analysis or PCA). This approach is particularly valuable for uncovering

hidden insights and structures within unlabeled data, without the need for ex-

ternal guidance[47].

• Semi-supervised Learning:

Semi-supervised machine learning combines elements from both supervised and

unsupervised techniques, proving highly advantageous in fields like machine

learning and data mining, where obtaining labeled data can be challenging

and resource-intensive. While traditional supervised learning relies solely on
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labeled datasets, semi-supervised learning leverages both labeled and unlabeled

data, offering a practical solution in scenarios where acquiring labeled data is

difficult[47]. Semi-supervised learning finds applications in:

Classification: It improves prediction accuracy by using both labeled and un-

labeled data, making it valuable for tasks like medical diagnosis with limited

labeled examples.

Clustering: Combines labeled and unlabeled data to uncover meaningful

clusters, aiding tasks such as customer segmentation in marketing with partial

labels.

• Reinforcement Learning:

Reinforcement learning is a vital branch of machine learning that revolves around

the decision-making process of software agents within an environment to max-

imize cumulative rewards. It stands as one of the core paradigms in machine

learning, alongside supervised and unsupervised learning. Unlike the other

paradigms, reinforcement learning focuses on teaching agents how to make se-

quential decisions to achieve optimal outcomes over time, making it particularly

relevant for applications where actions have a long-term impact and the envi-

ronment is dynamic.This learning paradigm uses rewards and penalties to guide

decisions, ultimately aiming to maximize rewards and minimize risks[47].

Positive Rewards: These rewards serve as incentives for agents, reinforcing

actions that lead to favorable outcomes, encouraging the agent to repeat those

actions in the future.

Negative Penalties: Penalties in reinforcement learning discourage unfavor-

able actions by imposing costs or negative consequences, prompting the agent to

learn and avoid such actions in subsequent interactions with the environment.
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Figure 2.19: Machine Learning Types.

2.3.2 Artificial Neural Networks

An artificial neural network (ANN) is a machine learning technique modelled after

biological neural networks (Figure 2.20). Nodes in ANNs communicate via connections

(similar to axons and dendrites). Similar to how synapses grow in our brains when

neurons have associated outputs, connections in ANNs are weighted based on their

contribution to reaching a desired outcome. This notion serves as the cornerstone for

how artificial neural networks learn and make decisions.

In a neural network, information is processed through a series of interconnected

layers. Each layer consists of individual units called neurons. These neurons take

input values (denoted as x1, x2, x3, . . . , xn) and multiply them by specific weights

(w1, w2, w3, . . . , wn), which are parameters the network learns during training.

Once the inputs are weighted, the network computes their sum and passes it

through an activation function. This activation function helps normalize the sum and

produces an output. This output can serve as input for another neuron in a subse-

quent layer. This capability of neural networks to have multiple layers for information

processing is what gives rise to the concept of deep learning[36].
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Figure 2.20: Biological neuron vs Artificial neuron [36].

In the following table2.1, we present three commonly used activation functions in

neural networks, along with their graphical representations and mathematical formu-

las.

Name of Function Representation Formula

Sigmoid σ(x) = 1
1+e−x

ReLU (Rectified Linear Unit) ReLU(x) = max(0, x)

Tanh (Hyperbolic Tangent) tanh(x) = ex−e−x

ex+e−x

Table 2.1: Activation Functions.

2.4 Graph Neural Networks

In 1997, Sperduti et al. [52] introduced the application of neural networks to

directed acyclic graphs, marking a pioneering step in utilizing neural networks for

such structures. Later, in 2005, Gori et al.[20] outlined the fundamental concept of

Graph Neural Networks (GNNs), which are designed to harness the power of deep

neural networks for graph-structured data. This approach represents an extension of
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convolutions to non-Euclidean data, allowing GNNs to capture intricate relationships.

Fundamentally, GNNs are characterized by their reliance on neural message passing, a

dynamic process wherein nodes iteratively exchange and refine vector messages through

neural networks.

2.4.1 Message Passing Framework

In a Graph Neural Network (GNN), during each iteration of message-passing, we

update the hidden representation of each node within the graph.This update is achieved

through a combination of aggregation, where information from neighboring nodes is

collected, and an update mechanism that integrates this aggregated information with

the node’s current hidden embedding.

In this section, we elucidate the core stages that delineate the foundational process

underpinning the Graph Neural Network (GNN) message-passing framework[25].

At the start of the Graph Neural Network (GNN) message passing process, during

iteration 0 (k = 0), each node’s initial embedding is set to match its input feature. As

the process continues through multiple iterations, information is gathered from neigh-

boring nodes. A node’s neighbors are the directly linked nodes in the graph, forming

its neighborhood N(u). The collected information is combined to create a “message,”

which carries insights from nearby nodes and captures the local context. This message

is then integrated with the node’s current hidden embedding (h(k)u ) using an “UP-

DATE” function, often executed by a neural network. This step enables the node to

refine its understanding by incorporating knowledge shared by its neighbors. The en-

tire process is repeated for a fixed number of iterations. In each iteration, nodes adapt

their embeddings based on information from the previous round, allowing them to

gradually improve their embeddings by considering information from farther-reaching

nodes in the graph. After completing K iterations, the GNN process concludes, and

the resulting embeddings represent the final output of the model.
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The equation for the update is as follows:

h(k+1)
u = UPDATE(k)(h(k)u , AGGREGATE(k)({h(k)v , ∀v ∈ N(u)}))

h(k+1)
u = UPDATE(k)(h(k)u , m(k)

N(u))

Where:

h(k+1)
u : Updated embedding of node u after k + 1 iterations

UPDATE(k) : Update function for the k -th iteration

h(k)u : Embedding of node u in the k -th iteration

m(k)
N(u) : Message generated by aggregating information

from the neighborhood N(u) in the k -th iteration

Figure 2.21: Message Aggregation in Two-Layer GNN [25].

Operationalizing the abstract GNN framework involves defining implementable

UPDATE and AGGREGATE functions. The fundamental GNN model discussed here,

inspired by prior works by Merkwirth and Lengauer [33] and Scarselli et al. [48],

presents a basic message passing approach. This approach involves combining messages

from neighboring nodes, linearly combining neighborhood information with the current

node’s embedding, and applying an elementwise non-linearity, as shown in Equation

(2.1):
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h(k)u = σ

W(k)
selfh

(k−1)
u + W(k)

neigh ∑
v∈N(u)

h(k−1)
v + b(k)

 (2.1)

Where W(k)
self and W(k)

neigh represent trainable parameter matrices, while h(k−1)
u and

h(k−1)
v stand for the embeddings of nodes u and v from the previous iteration. Ad-

ditionally, b(k) corresponds to the bias term employed in the model. The symbol σ

represents an elementwise non-linearity function [25].

The aggregation of messages from neighboring nodes is represented by Equation

((2.2)):

mN(u) = ∑
v∈N(u)

hv() (2.2)

The role of the UPDATE function is illustrated by the equation:

UPDATE(hu, mN(u)) = σ
(
Wself(hu) + Wneigh(mN(u))

)

While the aggregation process is expressed by the equation:

mN(u) = AGGREGATE(hv, ∀v ∈ N(u))

This process is similar to a standard multi-layer perceptron (MLP) or an Elman-

style recurrent neural network (RNN). The UPDATE and AGGREGATE functions

play a key role in this model, enabling the integration of node embeddings and neigh-

borhood information. This foundational GNN framework serves as a starting point for

understanding more complex GNN architectures.
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2.4.2 Graph Neural Networks Types

In the domain of Graph Neural Networks (GNNs), three fundamental types

emerge as noteworthy: Graph Convolutional Networks (GCNs), GraphSAGE, and

Graph Attention Networks (GATs).

