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Abstract: 

       Throughout history, humans have strived to enhance transportation and energy efficiency 

while mitigating environmental damage. The discovery of vortex flow in combustion 

technology has been pivotal, leading to ongoing research into its properties, especially in 

terms of the shape of the rotational areas it forms. This study delves into the use of artificial 

intelligence to predict vortex flow properties. Using experimental data, including descriptive 

and positional information, as inputs, and horizontal, vertical and kinetic energy as outputs 

across different locations within the combustion chamber, the model effectively captures the 

spatial features of the swirl flow field. It accurately predicts the velocity density distribution 

and vortex center position, which is in good agreement with experimental results. 

Furthermore, the generated prediction model shows promising accuracy over previous data 

sets, successfully reconstructing the vortex flow field and making inductive predictions on 

new data with a certain degree of generalizability. Ultimately, this study underscores the 

potential for many engineering applications to benefit from the prediction model developed 

here. 

Keywords:  Swirl, flow, recirculation zone, neural network, training and prediction . 

Résumé : 

       Tout au long de l'histoire, les êtres humains ont cherché à améliorer l'efficacité des 

transports et de l'énergie tout en atténuant les dommages environnementaux. La découverte du 

flux tourbillonnaire dans la technologie de combustion a été cruciale, entraînant des 

recherches continues sur ses propriétés, notamment en ce qui concerne la forme des zones de 

rotation qu'elle forme. Cette étude se penche sur l'utilisation de l'intelligence artificielle pour 

prédire les propriétés du flux tourbillonnaire. En utilisant des données expérimentales, 

comprenant des informations descriptives et positionnelles en tant qu'entrées, et l'énergie 

horizontale, verticale et cinétique en tant que sorties à différents emplacements à l'intérieur de 

la chambre de combustion, le modèle capture efficacement les caractéristiques spatiales du 

champ de flux tourbillonnaire. Il prédit avec précision la distribution de densité de vélocité et 

la position du centre du vortex, ce qui est en bonne concordance avec les résultats 

expérimentaux. De plus, le modèle de prédiction généré montre une précision prometteuse sur 

les ensembles de données précédents, reconstruisant avec succès le champ de flux 

tourbillonnaire et effectuant des prédictions inductives sur de nouvelles données avec un 
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certain degré de généralisabilité. En fin de compte, cette étude souligne le potentiel pour de 

nombreuses applications en ingénierie de bénéficier du modèle de prédiction développé ici. 

Mots clés : Tourbillon, zones de recirculation, réseaux neuronal, apprentissage et 

prediction . 

 

   :صالملخ 

اكتشاف   كان  لقد  البيئية.  الأضرار  تخفيف  مع  الطاقة  وكفاءة  النقل  وسائل  لتعزيز  جاهدين  البشر  سعى  التاريخ،  مر  على 

التدفق الدوامي او الدوامة في تكنولوجيا الاحتراق أمرًا محوريًا، مما أدى إلى البحث المستمر في خصائصه وخاصة من 

التدفق   للتنبؤ بخصائص  ناحية شكل المناطق الدورانية التي يشكلها.  تتعمق هذه الدراسة في استخدام الذكاء الاصطناعي 

والرأسية  الأفقية  والطاقة  كمدخلات،  والموضعية،  الوصفية  المعلومات  ذلك  في  بما  التجريبية،  البيانات  باستخدام  الدوامي. 

تدفق   لحقل  المكانية  السمات  فعال  بشكل  النموذج  يلتقط  الاحتراق،  غرفة  داخل  مختلفة  مواقع  عبر  كمخرجات  والحركية 

التجريبية. علاوة   النتائج  يتنبأ بدقة بتوزيع كثافة السرعة وموضع مركز الدوامة، مما يتماشى بشكل جيد مع  الدوامة. إنه 

على ذلك، يظُهر نموذج التنبؤ الذي تم إنشاؤه دقة واعدة عبر مجموعات البيانات السابقة، حيث نجح في إعادة بناء مجال  

تدفق الدوامة وتقديم تنبؤات استقرائية بشأن البيانات الجديدة بدرجة معينة من التعميم. في النهاية، تؤكد هذه الدراسة على  

 . إمكانية العديد من التطبيقات الهندسية للاستفادة من نموذج التنبؤ الذي تم تطويره هنا 

  .التنبؤ و التدريب  -الشبكة العصبية   -مناطق إعادة الدوران   -السريان -لدوامة ا مفتاحية: كلمات 
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GENERAL INTRODUCTION : 

       Swirling flows, characterized by the rotational motion of fluid particles around a central 

axis, manifest in a multitude of engineering and natural systems, exerting profound influence 

on their performance and behavior. From the efficient mixing in industrial processes to the 

optimization of combustion in propulsion systems, and from the dynamics of oceanic currents 

to the dispersion of pollutants in the atmosphere, understanding the intricate behavior and 

characteristics of swirling flows is paramount for a diverse array of applications. However, 

traditional methods of analyzing swirling flows have often been constrained by their reliance 

on empirical correlations derived from limited experimental observations. 

       The advent of artificial intelligence (AI) heralds a new era in the study of swirling flow 

phenomena, offering unprecedented opportunities to enhance our understanding and 

predictive capabilities. By harnessing AI techniques, particularly machine learning 

algorithms, researchers can unlock hidden patterns and relationships embedded within vast 

datasets of swirling flow simulations and experimental measurements. This approach 

transcends the limitations of traditional methods, empowering scientists and engineers to 

develop predictive models that capture the dynamics of swirling flows with unparalleled 

accuracy. 

       This interdisciplinary fusion of fluid dynamics principles with AI methodologies holds 

immense promise for advancing the characterization of swirling flows. Through the 

deployment of advanced machine learning algorithms such as neural networks, genetic 

algorithms, and reinforcement learning, this study endeavors to delve deep into the 

complexities of swirling flow dynamics. By analyzing intricate flow structures, turbulence 

characteristics, and vortex dynamics, researchers aim to unravel the underlying mechanisms 

governing swirling flows across diverse spatial and temporal scales. 

       The outcomes of this research transcend disciplinary boundaries, with profound 

implications for fields ranging from aerospace engineering to energy production and 

environmental science. By gaining deeper insights into swirling flow phenomena through the 

lens of artificial intelligence, engineers and scientists can revolutionize the design of more 

efficient and sustainable technologies, optimize fluidic processes, and mitigate environmental 

impacts.  
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Moreover, the knowledge derived from this study contributes to the advancement of 

fundamental fluid dynamics principles, laying the groundwork for future innovations in flow 

control, turbulence modeling, and renewable energy systems. 

       In summary, the integration of artificial intelligence into the characterization of swirling 

flows marks a transformative paradigm shift in fluid dynamics research. By harnessing the 

computational power and analytical prowess of AI-driven methodologies, researchers stand 

poised to unlock unprecedented insights into the complexities of fluid motion, driving 

innovation and progress across a myriad of engineering and scientific domains. 

       The aim of this study is to utilize one of the artificial intelligence models to predict the 

characteristics of swirling flow. The research focuses on integrating state and spatial 

parameters to estimate the axial and radial components of velocity, as well as turbulent kinetic 

energy. The reliability of the model is assessed using statistical parameters such as the error 

between predicted and measured values, MSE (Mean Squared Error).  

       The manuscript consists of four parts: an introduction and three chapters. The first 

chapter describes swirling flows, their current state in research, and their applications. The 

second chapter provides a detailed overview of integrating artificial intelligence models, 

including their definition, characterization, using, and comparison. The third chapter presents 

the selected material and methods used in our study, along with the results obtained and their 

interpretation. Finally, the study concludes with a conclusion. 
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I.1. INTRODUCTION: 

       In the economic context of the last 20 years, combustion improvement remains an 

important topic for the scientific community. This improvement has seen the use of high-

flow, high-energy burners, to reach high temperatures. It is clear that the fires produced 

within these installations must necessarily be stable in order to limit any risk an accident 

occurs. One of the most common ways to achieve this result is to hold the flame in a vortex 

flow. The latter also makes it possible to optimize the combustion process and reduce 

polluting emission. The peculiarity of these tortuous flows is their three-dimensional and 

unstable structure with varying turbulence and Curvature of their current lines. They also 

contain strongly nonlinear phenomena, the most famous example being vortex explosion 

(PVC) [1]. In this chapter, we present a bibliographic study on swirl flows and their effect on 

combustion efficiency. 

