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Abstract

In this thesis, we will try to generalize the Laplacian on Euclidien space to operator of dif-
ferential forms on a Riemannian manifold and prove the Hodge theory, with give a notion of
the Riemannian manifold. Our goal is to understand how can a differential forms on manifold
to be harmonic. The basic idea on harmonic forms on Riemannian manifold is that gives an
information about Riemannian manifold and the Laplacian on compact Riemannian manifold
and citation by the Hodge theory.

MSC2020 : 70G45, 35J91, 53C43, 58A10 .

Keywords— Differential geometry methods, Semilineair elliptic equations with Laplacian, Differen-
tial geometry aspects of harmonic maps, Differential forms

Résumé

Dans cette these, nous essaierons de généraliser le laplacien sur ’espace euclidien a un opérateur de
formes différentielles sur une variété riemannienne et de prouver la théorie de Hodge, en donnant une
notion de la variété riemannienne. Notre objectif est de comprendre comment une forme différentielle
sur une variété peut étre harmonique. L’idée de base sur les formes harmoniques sur la variété
riemannienne est que cela donne une information sur la variété riemannienne et le laplacien sur la
variété riemannienne compacte et la citation par la théorie de Hodge.

MSC2020 : 70G45, 35J91, 53C43, 58A10 .

Mots clés— Méthodes de géométrie différentielle, Equations elliptiques semi-lineaires avec Laplacien,
Aspects géométriques differentiels.
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INTRODUCTION

The differential geometry is a continuity of the infinitesimal calculus, it allows to study thanks
to the techniques of the differential calculus a family of topological spaces called “differentiable
manifold ”allowing the geometry renovation of curves and surfaces of real spaces, and placing
it according to a contemporary context.

In this thesis we study the generalization of the Laplacian on Euclidien space to operator of
differential forms on a Riemannian manifold, with the notion of Riemannian manifold, we gives
some examples and some information on the connection , curvature and the tensor and Hodge
theorey with citation of the Laplacian on Riemannian manifold.

The notion of a manifold needed an axiomatic definition by other mathematicians (of the
Gottinger persuasion). D. Hilbert (1862-1943) sought an axiomatic characterization of the
plane sufficient for the foundations of geometry in Appendix IV (1902) to the Grundlagen der
Geometrie [Hill3].Hilbert define the plane by a system of neighborhoods that satisfy certain
topological conditions. The locally Euclidean neighborhoods played a fondamental rule in many
refinements that led to the definition of manifold used today. Among his topological axioms,
Hilbert assumes the existence of large neighborhoods (for any pair of points in the plane, exist
a neighborhood containing them). This assumption was dropped by H. Weyl (1885-1955) in
his 1913 Der Idee der Riemannschen Flache. Such Weyl depened his definition of surface on a
neighborhood system that gave a basis for the topology on the surface and satisfied an open
map condition. Absent from the definition schemes of Hilbert and Weyl is the Hausdorff con-
dition on the underlying topological space a fault pointed out by Hausdorff in his axiomatic
treatment of topological spaces [HM27].

The important lemma of Riemannian geometry states that there exists a unique Rieman-
nian connection V, i.e. a derivation on any Riemannian manifold (M", g) of vector fields with
respect to vector fields following the rules of linearity and the product rule of Leibniz and which
is compatible with the differential structure on M™ (in that the commutator of this connection
is identical with the Lie bracket of vector fields), and which, as well is compatible with the
geometrical structure g on (M™,g), (in that Vg = 0; -from deriving vector fields by V one can
normally get to deriving arbitrary tensor fields by V- ). V is given by the standard formula of
Koszul and the corresponding expressions for the Riemann-Christoffel, for the Ricci and for the
Weyl conformal curvature tensors R, S and C' respectively, etc., were systematically developed
by Nomizu in his thesis with Chern. The Riemannian or sectional curvatures K(p,7) were
known to be scalar valued isometric invariants of (M",g), determined at any point p and for
any 2D tangent plane section 7 at p, right away since their introduction by Riemann, when
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their name curvature derived from the analogy of their calculation with the intrinsic formula for
the Gauss curvature K of 2D surfaces M? in Euclidean 3D spaces £, now applied for the Gauss
curvature at point p in M? of the 2D surface formed by the geodesics of (M", g) G? around p
which are tangent to m at p . As regards further appreciations of curvatures K, one could also
base e.g. on the formulas of Bertrand-Puisseux and of Diguet referring to the perimeters or
the areas of geodesic circles or discs on (M™, g) in comparison with the perimeters and areas of
Euclidean circles and discs of the same radii. Butstriving for better truly geometrical insights in
the curvature tensor R or equivalently in the sectional curvatures K, as already mentioned be-
fore, around the same time and independently, Levi-Civita and Schouten introduced the notion
of parallel (or pseudo parallel) transport of vectors along curves in (M", g), -which is equivalent
with the notion of Riemannian connection- to obtain their geometrical interpretations of R and
K in terms of the lengths of the sides and the areas of parallelogramoids and of holonomy of
vectors or of directions, respectively.[Verl4]

Riemann found the wright way to extend into n dimensions the differential geometry of
surfaces. The fundamental object is called the Riemann curvature tensor. For the surface case,
this can be reduced to a number (scalar), positive, negative or zero; the non-zero and constant
cases being models of the known non-Euclidean geometries. contributions to analysis and differ-
ential geometry. He was first one to discover Riemannian geometry is the branch of differential
geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric, i.e.
with an inner product on the tangent space at each point which varies smoothly from point to
point. This gives in particular local notions of angle, length of curves, surface area, and volume.

In this thesis we will give the necessary background of Laplace equation.Pierre-Simon
Laplace (1749-1827) was led to what is now known as Laplace’s equation in three variables.
The two-variable version of this equation is

’u  O%*u

o2 "o 0

The zeros operator on the equation is the Laplacian denoted by A.

The Laplacian differential operator, widely used in mathematics that is named after him for
his memory and legacy. For example, the inverse mathematical problem of spectral theory
identities features of the geometry from information about the eigenvalues of the Laplacian.
Other examples that Laplacian is defined can be shown as follows; analysis on fractals, time
scale calculus and discrete exterior calculus. In physics, the Laplacian occurs in a couple of
partial differential equations that describe basic physical phenomena such as the propagation of
waves or diffusion processes. In wave propagation, Laplace remodelled Newton’s force law and
stated that gravitational field has the same properties with radiation field or fluid. Theoretic
representation of gravitational field is defined through radiation field. However, this approach
is not accepted by classical physics especially with the contributions of Lorentz. In addition to
that, The Laplacian plays key role in steady-state fluid flow, static electric field, heat diffusion,
and quantum particles [Cooll].

The Hodge Decomposition Theorem or De Rham Decomposition Theorem is the main of this
thesis. Also, Laplacian notion will be given in classical way. For generalization of Laplacian,
differentiable manifold and Riemannian metric will be defined as well as introducing Laplacian
on Riemannian manifold. In the final part demonstration of Hodge theory will take place with
the Hodge Decomposition Theorem.

I1I



CHAPTER

PRELIMINARY

In this chapter we difined the notion of a manifold embedded in some ambient space R™.In order
to give a maximization of the range of applications of the theory of manifolds it is important to
generalize the consept of manifold to spaces that are not embedded in some R"™. the basic idea
is that any manifold is a topological spaces that can be covered by a collection of open subsets
where is a isometric to some open set of R™. The manifold wold be duall without function
defined on them and between them. Geometry arises from spaces and intersting classes of
function between them. In this chapter , we use the following references ; [DCFF92], [Gud21],
[KY85], [BGMT71], [Canl13],[Mas01].

Beginning with the concept of differential manifold

1.1 Differential manifold

Definition 1.2. (Topological Hausdorff space)

Let X be a topological space, two points x and y in X are separable if can be separated by
neighbourhoods i.e.: there exists a neighbourhood U of x and a neighbourhood V' of y such that
U and V are disjoint (UNV =0). X is a topological Hausdorff space if all distinct points in
X are pairwise neighbourhood-separable.

Definition 1.3. (Topological manifold)

Let (M, T) be a topological Hausdor(f space. M is called a topological manifold if there exists
ann € N such that for each point p € M we have an open neighbourhood U of p, an open subset
V of R"and a homeomorphism xz : U — V.

The pair (U,z) is called a local chart (or local coordinates) on M.

The integer n is called the dimension of M. To denote that the dimension of M is n we write
M.

We can define the topological manifold in other way such there exist another homeomorphism
y :V — U has the same as the other.

Definition 1.4. (C"-atlas) Let M be an n-dimensional topological manifold and a family of
C"-deffeomorphisms xo : Uy, C R™ — M of open sets u, of R™ into M. A C"-atlas on M is a
collection

A={(Uqs,z) | €I}



of local charts on M such that A covers the whole of M i.e.

M = Uxa(Ua)

for any pair o, B with
2a(Us) [\25(Us) = w # 0

the sets x;'(w) and xgl(w) are open sets in R™ and the mappings argl ox, are CT differentiable

Remark 1.5. A local chart (U,x) on M is said to be compatible with a C"-atlas A if the
union AU{(U,z)} is a C"-atlas.

A C"-atlas A is said to be maximal if it contains all the local charts that are compatible with
it.

A mazimal atlas A on M is also called a CT-structure on M.

A differentiable manifold is said to be smooth if it is of class C*.

Definition 1.6. (Differential manifold) )
A differentiable manifold of dimension n of class r is a pair (M, A) such that M is a
topological manifold and A is a C"-structure on M. (fig 1.1).

Xa
\ x a(W)
1t / -
.X‘G Ual

.x'&-xﬂ
éﬂﬂ
-1(W)

Xg

Figure 1.1:

Definition 1.7. (Other definition of differential manifold)

A differentiable manifold of dimension n of class r is a topological Hausdorff space M and a
famaly of deffeomorphisms z, : u, C R™ — M of open sets u, of R™ into M such that:

(1) U, xa = M.

(2) for any pair o, B with xo(us) N 2s(ug) = w # O the sets x'(w) and 25" (w) are open sets
m R™ and the mappings x;l o x4 are differentiable (fig 1.1).
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(3) the familly {(ua,xq)} is mazimal relative to condition(1) and (2)
A family {(uq, o)} satisfying (1) and (2) is called a differentiable structure on M.

Definition 1.8. The pair (uqy,xq) (or mapping x, ) with p € x4(uy) is called a parametriza-
tion ( or system of coordinates) of M at p.
To(uq) 1s called a coordinate neighborhood at p.

Definition 1.9. (Mapping between manifolds )

Let M} and M be differentiable manifolds. A mapping ¢ @ My — My is differentiable at
p € My if given a parametrization y : v C R™ — My at ¢(p) there exists a parametrization
z:v CR"— My at p such that p(xz(u)) C y(v) and the mapping:

y lopoxr:ucCR"—R™

is differentiable at x='(p)(figl.2).
@ 1s differentiable on an open set of M if differentiable at all of the points of this set.

Px(1))

x(O) ¢ (@)

]X

ylovox
A ——
v

Figure 1.2:

ﬂ\

Proposition 1.10. [t follous from (2) of definition 1.7 that the given definition is independent
of the choise of the parametrizations.

Proposition 1.11. Let (My, Ay) and (M,, Ay) be two differentiable manifolds of class C". Let
M = My x M, be the product space with the product topology. Then there exists an atlas A on
M turning (M, A) into a differentiable manifold of class C" and the dimension of M satisfies:

dim M = dim M, + dim My

1.12  Vector field, brackets

1.12.1 Tangent space

Definition 1.13. . A differentiable mapping ¢ : I — M of an open interval I C R into a
differentiable manifold M s called a (parametrized) curve.(Fig.1.3).

3
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Figure 1.3:

Here, introducing the fundamental concept of a tangent vector on differentiable (smooth)
manifolds.
The next considerations will motivate the definition that we are going to present below.
Let a: (—€,€) — R™ be a differentiable curve in R", with a(0) = p (p € R" such
p = (21(0), ...,x2,(0))), write

a(t) = (z1(t), ..., zn(t)), t € (—€,€),  (21(t),...,xn(t))]: € R"

then,
o(t) = () (t), ...,z () =v € R™.

ceey n

Now let f (f : U, C R" — C*®(M)) be a differentiable function defined in a neighborhood of
p. We can restrict f to the curve a and express the directional derivative with respect to the
vector v € R" as

d(f o)

dt

dl’i
S dt

t=0

~ (S0

t=0 i

N
tzo_igl:dl’i

therefore, the directional derivative with respect to v is an operator on differentiable functions
that depends uniquely on v. This is the characteristic property that we are going to use to
define tangent vectors on manifold.

Definition 1.14. (Tangent vector)

let M be a differentiable manifold, and let a : (—€,€) — M be a differentiable curve in M.
Suppose that a(0) = p € M, and let C*°(M) be the set of functions on M that are differentiable
at p. The tangent vector to the curve o at t = 0 is the function o/(0) : C*°(M) — R given

by:
d(f o)

Oé/(O)f = T 5 f S COO(M)
t=0

A tangent vector at p is the tangent vector att = 0 of some curve a(—e,e) — M with a(0) = p.
The set of all tangent vectors to M at p will be indicated by T,,M .