Graph Convolutional Networks (GCNs)

A Graph Convolutional Network (GCN), a type of Graph Neural Network (GNN)

introduced by Kipf and Welling [29] extends convolutional operations to graphs. This

innovation enables the network to effectively learn from the neighborhoods of nodes

within a graph, much like how convolutional layers operate in convolutional neural

networks (CNNs). GCNs are widely employed in tasks such as node classification,

link prediction, and recommendation. The central propagation rule of a GCN, The

propagation rule can be expressed as:

H(k+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(k)W(k)

)
(2.3)

Where Ã represents the adjacency matrix of the graph, and D̃ represents its degree

matrix, both of which include self-loops. H(k) denotes the activations in the k-th layer,

where H(0) represents the input data X. W(k) stands for the weights associated with

the k-th layer. This rule captures how information is gathered and transformed across

layers in the Graph Convolutional Network (GCN).

Graph Attention Networks

Graph Attention Networks (GAT) are a significant advancement in the field of

communication networks and various other domains. GATs are distinguished by their

incorporation of attention mechanisms, which enable them to prioritize connections

within a network. In a GAT layer, node information and features undergo a learnable
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linear transformation using a weight matrix. Subsequently, self-attention mechanisms

determine the relevance of neighboring nodes. The attention coefficients are calculated

as follows:

eij = a(Wĥi, Wĥj)

and then normalized using softmax:

αij = softmaxj(eij) =
eeij

∑k∈Ni
eeik

Here, ”a” represents the attention mechanism, a neural network with LeakyReLU

activation. These equations guide the aggregation of features from neighboring nodes,

facilitating the extraction of meaningful information from complex networks[53].

GraphSAGE (Graph Sample and Aggregated)

The Graph Sample and aggregate (GraphSAGE) is a distinctive graph neural

network (GNN) algorithm known for its efficient handling of large graphs through

random sampling and was developed by Hamilton et al. [24]. Unlike many other

GNNs, GraphSAGE can manage both space and time complexity independently of

graph properties like node degree distribution and batch size. Its core features include

using fixed-size random subsets for sampling, multiple graph convolutional layers (K

layers) for aggregating information, and differentiable aggregator functions (AGGk)

for each layer (k) to combine data from neighboring nodes [11].

2.4.3 Graph Neural Networks Applications

Indeed, Graph Neural Networks (GNNs) play a crucial role in various domains[23]:

• Social Networks: GNNs personalize content and strengthen friend connec-

tions.

• Drug Interaction Prediction: They identify potential side effects resulting
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from drug interactions.

• Traffic Prediction: GNNs accurately forecast traffic patterns for efficient

transportation systems.

• E-Commerce Recommendations: GNNs enhance product recommendations

for online shoppers.

• Text Analysis: They structure textual data, improving analysis and under-

standing.

• Molecular Structure Analysis: GNNs excel in analyzing molecular structures

represented as graphs[23] .

2.5 Autoencoder Technology

The concept of autoencoders was first introduced in a seminal paper by Hinton

and Salakhutdinov [26] as an artificial neural network designed to capture feature rep-

resentations. It consists of two fundamental components: an encoder and a decoder

(Figure 2.22). The encoder transforms input data into a lower-dimensional represen-

tation to effectively capture essential features. Subsequently, the decoder reverses

this process, with the goal of reconstructing the original input as accurately as possi-

ble. The primary objective of autoencoder training is to autonomously learn a data

representation that proves valuable for various applications, including dimensionality

reduction, clustering, anomaly detection, and feature representation.

2.5.1 Different Autoencoder architecture

Autoencoders exhibit diverse variations, with three commonly employed types in-

cluding Denoising Autoencoders, Variational Autoencoders for probabilistic modeling,

and Convolutional Autoencoders designed for image-centric tasks.
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Figure 2.22: Autoencoder Architectur.

Convolutional Autoencoders (CAEs)

Convolutional Autoencoders (CAEs) are neural networks designed for image tasks,

using convolutional layers to extract features while preserving spatial info. They create

compact data representations by constraining the embedded layer’s dimension, avoid-

ing direct input-output copying. In CAEs, encoding uses convolution and activation

(e.g., ReLU) to produce a concise data representation, as shown in Equation (2.4).

While decoding uses transpose convolution, the decoder is defined by equation (2.5).

CAEs minimize Mean Squared Error (MSE) to capture and reproduce essential image

features, making them valuable for feature extraction and image data compression [22].

h = σ(x ∗W) (2.4)

x0 = σ(h ∗U) (2.5)

Figure 2.23 below illustrates the Convolutional Autoencoder (CAE) architecture for

MNIST.
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Figure 2.23: Convolutional Autoencoder Architecture [22].

Denoising Autoencoders (DAE)

A Denoising Autoencoder (DAE) comprises three layers: an input layer, a hidden

layer (also called an encoding layer), and an output layer (decoding layer). It operates

by first transforming input data, x, into a vector x by introducing noise or setting

some elements to zero. The encoding phase utilizes a nonlinear transformation:

y = fe(Wx + b)

Here, y represents the hidden layer output (feature representation), W are the

input-to-hidden weights, b is the bias, and fe() is the activation function, often using

ReLU to create sparse features.

For decoding or reconstruction, DAE uses a mapping function fd():

z = fd(WTy + bd)

Where z is the DAE’s output, effectively the reconstruction of the original data x.

The output layer mirrors the input layer’s dimensions, and WT refers to tied weights.

Depending on the input range, the decoding function fd() can be softplus or linear.

DAE is trained to minimize a reconstruction-oriented cost function, which varies based

on the input range. It includes the cross-entropy function for input values in [0, 1], and
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the square error function otherwise, with an added regularization term (W2) controlled

by the parameter λ. Training employs minibatch stochastic gradient descent (MSGD)

for optimization [12].

Variational AutoEncoders (VAEs)

Variational autoencoders (VAEs) are widely used for developing deep generative

models. They are particularly valuable for tasks such as data compression and gen-

erating new content, making them versatile tools in various fields. VAEs work by

learning to encode input data into a lower-dimensional latent space and then decoding

it back to the original data space. In this latent space, VAEs model a probabilistic

distribution characterized by mean and standard deviation outputs, enabling them to

capture uncertainty and generate diverse and meaningful samples (see figure 2.24).

In VAEs, the encoding step transforms input data into a latent vector z, denoted

as z = Encoder(x) ∼ q(z|x), where x is the input data, and q(z|x) represents the

approximate posterior distribution.

The decoder step reconstructs the latent vector z back into an image, produc-

ing an output x̄, denoted as x̄ = Decoder(z) ∼ p(x|z), which follows the generative

distribution p(x|z) [28].

Figure 2.24: Variational Autoencoder Architecture.
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Sparse Autoencoder(SAE)

A sparse autoencoder is a type of neural network that is used for unsupervised

learning. It learns to compress the input data into a lower-dimensional representation

by training the network to reconstruct the original data from the compressed form.

The sparse autoencoder distinguishes itself by imposing a sparsity constraint on the

hidden units, allowing only a small percentage of them to be active at any given

time. This motivates the network to develop a compact and efficient representation of

the input data. The sparsity constraint is achieved by adding a penalty term to the

objective function that encourages the hidden units to be activated only for a small

fraction of the input data. The sparse autoencoder has been shown to be effective in

learning features from unlabeled data, which can be useful in a variety of applications

such as computer vision, speech recognition, and natural language processing[39].

