République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur Et de La Recherche Scientifique

Université de Ghardaïa

Faculté des Sciences et Technologies Département des Sciences et Technologie N° d'ordre : N° de série :

Mémoire Présenté en vue de l'obtention du diplôme de

MASTER

Domaine : Sciences et Technologies Filière : Génie procédés Spécialité : Génie chimique

Par : HASSINI BRAHIM Thème

ETUDE CHIMIQUE DE L'EVOLUTION DES SAUMURES DU CHOTT MAROUANE DURANT L'EVAPORATION ISOTHERMIQUE

Soutenu publiquement le : 25/06/2018

Devant le jury :

Naima HALLALI	М.С.В.	Univ. Ghardaïa	President
Kheira BOUAMER	M.A.A.	Univ. Ghardaïa	Examinateur
Karima MOULAI	M.A.A.	Univ. Ghardaïa	Examinateur
Messaoud HACINI	Prof.	Univ. OUARGLA	Encadreur

Année universitaire: 2017/2018

Remerciements

Tout d'abord :

Merci à dieu

Je tiens à remercier vivement mon promoteur Dr. HACINI MESSAOUD Professeur à l'université de Ouargla, qui a accepté de m'encadrer et de diriger ce travail.

Je tiens à remercier également mon co-promoteur BENSACI SAMIRA maître assistant chargé de cours à l'université KASDI MERBAH de Ouargla, qui ma aider beaucoup pour me diriger le long de ce travail.

Je voudrais aussi remercier et exprimer mes reconnaissances aux dames membres de jury :

M^{lle}. HELLALI .Naima maître de conférences de cours à l'université de Ghardaïa comme président de jury.

M^{me}. Moulay Karoumia maître de conférences à universitaire de Ghardaïa comme examinateur.

M^{me}. Bouamer Kheira maître de conférences à l'université de Ghardaïa comme examinateur.

Toute ma reconnaissance à Mr. Arif Mohamed, Mr. Mechri Bachir.

Mr. Ben Brahim Fouzi, M^{lle}. Trabolsi, à universitaire de Ghardaïa.

, A. Omer Gadja, Ingénieur de laboratoire de géologie de Sahara à l'université KASDI MERBAH de Ouargla pour ses aides.

Je remercie aussi :

Tous mes encourageants surtout MA Femme HASSINI AFAF.

Résumé:

Plusieurs études géochimiques ont été menées sur chott Merouane en raison de son importance économique, de sa situation géographique, de son climat désertique sec et de sa composition rocheuse.

Pour étudier le comportement des éléments majorité des saumures et précipitation des sels à partir d'une solution mère primaire au niveau du la boratoire . Ajouter un cristallisoir contient 3.5 litres du saumure a intérieur de thermostat électrique et constant la température à 35°C dans chaque jour on registré la densité, le pH, la température et conductivité, avec filtration la solution après en faits l'analyses chimiques pour déterminer la concentration selon l'état isotherme.

Les résultats est une phase solide, comprenant des sels de chlorure du sodium et chlorure du potassium, ainsi que du sulfate de sodium et le sulfate de potassium et le chlorure de magnésium hydrate entre la densité 1,20 g/L à 1,32 g/L

modélisé cette résultats d'un programme hydro-chimique pour calculer les grandeurs thermodynamiques des saumures.

les mots clés :. Evaporation, chott, saumure, programme, isotherme

Summary:

Several geochemical studies have been conducted on Chott Merouane because of its economic importance, its geographical location, its dry desert climate and its rocky composition.

To study the behavior of the majority elements brines and precipitation of salts from a primary mother solution at the laboratory. Add a crystallizer contains 3.5 liters of brine inside electric thermostat and constant the temperature to 35 $^{\circ}$ C in each day the density, the pH, the temperature and conductivity are recorded, with filtration the solution after in fact the chemical analyzes to determine the concentration according to the isothermal state.

The results is a solid phase, including salts of sodium chloride and potassium chloride, as well as sodium sulfate and potassium sulfate and magnesium chloride hydrate between 1.20 g / L to 1.32g / L

Modeled these results of a hydro-chemical program to calculate the thermodynamic quantities of brines.

Keywords: Evaporation, chott, brine, program, isothermal

ملخص

أجريت العديد من الدر اسات الجيوكيميائية على شط مروان نظرا لأهميته الاقتصادية وموقعه الجغرافي ومناخه الصحر اوى الجاف وتكوينه الصخري.

ولدراسة سلوكيات العناصر الكيميائيةالغالبة وترسب الأملاح انطلاقا من محلول ملحي الأم ابتدائي على مستوي المختبر قمنا بوضع مبلور به 3.5 لترات من مياه الشط داخل كاظمة ذات محرك كهربائي وثبتنا درجة الحرارة عند35°م وفي كل يوم نسجل الكثافة،المعامل الهيدروجيني pH ،درجة الحرارة و الناقلية. مع ترشيح المحلول من الأملاح وقمنا بالتحليل الكيميائي لتحديد التركيز وفقا للعملية التبخر تحت درجة الحرارة ثابتة.

وكانت النتيجة تشكل أطوار صلبة مكونة من أملاح كلوريد الصوديوم و كلوريد البوتاسيوم وكذا كبريتات الصوديوم و كبريتات بين البوتاسيوم وكلوريد المغنسيوم المميه بين كثافة 1.20 g/L إلى غاية 1.32g/L وثمنت ببرنامج هيدروكيميائي لحساب المقادير الترموديناميكية.

الكلمات المفتاحية : تبخر ، شط، محلول ملحى، برنامج، درجة الحرارة ثابتة.

Liste des figures

N°	Tire	Page
(I-1) (I -2)	Carte de l'exutoire naturelle de la région d'Oued Righ (Chott Merou: Corrélation géologique nord-sud à travers le Complexe terminal	5
	entre Grand Erg Oriental - Ouargla et l'Atlas saharien (M. dmunds et al, 1997).	7
(I -3)	Ecoulements des eaux dans le CT e le CI [7].	9
(III-1)	Anion mètre (pH mètre)	23
(III-2)	Conductivité mètre	23
(III -3)) Spectrophotomètre à émission de flamme (Janway)	24
(III -4)) Potentiomètre Titrino 716 Metrohm	25
(III-5)	Synoptique de l'évaporation isotherme, d'une saumure	33
(III -6)	Dispositif expérimental utilisé pour l'évaporation isotherme de la	
. ,	saumure naturelle du chott Marouane : Bain thermostats,	33
(III 7)	Cristanison, thermometre et venthateur	24
(III -7) (III - 8)	A = A = A = A = A = A = A = A = A = A =	34
(III - 0) (IV - 1)	Analyse chimique et physique de saumure du Chott Mercuane	30
(IV - I) (IV - 2)	Courbe d'évolution de concentration de CL en fonction de densité	4 0
(IV - 2) (IV - 3)	Courbe d'évolution de concentration de SO 2 en fonction de densité	40
(IV -3) (IV -4)	Courbe d'évolution de concentration de HCO_{2} en fonction de	-10
(1 • - 4)	Densité	41
(IV -5)	Courbe d'évolution de concentration de Na ⁺ en fonction de densité	41
(IV -6)	Courbe d'évolution de concentration de K ⁺ en fonction de densité	42
(IV-7)	Courbe d'évolution de concentration de Mg ²⁺ en fonction de densité	43
(IV -8)	Courbe d'évolution de concentration de Ca ²⁺ en fonction de Densité	43
(IV -9)	Faciès chimiques des ions III	44
(IV-10)Courbe le concentration des ions en fonction de TDS gL ⁻¹	45
(IV-11)Coefficients de corrélation linéaire de Matrice de corrélation des paramètres physico-chimiques	46
(IV-12)Courbe le concentration des ions en fonction de le temps jours	46
(IV-13)Courbe la molalité des cations en fonction de volume en L	47
(IV-14)Courbe la molalité des anions en fonction de volume en L	47
(IV-15)Diagramme d'équilibre de solubilité vis-à-vis du Gypse	48
(IV-16)Diagramme d'équilibre de solubilité vis-à-vis du Halite	48
(IV-17)Diagramme d'équilibre de solubilité vis-à-vis du sylvite	49
(IV-18)Diagramme d'équilibre de solubilité vis-à-vis du Bloedité	49

Sommaire

Remerciements	I
Dédicace	II
Résumé	.III
Liste des figures	.IV
Sommaire	V
Introduction générale	1
Chapitre I : Contexte général de Chott Marouane	
I.1.Introduction	4
I.1.Situation géographique de la zone d'étude	4
I.2.Climatologie	5
I.2.1.La température	5
I.2.2. La précipitation	6
I.2.3.L'humidité	6
I.2.4.L'évaporation	6
I.2.5.Les vents	6
I.2.6.L'insolation	6
I.3. Hydrogéologie de région du Chott Merouane	6
I.3.1. La nappe phréatique	7
I.3.2.Nappe du Complexe Terminal	7
I.3.3.Nappe du Continental Intercalaire	8
I.4.Hydrologie (Bilan Hydrique)	9
I.5.Bilan d'apport des sels du Chott Merouane	. 10
I.6. Précipitation des minéraux par évaporation des sels du chott Merrouane	. 10
I.7.1. Caractéristiques physico-chimiques des minéraux évaporatiques,	
identification des sels	. 10
Chapitre II : Thermodynamique des aqueuses d'électrolytes	
II.1.Introduction	. 13
II.2. Echelles de concentration	. 13
II.2.1.La molarité	. 13
II.2.2. La molalité	. 13
II.2.3. La fraction molaire	. 14
II.2.4. La relation entre les trois échelles de concentration	. 14
II.3. Potentiels chimiques et états standards	. 14
II.4.Activité des espèces chimique	. 15
II.5.Relation de Gibbs-Duhem	. 16

II.6. La force ionique	. 17
II.7.Alcalinité et alcalinité résiduelle	. 18
II.7.1.Alcalinité	. 18
II.7.2.Alcalinité résiduelle	. 18
II.7.3.1.Variation de l'alcalinité avec le signe de l'alcalinité résiduelle	. 19
II.7.3.2.Influence de la précipitation des minéraux sur l'expression de l'alcali	nité
Résiduelle généralisée	. 19
II.8.Conclusion	. 20
Chapitre III : Matériel et Méthodes D'analyses	
III.1.Introduction	. 22
III.2.Echantillonnage	. 22
III.3.Prélèvement	. 22
III.3.1.Temps de prélèvement	. 22
III.4. Dilution	. 22
III.5.Les mesures physico-chimiques	. 22
III.5.1.La densité	. 22
III.5.2.la TDS et la conductivité	. 23
III.5.3.Le pH	. 23
III.6.Principe des appareils	. 23
III.6.1.pH mètre numérique type E 632	. 23
III.6.2.Spectrophotomètre à flamme type 410 Corning	. 24
III.7.Les interférence de spectromètre à atomique a flamme	. 24
III.8.D La potentiomètre	. 25
III.9. Les logiciels utilisent	. 26
III.10.1.Dosage des ions	. 26
III.10.2.1.Dosage des carbonate et bicarbonate chlore	. 26
III.10.2.2.Dosage de sulfate par méthode gravimètre	. 27
III.10.2.3 .Dosage du clurures par méthode potentique	. 28
III.10.2.4. Dosage de magnésium par méthode complexométrique	. 29
III.10.2.5.Le Calcium par Méthode compléxométrie	. 30
III.10.3. Dosage du cations	. 31
III.10.3.1.Dosage du sodium et potassium par photomètre de flamme	. 31
III.11. Protocole de travail	. 32
III.11.1. L'évaporations isotherme	. 32
III.11.2.Déroulement de l'expérience	. 33
III.11.3.La loupe binoculaire optika ver 4.0.0	. 34
III.12.Conclusion	. 35

Chapitre IV : Résultats et discussions

IV.1.Introduction	. 37
IV.2. Résultats expérimentaux	. 37
IV.2.1.Évolution géochimique des éléments majeurs dans le système	
évaporitique	. 39
IV.2.1.1.Évolution de la concentration des anions en fonction de densité	. 39
1.Chlorure	. 39
2.Sulfate	. 39
3.Bicarbonate	. 40
IV.2.1.2.Évolution de la concentration des Cations en fonction de densité	. 41
1.Sodium	. 41
2.Potassium	. 41
3.Magnésium	. 42
4.Calcium	. 43
IV.3.Facies chimiques des cations et des ions	. 44
IV.4.L'interaction entre les paramètres des salinités	. 44
IV.4.1. Relation entre la salinitétatale et les ions majeurs	. 44
IV.4.2. Relation inter -ions majeurs	. 45
IV.4.3.L'évolution le concentration des ions par le temps d'évaporation	
isotherme	. 46
IV.4.4.L'évolution Molarité des cations et des ions en fonction des volumes	. 47
IV.5.Diagrammes d'équilibres	. 48
IV.6.Les phases solides de l'évaporation isotherme	. 49
IV.7.Conclusion	. 50
Conclusion générale	. 52
Bibliographie	. 54
Annexes	. 58

Introduction générale

Introduction générale

Les plusieurs régions du monde, dont le but l'analyse chimique des saumures des lacs salés. Les travaux d'analyse les plus reconnus de chaque continent sont les travaux de Clarke 1924, Livingston 1963, Ver Planck 1958, Whitehead et Feth 1961, pour U.S.A. Et ainsi les travaux de Cummings 1940, Rawson et Moore 1944, et Tomkins 1954, pour le Canada; de Loffler 1956, en Iran; de Hutchinson 1937, pour le Tibet; Bonython 1955, pour l'Australie, Valyashko 1972 donne quelques données sur le lac Inder, Russie et Friedman 1976, pour l'Ethiopie [1,2].

De même, il existe de nombreuses études en Algérie en raison de la présence de beaucoup de sabkhat et de sutures, en particulier dans les régions arides du sud. sont, notons l'étude R. Bouhlila ;1994, sur un modèle de simulation des interactions entre sels et saumures et estimation de l'évaporation des eaux souterraines de Chott Chergui et l'étude de Saltec-Gvelin93 [3], dont le but l'exploitation du Chott Merouane. Une étude géochimique du système évaporitique très détaille est entamé par Mr. Hacini d'une thèse du doctorat [4], aussi M .ZATOUT sur le thème Géochimie et potentiel minier du Lithium dans les chotts Sud Algériens Cuvette de Ouargla, Melghir et Merouane 2017.....ect..

Les lacs salins, présentent des richesses économiques très importantes. Soit sur le plan minier ou sur le plan biologique ou même écologiques

La production de l'halite dans le Chott Merouane dépasse cent vingt mille tons par an (120.000 t/an), dont la majeure partie est destinée à l'exportation. Soixante dix hectares du lac de Chott sont exploités pour l'extrait des sels par l'entreprise ENASEL (1996), avec un nombre de personnel très fiable (150 poste). L'activité économique dans les marchés régionaux et nationaux (secteur pétrolière) et même internationaux (exportation du sel vers la France, l'Espagne, l'Irak, Imirates, Arabes Unis).

Dans ce travail, on suppose un système fermé pour étudié les caractéristiques physicochimiques des saumures du Chott Merouane avec des paramètres variables en utilisant un logiciel modélisation pour l'évaporation des saumures. Pour pouvoir améliorer la méthode d'exploitation, une expérience d'évaporation. Le protocole expérimental est simple, un Cristallisoir en verre dans un bain thermostat, fixé à la température 35 C° est utilisé pour simuler en laboratoire l'évaporation isotherme de saumures. Ce Cristallisoir d'évaporation va nous permettre d'identifier la différente phase minérale qui se précipite. L'évaporation naturelle se fait par rayonnement solaire sur ces bassins et dans les conditions climatiques de cette région qui donne une précipitation des sels. Cependant, les eaux résiduelles qui se composent des eaux salines magnésiennes retournent au Chott Après cette opération, les bassins se séchant, les quantités de sels sont rassemblées et sont

Cette méthode a plusieurs inconvénients pour trouve les solution on a réalisé cette étude par suite:

enfin lavées.

Les conditions et les paramètres thermodynamiques de la formation pour chaque sel du Chott Merouane, et déterminer les phases liquides de tous les minéraux des saumures et la caractérisation et la classification des saumures du Chott.

Ce travail est consacré à l'évaporation isotherme des saumures du Chott Merouane. Le chapitre I est consacre dans le contexte général de la région étudiée, tandis que le second chapitre résume la thermodynamique des solutions aqueuses d'électrolytes et quelques définitions, on aborde dans le troisième chapitre partie expérimentale qui base sur le matériel et les techniques d'analyses des saumures ,en fin chapitre quater résumé les résultats expérimentale et modélisationpour la classification des saumures du chott Merouane.

CHAPITRE I

Contexte général du Chott Merouane

I.1. Introduction :

Dans ce chapitre on présente les importants donnés climatiques, hydrogéologiques et géologiques, et la principale source d'alimentation en eau du Chott Merouane, pour estimer les effets d'évaporation sur l'évolution des eaux constituant essentiellement les éléments fondamentaux de concentration élevée : Na⁺, Cl⁻, SO₄²⁻, Mg²⁺, K⁺, Ca²⁺..... et l'évolution de faciès chimique des saumures.

I.1.Situation géographique de la zone d'étude

Chott Merouane est situé au Nord-est du Sahara septentrional, qui fait partie administrativement de la Wilaya d'El-Oued et la Daïra d'El-Maghaire (loin de100km à l'oued et 5km à la Daïra d'El-Maghaire), situé à environ 9Km du chef-lieu de la daïra, dans le village de N'sigha, de coordonnées géographiques ; 33°55'N et 06°10'E. Il est considéré comme la plus basse altitude du nord de l'Afrique (40m au-dessous du niveau de la mer). Ce chott est classé selon RAMSAR comme zone humide, d'importance internationale, avec une superficie de l'ordre de74543.11ha.(Fig. I-1)

Chott Merouane est alimenté par trois sources principales, celle du canal collecteur de l'Oued Righ appelé couramment Oued Kherouf, les eaux souterraines de la nappe CT et les eaux de pluie qui sont généralement négligeables. (Hacini et al, 2006, 2009, 2010).[7]

(Fig I-1):: Carte de l'exutoire naturelle de la région de Oued Righ (Chott Merouane). [8].