If we choose a parametrization x : U — M™ at p = z(0), we can express the function f and
the curve «v in this parametrization by:

foxz(q) = f(z1,..sxn), q=(x1,...,2,) €U,

and,



respectively. therfore, restricting f to «, we obtain

Q0)f = Gl o) = G )|

Lo () (2e0(2)

(2

In other words, the vector o’(0)can be expressed in the parametrization = by
0
'(0) = (0 1.1
(0 =340 (57,) (L)

Observe that (%) is tangent vector at p of the “coordinate curve® (figl.4) :

x; =x(0,...,0,2;0,...,0)

Figure 1.4:

The expression (1.1) shows that the tangent vector to the curve « at p depends only on the
derivative of o in a coordinate system. It follows also from (1.1) that the T,M, with the
usual operations of functions forms a vector space of dimension n, and that the choice of a

parametrization x : U — M determines an associated basis {(%) e ( > } in T,M
“p P

(figl.4).

The linear structure in 7,M defined above does not depend on the parametrization x. The

vector space T, M is called the tangent space of M at p.

0
;

We can extend to differentiable manifolds the notion of the differential of differentiable
mapping with the idea of tangent space.

Definition 1.15. (Tangent bundle) The tangent bundle is the union of all tangent spaces
at every point on the manifold M. It is denoted by T M

TM ={(p,v);pe M,veT,M}

such that
T™ = | J T,M

pEM

>



Proposition 1.16. Let M and M3* be differentiable manifolds and ¢ : My — Ms be differ-
entiable mapping. for every p € M; and for each v € T,M; , choose a differentiable curve
a(—e,€) = My with «(0) = p,a/(0) =v. Take = ¢ oa. The mapping

dop + TyMy — Ty My given by doy(v) = ((0) is linear mapping that does not depend on
choice of o (fig 1.5).

Proof. Let x : U — M; and y : V — M, be parametrizations at p and ¢(p), respectively.
Expressing ¢ in these parametrizations, we can write:

ylopox(q) = (y1 (1, .., 2n), s Ym (T1,..., 1))
q=(z1,...,2) €U, (y1,---,Ym) €V

On the other hand, expressing « in the parametrization x, we obtain:

x toalt) = (1(t),...,z.(t))

Therefore,

y o B(t) = (yr (@1(t), - 2a(t) s Y (21(F), -y w(2))
It follows that the expression for 5'(0) with respect to the basis {(aiyi)o} of T,y Mo, associated

to the parametrization y, is given by:

i=1 =1

5'<0>=< L) %xxm) (12)

The relation (1.2) shows that 5'(0) does not depend on the choice of a. In addition, (1.2) can
be written as:

B(0) = dpy(v) = (%) (250)) i=1,....m;j=1,....n

where (%) denotes an m x n matrix and (x;(O)) denotes column matrix with n elements.
J

Therefore, dy, is a linear mapping of T, M; into T,y M, whose matrix in the associated bases

o)

obtained from the parametrizations x and y is precisely the matrix (5%
J

@

Figure 1.5:



Definition 1.17. The linear mapping dy, defined by proposition 1.16 is called the differential
of pat p.
Definition 1.18. Let My, and M, be differentiable manifolds. A mapping p : My, — M is a

diffeomorphism if it is differentiable, bijective (bijective means every element of arrival set
has a unique antecedent in departure set ), and its inverse o~ is differentiable.

Definition 1.19. A mapping ¢ : My, — My is said to be a local diffeomorphism atp € M
if there exist neighborhoods U of p and V' of ¢(p) such that ¢ : U — V is a diffeomorphism.

Remark 1.20. The notion of diffeomorphism is the natural idea of equivalence between differ-
entiable manifolds. It is consequence of the chain rule that if ¢ : My — My is a diffeomorphism,
then dpy, : T,My — T, My is an isomorphism for all p € My, in particular, the dimensions of
My and My are equal.

A local converse to this fact is the following theorem.

Theorem 1.21. (A local converse theorem) Let o : M]* — My be a differentiable mapping
and let p € My be such that do(p) : TyMy — T,y Ms is an isomorphism (an isomorphism is
a structure-preserving mapping between two structures of the same type that can be reversed by
an inverse mapping). Then ¢ is a local diffeomorphism at p.

The proof follows from the application of the local inverse function theorem in R".

1.21.1 Vector field

Definition 1.22. (Vector filed) A vector field X on a differentiable manifold M is a corre-
spondence that associates to each point p € M a vector X (p) € T,M. In terms of mappings, X
is a mapping of M into the tangent bundle TM (TM = {(s,v);s € M,v € TsM ). The field is
differentiable if the mapping X : M — TM s differentiable.

Considering a parametrization x : U C R™ — M we can write

n

0
X(p) = i(p)=—, VpeU 1.3
(p) Zl a;(p) o0 P (1.3)
where each a; : U C R™ — R s a function on U and ai,} 1s the basis associated to x.

X is differentiable if and only if the functions a; are differentiable for for any parametrization.
We denoted the set of all vertors fields by I'(TM).

Occasionally, it is convenient to use the idea suggested by (1.3) and think of a vector field
as a mapping X : C®°(M) — F from the set C*°(M) of differentiable functions on M to the
set I of functions on M, defined in the following way

XN =Y ai<p>§—;<p> (1.4)

i=1

where f denotes, by abuse of notation, the expression of f in the parametrization z.

Indeed, this idea of a vector as a directional derivative was precisely what was used to define
the notion of tangent vector.

The function X f obtained in (1.4) does not depend on the choice of parametrization z. In this
context, X is differentiable if and only if X : C>®°(M) — C*(M) , that is , X f € C>*(M) for
all feC>®(M).



If o : M — M is a diffeomorphism , v € T,M and f is a differentiable function in a
neighborhood of ¢(p) , we have

(dp(v) f)e(p) = v(f o @)(p).

Indeed, let a: (—€,€) — M be a differentiable curve with o/(0) = v, «(0) = p. Then

() ))e(p) = 5 (F 0 ¢ 0 @)leco = v(T 0 9)(p)

Example 1.23. (The tangent bundle) Let M™ be a differentiable manifold and let

TM = {(p,v);p € M,v € T,M}. We are going to provide the set TM with a differentiable
structure (of dimension 2n). This is the natural space to work with when treating questions that
1mwvolve positions and velocities, as in the case of mechanics.

Let {(Uy,24)} f be a mazimal differentiable structure on M. Denote by (zf,...,x%) the

coordinates of U, and by %, e %} the associated bases to the tangent spaces of Xq (Uy,).

For every «, define:

Vo : Uy xR" —TM
by:

n
0
Vo (X8, o 0wy, . uy) = <xa(x?,,x5)zuz%> ;o (ur, ... up) €R™
i=1 i

Geometrically, this means that we are taking as coordinates of a point (p,v) € TM the coordi-
0 0

Aoy Poa
0x§ ox&

We are going to show that {(U, X R",y,)} is a differentiable structure on T M. Since:

Uxa (Ua) =M

nates x{,...,x% of p together with the coordinates of v in the basis

and,
(dxa)q (Rn) = Txa(q)Ma q € Uy,

we have that:
Uya (Ua xR") =TM

which verifies condition (1) of Definition 1.7. Now let:

(p,v) €Yo (Us x R*)Nys (Us x R™).
Then:

(P, v) = (Xa (¢a) , d%a (Va)) = (%5 (¢s) , dx5 (vg))
where qo € Uy, qp € Ug, vo,v53 € R™. Therefore,

Y5' ©¥a (G, va) = ¥5" (Xa (¢a) , dXa (va))
= ((x5" 0 %a) (g0) . (x5" 0 xa) (va)) .

Since x5 0 X is differentiable, d (x5" 0 X,) is as well. It follows that y5* oy, is differen-
tiable, which verifies condition (2) of the definition 1.7 and completes the example.



1.23.1 Lie Brackets

The interpretation of vector filed X as an operator on C*°(M) permits us to consider the iterates
of X. For example, if X and Y are vector fields on M and f : M — R is a differentiable function,
we can consider the functions X (Y f) and V(X f). In general, such operations do not lead to
vector fields, because they involve derivatives of order highter than one. Nevertheless, we can
affirm the following.

Lemma 1.24. Let X and Y be differenltiable vector fields on a differentiable manifold M.
Then there ezists a unique vector field Z such that, for all f € C*(M),

Zf = (XY —YX)f.

Proof. First, we prove that if Z exists, then it is unique. Assume, therefore, the existence of
such a Z. Let p € M and let z : U — M be a parametrisation at p, and let:

be the expressions for N and Y in these parametrizations. Then for all f € C*°(M)
aof ob; of
XYf=X( 0,20y =3¢, a;
/ (zj: oz, ;aaxiam, Z ]a 895]

8 f da; 0 of
YX Y a;b;
f=Y2 aig,) = Z”ax Bz, +ZZ j@xaxz
Therefore, Z in given, in the paramlrizatlon x, by

;. dai, 9
Zf=XY[f-YXf= Z ' JaZ)&{
T i j

which proves the uniqueness of Z.

To show existence, define Z, in each coordinate neighborhood z,(U,) of a differentiable
structure {(z4,U,)} on M by the previous expression. By uniqueness,
Zo = Zg on x4(Uy) Nwg(Us) # 0, which allows us to define Z over the entire manifold M.

|

Definition 1.25. The vector field given by lemma (1.24) is called the Lie Bracket of X and
Y, Z denoted [X,Y] = XY —Y X

The bracket operation has the following properties:

Proprety 1.26. If XY and Z are differentiable vector fields on M, a, b are real nunbers, and
f,g are differentiable functions, then:

(a) [X,Y] = =Y, X](anticommutativity),
(b) [aX +bY, Z] = o[X, Z] + VY, Z] (linearity),
(c) [X,Y],Z]+[[Y, Z], X| + [[Z, X],Y] = 0 (Jacobi identity),

(d) [FX,gY] = fglX, Y]+ fX(9)Y — gV (/) X.



Proof. To prove (a) we have
[X,Y]=XY -YX =-YX+XY =—(YX - XY) = [V, X]
To prove (b) we have

[aX +b0Y,Z) = (aX +bY)Z — Z(aX + DY)
— aXZ +bYZ — Z(aX) — Z(bY)
=aXZ+bVYZ —aZX —-bZY
=aXZ —aZX +b0YZ —-bZY
—a(XZ~ ZX)+0(YZ — ZY)
= a[X, Z] + b]Y, Z].

In order to prove (c), it suffices to observe that, on the one hand,
[X,Y],Z]=[XY - YX, Z|=XYZ-YXZ - ZXY +2ZYX
while, on the other hand,
(X, [V, Z)|+ Y, [2,X]| =XYZ - XZY - YZX+2YX+YZIX -YXZ—-ZXY +XZY.

Because the second members of the expressions above are equal , (c) follows using (a). Finally,
to prove (d), calculate

[fX,gY] = fX(gY) — gY(fX)
= fgXY + fX(9)Y —gfYX —gY(f)X
= f9lX, Y]+ fX(9)Y —gY(f)X

Since a differentiable manifold is locally diffeomorphic to R", the fundamental theorem on
existence, uniqueness, and dependence on initial conditions of ordinary differential equations
(which is a local theorem) extends naturally to differentiable manifolds.

For later use, it is convenient to state it explicitly here. The reader not familiar with differential
equations can assume the statement below, which is all that we need.

Let X be a vector field on a differentiable manifold M, and let p € M. Then there exist
a neighborhood U C M of p, an interval (—4,d) C R, ¢ > 0, and a differentiable mapping
¢ :Rx M — M where ¢ : (—0,0) x U — M such that the curve t — ¢(¢,q), t € (=4,6), ¢ € U

and ¢(0,q) = q.

A curve « : (—6,0) — M which satisfies the conditions o/(t) = X(«(t)) and «(0) = ¢ is
called a trajectory of the field X that passes through ¢ for ¢ = 0. The theorem above guarantees
that for each point of a certain neighborhood there passes a unique trajectory of and on the
”initial condition” ¢. It is common to use the notation ¢;(q) = ¢(t,q) and call ¢, : U — M the
local flow of X.

The interpretation of the bracket [X, Y], mentioned above, is contained in the following
proposition.

Proposition 1.27. Let X,Y be vector fields on a differentiable manifold M, let p € M, and
let p; be the local flow of X (flow of the vector field X is a differentiable function of the form
@ : U CR" = M such Vicy(dpr = Xy1y)) in a neighborhood U of p. Then

X, V)(p) = lim 7 [V — Y] (2u(p).

t—0

10



For the proof, we need the following lemma from calculus.