I.2. SWIRLED FLOWS:        

       We say that a flow is "rotating" when the fluid has rotational motion relative to the main 

direction of flow. Turbulent vortex flows are used in many industrial applications. For non-

interactive flows, we can cite hurricane separators, jet eddies or agricultural sawmills. For 

reaction flows we can cite piston engines and some industrial furnaces. Natural phenomena 

such as tornadoes. In recent years, vortex flows have been commonly used in combustion 

processes in order to achieve flame stability [2]. The problem of flame stabilization is the 

main criterion in the design of combustion chambers. Applications using very low flow 

speeds, of the order of laminar flame speed or lower, present natural stability. As for 

applications with higher flow speeds (most industrial applications, especially in the context of 

aviation) [3], flame stabilization is done through different strategies to ensure stability, the 

most important of which are: 

- Self-ignition: 

       The phenomenon of self-ignition was common in the high compression ratio spark 

ignition engine. Such as diesel engines, where the air is heated by pressure before fuel is 

injected. This mechanism is also mainly used in the case of supersonic combustion (jet 

aircraft). The air flow is at a very high temperature due to the high-pressure levels. When the 
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auto ignition process occurs, the reactants are hot enough to ensure that combustion begins 

despite the rapid entry of the reactants [3]. 

- The Continuous maintenance of a heat source:       

     Continuous ignition can be ensured by a secondary flow of hot gas, an external heat source 

(electric for example), or even a secondary pilot flame. The flame by Sandia D [4], shown in 

Figure.1, is an example of a non-premixed flame stabilized by a premixed pilot flame. 

-Creating a recirculation zone: 

       In a region where the flow velocity and flame propagation speed are the same magnitude, 

the flame can stabilize due to the slowdown of the flow. In addition, the recirculation zone 

allows burned gases from the combustor to be returned to the flame, several solutions are 

possible to force recirculation: 

➢ The first consists of introducing an obstacle (“bluff body”) or a sudden widening of the 

passage section to promote the formation of recirculation zones. 

➢ Another possibility is to rotate the flow. The rotation of the fluid on itself causes a 

depression in the axis. If this drop is large enough, it can create recirculation on the tube 

 

Figure.I.1: Photograph of the so-called Sandia D flame. The central jet (25% methane and 

75% air in volume) is surrounded by 72 poor pilot flames (mixture of C2H2, H2, air, CO2 

and N2) [5] 
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axis when the jet opens into the chamber at the level of sudden expansion. The rotation 

causes the jet to expand and form a central recirculation zone favorable for flame 

stabilization. This second solution is often preferred in the aviation context because it 

results in lower pressure losses, and installation takes place away from walls [6]. It also 

makes it possible to improve the mixing rate by increasing the turbulent activity in the 

burner, to stabilize the flame and to design more compact devices. The flame of flying 

burners is therefore often stabilized by the rotational motion of the reagents entering the 

chamber surrounding the burner axis (vortex) imposed by the injector geometry [3]. 

I.3. GENERALITY OF SWIRL: 

I.3.1. Effect of swirl: 

       The swirl makes it possible to add a tangential component of the velocity field to a flow. 

This results in a balance between the centrifugal forces acting on the fluid particles and the 

pressure forces in a confined flow, giving the flow a curvature effect at the level of the mixing 

zone. The swirl makes the structures coherent, strongly organized in the case of the jet free, 

weaker by removing vortex-pairing (pairing of vortices) and by promoting an increase in 

turbulence (Panda and McLaughlin [7]). It was observed that from certain swirl intensity (i.e. 

an azimuthal component in the high velocity field) a recirculation zone appeared in the main 

flow.The size and position of this recirculation zone vary with the intensity of the swirl (Beér 

and Chigier [8], Leuckel and Fricker [9], Escudier and Keller [10], Sheen et al. [11]). This 

zone is an essential element for stabilizing combustion because it contains fresh preheated 

gases and allows the flame to hold. 

 

Figure.I.2: Diagram describing the swirl effect [12] 
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I.3.3. Effect of swirl on combustion: 

       Above all, to stabilize a flame, it is necessary to have a permanent and sufficiently intense 

heat source in order to initiate combustion reactions. For this, aerodynamic devices are used 

in industry. Which is intended to create a lower burner nose, recirculation zone [12]. It is the 

last, it is the best way to obtain a good mixture. The very good mixing induced by the swirl 

results in a reduction in the size of the flame [13]. The length in length is also due to a 

reduction in supply of oxygen in the upper part of the flame downstream of the IRZ [14] and 

the increase in the reaction rate [15]. The swirl affects the evolution of the length of the flame 

as a function of the wealth. Thus the increase in richness does not modify the length of the 

flame for jet flames, but leads to a linear increase in the length of the flame with a swirl. The 

IRZ created by the swirl constitutes a thermal source which traps the products combustion and 

constitutes hot spots at the heart of the reactive flow. This reserve of combustion products 

allows better stabilization of the flame. It then becomes possible to significantly reduce the 

poor extinction limit. 

I.3.4. Effect of swirl on pollution:        

The effect of the swirl varies depending on the situation, it increases or reduces NOx [15]. 

Schmidt et al. [17] showed that the use of swirl in unmixed combustion can lead to reduced 

pollutant emissions, especially NOx emissions. In fact, under the effect of swirl and thus  

 

 

              Figure.I.3 : Internal external recirculation zones [16] 

 

IRZ 

ERZ 
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improving the mixing of reactants, the flame temperature decreases and leads to a decrease in 

the production of NOx. In addition, hypoxia reduces the formation of emission pollutants, and 

conversely, excess oxygen tends to increase those pollutants (increase When the vortex 

intensity is sufficient), increasing the number of vortices leads to a decrease in the residence 

time, which is the main parameter governing the formation of NOx. Flame size and 

temperature are also reasons for the increase of NOx. However, in all cases, the effect of the 

swirl on pollutant emission levels is positive because it allows for a reduction in wealth and 

thus a reduction in NOx [18].  

I.3.5. Number of swirls: 

       Rotating flows are characterized by a dimensionless number: the swirl number denoted  

𝑆𝑛 A consensus exists to define the swirl number as being the ratio of the axial flux of 

tangential momentum 𝐺𝑔to the product of the radius of the pipe by the axial flux of axial 

momentum  𝐺𝑥 .                              

                                                        
    
  𝑆𝑛

=
𝐺𝑤

𝑅 𝐺𝑥
                                                (I.1) 

 𝑮𝒘: represents the tangential momentum flow. 

 𝑮𝒙: represents the axial momentum flow. 

 R: is the characteristic radius of the flow. 

       This number allows us to describe the intensity of the flow rotation. The higher this 

number, the stronger the swirl. The fluxes 𝑮𝒈 and 𝑮𝒙 are given by the following expressions 

[29]. 

                         𝑮𝒘 =  ∫ 𝜌𝑢𝑔𝑢𝑥2𝜋𝑟2 𝑑𝑟
𝑅

0
                                      (I.2) 

                         𝑮𝒙 = ∫ (𝜌𝑢𝑥
2𝑅

0
+ 𝑃)2𝜋𝑟 𝑑𝑟                                   (I.3) 

According to equations (I.1) and (I.2), (I.3) we find 

                    𝑆𝑛 =
∫ 𝜌𝑢𝑤𝑢𝑥2𝜋𝑟2 𝑑𝑟

𝑅

0
 

      ∫ (𝜌𝑢𝑥
2𝑅

0
+𝑃)2𝜋𝑟 𝑑𝑟        

                                (I.4) 

𝒖𝒈: Tangential of speed. 



CHAPTER I                           BIBLIOGRAPHIC GENERALITIES OF SWIRLING FLOW 

 

 Page 23 
 

𝒖𝒙: Their respective components axial. 

𝑃:   The static pressure of the column. 

       If the pressure term is negligible then: 

                    𝑆𝑛 =  
2𝜋 ∫ 𝜌𝑢𝑔𝑢𝑥𝑟2 𝑑𝑟

𝑅

0

2𝜋 ∫ (𝜌𝑢𝑥
2𝑅

0
𝑟 𝑑𝑟

                                         (I.5) 

       To designate the experimental value of Swirl number, one must have access to the 𝑢𝑥 and 

𝑢𝑔 components of the velocity field and pressure (𝑃) on the cross sections of the rotating 

flow. The recirculation zones are present, in the regions where the value of the “Critical 

Swirl”, 𝑆𝑛= 0.6. 