I.2.Climatologie

La région du Chott Merouane est caractérisée par un climat du type saharien, marqué par des précipitations très peu abondantes et irrégulières, La température maximum peut atteindre 50°C en été, tandis que le minimum absolu est de 5°C en hiver, et par une faible humidité relative de l'air [8,11].

Avec un sirocco (vent chaud) soufflant du Nord-est, et vent de sable vers sud-est. Les précipitations moyennes sont 50 millimètres par an [8].

D'après les données de plusieurs années (28ans) d'observations météorologiques au station de Touggourt

I.2.1.La température

Du fait du faible taux d'humidité de l'air les températures accusent des écarts importants

les mois les plus froids sont décembre et janvier (11-10°C); Les mois les plus chauds (33-32°C) correspondent aux mois de juillet et août. (*Annexe* Tab N°02, 03, 04).

I.2.2.La précipitation

La pluviométrie moyenne est légèrement supérieure à 50mm/an pour un nombre moyen de jours de pluie est de 25 environs, elle tombe pendant des saisons froides qui vont de novembre à mars décroissant du Nord vers le Sud et la moyenne annuelle est de (16-14 mm). Ces eaux faibles part dans l'alimentation hydrique du Chott, d'ailleurs en dehors de la région, la végétation est pratiquement inexistante. [8,11]. (L'*annexe Tab* N°01).

I.2.3.L'humidité

L'humidité relative moyenne, varie d'environs 35 % en juin- juillet à 65 % en novembre- décembre l'humidité relative minimale (33.137%).

(Annexe Tab N°05,).

I.2.4.L'évaporation

L'évaporation moyenne annuelle mesurée au pichet est de l'ordre de (622.57 mm). Les mois avril, mai, juin, juillet, août, septembre sont les mois qui présentent le plus grande taux d'évaporation (40 % du total annuel).Tableau N° 06 dans l'annexe Un maximum de 347.75 mm est enregistré en juillet et un minimum de 82.09 mm en janvier.

I.2.5.Les vents

Les vents sont relativement fréquents dans la vallée de Oued Righ, mais leur vitesse ne devient importante que à Mai avec une valeur moyenne annuelle qui décroît du nord vers le sud (3.2 m/s) .Pendant cette période le souffle est violent. Il est responsable du modèle dunaire que l'on observe dans cette partie du Sahara. Les vents dominants : sud-ouest vers Nord-est sont généralement observés en hiver et du Sud-est vers le Nord –Ouest en été..(*Annexe Tab* N°07).

I.2.6.L'insolation

Les nombre d'heures d'ensoleillements est de l'ordre de (3000) à (3500) heures / an. Dans la région étudiée, ce nombre varie autour de (3378) h /an ; le maximum étant enregistré au mois de juillet (357, 6207 h).(*Annexe Tab* N°08).

I. 3. Hydrogéologie locale des chotts Merouane et Melghir:

La région de Chott Merouane fait partie du grand bassin sédimentaire du Sahara septentrional. En plus de la nappe phréatique omniprésente, ce bassin renferme deux gigantesques aquifères que sont le Complexe Terminal et le Continental Intercalaire ; avec d'énormes volumes d'eau fossiles. Les formations géologiques et leurs équivalents aquifères [39] sont présentés sur la Figure(I-2).

I.3.1. La nappe phréatique

Dans la région des chotts, la nappe phréatique est constituée essentiellement par des sables très perméables, sa profondeur diminue du sud vers le nord, variant de 50 cm à 1 m, plus rarement jusqu'a 1,50 m (1,34 m au niveau de Kerdache à 0,70 m à El Harhira). Ses variations piézométriques sont liées à l'irrigation et au drainage. L'eau est très salée ayant une conductivité électrique supérieure à 9 ms.cm⁻¹. Dans de la vallée de l'oued Righ, elle subit une remontée progressive et une grande quantité de ses eaux sont déversées dans le chott Merouane.

Figure(I-2) :Corrélation géologique nord-sud à travers le Complexe terminal entre Grand Erg Oriental - Ouargla et l'Atlas saharien (M. Edmunds et al, 1997).[7].

I.3.2.La nappe du complexe terminal

Le Complexe Terminal comprend les formations les plus récentes déposées au Bas Sahara. Il est limité à l'Ouest par la dorsale de M'Zab, au Nord par l'accident majeur de l'Atlas Saharien, à l'est par le Dahar, au Sud par la ligne passant au Nord de l'axe in Salah Zarzaitine sous l'erg oriental. Le Sénonien, l'Eocène et le Moi-Pliocène sont avec le Quaternaire, les dernières formations déposées au Sahara. Cette particularité, ajoutée à leur hétérogénéité lithologique, leur a valu d'être groupés sous le terme de « Complexe Terminal ». Il est à souligner que localement, le Turonien est englobé dans l'ensemble terminal. Ce complexe occupe une superficie de l'ordre de 350000 km2. Il s'agit d'une superposition de plusieurs nappes, dans la région de l'Oued Righ et des chotts, on compte quatre (4) nappes superposées. L'exutoire naturel de cette nappe est la zone des chotts (Figure I-2); le chott Merouane et Melghir en Algérie et le chott El Jerid et chott El Gharsa en Tunisie. Le remplissage du réservoir s'est fait essentiellement pendant les périodes pluvieuses du Quaternaire. Cependant une recharge actuelle de la nappe continue de lui apporter des quantités importantes d'eau non négligeables.

Les eaux de cette nappe sont douces sur les bordures est salées dans le centre du bassin (dépasse3g.l⁻¹ dans la région de Touggourt et Ouargla). Le sens d'écoulement de cette nappe est méridional. La nappe du complexe terminal se diverse dans le chott par percolation [35] de quantité importante d'eau (par drainante) de l'ordre 62.34 x 106m³.an⁻¹.

I.3.3. La nappe du continental intercalaire

On appelle continental intercalaire au sens large l'ensemble des dépôts sédimentaires du long épisode continental intercalé entre les deux cycles marins du paléozoïque et du crétacé supérieur. Les dépôts terrigènes de cet épisode constituants un aquifère d'eau douce plus ou moins homogène. Ils sont d'âge crétacé inférieur, recouvrent en discordances des terrains d'âges variables allant du toit du Primaire à l'Ouest au toit du Néocomien à l'Est. Le toit du réservoir correspond à la base du Cénomanien argileux à l'Ouest, de l'Albien argileux à l'Est.

Le Continental intercalaire (CI) constitue le réservoir profond du Sahara septentrional. Il' étend sur plus de 600 000 km² sur les seuls territoires algérien et tunisien, depuis l'accident sud-atlasique au Nord jusqu'aux affleurements du Tidikelt et du rebord méridional du Tinhertau sud. Limité à l'Ouest selon par l'axe Béchar-Reggane, sa prolongation vers l'Est en Libye sous la Hamada al Hamra jusqu'au Graben de Hon couvre encore quelques 250000 km²supplémentaires. Les eaux venant de l'Atlas saharien se bifurquent sur l'axe de la dorsale du M'Zab suivants deux directions, vers le Sud et le Sud-ouest à savoir le Gourara et le Tidikelt ;et vers le passage étroit situé entre le dôme de Médenine (exutoire tunisien) et rejoint la nappée la zone côtière Tunisienne (Djeffara). L'épaisseur utile totale du réservoir dépasse 250mdans la plus grande partie des régions. Sa profondeur varie de quelques mètres aux périphéries plus de 2000 m au centre du bassin. Cette nappe est artésienne dans la majeure partie du bassin. Sur le plan qualité, les eaux de CI sont douces est des bonnes qualités sur l'ensemble du bassin, en particulier dans les limités Ouest du bassin (El-Goléa). La recharge de cette nappe est négligeable, elle se fait par infiltration des eaux à partir périphéries.

Figure (I-3) : Ecoulements des eaux dans le CT e le CI [7].

I.4. Bilan Hydrique du Chott Merouane:

Le chott Merouane est l'exutoire de la nappe du Complexe Terminal, qui alimente le chott du nord, de l'ouest et du sud. L'hydrologie de ce chott a été décrite par Hacini et al. [30]. Il est alimenté par trois sources principales des eaux : les émanations souterraines du complexe terminal, le canal d'Oued Righ et les précipitations. Le volume annuel des eaux entrantes au Chott a été estimé par ERESS [29] à 61,6 .106 m3. Le canal d'Oued Righ (Figure I-3) draine la vallée d'Oued Righ de 150 km de long, son apport annuel est estimé par le ministère des eaux à 131,5.106 m³. La moyenne des précipitations annuelles totales, rapporté par la station météorologique de Touggourt, situé à 100 km au sud de Chott, est de 5,1 cm. Cette lame concerne une surface de 337700 hectares, soit un volume de pluie de 4,9. 10^6 m³. Ainsi, le volume total annuel d'eau ajouté au Chott Merouane en 1994, est à 198. 10^6 m³. Ce volume est passé à 92. 10^6 m³ en 2003 [29]. Les sorties principales des eaux

sont dues à l'évaporation qui consomme presque 80 % des eaux du chott, soit 74. 10⁶m³. Les 20 % restantes sont les volumes infiltrés dans le sous-sol au niveau de la nappe phréatique.

I.5.bilan d'apport des sels du Chott Merouane:

Les eaux superficielles alimentant le Chott Merouane (moyenne de 4,5g/l), avec une salinité moindre par rapport aux alimentant le Chott Melghir (de l'ordre de 3,5g/l). Pour les volumes des eaux superficielles, on retient ceux de l'étude du C.N.T.S d'Arzew soit environ 140.000.000 m3 pour le Chott Merouane et 270.000.000 m3 pour le Chott Melghir.

Le bilan de sel du Chott Merouane est représenté par La décharge du canal d'Oued Rhir qui est de 1577365 (T/an), et par, La décharge des eaux souterraines qui est de 228550(T/an) [13,14].

I.6.Précipitation des minéraux par évaporation des sels du chott Merouane:

Les dépotes sels d'un bassin évaporitique se font en général, avec une vitesse beaucoup plus grand que celle des dépotes des sédiments clastiques. L'épaisseur des couches évaporatiques est fonction de la concentration et de la hauteur des saumures superficielles, soumises à l'évaporation. La nature des minéraux formés par ce mécanisme n'est pas la même pour tout le bassin, elle dépend de la topographie, de la composition chimique des saumures et de la température qui règne au moment de l'évaporation.

I.7..Les caractéristiques physico-chimiques des minéraux évaporatiques, identification des sels

Avec ses propriétés thermodynamiques, chaque élément minéral possède des caractéristiques physiques et chimiques qui permettent son identification lorsqu'il se précipite Ainsi, il nous a paru nécessaire de réunir pour les sulfates, carbonates et chlorures les plus connus, l'essentiel de ces caractéristiques. On a porté dans l'ordre, comme l'indique le Tableau (10*Annexe*), le nom du minéral avec sa composition chimique, le système cristallin, la distance réticulaire, en A°, des cinq premiers pics de diffraction des rayons X, les valeurs des paramètres de la maille élémentaire (a,b,c et α , β , γ), la densité, le poids moléculaire, les différents indices de réfraction (n_0 et n_E pour les systèmes rhomboédrique et hexagonal, n pour le système cubique et n_x , n_y , n_z pour les autres systèmes). Enfin pour chaque minéral, on a mentionné quelques caractéristiques et remarques utiles pour sa détermination [9].

Chapitre I :

On conclusion Le climat est de type saharien avec une température variable 50°C en été et 5°C en hiver, la géologique est caractéristique du bassin du nord Sahara Algérien. Cette caractérisation très important pour l'extraction des sels du chott qui est alimente par deux sources principales.

CHAPITRE II

Thermodynamíque des solutíons Aqueuses D'électrolytes

II.1.Introduction

Arrhenius pressentait le caractère particulier des solutions aqueuses d'électrolytes et, dans sa « théorie de la dissociation électrolytique », il émit l'hypothèse que certaines substances, notamment les sels, se dissociaient spontanément dans l'eau en anion et cation, rendant ainsi le milieu conducteur de l'électricité. Depuis, ces travaux précurseurs se sont trouvés amplement confirmés et on sait que les solutions des sels dans l'eau constituent un milieu bien particulier renfermant deux types d'espèces différentes : un liquide moléculaire, le solvant, et des espèces chargées réparties au sein de ce solvant.

Dans ce chapitre, on se propose de rappeler quelques particularités du traitement thermodynamique des solutions aqueuses d'électrolytes ; espèces dissoutes, minéraux et équilibres.

II.2. Echelles de concentration:

Soit un système de volume V, isolé et à l'équilibre à la température T et sous la pression P. Trois échelles de concentrations permettent de caractériser la quantité de matière contenue dans ce système. Si n_i est le nombre de moles du constituant i, on définit [4].

II.2.1. Molarité

C'est le nombre de moles de i par unité de volume, on trouve souvent exprimée en moles par litre de solution.

$$C_i = \frac{n_i}{V}$$
(dimension L⁻¹) (II-01)

La molarité est d'emploi courant pour les analyses de laboratoire et apparaît comme la concentration de choix dans les études théoriques

(Nombre d'individus par unité de volume). Son usage est néanmoins évité en raison de sa dépendance vis à vis de la température et de la pression [4]

II.2.2. Molalité

La molalité est le nombre de moles du soluté i par kilogramme de solvant

$$m_i = \frac{1000n_i}{n_w M_w} \quad (dimension \ M^{-1}) \tag{II-02}$$

 n_w : est le nombre de moles du solvant.

Mw: est la masse molaire du solvant exprimée en grammes.

La molalité est l'échelle de concentration la plus utilisée dans l'étude des solutions aqueuses d'électrolytes. Elle est plus significative que la fraction molaire car elle exprime directement un nombre de moles et non pas un pourcentage. Elle ne dépend pas de la température n_i de la pression. Lorsque l'eau est le solvant, sa molalité est toujours égale à 55.51 moles/Kg H₂O. Il s'ensuit que sa concentration ne peut s'exprimer qu'en fraction molaire ou en molarité [4,9].

II.2.3. Fraction molaire

La fraction molaire représente le nombre de moles de soluté divisé par le nombre total de moles du système.

$$x_i = \frac{n_i}{n_w + \sum_{i \neq w} n_i}$$
(sans dimension) (II-03)

La fraction molaire trouve son utilité pour l'étude des solutions dans un large éventail de concentration (par exemple, mélanges organiques ou de sels fondus miscibles en toutes proportions) [4].

II.2.4. La relation entre les trois échelles de concentration

Un litre de solution aqueuse de densité d, pèse (1000d)g et contient (M_iC_i)g de soluté i (de masse molaire M_i). Il y a donc, par de solution, (1000d- $\sum_i M_iC_i$) g deH₂O.

Compte tenu des définitions de la molalité et de la molarité, la relation qui lie ces deux expressions de la concentration est comme suit :

$$m_i = \frac{1000C_i}{1000d - \sum_i M_i C_i}$$
(II-04)

 $\sum_{i} Mi Ci$ est la charge ionique, exprimée en g/l (C) ou en g/1000g de H₂O (C₀).

Donc, l'équation (II-04) devient :

$$m_i = \frac{1000 - C_i}{1000d - C} = \frac{C_i(1000 + C_o)}{1000d} \qquad (II - 5)$$

II.3.Potentiels chimiques et états standards

L'énergie libre totale, G, d'un système dont les quantités de constituants sont déterminées, ne dépend que de la température et de la pression. Elle est indépendante, par exemple, des échelles de concentrations et des conventions utilisées pour définir les quantités molaires partielles telles que les activités des constituants. A partir de l'énergie libre totale du système, on peut définir les énergies libres molaires partielles ou potentielles chimiques par l'expression :

$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{nj,T,P} \tag{II-6}$$

Avec n_i : nombre de moles de i, T : température, P : pression.

Comme on s'intéresse davantage à la variation des potentiels chimiques en fonction des variables du système qu'à leurs valeurs absolues, on exprime ces quantités comme une différence entre leurs valeurs absolues et celles qu'elles prennent lorsque le constituant étudié se trouve dans un certain état défini par convention. Ainsi, on écrira suivant l'échelle de concentration choisie :

$$\mu_i = \mu_i^o(m) + RT lna_i(m) = \mu_i = \mu_i^o(x) + RT lna_i(x) \quad (II - 7)$$
(R : constante des gaz parfaits)

Les symboles entre parenthèses se réfèrent aux deux échelles de concentration retenues : la molalité(m) et la fraction molaire (x). Dans chacune de ces échelles, on définit l'activité a_i du constituant dans la solution réelle et dans un état de référence particulier qu'on appelle l'état standard. Quand un constituant est dans l'état standard, son potentiel chimique est noté μ_i° (potentiel chimique standard) ; c'est une constante à température et pression donnée on définit, de plus, un coefficient d'activité qui est le rapport entre l'activité de i et sa concentration dans l'échelle appropriée [15].

En molalité :

$$\gamma_i = \frac{a_i(m)}{m_i} \qquad (II - 8)$$

En fraction molaire :

$$f_i = \frac{a_i(x)}{x_i} \qquad (II - 9)$$

de sorte que les potentiels chimiques s'écrivent :

$$\mu_i = \mu_i^o(m) + RT \ln m_i + RT \ln \gamma_i = \mu_i^o(x) + RT \ln x_i + RT \ln f_i \quad (II - 10)$$

II.4.Activité d'une espèce chimique a_i :

Contrairement a la concentration (m_i) qui se définit a partir de la quantité de matière produite ou consommée lors d'une réaction chimique, donc la masse (mesurée a l'aide d'une balance); l'activité (a_i) se définit a partir de l'énergie de la réaction, donc de la chaleur de la réaction (changement de température) et du travail de la réaction(changement de volume), elle est mesurée a l'aide du calorimètre, voltmètre, baromètre.

Chapitre II : Thermodynamique des solutions aqueuses D'électrolytes

L'activité, appelée aussi concentration efficace ou concentration thermodynamique, correspond a la concentration d'un produit ou réactif d'une réaction chimique dans une solution idéale. Le concept d'activité tient compte de l'interaction des molécules du solvant, de l'effet d'hydratation et de l'attraction électrostatique entre les ions et de leurs interactions a courte distance. L'activité sert donc a distinguer une solution réelle d'une solution idéale (GUEDDARI, 1980).