Lemma 1.28. Let h : (—0,0) x U — R be a differentiable mapping with h(0,q) = 0 for all
q € U. Then there exists a differentiable mapping g : (—9,9) x U — R with h(t,q) = tg(t,q);
i particular,

Oh(t, q)
0.q) =
9(0.q) |
Proof. of lemma 1.28. It suffices to define, for fixed t,
L Oh(ts,
g9(t,q) = oMts,q) 4

o O(ts)

and, after changing variables, observe that

" Oh(ts, q)

o) d(ts) = h(t,q).

tg(t,q) =

Proof. of the Proposition 1.27. Let f be a differentiable function in a neighborhood of p.
Putting

h(t.q) = f(eula) — fla),
and applying the lemma we obtain a differentiable function g(¢, ¢) such that

fopilq) = f(q) +tg(t,q) and g¢(0,q) = X f(q)
Accordingly

Therefore

-
1
o
~

= (XY NP - YV(XN)P)
= (XY =Y X)f)(p) = (X, Y]/)(p)

1.29 Submersion, Immersion, Embeddings

Definition 1.30. (Submersion) Let M™ and N™ be differentiable manifolds ,a mapping ¢
from M to N is said to be a submersion if the differential dp = . : T,M — T, N(p € M)
of o M — N is sujective (surjective map means that for any element of the arrival set there
exist at least one an element of the starting set that is the image of it.) for each p € M

Definition 1.31. (Immersion and embeddings) Let M™ and N™ be differentiable mani-
folds, a differentiable mapping ¢ : M — N 1is said to be an tmmersion if dp, : T,M — T, N
is injective (injective means any element of the arrival set is the image of at most one point of
the departure set, (perhaps none)), for all p € M.

If in addition ¢ is a homeomorphism onto (M) C N, where ¢(M) has the subspace topology
induced from N, we say that y is an embedding. If M C N and the inclusion v : M C N is

11



an embedding, we say that M is a submanifold of N.
It can be seen that if o : M™ — N™is an immersion, then m < n; the difference n —m is called
the co-dimension of the immersion .

Example 1.32. The curve o : R — R? given by a(t) = (3,1?) is a differentiable mapping
but is not an immersion. Indeed, the condition for the map to be an immersion in this case is
equivalent to the fact that o/ (t) # 0, which does not occur fort =0 (Fig. 1.0).

y
vt 4
0
Figure 1.6:
Example 1.33. The curve a(t) = (12 — 4t,t> — 4) (Fig. 1.7) is an immersion a : R — R?
which has a self-intersection for t = 2,t = —2. Therefore, « is not an embedding.

¥y A

Y
x

Figure 1.7:

1.34 Orientation

Definition 1.35. (Orientation) Let M be a differentiable manifold. We say that M is ori-
entable if M admits a differentiable structure {(Un, Xa)} such that:

(x) for every pair o, B, with x,(Us) Nxg(Us) = W # 0, the differential of the change of
coordinates xgl o x4 has strict positive determinant .

In the opposite case, we say that M is non-orientable.

If M is orientable, a choice of a differentiable structure satisfying (%) is called an orientation
of M.

12



Proposition 1.36. Two differentiable structures that satisfy (x) determine the same orienta-
tion if their union again satisfies (x).

If M is orientable and connected there exist exactly two distinct orientations on M.

Now let My and Ms, be differentiable manifolds and let ¢ : My — M be a diffeomorphism.
My is orientable if and only if My is orientable.

Corollary 1.37. If My and My are connected and are oriented, ¢ induces an orientation on
My which may or may not coincide with the initial orientation of Ms. In the first case, we say
that ¢ preserves the orientation and in the second case, that ¢ reverses the orientation.

Example 1.38. The simple criterion of the previous example can be used to show that the
sphere

=1

n+1
S" = {(xl, . 7In+1) c Rn+1,ZC(]Z2 = 1} c R

1s orientable.

Using the stereographic projection, let N = (0,...,0,1) be the north pole and S = (0,...,0,—1)
the south pole of S™.
Define a mapping m : S*—{N} — R" (stereographic projection from the north pole) that takes
p = (z1,...2p41) in S™ — {N} into the intersection of the hyperplane x,.1 = 0 with the line
that passes through p and N. It is easy to verify that (Fig. 1.8)

T Tn
Fl(xl,...,$n+1): sy .
I — 24 1 — 21

The mapping 1 is differentiable, injective and maps S™—{N} onto the hyperplane x,,1 = 0.
The stereographic projection s : S™ — {S} — R™ from the south pole onto the hyperplane
Tni1 = 0 has the same properties.

Therefore, the parametrizations (R”,Wfl) , (R", 7r2_1) cover S™. In addition, the change of
coordinates:

Y=t OV = e W) ERY, =110
1s given by
’ Yj
Y=< 2
Ty

(here we use the fact that 32751 22 =1 ). Therefore, the family {(R", "), (R", 73 ")} isa
differentiable structure on S™. Observe that the intersection 7, * (R*)Nmy ' (R") = S"—{NUS}
15 connected, thus S™ is orientable and the family given determines an orientation of S™.

Now let A : S™ — S™ be the antipodal map given by A(p) = —p, p € R . A is differen-
tiable and A? = Id .

Therefore, A is a diffeomorphism of S™. Observe that when n is even, A reverses the orientation
of S™ and when n is odd, A preserves the orientation of S™.

1.39 Affine Connections

Let us indicate by C*°(M) the ring of real-valued functions of class C*° defined on M.

Definition 1.40. An affine connection V on a differentiable manifold M is a mapping
V:I'(TM)xT(TM) — T'(TM)
which is denoted by (X,Y) N VxY and which satisfies the following properties:

13



=(0,.., 0, xi, 0, e, Xps1)

m@) = (.., 0

L] tov i po)
1-xp4y

o - Xj

1 Xi
’f ﬂ'j(p) = (0’ ey 0, m 10, wn ao)

Figure 1.8:

i) VixsgyZ = fVxZ + gVy Z.

i) Vx(Y +2)=VxY +VxZ.

iii) Vx(fY) = fVxY + X(f)Y,
in which X,Y,Z € I(TM) and f,g € C*(M).

Proposition 1.41. Let M be a differentiable manifold with an affine connection V. There
exists a unique correspondence which associates to a wvector field V' along the differentiable

curve ¢ : I — M another vector field % along ¢, called the covariant derivative of V' along
¢, such that:

a) B(V+W)=LY4 20

b) %(fV) = %V + f%, where W is a vector field along ¢ and f is a differentiable function
on I.

c) If V is induced by a vector field Y € T'(TM), i.e., V(t) = Y(c(t)), then

DV
= VY.
i Vet

Remark 1.42. The last line of (c) makes sense, since VxY (p) depends on the value of X (p)

and the value Y along a curve, tangent to X at p.

In effect, part (iii) of Definition 1.40 allows us to show that the notion of affine connection is
actually a local notion . Choosing a system of coordinates (x1,...,x,) about p and writing

X=> uX; Y=Y yXj
( J

where X; = %, we have

VY =3 2Vx, (Z ijJ) = 2wV X+ ) wiXi () X;
i J ij j

Setting Vx, X; = >, I Xy, we conclude that the T'}; are differentiable functions and that

14



VxY = Z (Z zy T + X (y )) X,

which proves that V xY (p) depends on z;(p),yr(p) and the derivatives X (yx) (p) of yx by X.

Proof. of Proposition 1.41. Let us suppose initially that there exists a correspondence satis-
fying (a), (b) and (c). Let x : U C R™ — M be a system of coordinates with ¢(I) Nx(U) # ¢
and let (z1(t),z2(t),...,2,(t)) be the local expression of ¢(t),t € I. Let X; = aax' Then we can
express the field V locally as V' = Let X; = %. Then we can express the field V' locally as

> v Xj, 5 =1,...,n, where v/ = v/(t) and X; = Xj(c(t)).

By a) and b), we have

DV dvj DX
R S

By ¢) and (i) of Definition 1.40,

DX;

X; =
R = Vic/dt V(

>Xj

dzz‘ X;

_Zd””z i,j=1,...,n.

Therefore, ‘
DV B dv’ n dzx;
dt — dt I — dt

vV, X;. (1.5)

The expression (1.5) shows us that if there is a correspondence satisfying the conditions of
Proposition 1.41, then such a correspondence is unique.

To show existence, define 2¥ in x(U) by (1.5). It is easy to verify that (1.5) possesses the
desired properties If y(W) is another coordinate neighborhood, with y(W) Nx(U) # ¢ and
we define 2 in y(W) by (1.5), the definitions agree in y (W) Nx(U), by the uniqueness of £+
in z(U). It follows that the definition can be extended over all of M, and this concludes the

proof. =

The concept of parallelism now follows in a natural manner.

Definition 1.43. Let M be a differentiable manifold with an affine connection V. A wvector
field V along a curve ¢ : I — M s called parallel when 2¥- =0, for allt € I.

Proposition 1.44. Let M be a differentiable manifold with an affine connection V. Let

c: 1 — M be a differentiable curve in M and let V, be a vector tangent to M at c¢(t,),t, € I
(i.e. Vo € Ty, yM ). Then there exists a unique parallel vector field V' along c, such that
V(t,) = V,, ((V(t) is called the parallel transport of V (t,) along c).

Proof. Suppose that the theorem was proved for the case in which ¢(/) is contained in a local
coordinate neighborhood.

By compactness, for any ¢; € I, the segment ¢ ([t,,¢1]) C M can be covered by a finite number
of coordinate neighborhoods, in each of which V' can be defined, by hypothesis. From unique-
ness, the definitions coincide when the intersections are not empty, thus allowing the definition
of V along all of [t,,t].

we have only, therefore, to prove the theorem when ¢(7) is contained in a coordinate neigh-
borhood x(U) of a system of coordinates x : U C R™ — M. Let x !(c(t)) = (z1(t),. .., za(t))

15



be the local expression for c(t) and let V, =3 vJX;, where X; = % (c(ty)) .

Suppose that there exists a vector field V' in 2(U) which is parallel along ¢ with V' (t,) = V.
Then V = " v/ X; satisfies

DV dv] dx;
—m =2 X+ Z WV, X = 0.

Putting Vx, X; = >, Fink, and replacmg J with k in the first sum, we obtain

DV dv dx
- = ok b X, =
dt ;{dtJr dt } k=0

1,7

The system of n differential equations in v*(t),

Zrk del— 0, k=1,....n,

possesses a unique solution Satlsfylng the initial conditions v* (¢,) = v¥. It then follows that, if
V' exists, it is unique.
Moreover, since the system is linear, any solution is defined for all t € I, which then proves the
existence (and uniqueness) of V' with the desired properties.

]

1.45 Tensors on a differential manifold

Definition 1.46. ((s,r)Tensor)
For all p € M ,define the vectorial space

TEIM=TM® - @T,MRT;M® @ Ty M

v WV
s times r times

An element T € Tp(s’T)M is a tensor of type (s,r) above p. In a coordinate associated basis
(%) on neighborhood of p, write

i 0 0 .
Ty = T30 p) 5 () @ () @ daf) - ]

J1--Jr

Definition 1.47. (Tensor filed)
We can consider the differentiable manifold

TCIM = | T8 M

peEM

which is a bundle over M, the bundle of tensors of type (s,r). C* sections of this bundle
will be called tensor fields of type (s,r). A tensor field T of type (s,r) above a local map of
M, with coordinates (x'), locally write as

9 9 | .
i1 i R — J Jr
T=T}5m® @5 - ®d @ ®du

Remark 1.48. Globally, a tensor of type (s,r) is an application F (M) multilinear on
AY M) x -+« x AA (M) x T(TM) x --- x T(TM) with values in F (M).

A tensor field of type (0,0) is just a function on M.

A tensor of type (1,0) is a vector field.

A tensor of type (0,1) is a differential 1-form.
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When changing coordinates z° — 3’ (z°), the components of the tensor change according to
the relation

7‘!/11@s _ ay“ ayz6 Tkl---k?s axgl 813&'
J1---Jr Ok Oxks l1..4p ayjl 8ij

1.49 Differential forms

Let V be a real n-dimensional vectorial space and let V* be its dual space.

Definition 1.50. The space of alternating k-forms is defined as follows:

A (V) ={w:V x-x V tk times ) — R w is k-linears and alternating } i (1.6)
were the form w is linear and alternating if w (vy, ..., v,) is linear in each argument and
w (Vo(1)s - - s Vo)) = (0)w (V1. .., 0,) . (1.7)

such that o is an permutation of symetric group, and e(m) is its signature.

Remark 1.51. dim A" (V") = 2.

Definition 1.52. (k-differential form filed) Choose a chart (U, ) about x with local coor-

dinates (z1,...,%y,).
An element w, € A* (T*M) is called differntial k-form at x and can be written as

1< << <n

We denoted the set of all differential k—form by A* (T*M) where

AT M) = | AN (T M)

xeM
and it 1s called k-differential form filed, Then all k-differential form is a C*section of this filed.

Proposition 1.53. A* (T*M) is a manifold of dimension n + —(gﬁ!)!,

Definition 1.54. ( k-differential form) A k-form on M is defined as a section of the bundle
AR (T*M). That is a C*° map w: M — A* (T*M).

We denote the space of k-forms on M by A*(M).

We write A(M) := @,_, A*(M) and A°(M) = C>(M,R).

Proposition 1.55. AA(M) is an algebra structure
Proposition 1.56. Let w: AF (T*M) — M and w : M — A* (T*M) so that mow = idyy;.

Definition 1.57. (Local expressions) If {dx'} is a local basis of differential 1-forms, over the
open set U of a local map of M, with coordinates (z'), foriy < --- < i,. then the dx™™A---Ndz"
locally generate A"(M) on functions. That is to say that any r-form w is written, above U,

W=wj g dx"" \N--- Ndz"

where the second sum is over iy < --- < i, and where the w;, ;. are functions U — R.