2.5.2 Autoencoders Applications

Autoencoders have several practical applications, including:

1. Dimensionality Reduction: Autoencoders are used to reduce the dimension-

ality of data efficiently. Unlike traditional methods like PCA, autoencoders can

handle large datasets with mini-batch training, making them suitable for big

data applications. Autoencoders also allow for non-linear transformations of

features, offering greater flexibility.

2. Classification with Latent Features: Autoencoders can be employed for

classification tasks using the latent features they learn. By training a classifier

on these features, you can achieve significant reductions in training time while

maintaining reasonable accuracy, especially in high-dimensional datasets.

3. Anomaly Detection: Autoencoders are effective for anomaly detection. By

training on a dataset without anomalies and then measuring the reconstruction
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error of each data point, you can identify outliers or anomalies in the dataset.

This is valuable for fraud detection, fault detection, and quality control.

4. Denoising Autoencoders: Denoising autoencoders are trained to remove noise

from input data. They can be used to clean noisy images, reconstruct corrupted

text, or restore data affected by various types of noise. Denoising autoencoders

learn to generate clean outputs from noisy inputs[34].

2.6 Conclusion

In conclusion, this chapter explores fundamental concepts in graph theory, com-

munity detection, graph neural networks (GNNs), and autoencoders. These concepts

provide essential frameworks for understanding network structures, identifying com-

munities within graphs, and utilizing advanced techniques like GNNs and autoencoders

for data analysis and representation learning.

In the next chapter, we examine in detail the state of the art of community

detection methods.
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State Of The Art

W ith the increasing need to analyze networks, many different community

structure detection approaches have been proposed. The exploration of

community detection methods has evolved over the years, encompassing a spectrum

of approaches ranging from traditional methodologies to deep learning techniques. In

this chapter, we embark on a comprehensive exploration through the state of the art in

community detection, delineating the landscape into two distinct realms: traditional

methods and deep learning methods. These methods are summarized in the Figure 3.1.

3.1 Traditional Methods

In this section, we explore traditional approaches for community detection, fo-

cusing on hierarchical clustering, modularity optimization, and dynamical community

detection methods.
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3.1.1 Hierarchical Clustering Methods

Hierarchical clustering is a method of community analysis that seeks to build a

hierarchy of communities. When applied to networks, hierarchical clustering involves

grouping nodes based on their connectivity or similarity. This helps in identifying

communities within the network. This category of methods can be represented by

a dendrogram, a tree-like diagram that records the sequences of merges or splits in

hierarchical clustering (see Figure 3.2). There are two main types of hierarchical

clustering:

Figure 3.2: Hierarchical Clustering Steps represented by Dendrogram.

3.1.1.1 Agglomerative Algorithms

Agglomerative algorithms employ a bottom-up technique, initially treating each

node as an independent cluster and iteratively merging them based on high similarity[17].

Newman’s Greedy Search Algorithm exemplifies this approach, proposed by Mark New-

man in 2004. In the initial stages, each node is designated as a separate community,

forming n initial communities. The algorithm 4 then iteratively calculates distances

between communities and merges the closest pairs, guided by modularity gain. This

process continues until the entire graph converges into a cohesive community.

Notably, Newman’s algorithm demonstrates performance with a time complexity
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Algorithm 4 Newman’s Algorithm
procedure NewmanAlgorithm(G)

Initialize each node as its own community
Calculate the modularity of the initial partition
while there are communities to merge do

for each pair of mergeable communities do
Calculate the modularity of the merged communities

end for
Merge the two communities that maximize modularity gain
Update the list of merged communities

end while
end procedure

of O(n3) [38].

3.1.1.2 Divisive Algorithms

Divisive algorithms use a top-down approach, first treating the entire network

as a single community and then iteratively separating it by removing links between

nodes with low similarity, resulting in distinct communities. The divisive approach

in community detection begins by placing all nodes into a single group. It then aims

to break down the network into multiple communities while progressively removing

edges that link nodes with low similarity.As a result, the entire graph divides into

several smaller segments. This iterative process continues until communities consist of

individual nodes [17].

The Girvan-Newman algorithm, introduced by Michelle Girvan and Mark New-

man in 2002, stands out as a prominent divisive approach within community detection.

This innovative method (algorithm 5) focuses on gradually removing edges that serve

as important connectors for the maximum number of shortest pathways between nodes.

The algorithm’s essence is the systematic calculation of betweenness centrality for each

edge in the graph. It entails eliminating the edge with the highest betweenness cen-

trality, recalculating betweenness centrality for the remaining edges, and continuing

this process until no edges remain.
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The betweenness centrality of a node BC(v) is the fraction of shortest paths

between all pairs of nodes in the network that pass through that node. Nodes with

high betweenness centrality are frequently seen as critical to maintaining network

connectivity and efficient information flow. The formula for betweenness centrality for

a node v is commonly represented as:

BC(v) = ∑
s ̸=v ̸=t

σst(v)
σst

Where σst represents the total number of shortest paths from node s to node t, while

σst(v) is the number of shortest paths from s to t that pass via node v. The summing

is performed on all possible pairs of nodes s and t (excluding v).

Algorithm 5 Girvan-Newman Algorithm
procedure GirvanNewman(G)

while |E| > 0 do
Calculate the betweenness centrality of all edges in G
Find the edge with the highest betweenness centrality
Remove the identified edge
Identify communities based on the connected components of G

end while
end procedure

The Girvan-Newman algorithm’s time complexity is O(m2n), where m is the

number of edges and n is the number of vertices. This complexity arises from the

repeated calculation of betweenness centrality for each of the m edges, with each

calculation taking O(mn) time[18].

3.1.2 Modularity Optimization Methods

The concept of modularity, initially introduced by Girvan and Newman, is em-

ployed by multiple algorithms.Initially, a stopping criterion for the Girvan-Newman

algorithm was suggested. [17]. Modularity can then be written as follows:

Q =
1

2m ∑
i,j

[
Aij −

kik j

2m

]
δ(ci, cj)
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Where m is the weighted total of edges in the community network, and ci is

the community where the node i resides. Aij is the element of the adjacency matrix

between nodes i and j, ki is the sum of edge weights associated to node i, and the

function δ(Ci, Cj) shows whether nodes i and j belong to the same community.

δ(Ci, Cj) =


1 if Ci = Cj

0 otherwise
(3.1)

To discover communities, modularity optimization algorithms find out the com-

munity division with the highest modularity among all possible community divisions

in the network. The first algorithm developed to enhance modularity was Newman’s

greedy method. It is an iterative agglomerative hierarchical clustering method that

progressively combines vertex groups to form larger communities, aiming to increase

modularity (refer to 3.1.1.1).

Blondel et al. introduced a greedy algorithm for weighted graphs, commonly

known as the Louvain Algorithm [4]. Initially, each vertex is assigned to its own

community. The algorithm begins with a sequential pass over all vertices. For a given

vertex i, it calculates the gain in weighted modularity from moving i to the community

of its neighbor j, selecting the neighbor’s community that offers the highest positive

increase in modularity. This forms the initial partition.

In the next step, communities are replaced by supervertices, which are connected

if the corresponding communities share edges. The edges between supervertices have

weights equal to the sum of the weights of the edges between the lower-level com-

munities. The algorithm iterates these steps, creating new hierarchical levels and

supergraphs, and recalculating modularity changes after merging or splitting vertex

groups. The process stops when modularity can no longer increase [5]. Figure 3.3

depicts the Louvain algorithm, whereas Algorithm 6 provides a pseudocode summary.

The time complexity is O(m), where m is the number of edges in the graph.
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Algorithm 6 Louvain Algorithm
procedure Louvain(G)

Input: Network graph G(V, E)
Output: Partition of nodes V into communities
Initialization: Assign each node to its own community
while there is a node v in G do

Optimize Modularity:
Move v to community that maximizes modularity

end while
while more than two communities exist do

Aggregate Communities:
Merge communities with the highest modularity gain when merged

end while
Output: Resulting partition of nodes into communities

end procedure

Figure 3.3: Louvain Algorithm Steps.