L'activité a_i du constituant i, est aussi la mesure de l'écart entre le comportement de ce constituant dans une solution réelle et dans un état de référence particulier appelé état standard (Y. TARDY. 1983). L'activité d'une substance pure, a une température spécifique et une pression de 1 atmosphère, est par convention égale a 1. A une pression et température données, la relation entre l'activité et la concentration est:

 $a_i = \gamma_i m_i \tag{II-11}$

ou,

 γ_i : représente le coefficient d'activité;

mi: représente la molalité du constituant i

II.5.Relation de Gibbs-Duhem

A température et pression constante, la relation de Gibbs-Duhem s'écrit :

$$\sum_i n_i d\mu_i (II - 12)$$

Elle est identiquement vérifiée que si les divers potentiels chimiques sont définis dans la même échelle de concentration. Dans le cas des solutions aqueuses d'électrolytes, il faut introduire l'approximation [4,19] :

$$n_w \gg \sum_{i \neq w} n_i \left(II - 13 \right)$$

Pour que cette relation soit satisfaite. Rappelons que cette condition a déjà été introduite pour définir le coefficient osmotique Φ . Elle est nécessaire pour que toutes les relation thermodynamiques gardent leur cohérence lorsqu'on se sert de deux échelles de concentration différentes pour étudier une même solution.

L'énergie libre de la solution, décomposée en un terme idéal et un terme d'excès

$$G = G^{id} + G^{ex} \tag{II-14}$$

S'écrit alors:

$$G^{id} = n_w \mu_w^o + \sum_{i \neq w} n_i \mu_i^o + RT \sum_{i \neq w} n_i lnm_i - RT \sum_{i \neq w} n_i (\text{II-15})$$

$$G^{ex} = RT \sum_{i \neq w} n_i \ln \gamma_i + RT \sum_{i \neq w} n_i (1 - \emptyset) \qquad (II - 16)$$

On notera que l'énergie libre d'excès est une propriété collective définissant l'écart à l'idéalité de la solution.

A partir de la relation de Gibbs-Duhem, de la définition des potentiels chimiques et de l'expression de G, on démontre les deux relations suivantes :

$$ln \gamma_i = \frac{1}{RT} \left(\frac{\partial G^{ex}}{\partial n_i} \right)_{nj,T,P} \qquad (II - 17)$$

$$1 - \emptyset = \frac{1000}{RTM_w + \sum_i m_i} \left(\frac{\partial G^{ex}}{\partial n_w}\right)_{nj,T,P}$$
(II - 18)

Ces relations suggèrent une méthode permettant de déduire les diverses grandeurs thermodynamiques de l'expression de l'énergie libre d'excès de la solution. On verra plus loin que c'est la démarche suivie par Pitzer (1973) dans la construction de son modèle d'interaction ionique spécifique.

La relations de Gibbs-Duhem impose un lien strict entre l'activité du solvant et celle du soluté. On démontre que son intégration conduit, pour une solution binaire à [4] :

$$ln \gamma_{\pm} = \emptyset - 1 + \int_{o}^{m} \frac{\emptyset - 1}{m} dm \qquad (II - 19)$$

On peut ainsi déduire le coefficient d'activité du soluté de la mesure de l'activité du solvant [30].

Les relations (II-5) et (II-17) sont aussi les conditions nécessaires que doit remplir un modèle thermodynamique des solutions aqueuses d'électrolytes pour être cohérent [4].

II. 6. La force ionique

La force ionique mesure la concentration globale de la solution en composes ioniques. Elle est donnée par la formule suivante:

$$I = \frac{1}{2} \sum_{i} m_{i} Z_{i}^{2} \qquad (II - 20)$$

Où mi : molalité de l'ion i zi: charge de l'ion i

II.7. Alcalinité et alcalinité résiduelle

II.7.1.Alcalinité

L'alcalinité représente la somme en équivalant de toutes les bases qui peuvent être titrées par un acide fort. C'est aussi la capacité acide neutralisante d'un système carbonaté aqueux. Donc, l'alcalinité a pour expression:

$$Alc=2(CO_{3}^{-})_{t}+(HCO_{3}^{-})_{t}+(OH^{-})_{t}-(H^{+})_{t}$$
(II-21)

(), désigne la molalité totale[9].

Si l'on est en présence d'un système qui contient, en plus des carbonates, des éléments majeurs comme $Na^+, K^+, Mg^{2+}, SO_4^{2-}$ et Cl⁻; la balance des charges donne :

$$(Na^{+}) + (K^{+}) + 2(Ca^{2+}) + 2(Mg^{2+}) - 2(SO_{4^{2}}) - (Cl^{-}) = (HCO_{3^{-}}) + 2(CO_{3^{2-}}) - (H^{+}) + (OH^{-})$$

Le deuxième terme de cette équation regroupe tous les éléments ayant des propriétés acido-basiques, alors que la premier rassemble les éléments qui n'interviennent que par leur charge globale, auquel on donne le nom de réserve alcaline ou alcalinité (exprimée en équivalents par litre). On a donc :

$$Alc = 2(CO_3^{2-})_t + (HCO_3^{-})_t + (OH^{-})_t - (H^{+})_t$$
$$(Na^{+})_t + 2(Ca^{2+})_t + 2(Mg^{2+})_t - 2(SO_4^{2-})_t - (Cl^{-})_t$$
(II-22)

En fait, l'alcalinité tient aussi compte des ions tels que: B(OH)₄, H₃SiO₄, SH,

 NH_3 , NO_3^- ; mais on néglige ces termes dans la mesure où ils se trouvent en faible concentration.

Dans les eaux naturelles, l'alcalinité à fugacité $f \text{CO}_2 = \text{cte}$ varie dans le même sens que le pH [9, 23, 24, 25, 26].

II.7.2. Alcalinité résiduelle

Eaton (1950) et plus tard, Van Beek et Van Bremen (1973), ont défini l'alcalinité résiduelle comme étant l'alcalinité qui ne tient pas compte des molalités totales de Ca et de Mg.

$$Alc_{résid} = (Alc) - 2(Ca^{2+})_t - 2(Mg^{2+})_t = (Na^{+})_t + (K^{+})_t - 2(SO_4^{2-})_t - (Cl^{-})_t$$
(II-23)

Ce concept de l'alcalinité résiduelle est généralisé par Al Droubi (1976), Al Droubi et al.(1980) à plusieurs minéraux et sels. L'alcalinité résiduelle se calcule étape par étape, après la précipitation de chaque minéral, et son signe permet de prédire à $f \text{CO}_2 = \text{cte.}$

Le comportement des éléments engagés dans la précipitation des minéraux, de même que ceux de l'alcalinité et du pH [9].

II.7.3.1. Variation de l'alcalinité avec le signe de l'alcalinité résiduelle

Une formulation mathématique de cette variation est développée pour un cas simple d'une solution saturée vis à vis de la calcite et qui atteint le point de saturation du gypse, à f CO₂ constante [9,27]:

$$\frac{d(AlC)}{d\xi} = \frac{a(AlC_{résid}^{o})}{1 + 4[(Ca^{2+}) + (SO_4^{2-})]}$$
(11 - 24)

Toujours positif

 $\alpha = 4(CO_3^{-1}) + (HCO_3^{-1}) + (OH^{-1}) - (H^{+1})$

Où $d\zeta$: petite variation du facteur de concentration(Alc^o_{résid}) : alcalinité résiduelle initiale

Le dérivé de l'alcalinité par rapport au facteur de concentration a donc le signe de résiduelle initiale, c'est à dire que si ($Alc^{o}_{résid}$) est positive, l'alcalinité (donc le pH) augmente et si ($Alc^{o}_{résid}$) est négative, le contraire s'observe. Cette approche ne tient pas compte des coefficients d'activité et des espèces complexes, elle dérive de la balance des charges et des équations de loi d'action de masse [9].

II.7.3.2.Influence de la précipitation des minéraux sur l'expression de l'alcalinité résiduelle généralisée

Si la calcite est le premier minéral qui se précipite dans une solution soumise à l'évaporation, l'alcalinité résiduelle a pour formule :

$$(Alc_{résid})_{c} = (Alc) - 2(Ca^{2+})_{t}$$
(II-25)

A $f \operatorname{CO}_2$ constante, $(\operatorname{Ca}^{+2})_t$ diminue et l'alcalinité de même que le pH augmentent, si $(Alc_{résid})$ c est positive, et inversement.

Si après la calcite, on précipite la magnésite, on a :

$$(Alc_{résid}) c_{+m} = (Alc) - 2(Ca^{2+})_t - 2(Mg^{2+})_t$$
(II-26)

Si $(Alc_{résid})_{c+m} > 0$: $(Ca^{+2})_t$ et $(Mg^{+2})_t$ diminuent, alcalinité et pH augmentent Si $(Alc_{résid})_{c+m} < 0$: le contraire s'observe. Après la précipitation de la calcite, de la magnésite et du gypse, l'alcalinité résiduelle devient

$$(Alc_{résid})_{c+m+g} = (Alc) - 2(Ca^{2+})_t - 2(Mg^{2+})_t + 2(SO_4^{2-})_t = (Na^+)_t + (K^+)_t - (Cl^-)_t$$
(II-27)

A ce stade, pour un signe positif de $(Alc_{résid}) c_{+m+g}$, l'alcalinité, le pH et $(SO_4^{-2})_t$ $(Ca^{+2})_t$ et $(Mg^{+2})_t$ diminuent et inversement

L'alcalinité résiduelle devient nulle si après le gypse apparaissent la nahcolite (NaHCO₃), la halite (NaCl) et (KCl). En effet :,

 $(Alc) _{résid_{c}+m+g+n+h+s} = (Alc) - 2(Ca^{2+})_{t} - 2(Mg^{2+})_{t} + 2(SO4^{2-})_{t} - (Na^{+})_{t} - (K^{+})_{t} + (Cl^{-})^{(II-28)}$

 $(Alc_{résid})=0$, donc l'alcalinité de même que le pH et les concentrations des autres éléments n'évoluent pas selon la règle des phases. En effet, le nombre des phases qui contrôlent le système devient très grand [9].

II.8.Conclusion

Le traitement thermodynamique des solutions aqueuses d'électrolytes présente la particularité d'avoir à définir les potentiels chimiques des solutés et du solvant dans deux échelles de concentration différentes. Cela implique d'écrire

$$Nw > \sum_{I \neq w} n_i$$

Même lorsque cette condition n'est pas satisfaite, pour que les diverses relations thermodynamiques retrouvent leur cohérence.

Il est possible de définir des potentiels chimiques ioniques. Cependant, comme ce ne sont pas des grandeurs mesurables, on a pris ici le parti de ne pas les utiliser en tant que grandeurs significatives. Ils n'apparaîtront, dans la suite de ce travail, que comme intermédiaires dans le calcul des coefficients d'activité moyens et le calcul de degré de saturation.

CHAPITRE III

Matériel et Méthodes D'analyses

III.1.Introduction

Les saumures du Chott Merouane, sont plus riches en éléments chimiques composant les sels. Les échantillons sont prélèves du Chott Merouane sont exposés de l'évaporation dans des conditions expérimentaux imposés (évaporation isotherme), cela exactement s'est fait à l'Université kasdi Merbah de Ouargla.

Les analyses physico-chimiques ont été déroulées au niveau du laboratoire de géologie du Sahara.

III.2.Échantillonnage

La qualité des résultats analytiques basés sur les opérations d'échantillonnage ce fait l'opérateur doit avoir une connaissance précise des conditions de prélèvement et conservations. L'échantillon doit être homogène, représentatif et obtenu sans modifier les caractéristiques physico-chimiques de l'eau (gaz dissous, matière en suspension, etc.

III.3.Prélèvement

Le prélèvement d'un échantillon des saumures du Chott Merrouane est une opération à laquelle les plus grands soins doivent être apportes, il conditionne les résultats analytiques et l'interprétation qui sera donnée.

III.3.1.Temps de prélèvement

Tous les prélèvements ont été effectue au début avril 2018.

III.4. Dilution

L'échantillon est obtenu en prélevant la saumure, prélever à l'aide d'une pipette volumétrique selon le nombre de dilution ;

Tel quel : nombre de dilution = Vt/Valiq

Vt : volume total.

Valiq : volume aliquote.

III.5.Les mesures physico-chimiques

III.5.1.La densité :

La densité de la saumure a été mesurée à l'aide d'une balance analytique précise. Il s'agit du quotient de la masse mesurée de 15 ml de saumure sur 15. La précision des mesures est de quatre chiffres significatifs.

III.5.2.la TDS et la conductivité:

Les deux paramètres ont été mesurés à l'aide d'un conductimètre de paillasse. D'une précision du dixième de micro siemens par centimètre (μ S/cm).

Cet appareil permet de mesurer la salinité.

III.5.3.Le pH:

Il a été mesuré avec un anion mètre avec électrode spécifique de H⁺.

Figure III-2 : Conductivité mètr

III.6.Principe des appareillesIII.6.1.anion mètre par électrode de H⁺(pH mètre)III.6.1.1.Principe

La différence de potentiel existant entre une électrode de verre et une électrode de référence (KCl saturé) plongé dans une même solution forme une fonction linéaire du pH de celle ci selon la loi de (*NERNST*) :

$\mathbf{E} = \mathbf{E}_0 + 2.3 \text{ RT /nf log a}_{\mathbf{H}}$

E : Potentiel mesure (Volt)

E₀ : Constante dépendant du choix de l'électrode de référence et solution interne.

- R : Constant des gaz parfait (j/mol.k).
- T : Température absolue (°k).
- n : Charge de l'ion.
- F: Constante de Faraday (96500 C).
- $a_{\rm H}$: Activité d'ion ${\rm H}^+$ dans l'échantillon.

III.6.2.Spectrophotomètre à flamme type 410corning

III.6.2.1.Principe

L'intensité lumineuse I émise dépend de la fraction F d'atomes excités qui retournent à leur état fondamental. Or la fraction F est proportionnelle au nombre total d'atomes excités N. Comme. Ce dernier est à son tour proportionnel à la concentration C d'atomes dans la flamme, on peut alors déduire que l'intensité lumineuse I est proportionnelle à la concentration, selon la formule suivante :

I= K*C. Cette formule n'est valable qu'aux faibles concentrations où le phénomène d'auto absorption est négligeable.

L'appareil utilisé est le photomètre à flamme de marque Janeway (Figure (III-1)). C'est un Photomètre à flamme d'émission à basse température, destiné à la détermination simultanée du Sodium, du Potassium, du Lithium, du Calcium et du Baryum

Figure (III-3) : Spectromètre à émission de flamme (Janway)

III.7. Les interférences de la spectrométrie atomique à flamme

• Les interférences physiques dues essentiellement à la nébulisation (différence de débit de Nébulisation entre la solution et l'étalon).

• Les interférences chimiques dues à l'interaction entre l'élément étudié et les composés de la flamme ou les composés de la matrice. Ce type d'interférence peut être corrigé par l'ajout

D'un tampon spectrochimique approprié

• Les interférences ioniques dues essentiellement à l'énergie de flamme et la présence des molécules ionisables. L'ajout d'un tampon ionique peut remédier ce type de perturbations.

• Les interférences spectrales dues aux chevauchements entre raies analytiques de l'élément à étudier et des composés de la matrice. Ce type d'interférences peut être corrigé par l'élimination des composés gênants par les différentes méthodes de séparation.

III.8.La potentiomètre:

Le potentiomètre est une méthode analytique qui permet de relier une mesure de potentiel d'électrode à une activité d'espèce en solution. On parle de dosage potentiomètrique lorsque cette méthode est utilisée pour la détermination d'une concentration fondée sur l'exploitation de la relation de Nernst reliant le potentiel d'une électrode à l'activité de l'espèce en solution [34]. Dans notre cas, cette méthode a été utilisée pour doser les chlorures. L'évolution du potentiel d'une électrode d'argent en ajoutant à la solution l'ion Ag+ (l'oxydant de couple (Ag+/Ag)). Ainsi, le potentiel mesuré correspond à l'équation de Nernst du couple (Ag+/Ag):

$$E = E0 + 0,06 \log [Ag^+] [34].$$

Cet ajout d'ions Ag+, sous forme d'une solution d'AgNO₃,

précipite le chlorure d'argent. La concentration en Cl^- est par la suite déduite en se référant à la réaction de précipitation avec Ag^+ et en appliquant la relation d'équivalence suivante:

$$C_{Cl}$$
. $V_0 = C_{Ag}$. $V_{\acute{eq}}$

Avec :

C_{Cl} : concentration du chlore, C_{Ag} : concentration d'argent,

 V_0 : volume de l'échantillon, $V_{\acute{eq}}$: volume d'équivalence

Les concentrations en Cl $\,$ sont données à l'aide d'un appareil Titrino DMS 716 de marque Ω

Metrohm (figure (III-4).

Figure (III-4) : Potentiomètre Titrino 716 Metrohm

III.9. Les logiciels utilisés➢ Phreeqc, version 3.3.7

Phreeqc est un programme écrit en C par David L. Parkhurst et C.A.J. Appelo [35]. Il est diffusé par l'USGS (United States Géologiques Survey). Il est utilisé pour simuler des réactions chimiques et du transfert dans des eaux naturelles et polluées. Les premières versions remontent à 1980 (Phreeqe, Parkhurst et al.). Aujourd'hui, il dispose d'une interface interactive sous Windows et Mac. La version finale est la III.3.3.7 et c'est celle-ci que nous avons utilisé pour bénéficier de ses innombrables améliorations et services. Il nous a permis de déterminer la spéciation des espèces chimiques, de calculer les indices de saturation des minéraux. Phreeqc a été utilisé par plusieurs auteurs lors des études géochimiques sur les saumures [33,36,37].

Diagrammes, version.5.1 (Hydrochimie)

A partir de données importées d'un tableur, création de diagrammes spécifiques à L'hydrogéologie et validation des données analytiques.

III.10.1.Dosage des anions

III.10.2.1.Dosage des carbonates et bicarbonates

III.10.2.1.1.Principe

Les carbonates n'existent qu'a pH >8.3, et les bicarbonates si 4.4 < pH < 8.3 il est facile de savoir au cours d'un dosage acidimétrie doublé d'une mesure de pH, à quel moment ces ions sont encore ou non présents dans l'échantillon.