Sometimes, this second sum will relate to all the indices iy,...,1,, which supposes that we

extend the definition of dx™ A --- Adx' to all (iy,...,1,) and that w;, ;. : U — R become

completely antisymmetric functions on their indices; it will then also be necessary to place a
1

factor = in front of the sum.
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Definition 1.58. (Exterior product)
For w € A"(M) and n € A*(M), we can define the exterior product w An € A" 5(M) by
the formula:

1
(CL) A 7]) (Xl, e 7X7'+S> = — Z (—1)6(0)0} (XO'(I)7 e 7Xa'('r)) /] (XO'(T+1)7 c. 7X0'(7‘+S))

rls!
€GB, 45

such &, is the permutation of symetric group
This product gives the vector space A(M). It has the commutative property

wAn=(-1)"nAw
Definition 1.59. We defined the differential d on A(M) by the linear maps
d: A¥(M) — AMH(M)
such d : A°(M) = C®(M) — AY(M) the differential on the functions, and for all w € A*(M)

k
dw(Xo, ..., Xp) = Y (1) Xpw(Xo, ..., Xi, ..., Xp)
=0
D) w( X XL X X X
1<J

In the first term of the second member, X; acts as a derivation on the function

(JJ(Xo,...,Xi,...,Xk)

Proprety 1.60. We have the important relation (which makes d an antiderivation of the algebra
A(M) ) :
dlwAn) = (dw) An+ (—=1)"w Adn

where w € A™(M). Above an open U of a local M chart, if w = wy, i, dz A --- Adz', then

dw = <381W%1 w) drt Adz™ A - Adx

This summation relates to all the values of © and to i1 < --- < i,.

Definition 1.61. Let f : M — N be a C* map. We define the pull back of f as the map
f*: A(N) — A(M) so that:

1. f'(g)=gof forge AN) = C=(N,R).

(ffw), (X1,..., Xp) = wi) (X1, ..., [iXy) for w € A¥(N) with k > 1. such that
f.: T(TM) — I(TN)

Proprety 1.62. Properties of the pull-back map.
1. fflwAT)=f'wA f*T1 T,we A(N)
2. ["(gw+hT) = f(9)f'wnf(h)fT gheAN)
3. (feg) =g of
Proposition 1.63. A Pull-backs f* and d commute:
d(f'w) = [ (dw).

such, on one side, it is about the differential on M, and on the other side of the differential on

N.

18



Proposition 1.64. If f : M — N 1is a diffeomorphism, we can define the pull-back map on the
tensor fields T of type (s,r) on N:

(FT) (..., Xe, o, X)) =T ((F) el () el X0, X0
where (f*)" : A(M) — A(N), o/ € AYM) and X; € T(TM).

Proposition 1.65. Integral of n-forms.
Let M be an orientable manifold of dimension n.
1. If w e A" (R™) has compact support, and w = fdz' A\ --- A dx™ then

/ W= fdx' ... dx".
n Rn
2. If w e A"(M) we define
o= [ =3 [ ) o)
/[M} zEZ[/Uz ZEZ[ (Us)

where {(U;, p;) 11 € I} is a positively oriented atlas and {p; : i € 1} is a partition of unity
subordinate to {(U;, ;) : i € I}.

Theorem 1.66. (Stokes theorem). Let M be a compact differentiable manifold of dimension
n with boundary OM. Let w € A" (M). Then,

/dw:/ w.
M oM

where OM is provided with the canonical orientation induced by that of M.
In Particular, if M is a manifold without boundary, then

/dw—O.
M
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CHAPTER

2

THE RIEMANNIAN MANIFOLDS

In this chapter we introduce the notion of Riemannian manifold and define the Riemannian
metric with give the notion of levi-civita connection wich is play a important rule in the appli-
cations of Riemannian manifold.

the following references are used; [DCFF92] [BGMT71] [Ural8][GY14]

2.1 Riemannian metric, Riemannian manifold

Definition 2.2. A Riemannian metric g, (or g) , on a differential manifold M, is a bilinear
tensor field of type (2,0) which is required to be symmetric and positive-definite .

g:D(TM) xT(TM) - R
gp: T,M x T,M — R
(X)Y) = g,(X,)Y)

It 1s bilinear in that the metric acts linearly on each of its two arguments,

dp (CLXl + bXQ,Y) = agp (Xl,Y> + bgp (XQ,Y) VXl,XQ,Y c TpM
gp (X, aY1 +0Ya) = ag, (X, Y1) +bg, (X, Y2) VX, Y1,Y, € T,M

It s symmetric in that the value given by the metric is independent on the order of operation,
aGp(X,)Y)=g,(Y,X) VXY e T,M
It 1s definite that
Gp(X,Y)=0=X=00rY =0

This implies that if g,(X,Y) = 0 and either X or Y are not equal to zero, then X,Y are
orthogonal.
It is positive that

96X, X)>0 VX eT,M

More simply, it can be said that a Riemannian metric g,(-,-) is a inner product on the
tangent space at each point ,
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The components g;; of local representation

. . g 0
9p =D _9i(p)dz’p@da’lp g =gp(5 -, 5 )
p ; J J p 8[@ axj
where g;; are the differentiable functions.

Definition 2.3. A differentiable manifold with a given Riemannian metric g will be called a
Riemannian manifold, denoted (M, g).

Proposition 2.4. The Riemannian metric varies differentiably in the following sense: If

x : U C R" = M is a system of coordinates around p, with x (xq1,%s,...,2,) = q € x(U)
and (%(q) = dx,(0,...,1,...,0), then g (z1,...,2,) = gq(ai (q), %(q)) is a differentiable

function on U.

Definition 2.5. The symetric matriz g;; s called the local representation of the Rie-
mannian metric (or "the g;; of the metric”) in the coordinate system x.

Proposition 2.6. This definition does not depend on the choice of coordinate system.

Definition 2.7. Let (M, g) and (N, h) be Riemannian manifolds. A diffeomorphism
f: M — N (that is, f is a differentiable bijection with a differentiable inverse) is called an
isometry if:

9p(u,v) = hypy (dfy(u), dfp,(v)), for all pe M, wveT,M. (2.1)

Definition 2.8. Let (M,g) and (N,h) be Riemannian manifolds. A differentiable mapping
f: M — N is a local isometry at p € M if there is a neighborhood U C M of p such that
f:U— f(U) is a diffeomorphism satisfying (2.1).

Proposition 2.9. A Riemannian manifold (M, g) is locally isometric to a Riemannian man-
ifold (N, h) if for every p in M there exists a neighborhood U of p in M and a local isometry
f:U— f(U)CN.

What follows are some examples of the notion of Riemannian manifold.

Example 2.10. The almost trivial ezample. M = R™ with 8%1- identified with e; = (0,...,1,...,0).
The metric is given by g(e;, e;) = d;; such that :

1 ifi=j
0ij = e
0 ifi#j
15 called the canonical metric of R™.

Definition 2.11. ( Immersed manifolds). Let f : M™ — N™* be an immersion, that is, f
is differentiable and df, : TyM — Tty N is injective for all p in M. If N has a Riemannian
structure h, f induces a Riemannian structure g on M by defining

9p(u,0) = hy)(dfp(u), dfp(v)) w0 € T,M

Since df, is injective, gy(. , .) is positive definite. The other conditions of Definition 2.2 are
verified. This metric g on M is then called the metric induced by f, and f is an isometric
1Mmersion.

A particularly important case occurs when we have a differentiable function ¢ : M™% — N
and q € N is a reqular value of ¢ ( that is, dpy : T,M — T, N is surjective for allp € 0 (q)).
It is then that ¢ (q) C M is a submanifold of M of dimension n, hence, we can put a Rie-
mannian metric on it induced by the inclusion.

21



Example 2.12. Let ¢ : R® — R be given by

o (T1,...,Ty) :Zx?—l.
i=1

Then 0 is a reqular value of ¢ and
e 0)={zeR":af+...+a) =1} =5""

is the unit sphere of R™. The metric induced from R™ on S™ 1 is called the canonical metric of
St

Example 2.13. The product metric. Let (My,g) and (Ms,h) be Riemannian manifolds and
consider the cartesian product My X My with the product structure k.

Let m : My X My — M, and m : My x My — My be the natural projections. Introduce on
My x My a Riemannian metric k as follows:

kpg) (1, v) = gp(dmi (u), dmy(v)) + ho(dma(u), dma(v))  V(p,q) € My x My,
‘v’(u, U) € T(p,q) (M1 X Mg)

This metric k is really a Riemannian metric on the product.

For example, the torus S* x --- x St = T™ has a Riemannian structure obtained by choosing the
induced Riemannian metric from R? on the circle S* C R? and then taking the product metric.
The torus T™ with this metric is called the flat torus.

Let us now prove a theorem on the existence of Riemannian metrics.
Theorem 2.14. Every differentiable manifold has always a Riemannian metric.

Proof. Let {f,} be a differentiable partition of unity on (M, ¢g) subordinate to a covering {V,}
of M by coordinate neighborhoods. This means that {V,} is a locally finite covering (i.e., any
point of M has a neighborhood U such that U NV, # ¢ at most for a finite number of indices)
and {f,} is a family of differentiable functions on M satisfying:

1) fo >0, f, =0 on the complement of the closed set V.

2) >, fa(p) =1for all pon M.

we can define a Riemannian metric g®(. , .) on each V, : the metric induced by the system of
local coordinates. Let us then set

gp(u,v) = Zfa(p)gg(u,v) for all p e M,u,v € T,M.

This construction defines a Riemannian metric on M.
]

we are going to show how a Riemannian metric permits us to define a notion of volume on
a given oriented manifold M™.

Let pe M and let x : U C R™ — M be a parametrization about p which belongs to a family
of parametrizations consistent with the orientation of M (we say that, any parametrizations
are positive). Consider a orthonormal basis {ey,...,e,} of T,M and write X;(p) = %(p) in
the basis {e;} : Xi(p) = >_; aije; (by changing the bases). Then

Gkl = 9o(Xi, Xe) = Y aij are gylej,e0) = Y aij ag;. (2.2)
jt j
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Definition 2.15. On any oriented Riemannian manifold (M,g), there is a unique n-form
known as the volume form w (w: (T(TM))" — R), satisfying the property that

wy (€1, ..., e,) =1, whenever (ey,...,e,) is an oriented orthonormal basis for a tangent space
T,M.

Let (x%) a local map on M in point p, locally, the associated volume form is expressed by:

w = /det (gijl,) - dz' AL A da"

Proposition 2.16. Let w be the volume form formed by the vectors X1(p), ..., Xu(p) in T,M,
we obtain

w(X1(p),...,Xn(p)) =det (a;;) -w(eq,...,e,) = det (a;;) = +/det (gi]p)
such that (a;j) is the matriz given by (2.2)
Proposition 2.17. Ify: V C R™ — M 1is another positive parametrization about p, with

Yi(p) = aiy(p) and hi;|, = hy(Y:,Y;), we obtain

det (gijlp) = w (X1(p), - -, Xu(p))
= JwY1(p), ..., Ya(p)) (2.3)

= Jy/det (hylp)

where J = det (g—Z;) = det (dy ! o dx)|, > 0 is the determinant of the derivative of the change

of coordinates.

Definition 2.18. Now let R C M be a region (an open connected subset), whose closure is
compact. We suppose that R is contained in a coordinate neighborhood x(U) with a positive
parametrization x : U — M, and that the boundary of x '(R) C U has measure zero in R"
(observe that the notion of measure zero in R™ is invariant by diffeomorphism). Let us define
the volume vol(R) of R by the integral in R"

vol(R) = /X_I(R) \/det (gij)dzy ... dx, (2.4)

The expression above is well-defined.

Proposition 2.19. If R is contained in another coordinate neighborhood y(V') with a positive
parametrization 'y :V C R™ — M, we obtain from the change of variable theorem for multiple
integrals, (using the same notation as in (2.3),

vol(R) = / - \/det (gij)dzy ... dx, = / " Vdet hijdy, ... dy,
x—1 y—1

which proves that the definition given by (2.4) does not depend on the choice of the coordinate
system (here the hypothesis of the orientability of M enters by guaranteeing that vol(R) does
not change sign).

Definition 2.20. In order to define the volume of a compact region R, which is not contained
in a coordinate neighborhood it is necessary to consider a partition of unity {¢;} subordinate to
a (finite) covering of R consisting of coordinate neighborhoods x (U;) and to take

vol(R) = Z /_1(R) iV

such that v is a volume form where v = \/det (g;;)dzy .. . dx,.

The expression above does not depend on the choice of the partition of unity.
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Remark 2.21. The existence of a globally defined positive differential form of degree n (volume
element) leads to a notion of volume on a differentiable manifold. A Riemannian metric is only
one of the ways through which a volume element can be obtained.

2.22 Riemannian submersions

Definition 2.23. . (Riemannian submersions) Let ¢ is a C*° map of a Riemannian manifold
(M, g) into another Riemannian manifold (N, h) is called a Riemannian submersion if :

(1) ¢ is surjective.

2) the differential ¢, = dp : T,M — T, ,ZwN (p € M) o : M — N is sujective for each
® @y ¢ (p) ¥
pe M.

(3) each tangent space T,M at p € M has the direct decomposition:

T,M=V,®H,

which is orthogonal decomposition with respect to g such that V, = Ker (p.,) C T,M
means that V, = ¢.(0,)~1 (V, is the vertical subspace at p).
and is H, :== V) C T,M (H, is the horizontal subspace at p)

(4) the restriction of the differential @. to H, is an isometry,
Oulr, + (Hp, gp) — (Tw(p)N, hw(p)) for each p € M.