I.3.5.1. Influence of the number of Swirl on the flame: 

       Chen and Driscoll [19] showed that when the number of swirls increases, the length of 

the flame can be reduced by a factor of 5. The swirled flow therefore makes it possible to 

obtain more powerful flames while being more compact. In comparison with a standard 

burner, a swirl burner therefore makes it possible to reduce the size of the installation due to 

the compactness of the flame produced. Chen [20] also noticed that the formation of NOx, 

which is a pollutant, depends on the number of swirls. Through his experiments, he was able 

to show that the higher the number of swirls, the more the formation of NOx decreases. 

       Susset [21] for his part highlights that increasing the number of swirls makes it possible 

to obtain a more stable flame. He explains that the lower the number of swirls, the more the 

flame appears “soft” and moves chaotically. To prove this result, he has everything simply 

compared two flames with a respective swirl number of S=0.1 and S=0.82. He observed that 

for the lower number of swirls, the reactive zone is wider and its position fluctuates more 

radially than for a higher number of swirl. 
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Figure.I.4: Effect of swirl number on NOx production [22] 

I.3.6. The effect of swirl on a flow: 

I.3.6.1. Non-reactive flow: 

       Because of the effect of the number of swirl on the flow. Make swirls flows divided into 

two categories: low vortex flows ( 𝑆𝑛 < 0.6) and high vortex flows ( 𝑆𝑛 > 0.6). 

I.3.6.1.1. Weakly Swirled Flows (𝑺𝒏 < 0.6): 

       For flows with a low number of swirls, no recirculation zone appears. The swirl induces 

an increase in the entrainment of the ambient fluid at rest and a decrease in the axial speed of 

the flow. The velocity profiles of a weakly swirled flow remain Gaussian until approximately 

𝑺𝒏<0.6. The degree of opening of the jet as well as the flow of entrained mass then increases 

continuously with the number of swirls. [9]. 

I.3.6.1.2. Strongly Swirled Flows (𝑺𝒏 > 0.6): 

       For a swirl intensity of approximately 0.6, a recirculation zone appeared in the main flow. 

The size and position of this recirculation zone vary with the swirl intensity [9]. This zone is 

an essential element for stabilizing the flames because it contains fresh preheated gases and 

allows for better combustion One of the important characteristics of this recirculation zone is 

that its center approaches the nose of the nozzle (or injector) and that its size increases as the 

number of swirls of the flow increases. 
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I.3.6.2. A reactive flow: 

       Beér and Chigier [8] explain the effect of swirl intensity on flame behavior as shown in 

the figure: 

- Type A (𝑺𝒏 < 0.6) flame: The swirl intensity is low (low  𝑆𝑛), and the flame behavior is 

similar to that encountered without swirl. The flame front is located at a certain distance from 

the burner. An external recirculation zone (ORZ) is formed around the main jet, and the flame 

is separated from the burner. 

- Type B flame (0.6 < 𝑺𝒏 < 1.3): The intensity of the swirl is moderate or moderate, and the 

recirculation zone and flame stabilization appear near the burner. This type of combustion is 

generally required, due to the presence of high turbulence and intense combustion levels in 

the recirculation zone rich in fresh gas. 

- Type C flame (𝑺𝒏 > 1.3): The swirl intensity is high (high  𝑆𝑛), the interactions between the 

flame and the walls are intense. This is an undesirable condition in general, except in the case 

of certain ovens. With regard to diffuse combustion (in the case of central injection of Fuel 

injection and external annular oxidation injection.) And imagine that the oxidants are recycled 

sufficiently to stimulate the recycling zone.                                                                                                                    

       Leuckel and Fricker [9] highlight two types of flame:                                                                    

➢ The speed of the fuel is high enough to pass through the entire zone, only a small part of 

the fuel burns as it passes through the recirculation zone and is then used in the pilot 

flame for the installation: the remaining fuel is preheated. The flame is therefore intense 

and long. 

➢ The speed of the fuel is not sufficient, it spreads radially. The mixture is rapid and the 

flame becomes short and blue. 
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Figure.I.6: Diagram of the main vertical structures identified at the exit of the system TLC 

injection [23] 

 

 

       In a multistage injection system consisting of an axial swirl and a radial inlet. The figure 

shows the flow topology at the outlet of this type of injector, that is, it shows the flow and the 

main vortex structures identified at the burner outlet. There are fluid shear zones between the 

recirculation zones and the main flow: The ISL (Inner Shear Layer) designates the shear zone 

between the ORZ (Outer Recirculation Zone) and the main flow. These shear zones are 

characterized by significant speed levels [23]. 

 

                                               

               TYPE A                                              TYPE B                                     TYPE C 

                                                    

Figure.I.5: Flow topology for different swirl levels. Areas in blue materialize the recirculation 

zones induced by the swirl [15] 
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I.3.2. Swirl generation techniques: 

       There are several ways to generate the rotation of a flow. They can be classified into three 

main categories:  

➢ Use of fins or adjustable propellers tangentially deflecting the axial flow. Because of its 

simplicity, this device is generally used in industrial systems [24,25]. The intensity of the 

vortex is limited (depending on the design of the fins) [26]. It directly depends on the 

angle formed by the fins with the longitudinal direction. More precisely, the number of 

vortices is directly proportional to the tangent of this angle (Beér and Chigier [8]) 

whatever the Reynolds number Re of the flow, except for very low values of this number 

(Re ≥ 600) where the corrective limit function of Re. 

➢ Rotating mechanical devices which generate a rotational movement to the fluid passing 

between them [27]. 

➢ Rotation of a tube [28] or a plate [29]. However, the swirl generated is very weak. This 

type of device is rather intended for the study of swirl breakdown, which is an example 

of the recirculation region of swirled flows and is one of the Rotation Tube 

representations [30]. 

➢ Accidental injection of part or all of a fluid into a main conduit. The swirl intensity is 

then determined by the ratio between tangentially injected and axially injected flow [31, 

32]. 

I.4. THE TECHNOLOGICAL ADVANTAGES OF SWIRL 

STABILIZATION: 

      Turbulent swirling flows provide multiple advantages in flame stabilization: 

➢ Swirl clamping is more commonly used compared to flame spark clamping, because it is 

done using a pneumatic stop. It therefore makes it possible to overcome the thermos 

mechanical limitations associated with the presence of mechanical parts in the reaction 

zone where the gases are the hottest.  

➢ The swirl motion contributes to increased mixing efficiency of the reagents, resulting in 

reduced 𝑁𝑂𝑥 and facilitating flame stabilization.  

➢ The swirl feature is flame compression that reduces flame slackness, and since 

combustion occurs in a smaller volume, this allows for reducing the size of the burner. 
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Figure.I.8: Visualization of the laboratory  

flame studied in Palies' thesis [33]. 

 

The stable flame at the front of the central recirculation zone is called "V" or "M," due to 

its distinctive Figure (I.7, I.8) [33].  

➢ Another very important feature of the recirculation zone is that it allows it to play the role 

of an energy tank between the combustion detectors, so the large amount of gas contained 

in the recirculation zone makes it possible to stabilize the flame over a wide range of 

operation. On the other hand, the velocity gradients are interesting in the shear zone 

located between the recirculation zones and the main plane. 

 

 

 

 

 

 

 

 

 

I.5. BIBLIOGRAPHIC STUDY (STATE OF THE ART): 

       Leuckel [35] (1967) proposed a vortex technique with moving blades in order to vary 

the vortex intensity. In fact, the same moving blade technology was used in the TECFLAM 

burner [27] (2000). Therefore, the choice of vortex type is crucial for ZRI formation and 

flame stabilization.  

         In order to reduce nitrogen oxide (NOx) emissions in industrial combustion systems, the 

use of injectors operating in lean and pre-mixed combustion systems has become widespread 

in recent years. but, in this system, strong combustion instabilities can occur and damage the 

device or cause the flame to go out. An overview of recent studies on combustion in vortex 

flows was given by Syred and Beer (1974) [36], In (1981) more recent studies were 

 

Figure.I.7: Shaped flame in the PRECCINSTA 

materialized by the advancement variable. in the 

median plane (Moureau et al [34]). 
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conducted by Claypole, N. Syred on combustion chambers with vortex flows. These studies 

focus on the effect of vortex levels on aerodynamics and NOx emissions at constant load [37].  

Studies on the vortex effect, on the limits of flame stability were performed in (1981) by 

Rawe and Kremer [38], flame stabilization by Hillemanns, Lenze in (1988) [39], and flame 

explosion limits (flame blowing) in (1990) by Driscoll and al [40]. 