3.1.3 Dynamical Methods

Dynamic approaches for community detection refer to the process of understand-

ing different groups of nodes in a network over time. Among the various methods,

we’re focusing on the InfoMap and Label Propagation algorithms
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3.1.3.1 Label Propagation Algorithm (LPA)

Raghavan, Albert et al. [44] developed a label propagation algorithm (LPA) which

propagates node labels throughout the network. Initially, each node is assigned a

distinct label, which the algorithm iteratively changes in a random sequential order.

During each cycle, a node adjusts its label based on the label shared by the greatest

number of its neighbors. If a node has numerous candidate labels to update, one is

chosen at random. The label update rule for a node u in an undirected and unweighted

network with n nodes is expressed as:

lnewu = arg max
l′u

n

∑
v=1

Auvδ(l′u, lv),

Where lnewu is the new label assigned to node u, l′u represents a label of the

neighbors of u, v is a node in the network, lv is the label of node v, Auv is the element

of the adjacency matrix indicating the connection between node u and node v, and δ

is the Kronecker delta function (1 if lv and l′u are the same, 0 otherwise).

The label updating method continues until node labels remain unchanged after

an iteration . Communities are therefore defined as groupings of nodes with the same

label. To ensure algorithm convergence, node labels are changed asynchronously. This

means that each node’s label changes dependent on the labels of certain neighbors from

the previous iteration and the labels of other neighbors from the current iteration.

The pseudocode of the Label Propagation Algorithm (LPA) is outlined in Algo-

rithm 7. LPA has a nearly linear temporal complexity of O(m), where m is the number

of network edges[44].

Noting a drawback of the Label Propagation Algorithm (LPA), it tends to assign

the same label to all nodes, potentially impeding a meaningful interpretation of the

detected community structure[2].

44



Chapter 3. State Of The Art

Algorithm 7 Label Propagation Algorithm (LPA)
procedure LabelPropagation(Graph G)

Initialize each node with a unique label
Set maximum number of iterations: max_iterations
iterations← 0
while iterations < max_iterations do

for each node u with label l in a sequential order of nodes do
l′ = the neighboring label of u shared by the maximum number of neigh-

bors of u
if l′ ̸= l then

Assign label l′ to node u
end if

end for
if labels of every node remain unchanged after an iteration then

return the current node label assignment
end if
iterations← iterations + 1

end while
end procedure

3.1.3.2 InfoMap algorithm

The InfoMap algorithm, introduced by Rosvall and Bergstroin in 2008 [46] , offers

a unique perspective on community detection within networks. Rather than directly

identifying communities, it approaches the problem by minimizing the code length

of a random walk through the network. The underlying idea is to represent each

node with a binary Huffman coding, allowing paths in the network to be expressed

as specific codewords. This representation is then used to compress the information

coding, turning the community detection problem into one of coding compression[46].

The algorithm aims to reduce the description length of random walk paths in

the network, utilizing the map equation[46]. This equation is instrumental in divid-

ing communities and finding a compact representation by minimizing the description

length of random walk paths. It operates on the concept of representing paths with

two levels: the first level names communities, and the second level names nodes within

communities using Huffman coding. This ingenious idea allows for the reuse of internal

node encodings across different communities, ultimately shortening the length of the

encoding.
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The map equation calculates the minimum description length for the random walk

path, as expressed in Equation 3.2:

L(M) = q↷H(Q) +
m

∑
i=1

pi ↷ H(Pi) (3.2)

This equation comprises two terms: the first represents the entropy associated

with transitions between modules, and the second denotes the entropy within mod-

ules, accounting for module exits as movements. Each term is weighted by its fre-

quency in the specific partitioning. Here, q represents the likelihood of the random

walk transitioning between modules at any given step. H(Q) denotes the entropy

related to module names, specifically the entropy of the codewords. Similarly, H(Pi)

represents the entropy related to within-module movements, including the exit code

for the module i. The coefficient pi signifies the proportion of within-module move-

ments in module i, along with the probability of exiting the module i. It is crucial to

note that 1 ≤ i ≤ m and ∑m
i=1 pi = 1− q.

Algorithm 8 InfoMap Algorithm
Require: Graph G = (V, E),minimum quality improvement threshold τ.
Ensure: Node-to-module map M.

Run PageRank to calculate the visit rates for each vertex: M = {mi = vi | vi ∈ V}.
L = L(M)
repeat

Lprev = L
R = random sequence of integers from 1 to N
for i = 0 to N − 1 do

mnew = bestNewModule(M, vR[i])
Move vR[i] to module mnew and update M and L

end for
until Lprev − L < τ
return M

The computational complexity of the community discovery process with the In-

foMap algorithm is O(N log N), where, N is the number of nodes in the network.

This complexity is contingent on the network structure, as optimizing the map equa-

tion involves traversing the network multiple times.
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3.1.4 Comparison between Traditional Methods

In Table 3.1, an overview of a summary of traditional algorithms for the commu-

nity detection task is presented, including hierarchical, optimization-based, and dy-

namic approaches. Hierarchical clustering (Newman-Girvan) and GN offers detailed

hierarchies but is computationally demanding. Optimization-based clustering (Lou-

vain) is efficient and scalable with high modularity but can vary in results. Dynamic

clustering (LPA) is extremely fast but can produce unstable results, and InfoMap bal-

ances efficiency and stability with a robust information-theoretic approach but can be

computationally intensive. However, the increasing complexity and scale of modern

networks motivate the use of deep learning techniques, which can automatically learn

and adapt to intricate patterns, offering enhanced scalability and potentially more

accurate community detection.
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Table 3.1: Summary of Traditional Algorithms for Community Detection

Category AlgorithmApproach Key
Features Advantages Disadvantages

Hierarchical
Cluster-
ing:Divisive

Newman [38]

Modularity-
based
community
merging

Modularity
maximization,
iterative
merging

Clear
community
structures, no
need for initial
community
number

Computationally
intensive for
large networks

Hierarchical
Clustering:
Agglomera-
tive

Newman-
Girvan
(NG) [19]

Divisive,
uses edge
between-
ness to
reveal
community
structure

Edge
betweenness,
dendrogram
construction,
O((m+n)n)
complexity

Clear
hierarchy, no
need for prior
community
number

Computationally
expensive,
sensitive to
edge removal
order

Optimization-
Based
Clustering

Louvain [4]

Modularity
optimiza-
tion,
merges
communi-
ties
iteratively

Two-phase
process,
modularity
optimization,
O(n log n)
complexity

High
computational
efficiency,
scalable, high
modularity
partitions

Varying
results,
struggles with
small/dense
communities

Dynamic
Clustering LPA [44]

Propagates
labels
based on
majority
voting
among
neighbors

Label
dynamics,
linear
complexity
O(m)

Extremely
fast, no need
for prior
community
number

Unstable
solutions,
large
community
production

Dynamic
Clustering InfoMap [46]

Uses
random
walker to
minimize
description
length of
walk

Random walk
dynamics,
efficient for
large networks

Detects
hierarchical
structures,
robust
information-
theoretic basis

Sensitive to
walk
parameters,
computation-
ally
demanding

3.2 Deep Learning Methods

The landscape of community detection has undergone a significant transforma-

tion, shifting from traditional shallow methods to the realm of deep learning ap-
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proaches. In this section, our focus centers on providing an overview of Convolutional

Network-Based Community Detection, with a particular spotlight on the integration

of Autoencoder-based methods.