Definition 2.24. Let ¢ : M — N a submersion of (M,g) in (N, h) is called Riemannian
submersion if p.|y, induces an isometric of Euclidian spaces of H,, on T, N.

Proposition 2.25. A manifold M is the total space of a Riemannian submersion over N with
the projection m : M — N A Riemannian metric g on M, called adapted metric on M which
satisfies

g=1"h+k

where k is the Riemannian metric on each fiber t='(q), (¢ € N). Then, T,M has the orthogonal
direct decomposition of the tangent space T, M.

M=V,®oH, pecM (2.5)
where V, = Ker (m,,) C T,M , and H, is H :==V*+ C T,M .

Proposition 2.26. fixing locally frame, called adapted local orthonormal frame field to the
projection ™ : M — N, Corresponding to the decomposition (2.5), the tangent vectors X, and
Y, in T,M can be defined by

Y= XY XL Vv v XYY e,
H H
Xp,Yp € H,

forp € M. Then, there exist a unique decomposition such that

9(X,,Y,) =h(mX, mY,) +k(X),V)), X,Y,eT,MpeM
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2.27 Riemannian connections

Definition 2.28. Let M be a differentiable manifold with an affine connection V and a Rieman-
nian metric g. A connection is said to be compatible with the metric g, when for any smooth
curve ¢ and any pair of parallel vector fields P and P’ along ¢, we have g(P, P") = constant.

Definition 2.28 is justified by the following proposition which shows that if V is compatible
with g, then we are able to differentiate the inner product by the usual ”product rule”.

Proposition 2.29. Let M be a Riemannian manifold. A connection V on M is compatible with
a metric if and only if for any vector fields V. and W along the differentiable curve ¢ : I — M
we have

d DV DW
—tg(‘é W)=g(— W)+g(V,——), tel (2.6)

d dt ’ dt )

Proof. It is obvious that equation (2.6) implies that V is compatible with g . Therefore, let
us prove the converse. Choose an orthonormal basis {P; (t,), ..., Py (to)} of Ty, (M), t, € 1.
Using Proposition 1.44, we can extend the vectors P;(t,),i = 1,...,n, along ¢ by parallel
translation. Because V is compatible with the metric, {Pi(t),..., P,(t)} is an orthonormal
basis of T, (M), for any t € I. Therefore, we can write

VoS wh W=Y P i=l..n

where v* and w' are differentiable functions on I. It follows that

DV dv’ DW dw’
Z -~ p = _ - p
dt — dt" " dt — dt '

Therefore, ‘ ‘
DV Dw dvt ,  dw'

o2 w9, 2V >—;{ o )
d P d
[ ]

Corollary 2.30. A connection V on a Riemannian manifold M is compatible with the metric
if and only if

X9V, 2)=9(VxY, Z)+g(Y,VxZ), X,Y,ZeT(TM) (2.7)
Proof.. Suppose that V is compatible with the metric. Let p € M and let ¢ : I — M be a
differentiable curve with ¢ (t,) = p,t, € I, and with % by = X (p). Then
d
X(p)g(Y,2) = %Q(Y» Z) =9 (Vxp)Y.2) + 9, (Y. Vx)Z)

t=to

Since p is arbitrary, (2.7) follows. The converse is obvious.
]

Definition 2.31. A torsion of an affine connection V on a smooth manifold M 1is defined as

T :T(TM) x T(TM) — T(TM)
(X,Y) —T(X,Y)=VyxY —VyX —[X,Y].

T is called torsion-free if T(X,Y)=0 VXY € I(TM)
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Definition 2.32. . An affine connection V on a smooth manifold M is said to be torsion-free

when
VxY = VyX = [XY] for all XY € T'(TM).

Remark 2.33. In a coordinate system (U,x), the fact that V is free torsion implies that for

allv,7=1,...,n,
0

oy’
which justifies the terminology (observe that (2.8) is equivalent to the fact that Fk = Fk ).

Vi X; — Vi, X, = [X;, X;] =0, X, = (2.8)

Theorem 2.34. (Levi-Civita) Given a Riemannian manifold M, there exists a unique affine
connection V on M satisfying the conditions

a) V is torsion-free,.
b) V is compatible with the Riemannian metric.
The connection called Levi-Civita (or Riemannian) connection on M.

Proof. Suppose initially the existence of such a V. Then

Xg(Y,Z) = g(VxY,Z2) + g (Y,VxZ) (2.9)
g(YZ,X)=g(VyZ,X)+g(Z,VyX), (2.10)
Zg(X,Y) =g (VzX,Y) + g (X,VY). (2.11)

Adding (2.9) and (2.10) and subtracting (2.11), we have, using the symmetry of V, that

Xg(Y,2) + Yg(Z.X) - Zg(X.Y) = g([X. 2], Y) + g([Y. 2], X) + g([X. Y], Z) + 29 (Z. Vy X)
Therefore

g(Za VYX) = %(XQ(Y, Z) —l—Yg(Z,X) —Zg(X, Y) _9([X7 Z],Y) _9([Y7 Z]’X) —g([X, Y]aZ))

(2.12)
The expression (2.12) shows that V is uniquely determined from the metric g. Hence, if it
exists, it will be unique.

To prove existence, define V by (2.12). It is easy to verify that V is well-defined and that
it satisfies the desired conditions.

|
In a coordinate system (U,x), we can say that the functions F defined on U by
Vx,X;=>, F X k., the coefficients of the connection V on U or the Christoffel symbols of the
connection. From (2.12) it follows that

(9 0 0
Z F”gék gjk + oz, ki — a_xkgij

Where g” = g(XZ,X])
Since the matrix (gen) admits an inverse (g

L1 9 0 o N\ .
L= 3 ; {8_%9314 + a_xjgkz a_xkgzj} g (2.13)

The equation (2.13) is a classical expression for the Christoffel symbols of the Riemannian
connection in terms of the g;; (given by the metric).

km), we obtain that
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Observe that for the Euclidean space R", we have Ffj =0.
In terms of the Christoffel symbols, the covariant derivative has the classical expression

DV dv* dx;
— = — Mol =24 X,
dt Z{dtJriZj ij" dt} k

k

which follows from (1.5). Observe that 2 differs from the usual derivative in Euclidean space
by terms which involve the Christoffel symbols. Therefore, in Euclidean spaces the covariant
derivative coincides with the usual derivative.

2.35 curvature

Definition 2.36. The curvature R of a Riemannian manifold M 1is a correspondence that
associates to every pair X,Y € I'(T'M) a mapping R(X,Y) : I(TM) — I'(TM) given by

R(X,Y)Z =VyVxZ -=VxVyZ+VixyZ, Zecl(IT'M)
where V is the Riemannian (Levi-Civita) connection of M.

Example 2.37. Observe that if M = R", then R(X,Y)Z =0 for all X,Y,Z € T (TR"). In
fact, if the vector field Z is given by Z = (z1,...,z,), with the components of Z coming from
the natural coordinates of R™, we obtain

VxZ = (Xz,...,Xz,) (2.14)

hence
VyVxZ =(YXz,...,YXz,) (2.15)

which implies that
R(X,)Y)Z =VyVxZ —VxVyZ +Vxy)Z =0

as was stated. We are able, therefore, to think of R as a way of measuring how much M deviates
from being Fuclidean.

Remark 2.38. Another way of viewing definition 2.36 is to consider a system of coordinates

{z;} around p € M. Since [%, a%j =0, we obtain
o 0 0 0
R L) L (Vo Varon — Voros Voros.) ——
<8$i, 89@) o, (Voyow, Voyou, 002V 0/01;) O

that is the curvature measures the non-commutativity of the covariant derivative.
Proposition 2.39. The curvature R of a Riemannian manifold has the following properties:
(i) R is bilinear in T(TM) x T(T'M), that is,
R(fX1+9Xo, Y1) = fR(X1, Y1) + gR (X2, Y1)
R(Xy, fY1+gY2) = fR(X1, Y1) + gR (X1, Y2)
frge C®(M), Xy, X5, Y1,Y,e'(TM).

(i) For any X,Y € I'(TM), the curvature operator R(X,Y) : T'(TM) — I'(TM) is linear,
that s,
R(X,Y)(Z + W) = R(X,Y)Z + R(X,Y)W,

R(X.Y)fZ = fR(X,Y)Z,

feC=(M), ZWeT(TM).
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Proof. Let us verify (i), by the properties of the connection and Lie bracket we have the first
part of (),
R(fX1+9X2,Y1) = Vi Vixitgxo — Vixi+9x2 Vi + Virxi49x0.v1)

= Vn(fVx, +9Vx) = (fVx +9Vx) Vi + Virxi 1o n)
=Vvi/Vx, + VvigVx, — [V, Vv, =9V, Vv + Virxrgxom)
=Vvi/Vxi +VvigVx, = [Vx,Vy, =9V, Vv + Vixvi) + Vgxen)
=VyvifVx, + VyigVx, — [Vx,Vy, =9V, Vy, + fVix,vi] + 9V ixo 1)
= fVywWVx, + —fVx,Vy, + fVix,vi) + 9VviVx, = 9V, Vy, + 9V x, v
= f(VyiVx, + =Vx,Vy, + Vixivi) + 9(VviVx, =V, Vy, + Vi, vi)
= fR(X1,Y1) + gR (X2, V7).

The second part of ()

R(X1, fY1+9Y2) = Viviegw Vixi = Vi, Viviegy, + Vix, pviten)
= (Vv +9V%)Vx, = VX, (f Vv + 9Vy,) + Vixg pvi4gv)
= Vv Vx, + Vv, Vx, = Vx, Vv, = Vx,gVy, + Vix, i 1gva)
= IVviVx, + 9Vv,Vx, = Vx, [Vy, = Vx,9Vy, + Vix, i) + Vix g
= fVviVx, + 9V, Vx, = Vx, fVy, = Vx,9Vy, + fVixivi] + 9Vix1 19
= fVviVx, + 9V, Vx, — fVx,Vy, =gV x,Vy, + fVix, vi] T 9V [x1.15)
= fVviVx, — fVx, Vv + fVixivi + 9V Vx, — 9V x, Vy, + 9V [x, 15
= F(Y% Vi, — Vi, Vs + Vi) + (V9 Vi, — Vi, Vs + Vix, o)
= fR(X1, Y1) + gR (X4, Y3)
and verify (ii) The first part of (ii) is obvious. As for the second, we have
VWVx(fZ2) =Vy (fVxZ +(X[f)Z) = fVyVxZ + (Y [)(VxZ)
+ (X ) (VyZ) + (Y(X)))Z.
Therefore,
Vv Vx(fZ2) = VxVy(fZ) = f(VyVx = VxVy) Z+ ((YX - XY)f)Z
hence
R(X,Y)fZ = fVyVxZ — fVxVyZ + (Y, X|))Z + fVixy Z + (X, Y]f)Z
— [R(X,Y)Z.

Remark 2.40. An analysis of the proof above shows that the necessity of the appearance of
the term Vxy1Z 1in the definition of the curvature is connected to the fact that we want the
mapping R(X,Y) : T(TM) — I'(T'M) to be linear.

Proposition 2.41. (Bianchi identity)

R(X,Y)Z+R(Y,2)X + R(Z,X)Y =0.

Proof. From the symmetry of the Riemannian comection, we have,

R(X,Y)Z + R(Y,Z)X + R(Z,X)Y
= VyVsZ — VxVy Z + VixnZ + V2Vy X = Vy VX + VX + Vi VY
— Vi VxY 4 ViznY
= Vy[X, Z] + Vz[Y, X] + Vx[Z, Y] — V[X,Z}Y - V[Y’X}Z - V[Zy]X
=W X 2N+ (2, [V, X]] + [X, [Z, Y]]
=0,
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where the last equality follows from the Jacobi identity for vector fields.
[ ]

From now on, we shall write g(R(X,Y)Z,T) = R(X,Y, Z,T).
Proposition 2.42.
RX,)Y,Z,T)+R(Y,Z, X, T)+ R(Z,X,Y,T) =0

R(X,Y,Z,T) = —R(Y, X, Z,T)
R(X.Y,Z2,T) = —R(X,Y,T,Z)
R(X,)Y,Z,T)=R(Z,T,X,Y).

Proof.

(2.16) is just the Bianchi identity again, such
R(X,Y,Z.T)+R(Y,Z,X,T) + R(Z, X,Y,T)

0,7)

I
o v v v

(2.17) follows directly from Definition 2.36;

R(X.Y,Z,T) = g(R(X,Y)Z,T)
=9(V
:(

—9(VxVyZ —=VyVxZ —V_jyx
= —g9(VxVyZ — VnyZ—i—VYX]Z)
—9(R(Y, X)Z,T)

—R(Y,X,Z.T)

(2.18) is equivalent to R(X,Y, Z, Z) = 0, whose proof follows:

Yy
(—

—9((-VyVxZ +VxVyZ — VXY]Z)
\Y4

VxZ =VxVyZ+VixyZ,T)
VyVZ + VxVyZ — Vixy 2),T)

Z),T)
T)

R(X> Y7 Z7 Z) =g (VYVXZ - VXVYZ+ v[X,Y]Z7 Z)

But
g (VvaZ, Z) =Y (sz, Z) — g (VXZ, VyZ)
and )
g (V[X,Y]Z7 Z) - §[X7 Y]g(Z7 Z)
Hence

1
R(X.Y,Z,2) =Yg (VxZ.2) ~ Xg(Vy2.2) + 3IX.Yy(2.2)

= %Y(Xg(Z, 7)) — %X(Yg(Z, Z)) + %[K Yig(Z,Z)

— —%[X, Yg(Z,2) + %[X, Yig(Z,Z)

:07
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(R(X,Y)Z,T) + g(R(Y, Z)X,T) + g(R(Z, X)Y,T)
(R(X,Y)Z + R(Y, 2)X + R(Z, X)Y,T)
(



which proves (2.18).