III.10.2.1.2.Réactifs

- Solution d'acide Chlorhydrique HCl 0.01N.
- Indicateur méthyle orange 1%

III.10.2.1.3. Mode opératoire

- Prélever une prise d'essai de 100ml de l'eau mère diluée V_{PE} (ml)
- Ajouter deux gouttes de l'Indicateur.
- Ajouter du HCl(0.01N) goutte à goutte avec agitation jusqu'à le virage de

coloré rouge orange et enregistrée le volume V (ml) versé.

(Tous les échantillons ne contiennent pas de carbonates et OH^{-} (pH<8.3), on passer alors au dosage des bicarbonates directement.

III.10.2.1.4. Calculs

 HCO_3 (méq/l) = V (ml).0.01.1000 F/V_{PE}(ml)

 HCO_3 (mg/l) = HCO_3 (méq/l).61

Avec : V_{PE} = volume de la prise d'essai .V = volume de HCl versé.

F: le Facteur de dilution

III.10.2.2.Dosage de sulfates par Méthode gravimétrie III.10.2.2.1.Principe

La méthode gravimétrique présentée est basée sur le principe de faire précipiter les sulfates sous forme de sulfate de baryum par le chlorure de baryum.

$$Ba^{+2} + SO_4^{-2} \longrightarrow BaSO_4$$

Matériel :

- Erlenmeyer 500 ml
- Prise d'essai de la solution mère, sans dilution.
- Plaque chauffante
- Bain marais
- Appareil Filtration sous vide avec membrane de 45 micromètre
- Etuve (105°C)
- Dessiccateur
- Balance précise (quatre chiffre après la virgule au dix millième près)

Réactifs :

- BaCl₂ à 5% : 40ml
- HCl à 37 % : 0,5 (ml)
- Eau ultra pure : 200 ml

Mode opératoire

- Prendre 15 ml de la solution mère (sans dilution)
- Ajouter 0,5 ml d'acide HCl (réaction en milieu acide)
- Ajouter 200 ml d'eau ultra pure (pour disperser les sulfates)
- Chauffer jusqu'à ébullition
- Ajouter 40 ml de $BaCl_2$ à 5%
- Mettre dans un bain marais pendant 2 heures à 80 °C (pour augmenter la granulométrie des BaSo₄)
- Filtration sous vide (membrane 45 micromètre déjà pesée)
- Mettre dans une étuve pendant 5 heures à 105° pour évaporation totale de l'eau.
- Mettre dans le dessiccateur
- Pesée la masse de BaSo₄

Résultat

La teneur en sulfate, exprimée en g L⁻¹ est donnée par la relation suivante :

$$[SO_4^{2-}] = \frac{m_{BaSO_4} \times M_{SO_4^{2-}}}{M_{BaSO_4} \times v_p} \times 1000$$

Vp : Volume de la prise d'essai (en mL)

m_{BaSO4} : masse de BaSO₄ formé.

III.10.2.3.Le chlorures par Méthode potentionmétrique

Matériel :

- Pipette 1ml Pipette 2ml
- Fiole 100 ml -Bécher 100 ml
- Baguette et Barreau aimantée
- Stirner (agitateur)

Réactifs :

Acide nitrique (HNO₃) à 65 % massique.

AgNO₃ de 0,1 mol L^{-1} (selon la teneur en ions Cl⁻).

Appareil utilisé :

Titrino DMS 716 de marque Metrohm II,

- Une électrode combinée de type argent massif.
- Un réactif (AgNO₃) de concentration $0,1 \text{ mol } L^{-1}$ selon la teneur en ions Cl⁻.
Mode opératoire

- On met dans un bécher de 100 ml :2 ml de solution (déjà diluée à 100%) et 2 ml d'acide nitrique
- On rempli d'eau (ultra pure) pour immerger l'électrode.
- On provoque la réaction entre AgNO₃ et la solution.
- Le potentiomètre s'arrête au point d'équivalence qui correspond au taux des ag nécessaire à neutraliser les Cl. Et la lecture se fait directement sur le potentiomètre.
- Le potentiomètre est équipé d'un clavier de dialogue pour choisir la prise d'essai et la l'unité du volume.

III.10.2.4.Le magnésium par Méthode compléxométrie

Matériel :

- Pipette 15 ml
- Erlenmeyer 100 ml
- Burette volumétrique reliée à l'EDTA
- Agitateur magnétique
- Barreau aimantée

Réactifs :

EDTA à 0,05 M (0,05 moles par litre)

Tampon pH 10 : 70g de chlorure d'ammonium $NH_4Cl + 500$ mL d'eau ultra pure + agitation + 350 mL d'ammoniac 25% puis on complète avec de l'eau ultra pure jusqu'à 1L. Indicateur coloré : noir d'eirochrome

Mode opératoire

Prendre un volume Vp 15 ml de solution à traiter.

-Ajouter 3 ml de solution tampon 10.

-Ajouter 40 ml d'eau distillée.

-Ajouter une pointe de spatule de noir d'eirochrome.

-Chauffer la solution à 60°C pendant quelques minutes.

-Titrer avec l'E.D.T.A (0.05 M) jusqu'au virage du rose au bleu.

-Noter le volume de l'EDTA au virage.

Résultat

Si le Mg est le seul cation 2+, la concentration en $g.L^{-1}$ en Mg²⁺ est donnée par la relation suivante :

$$[Mg^{2+}] = \frac{V_{EDTAeq} \times [EDTA]}{Vp} \times M_{Mg}$$

.Le Calcium par Méthode compléxométrie

Matériel :

- Pipette 15 ml
- Erlenmeyer 100 ml
- Burette volumétrique reliée à l'EDTA
- Agitateur magnétique
- Barreauaimantée

Réactifs :

- EDTA à 0,05 M (0,05 moles par litre)
- KOH (2M) 4ml de
- KCN cyanure de potassium et HONH2HCl d'hydroxylamonium : une pointe de spatule (masquant des cations 2+ sauf le Ca)
- Eau distiller 50 ml.
- Réactif de Patton: acide (hydrox y2-sulfo-4 naphtylazo-1)1-hydroxyde n aphotique 3 : HHSNNA (colorant rose) : pointe de spatule pour la coloration rose.

Mode operatories

- Prendre un volume Vp de 15 ml de la solution analytique.
- Ajouter 4ml de KOH (2M)
- Ajouter une pointe de spatule de cyanure de potassium (KCN) et d'hydroxylamonium (HONH₂HCl).
- Compléter avec l'eau distillée jusqu'à 50 ml puis agiter.
- Ajouter une pointe de spatule de réactif de Patton: acide (hydroxy 2-sulfo-4 naphtylazo-1)1-hydroxyde naphténique 3 : HHSNNA (coloration rose).
- Doser avec l'E.D.T.A jusqu'au virage du rose au bleu.
- On note $V_{EDTA eq}$ volume d'EDTA à l'équivalence.

La concentration en g.L⁻¹ en Ca²⁺ est donnée par l'expression suivante :

$$[Ca^{2^+}] = \frac{V_{EDTAeq} \times [EDTA]}{Vp} \times M_{Ca}$$

Dans le cas de dosage du magnésium en présence du calcium la concentration en Mg^{2+} est calculée par la différence de volume d'équivalence (le volume de prise d'essaie doit être le même) en appliquant l'expression suivante :

$$[Mg^{2^+}] = \frac{V'_{EDTAeq} \times [EDTA]}{Vp} \times M_{Mg}$$

Avec : $V'_{EDTA eq} = V_{EDTA eqt} - V_{EDTA eq}$

III.10.3.Dosage des cations

III.10.3.1.Dosage du sodium et de potassium par la photomètre de flamme

III.10.3.1.1.Principe

Pour le dosage de deux éléments on utilise le même appareil (voir le principe de spectrophotomètre a flamme); Ce qui change, selon les conditions spectrales, les réactifs (solution étalon).

III.10.3.1.2.Réactifs

- Solution mère de Na^+ et K^+ .

- Solution étalons en Na^+ et K^+ .

III.10.2.1.3.Mode opératoire

1. Préparation des gammes d'étalonnage

Préparer une dilution de deux solutions de K^+ et Na⁺ de 1000 ppm à 100 ppm : prélever de solutions à 1000 ppm 25 ml et les transférer dans deux fioles de 250 ml, compléter au Volume à d'eau distillé, on obtient deux solutions à 100 ppm de K^+ et Na⁺.

Préparer une série de solutions d'étalonnage de K^+ et Na^+ : dans des fioles de 250 ml, introduire, à partir des solutions à 100 ppm de K^+ et Na^+ , les volumes respectifs suivants :2 ;4 ; 6 ;8 et10 ml. On obtient les gammes d'étalonnage suivante : 25 ; 58 ;94 ; 123 et 25 ppm de K^+ et Na^+ .

2. Dosage par spectrophotomètre d'émission

-faire passer les solutions de la gamme d'étalonnage.

-Pour la solution à analyser, faire la passer au spectrophotomètre à flamme.

III.10.3.1.4.Calculs

Les courbes étalons construites, à partir des solutions étalons, donnent directement les gammes puis les teneurs en Na⁺et K⁺ sont exprimées en ppm d'échantillon.

III.11.Protocole de travail

Pour suite l'évolution d'évaporation au laboratoire, On suit le protocole de travail ci-

Dessous :

Nous procédons à un système d'évaporation isotherme de façon Sebkha- maquette

(voir le Fig. (III-6), , un Cristallisoir en verre dans un bain thermostat, fixé à la température 35 C° est utilisé pour simuler en laboratoire l'évaporation isotherme de saumures du lac. Durant toute la période (un mois et demi), on enregistre à chaque jour les valeurs de la densité et de la décroissance de niveau de l'eau ainsi que la température, le

pH de l'eau et ramasse les sels précipités puis on prend un échantillon pour faire les analyses chimiques permettant de déterminer les concentrations des éléments dominants.

III.11.1.L'évaporation isotherme III.11.1.Principe

Le procédé de l'évaporation isotherme consiste à évaporer la saumure à une température constante (dans notre cas : 35°C) et à la pression atmosphérique

La composition des sels qui précipitent et des solutions saturées en équilibre est déterminée au fur et à mesure de l'évolution de la saumure au cours du temps. Les mesures de la densité des solutions sursaturées serviront par la suite de repère pour différencier les différentes étapes de l'évaporation.

L'organigramme suivant (figure III-5) schématise le procédé utilisé.

Figure (III-5) : Synoptique de l'évaporation isotherme, d'une saumure [38]

III.11.2. Déroulement de l'expérience

Un volume de 3.5 litres, de la saumure naturelle de Chott Maroune, a été placé dans un cristallisoir en verre dans un bain thermostat, fixé à la température 35°C et sous la pression atmosphérique (figure III-6).

Figure (III-6) : Dispositif expérimental

L'évolution de la densité, de la composition ionique de la phase liquide ainsi que la nature des sels déposés, au cours de l'évaporation, sont suivies systématiquement. En effet, après la séparation des phases formées, par filtration, les phases solides sont caractérisées par des analyses chimiques alors que les phases liquides sont caractérisées par des analyses chimiques de la densité, du pH et de la conductivité. La masse d'eau évaporée est aussi suivie au cours de l'évolution de la saumure.

Les opérations qui l'accompagnent sont les suivantes :

- ✓ Séparation de la phase liquide du reste solide (en équilibre) par filtration.
- ✓ Mesure de la densité, de la conductivité et du pH de la solution.
- ✓ Pesée de la phase solide et du filtrat et mesure du volume du filtrat.(Figure III-4)

III. 11.3.LA LOUPE BINOCOLAIRS OPTIKA ver .4.0.0

Cet appareil scientifique (III-8) Optika informe que ce manuel contient d'importantes informations concernant la sécurité et l'entretient de ce produit et par conséquent il doit être accessible a toutes personnes susceptibles d'utiliser cet appareil .on utiliser pour imagerie les minéraux que sont précipites

Figure (III-7) : Filtration, d'une saumures

Figure (III-8) : Loupe binoculaires optika ver .4.0.0

III.12.Conclusion

Les analyses chimiques, qui ont été réalisées ont été importants et seront présentes dans le chapitre suivant pour suive les étapes ci-dessous :

- L'évolution des molalités des saumures en fonction de temps, de niveau d'évaporation, de la densité et la température.

- étude le comportement des éléments majorités du saumures en système isotherme.

CHAPITRE IV

Résultats et díscussions

IV.1.Introduction

Les phases minéralogiques dans le système évaporitique du chott Merouane demande, des tests de fiabilités du model. A fin de testé le dit model on a procédés a la mise en place d'un dispositif expérimental d'évaporation isotherme a 35 °C pour contrôler l'évaporation à l'aire libre et la conception d'un logiciel thermodynamiques et hydrochimie permit la simulation de l'évaporation et le calcul des diffèrent paramètres thermodynamiques et naturelles permit d'évaluer avec précision la fiabilité des résultats

IV.2.Résultats expérimentaux

L'analyse des échantillons prélevés au cours de l'évaporation, permit de déterminer les concentrations des éléments majeurs tel que : Na^+ ; K^+ ; $Mg2^+$; $Ca2^+$; $HCO3^-$; $SO42^-$; Cl⁻, l'alcalinité et la salinité ainsi que les paramètres in situ (pH, Densité, T...) le tableau n (IV.01) montre les résultats d'analyse. Ce tableau montre que les concentrations de Na^+ et Cl⁻ sont élevées comparativement avec Mg^{2+} ; Ca^{2+} et K⁺ et avec les concentrations de HCO_3^- et SO_4^{2-} contribué ainsi l'augmentation de la salinité.

La variation des résultats en fonction du temps est contrôlée par les effets des paramètres Deux phénomènes jouent à la fois : Dissolution et précipitation des minéraux en fonction de la densité des solutions évaporés.

Tableau N°(IV.01) : Analyse chimique et physique de saumure du Chott Merrouane

Nº áchantillan					$[Ca^{2+}]$	$[Mg^{2+}]$	$[SO_4^{2}]$	[HCO ₃]	[C1 ⁻]	Conductivit		volume
in echantinon	DENSITE	pН	[Na ⁺]mg/l	[K ⁺]mg/l	mg/l	mg/l]mg/l	mg/l	mg/l	é mS/cm	Salinité	en ml
1	1,2304	7,40	153230,7	4277,108	109615,4	63193	18407,75	29280	82800	397	372,904	3000
2	1,2200	7,34	143384,6	4608,433	63461,53	63193	20262,9	14640	83890	477	507,258	2827
3	1,2330	7,38	84923,1	5180,722	48076,92	48610	21731,4	29280	89770	434	431,876	2525
4	1,2244	7,39	110769,2	4759,036	51923,07	53471	21533,96	26840	84130	449	457,315	2247
5	1,2300	7,29	102769,2	5662,65	865,384	48610	23654,44	29280	88490	378	344,635	1800
6	1,2450	7,20	198153,8	6445,783	788,461	53471	25774,94	21960	90880	448	455,591	1500
7	1,2420	7,28	111384,6	7469,879	692,307	48610	28321,17	24400	94360	486	524,006	1180
8	1,2513	7,16	96000,0	6942,771	730,769	68054	32175,48	19520	82130	437	436,892	1032
9	1,2540	7,22	111384,6	8283,132	788,461	68054	35972,2	19520	76720	460	476,549	900
10	1,2600	7,17	42153,8	7364,457	778,846	58332	36506,95	24000	80800	451	460,775	700
11	1,2622	7,32	71384,6	8072,289	865,384	72915	41015,3	19520	86670	438	438,572	497
12	1,2180	7,00	66769,2	10903,61	663,461	92359	48522,3	21960	77780	412	396,175	330
13	1,3220	6,75	70461,5	10120,48	653,441	106942	56428,44	17080	87030	470	494,467	90

IV.2.1. Évolution chimique des éléments majeurs dans le système évaporitique

IV.2.1.1.Évolution de la concentration des anions en fonction de la densité

1. Chlorure :

L'allure de la courbe de densité montre que le concentration de chlorure augmenté vis l'augmentation de la densité, l'effet conjugué de la dilution au début montre le passage court entre deux milieux :

Le milieu diluée et le milieu concentrée jusqu'à la précipitation des sels contenant le chlorure.

Fig (IV-2) : Courbe d'évolution de concentration de Cl en fonction de densité

2. Sulfate

L'allure de la courbe de la densité représente une augmentation des teneurs de SO_4^{2-} avec la densité.

Le courbe de variation de concentration du SO_4^{2-} en fonction de la densité montre une corrélation négative l'épausement total de sulfate dans la phase liquide pour transformés en phase solide sous forme des minéraux évaporitiques sulfurées.

Fig. (IV-3) : Courbe d'évolution de concentration de SO_4^{2-} en fonction de densité

3. Bicarbonate

L'allure générale de la courbe d'évolution du bicarbonate en fonctions de la densité montre une augmentation suivant la concentration jusqu'a 0.48 mol/l c- a-d il HCO₃elle ne précipite pas a ce concentration mais après il diminue et précipité pour formé de solide stabilité da la teneur jusqu'à une valeur de densité égale à (1.27 g/l).

Fig (IV-4) : Courbe d'évolution de concentration de HCO₃ en fonction de Densité

IV.2.1.2. Évolution de la concentration des cations en fonction de la densité

1. Sodium

L'allure générale de la courbe d'évolution du sodium en fonctions de la densité montre une augmentation au début 8.8 mol/l et une domination à la fin. 1.8 mol/l

Fig. (**IV-5**) : Courbe d'évolution de concentration de Na⁺ en fonction de densité

2. Potassium

L'allure générale de la courbe d'évolution du potassium en fonctions des densités montre une instabilité et la teneur en K^+ varié sensiblement entre les valeurs 0.12mol/l et0.22mol/l. l'effet conjugué de la dilution est peu importante pour les solutions des saumures dans le système fermé.

La courbe de l'évolution du potassium en fonction de la densité montre en générale une augmentation de la teneur avec la densité.