3.2.1 Convolutional Based Community Detection

Community detection using convolutional network models encompasses both Con-

volutional Neural Networks (CNNs) and Graph Convolutional Networks (GCNs). We

provide a comprehensive overview of significant contributions from researchers, high-

lighting advancements in leveraging CNNs and GCNs for efficient community detection

across a variety of network structures.

3.2.1.1 CNN-based Community Detection

Xin et al.[56] introduced an innovative Convolutional Neural Network (CNN) ap-

proach tailored for community detection in networks with incomplete structural infor-

mation, such as social networks with gaps in individual data. Operating on 1D matrices

representing adjacency relations, the CNN model incorporates convolutional layers for

local feature extraction, max-pooling for map generation, and a fully connected layer

for community classification. Experimental results on datasets like Football, Live-

Journal, and YouTube showcase the model’s superiority over both unsupervised and

supervised methods, particularly in networks with substantial missing data. While

acknowledging achievements, the study emphasizes the need for further exploration of

preprocessing and deep learning techniques for ongoing improvements.

Cai et al. [9] made notable contributions with the ComNet-R algorithm, introduc-

ing an Edge-to-Image (E2I) model that converts edge structures into images. Their

method involves constructing a Community Network (ComNet) to classify edges within

the same community or between different communities. The approach streamlines lo-

cal community views through a breadth-first search based on edge classification and
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optimizes community structures by merging preliminary communities using the local

modularity measure R. Experimental results underscore the effectiveness of their deep

convolutional neural network-based edge classification in diverse network scenarios,

though the current implementation is limited to undirected graphs.

Turning to A.Bekkair et al.[3] exploration, they address the crucial task of com-

munity detection in complex networks using Convolutional Neural Networks (CNNs).

Their approach is categorized into node-based and edge-based transformations, with a

comparative analysis revealing the node-based method’s straightforward and compu-

tationally efficient nature, achieving superior results across diverse datasets. However,

the edge-based approach, while promising, introduces complexities with multi-step

processes, including image transformation and modularity-based algorithms, leading

to resource-intensive implementations. The study contributes valuable insights into

community detection methodologies while underscoring the computational challenges

associated with the edge-based strategy.

3.2.1.2 GCN-based Community Detection

Graph Neural Networks, and specifically Graph Convolutional Networks (GCN),

have emerged as powerful tools for community detection tasks. Overlapping commu-

nity detection in networks poses a critical challenge in machine learning, necessitating

the identification of densely connected node groups. The Neural Overlapping Commu-

nity Detection (NOCD) model, recently introduced by Shchur and Günnemann[50],

addresses this by integrating a Bernoulli-Poisson probabilistic model with a two-layer

graph convolutional network (GCN).This integration facilitates the learning of com-

munity affiliation vectors by minimizing the negative log-likelihood of the Bernoulli-

Poisson model.The model’s efficacy was demonstrated across diverse real-world datasets,

showcasing superior accuracy and efficiency compared to existing methods, particu-

larly in social and citation networks.The model incorporates a thresholding technique

to enhance community identification by removing weak affiliations. The results pre-
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sented underscore the viability of deep learning for graphs as a robust framework

for overcoming challenges in overlapping community detection, suggesting a need for

increased attention to this approach in future research.

Deyu Bo et al.[6] pioneered the Structural Deep Clustering Network (SDCN) to

revolutionize deep clustering by seamlessly integrating structural information. Fo-

cused on enhancing the effectiveness of data representations for clustering within a

deep learning context, the authors introduced SDCN, leveraging a delivery operator

to transfer autoencoder-learned representations to a Graph Convolutional Network

(GCN) layer. A dual self-supervised mechanism unifies diverse neural architectures,

facilitating comprehensive model updates. Demonstrating consistent superiority over

existing techniques, SDCN exhibits enhanced clustering performance and computa-

tional efficiency across diverse datasets. However, the model’s applicability in large-

scale datasets or real-time scenarios may be hindered by its computational complexity,

while the quality of input data intricately influences clustering outcomes. These nu-

ances present intriguing aspects for further exploration in the evolving landscape of

deep clustering research.

3.2.2 Autoencoder-Based Community Detection

Recent advances in deep learning, particularly autoencoder-based methods, have

significantly enhanced community detection within networks. In this section, we intro-

duce a taxonomy of Graph Autoencoders (GAEs), categorizing them into GAE-based

simple encoders and GAE-based dual encoders. Within each category, further classi-

fication is based on the type of architecture used (see Figure 3.1).

3.2.2.1 Embedding Graph Auto-Encoder

In the realm of graph clustering, the Embedding Graph Auto-Encoder (EGAE)

model [58] emerges as a pioneering solution, blending the capabilities of graph autoen-
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coders (GAEs) with clustering techniques to partition nodes effectively.The architec-

ture of EGAE plays a pivotal role in its success, designed with a specific structure

that harnesses the strengths of GAEs and relaxed k-means clustering in a synergistic

manner.

At the heart of EGAE’s architecture lies the encoder-decoder framework, com-

prising an encoder and dual decoders (as showen in Figure 3.4). The encoder’s task is

to map input graph data and features into a latent feature space using graph convolu-

tion layers, with inner-products serving as a metric. This utilization of inner-products

leverages the orthogonal property of representations generated by GAEs, enhancing

the model’s ability to capture essential graph structures effectively.

The dual decoders in EGAE are instrumental in the clustering process, with one

decoder dedicated to reconstructing the graph based on inner-products and the other

focused on clustering using relaxed k-means. By simultaneously learning representa-

tions and performing clustering, EGAE ensures that the deep features generated by

the neural network are well-suited for the specific clustering model.

Through extensive experimentation on benchmark datasets such as Cora, Cite-

Seer, and Wiki, EGAE demonstrates remarkable performance improvements over tra-

ditional clustering methods and state-of-the-art graph embedding techniques. Signif-

icant enhancements in clustering accuracy, normalized mutual information, and ad-

justed rand index across all datasets underscore the model’s effectiveness in accurately

capturing latent structures and partitioning graphs.

However, EGAE is not without its limitations. Sensitivity to hyperparameters,

particularly the tradeoff coefficient α, poses challenges, and scalability concerns may

arise with larger datasets. Further exploration and refinement of EGAE’s applicability

in real-world scenarios are warranted to address these limitations.
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H

Figure 3.4: Architecture of Embedding Graph Auto-Encoder [58].

3.2.2.2 Adversarially Regularized Graph Autoencoder

The proposed adversarially regularized graph embedding framework, as presented

in [41], addresses the challenge of learning robust representations of graph data by con-

sidering both the topological structure and node content. This framework integrates

adversarial regularization techniques within a graph autoencoder architecture to pro-

duce embeddings that effectively preserve the graph’s inherent structure while captur-

ing crucial features of the nodes. ARGE (Adversarially Regularized Graph Embed-

ding) and ARVGE (Adversarially Regularized Variational Graph Embedding) are two

innovative models developed within this framework. Their architecture comprises two

key components: the graph autoencoder and the adversarial network (Figure 3.5). The

graph autoencoder utilizes graph convolutional networks (GCNs) to encode the input

graph’s structure and node content features into low-dimensional embeddings. This

involves an encoder model that applies GCN layers to process the adjacency matrix

and node features, generating latent representations of the input graph. Subsequently,

a decoder model reconstructs the graph structure based on these learned embeddings,

preserving essential topological and content-related information. The adversarial net-

work introduces adversarial training to regularize the learned embeddings, ensuring

they match a specified prior distribution. It includes a discriminator model trained

to distinguish between embeddings generated by the graph autoencoder and samples
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Figure 3.5: Architecture of Adversarially Regularized Graph Autoencoder [41].

drawn from the prior distribution. By minimizing the cross-entropy loss between the

discriminator’s predictions and ground truth labels, the adversarial network guides

the graph autoencoder to produce embeddings that are more stable and consistent

with the prior distribution. This combined architecture enables ARGE and ARVGE

to learn robust representations of graph data, making them effective for various graph

analytics tasks.