In order to prove (2.19), we use (2.16), and write:

R(X,Y,Z,T)+R(Y,Z, X, T)+ R(Z,X,Y,T) =0

R(Y,Z,T,X)+ R(ZT,Y,X)+ R(T,Y,Z,X) =0

R(Z,T,X,Y)+R(T,X,Z,Y)+ R(X,Z,T,Y) =0
(

R(T, XY, Z)+ RX,Y,T,Z)+ RY,T,X,Z) =0
Summing the equations above, we obtain
2R(Z, XY, T)+2R(Y,T,Z,X) =0

and, therefore,
R(Z,X,)Y,T)=R(Y,T,Z,X)

It convenient to express what was seen above in coordonate system (U, x) based at the point
p € M. Let us indicate, as usual, % = X;. We put

R(X;, X;) Xy = ) R Xo.
¢

Thus Rf;, are the components of the curvature R in (U,x). If

X=>uX; Y=Y vX;, Z=> wX,
i j k

we obtain, from the linearity of R,

R(X,Y)Z =Y Rjuvuw*X, (2.20)

1,9,k 0l

To express R! ;& in terms of the coefficients F of the Riemannian connection, we write,

R(Xi, X;) Xi = Vx,Vx, Xi — Vx,Vx, X,

= Vx, (Z Pf,gg) — Vi, (Z Pﬁ,g@)
4 y4

which by a direct calculation yields
S S S S a S
ik = E Fekrjf E Fekrw ‘|‘ sz ax'rjk'

Putting

Rijis = g (R (X;, X;) X3, X. Z RS9

we can write the ideritities of Proposition 2.42 as:
Rijis + Rjkis + Riijs = 0

Rijks - _Rjiks

Rijks - _Rijsk

Rijks - Rksij~
Remark 2.43. The equation (2.20), which depends on the linearity of the operator R, shows
that the value of R(X, Y)Z at the point p depends uniquely on the values of X, Y, Z at p and the
values of the functions ka at p. Observe that this contrasts with the behavior of the covariant

derivative , the reason being that the covariant derivative is not linear in all of its arguments.
In general, entities, such as the curvature, that are linear, are called tensors on M
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2.44 Sectional curvature

Closely related to the curvature operator is the sectional curvature that we are now going to
define.

In what follows it is convenient to use the following notation.
Definition 2.45. Given a vector space V', we denote by the expression
lz Ayl = VIaPlyl? — (z,)%,

which represents the area of a two-dimensional parallelogram determined by the pair of vectors
r,y € V.

Proposition 2.46. Let o C T,M be a two-dimensional subspace of the tangent space T,M and
let z,y € o be two linearly independent vectors. Then

R(x7 y’ x? y)

K(l’,y): |$/\y|2

does not depend on the choice of the vectors x,y € o.

Proof. To avoid calculating, we observe that we can pass from the basis {x,y} of ¢ to any
other basis {2’,y'} by iterating the following . elementary transformations:

(a) {z,y} — {y,x}, such from 2.17 and 2.18

R(y,z,y,)
K(y,z) = Al
_ —R(.T,y,y,l’)
ly A xl?
_(_R(xvyuxvy))
ly A xf?
— R('T7y7'r7 y)
lz Ayl

(b) {z,y} — {Az,y}, by the linearity of R

R(Az,y, \x,y)
Az A y|?
_ (RO, y)Az,y)
Az 2[y]? — gp(Az, y)?
__ 9(AR(z,y)Az, y)
ANz [2[y[* — gp(Az,y)?
_ Ng(R(z,y)z,y)
ANz [2[y[* — gp(Az,y)?
__ Ng(R(z.y)z,y)
N z[2y|? — N2g, (7, y)?
__ Ng(R(x,y)z,y)
N ([z2lyl? — gp(x, y)?)
_ _ (R, y)r,y)
([z[*[y[* = gp(x, 9)?)
_ R(z,y,7,y)
|z Ayl?

K(Azx,y) =
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(©) {z,y} = {z + Ay, y}.

Rz + My, y,x + Ay, )
|z + Ay Ayl
_ g(RE+ My y)(x+ M\y),y)
|z + Ay|2|y]2 — gp(x + Ay, y)?
_ 9Bz + My, y) + Rz, +Ay, ) \y), )
[z + AyPlyl* — gp(z + Ay, y)?
_ 9(R(z,y)x + AR(y, y)x + AR(z,y)y + N R(y,y)y. y)
gp(@ + Ay, x + Ay)|y[> = gp(x + Ay, y)?

we have R(y,y)x and R(y,y)y are equal to 0 then

9p(R(z,y)x + AR(7,y)y, y)

K(z+ \y,y) =

Blatlu.y) = (gp(z + Ay, @) + Mgy + My, y) |yl — gp(x + Ay, y)?
_ Rz, y, 2, y) + AR(x, 4,9, y)
(gp(z, ) + Agp(y, ©) + Agp(z, y) + N2gp (2, y))|y[* — (gp(z,y) + Agp(y, y))?
_ R(z,y,z,y)
(9p(2, @) + Agp(y, ) + Agy(, y) + N2gp(z, y))|y* — (gp(z, y) + Agp(y, ¥))?
_ R(z,y,7,y)
((9p(@, ) + Agp(y, ) + Agp(z,y) + Ngp(z,9))[y1> — (9p(x, y)? + Ay)* + 29,(z,y) - Aly[?)
_ R(z,y,,y)
[Z[2[y]? + 2Agp(z, Y)[Y[? + N2gp (2, y))[Y]? — gp(x, y)? — N2{y|* — 2g,(z,y) - Aly[?)
__ R(z,y,zy)
22y = gp(x, y)?
_R(z,y,7,y)
[z Ayl

We can see that K (z,y) is invariant by such transformations and that completes the proof.
[ |

Definition 2.47. Given a point p € M and a two-dimensional subspace o C T,M, the real

number K(z,y) = K (o), where {x,y} is any basis of o, is called the sectional curvature of
o atp.

Lemma 2.48. Let V be a vector space of dimension > 2, provided with an inner product { , ).
Let R:V xVxV =>Vand R :Vx V xV =V be tri-linear mappings such that conditions
of Proposition 2.42 are satisfied by

R(z,y,2,t) = (R(z,y)z,t), R'(x,y,z,t) = (R (z,y)z1t).
If x,y are two linearly independent vectors, we may write,

R R
K(o) = (x,y,x,y)7 K'(c) = (z,y,2,9)
A yl? [ A yl?

where o is the bi-dimensional subspace generated by x and y. If for all o0 C V,K(o) = K'(0),
then R = R'.

Proof. It suffices to prove that R(z,y, z,t) = R'(z,y, 2,t) for any x,y, z,t € V. Observe first
that, by hypothesis, we have R(x,y,x,y) = R'(x,y,z,y), for all z,y € V. Then

Rz +z,y,2+2y) = R(x+2y,7+2,y)
g(R(x + z,y)x+ z,y) = g(R'(x + z,y)x + 2,9)
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g(R(z,y)z,y) + g(R(z,y)2,9) + g(R(z,y)x,y) + 9(R(z,9)z,y)
= g(R'(z,y)z,y) + 9(R'(x,y)2,y) + 9(R (2, y)z,y) + 9(R'(2,9)z,y)
because of 2.19 we have

9(R(z,y)x, y)+29(R(z,y)z,y)+9(R(2,9)2,y) = g(R (z,y)x,y)+29(R (z,y)z,y)+9(R'(2,9)2,y)

hence
R(z,y,z,y) + 2R(z,y, 2,y) + R(z,y, z,y) = R'(z,y,z,y) + 2R (z,y, z,y) + R'(z,v, 2,v)

and, therefore
R(z,y,2,y) = R (2,y,2,y)

for all x,y,z € V Using what we have just proved, we obtain

R(x,y+t z,y+t)=R(z,y+t,z,y+1t)
g(R(z,y+t)z,y+1t) = g(R(z,y +t)z,y + 1)

R(z,y,z,t) + R(x,t,2,y) + R(z,y, 2,y) + R(z,t, 2,t) = R (z,y, 2, t) + R'(z,t, 2,y)
+R(x,y,2,y) + R'(z,t,2,t)

hence
R(’ZE7 y? Z’ t) _|_ R('x? t? Z’ y) = R/(:E? y? Z’ t) + R/<x7 t? Z? y)’

which can be written further as
R(z,y,2,t) — R(x,y,2,t) = R(y, z,x,t) — R'(y, z, 2, ).

It follows that, the expression R(z,y, z,t) — R'(x,y, z,t) is invariant by cyclic permutations of
the first three elements. Therefore, by (a) of Proposition 2.42, we have

3[R(x,y,z,t) — R'(x,y,2,t)] =0,

hence
R(z,y,2,t) = R'(x,y,2,t)

for all z,y, z,t € V.
[ ]
Definition 2.49. M has constant sectional curvature if there exist K, € R such that
K(p,o)=K,Vpe M,oc C T,M

Lemma 2.50. Let M be a Riemannian manifold and p a point of M. Define a tri-linear
mapping R' : T,M x T,M x T,M x T,M — T,M by

R/(X,Y,VV,Z) = g(X7 W)g(Y7 Z) - g<Y7 W)g(X7 Z)

forall X, Y, W, Z € T,M. Then M has constant sectional curvature K, if and only if R = K,R,
where R is the curvature of M.

Proof. Assume that K(p,o) = K, for all ¢ C T,,M, and set R(X,Y,W, Z). Observe that R’
satisfies the properties of Proposition 2.42. Since

R/(X> Y, X, Y) = g(X,X)g(Y, Y) - g(X, Y>27

we have that, for all pairs of vectors X,Y € T,M,
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R(X,Y,X,Y) =K, (|XP|Y] - (X,Y)?) = K,R(X,Y,X,Y)
Lemma 2.48 implies that, for all X,Y, W, Z,

R(X,Y,W,Z) = K,R(X,Y,W, Z),

hence R = K, R'.
]

Corollary 2.51. Let M be a Riemannian manifold of dimension n, p a point of M and
{e1,...,en}, an orthonormal basis of T,M. Define Rijxe = g, (R (e;, €;) ek, €0),
i,j,k,0=1,....,n. Then K(p,0) = K, for allo C T,M, if and only if R;jxe = K, (0100 — 6:¢0 k)
In other words, K(p,o) = K, for all 0 C T,M if and only if R;j;; = —Ri;;i = K, for all i # j,
and Rijre = 0 in the other cases.

2.52 Ricci curvature and scalar curvature

Definition 2.53. Let (M, g) be a Riemannian manifold, then we define
(1) the Ricci operator Ric : I'(T'M) — C°(M) by

Ric(X) = R(X,e)e;,
(i1) the Ricci curvature Ric: T'(TM) xI'(TM) — R by
Ric(X,Y) Zg R(X,e)e;,Y),

(11i) the scalar curvature Scal € C*(M) by

ScalzZRiC(ej,ej ZZg (€i,e;)€j,€) .
J=1 7j=1 =1
Here {ey,...,e,} is any local orthonormal frame for the tangent bundle.

In the case of constant sectional curvature we have the following result.

Corollary 2.54. Let (M",g) be a Riemannian manifold of constant sectional curvature k.
Then its scalar curvature satisfies the following

Scal=n-(n—1) kK

Proof. Let {e1,...,e,} be any local orthonormal frame. Then

Ric (ej, €;) Zg (€5, €) €, €5)
— Zg g(ei,ei)e; —gle;e)e),ej)
- (Zg(ei,ei) g(ej,e;) Zg €i,€j) g euej))
i—1
L5
=1 =l

=(n-1)-k
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then

]
Let x = z, be a unit vector in 7,M; we take an orthonormal basis {z1, z2,...,2,_1} of the
hyperplane in T, M orthogonal to = . We are going to prove that the expressions above do not
depend on the choice of the corresponding orthonormal basis.
To prove these facts, we give an intrinsic characterization of the expressions above. First, define
a bilinear form on 7}, M as follows: let x,y € T,M and put

Q(z,y) = trace of the mapping z — R(z, 2)y.

@ is obviously bilinear. Choosing x a unit vector and then completing it to an orthonormal
basis {z1, ..., 2n—1, 2, = 2} of T,M we have

Zg (x,2:) Y, %)
—Zg (v, 2i) @, z1) = Qy, x)

that is, @ is symmetric and Q(x,z) = (n — 1) Ricy(x); this proves that Ric,(z) is intrinsically
defined.

On the other hand, the bilinear form ) on 7}, M corresponds to a linear self-adjoint mapping
K, given by

g(Scal(z),y) = Q(,y).