       In (1992), the LSB technology was invented by Chan C.K. It is a technology that focuses 

on low vortex burners [41]. The flame is stabilized by the weak vortex generated by the air 

injectors. Continuing the previous LSB development efforts, additional testing was conducted 

in 1995 by R.K.Cheng and B. Bédat developed a methodology for studying turbulent flames 

that were previously stabilized by a low number of vortices. Most importantly, their results 

were the starting point for many studies on flame stabilization and pollutant reduction (NOx) 

methods, and the low vortex burner (LSB) was an essential part of the development of the 

technology [42].  

       In 1996, researchers conducted experimental investigations aimed at establishing a new 

correlation for the eddy number concerning a radial-type vortex generator under various 

Reynolds numbers and vane angle settings. They employed a radial-type vortex generator 

equipped with 16 rotating guide vanes to produce a rotating annular jet flow, covering 

Reynolds numbers ranging from 60 to 6000 and vane angles from 0° to 56°. Under low 

Reynolds number conditions, H.J. Sheen, S.Y. Jeng, and their colleagues observed a strong 

correlation between vortex strength, Reynolds number, and guide vane configuration. 

Utilizing the experimental findings, they developed a modified vortex number, denoted as S, 

to characterize the vortex flow, facilitating improved vortex generator design [43]. In 1997, 

Zhang and Nieh conducted numerical and experimental investigations on turbulent vortex 

flow and combustion of pulverized coal within a novel vortex combustor (VC), employing the 

algebraic Reynolds turbulence model (ARSM). They provided detailed insights into flow and 

combustion dynamics, encompassing turbulence, temperature, species concentrations, particle 

densities, trajectories, combustion time, and residence time [44]. By 2000, their research 

revealed the formation of a recirculation zone within the VC when gas flowed through a 

central coaxial tube with multiple air injections. They also noted that swirl effectively 

regulated the gas molecule sliding speed within the VC [45]. 
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     In 2005, Ying Huang and Vigor Yang conducted a numerical investigation on the impact 

of inlet swirl on flow development and combustion dynamics in a lean-premixed swirl-

stabilized combustor. They utilized a large-eddy simulation (LES) technique coupled with a 

level-set flamelet library approach. Their study yielded findings regarding the influence of 

augmenting the number of vortices on the recirculation area, as well as enhancing turbulence 

intensity and flame speed [46]. 

        Khelil and al. [47] (2009) dealt with the numerical prediction of a highly swirling 

natural gas diffusion flame in a confined environment. The numerical calculation was carried 

out by the commercial code Fluent. The RSM turbulence model uses to describe turbulent 

flow. The PDF probability density function (β function) model (9 species and 8 reactions) 

with a chemical equilibrium model is used to model the turbulence-chemistry interaction. 

Their main objective is to determine polluting emissions and to numerically study the factors 

that influence the combustion process by comparing the results with experimental 

measurements. 

       In (2010) Yilmaz and al carried out a study of the effect of adding hydrogen to a burner 

low number of swirl by examining the behavior of the flame and its stability. The results 

show that the combustion characteristics are very sensitive to the hydrogen fraction in the 

combustible mixture improving flame stability  [48] . 

       Brahim Sarh et al. [49] (2014) Are interested in the study of experimental 

characterization of a swirled, non-premixed turbulent flame of oxygen-enriched methane-air, 

with the aim of experimentally characterize the effects of global parameters, such as the O2 

content in the oxidant, the overall richness at injection and the swirl intensity on the stability 

of the flame, polluting emissions and the dynamic behavior of the reactive flow. 

        In (2016). Ouali et al carried out a numerical simulation of pre-mixed flames turbulent 

suspended methane/air stabilized by swirl for a burner configuration LSB with a 50 mm 

diameter nozzle for two configurations, 2D and 3D where the effect of Methane richness (Φ 

from 0.6 to 1.4) was studied for both. While the effect of the number of swirl (S from 0.5 to 

1.0) was studied only in 3D configuration. They used the model RANS k-ε STANDARD for 

modeling turbulence and two models for combustion modeling, EDM (Eddy Dissipation 

Model) and Partially-Premixed. [50] The interest of their studies is the optimization of 
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temperature and the number of swirls while ensuring stability with minimum NOx and CO 

emissions. Elbaz and Roberts [51] (2016) made detailed measurements of the turbulent flow  

field, gas species concentrations and temperature field in a swirling flame of unpremixed 

methane. Particular attention is paid to the effect of geometry (straight quarl and converging 

quarl) on flame structure and emission characteristics due to its importance in gas turbine and 

industrial burner applications. They found that the structure of the main flame is controlled by 

the rotation of the swirled air flow, the straight quarl geometry, the turbulence pattern, mixing 

fraction, temperature distribution, emissions and stability of the flame. Gives the internal 

recirculation zone (IRZ) a rapid and complete mixing which reduces the residence time of NO 

formation. The prediction of a set of detailed and complete chemical reactions in the annular 

combustion chamber of a gas turbine with 18 burners, and on the other hand, an annular 

combustion chamber consisting of 16 identical premixed swirled burners were simulated with 

the Large Eddy Simulation (LES) model [52, 53]. 

       Industrial needs force researchers to find new solutions Simulation tools and design 

techniques to access various Engineering configurations. Li Gang et al. [54] (2017) Testing 

the new design for a new injector with rotating lobes at different angles (Figure I.13). Lobed 

vortex injector can play an effective role in generating vortex and improving mixing. In 

addition, by adjusting the axial position of the vortex lobes, unmixed combustion can develop 

into premixed combustion, and vice versa, tested in low eddy burner configuration. 

 

Figure.I.9: Photos of swirled and vortex lobate configurations with different inclination 

angles [54] 
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       In (2022) Mohamed ELBAYOUMI numerically studied the effect of adding hydrogen 

to methane and the intensity of turbulent swirl flow, under lean and stoichiometric mixing 

conditions. A wide hydrogen addition ranges (up to 90%) is used for different swirl intensity 

levels. The results demonstrate that adding hydrogen to methane appears to offer a viable 

solution towards a carbon-free fuel [55] . 

       In 2023, Junqing Zhang, Chunjie Sui, and others conducted a comprehensive large 

eddy simulation using OpenFOAM to examine the impact of vortex intensity on combustion 

characteristics in vortex-ally stabilized ammonia/methane combustion. The study's numerical 

findings were validated through experimentation. Results indicate that swirl intensity 

significantly influences the flow field and flame structure, with flame stability decreasing as 

swirl intensity rises. Higher swirl intensity leads to flame extinction at the root, while lower 

swirl intensity fails to create the central recirculation zone necessary for flame stabilization. 

Selective non-catalytic reduction (SNCR) of NO emerges as crucial for NO emission control, 

with temperature reduction promoting NO reduction, while reduced residence time inhibits 

NO reduction. Furthermore, SNCR weakens the correlation between NO and OH in 

ammonia/methane combustion [56]. 

       In this research (2024), a swirling combustion furnace was designed and manufactured to 

achieve lean combustion. The effects of several factors, such as swirling air ratio, equivalence 

ratio, and thermal power, on the lean combustion process were studied. The results showed 

that the combustion chamber temperature rises when the swirling air ratio is 100%, and the 

emissions of nitrogen oxides (NOx) and carbon monoxide (CO) are at their lowest in this 

condition. Additionally, an appropriate equivalence ratio increases the combustion chamber 

temperature while reducing NOx and CO emissions during lean combustion. It was also found 

that carbon dioxide (CO2) emissions reach a minimum at a specific thermal power, while 

temperature and NOx emissions increase with thermal power. The research indicates high 

stability of the lean combustion process under all experimental conditions, demonstrating the 

potential of the swirling combustion furnace to achieve clean and efficient combustion [57] . 