In the experiments conducted on real-world graph datasets such as Cora, Cite-

Seer, and PubMed, ARGE and ARVGE consistently outperform traditional methods

and more recent graph embedding approaches across various tasks, including link

prediction, node clustering, and graph visualization. The adversarial regularization

incorporated into these models contributes significantly to their superior performance,

enabling them to achieve high accuracy, AUC, AP, normalized mutual information,

F1 score, precision, and average rand index scores compared to baseline methods.

However, despite the advancements, there are limitations to consider. The com-

putational complexity of some techniques, the need for large amounts of training data,

and the challenge of generalizing to different graph structures pose constraints on the

scalability and applicability of these methods. Additionally, the interpretability of the

learned embeddings and the robustness to noisy or incomplete data remain areas for

further exploration and improvement in the field of graph embedding.
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3.2.2.3 Deep Attentional Embedded Graph Clustering

The Deep Attentional Embedded Graph Clustering (DAEGC)[54] algorithm is a

novel approach designed to address the challenges in graph clustering by focusing on

attributed graphs. DAEGC stands out for its ability to effectively capture both the

structural relationships and node content information within a graph, leading to more

efficient and goal-directed clustering results.

At the core of DAEGC is a graph attentional autoencoder, which serves as the

foundation for the algorithm’s functionality. The graph attentional autoencoder takes

the attribute values and graph structure of the attributed graph as input and learns a

latent representation by minimizing the reconstruction loss. This process enables the

autoencoder to encode the topological structure and node content of the graph into a

compact and meaningful representation.

In addition to the graph attentional autoencoder, DAEGC incorporates a self-

training clustering module. This module utilizes the learned representation to perform

clustering and iteratively refines the clustering results. By generating soft labels from

the graph embedding itself, the self-training module guides the clustering process,

leading to improved clustering performance.

The key strength of DAEGC lies in its unified framework, where the graph atten-

tional autoencoder and the self-training clustering module work together in a syner-

gistic manner. This joint learning approach allows for the simultaneous optimization

of both the graph embedding and the clustering task, ensuring that each component

enhances the performance of the other. Overall, DAEGC’s architecture and function-

ality enable it to effectively capture the interplay between graph structure and node

content, making it a powerful tool for graph clustering tasks on attributed graphs.

The effectiveness of DAEGC has been demonstrated through experiments on

benchmark datasets such as Cora and CiteSeer. Results have shown significant im-

provements in clustering accuracy and normalized mutual information compared to
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traditional methods like GAE and VGAE. By integrating both structure and content

information, DAEGC outperforms existing algorithms, showcasing its potential for

graph clustering tasks.

While DAEGC presents promising results, it is essential to acknowledge its limita-

tions. One notable aspect is the need for careful parameter tuning, especially regarding

the dimensionality of the embedding layer. Additionally, the algorithm’s performance

may vary based on the complexity and size of the input graph data. Further research is

required to explore the scalability and generalizability of DAEGC across diverse graph

clustering scenarios.

Figure 3.6: Deep Attentional Graph Clustering [54].

3.2.2.4 Deep Dual Graph attention Auto-Encoder for community detec-

tion

the integration of high-order modularity information with node attribute data

presents a significant challenge, often overlooked by traditional algorithms which typi-

cally focus on either structural properties or node attributes, but not both. The Deep

Dual Graph attention Auto-Encoder (DDGAE) architecture as shown in figure 3.7)

emerges as a pioneering solution to this problem, employing a dual-view approach

that effectively captures both types of information. The DDGAE consists of two main

modules: the deep dual graph attention auto-encoder, which leverages graph attention

mechanisms to learn a unified node representation from both attribute information (X)
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and modularity information (B); and a self-training module, which refines community

assignments iteratively during the training process, optimizing the detection outcomes.

Figure 3.7: Deep Dual Graph attention Auto-Encoder architecture[55].

This sophisticated architecture has been tested on several publicly available datasets,

including CORA, CiteSeer, PUBMED, ACM, and DBLP, where it demonstrated no-

table improvements in accuracy and efficiency over existing state-of-the-art methods.

Specifically, DDGAE has shown to enhance community detection performance by

leveraging the learned representations to uncover more accurate and coherent com-

munity structures within the networks. Despite its advantages, DDGAE’s complexity

and the computational demands of its dual attention mechanisms present limitations,

especially when scaling to very large network datasets.

We present a detailed summary in Table 3.2 of each model architecture used in

GAE-based community detection. This table encompasses a summary of various mod-

els, highlighting their unique architectural features, underlying input data, and the

specific architectures employed in the encoder, decoder, and optimization functions.

By providing this detailed comparison, we aim to elucidate the strengths and weak-

nesses of each approach through an experimental study, which is presented in the next

chapter, offering valuable insights into their suitability for different types of networks

and community structures.
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Table 3.2: Summary of GAE-Based Community Detection.

Year Abbr. Full Name Category Input Encoder Decoder Loss Function
2018 ARGAE Adversarially Reg-

ularized Graph Au-
toencoder Simple

A, X GCN Inner prod-
uct

Reconstruction +
Clustering

2018 ARVGA Variational Ad-
versarially Reg-
ularized Graph
Autoencoder

A, X GCN Inner prod-
uct

Reconstruction +
Clustering + Dis-
criminator

2019 DAEGC Deep Attentional
Embedded Graph
Clustering

A, X GAT Inner prod-
uct

Reconstruction +
Clustering

2021 EGAE Embedding Graph
Auto-Encoder

A, X GCN GCN Reconstruction +
Clustering

2024 DDGAE Deep Dual Graph
Attention Auto-
Encoder

Dual A, X, B GAT GAT + In-
ner product

Reconstruction +
Clustering

3.3 Conclusion

In this chapter, we’ve examined traditional community detection methods along-

side prominent algorithms within each. We then briefly explored CNN-based ap-

proaches before focusing on autoencoder-based community detection, gaining insight

into their mechanics. This understanding sets the stage for our implementation of sim-

ple and dual graph autoencoder approaches in the next chapter, where we’ll evaluate

their performance on datasets and conduct a comparative analysis.
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Experimental Study

I n this chapter, we conduct a comparative analysis of graph autoencoder models

for community detection, distinguishing between simple and dual encoders across

various datasets. We detail the experimental setup and methodologies used, then dis-

cuss the comparative results to evaluate the efficacy of each encoder type in identifying

community structures.

4.1 Implementation setup

In this section, we will first introduce the datasets utilized in our experiments,

followed by a detailed description of the computational environment, configurations

used throughout our study, and the evaluation metrics we use to analyze our results.

4.1.1 Datasets

Numerous datasets are commonly used by researchers to study community detec-

tion algorithms. For our experiments, we selected three well-known attributed citation

network datasets: Cora, CiteSeer, and PubMed. These datasets consist of citation

networks where nodes represent documents or authors, and edges denote citation re-
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lationships.

The Cora dataset 1 encompasses 2,708 machine learning papers classified into

seven distinct classes. The citation network contains 5,429 citations between these

papers. Each document is characterized by a binary feature vector that represents the

presence or absence of words from a dictionary of 1,433 unique terms.

The CiteSeer dataset 2 consists of 3,312 scientific publications across six

classes, featuring a citation network with 4,732 links. Each publication is represented

by a binary feature vector that captures the presence of words from a dictionary of

3,703 unique terms.