Le courbe montre une corrélation négative l'épaussement total de potassium dans la phase liquide pour transformés en phase solide sous forme des minéraux évaporitiques potassés;

Fig (**IV-6**) : Courbe d'évolution de concentration de K⁺ en fonction de densité

3. Magnésium

L'allure générale de la courbe d'évolution du magnésium en fonctions des jours de prélèvement montre une stabilité au début du cycle, entre les valeurs 4mol/l et 4.5mol/l sensiblement ; La teneur en Mg^{2+} varie jusqu'à la valeur 3mol/l. Par conséquente les abondances en Mg^{2+} sont faibles par contre à la fin du cycle l'effet de l'évaporation est important pour les solutions des saumures dans le système fermé.

La courbe de l'évolution du magnésium en fonction de la densité représente une stabilité au début et une augmentation à la fin.

Le courbe de variation de nombre de mole du Mg²⁺en fonction du temps montre une stabilité au début, puis une corrélation négative l'épaulement total de magnésiums dans la phase liquide pour transformés en phase

Solide sous forme des minéraux évaporitiques magnésiennes.

Fig (IV-7) : Courbe d'évolution de concentration de Mg^{2+} en fonction de densité

4. Calcium

L'allure de la courbe d'évolution du calcium en fonction de la densité montre une augmentation en générale. Cette augmentation représente le dépasse au milieu concentré.

Le courbe de variation de nombre de mole du Ca²⁺ en fonction du temps montre une corrélation négative total de calcium dans la phase liquide pour transformés en phase solide sous forme des minéraux évaporitiques calciques;

Fig (**IV-8**) : Courbe d'évolution de concentration de Ca²⁺ en fonction de Densité

IV.3.Faciès chimiques des cations et des anions

Le diagramme de Piper des saumures de chott Merouane montre que Le faciès des saumures est chloruré sodique et potassique ou sulfaté sodique devenant localement chloruré et sulfaté calcique et magnésien. Celui de la cuvette montre une grande variabilité passant du type chloruré sodique et potassique ou sulfaté sodique à chloruré et sulfaté calcique et magnésien. Cette évolution est la même avec la maturation des saumures. C'est-à dire avec la concentration. Ce qui est conforme à l'évolution décrites des lacs salés.

Cette évolution est comparable à d'autres cas décrits en Afrique du Nord. En effet, dans la cuvette, les eaux les moins concentrées sont déjà relativement chargées en éléments dissous et le faciès est déjà sulfaté calcique. Spatialement, les faciès chimiques des saumure sont progressivement progressé du facies sulfaté à calcique aux embouchure de chott devenant chloruré et sulfaté sodique à chloruré sodique à l'intérieur de chott.

Diagramme de Piper

Fig (IV-9) :Faciès chimiques des ions

IV.4. Interactions entre les paramètres de salinité IV.4.1. Relation entre la salinité totale et les ions majeurs

Le diagramme de molalité établi en fonction de TDS (figure IV-10) montre que la molalité en sulfate plus l'alcalinité est supérieure à celles du calcium. L'alcalinité résiduelle calcite plusgypse est positive. Lorsque les eaux se concentrent et précipitent du gypse, la molalité en sulfate augmente, de même que l'alcalinité alors que la molalité en calcium est stable.

La molalité en sulfate augmente moins vite que celle du chlorure et du sodium, notamment pour les eaux très concentrées, ce qui suggère la précipitation de minéraux sulfatés autres que le gypse. Enfin, les eaux les plus concentrées sont chlorurées sodiques et évoluent vers la précipitation de l'halite. La stabilité de la molalité du chlore et du sodium des saumures les plus concentrées indique la cristallisation de l'halite et donc la sursaturation permanente des saumures vis-à-vis de l'halite.

Fig (**IV-10**) :Courbe le concentration des ions en fonction de TDS gL^{-1}

VI.4.2. Relations inter-ions majeurs

La matrice de corrélation montre une bonne corrélation de tous les ions majeurs avec la densité et la TDS traduisant la prédominance du processus de l'évaporation .Les meilleures corrélations entre ions majeurs sont indiquées en gras dans le tableau IV-11

Le pHest corrélé négativement avec Ca, Na, Cl. Ses relations avec les autres ions n'est pas dépendantes mais elles sont toujours négatives. Ceci corrobore parfaitement avec l'évolution des lacs salés [40]. En effet, la concentration des saumures est accompagné dans un premier temps de la diminution de l'alcalinité suite au dépôt des minéraux carbonatés vue leur faible constantes de Solubilités. Ce phénomène se retrouve spatialement car le pH diminue dans la direction des centres chotts.

Tableau IV-II de Matrice de correlation des parametres physico-chimiques											
	Ca	Mg	Na	K	HCO3	SO4	Cl	pН	TDS	Densité	
Ca	1.00	-0.23	0.40	-0.71	0.34	-0.63	-0.06	0.55	0.75	-0.43	
Mg		1.00	-0.39	0.76	-0.58	0.86	-0.41	-0.83	0.01	0.59	
Na			1.00	-0.53	0.03	-0.61	0.29	0.38	0.78	-0.43	
K				1.00	-0.45	0.95	-0.26	-0.83	-0.45	0.53	
HCO3					1.00	-0.51	0.25	0.49	0.04	-0.42	
SO4						1.00	-0.28	-0.88	-0.49	0.70	
Cl							1.00	0.18	0.09	0.10	
pH								1.00	0.22	-0.71	
TDS									1.00	-0.21	
Densité										1.00	

Coefficients de corrélation linéaire Tableau IV-11 de Matrice de corrélation des paramètres physico-chimiques

IV.4.3. l'Evolution la concentration des ions par le temps d'évaporation isotherme:

Le courbe IV-12 montre que le concentration de sodium ; Magnésium et potassium augmente avec la concentration chlorurer et sulfatas par contre la concentration de bicarbonate et calcium reste stable.

Fig (IV-12) :Courbe le concentration des ions en fonction de le temps jours

IV.4.4.Evolution molarité des cations et des anions en fonction des volumes des saumures évaporent:

Les courbes (VI-13) (IV-14) permit que le concentration des cations et des anions augmenté vis a vis avec le volume d'évaporation on a obtenus le cas de saturation des solutions fortement concentré durant le précipitation des sels

Fig. (IV-13) : Courbe la molalité des cations en fonction de volume en L

Fig. (IV-14) : Courbe la molalité des anions en fonction de volume en L

IV.5 .Diagrammes d'équilibre:

Les diagrammes d'équilibre des eaux voisines de chott vis-à-vis de la calcite, du gypse, de l'anhydrite, de l'halite, de la Sylvite et de la Mirabilité sont déjà réalisés dans la région par Valles et all [41].

Les diagrammes d'équilibre que nous avons réalisés (Figures : IV-15-16-17-18) montrent que les saumures de chott Merouane ont atteint la saturation et parfois sursaturées vis-à vis de l'anhydrite, du gypse, de l'halite et de la bloedite mais insaturées vis-à-vis de la sylvite.

Ces résultats nous renseignent sur le degré de maturation des saumures de point de vue de leur exploitation hydro-métallurgique.

Fig: (IV-15) Diagramme d'équilibre de solubilité vis-à-vis du Gypse

Diagramme d'Equilibre Halite

Fig: (IV-16) : Diagramme d'équilibre de solubilité vis-à-vis du Halite

Fig: (IV-17): Diagramme d'équilibre de solubilité vis-à-vis du sylvite

Diagramme d'Equilibre Bloedite

Fig.: (IV-18) : Diagramme d'équilibre de solubilité vis-à-vis du Bloedité

IV.6.les phases solides de l'évaporation isotherme

Les évaporations expérimentale des saumures obtenus des phases solides qui se formées des cristaux dans les Photos dans l'annexe B vis- a- vis des le temps aides de microscope aux niveaux de laboratoire.

V.7.Conclusion

Le type des saumures des chotts est chloruré sodique et potassique ou sulfaté sodique devenant localement chloruré et sulfaté calcique et magnésien

Les diagrammes d'équilibre montrent que les saumures les saumures de chott merouane est saturées et parfois sursaturées vis-à-vis de l'anhydrite, du gypse, de l'halite, et de la bloedite mais insaturées vis-à-vis de la sylvite

En conclusion les résultats obtenus par l'évaporation, montrent qu'au début de l'expérience de l'évaporation, le sodium et le chlore sont les éléments les plus concentrés dans la solution ; Par l'effet d'évaporation le Mg^{2+} , K^+ , Ca^{2+} et SO_4^{2-} devient de plus en plus concentrés dans la solution jusqu'à la fin du cycle d'évaporation ou ces éléments diminués dans la solution pour formés des minéraux évaportiques dans la phase solide.

La simulation faite par le programme réalisé dans ce travail montre une concordance entre l'évaporation naturelle et l'évaporation simulée. Les résultats obtenus montrent que les eaux du Chott Merouane se transforment au cours de l'évaporation en plusieurs phases minérales :

> Gypse CaSO₄, 2H₂O Halite NaCl Sylvite KCl Carnallite KCl.MgCl₂, 6H₂O

Conclusion générale

Conclusion générale

La caractérisation physico-chimique des saumures du chott Merouane présentée par deux faciès chimiques entre la densité 1,20 g/L à 1,32 g/L:

à la phase précoce les saumures sont de faciès de type Chlorure- sulfaté $Cl + SO_4^{2-}$ à la phase tardive le faciès devient Sodique magnésienne potassique

Le degré de saturation des sels se diffère d'un sel à un autre Mg^{2+} , K⁺, Na

Les phases minérales formants, dans ce système présente la succession suivante:

- Le gypse
- L'anhydrite
- L'halite
- La sylvite
- La biochovite

- L'application de ce logiciel Phreeqc dans les eaux du chott permit l'optimisation des méthodes d'exploitation et prévoir le densité adéquate pour le pompage des saumures vers les bassins de cristallisation des sels d'une part et la réinjections des eaux mers vers le chott d'autre part a fin d'éliminer les sels néfastes pour l'exploitation des sels gemme (halite) et éventuellement d'autre sels utiles.

 En fin le domaine d'étude des systèmes naturels du chott est un système pluridisciplinaire, demande l'intervention des géologues des chimistes des écologistes des biologistes Il s'agit d'un champ ouvert pour les différents domaines d'études.

Bíbliographies

- [1] M.G.Valyashko ; "Playa lakes: a necessary stage in the development of saltbearing basin". J.Geo of Sal Dep. 1972.<u>41</u>.51
- [2] A.Lerman; "Lakes chemistry geology physics". 1978. USA.
- [3] B.S.Krumgalz; "Application of Pitzer ion interaction model to natural hypersaline brines" J. Mole. liq .2001.3.19
- [4] C.Monnin ; "Modélisation des solutions ioniques concentres applications géochimiques" Thèse Univ P.Sabtier de Toulouse. 1983.
- [5] M.J.Gimeno; "Ree geochemistry in the natural acidic waters of the creek, Northeastern Spain" Thèse Univ de Saragosse; Spain. 2001.565.570.
- [6] S.Lavelin ; "Exploitation du chott Merouane" avant projet SOAREM/DED ; vol 1 et 2 .1993
- [7] M. Hacini, E. Oelkers et N.Kherici., "Retrieval and interpretation of precipitation rates generated from the composition of the Merouane Chott ephemeral lake"

J. géochem. 2005 (Accept in press)

- [8] http://www.ramsar.org/key_ris_index.htm
- [9] M.Gueddari ; "géochimie des sels et des saumures du Chott El-jerid" Thèse 3^{eme} cycle. Univ P.Sabtier.Touluse.1980.
- [10] R.G.Bryantm et M.P.Rainey; "Investigation of flood inundation on plyas within the Zone of Chotts using a time-series of AVHRR". J. Remote sensing of Environment.2002.<u>360</u>.375.
- [11] A.N.R.H; "Manuel de hydraulique d'Ouedrigh". Ouargla. 1990.
- C.Nesson ; "L'évolution ressources hydrauliques dans les oasis du Bas-Sahara algérien"
- [12] single ion free energies of solvation" .J.Chem.phys.1977.4413.4424
- [13] D.Perret ; "calcul d'équilibres géochimiques par minimisation d'énergie libre". Thèse Univ de Rennes.1980.120
- [14] R.F.Platford; "experimental method: esopiestic, in activity coefficients in electrolyte solutions" J.Pytckouoiczed. CRD Press. 1979.<u>65</u>.80
- [15] B.Fritz ; " Etude thermodynamique et modélisation des réactions hydrothermales et dia génétique". Univ L.Pasteur. Strasbourg .1981.197.

- [16] F. Gaboriau ; "étude du rôle de l'ion alcalin au cours de la gélification des solutions silico-alcalines déstabilisées par addition d'ions calcium". Univ de bourgogne.1999.
- [17] W.Stummm et J.J.Morgan; "Aqualic chemistry. An introduction emphasizing chemical equilibria in natural waters" Thèse Univ New York, 1970.583.
- [18] C.J.Allegre et G.Michard ; "Introduction à la géochimie" Preses Univ France.1973.220.
- [19] N.VanBreemen et W.G.Wielemaker; "Buffer in tensities and equilibrium pH of minerals and soils" J. Sci. Soc. Amer. 1974.55.65
- [20] G.Bowrie " Acquisition de la composition chimique des deux en climat tempéré Application aux granites des vosages et de la Margeride" J.Sci.Géol, 1976. <u>52</u>. 176.
- [21] A.Al-Droubi, B.Fritz. J.Y.Gac et Y.Tardy; "Generalized residual alkalinity concept, application to predication of the chemical evolution of natural waters by evaporation"
- J. Sci.1980. <u>502.</u>560.
- [22] M.Whitfied; "Activity coefficients in natural waters, in Pyrokowicy.R.M. ed, Activity coefficients in electrolyte solutions" J. CR.1979.<u>153</u>.300
- [23] B.S.Krumgalz, A.Malister, I.J.Ostrich et F.Millero; "Heat Capacity of concentrated multicomponent aqueous electrolyte solutions at various temperatures" J.Solut.Chem 1992.635.649
- [24] S. Offerlé, H. Capdevila et P. Vitorge ; "Np(VI)/Np(V) en milieu carbonate concentré" J. Géochimie. 1995.<u>1</u>.39
- [25] K.S.johnson et R.M.Pytkowicz; "Ion association of Cl⁻ With H⁺, Na⁺, K⁺, Ca²⁺ and Mg²⁺ in aqueous solutions at 25 °C". J.Sci.1978.<u>1428</u>.1447.
- [26] F.Gaboriaud ; "Étude du rôle l'ion alcalin au cours de la gélification des solutions Silico-alcalines déstabilisées par addition d'ion calcium" Thèse Univ de Bourgogne 1999.69.74
- [27] M. Camredon ; "Développement d'un module thermodynamique pour la formation des aérosols organiques secondaires" Thèse Univs Paris 7. 2003.

- [28] K.S.Pitzer et G.Moyora; "Thermodynamic of electrolytes: II Activity and Osmotic coefficients for strong electrolytes with one or both ions univalent". J.Phys. Chem. 1973.2300.2308
- [29] Unesco .1972. Projet ERESS. Etude des ressources en eau du Sahara septentrional. Rapport sur les résultats du projet. UNESCO.PARIS .100P.
- [30] :Hacini M .Olkers ,E.H.Kherici,N.2008.Mineral precipitation rates during the complete evaporation of the Merouane Chott ephemeral lake .GeochimGosmochim Acta 72:1583-1597.1
- [31], K.S.Pitzer, R.Niroy et L.E.Silvester; "Thermodynamic of electrolytes: VII. Sulfuric acide" J.Chem.Soc. 1977.<u>4930.</u>4936
- [32] M. Hassairi, M. J. Safi et S. Chibani; "Natural brine solar pond: an experimental study" J. Els. Scie. 2001.<u>1.</u>11

[33] AbdelWahed, M.S.M., Mohamed E.A., El-Sayed, M.I., M'nif, A., Sillanpää, M., 2014.Geochemical modeling of evaporation process in Lake Qarun, Egypt, J. Afr. EarthSci. 97 : 322-330.

[34] Durand, G., 2010. Potentiomètre : Définitions et principes généraux, Ed.T.I.M'nif, A., 2001. Valorisation des saumures de sud tunisien, Habilitation, Faculté des Sciences de Sfax, Tunisie.

[35] Parkhurst, D. and Appelo, C., 2013. Description of Input and Examples for Phreeqc (Version 3) - A computer program for speciation, batch-reaction, one-dimensional transport, And inverse geochemical calculations, Tech. Rep. 6, US Department of the Interior, US Geological Survey, http://wwwbrr.cr.usgs.gov/ (last access:15 November 2016).

[36]. AbdelWahed, M.S.M., Mohamed E.A., El-Sayed, M.I., M'nif, A., Sillanpää, M., 2015. Crystallization sequence during evaporation of a high concentrated brine involving the system Na-K-Mg-Cl-SO4-H2O. Desalination, 355: 11-21.

[37].AbdelWahed, M.S.M., Mohamed E.A., El-Sayed, M.I., M'nif, A., Sillanpää, M., 2015. Assessment of water quality in surface waters of the Fayoum watershed, Egypt. Environ Earth SCI, 355 : 11-21.

[38] .Saïd, H., 2013. Caractérisation et étude de l'évaporation d'une saumure naturelle Provenant de chott el Jerid. Mémoire de Master, Faculté des Sciences de Tunis, 106p.