 

 



CHAPTER I                           BIBLIOGRAPHIC GENERALITIES OF SWIRLING FLOW 

 

 Page 33 
 

CONCLUSION: 

       In this chapter we were able to obtain a bibliographic study on vortex flow. We initially 

mentioned the importance of vortex flow in the combustion community, its role in enhancing 

flame stability, and its common use in efficient fuel-air mixing. One of the main properties of 

vortex jets is the creation of recirculation zones, especially in the center of the room. These 

zones capture burning gases and have low velocities where the flame can "cling." We then 

discussed the effect of vortex on the flame structure as well as on the formation of pollutants, 

especially nitrogen oxides. We also discussed the concept of the eddy number and its effects, 

which is a dimensionless number that allows these flows to be described, and we refer to it as 

S. 
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Figure.II.1: Biological Neuron [59] 

 

 

 

 

II .1 .  INTRODUCTION: 

       Artificial neural networks (ANN) mimic the computational structure of biological neural 

systems, which include interconnected neurons. These neurons communicate via weighted 

links, enabling signal transmission. The process includes data collection, analysis, network 

design, simulation, and testing. Artificial neural networks find applications in various fields, 

facilitating data processing, analysis, prediction and identification of new data in areas such as 

speech recognition, imaging, control and optimization, among others. It has real-life 

applications in finance, medicine, business, mining, etc… [58]. Initially inspired by biological 

systems, artificial neural networks evolved from simplified neuronal models developed by 

McCulloch and Bates in 1943 [59]. 

       In this chapter we introduce the basic concepts for understanding artificial neural network 

and describe the relationship between biological and artificial NN. 

II .2 .  BIOLOGICAL NEURONS : 

       The human body comprises a diverse range of living cells, some of which are 

interconnected to facilitate communication of pain or activation of fibers or tissue [60]. This 

activity involves the transmission of electrical triggers from one neuron to another along the 

neuron's axon, facilitated by an electrochemical process of voltage-gated ion exchange [61]. 

       While each neuron independently executes a simple task, like responding to an input 

signal, the true power of neural networks emerges when these neurons are interconnected. 

Together, they can tackle intricate tasks like speech and image recognition swiftly and 

accurately [62]. A neuron typically comprises dendrites, a cell body, and an axon, as 

illustrated in Figure. II.01:  
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-Dendrites:  The dendrites are branched structures connected to the cell body, extending to 

receive signals from other neurons in space [62]. 

-cell Body (Soma): The cell body, also called the soma, contains the nucleus [62], is where 

most of the neural "computation" takes place [61]. 

-axon: is the transmitter of the neuron. it sends signals to neighboring neurons [62]. 

-Synapses: The connection between the end of one neuron’s axon and the neighboring 

neutron’s dendrites is called the synapse, which is the communication unit between two 

neurons [62].  

       Electrochemical signals propagate across the synapse. If the cumulative signal received 

by a neuron exceeds the synapse threshold, it triggers the neuron to fire, sending an 

electrochemical signal to adjacent neurons [62]. 

II.3. ARTIFICIAL NEURON: 

       An artificial neuron serves as the fundamental unit within artificial neural networks, 

mirroring the structure and functions observed in biological neurons, which are the building 

blocks of biological neural networks such as the brain, spinal cord, and peripheral ganglia. 

       Comparisons in design and functionalities are illustrated in Fig.3, wherein the left side 

depicts a biological neuron with its soma, dendrites, and axon, while the right side portrays an 

artificial neuron with its inputs, weights, transfer function, bias, and outputs [63]. 

 

Figure.II.02: Biological and artificial neuron design [63]. 
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        The artificial neural network consists of four sections : 

- (layer input  ( Xᵢ:  

         Inputs are directly the inputs to the system or can come from other neurons. It is 

symbolized by (X₁, X₂…Xₙ). 

-Bias:  

       Are the inputs which are always set to 1 and which allow flexibility to be added to the 

network by varying the triggering threshold of the bias weight during learning. 

-Weights:  

       Weights are the multiplying factors which affect the influence of each input on the exit 

from the neuron.  

-Output layer:  

       The output of the neural network can be distributed to other neurons [64]. 

       In the context of a biological neuron, data is received through dendrites, processed within 

the soma, and transmitted via the axon. Conversely, within an artificial neuron, information 

enters the neuron's body through weighted inputs, where each input is multiplied by a specific 

weight. The neuron's body then combines these weighted inputs with a bias and processes the 

sum using a transfer function. Finally, the artificial neuron delivers the processed information 

through its output(s). The advantage of the artificial neuron model lies in its mathematical 

simplicity, as demonstrated in the description below:                                    

𝑦(𝑘) = 𝐹(∑ 𝑤ᵢ(𝑘). 𝑥ᵢ(𝑘) + 𝑏)𝑚
𝑖=0                            (II. 1) 

Where: 

𝐱ᵢ(𝐤) : is input value in discrete time 𝑘 where 𝑖 goes 0 from to 𝑚  

𝐰ᵢ(𝐤) : is weight value in discrete time  𝑘 where 𝑖 goes 0 from to 𝑚. 

𝐛 : is bias. 

𝐅: is a transfer function. 

𝐲(𝐤) : is output value in discrete time 𝑘 [63]. 
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II.3.1. Activation functions: 

       These functions relate to processing the data received by the neural units [65]. Activation 

functions, also known as threshold functions or transfer functions [66], play a vital role in 

artificial neural networks by facilitating learning through non-linear mappings between input 

and output data. While linear activation functions exist, non-linear ones, such as the sigmoid, 

tanh, and rectified linear unit (ReLU) [67], are more commonly used as they enable the 

network to capture non-linear relationships inherent in most real-world data. This capability 

allows the network to learn complex dependencies that cannot be adequately represented by 

linear functions [68]. 

II.3.1.1. Types of Neural Networks Activation Functions: 

-Linear function:  

       it is a function whose output image is similar to the input and provides unlimited multiple 

classifications ;(artificial neurons perform a simple   linear transformation on the sum) .Its 

formula is: 𝐹(𝑥) = 𝑎𝑥 [69].     

 

-Binary step function:  

        is a binary function that contains only two possible output values (such as zero and one). 

The output value becomes equal to one if the input value meets a certain threshold. and if 

specific threshold is not meet that results in different output value, According to the following 

formula [70]: 

                                     𝑦 = {
1       𝑖𝑓 𝑤ᵢ𝑥ᵢ ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0   𝑖𝑓 𝑤ᵢ𝑥ᵢ < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

                            (II. 2) 

-Non-linear Function: 

       Non-linear activation functions solve the limitations and drawbacks of simpler activation 

functions, such as the vanishing gradient problem. Non-linear functions, such as Sigmoid, 

Tanh, Rectified Linear Unit (ReLU), and numerous others. 

       There are several advantages to using non-linear activation functions, as they can 

facilitate back propagation. Non-linear combinations and functions used throughout a network 
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mean that data scientists and machine learning teams creating and training a model can adjust 

weights and biases, and outputs are represented as a functional computation.  

        In other words, everything going into, though, and out of a neural network can be 

measured more effectively when non-linear activation functions are used, and therefore, the 

equations are adjusted until the right outputs are achieved [70].  

➢ SIGMOID FUNCTION: The sigmoid function is extensively employed as an activation 

function due to its nonlinear nature. This function transforms values into the range of 

      0 to1. Mathematically, it can be expressed as follows:               

                            𝐹(𝑥) =
1

𝑒−𝜇𝑥                                       (II.3) 

       Sigmoid function is continuously differentiable and a smooth S-shaped function. The 

derivative of the function is: 

                     𝑓′(𝑥) = ⦋1 − 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥)⦌                      (II.4) 

x: the product of multiplying the input value with its weight. 

𝜇: represents the slope of the function and is equal to 1. 

And its derivative:  

                        𝑓′(𝑥) = 𝐹(𝑥)⦋1 − 𝐹(𝑥)⦌                             (II.5) 

➢ TANH FUNCTION: 

       This function is the Hyperbolic Tangent function, often denoted as Tanh. Similar to the 

sigmoid function, Tanh is symmetric around the origin, resulting in outputs from previous 

layers with different signs, which are then passed as input to the next layer. Mathematically, it 

can be defined as:                  

                   𝑓(𝑥) =  2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1                         (II.6) 

       Tanh is continuous and differentiable, with values ranging from -1 to 1. Unlike the 

sigmoid function, Tanh has a steeper gradient. It is preferred over the sigmoid function 

because its gradients are not limited to a specific direction and it is zero-centered. 
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➢ RELU FUNCTION: 

       ReLU (Rectified Linear Unit) is a popular non-linear activation function extensively used 

in neural networks. Unlike other functions, ReLU ensures that not all neurons are activated 

simultaneously, meaning a neuron is only deactivated when the output of its linear 

transformation is zero. Mathematically, it's defined as: 

                            𝑓(𝑥)  =  𝑚𝑎𝑥 (0, 𝑥)                                      (II.7) 

       This characteristic makes ReLU more efficient, as only a certain number of neurons are 

activated at any given time. However, in some cases, the gradient value can be zero, leading 

to weights and biases not being updated during the backpropagation step in neural network 

training [71].  