PubMed 3, a database curated by the United States National Library of Medicine,

hosts a wealth of scientific literature, particularly in life sciences and biomedical fields.

Its dataset on diabetes comprises 19,717 papers across three classes, with a citation

network of 44,338 connections. Each paper is represented by a binary feature vector

based on a dictionary of 500 unique words.

Dataset # Nodes # Links # Features
Cora 2,708 5,429 1,433
Citeseer 3,312 4,732 3,703
PubMed 19,717 44,338 500

Table 4.1: Statistical Summary of Citation Network Datasets

4.1.2 Environment

we detail the development environment, including the programming languages

and essential libraries that supported our implementation.
1https://paperswithcode.com/dataset/cora
2https://paperswithcode.com/dataset/citeseer
3https://paperswithcode.com/dataset/pubmed
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Hardware Setup

The system was equipped with an Intel® Xeon® Silver 4112 Processor featuring a

2.60 GHz clock speed and 8.25M Cache. The machine included 32 GB of RAM

and a 512 GB disk for storage.

Software setup

Python is a versatile, open-source, interpreted language designed to minimize

code complexity while expressing programming concepts. It supports both object-

oriented and procedural programming styles and boasts an extensive standard library.

Python is compatible with most operating systems and is available in the public do-

main.

Anaconda It is an integrated platform that contains various packages used in

data science and machine learning based on Python and R language.

To train the models and conduct advanced analysis, we utilize the following promi-

nent libraries:

TensorFlow 4is an open-source machine learning library created by Google. It

offers a variety of tools and resources for developing, testing, and deploying machine

learning models on a large scale.

PyTorch5 is an open source machine learning (ML) framework based on the

Python programming language and the Torch library.

NumPy 6is a robust Python library designed for scientific computing, offering

support for multidimensional arrays, linear algebra, Fourier analysis, and a wide range

of other mathematical and scientific functions.
4http://www.tensorflow.org
5https://pytorch.org
6www.numpy.org
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Scikit-learn 7is a widely-used open-source machine learning library for Python,

offering robust tools for numerous statistical modeling and machine learning tasks.

NetworkX8 is a Python library intended for creating, manipulating, and analyz-

ing complex networks and network algorithms.

4.1.3 Evaluation Metrics

In our study, we evaluate the performance of the implemented models using a set of

established metrics. Specifically, we utilize the Normalized Mutual Information (NMI),

Adjusted Rand Index (ARI), and F1 Score to assess the accuracy and effectiveness of

our community detection algorithms

Normalized Mutual Information (NMI)

Normalized Mutual Information (NMI) is a standardized metric for evaluating

the performance of community detection algorithms by comparing their output, de-

noted as C, with a ground truth partition, denoted as C∗. The metric quantifies the

shared information between the detected communities and the true communities in a

normalized manner. The formula for NMI is given by:

NMI(C, C∗) =
−2 ∑K

i=1 ∑K∗
j=1 nij log

(
nij

ninj

)
∑K

i=1 ni log
(ni

n
)
+ ∑K∗

j=1 nj log
(

nj
n

) (4.1)

K and K∗ denote the number of detected and ground truth community counts, respec-

tively, while n is the total number of nodes. nij signifies nodes shared between the i-th

detected community Ci and the j-th ground truth community C∗j . ni and nj represent

the node counts in Ci and C∗j . NMI provides a normalized score between 0 and 1. A

score closer to 1 indicates a high similarity between the detected communities and the

ground truth[32].
7https://scikit-learn.org/stable
8https://networkx.org
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Adjusted Rand Index (ARI)

The Adjusted Rand Index (ARI) is a variation of the Rand Index (RI), used to

measure the similarity between two clusterings. It considers pairs of points and assesses

whether they are placed in the same or different clusters in both clusterings. ARI is

calculated using the formula:

ARI(C, C∗) =
∑ij (

nij
2 )−

[
∑i (

ni
2 )∑j (

nj
2 )
]

/(n
2)

1/2
[
∑i (

ni
2 ) + ∑j (

nj
2 )
]
−

[
∑i (

ni
2 )∑j (

nj
2 )
]

/(n
2)

where n be the total number of nodes, ni be the number of nodes in the i-th detected

community Ci, and nj denote the number of nodes in the j-th ground truth community

Cj. Furthermore, nij indicate the number of nodes simultaneously appearing in Ci and

Cj [13].

Precision

Precision is a metric commonly used in information retrieval and classification

tasks.In the context of community detection, it assesses the accuracy of identified

communities by measuring the proportion of correctly clustered nodes within each

detected community in comparison to the nodes in the ground truth community.

Precision(Ck, C∗k ) =
|Ck ∩ C∗k |
|Ck|

, (31) (4.2)

where Ck and C∗k denote the k-th detected community and ground truth commu-

nity, respectively[31].

Recall

Recall, in the context of community detection, measures the proportion of ground

truth nodes within a detected community by counting the common nodes between the

detected community (Ck) and the ground truth community (C∗k ) [31]. The formula is

given by:
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Recall(Ck, C∗k ) =
|Ck ∩ C∗k |
|C∗k |

F1 score

In community detection tasks,the F1 score strikes a delicate balance between

Precision and Recall[31].

F1-score(Ck, C∗k ) =
2× Precision(Ck, C∗k )×Recall(Ck, C∗k )

Precision(Ck, C∗k ) + Recall(Ck, C∗k )

4.2 Implementation

This section presents the implementation details of various models evaluated in

our study, as outlined in the preceding chapter. These models are categorized based on

their encoder architectures into simple and dual encoder types, with a focus on their

architecture, key components, and methodologies. Initially, we discuss the common

key points for all studied models except for the DDGAE. These models are designed

to extract useful representations of nodes in a network, essentially generating com-

pact embeddings through unsupervised learning. Another commonly used technique

is K-means clustering, applied to the embeddings to identify community structures.

The inputs for this process are the embedding vectors, and the specified number of

communities (K).

In the implementation of the Embedding Graph Auto-Encoder (EGAE) model,

as detailed in the literature, implemented using the PyTorch library, leverages its

dynamic computational graph capabilities to handle the complexities of graph-based

deep learning. EGAE features two key graph convolutional networks (GCN) layers:

the first transforms raw node features into a 32-dimensional space using ReLU to

add non-linearity and extract deep features, while the second compresses these into a

16-dimensional space to enhance computational efficiency and focus on key features
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for graph reconstruction. The decoder uses an inner product to reconstruct the adja-

cency matrix from embeddings, effectively predicting node connectivity. Post-training,

EGAE applies k-means clustering to these embeddings to identify clusters based on

node features and connectivity, employing L1 regularization on GCN weights to pre-

vent overfitting and ensure model generalization.

Building upon the foundational concepts of EGAE, the Adversarially Regularized

Graph Autoencoder (ARGA) model is constructed using a dual-layer Graph Convo-

lutional Network (GCN) as the encoder. The first layer of this encoder transforms

node features into a 32-dimensional hidden space using a sparse graph convolution

that maintains efficiency even with large graphs. It employs the ReLU activation

function to introduce non-linearity into the feature space. The second layer further

processes these features into a new 32-dimensional space but uses a linear activation

to preserve the feature distribution, preparing the embeddings for the reconstruction

phase.Its decoder reconstructs the adjacency matrix via an inner product mechanism,

enabling effective link prediction between nodes.On the other hand, the Adversarially

Regularized Variational Graph Autoencoder (ARVGA)introduces a variational com-

ponent to the graph embedding process, adding a layer of complexity and robustness.