Taking an orthonormal basis {z1,..., z,}, we have

Trace of Scal = Zg (Scal (25) , )
= ZQ(%ZD
= (n— 1)ZRicp (2)

= n(n — 1)Scal,

which proves the statement.
The bilinear form —Q is, at times, called the Ricci tensor.

As usual we should express what was done above in a coordinate system (z;). Let X; = ai’

gij = 9(X;,X;), and ¢" the inverse matrix of g;; (i.e., Y, girg"* = 0¢ ). Then the coefficients
of the bilinear form —Q in the basis {X;} are given by

1 1
n—lle:n_lz ijk — Zszksg

J

We observe now that if A :7T,M — T,M is a linear self-adjoint mapping and
B :T,M x T,M — R is the associated bilinear form,
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ie., B(X,Y) = g(A(X),Y), then the trace of A is equal to >_., B (X;, X;) g'*. Thus, the scalar
curvature in the coordinate system (x;) is given by

1 .
K= — Rz ik
n(n—1) ; kJ

Let f: A C R* = M be a parametrized surface and let (s,t) be the usual coordinates of R%.
.. . 9f 8
Let V = V(s,t) be a vector field along f. For each (s,t), it is possible to define R (a—i, a—{) Vv
in an obvious manner.

Lemma 2.55.

DD, DD  _[(3f Of
915" asatV_R( )V

~osar s’ or

Proof. The proof is a long calculation. Choose a system of coordinates (U, x) based at p € M.
Let V = >, v'X;, where v' = v'(s,t)e X; = 2. Then

D D v ~—.D B0

K
and

D (D DD v D v D o
&(%V): Voras it 2 ot s an Z+Z@t6

Therefore, interchangmg the roles of s and t in the expression above, and subtracting, we
obtain

DD D D
55V~ mwm’ = (ki mmX)

Let us now calculate gt g X;. Put

f(s,t) = (z1(s,t), ..., x,(s,1)).
Then % = > %Xj and af => 8“”’“Xk Thus, we have

Os
D Oz,
ds X VE 8x7/65)X Z VX X
and
D 835]
8 X5
_Zat ]VXX +Z ng (01 O) X, (VXX)
ZL‘] (%vj Oxk
MOs Vi, X Z VXkVX X;
or
DD DD ox; &xk
— — — — | X, = .7 X
(375 ds  0Os (%) ‘ s Ot (VkaX Vx,Vx, X )

36



Joining everything together, we finally get

i@xj Ga:k

(a& - a—a) VE 2 Ty XX

(01 0
—r(5L5

2.56 Tensors on Riemannian manifolds

For what follows it is useful to observe that I'(T'M) has a linear structure when we take as
"scalars” the elements of C*°(M).

Definition 2.57. A covariant tensor T of order r on a Riemannian manifold is a multi-
linear mapping
T:T(TM) x---xT(TM) — C*(M)

N S
-

r factors

This means that given Y3,...,Y, € T(TM), T (Y3,...,Y,), is a differentiable function on M,
and that T is linear in each argument, that is,

TWY,...,.fX+gY,...)Y)=fT(Y1,...,X,....Y,)+¢T (Y1,...,Y,...,Y,)
for all X, Y € (T M), f,g € C®(M).
A tensor T is a pointwise object in a sense that we now explain. Fix a point p € M and let U
be a neighborhood of p in M on which it is possible to define vector fields F; ..., E, € I(TM™),

in such a fashion that at each ¢ € U, the vectors {E;(¢)},7 = 1,...,n, form a basis of T, M,
we say, in this case, that {E;} is a moving frame on U. Let

Yl:zyilEh?‘"?Y;‘:ZyirEiw il,...,irzl,...,n
i1 ir

be the restrictions to U of the vector fields Y7, ..., Y, expressed in the moving frame {E;}. By
linearity,

TV V) = > vy T (B, By

The functions T (E;,, ... E;, ) =T,

.....

The expression above implies that the value of T'(Y7,...,Y,) at a point p € M depends only
on the values at p of the components say that T' is a pointwise object.

Example 2.58. The curvature tensor

R:T(TM)xI(TM)xT'(T'M) x I'(TM) — C*(M)
1s defined by
R(X,Y,Z,W) = g(R(X,Y)Z,W), X.Y,Z,W € T(TM)

We can verify that R is a covariant tensor of order 4, whose components in the frame {Xi = 83 }

associated with the system of coordinates (x;) is
Rijre = R (X;, X, X, Xo) .
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Example 2.59. The "metric tensor” G : T(TM) x I(TM) — C*(M) is defined by

GX,Y) = (X,)Y),X,)Y € I(TM). G is a covariant tensor of order 2 and its components
in the frame {X;} are the coefficients g;; of the Riemannian metric in the given system of
coordinates.

Example 2.60. The Riemannian connection V defined by:

YV I(TM) x T(TM) x T(TM) — C>(M)
V(X.Y,2)=g(VxY,2), X,Y,ZeT(TM)

1 not a tensor, because V is not linear with respect to the argument Y .

Definition 2.61. Let T be a tensor of order r. The covariant differential VT of T is a
tensor of order (r + 1) given by

VT (Y1,....YZ)=Z(T(V1,....Y,)) =T (VzYi,....Y,) = =T (V1,...,Y,_1,V,Y,)

For each Z € T'(TM), the covariant derivative ¥V zT of T relative to Z is a tensor of order r
given by

VT (Vh,....Y,)=VT(Y,...,Y,,2)

We are going to show that, in a convenient frame, the definition of the covariant derivative
of a tensor T relative to Z € I'(T'M) becomes quite natural. For this, let p € M and let
a: (—e,e) = M be a differentiable curve with a(0) = p, o/ (t) = Z(a(t)). Let {ey,...,e,} be a
basis of T, M and let e;(t) be the parallel transport of e; along oo = «(t), for ¢ = 1,...,n. Let
T;, . 4. (t) be the components, in the basis {e;(t)}, of the restriction T'(«(t)) of T to the curve a.
Then, by the definition of VT,

d

(V2T) (e (1), - 3, (1) =—

Tilmir(w -T (VZeil (t>7 s 7€ir<t)) —-- =T <€i1 (t)a R VZeir(t))

Since V ze;(t) = 0, we have, by linearity,

(V.15 = (T 00, (0) = 5T,

In other words, in this frame, the components of the corariant derivative of T" are the usual
derivatives of the components of T.

Example 2.62. The covariant differential of the metric tensor is the zero tensor. Indeed, for
al XY, Z e T(TM),

VG(X,Y,Z) = Zg(X,Y) — g(VzX,Y) = g(X,VzY) =0

because V is the Riemannian connection.
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CHAPTER

3

THE LAPLACIAN IN RIEMANNIAN
MANIFOLD

The Laplacian is the most important operator such it used in many of the equations in physics
to descibe natural phenomena .It generalize to functions defined on a manifold. Were George de
Rham realized that it was fruitful to define a version of Laplacian operating on differential forms,
because of a fondamental relationship between harmonic forms and the de Rham colomology
groups on a smooth manifold.

In this chapter , the following references are used; [BGM71] [Can13] [RS97] [JJ08] [CS08] [GQ12]

3.1 Divergence of vector field, ) operator

On the Riemannian manifold (M, g), we define a linear mapping of I'(T'M) in C*°(M), called
divergence, and defined as follos:

Definition 3.2. the divergent of vector field & on M is the function div € locally define by :
dive : I(TM) — C*(M)
divew = d({ow) (3.1)

such w design the volume form wich correspondent in a local orientation, and £, w design the
contract product of £ and of the n-form w (n is the dimension of Riemannian manifold M),
means that the (n-1)-form defined by:

Eaw(Xe, ., Xno1) = w(&, X1, Xno1), VX1, .o, Xy €TD(TM) .

Remark 3.3. The div ¢ does not depend on the choose of the volume form w, so the divergence
is defined globally in (M,g).

Proposition 3.4.
div(f.€) = f.divE 4+ df(€) VfeC®(M)
VEeI(TM).

by duality, we obtain from the divergence an operator on the space A*(M) of 1-forms, called
0 and defined as follows:
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Definition 3.5. ¢ is operator of AY(M) in C>(M) defined by :

da = —div(a™) a e AN (M) (3.2)
such o* =37, (g7 a;) - X,
Remark 3.6. On 0-forms, ¢ is simply the zero linear functional.

If M is compact, the spaces A”(M) are endowed with a structure pre-Hilbertian, defined
from the inner product (.|.) on the euclidean space I'(APT* M), and from the canonical measure
vy, on (M,g) , the global inner product is denoted < .,. >. We therefore have, if a and 3 are
two-forms on M :

<a,ﬁ>:/M(oz|,8)-vg.

Proposition 3.7.
<df,a>=< f,0a> Vfe A (M)

Va € AY(M)

A(df‘a)'ngAf-(Sa-vg.

Proof. To prove it, we must prove that :

Jriey-w= [ foa-w

where w is form volume deffned locally near any point of the manifold.
Posed:

this equality also written :

1= [ @iy w— [ (6w
~ [ () = o) -

Because of the definitions of the operators ¢ and div, we have:

I:/M((df|a)—|—fdiva*)-w

However, by proposition3.4, we have:

fdiva® =div (fa®) — df (o)
and , by definition,

(df | ) = df (o),
so that,

1

((df | @) +div (fa") —df (")) - w
(df (o) +div (fo©) = df (7)) - w

div (fa") - w

S

d(fo’aw),
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that is, because of stokes

I:/ d(fa*sw)
M
—/ du.)(fOé*,Xl,...,mel) VXl,,meler(TM)
M
=0

which demonstrates the proposition previous.
[ ]

3.7.1 The Divergence and § operator of differential forms
Definition 3.8. The divergent is tace operator wich define by:
div : AP(M) — AP~1(M)
w — divw

such that for all p-form :

divw(X, X1,..., X, 1) = Vxw (X, X1, Xo, ..., X, 1)

Proposition 3.9. We can express the differential d in function of the connection V by:
Ywe AP(M),VY,i=1,2,...,p

p+1
dw (X, X1, Xoy o, Xpi1) = 3 (1) Vyw <X1,X2, X ,Xp+1) .

i=1

Definition 3.10. ¢ operator of p-form define as:

d: AP(M) — AP*I(M)
o — o

such that for all « € AP~ (M) and B € AP(M) we have:

(da, B) = (a,00) .
wich have the propriety :

o (Xo, X3, ., X)) == Vxa(X, Xa,...,, X,).
=1

The definition of the divergent we have :

Va € AP(M), da = —div a.

3.10.1 Calculation of divergence and ¢ in local coordinates:

Let (z') a local map on M in point m , to which is attached a real function 6 = y/det (g;;),
such that, locally, the associated volume form is expressed by:

w=0-de' A... . Ndz"

9

If (x;) is the local filed of the frame associated with the map (z*), (means that x; = 57,

we have:
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Eow(xy, .oy Tgy o yy) =w (& 21,00, Ty oo, Ty)

(D) tw(zy,... 6. 2,).

(D)7 dat AL ANdT" (T, .., E L T)
(—1)-9.c

such , &' design the i component of £. then we have:

n

Eaw = Z(—l)i’1 (0.8) da" A ... A dzi A ... dz"

i

and therefore :
d(€1w) = ( —1)" 1 (0.6) dat A AdAxiA...dx”)
:Z )i~ 9 S)d CNZ A ANdE A L dz

7

1 . n
o r A ANdx
016)‘9—1_00)

(g
- (205

by (3.1), so that:

: N 0(0-€)
divé =071 > :
ive Z o (3.3)
In the same map, a 1 -form « is expressed by:

o= g o, dz’
i

and therefore :
a* =3 (g90y) - X, (3.4)
Y]
where g% is the generic element of the inverse matrix of (g;;). It then follows from (3.4

)that:
da = —div(a™)

1 8 9 ij&j 35
— —¢ (Z %) , (3.5)

2y
Proposition 3.11. From (3.3) , for any X, Y € I'(T'M) and w € AP(M) we have:
div(X +Y) =divX +divY.
and, from (3.3) and (3.1) we have:
(X+Y)w=Xw+Y,iw
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3.11.1 Geometric formulation of §

The 2-form Da is a covariant derivative of 1-form « such that :

trace Da = Z Do(X;, X;)

such (X;) is the orthonormal fram .
as we have :

DO[(XZ,XJ = (DX706*|X1)
Proposition 3.12. For all I-form « define on the Riemannian manifold (M, g) :

da = — trace o

3.13 The Laplacien operator of a function
Definition 3.14. The Laplacien, noted A, is an operator of A°(M) in A°(M) define by :
Af=ddf  fe AY(M).