II.3.1.2. The role of the need for the activation function: 

       Neural networks are comprised of layers of neurons, with nodes responsible for 

classifying and predicting data based on input. These networks typically include an input 

layer, one or more hidden layers, and an output layer. Each layer contains nodes, and every 

node has a weight that influences the flow of information between layers. 

 . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.II.03: Neural Network [71] 
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         Without an activation function in a neural network, the output signal would be a simple 

linear function, akin to a polynomial of degree one. While linear equations are 

straightforward, their ability to handle complex data mappings is limited. Essentially, a neural 

network lacking an activation function behaves like a Linear Regression Model, often with 

restricted performance capabilities. To tackle intricate tasks such as modeling images, videos, 

audio, speech, or text, it's essential for neural networks to employ activation functions and 

techniques like Deep Learning. These methods enable the model to make sense of complex, 

high-dimensional, and nonlinear datasets by incorporating multiple hidden layers [71]. 

II.4. TYPE OF ARTIFICIAL NEURAL NETWORKS: 

       Various neural network architectures cater to different types of data and applications. 

Each architecture is tailored to excel in specific domains or data types, ranging from the 

fundamental to the intricate. Let's begin with the basic models and progress towards the more 

sophisticated ones. 

II.4.1. Perceptron: 

       The Perceptron stands as the simplest and earliest version of neural networks. Comprising 

a single neuron, it processes inputs by applying an activation function to generate a binary 

output. Lacking hidden layers, it's limited to binary classification tasks. The neuron conducts 

input processing through weighted summation, followed by activation function application for 

binary output generation [71]. 

 

Figure II.04: Perceptron Simple [73] 
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II.4.2. Feed forward network FF: 

         A neural network that follows a feed-forward topology is known as a Feed-Forward 

artificial neural network. This architecture mandates unidirectional data flow from input to 

output without any feedback loops. It imposes no restrictions on the number of layers, types 

of transfer functions per neuron, or inter-neuron connections. The simplest form of a feed-

forward artificial neural network is a single-layer perceptron [63]. 

      FF networks are used in: 

❖ Classification. 

❖ Speech recognition. 

❖ Face recognition. 

❖ Pattern recognition [72]. 

II.4.3 Multi-layer perceptron MLP : 

       The primary limitation of Feed Forward networks was their inability to learn through 

backpropagation. Multi-layer Perceptrons (MLPs) address this by incorporating multiple 

hidden layers and activation functions. Learning occurs in a supervised manner, updating 

weights via Gradient Descent. MLPs facilitate bidirectional learning: forward propagation of 

inputs and backward propagation of weight updates. Activation functions vary based on the 

target type; SoftMax for multi-class classification, Sigmoid for binary classification, etc. 

Often termed dense networks, all neurons in a layer connect to those in the next. While 

prevalent in Deep Learning applications, they tend to be slow due to their intricate 

structure[72]. 

 

Figure.II.5: An Example of a feed-forward neural network [73] 
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                            Figure. II . 6 : Multi-Layer Perceptron (MLP) [73] 

II.4.4. Radial basis networks: 

       Radial Basis Networks (RBN) utilize a unique approach to predict targets. They consist 

of an input layer, a layer with Radial Basis Function (RBF) neurons, and an output layer. 

Unlike traditional Multilayer Perceptrons, RBNs employ the Radial Function as an activation 

function.  

       When new data is inputted into the network, RBF neurons measure the Euclidean 

distance between the feature values and the actual classes stored in the neurons. This process 

resembles identifying the cluster to which a particular instance belongs. The predicted class is 

assigned based on the minimum distance. RBNs find extensive application in function 

approximation tasks such as Power Restoration systems [72]. 

 

                                          Figure II.07: Radial Basis Networks [73] 
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II.4.5. Convolutional neural networks: 

       A convolutional neural network (CNN) is designed to process input stored in arrays, 

commonly used with 2D arrays like images or spectrograms of audio. While they excel in 

handling 3D arrays like videos, their application to 1D arrays such as signals is growing.  

       The architecture of a CNN typically comprises three main layers: convolutional layers, 

pooling layers, and a classification layer. Convolutional layers serve as the backbone, where 

weights define a convolution kernel applied to the input. The output is then passed through a 

non-linearity, often ReLU, enhancing the network's capability to capture complex patterns. 

 

Figure.II.8: convolutional neural network (CNN) [75] 

       CNNs have a wide range of applications, with notable success in computer vision tasks 

like scene and object detection, as well as object identification. Their versatility extends 

across fields from biology to facial recognition [74]. 

II.4.6. Recurrent neural networks: 

       An artificial neural network with a recurrent topology is referred to as a recurrent 

artificial neural network (RNN). Unlike feed-forward neural networks, RNNs have no 

restrictions on back loops, allowing information to be transmitted both forward and backward 

to form directed cycles  [63]. RNNs excel in handling sequential data, making them well-

suited for time-dependent tasks. These networks leverage their internal memory to process 

input sequences of any length  [75]. The diagram in Figure II.09 illustrates a compact fully 

recurrent artificial neural network, showcasing the intricate interconnections among its 

artificial neurons. 
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Figure. II.09: Recurrent artificial neural [72] 

II.5. AREAS OF APPLICATION OF ARTIFICIAL NEURAL 

NETWORKS: 

       Today, artificial neural networks find myriad applications across various sectors: 

➢ Processing: including character and signature recognition, image compression, shape 

recognition, image encryption, classification, and more. 

➢ Signal processing: encompassing filtering, classification, source identification, speech 

processing, etc. 

➢ Control: spanning process control, diagnosis, quality control, robot control, and beyond. 

➢ Optimization: covering planning, resource allocation, management, finances, etc. 

➢ Simulation: involving model replication, prediction, and more [76]. 

      Moreover, modern applications of artificial neural networks extend to studying swirling 

flow properties, applying them to photovoltaic fault detection and diagnosis [77], and 

leveraging artificial nerve cells for high-performance calculations to enhance the 

transportation of energy sources [78]. 

II.6. ADVANTAGE OF ARTIFICIAL NEURAL NETWORKS: 

➢ Storing information on the entire network: Unlike traditional programming, where 

data is stored in a database, in artificial neural networks (ANNs), information is 

distributed throughout the network. Thus, the loss of certain pieces of information in one 

area does not hinder the network's functionality. 
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➢ Working with incomplete knowledge: Trained ANNs have the ability to produce 

output even when provided with incomplete data. The extent of performance 

degradation in such cases depends on the significance of the missing information. 

➢ Fault tolerance: Even if one or more cells within an ANN are corrupted, it can still 

generate output, showcasing its fault-tolerant nature. 

➢ Machine learning capability: ANN learn from past events and are capable of making 

decisions based on similar occurrences. 

➢ Parallel processing capability: ANN possess the ability to execute multiple tasks 

simultaneously due to their parallel processing capabilities [79]. 

II.7. DISADVANTAGES OF ARTIFICIAL NEURAL NETWORKS: 

➢ Hardware dependence: Artificial neural networks rely on processors with parallel 

processing capabilities, aligning with their architecture. Consequently, their 

implementation is contingent upon hardware availability.  

➢ Unexplained behavior of the network: This remains a significant challenge for ANNs. 

While they provide solutions, they often lack transparency regarding the reasoning 

behind their decisions, undermining trust in the network.  

➢ Determination of proper network structure: Establishing the optimal structure for 

artificial neural networks lacks a definitive guideline. Achieving an appropriate network 

structure typically entails iterative processes based on experience and trial and error. 

[79]. 

CONCLUSION: 

       In this chapter, we were able to study the concepts of artificial neural networks and shed 

light on their relationship to biological neural networks. We mentioned the role of the 

activation function in work artificial NN and its most important functions, and the modern 

applications of artificial neural networks in various research and their benefits, a brief 

summary of their types, we have succeeded in providing readers with all the prior knowledge 

they need to move for. 
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III.1. INTRODUCTION: 

       Many industrial processes leverage vortex flows to enhance combustion efficiency. The 

vortex flow field, generated by the head vortex, crucially impacts fuel and air mixing 

uniformity, thus influencing temperature distribution at the combustion outlet and facilitating 

the formation of internal recirculation zones for high volumetric heat release rates and flame 

stability. 