It extends the ARGA architecture by incorporating a third layer that captures the log

standard deviations of the latent variables alongside their means. This setup allows

ARVGA to model the embeddings as samples drawn from a Gaussian distribution,

where the mean and standard deviation are defined by the outputs of the respective

GCN layers.Both models incorporate a discriminator that enforces the embeddings to

match a predefined distribution, significantly improving their robustness.

Transitioning from adversarial techniques to attention-based methods,the Deep

Attentional Embedded Graph Clustering (DAEGC) model introduces a sophisticated

architecture specifically designed for attributed graph clustering, which leverages a

Graph Attention Network (GAT) as both its encoder and decoder. This model is

adept at processing and integrating the dual facets of node attributes (A) and the

structural (X) matrix within a graph, promoting an enhanced understanding of com-
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munity structures through deep learning techniques.

At its core, the DAEGC employs a two-layer GAT encoder that first transforms

the input features into a 256-dimensional hidden space and then condenses these down

to a 16-dimensional embedding. This sequence not only captures the intricate patterns

within the graph through attention-based mechanisms but also ensures the retention of

crucial node-specific information by weighting the importance of neighboring nodes dif-

ferently. The same dimensional structure is mirrored in the decoder, which utilizes the

learned embeddings to reconstruct the graph’s adjacency matrix. This setup enables

the model to predict potential node connections effectively, enhancing the accuracy

of the reconstructed graph.This module dynamically adjusts the clustering based on

inferred labels from the embeddings, utilizing a loss function designed to minimize the

Kullback-Leibler divergence between these labels and their ideal distributions, thereby

substantially enhancing the precision of the clustering process.

Transitioning from simple to dual encoder models, the Deep Dual Graph Atten-

tion Auto-Encoder (DDGAE) uses a unique dual encoder design with Graph Attention

Networks (GAT) to handle node attributes and modularity information, essential for

identifying community structures in graphs. Each encoder targets different aspects—

attributes and modularity—capturing key similarities and structural details within a

256-dimensional space refined to 16 dimensions. This setup ensures effective emphasis

on the importance of neighboring nodes and integrates attribute and structural modu-

larity effectively. DDGAE not only reconstructs the graph’s adjacency matrix using an

inner product decoder but also the node attributes and modularity matrices, ensuring

comprehensive preservation of the graph’s topology and detailed community detec-

tion. The model enhances its community detection capabilities through a self-training

module that iteratively improves clustering by optimizing a combined loss function of

clustering and reconstruction losses, with final community assignments further refined

using the K-means algorithm.
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4.3 Results and Discussion

In this section, we present the findings from our comparative analysis of graph

autoencoder models designed for community detection in attributed networks. The

models are evaluated based on their encoder architectures—simple and dual—and

their performance is quantified using Normalized Mutual Information (NMI), Adjusted

Rand Index (ARI), and F-score metrics, as shown in the performance tables for the

Cora, CiteSeer, and PubMed datasets (refer to Tables 4.2, 4.3, and 4.4).

Our analysis reveals notable differences in performance between models using

dual encoders and those with simple encoders. Dual Encoder models, which process an

additional matrix (B) along with the adjacency (A) and feature matrices (X), generally

demonstrate enhanced capabilities in capturing complex relational data, particularly

evident in the PubMed dataset. The inclusion of matrix B, which likely contains

crucial relational or attribute data, appears to enrich the model’s data representation,

facilitating superior performance across all evaluated metrics in the PubMed dataset.

Moreover, the utilization of the Graph Attention Network (GAT) encoder in both

the EGAE and DDGAE models contributes to their improved performance. The at-

tention mechanism within these models allows for a more focused analysis of pertinent

nodes or features, which is especially beneficial in large, complex datasets like PubMed.

However, the sophistication of the Dual Encoder models comes with increased

computational demands. This is reflected in the execution times illustrated in Fig-

ures 4.1a, 4.1b, and 4.1c, where Dual Encoder models generally require more time

compared to their Simple Encoder counterparts. This trend is pronounced in the Cora

and CiteSeer datasets, where the Dual Encoder model, DDGAE, consistently logs the

highest execution times. This increase in computational time is attributed to the

additional complexity involved in processing multiple input matrices.

Despite the greater resource consumption, the Dual Encoder model, particularly

DDGAE, stands out as the most effective in handling complex datasets, owing to
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its comprehensive data processing approach. While this model demands more from

computational resources, its ability to integrate multiple data types and its detailed

processing mechanism yield superior analytical results, making it an appealing option

for tasks that demand deep and nuanced data analysis.

Category Model NMI ARI F-score

Simple Encoder

DAEGC 0.5223 0.4844 0.6929
EGAE 0.5518 0.5102 0.5050
ARGE 0.4892 0.4224 0.6891
ARVGE 0.3938 0.2850 0.5032

Dual Encoder DDGAE 0.5423 0.5243 0.7106

Table 4.2: Models Performance on Cora Dataset

Category Model NMI ARI F-score

Simple Encoder

DAEGC 0.3665 0.3423 0.5121
EGAE 0.2806 0.2720 0.1911
ARGE 0.3070 0.2936 0.5888
ARVGE 0.3504 0.3291 0.5842

Dual Encoder DDGAE 0.3032 0.2665 0.5038

Table 4.3: Models Performance on CiteSeer Dataset

Category Model NMI ARI F-score

Simple Encoder

DAEGC 0.1079 0.0828 0.4639
EGAE 0.2566 0.2555 0.5833
ARGE 0.2185 0.2021 0.6173
ARVGE 0.0443 0.0110 0.3637

Dual Encoder DDGAE 0.3004 0.3151 0.6814

Table 4.4: Models Performance on PubMed Dataset
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(a) Cora network.

(b) CiteSeer network.

(c) PubMed network.

Figure 4.1: Models performance comparison across datasets in terms of execution time
per epoch.
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4.4 Conclusion

In this chapter, we compared graph autoencoder models for community detection

using simple and dual encoders on diverse datasets. Through rigorous experimentation

and evaluation, we identified the superior performance of dual encoders, especially

evident in complex datasets. These findings underscore the importance of encoder

architecture in accurately identifying community structures in attributed networks.
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Conclusion and Perspectives

Community detection in attributed citation networks is a fascinating and crucial

area of research. It’s about finding groups of nodes that are more closely connected to

each other than to the rest of the network. This task is significant for fields like social

network analysis, information retrieval, and bibliometrics. The main question of this

thesis is to understand how well different graph autoencoder models can detect these

communities.

To explore this, we conducted an in-depth investigation, implementing and test-

ing various graph autoencoder models. We meticulously designed our experiments,

utilizing prominent datasets such as Cora, CiteSeer, and PubMed. By evaluating the

models with established metrics like normalized mutual information (NMI), adjusted

Rand index (ARI), and F1 score, we systematically assessed each model’s performance

in detecting communities within these citation networks.

Our taxonomy of graph autoencoder models, divided into simple encoder models

and dual encoder models, was a crucial element of our research. Our findings indicated

that dual encoder models, especially those utilizing Graph Attention Network (GAT)

mechanisms, generally provided superior performance compared to the simple encoder

models. This was particularly evident with the PubMed dataset, where dual encoder

models excelled in capturing complex relational data and community structures. De-

spite the increased computational resources required by dual encoder models, their

enhanced performance underscores their potential for complex network analysis tasks.

While the study faced some challenges, such as varying performance across dif-
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ferent datasets and parameter settings, the findings open new research avenues and

practical applications. Future research could explore advanced neural network ar-

chitectures and autoencoders to further improve community detection. Additionally,

examining the impact of data preprocessing techniques and model parameters, as well

as applying these models to more diverse networks, could enhance their robustness

and utility.
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