[39]. Gilbert, E., 1989. Géochimie et paléo hydrologie des bassins lacustres du Nord-ouest Saharien. Programme Palhydraf, site 2. Thèse de Doctorat. Univ. Paris XI, Orsay, 210p.
[40]. M'nif, A., et Rokbani, R., 2004. Minerals successions crystallization related to Tunisian Naturalbrines, cryst. Res. Technol. 39: 40-49. [41]. Valles, V., Rezagui, M., Auque, L., Semadi, A., Roger, L., et Zouggari, H., 1997.Geochemistry of saline soils in two arid zones of the Mediterranean basin. I. Geochemistry of The Chott Melghir-Mehrouane watershed in Algeria. Arid Soil Research and Rehabilitation 11:71 84

Janvier	Février	Mars	Avril	Mais	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	TOTAL	MOYENE
50,2	12,9	0	39	0	0	0	0	1,4	0	12,7	1,9	118,1	9,84
19,7	16,5	34,5	0	1,6	0	0	0	7	5,3	21,4	1	107	8,92
16	0	11,8	0,6	5,6	0	0	0	0,3	0	10,4	0	44,7	3,73
12,6	18	0	0	1,8	0	0	3	0	1,5	0	0	44,9	3,74
7,9	22,8	1,8	3,5	0,8	0	0	0	4,8	8	2,3	8	51,9	4,33
10,1	14	64,7	10	0	0	0	0	0	0	50,2	0	153	12,75
0	14,6	0,1	0	2,4	23,2	0	0	3,1	0	0	4	43,4	3,62
0	6,4	6	40,4	0,6	0	0	0	0	0	12,4	6,6	72,4	6,03
0	2,2	5,4	0,1	2,2	0,9	0	0	0	0,2	1,7	18,9	31,6	2,62
2,5	0	5	0,6	0	0	0	0	0	11,7	10	1,1	30,9	2,58
9,6	0	0,1	3,6	11,2	0,7	0	0	2,6	0	0	5,9	33,7	2,81
0,6	0,7	37,6	8,1	2,2	0	0	0	0,6	14	6,6	9	79,4	6,62
8,5	2,5	10,3	0	1	1,8	0	0	0,1	17,1	0,1	0,3	41,7	3,48
0	0	1,7	0	1,3	4,1	0	0	5,2	6,9	34,9	0,4	54,5	4,54
1,4	0,2	0	1	0	1,5	0	0	1	0	5,2	1,2	11,5	0,96
60,2	0	6,8	17	29,4	0	0	13,4	0	1	1	19,6	148,4	12,37
0	3,1	17,5	0,2	9	1,8	0	0	3,3	2,4	5,5	0	42,8	3,57
34,7	0	23,1	18,8	23,7	0	14,4	0	0	0	7,2	10,3	132,2	11,02
0	22,9	5,1	0	1	0	0	1	1,4	6,8	12,2	4,8	55,2	4,6
4,6	3,2	10,8	6,3	0	1,1	0,1	0	12,6	10	0	0	48,7	4,06
2,7	0	0	0	0	0	0	3,2	31,3	0,9	1,9	21,4	61,4	5,12
42,7	21,2	16,1	0	2,1	0	0	0	4,9	0,3	0	1,2	88,5	7,38
0	0	0	17,9	1,5	0	0	0	20,5	0,2	10,4	13,7	64,2	5,35
0	2,9	1,3	5,1	0	7,8	0	0	5,1	19,9	2,6	1,7	46,4	3,87
39,9	5	22	0	10	4	2	0	0	0	33,2	2	118,1	9,84
0	0	2	2	15,1	0	14	0	1	17,5	0	7	58,6	4,88
41	0	11	1	0	0	0	0	47	0	15	26,6	141,2	11,77
50	0	0	0,1	72	0	0	21	34	68	84	0	399,1	27,43
20,8	4,3	13,9	0,2	0	0	0	5	0	12,5	3,4	9,1	69,2	5,77
435,7	173,4	308,6	175,5	194,5	46,9	30,5	46,6	187,2	204,2	344,3	175,3		
15,02	5,98	10,64	6,05	6,71	1,62	1,05	1,61	6,46	7,04	11,87	6,04		

Tableau N°01: Les précipitations moyennes mensuelles et annuelles en mm (1975-2003)

Tableau N°02: Les températures moyennes mensuelles et annuelles en °C (1975-2003)

		Févrie							Septembr			Décemb		
	Janvier	r	Mars	Avril	Mais	Juin	Juillet	Août	e	Octobre	Novembre	re	MOYENE	
1975	9,2	11,7	14,8	18,8	24,6	28,8	32,6	31,5	29,2	20,2	13,1	10,9	20,5	
1976	8,9	12,2	13,7	19,6	24,5	28,4	32,6	31,3	27,4	21,1	12,6	11,9	20,4	
1977	11,7	15,3	17,5	19,8	24,3	29,4	35	32,2	26,9	21,3	15,6	11,4	21,7	
1978	9,5	15	16,1	20,2	24,5	30,6	31,8	31,5	26,9	18,3	13,5	12,6	20,9	
1979	12	13,9	16,5	18,4	24,2	30,6	32,7	32,9	26,2	23	12,9	10,3	21,1	
1980	9,5	12,3	16	18,6	23,5	28,9	31,2	32,5	28,5	19,7	15,8	8,4	20,4	
1981	8,1	11,2	18,9	21,1	26,1	30,05	32,5	30,7	28,1	22,2	13,9	13	21,4	
1982	11,2	12,4	15,4	19,2	25	32,1	34,7	33,6	28,4	21,7	15,3	9,3	21,5	
1983	7,4	11,4	15,4	19,2	25	32,2	33,4	33,6	37,7	21,6	17,2	10,2	22	
1984	10,1	11,6	15	21,1	24,4	29,7	31,6	33,1	27,4	19,4	15,1	10,4	20,7	
1985	9,4	15	14,7	21,6	24,6	31,7	33,7	32,3	27,3	21,5	17,2	11	21,7	
1986	10,1	13,4	15	19,5	26,6	29,9	32,3	33,6	28,2	22,9	14,5	10,5	21,4	
1987	9,7	13,1	15,5	21,5	24,7	31,4	33,9	33,7	29,5	32,5	15,1	12,9	22	
1988	12,5	13	15,6	21,8	28,3	30,4	34,8	33,5	26,7	23,6	16,5	9,7	22,2	
1989	9,2	12,4	17,2	20,2	25,1	29,1	32,6	34,6	29,9	22,1	17,3	13,5	21,9	
1990	11,2	13,9	16,2	20	24,2	31,4	32,7	30,9	31,7	24,3	16,1	9,9	21,9	
1991	8,9	11,7	17,3	18,7	21,1	29,3	33,5	32,5	30	22,2	14,2	9,6	20,8	
1992	8,6	11,3	15,2	19,5	23,9	28,8	31,1	32,9	29	22,9	15,9	11,1	20,9	
1993	8,7	11,2	14,2	20,5	26,3	32,5	33,8	33,2	28,8	23,1	15,9	10,5	21,6	
1994	11,4	12,7	16,9	18,6	27	31,3	33,6	34	28,9	22,1	16,3	10,5	21,9	
1995	9,8	14,6	15,9	18,9	26,7	30,5	33,3	33,7	27,1	22,7	15,7	13,7	21,9	
1996	12,9	12,1	13,2	20,4	25,3	28,3	32,5	34,4	27,3	20,1	16	13,1	21,3	
1997	11,8	13,8	15,4	19,6	26,2	33,3	34,9	33,3	27,9	22,8	16,4	12,5	22,3	
1998	10,9	13,3	16,1	20,8	25,3	31,1	33,9	33,7	30,2	20,5	15,1	9,6	21,8	
1999	11	11,35	16,85	21,95	29,55	33,9	34,25	34,05	31	25,45	15,6	11	23	
2000	8,4	12,45	17,6	22,65	28,3	33,7	30,15	32,5	29,1	21,1	16,45	13	22,1	
2001	11,5	12,2	20,9	20,6	26,4	31,85	35,45	32,5	29,95	26,8	16,6	10,9	23	
2002	9,6	13,35	18,45	21,4	25,85	31,4	34,45	33,55	28,9	22,8	17,3	13,25	22,5	
2003	11,5	11,5	15,8	22,2	27,1	31,5	35,96	33,3	28,9	25,4	16,1	10,7	22,5	
SOMME	294,7	369,35	467,3	587,4	738,6	892,55	964,9	955,1	837,05	644,35	449,25	325,35		
MOYENNE	10,16	12,74	16,11	20,26	25,47	30,78	33,27	32,93	28,86	22,22	15,49	11,22		

6

	Janvier	Février	Mars	Avril	Mais	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	MOYENE
1975	15,8	16,9	21,7	24,9	31,4	36,2	40,4	38,8	36,4	27,1	19,7	17,2	27,2
1976	14,9	17,8	18,6	26,1	30,4	34,8	39,6	38,6	33,9	27,4	18,9	18,7	26,6
1977	17,3	22,8	25,2	27,1	30,7	37	43,4	39,2	33,1	28,4	22,9	18,4	28,8
1978	15,8	21,9	22,7	27	30,8	38,1	39,3	38,9	34	24,8	19,9	20,5	27,8
1979	19,7	20	23,1	25	30,8	37,7	39,9	40,5	31,9	29,3	19,8	18,2	28
1980	16,5	18,9	21,8	24,3	29,6	37,3	39	39,9	35,3	26,4	21	14,3	27
1981	14,3	17,4	25,9	28,6	33,1	37,7	38,8	37,9	35	29,9	21,5	20,4	28,4
1982	18,3	17,4	25,9	25,1	30,9	39,4	42,4	41,1	35	28,3	21,3	15,5	28,4
1983	16,1	18,8	22,7	29,3	32,5	37,1	40,7	41,6	34,5	28,6	24,1	17,4	28,6
1984	16,8	18,7	21,9	27,7	31,4	36,9	39,3	40,1	34,5	25,7	22,1	16,8	27,7
1985	15,7	22,8	21,3	28,8	31,5	39,5	41,2	39,8	34,5	27,8	24,2	17,5	28,7
1986	17,2	20,6	20,5	26,2	33,4	36,6	39,3	41,1	33,4	28,9	20,3	16,6	27,8
1987	16,4	19,7	22	29	31,3	37,9	41,1	41,3	36,5	30,5	21,9	19,7	28,9
1988	19,1	19,4	23,2	28,6	35	36,9	41,8	40,5	33,4	30,2	21,7	15,6	28,8
1989	15,5	19	24,6	26,8	32,6	35,6	39,5	41,3	36,9	28,4	24,3	20,3	28,7
1990	16,1	21,4	22,5	26,2	29,8	38,9	39,4	37,5	37,5	31,3	22,3	15,7	28,2
1991	16,2	19,3	15,5	26,9	30,6	37,6	42,2	41,1	36,8	30,4	22,2	16,4	27,9
1992	14,9	18,1	20,7	25,8	30,4	34,6	37,8	40,2	36,2	30,5	22,3	17,6	27,4
1993	16,2	16,3	21,2	27,7	33,3	39,8	40,9	40,6	35,7	30,4	21,3	17,1	28,4
1994	17,9	20,8	23,1	25,4	36,2	38,8	41,2	41,7	35,6	28,2	23,6	18,2	29,2
1995	17,2	22,6	22,6	25,6	33,7	37,4	41,1	40,3	33,4	28,9	22,7	20,1	28,8
1996	18,4	17,9	22,8	27,1	32,4	34,8	39,7	41,8	34,1	27,5	23	20,2	28,3
1997	18,7	21,5	22,5	25,4	33,5	40,9	42,7	39,7	33,8	29,4	23,1	18,8	29,2
1998	17,9	20,4	22,3	28,6	31,8	38	41,1	40,9	37	27	22	16,7	28,6
1999	16	17,8	23,7	29,8	37,7	41,6	41,8	43,6	37,5	32,5	21,3	16,7	30
2000	15,6	19,9	25,2	30,1	35,1	41,1	37,2	40	36,1	27,2	23,3	19,9	29,2
2001	18,3	20	28,7	27,9	33,2	39,4	43,5	40	36,3	33,8	23	16,7	30,1
2002	16,1	21,2	25,8	28,7	32,9	38,8	41,7	40,4	35,9	30	23,7	20	29,6
2003	17,5	17,9	22	29,1	34,2	38,6	43,5	40,7	35,7	31,6	22,9	17,1	29,2

Tableau N°03: Les températures maximales mensuelles et annuelles en °C (1975-2003)

Annexe A

Tableau N°04: Les tem	pératures minimales	mensuelles et annuelles e	n °C	(1975-2003)
				(

	Ionvion	Eáunian	More	A ymil	Maja	Inin	Inillat	A oût	Sontombro	Octobro	Novombro	Décombro	MOVENE
1075		7 1				Juii 21.2	24.2	24	22.4	12.6		5 A	
1975	3,7	7,1	7,0 9,6	12,9	17,0	21,2	24,2	24	22,4	15,0	7,4	5.0	14
1970	<u> </u>	0,9	0,0	12,0	17.1	21,3	24,0	23,9	2,3	1.1.4	7,1	5,9	14
1977	1,2	9	10,2	12,0	17.4	21,1	20,4	24,0	20,2	14,4	9,2	5,5	14,8
1978	3,/	8,7	9,4	12,8	1/,4	22,8	23,5	234	19,6	12	7,5	0	13,9
1979	7,8	8,2	9,9	11,/	16,/	23,1	24,8	25,1	20,7	17,2	6,9	3,8	14,/
1980	3,3	6,3	10	12,8	16,8	22	22,8	24	21,9	13	11,3	3,5	14
1981	2,6	5,6	12	14,6	18,6	23,5	25,8	22,7	21,6	15,1	7,6	6,8	14,7
1982	5,1	5,8	8,6	13,6	18,6	24	26,3	25,8	22	15,9	9,7	4	15
1983	0,4	4,5	8,6	14,4	19,1	22,4	25,7	25,9	20,9	15,2	10,7	4,3	14,3
1984	4,1	5	7,8	13,9	16,7	22,3	23	25,7	20,8	13,9	9,1	5,3	14
1985	4,2	8,4	7,8	14,1	17,4	23,8	25,8	24,8	20,1	15,4	11,3	5,2	14,9
1986	4	6,4	9,6	12,6	19,2	22,5	24,5	25,7	22	17,4	9,1	5,5	14,9
1987	3,5	6,7	8,7	13,5	18,1	24,3	26,6	26,6	22,4	16,8	8,7	7,2	15,3
1988	5,8	6,7	9,2	14,6	20,8	24	27,3	26,2	19,8	17	11,8	4,7	15,7
1989	3,7	6,2	9,7	12,7	16,9	22,1	24,9	27,5	23	16,5	10,8	7,6	15,1
1990	7,7	7,2	10,3	14,3	18,8	24,5	25,7	24,4	24,4	17,8	10,6	5	159
1991	3,7	5,5	11,2	13,5	15,3	22,4	25,9	24,7	22,6	16,5	8,2	4,6	14,5
1992	3,6	5,4	10,2	13,1	17,9	22,2	24,5	25,7	22	16,7	10,2	5,8	14,8
1993	2,4	5,8	8,6	13	19	25,2	26	25,5	22	17,1	11,2	4,9	15,1
1994	5,7	5,1	10,6	11,6	19,5	23,9	25,6	25	23,1	16,7	10,2	3,8	15,1
1995	3,1	7,5	9,1	11,9	19,2	23,3	26,6	26,6	21,5	17	9,7	8,8	15,4
1996	8,3	7,3	10,6	13,8	18,7	21,7	24,9	26,9	20,7	13,3	9,6	6,7	15,2
1997	5,9	6,8	8,3	12,6	18,8	25,6	27,3	26,6	22,1	16,7	10,7	7,2	15,7
1998	5	6,6	8,8	14,4	18,2	23,5	26,4	26,3	23,7	14,4	9,1	3,1	15
1999	6	4,9	10	14,1	21,4	26,2	26,7	24,5	24,5	18,4	9,9	5,3	16
2000	1,2	5	10	15,2	21,5	26,3	23,1	25	22,1	15	9,6	6,1	15
2001	4,7	4,4	13,1	13,3	19,6	24,3	27,4	25	23,6	19,8	10,2	5,1	15,9
2002	3,1	5,5	11,1	14,1	18,8	24	27,2	26,7	21,9	15	10,9	6,4	15,4
2003	6,6	5,8	9,4	15,3	19,6	24	27,7	25,9	22,3	19,7	10,3	5,3	16

	Janvier	Février	Mars	Avril	Mais	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Moyenne%	TOTAL
1975	70	72	45	54	44	37	32	38	50	54	68	68	52,7	595
1976	72	65	65	49	51	45	36	32	40	55	73	71	54,5	609
1977	79	58	46	48	47	39	30	34	46	49	60	64	50	561
1978	62	53	42	41	45	39	35	44	51	72	66	52	50,2	563
1979	58	54	41	43	37	36	36	35	51	48	59	61	46,6	523
1980	58	57	49	44	40	32	32	34	47	52	67	69	48,4	549
1981	60	58	42	44	38	32	32	32	40	45	61	57	45,1	509
1982	55	52	45	57	37	33	31	39	52	51	65	67	48,7	551
1983	58	55	47	38	35	34	25	29	33	46	49	57	42,2	472
1984	56	46	47	42	38	32	32	36	40	56	56	61	45,2	510
1985	59	50	51	35	37	30	24	30	42	51	50	58	43,1	487
1986	53	50	53	47	39	39	35	29	51	57	72	69	49,5	555
1987	63	52	60	48	38	31	30	32	39	50	53	65	46,8	530
1988	54	49	39	38	39	39	46	32	37	53	68	76	47,5	531
1989	71	32	46	43	42	38	37	38	48	62	60	70	48,9	549
1990	77	64	55	50	56	38	35	48	29	45	68	74	53,3	601
1991	60	52	50	43	40	34	26	26	45	53	57	69	46,3	521
1992	73	60	59	49	46	33	33	29	36	39	65	67	49,1	556
1993	65	66	54	43	38	28	28	28	41	46	73	74	48,7	556
1994	63	52	54	43	36	42	33	38	50	58	67	67	50,3	561
1995	63	59	50	45	38	36	35	36	49	57	54	74	49,7	560
1996	69	57	53	46	39	42	34	35	44	51	54	51	47,9	533
1997	58	47	50	50	44	37	34	36	51	55	58	63	48,6	546
1998	64	59	43	37	39	32	29	36	49	57	60	63	47,3	536
1999	72	57	48	34	29	29	53	31	45	46	63	75	48,5	553
2000	73	55	45	37	45	34	38	33	33	56	56	61	47,2	532
2001	62	48	42	42	39	32	28	26	48	45	57	70	44,9	507
2002	67	55	46	41	39	29	33	34	41	48	55	60	45,7	519
2003	64	56	53	40	37	34	29	32	41	51	60	66	46,9	529
SOMME	1858	1590	1420	1271	1172	1016	961	982	1269	1508	1774	1899		
MOYENNE	64,069	54,83	48,97	43,83	40,41	35,03	33,14	33,86	43,76	52	61,17	65,48		

Tableau N°05: L'humidité moyennes mensuelles et annuelles en % (1975-2003)