        By introducing swirling air through concentric rings, additional control over flow and 

vortex distribution is achieved, leading to diverse combustion characteristics such as varying 

flow patterns, turbulence levels, and flame stability limits. Therefore, obtaining a clear 

understanding of the vortex flow field's characteristics is pivotal for combustion design. 

        To research the fields of vortex flow and study its characteristics, use one of the artificial 

neural network models, which focuses on integrating state parameters and spatial parameters 

to estimate the axial and radial components of the velocity, in addition to turbulent kinetic 

energy, and compare the expected and measured values by measuring the error rate (R, R2, 

MSE) to evaluate the reliability of the model. 

III.2. EXPERIMENTAL SYSTEM AND RESEARCH METHOD (DATA 

COLLECTION): 

III.2.1. Generic Model Combustor:  

       The experiments were carried out using an atmospheric air blast atomizer in a cylindrical 

combustion chamber [80]. The atomizer consists of a modular arrangement of two radial swirl 

generators, an atomizer lip which separates the two airstreams from each other within the 

nozzle, and an air diffuser with a throat diameter of D0=2R0=25 mm. 

       For both airflows a constant air preheats temperature of T0= 50 °C has been selected. The 

mass flow rate of air is adjusted to 64 kg/h (Mi/M0=0.37). Theoretical swirl numbers S0, the of 

the inner as well as the outer airflow are Si=0.46 and S0=1, resulting in global swirl number of 

0.81. The Reynolds number is calculated as the product of the axial average air velocity at the 

nozzle exit (39.9 m/s) and the throat diameter of the diffuser divided by the kinematic 

viscosity of the air and yields approximately 60 000. 
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        Measurements of the position and state parameters of the vortex flow field inside the 

combustion chamber were made using a sensor. Record the experimental values in a table. 

Include data: 

• Column 1: Height h. 

• Column 2: Radius R. 

• Column 3: Axial velocity u. 

• Column 4: Radial velocity v. 

• Column 5: Tangential velocity w.  

• Column 6: Kinetic energy k. 

III.3. PROPOSED FEED FORWARD BACK PROPAGATION 

NETWORK (FFBPN) APPROACH: 

       There are several factors that can be considered for model development that have a 

greater impact on the vortex flow state (recirculation zones). The proposed methodology 

began by collecting a dataset from a general model of combustion. Six parameters were 

determined, and these samples were taken as input to the FFEBN model to extract vortex flow 

field characteristics. The FFBPN technique was used to train the performance model from  

 

 

Figure. III.1: Generic Model Combustor. 
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two-way iterations. The first method involves calculating the forward step of the input  

weights and the second method is calculating the reverse step to update the weights and 

calculate the errors. Seventy percent of the collected data was used to train the model, while 

30% of the data was divided equally for testing, 15% for validation. The overall methodology 

is presented in Figure.III.2: 

       Secondly, the model was trained based on Equation (III.1) to generate more accurate 

output values: 

     𝑦(𝑘) = 𝐹(∑ 𝑤ᵢ. xᵢ + b)𝑚
𝑖=1                   (III.1) 

       Where 𝑦(𝑘) is the new value of the variable, xᵢ is the initial value of the variable and is 

the value of the connection weight of the neuron, and b is bias. The activation function 

between the input and the hidden layer was “SIGMOID”, as shown in Equation (III.2). 

                                  𝐹(𝑥) =
1

𝑒−𝜇𝑥                               (III.2)   

   

 

 

 

Figure.III.2: FFBPN approach workflow. 
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III.3.1. Development of the FFBPN model:   

       The FFBPN model was developed using MATLAB. In the initial training phase, the 

model is trained with the available data. If the model fails to meet expectations, it allows the 

weight and bias updating process to be continuously redeployed and improved until it reaches 

the best requirements using the Levenberg-Marquardt (LM) back propagation algorithm [81]. 

After completing the model training, 15% of the data was used to validate the trained model 

in the validation phase. The model was also allowed to go through the testing phase and tested 

with the remaining 15% of the data sets, and the results are accurate when the R² value 

approaches 1. This network consists of three layers, i.e. the input layer, the hidden layers, and 

the output layer. 

 -Input layer: The input layer consists of a group of neurons whose number is equal to the 

number of inputs that we will rely on and we will take as inputs the axial velocity u, radial  

velocity v, tangential velocity w, radius R, length h and kinetic energy k. If the goal is to 

predict  

the axial velocity u, the input is (R.h.v.w.k), but if the goal is to predict the radial velocity v,  

The input is (R.h.u.w.k). As for the kinetic energy K, the input (R.h.u.v.w). The neural 

network learns the characteristics of the input data for later use in the prediction process, so 

the number of neurons in the input layer will be 5. 

-Hidden layer: The hidden layer consists of a group of hidden layers, and their number is 

determined according to the type of study and the number of inputs, and their number is often 

small, so in this model we will rely on ten (10) hidden layers, but as for the number of hidden 

neurons, it is variable. 

-Output layer: Since the goal of the study is to predict the axial velocity u, radial velocity v, 

or kinetic energy k in the vortex flow, the output layer consists of a single neuron.  

       Thus, the structure of the neural network used will be as shown in the figure.III.3: 
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III.4. RESULTS AND DISCUSSIONS:  

III.4.1. FFBPN Model Training, validation and testing:  

       In this study, we aim to establish the FFBPNN framework for predicting eddy flow fields. 

This involves comparing and analyzing prediction accuracy, goodness of fit, and training 

costs across models with varying numbers of hidden neurons to identify the optimal 

configuration.         

       A FFBPN neural network is developed to accurately predict the axial velocity (u), radial 

velocity (v), and kinetic energy (k) of vortex flow. Given the limited data availability, specific 

factors were selected as inputs for model development. The model was trained using equation 

(1) and the Levenberg-Marquardt backpropagation algorithm, then validated and tested across 

various datasets. Mean Squared Error (MSE) is utilized to quantify the error between FFBPN-

predicted values and experimental data. The goodness of fit is assessed quantitatively using 

the coefficient of determination (R²), where a higher R² value within the range [0, 1] indicates 

better fitting. The expressions for R² and MSE are as follows:      

     

 

 

   Figure.III.3: The structure of the neural network. 
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          𝑅² = 1 −
∑ (n

i=1  yinp−yotp)²

∑ (n
i=1  yinp−ȳinp)²

                           (III.3) 

           𝑀𝑆𝐸 = 1

𝑛
∑ (𝑛

𝑖=1  𝑦𝑖𝑛𝑝 − 𝑦𝑜𝑡𝑝)                  (III.4) 

        The overall R2 and overall MSE values changed mostly as the number of hidden neurons 

varied, ranging from a minimum of 14 to a maximum of 28, as shown in Table.III.1:        

    Table.III.1: overall R2 and MSE values versus number of hidden neurons. 

 

 

Number of 

Neurons 

Axial velocity u Radial velocity v Kinetic energy k 

MSE R2 MSE R2 MSE R2 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

7.11×10-4 

10-3 

8.124×10-4 

9.116×10-4 

1.7×10-3 

5.894×10-4 

1.3×10-3 

9.715×10-4 

9.024×10
-4 

3.364×10
-4

 

1.1×10-3 

9.5×10-4 

2×10-3 

2.6×10-3 

4×10-3 

0.99701 

0.99562 

0.99659 

0.99622 

0.99327 

0.99752 

0.99432 

0.99593 

0.9962 

0.99858 

0.9553 

0.99614 

0.99151 

0.98974 

0.984 

 

4.824×10-4 

1.2×10-3 

6.435×10-4 

4.224×10-4 

7.119×10-4 

2.494×10-4 

9.113×10-4 

3.571×10-4 

3.891×10-4 

2.925×10-4 

5.136×10-4 

5.696×10-4 

2.461×10
-4

 

5.791×10-4 

4.845×10-4 

0.99576 

0.98975 

0.99437 

0.99626 

0.99371 

0.99779 

0.99199 

0.99686 

0.99658 

0.99742 

0.99546 

0.99494 

0.99785 

0.99487 

0.99573 

 

1.6×10-3 

1.139×10-4 

1.5×10-3 

1.32×10-4 

6.976×10-4 

3.706×10-4 

5.1534×10-4 

3.208×10-4 

1.377×10-4 

2.545×10-4 

9.907×10-4 

4.816×10-4 

9.365×10
-5

 

1.8×10-3 

2.582×10-4 

 

0.99535 

0.93471 

0.99472 

0.97223 

0.98474 

0.97914 

0.98672 

0.99429 

0.98943 

0.95825 

0.97994 

0.99617 

0.9269 

0.9893 
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       It has been found that the accuracy of the developed model is very sensitive to the 

number Hidden neurons. From Table.III.2 the best network structure was found to be 

 [5× 23× 1] for the network predicts of the axial velocity u, but for the network predicts v or k, 

the best structure is [5 × 26× 1]. R2 and MSE values along typical ANN phases with variation 

in hidden neurons are depicted in Figure (III.4, III.5 and III.6). The error must be 

continuously evaluated in each state of the neural network to choose the optimal network 

architecture. 

