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Abstract

The main purpose of this thesis is to study the existence of solutions for some classes
of initial and boundary value problems involving the Caputo fractional derivative in Banach
Spaces. Our results are based on some standard fixed point theorems combined with the
technique of measures of noncompactness. Furthermore, examples are presented to illustrate
the application of our main results.
Key words and phrases : Caputo’s fractional derivative, boundary value problems, initial
value problem, Banach space, fixed-point, measure of noncompactness.
AMS Subject Classification : 26A33, 34A08, 34B15, 34G20.
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List of symbols

We use the following notations throughout this thesis

Acronyms
X FC : Fractional calculus.

X FD : Fractional derivative.

X FDE : Fractional differential equation.

X FI : Fractional integral.

X IVP : Initial value problem.

X BVP : Boundary value problem.

X FHDE : Fractional hybrid differential equation.

X MNC : Measure of noncompactness.

X DND Degree of nondensifiability.

Notation
X N : Set of natural numbers.

X R : Set of real numbers.

X Rn : Space of n-dimensional real vectors.

X J : be a finite interval on the half-axis R+.

X ∈ : belongs to.

X sup : Supremum.

X max : Maximum.

X n! : Factorial (n),n ∈ N : The product of all the integers from1 to n.

X Γ(·) : Gamma function.

X B(·, ·) : Beta function.

X Iα

0+ : The Riemann-Liouville fractional integral of order α > 0.
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X RLDα

0+ : The Riemann-Liouville fractional derivative of orde α > 0.

X cDα

0+ : The Caputo fractional derivative of orde α > 0.

X φp(u) : The p-Laplacian operator.

X C(J,R) : Space of continuous functions on J.

X Cn(J,R) : Space of n time continuously. differentiable functions on J

X AC(J,R) : Space of absolutely continuous functions on J.

X L1(J,R) : space of Lebesgue integrable functions on J.

X Lp(J,R) : space of measurable functions u with |u|p belongs to L1(J,R).
X L∞(J,R) : space of functions u that are essentially bounded on J .
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Introduction

Fractional calculus is a recent field of mathematical analysis, and it is a generalization
of integer differential calculus, involving derivatives and integrals of real or complex order
[93, 116]. The first note about this idea of differentiation, for non-integer numbers, dates back
to 1695, with a famous correspondence between Leibniz and L’Hôpital. In a letter, L’Hôpital
asked Leibniz about the possibility of the order n in the notation dny

dxn , for the n-th derivative
of the function y, to be a non-integer, n = 1

2 . Since then, several mathematicians investigated
this approach, like Lacroix, Fourier, Liouville, Riemann, Letnikov, Grünwald, Caputo, and
contributed to the grown development of this field. Currently, this is one of the most intensi-
vely developing areas of mathematical analysis as a result of its numerous applications. The
first book devoted to the fractional calculus was published by Oldham and Spanier in 1974,
where the authors systematized the main ideas, methods, and applications about this field
[111]. There exists the remarkably comprehensive encyclopedic-type monograph by Samko,
Kilbas, and Marichev which was published in Russian in 1987 and in English in 1993 [124].
The works devoted substantially to fractional differential equations are : the book of Miller
and Ross (1993) [106], Podlubny (1999) [117], Kilbas et al. (2006) [93], Diethelm (2010)
[61], Ortigueira (2011) [114], Abbas et al. (2012) [1], and Baleanu et al. (2012) [33].

In the last two decades, it was established that a series of phenomena can be studied in
terms of fractional calculus. Moreover, fractional diferential equations represents a powerful
tool in applied mathematics to study many problems from different fields of science and
engineering, since their nonlocal property is suitable to describe memory phenomena such as
nonlocal elasticity, polymers, propagation in complex medium, biological, electrochemistry,
porous media, viscoelasticity, electromagnetics, see for instance [83, 90, 94, 112, 120, 131].
Recent developments of fractional differential and integral equations are given in [2, 4, 22,
136, 138, 139, 140, 141, 142].