	Janvier	Février	Mars	Avril	Mais	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Moyenne%	TOTAL
1975	74	73	239	243	301	387	481	419	288	236	105	115	246,8	2961
1976	84	126	149	234	338	420	465	515	342	288	117	121	266,6	3199
1977	84	137	177	234	310	336	394	505	261	208	135	87	239	2868
1978	121	101	171	252	264	276	363	381	303	121	81	140	214,5	2574
1979	140	115	236	267	310	390	409	381	240	233	105	93	243,3	2919
1980	103	121	212	261	290	410	380	333	288	194	111	115	234,8	2818
1981	144	87	290	233	248	372	374	300	236	200	113	248	237,1	2845
1982	86	78	179	208	332	458	422	479	276	211	130	83	245,2	2942
1983	97	137	252	341	402	428	540	496	333	211	147	115	291,6	3499
1984	127	222	207	292	427	431	376	563	359	197	158	155	292,8	3514
1985	156	248	245	404	477	536	622	494	379	264	155	129	342,4	4109
1986	148	226	217	303	330	364	461	421	270	146	146	120	262,7	3152
1987	172	202	168	302	310	382	384	351	169	137	159	94	235,8	2830
1988	177	164	247	330	449	422	417	388	283	236	154	91	279,8	3358
1989	92	99	319	364	321	372	396	444	364	180	180	110	270,1	3241
1990	68	130	192	227	259	433	439	317	355	257	81	100	238,2	2858
1991	75	131	311	231	314	438	450	370	262	245	165	81	256,1	3073
1992	60	108	186	314	371	458	448	478	358	325	128	108	278,5	3342
1993	101	118	192	339	445	616	569	509	376	385	109	91	312,5	3750
1994	133	194	258	316	463	433	478	422	310	162	126	130	285,4	3425
1995	158	185	256	311	418	453	509	390	284	215	201	154	294,5	3534
1996	118	159	271	340	409	415	496	472	337	230	117	174	294,8	3538
1997	137	143	201	240	417	511	507	400	287	233	161	126	280,3	3363
1998	121	137	264	344	404	443	451	498	415	237	157	121	299,3	3592
1999	81	143	227	253	339	343	361	324	260	87	79	65	213,5	2562
2000	599	100	167	275	283	341	298	295	260	147	99	112	248	2976
2001	111	124	202	174	220	274	422	295	189	182	96	56	195,4	2345
2002	66	106	160	208	285	304	298	272	190	139	130	90	187,3	2248
2003	99	95	104	184	225	238	317	285	247	197	111	113	184,6	2215
SOMME	3732	4009	<u>62</u> 99	8024	<u>99</u> 61	11684	12527	11797	8521	6003	3756	3337	7470,8	
MOYENNE	128,69	138,24	217,21	276,69	343,48	402,97	431,79	406,79	293,83	207	129,52	115,07	622,569	

Tableau N°06: Evaporation moyennes mensuelles et annuelles en mm (1975-2003)
	Janvier	Février	Mars	Avril	Mais	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	MOYENE
1975	2	4	6	6	5	5	4	4	5	4	4	4	4,4
1976	4	5	5	5	5	5	5	5	4	5	5	4	4,6
1977	4	4	4	5	5	6	5	5	5	3	135	87	4,2
1978	3	4	4	5	6	4	4	5	5	2	81	140	3,8
1979	3	4	3	3	3	3	3	3	5	4	105	93	3
1980	3	2	4	4	4	4	3	2	3	2	111	115	3
1981	3	2	3	4	3	4	3	2	2	2	113	248	2,8
1982	3	3	3	4	4	3	2	3	2	3	130	83	3
1983	1	2	3	3	4	3	3	3	3	2	147	115	2,5
1984	2	3	3	4	5	3	2	3	3	2	158	155	2,8
1985	4	3	3	5	5	4	3	3	3	3	155	129	3,5
1986	3	4	4	4	3	2	2	3	3	3	146	120	2,9
1987	3	2	3	4	5	5	5	4	3	3	159	94	3,6
1988	4	4	4	5	5	6	4	4	4	4	154	91	4,2
1989	3	4	4	5	5	5	4	4	4	3	180	110	3,8
1990	4	2	3	4	5	4	3	3	4	3	81	100	3,2
1991	2	3	4	4	4	4	3	3	3	0	165	81	2,8
1992	1	2	3	4	3	3	3	2	3	3	128	108	2,7
1993	1,9	4,3	3,3	4,2	5,4	5	4,8	3,7	2	3,8	109	91	3,8
1994	2,6	2,5	3,5	3,1	2,3	3	5,1	1,9	3,7	1,9	126	130	2,5
1995	2,7	2,3	3,3	3,3	2,8	3,4	3,1	2,9	1,9	2,4	201	154	2,9
1996	2,6	3,9	2,3	3,1	3,3	2,8	2,6	2,5	2,9	1,7	117	174	2,6
1997	1,6	0,8	1,6	3,3	3,4	3,2	3	2,3	2,5	1,9	161	126	2,4
1998	2	1,8	2,5	3,3	3,8	3	2,1	2,2	2,3	2,8	157	121	2,6
1999	3	3	4	4	4	4	4	0	2,2	4	79	65	3,4
2000	2	0	4	5	4	3	3	3	0	3	3	4	3,1
2001	3	3	4	4	5	4	4	3	3	3	3	3	3,5
2002	2	2	3	4	4	4	4	4	3	2	4	3	3,3
2003	3,9	3,4	2,5	4,4	4,3	2,2	2,1	1,9	2,2	3,5	2,2	3,3	3

Tableau N°07: La vitesse du vent moyen mensuel et annuel en m/s (1975-2003)

	Janvier	Février	Mars	Avril	Mais	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Moyenneheure
1975	0	174	291	243	301	372	381	344	267	313	234	205	260,4
1976	217	185	217	312	313	351	375	357	309	270	252	239	283,1
1977	220	266	307	300	329	378	341	347	330	279	264	257	301,5
1978	233	232	307	294	350	339	384	363	327	267	255	242	299,4
1979	202	190	260	309	335	303	381	353	267	239	267	264	280,8
1980	251	228	267	290	344	352	398	362	298	303	215	243	295,9
1981	274	250	271	272	336	311	351	343	286	303	281	248	293,8
1982	259	229	257	263	303	327	359	341	266	233	223	238	274,8
1983	272	240	246	240	251	312	334	284	290	268	226	261	269,5
1984	238	237	278	297	307	326	372	293	276	261	245	207	278,1
1985	219	224	263	247	313	332	362	345	281	273	217	206	273,5
1986	258	232	248	322	344	340	358	327	277	234	229	234	283,6
1987	235	235	283	295	286	259	299	328	302	265	249	201	269,8
1988	234	228	283	286	304	201	325	334	298	236	174	234	261,4
1989	231	212	287	283	339	332	365	274	261	247	245	224	275
1990	261	269	242	242	297	326	368	358	283	257	234	236	272,8
1991	228	239	225	284	326	308	345	366	273	233	249	194	272,5
1992	218	243	202	276	294	332	358	355	307	264	235	237	276,8
1993	244	210	283	318	324	310	360	326	283	233	191	244	277,2
1994	220	223	254	319	344	343	368	370	227	245	270	268	287,6
1995	279	268	279	309	334	336	368	315	237	277	249	226	289,8
1996	220	227	272	286	318	354	364	326	261	287	237	249	283,4
1997	233	262	321	263	334	328	355	320	264	281	261	246	289
1998	252	264	296	296	344	348	381	360	278	278	265	270	302,7
1999	204	261	300	308	335	328	351	300	269	280	204	227	280,6
2000	276	285	287	393	284	371	372	349	294	240	254	231	294,7
2001	256	263	299	310	221	345	344	349	266	270	223	225	280,9
2002	268	261	294	280	248	353	297	286	279	288	209	245	275,7
2003	207	229	273	274	311	370	355	366	291	207	243	231	279,8

Tableau N°08: La durée d'insolation moyennes mensuelles et annuelles en heure (1975-2003)

Tableau N°09 : Coupe stratigraphique

Forage N°5 Dendouga (AL-Meghaier) C13-SM3

Profounder	Description	ETA	GES
7 -76 m :	Alternance de sable et argile		
76 – 134 m :	Argile sableuse avec présence de grès à ciment calcaire		
134 – 145 m :	Calcaire	MOI-PLIOC	CENE
145 – 257 m :	Alternance d'argile et de sable fin argileux		
257 – 307 m :	Sable moyen-fin à gravier quartzeux avec niveaux argileux		
307 – 392 m :	Alternance de calcaire dolomitique et de marne		
	(présence de gypse et anhydrite)	EOCENE	
392 – 412 m:	Marnes argileuses, présence de gypse et anhydrite		CARBONA
	Alternance de marnes, anhydrite et gypse		
412 – 579 m:	Présence de niveaux de calcaire dolomitique et de dolomie		
	Alternance de marnes et dolomies présence d'anhydrite		
579 - 633 m :	Alternance de marnes, dolomies et d'anhydrite		
633 – 1044 m :			
1044 – 1377 m :	Alternance de calcaire dolomitique, marne et anhydrite,	SENONIEN	LAGUNAIR
	presence de gypse		
1377 – 1411 m :	Gypse anhydrite marno- calcaire et calcaire dolomitique,		SALIFERE
	presence de marnes		
1411 – 1454 m :	Anhydrite, presence de sel		
1454 – 1550 m :	Alternance de marnes et calcaires dolomitiques, présence	TURONIEN	
	d'anhydrite		
1550 – 1786 m :	Alternance de marne, anhydrite et gypse, présence de	CENOMANI	EN
	dolomie		
1786 – 1876 m :	Calcaire dolomitique, marne, présence de dolomie	VRACONIE	N
1876 – 1884 m :	Calcairegréseux et Marne		
1884 – 2008 m :	Alternance d'argile, grés et marne	ALBIEN	
2008 – 2054 m :	Calcaire, ² calcaire dolomitique et marne	APTIEN	
2054 – 2089 m :	Argile et grés	BARREMIE	N
2089 – 2167 m :	Alternance d'argile et sable moyen-fin		
2167 – 2215 m :	sable moyen à grossier, présence de grés argileux		
2215 - 2230 m :	Alternance de grés, argileux de sable moyen à grossier à fin		
	quartzeux, présence de gravier, quartz et de lignite		

Tableau N°10:Données cristallographiques et propriétés physiques et chimiques des sulfates, carbonates et chlorures

Nom du minéral	Système	Dista	nces (en	A°) de	s cinq pi	remiers	Référence	Ma	ailleéléme	ntaire	Densité	Poids	Indices de réfraction	on	Proprieties
et	cristallin	pics	de diffra	action de	es rayon	s X, et	A.S.T.M.		$a_0 - b_0 - c_0$			molecular	n _x		et
Formule chimique		·	inte	nsités (e	en Z)				αβγ				n _v		remarques
													, n ₇		-
Thénardite	orthorhomb	2.78-	4 66-	3 18-	3 08-	2.65	5-631	9.821-	12 304-	5 863	2 664	142.04	1 468		très soluble dans HaO
Na2SO4	orthornome	2,70	1,00	5,10	5,00	2,00	5 051	,021	12,301	5,005	2,001	r 12,01	1,473		cristallise en solution au-dessus
		100	70	50	50	50					_	_	1 483	6	de 32.4°C goûtsalé
Mirabilite	monoclinique	5.49-	3.21-	3.26-	3.11-	4.77	11-647	11.51-	10.38-	12.83	1.490	322.19	1,394	0	très soluble dans H2O
Na ₂ SO ₄ ,10H ₂ O	monormique	5,15	0,21	0,20	0,11	.,		11,01	107,75°	12,00	1,120	c	1,396		efflorescence rapide, perd son eau
2 17 2		100	80	60	60	50			,	1			1.398	3	à l'air sec. goût amer, transparence
Bloedite	monoclinique	3,25-	4,56-	3,29-	2,97-	2,73	19-1251	11,09-	8,20-	5,50	2,23	334,41	1,483-	-	soluble dans H ₂ O.
Na2SO4,.MgSO4 4H2O	1	- , -	y	- , -	y	, · -		,	100,65°	- ,	3	с	1,486		se forme en solution entre 21
2 1. 0 1, 2									,	1			1,486-		et71°C, goût amer et salé.
		100	100	100	40	40							1,488		-
													1,457-	6	
													1,489		
Vanthoffite	monoclinique	2,91-	3,44-	3,43-	2,99-	2,90	21-1138	9,79-	9,21-	8,19	2,694	546,48	1,485		soluble dans H ₂ O
Na ₆ Mg (SO ₄) ₄	-	100	100	100	00	0.0			113,50°		1	с	1,488		friable, éclat vitreux à luisant,
		100	100	100	80	80				1			1,489	6	transparent
Loewite	rhomboed	3,17-	4,29-	4,04-	2,70-	3,46	21-1139	18,96		13,47	2,376	1965,07	n _o =1,490		soluble dans H ₂ O
Na ₁₂ Mg ₇											1	с	n _E =1,471		goût peu amer, éclat vitreux,
(SO ₄) ₁₃ ,15H ₂ O		100	100	100	100	90				1				6	transparent, jaune rougeâtre.
Tamarugite	monoclinique	4,22-	4,21-	3,65-	3,96-	2,90	19-1186	7,353-	25,225-	6,097	2,10	350,09	1,484		soluble dans H ₂ O
NaAl(SO ₄) _{2.6H2O}					•				95,20°	,	11	с	1,487		cristauxentablettes, ressemblant
· · · -, -		100	80	60	30	30				7			1,496	4	au gypse, goût astringent, vitreux
Glauberite	monoclinique	3,13-	3,11-	3,18-	2,81-	2,68	19-1187	10,10-	8,28-	8,51	2,85	278,18	1,507-		soluble dans HCl et en partie dans
Na ₂ SO ₄ CaSO ₄	-								112,20°		1	с	1,515		H ₂ O, se décompose par H ₂ O avec
										1			1,527-		formation du gypse.
		100	80	80	70	60							1,532		
													1,529-	6	
													1,536		
Kieserite	monoclinique	3,41-	4,84-	3,33-	2,53-	2,06	13-102	6,88-	7,61-	7,53-	2,445	138,39	1,523-		peu soluble dans H ₂ O,
MgSO ₄ ,H ₂ O									116,39°		3	3	1,520		perd son eau à 350°C, s'altère en
										1			1,535-		léonite, éclat vitreux, translucide.
		100	90	90	90	90							1,533		
													1,586-	6	
													1,584		
Hexahydrite	monoclinique	4,43-	4,04-	2,94-	2,91-	3,60	13-101	10,04-	7,15-	24,34-	1,757	228,46	1,426		produit de déshydratation de
MgSO _{4,} 6H ₂ O		100				60			98,57°	-	2	с	1,453	•	l'epsomite, rarementenpeu
		100	90	80	80	60				2			1,456	2	cristaux,
	1														goût amer et salé, luisant.

Epsomite MgSO ₄ ,7H ₂ O	orthorhomb	4,21-	5,35-	2,68-		2,88	8-467	11,86-	11,99-	6,85 1	1,68 3	246,48 3	1,432 1,445 1,461	6	très soluble dans H ₂ O, exposé à l'air sec, perd jusqu'à 6H ₂ O, goût astringent, vitreux.
Leonite MgK ₂ (SO ₄) _{2,} 4H ₂ O	monoclinique	3,42- 100	3,04- 50	2,38- 50	3,49- 40	3,31 40	21-995	11,78-	9,53- 95,40°	9,88 1	2,201 3	366,63 c	1,478 1,481 1,486	6	très soluble dans H ₂ O, se forme en solution entre 41°et 87°C goûtamer
Picromerite MgK ₂ (SO ₄) _{2,} 6H ₂ O	monoclinique	3,71- 100	4,06- 100	4,16- 90	3,06- 70	2,69 60	21-1400	9,06-	12,26- 104,75°	6,11 10	2,15 3	402,63 c	1,4607 1,4629 1,4755	6	soluble dans H ₂ O, perd son eau à faible température, facilement fusible.
Kainite KMgClSO _{4,} 3H ₂ O	monoclinique	3,16- 100	3,02- 70	2,73- 30	2,09- 30	3,55 30	14-591	19,05-	16,24- 94,92°	9,86 2	2,131 3	248,92 3	1,494- 1,495 1,505- 1,506 1,516- 1,520	6	soluble dans H ₂ O, se décompose en epsomite et en sylvite.
Langbeinte K ₂ Mg ₂ (SO ₄) ₃	cubique	3,14 100	- 2,65- 40	4,05- 30	2,99- 20	2,75 20	19-974	9,920		1	2,829 3	415,01 3	n=1,535	6	soluble dans H ₂ O, hygroscopique, contientsouvent des inclusions d'anhydrite, halite etc
Arcanite K ₂ SO ₄	orthorhomb	2,90 100	- 3,00- 80	2,89- 50	4,18- 30	2,42 30	5-0613	5,77-	10,06-	7,52 7	2,660 11	174,26 c	1,4935 1,4947 1,4973	11	soluble dans H ₂ O, Éclat vitreux , transparent .
Mercallite KHSO4	orthorhomb	3,84 100	- 3,52- 90	3,41- 90	3,26- 90	3,87 70	11-649	8,40-	9,79-	18,93 10	2,322 3	136,17 3	1,445 1,460 1,491	2	soluble dans H ₂ O et dans solution acide, se forme facilement en Solution, transparent.
Aphtitalite K ₂ Na(SO ₄) ₂	hexagonal	2,84 100	- 2,94- 80	2,05- 50	4,09- 30	3,67 20	20-928	5,66	_	7,33 10	2,65 1	332,42 c	n _o =1,487- n _E =1,492	1,491 -1,499 6	soluble dans H ₂ O et acides, facilement fusible, goûtamer et salin.
Kalinite KAl(SO ₄) ₂ ,11H ₂ O	monoclinique	4,83 100	- 4,32- 100	4,11- 100	9,55- 60	3,32 60	17-133		_		1,75 11	456,19 c	1,430 1,452 1,458	4	plus stable que la patassalunite, efflorescence sur argiles et schistes alumineux.
Syngenite K ₂ SO _{4.} CaSO _{4.} H ₂ O	monoclinique	2,86 100	- 3,16- 80	9,52- 60	5,71- 50	4,63 40	11-117	9,72-	7,16- 104,10°	6,21 1	2,60	328,42	1,5010 1,5166 1,5176	à29°C 6	en partie soluble dans H ₂ O, se décomposefacilement pour former du gypse.
Krausite KFe(SO ₄) ₂ ,H ₂ O	monoclinique	3,09- 100	- 4,40- 80	6,59- 70	3,69- 70	4,26 50	18-1028	1,542	: 1: 102,78	1,764 2	1,806	305,15 c	1,588 1,650 1,722	2	soluble dans HCl, se décompose lentement par l'eau, cristaux aciculairesouentablettes, transparent.