       Defining an error function - conventionally referred to as a loss function - is essential for 

this purpose. It can be used to calculate the model loss, allowing the weights to be updated to 

minimize the loss of the next evaluation. 

       It is worth noting that all stages have R2 values close to 1.0 and MSE values close to 0, 

with 23 and 26 hidden neurons shown in Figure 4 and 5,6 respectively by the dotted line. 

 

Figure.III.4: Variations in MSE and R2 values with number of neurons, for axial velocity u. 
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Figure III.5: Variations in MSE and R2 values with number of neurons for radial velocity v. 

 

  

Figure.III.6: Variations in MSE and R2 values with number of neurons for Kinetic energy k. 

. 
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III.4.2. FFBPN Model prediction: 

      Model training is carried out based on the ANN framework constructed above, and then a 

DNN model with high accuracy is obtained to predict the flow field distribution.  

Figure (III.7, III.8, III.9) represents a comparison between the ANN predicted values and 

experimental data for axial velocity u, radial velocity v, and kinetic energy k for the training 

set (70 %), the validation set (15%), and the test set (15%) of the datasets. That is, it 

represents a summary of the R2 plots at the training, testing, and validation stages during the 

training process. An overall R2 value of 0.9998 was obtained for the axial velocity u, 0.99785 

for the radial velocity, and 0.99617 for the kinetic energy k. Which indicates that the results 

are satisfactory, because the overall R2 score is close to 1. 

       It can be seen that the R2 for the training, testing and validation phase has high values in 

the range (0.992 - 0.999). That is, the data points are basically distributed around the line y = 

x, with some values deviating from the straight line, that is, the data points are basically 

distributed around the line y = x, with some values deviating from the straight line despite the 

existence of a relationship between experimental and expected, while maintaining a certain 

degree of linear correlation and the ability of the model to reflect the main properties of the 

vortex flow field, i.e. goodness of fit. Between the expected and experimental values of u, v, 

and k are high. 

 

 Training set      Validation set Testing set 

Figure.III.7: Regression. Axial velocity u in training, validation and testing 
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 Training set                   Validation set           Testing set

  

          Figure.III.9: Regression. Kinetic energy kin training, validation and testing. 

 

 

 

 

 

Training set                               Validation set                               Testing set 

Figure.III.8: Regression. Radial velocity v in training, validation and testing 
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       The neural network passes the data several times during the training process and stops 

when the lowest value is reached for mean square errors MSE. Figure (III.11, III.12, III.13) 

show the evolution of the mean square errors during the training phase for axial velocity u, 

radial velocity v, and kinetic energy k, respectively. 

We note from Figure III.11 that the best value of the mean square error was in stage 46 of 

training, which was estimated at 3.6383*10. 

    

 

  

 

        Axial velocity                       Radial velocity                       kinetic energy  

Figure.III.10: Regression of all u, v and k. 

 

 

Figure.III.11: The evolution of the mean square errors during the training phase of axial 

velocity. 
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 It can be seen  from Figure III.12 The best validation performance was obtained at epoch 20, 

with validation plot reaching its minimum MSE value of 0.00016252. 

        

 

  Figure.III.13: The evolution of the mean square errors during the training phase. Of 

kinetic energy  

 

 

Figure.III.12: The evolution of the mean square errors during the training phase of radial 

velocity. 

 . 
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       We note from the Figure III.13 The best validation performance was obtained at epoch 

21, with validation plot reaching its minimum MSE value of 0.000037041. 

III.4.2.1. Analysis of the results: 

       -Figure (III.14, III.15, III.16) shows the fit and agreement between the experimental and 

predicted values for axial velocity, radial velocity, and kinetic energy. With the real values 

and predicted values agreeing, the relative R error approaches zero, representing the 

difference between them. 

        -The introduction of rotor air through two concentric stages provides additional degrees 

of freedom for controlling the radial distribution of flow and vortex to achieve significantly 

different combustion characteristics, including flow and mixing patterns, turbulence levels, 

and different flame stability limits. 

       - In Figure.III.14, the presence of negative axial velocity values in the vortex flow 

indicates the existence of reverse flow, or a recirculation zone, along the flow axis. The axial 

velocity is negative in this region because the axial direction of movement is opposite to the 

main flow direction. These regions also experience a decrease in flow velocity and an increase 

in airflow turbulence, which helps mix the reactants. This turbulence is used strategically to 

improve performance and increase efficiency. Figure. III.16 shows an increase in turbulent 

kinetic energy in these areas. As we move along the path of the combustion chamber (as 

shown in Figure.III. 16), the turbulent kinetic energy gradually decreases until it reaches low 

or negligible levels, because the flame becomes stable at the end of the chamber. 

At the vortex core level, the axial velocity is nearly zero. Thus, the presence of zero axial 

velocity at the vortex core is evidence of proper vortex flow formation. The axial velocity 

transitions from negative to positive values in the vortex flow when moving from the 

recirculation zones to areas farther from the vortex core. On the other hand, high positive 

values indicate a large velocity gradient and high turbulence intensity, which can lead to 

strong mass and energy exchange. 

       - As for the radial velocity, it is practically zero at the recirculation zone. 
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Figure.III.14: Comparison of axial velocity u from prediction and experiment at different 

locations. 

 

 

 Figure.III.15: Comparison of radial velocity v from prediction and experiment at different 

locations. 
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CONCLUSION: 

       In this chapter, we analyzed the prediction of swirling flow characteristics, a crucial 

aspect in industrial systems, utilizing the feed forward backpropagation neural network 

model. Demonstrating the accuracy and validity of the FFBPN model through curve results, 

an R² value of 0.99, and mean square error (MSE) values, we highlighted the significance of 

neuron count in achieving accurate outputs. Ultimately, the FFBPN model effectively 

captures spatial characteristics of swirling flow fields, establishing a strong correlation 

between input and output parameters. This facilitates accurate predictions of velocity 

distribution and vortex center positions, aligning well with experimental findings, thus 

enhancing efficiency in studying and predicting swirling flow phenomena across various flow 

fields.

 

Figure.III.16: Compare kinetic energy k from prediction and experiment at different 

locations 
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GENERAL CONCLUSION: 

       During this study, we tried to come up with a model using artificial neural networks that 

contributes to predicting the characteristics of eddy flow and ensuring its efficiency. Among 

the most important conclusions we reached through our study of this topic are: 

_ Swirl flow is used in industrial systems to improve combustion through excellent mixing of 

fuel and air and a uniform distribution of temperature, thus returning unburned gases to the 

flame with a uniform temperature. This shows its importance in economic and industrial 

systems by improving production efficiency and product quality and reducing environmental 

impacts from polluting emissions. 

_ In the recirculation area, the axial velocity of the flow decreases and the air flow turbulence 

increases significantly, which forms a reverse flow that leads to negative axial values. 

_ The study concluded that the FFBPN artificial neural network model is considered one of 

the most efficient models that helps in predicting the characteristics of eddy flow on the basis 

of reaching satisfactory results in calculating the error rate ms e. It has also been found that 

the accuracy of the output is highly dependent on the number of neurons. 

_The model is a feed-forward and feed-back diffusion network capable of accurately 

predicting the eddy flow field under working conditions given in known data sets, but also has 

a satisfactory ability to extrapolate the eddy flow field under unknown inlet conditions. 

- The advantages of this prediction model, including computational efficiency, adaptability, 

and rapid response, make it valuable for various applications. Furthermore, it has the potential 

to extend its capabilities to three-dimensional, multiparameter, and multi-objective flow field 

predictions. It's important to highlight that this study specifically applies the FFBPNN to a 

nonreacting swirling flow field. In future endeavors, integrating fuel-air ratio and temperature 

as inputs into our model can enhance predictions for turbulent reacting swirling flow fields, 

potentially reducing experimental costs. Additionally, future research will explore feature 

extraction and prediction in scenarios involving the interaction between combustion species 

concentration fields and swirling flow fields. 
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