3.14.1 Expression in local coordonnates:

It given by the equation (3.5) such we replace a by df , means that «; by %. It comes :

z] df)

- —p Z de

So the Laplacian is a second-order differential operator , its homogeneous part of the second

order is written :
ijg_YJ
Zg 8x18x1 ’

Proposition 3.15. In n-dimensional Fuclidean space, the Laplace operator or Laplacian A is
differentiable operator is the divergence of the gradient such that :

: 0 0 0 0
le—(azl‘i‘ +8_{[‘n) andV-(a—xl,,a—xn)

A =—div.V

Example 3.16. Let (R", go)be connected (go is the metric on R") the g;; are constants, and
consider the operator acting on A°(R"™) such that simply differentiates a function f € A°(R")
two two times with respect to each position variable, the expression of the Laplacian is :

}:aﬂ, f e AR")

means that the opposite of the usual Laplacian.
FExtending the known notion on R™, we will say that a real function defined on a Riemannian
manifold is harmonic if it verifies equality:

Af =0.
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3.16.1 Geometric formulation of the Laplacien
Let Ddf is the second covariant derivative of f , For all f of A°(M) :
Af = —trace(D df)
means that
Af = —trace(Hess f)

such Hess f design the Hessien of f (the Hessien of f is the second covariant derivative of f
such Hess f = d*f = Ddf).
If X, is the orthonorms frame then :

Af = ZHess f(X5, X5)

Example 3.17. (Laplacien on the sphere) The sphere (S™,g) being considered as immersed in
(R go), compare the two following applications of S™ in R :

AS (fl) and (AT,

such f is an application C*° of R™ in R.
we have the quality:

n+1 n an af
Rt — AS _ —
<A .f) |5n =A (f|5") 8T2|Sn n- or 1|
for all f: R - R

A point p of s® determines a unit vector x on R*1. We complete it with the x;,
i=2,...,n+ 1 s0 as to obtain an orthonormal basis {x,zi},_y ., of R"" and therefore an
...... 11 of Tys™
The geodesic v; (z’s a cumatur@ v+ I — M ;1 C R such that Zy;(t) = 0 ;t € I where D is
curvature deriation.) , determined on (S™, go) par x;, written:

v;:a—cosa.x+sina-x; 1=2,...,n+1

(ou x and z; are considered as points of R"*' and therefore v;(a) as a point of s ).

77777

{z =21, 2}y .01 With cos notations the first derivative, with respect to a, of f o~y; written,
at the point v;(a) :

d(f o) of of
o (a) = —sina - e + cosa - ol
and the second derivative, at the point n = ;(0) :
& (fov) o _ Of 0*f

da? (0) = Ozt (p) + Ox? (p).
It follows, the following value of A*"(f|s™) :

n+1
dQ

AT (fln) () = D_ 25 (Fom) (0)

1=2

n+1 (92 a
ZZ@JZ@HP-—JC@)

: ozt
=2
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While we have

(AR"“f> (p) = — % %(p)

1=2

kg O f
= — i2(p)——1(p)-
So that: 0?
(A1) Lot = &7 (1)) 0) = 5500 = - S50,

that is to say precisely (3.6)

3.18 The Laplacien of compact manifold

As the operators d and ¢ are adjuncts on the compact Riemannian manifold (M, g), for all f,
for all g in AY(M) we have :

(Af,g9) = {f,Ag)

(A, f) = lldf]? (3.7)
Definition 3.19. ( The Hodge-de Rham Laplacian) On a n-dimensional compact Rie-
mannian manifold (M, g) the Laplacian is defined on the AP(M), for all p, by the formula:
A AP(M) — AP(M)
a — do(a) 4+ dd(a)

Proposition 3.20. The Laplacien of a n-dimensional compact Riemannian manifold (M, g) is
an operator positive-definite and self-adjoint that is:

(Aa, B) = (a,AB)  Va,Be AP(M); 0<p<n

Remark 3.21. From (3.7) we deduce that a harmonic function is locally constant, means that
constant on each connected component of M.

Proposition 3.22. (Bochner-Liohnerowicz formula)
For all f € A°(M), we have :

oA (dIP) =| Hess 77— |AfP + p(dr*, df)
when , p design the Ricci courvature of the Riemannian manifold (M, g).
Lemma 3.23. For all form o € A (M) and all X,Y € T(TM), we have :
DxDya* — DyDxa* — Dixyjo" = (R(X,Y)a")
The lemma follows from the definition of curvature.

Proposition 3.24. For the Laplacian, thus defined on the p-forms, we have the following
generalized Bochner-Lichnerowicz formula:

~58(aP) = [Pal — (a] 8a) + Fla) ¥a € 4°(M)

where F(«) is quadratic in o and linear in the curvature tensor R, such that, for all
X, X, Xayy Xay, -+ Xa, € {Xi}icn an orthonormal and parallal frame :

F(a) == (p_ 1)' Z (vXava _vavXa)a(XayXazaXa37"' aXap)'a (XbaXa27Xa3a"' >Xap) .

a,b,az,...,ap
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3.25 Hodge Theory

Definition 3.26. (Hodge star operator )is an isomorphism (the unique isomorphism) be-
tween smooth p forms to smooth n —p forms on compact n-dimensional Riemannian manifold,

defined by:

x: AP(M) — A" P(M) 0<p<mn
a— *a

such that for all pour o, 5 € AP(M) :

aN*xf=<a,>w.
such w is a volume form.
Definition 3.27. We can define an inner product on the vector space AP(M) of p-forms on M
by setting
(a, B) = / aANxf  fora,B e AP(M) (3.8)
M
and we denote the corresponding norm by ||«||.

Proprety 3.28. Let {X;},,., the orthonormal fram of M and {X;},_,., the associated or-
thonormal basis, then for all o € S(k,n) :

Proprety 3.29. For all forms a, f € AP(M)

- xxa = (=1)PPg

- da = (=) s dxa
- xAa =Axa

- aAxf8 =pPBAx«

- %1 =w , *xw=1

Theorem 3.30. We can also define the operator & from p-forms to (p — 1) forms by setting

§ = (—1)MPHDHL gy
where d denotes exterior derivative

Proof. For a € AP"1(M), 3 € AP(M)

d(a A xB) =da A xB + (=1)P taAd* 3
=da A *f + (1P (=)D A s (d % B)
by propriety 3.29 (d * § is a (n — p + 1)-form ) then

d(a A*B) =da A — (=1)"PHDH g A s d x
=+« ((do, B) — (—1)"PHDH (o xd x 3)) .

We integrate this formula. By Stokes’ theorem, the integral of the left hand side vanishes,we
have

/M £ * ((da, B) — (=1)"PTH N a, xd * B)) = 0
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then

/Mi*(da,ﬁ>:/ (=1)"PHDHL (o xd * B)

M
SO
£ (dov, B) = (—=1)"PIT (q, xd + B)
then
+ % (o, 68) = (—1)"P a, xd % )
SO

§ = (—1)"PHDHL 4 g«

and the claim results. m

Proposition 3.31. We may consider 0 < p < n as inner product on
A(M) = P AP(M)
p=0

with AP(M) and AY(M) being orthogonal for p # q.

Proposition 3.32. The operator § define on AP(M) , just as d is defined on AP(M) ,the pair
0 and d are adjuncts of each other.

5
AP(M) 2 AP~L(m)
d

(da, B) = (o, 08)  Va € AP"Y(M), B € AP(M)

Proof. Linearity and orthogonality of the AP(M) provides reduction to consideration of the
case in which a is (p — 1) form and 3 is a p-form.

dlaANxB) =da A*B+ (—1)PTaAdx* B
=daAN*3 —a A
by integrating both side over M and applying Stokes’ theorem to left-hand side, we get

/M(doz/\*ﬁ—a/\*éﬂ):/(doz/\*ﬁ)—(oz/\*55)

M

:/M(da/\*ﬂ)—/M(a/\*dﬁ)

= (da, B) — (e, 60)
=0

hence

(da, ) = (a, )

Theorem 3.33. Laplacian commutes with *, that is
*A = Ax

Proposition 3.34. Aa =0 if and only if da =0 and da = 0.
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Proof. Clearly Aa = 0 if da = 0 and da = 0. Now,

(Aa, ) = ((dd + dd)ar, @) = (da, 6ar) + (da, da)

Thus if Aa =0, then daw = 0 and da = 0.
[ ]

Corollary 3.35. The only harmonics function (Af = 0) on a compact, connected, oriented,
Riemannian manifold are the constant functions.

Definition 3.36. A form w € AP(M) is called harmonic if Aw = 0.

Definition 3.37. Let M be an orientable and compact Riemannian manifold of dimension n.
For every p, with 0 < p <mn, let

HP(M) ={w € AP(M) | Aw = 0},
be the space of harmonic p-forms.
Proposition 3.38. Let M be an orientable and compact Riemannian manifold of dimension

n, we have a linear map,
x: HP(M) — H"P(M).

Theorem 3.39. (Hodge Decomposition Theorem) Let M be an orientable and compact
Riemannian manifold of dimension n. For every p, with 0 < p < n, the space, HP(M), is
finite dimensional and we have the following orthogonal direct sum decomposition of the space

of p-forms:
AP(M) = HP (M) & A (A”(M))
S¥

= HP(M) @ d (6 (A"(M))) @ 0 (d (A"(M)))
=H(M) & d (AP (M)) &5 (AP (M)) .
Proposition 3.40. For every p > 0, the composition AP(M) N APTL(M) N APT2(M) s
identically zero, that is,
dod=0, (dod: AP(M) — APT*(M))

or, using superscripts, dP*t o dP = 0.

Definition 3.41. A differential form, w, is closed iff dw = 0, exact iff w = dn, for some
differential form n . For every p > 0, let

ZP(M) ={w € AP(M) | dw = 0} = Kerd : AP(M) — APTY (M),
be the vector space of closed p-forms, also called p-cocycles and for every p > 1, let
BP(M)={we A"(M) | 3Ine€ A" '(M),w=dn} =Imd: AP} (M) — AP(M)

be the vector space of exact p-forms, also called p-coboundaries. Set B’(M) = (0). Forms
in AP(M) are also called p-cochains. As BP(M) C ZP(M) (by Proposition 3.40), for every
p >0, we define the p* de Rham cohomology group of M as the quotient space

Hpp(M) = ZP(M)/BP(M).

An element of Hpp(M) is called a cohomology class and is denoted [w], where w € ZP(M)
15 a cocycle.

The real vector space, Hpr(M) = @psoHpr(M), is called the de Rham cohomology algebra
of M.

48



The Hodge Decomposition Theorem has a number of important corollaries, one of which is
Hodge Theorem:

Theorem 3.42. (Hodge Theorem) Let M be an orientable and compact Riemannian man-
ifold of dimension n. For every p, with 0 < p < n, there is an isomorphism between HP (M)
and the de Rham cohomology vector space, Hhg (M) :

Hpp (M) = HP(M).

Proof. Since by Proposition 3.34, every harmonic form, w € HP(M), is closed, we get a linear
map from HP (M) to Hf i (M) by assigning its cohomology class, [w], to w. This map is injective.
Indeed if [w] = 0 for some w € HP(M), then w = dn, for some n € AP~ (M) so

(w’w) = (dnvw) = (777(50‘;)'

But, as w € HP(M) we have dw = 0 by Proposition3.34, so (w,w) = 0, that is, w = 0. Our
map is also surjective, this is the hard part of Hodge Theorem. By the Hodge Decomposition
Theorem, for every closed form, w € AP(M), we can write

w = wy +dn+ 00

with wgy € HP(M),n € AP~Y(M) and 6 € AP (M). Since w is closed and wy € HP(M), we
have dw = 0 and dwy = 0, thus

dof =0

and so

0 = (68, 0) = (50,50),

that is, 06 = 0. Therefore, w = wy + dn, which implies [w] = [wgy], with wy € HP(M),
proving the surjectivity of our map.
n

Theorem 3.43. Let M" be a compact Riemannian manifold. Then every cohomology class in
HP(M) (0 <p <mn) contains precisely one harmonic form.

Proof. Uniqueness : Let wy,w; € A”(M) be cohomologous and both harmonic. Then either
p =0 (in which case w; = ws anyway) or

(W1 — wa, w1 — wa) = (w1 — wa,dn)
for some 1 € AP~1(M), since w; and w, are cohomologous
(w1 — wa, w1 —ws) = (6 (w1 —w2),m) = 0,

since w; and we are harmonic,
hence satisfy dw; = 0 = dw».

Since (+,-) is positive definite, we conclude w; = ws, hence uniqueness.
For the proof of existence, which is much harder, we shall use Dirichlet’s principle (Dirichlet’s
principle states that, if the function u(z) is the solution to Au + f = 0). Let wy be a (closed)
differential form, representing the given cohomology class in HP(M). All forms cohomologous
to wy then are of the form

w=wy+do (e (M)).

We now minimize the L?-norm

D(w) = (w,w)
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in the class of all such forms. The essential step consists in showing that the infimum is achieved
by a smooth form 7. Such an 7 then has to satisfy the Euler-Lagrange equations for D, i.e.

d
(n+tdB,n+tdB)— for all B € Q"' (M)

0=—
dt
= 2(n, dp)
This implies dn = 0. Since dn = 0 anyway, 7 is harmonic.
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Conclusion

This thesis has proposed a proof of Hodge theorem by starting from the notion of Riemannian
manifold with give some examples and some information of the connection , curvature and the
tensor . Afterwards , the Laplacian has been cited with the generalization of the Laplacian on
Riemannian manifolds. Eventually, Hodge theorem has been proved and Hodge Decomposition
Theorem has been stated as a consequence of Hodge theorem. Hodge theorem is an important
bridge that filling the gap between the field of partial differential equations and Algebraic
topology. Some problems that are hard in the nature of Partial differential equations can easily
approached via Algebraic topology and vice versa, thus a smart use of Hodge can be helpful to
open up many new possibilities in both fields
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