Anhydrite	orthorhomb	3,49-	2,85-	2,33-	2,21-	1,87	6-0226	6,238- 6,991-	6,996	2,960	136,14	1,5700		soluble dans HCl.
Ca504									1	5	5	1,5757	6	la temp
		100	40	20	20	20			-			1,0150	0	de transition gypse-anhydrite est de
														42°C
Gypse	monoclinique	7,56-	3,06-	4,27-	2,68-	2,87	6-0046	5,68- 15,18-	6,29	2,32	172,17	1,5205		soluble dans HCl, insoluble dans
CaSO ₄ ,2H ₂ O		100	60	50	30	30		113,85°		3	3	1,5226		H ₂ O,
		100	00	50	50	50			1			1,5296	6	minéral secondaire de l'anhydrite et
D :	1 1	6.01	2.00	2.46	2.90	0.12	14 452	6.04 1	2 72	2.70	220.12	1.550		de la polyhalite.
Bassanite	hexagonal	6,01-	3,00-	3,46-	2,80-	2,13	14-453	6,84 — 1	2,72	2,70	228,12	$n_0 = 1,558$		metastable, produit de
2.CaSO ₄ , H ₂ O		100	100	50	50	10			1	1	С	nE=1,380	2	desnydratation du gypse, couleur
Polyhalite	triclinique	3 18-	2.01	2 80	2.85	2.04	21-082	11.69 16.33 7	1	2.78	563.81	1 5/18-	Z	planche.
$CaMgK (SO_4)_4$	utettinque	5,10-	2,71-	2,07-	2,05-	2,74	21-962	91.6°- 90°-	91 9°	2,70	505,01 C	1,547		se décompose par l'eau avec
2H2O								<i>y</i> 1,0 <i>y</i> 0	1		č	1,562-		séparation du gypse ou de gypse et
		100	30	30	30	20			•			1,560		de la syngenite.
												1,567	6	5.6
Görgeyite	monoclinique	3,01-	3,16-	2,82-	2,76-	1,84	18-997	17,10- 6,71-	18,20	2,77	584,98	1,560		dissolution incongruente avec
K2 Ca5(SO4)6,H2O	_	100	70	10	20	20		113,23°		1	с	1,569		précipitation du gypse, coloré en
		100	70	40	30	30			1			1,584	1	rouge par les inclusion éclat vitreux.
Jarosite	hexagonal	3,08-	3,11-	5,09-	5,93-	1,89	22-827	7,20 —	17,00	3,26	500,81	n _o =1,820		soluble dans HCl, insoluble dans
$KFe_3(SO_4)_2$ (OH) ₆		100	80	70	50	50		61,63°	-	11	с	n _E =1,715		H ₂ O,
		100	80	70	50	50			2				4	trèspyroélectrique,
		0.77	0.75	2 (0	0.07	0.47	0.440	10.070 (0.47	5 005	2.25	104.00	1 400		éclat adamantin à vitreux.
Thermonatrite	orthorhomb	2,77-	2,75-	2,68-	2,37-	2,47	8-448	10 ?/2- 6 ?4/-	5 ?25	2,25	124,00	1,420		soluble dans H_2O , facilement
Na ₂ CO ₃ , H ₂ O		100	60	60	60	30			10	3	3	1,500	4	iusible,
									10			1,524	4	d'une solution de NacCocentre 32
														et112°C
Natron	monoclinique	3.04-	3.02-	2.89-	5.87-	3.94	15-800	1483 : 1 :	1.00	1.44	286.14	1.405		se déshydrate facilement, perd son
Na2CO3 10H2O	1	-,	-,	-,	-,			121,13°	-,	3	3	1,425		eau à basse T avec séparation de
- 3,		100	70	60	50	30			2			1,440	3	thermonatrite.

Eilelite	hexagonal	2,61-	1,89-	2,73-	2,47-	2,24	4-0737	4,96	16,50	2,729	190,31	n _o =1,6052		
Na ₂ Mg (CO ₃) ₂									13	3	3	n _E =1,4502	14	
		100	60	50	50	50							14	
Northupite	cubique	2,47-	2,70-	2,11-	8,08-	3,21	19-1213	13,99	2	2,14	248,75	n=1,5		soluble dans HCl avec
MgCO ₃ .Na ₂ CO ₃ .NaCl									2	11	с	14	4	effervescence, se décompose par H_0O à chaud avec
		100	80	60	50	40							-	séparation de MgCO ₃
Pirssonite	orthorhomb	5,12-	2,56-	2,65-	2,50-	2,51	23-662	11,32-	20,06- 6,00	2,35	242,11	1,5043		soluble dans HCl à froid avec
Na ₂ CO ₃ .CaCO ₃ , 2H ₂ O		100		0.0	0.0	0.0			2	11	с	1,5095	2	effervescence, légèrement soluble
		100	90	90	80	80						1,5/51	2	dans H ₂ O, éclat vitreux, transparent à
														translucide.
Gaylussite	monoclinique	6,41-	3,21-	2,64-	2,73-	2,70	21-343	1,490 :	1: 1,444	1,89	296,15	1,4435		soluble dans HCl avec
Na ₂ CO ₃ .CaCO ₃ , 5H ₂ O		100	100	100	00	50			101,55°	11	с	1,5156	2	effervescence,
		100	100	100	90	50			2			1,5255	2	legerement soluble dans H_2O , eclat
Shortite	orthorhomb	2,56-	5,52-	4,96-	2,18-	1,99	21-1348	4,98-	10,97- 7,10	2,60	306,16	1,531		se décompose par H_2O et donne
Na ₂ Ca ₂ (CO ₃) ₃		100	70	70	70	60			2	11	с	1,555		CaCO ₃
		100	2.10	1.50	2.50	1.0.1	0.470	1 500	14.050	2.050	04.00	1,570	5	pyroélectrique, éclatvitreux
Magnesite MaCOa	rhomboedrique	2,74-	2,10-	1,70-	2,50-	1,94	8-479	4,599	14,950 48.05°	2,958	84,32	$n_0 = 1,700$		soluble dans HCl tiède avec
MgCO3									40,05	5	5	nE-1,509	6	éclat vitreux,
		100	50	40	20	10								coloré et transparent.
														-
Nesquehonite	orthorhomb	6,48-	3,85-	2,62-	3,03-	3,23	20-669	7,68-	11,93- 5,39	1,850	138,37	1,417		soluble dans HCl à froid avec
MgCO _{3,} 3H ₂ O		100	80	60	30	20				3	3	1,505	11	par réaction de carbonates alcalins
		100	00	00	50	20						1,527	11	avec des sels de Mg.
Hydromagnesite	monoclinique	5,79-	2,90-	2,15-	9,18-	6,44	8-179	10,11-	8,94- 8,34	2,16	365,34	1,515-		soluble dans les acides avec
Mg4(CO ₃)3(OH)2,3H2O									114,58°	3	3	1,523		effervescence, infusible,éclat
		100	90	50	40	40			14			1,527-		vitreux, transparent.
		100	70	50	τu	τυ						1,544-	6	
												1,545		

Dypingite	monoclinique	10,6-	5,86-	6,34-	2,53-	2,17	23-1218			2,15	485,68	1,530		agrégats à structure rayonnante,
Mg5(CO3)4(OH)2,5H2O		100	90	60	50	50				14	с	1,510	14	eciat luisant, blanc fluorescent et
Huntite	hexagonal	2 83-	1 97-	2 89-	1 77-	1 76	14-409	955	7 821	2 696	353.05	1,510	14	se présente en grains fins ou en libre
Max Ca(COa)	nexagonai	2,05	1,97	2,07	1,77	1,70	14 407	<i>)</i> , <i>5</i> , <i>5</i>	7,021	2,070	555,05			
Mg3Ca(CO3)4		100	30	20	20	20		102,93°	13	15	с			fragile, adhere a la langue, blanc.
Fairchidite	hexagonal	3,19-	2,65-	2,70-	2,23-	2,17	21-1287	5,29	13,32	2,465	238,30	n _o =1,530		en s'hydratant, se transforme en
$K_2Ca(CO_3)_2$									8	11	c	n _E =1,455		buetshliites'obtient par traitement
		100	70	30	20	20							11	de calcite avec des solutions
														concentrées de KOH ou K ₂ CO ₃
Buetschlifte	hexagonal	2,86-	3,03-	2,69-	2,07-	1,69	21-980	5,38	18,12		238,30	n _o =1,595		se forme par réaction de la calcite
$K_2Ca(CO_3)_2$		100	80	80	80	80			8		с	$n_{\rm E}=1,455$	•	avec des solutions relativement
G 1 1		2.00	1.07	2.00	0.05	0.00	5 50 6	1.00	15.00	2 710	100.00		2	díluées de KOH ou K_2CO_3
	rhomboedrique	3,03-	1,8/-	2,09-	3,85-	2,28	5-586	4,98	17,02	2,710	100,09	$n_0 = 1,658$		soluble dans HCl dilue avec
CaCO ₃		100	40	20	20	20		46,10°	2	3	3	$n_{E}=1,486$	~	enervescence
		100	40	30	30	20			Z				0	soluble en solution alumineuse,
Aragonite	orthorhomh	3 40-	1.08	3 27-	2 70-	2 37	1-153	1 91 - 7 91	5 72	2 030	100.09	1 530		métastable cristalliseen solution
CaCOa	ormonionio	3,40- 100	70	5,27-	2,70-	2,37	4-455	4,94- 7,94-	3,72	2,930	100,09	1,550		iusqu'à 90° C soluble dans les
CacO3		100	70	00	50	40			2	5	5	1,001-		acidesdilués avec effervescence
												1.685-	6	vitreux à transparent.
												1,686		
Dolomite	rhomboedrique	2,89-	2,19-	1,79-	2,02-	1,80	11-78	4,832	15,920	2,872	184,41	n _o =1,679		soluble dans HCl à froid avec
CaMg(CO ₃) ₂		100	30	30	20	20			2	3	3	n _E =1,502		effervescence,
													6	plus bourbeux que la calcite.
Sidérite	rhomboedrique	2,79-	1,73-	0,93-	3,59-	2,13	8-133	4,677	15,267	3,96	115,85	n _o =1,875		soluble dans HCl à chaud, par
FeCO ₃		100	80	70	60	60		47,9	0°	2	с	n _E =1,633		chauffage, perd CO ₂ et donne
									2					l'hematite, maghemite ou la
														magnétite.

Trona	monoclinique	2,66-	3,08-	9,88-	3,21-	2,45	11-643	20,35-	3,49-	10,30	2,112	226,03	1,412		soluble dans H ₂ O,
Na2CO3.NaHCO3,2H2O									106,43°		3	3	1,492		se présente sous forme
		100	80	60	60	60				10			1,540	6	d'efflorescence dans les régions
															arides.
Wegsheiderite	triclinique	2,95-	3,68-	2,64-	2,21-	2,80	15-653	10,04-	15,56- 3	,47	2,341	357,99	1,433		se présente en cristaux aciculaires
Na ₂ CO ₃ .3NaHCO ₃								91,92-	95,82	108,67	14	с	1,519		ou lamellaires, peut être associé aux
		100	60	60	60	50				47			1,528	14	trona, halite et nahcolite, éclat
															vitreux.
Nahcolite	monoclinique	2,94-	2,60-	2,96-	3,06-	2,21	15-700	7,51-	9,70-	3,53	2,159	84,00	1,380		soluble dans H2O etla glycérine ;
NaHCO ₃		100	100	70	40	40			93,32°		3	3	1,500		éclat vitreux, transparent.
		100	100	70	40	40				2			1,586	4	
Kalicinite	monoclinique	3,67-	2,63-	2,86-	2,82-	2,97	12-292	15,01-	5,69-	3,68	2,17	100,12	1,380		soluble dans H ₂ O (33,32 à 20 °C),
KHCO ₃		100	00	00	80	80			104,5°		3	3	1,482		s'obtient par action de CO ₂ sur une
		100	90	90	80	80				2			1,578	2	solution concentrée de K ₂ CO ₃
Halite	cubique	2,82-	1,99-	1,63-	3,26-	1,26	5-0628	5,6404			2,165	58,44	n=1,544		soluble dans l'eau (35,7 g par 100 cc
NaCl		100	60	20	10	10				1	3	3		6	de H ₂ O à 0°C), goût salé, éclat
		100	00	20	10	10									vitreux à translucide.
Bischofite	monoclinique	4,10-	2,65-	2,88-	2,72-	1,84	1-431	9,90-	7,15-	6,10	1,569	203,31	1,494		soluble dans H ₂ O et l'alcool,
MgCl ₂ ,6H ₂ O		100	80	50	40	30			93,70°		3	3	1,507		déliquescent, éclat vitreux.
		100	00	50	40	50				11			1,528	11-6	
Sylvite	cubique	3,15-	2,22-	1,81-	1,41-	1,28	4-587	6,277		-	1,99	74,56	n=1,4903		soluble dans H ₂ O, souvent un
KCl										2	11	с		2	produit de dissolution de la
		100	60	20	20	10									carnallite, goût semblable à celui de
															la halite.
Carnallite	orthorhomb	3,32-	2,93-	3,75-	3,56-	3,28	21-1315	9,54-	16,02-	22,52	1,61	277,86	1,467		soluble dans H_2O ,
KCl. MgCl _{2,} 6H ₂ O		100	80	70	70	70				2	3	3	1,475		deliquescent, goütamer,
		100	00	70	70	70							1,494	6	transparent à transulucide .
Tachydrite	hexagonal	2,60-	3,09-	3,80-	2,87-	5,10	1-1092	1:1:	1,76		1,67	517,60	n _o =1,522		perd son eau en chauffant,
2MgCl ₂ .CaCl ₂ ,12H ₂ O		100	50	30	25	20				2	11	с	$n_{E}=1,513$		trèsdéliquescent
		100	50	50	25	20								11	goûtamer, transparent.
Hydrophilite	orthorhomb	4,49-	3,05-	2,33-	1,90-	2,85	1-0338	6,24-	6,43-	4,20	2,15	110,99	1,600		trèsdéliquescent et hygroscopique,
CaCl ₂		100	80	60	40	30				9	3	3	1,605		transparent à transulucide.
		100	00	00	40	50							1,613	4	
Antarticite	hexagonal	2,16-	3,93-	2,78-	2,58-	2,27	1-1220	7,89		3,95	1,71	219,08	n _o =1,550		se présente en agrégats aciculaires,
CaCl _{2,} 6H ₂ O		100	80	60	50	50				14	3	3	n _E =1,495		se forme facilement en solution,
		100	00	00	50	50								14	éclat vitreux.

Suite

Chloromagnesite	hexagonal	2,56-	1,82-	2,96-			7-239	3,58		17,59	2,316 2,330	95,22	$n_0 = 1,675$ $n_{\rm E} = 1,590$	soluble dans H ₂ O, trèsdéliquescent
Migerz		100	63	57						2	2,550	5	n <u>E</u> =1,590	4 souvent associé à la halite et la
														syvite.
Brucite	hexagonal	2,37-	4,77-	1,79-	1,57-	1,49	7-239	3,125		4,75	2,36	58,33	n _o =1,556-	soluble dans HCl,
Mg(OH) ₂										12	3	3	1,559	flexible, souventfibreux,
		100	90	60	40	20							n _E =1,580-	couleur blanche.
		100	20	00	10	20							1,581	
														5
Gibbsite	monoclinique	4,85-	4,37-	4,32-	2,45-	2,39	7-324	8,624-	5,06-	9,70	2,40	78,00	1,566-	appeléaussihydragillite,
AI(OH)3									94,57°	12	2	с	1,568	soluble dans.H ₂ SO ₄ et NaOH a
		100	50	20	20	20				12			1,500-	chaud
		100	30	30	30	30							1,508	
													1,507-	,
D	1 1	2.62	4.00	1.02	1.70	2.11	4 722	2 594		1.000	2.24	74.00	1,389	a a la bala de ma UCI di la é
Portiandite Co(OH)	nexagonal	2,03-	4,90-	1,93-	1,79-	3,11	4-755	3,384		4,890	2,24	74,09	$n_0 = 1.5/4$	soluble dans HCI dilue,
		100	70	40	40	20				9	5	5	IIE=1,545	s anererachemennen CaCO3
		4.10	2 (0	0.15	a 10	1 50	15.505	4 500	0.007	2 0 1 5		00.07	0.075	3 eclat vitreux a luisant.
Goethite	orthorhomb	4,18-	2,69-	2,45-	2,19-	1,72	17-536	4,582-	9,937-	3,015	3,3-	88,85	2,275	soluble dans HCl
FeOOH		100	20		•	•				11	4,5	с	2,409	pleochroisme perceptible dans le
		100	30	25	20	20					11		2,415	b rouge-brun, éclat adamantin et
														métallique.

Références :

(1)- Braitsch (1971) ; (2)-Dana's (1951) ; (3)- Robert et Weast (1976-1977) ; (4)- Larsen (1933) ; (5)- Fahey (1939) ; (6)-Troger (1979) ; (7) Hilmy (1953) ; (8)- Fleischer (1967) ; (9)- Wyckoff (1963) ; (10)-Wyckoff (1965) ; (11)- Winchell (1961) ; (12)- Winchell(1964) ; (13)-Strunz (1970) ; (14)- Roberts (1974) ; (15)- Faust (1953) ; c :valeurscalculées

Les imageries Des minéraux que sont précipitent

ECH N° 01

ECH N° 02

ECH N° 03

ECHO N° 05

ECHO Nº 10

ECHO Nº 11