On the other hand, fixed point theory is an important tool in nonlinear analysis, in par-
ticular, in obtaining existence results for a variety of mathematical problems. In addition, in
most of the existed articles, Banach contraction principle, Schauder’s fixed point theorem and
Krasnoselskii’s fixed point theorem, etc. have been employed to obtain the existence and uni-
queness of solution of various problems with initial conditions, boundary conditions, integral
boundary conditions, nonlinear boundary conditions, and periodic boundary conditions for
fractional differential equations, under some restrictive conditions for more details see for ins-
tance [9, 11, 17, 18, 19, 25, 23, 28, 29, 43, 46, 53, 66, 75, 77, 78, 79, 80, 84, 99, 102, 109, 130].
But, in the absence of compacity and the Lipschitz condition, the previously mentioned theo-
rems are not applicable. In such cases, the measure of noncompactness argument appears as
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the most convenient and useful in applications. The notion of a measure of noncompactness (
briefly, MNC) was first introduced by Kuratowski [97] in 1930 which was further extended to
general Banach spaces by Banás and Goebel (see [34]). Later Darbo formulated his celebra-
ted fixed point theorem in 1955 for the case of the Kuratowski measure of non-compactness
(cf. [49]) which guarantees the existence of fixed point for condensing operators. It extends
both the classical Schauder’s fixed point principle and (a special variant of) Banach’s contrac-
tion mapping principle. After that, the Darbo’s fixed point theorem has been generalized in
many different directions we suggest some works [13, 88]. Moreover, we can also highlight
the papers [3, 7, 12, 24, 26, 41, 42, 44, 54, 76, 118, 135] in which many researchers turned
to the existence of solutions for differential equations involving different kinds of fractional
derivatives under various boundary conditions. To this end, the celebrated Darbo fixed point
theorem and Mönch fixed point theorem have been employed. The reader may also consult
the recent book [40], where several applications of the measure of noncompactness can be
found.

This thesis is arranged as follows :
In Chapter 1, we collect definitions, auxiliary results, lemmas and notions of measures

of noncompactness, fixed point theorems that are used throughout this thesis.
Chapter 2, is devoted to the existence results of weak solutions for certain classes of

nonlinear differential equation involving the Caputo fractional derivative in Banach Spaces.
The arguments are based on Mönch’s fixed point theorem combined with the technique of
measures of weak noncompactness. More specifically, in Section 2.2 we are interested in the
existence of weak solutions for the following fractional boundary value problem

cDα

0+x(t) = f
Ä
t,x(t)

ä
, t ∈ J := [0,T ],

a1x(0)+b1x(T ) = λ1Iσ1x(η),

a2
cDσ2

0+x(ξ )+b2
cDσ3

0+x(η) = λ2,

where cDµ

0+ is the Caputo fractional derivative of order µ ∈ {α,σ2,σ3} such that 1 < α ≤
2,0<σ2,σ3≤ 1, Iσ1 the Riemann-Liouville fractional integral of order σ1 > 0 and f : [0,T ]×
X −→ X is a given function satisfying some assumptions that will be specified later, X is
a Banach space with norm ‖.‖,λ1,ai,bi,(i = 1,2) are suitably chosen real constants, and
λ2 ∈ X . The main results of this problem are published in [54]

4



TABLE DES MATIÈRES

In Section 2.3, we give similar result to the following fractional Langevin equations in-
volving two fractional orders with initial value problems

cDβ

0+
Ä

cDα

0+ + γ
ä

x(t) = f (t,x(t)), t ∈ J = [0,1],
x(k)(0) = µk, 0≤ k < l,
x(α+k)(0) = νk, 0≤ k < n.

Where cDα

0+,
cDβ

0+ are the Caputo fractional derivatives m− 1 < α ≤ m, n− 1 < β ≤ n, l =
max{m,n},m,n ∈ N,γ ∈ R, f : [0,1]×X −→ X is a given function satisfying some assump-
tions that will be specified later, X is a Banach space with norm ‖·‖,µk,νk ∈ X . This problem
has been considered in the paper [55].

Finally, an example is given at the end of each section to illustrate the theoretical results.
In Chapter 3, we study the existence of solutions for certain classes of fractional hybrid

differential equations. Our results are based on fixed point theorem for three operators in a
Banach algebra due to Dhage. In Section 3.2 we look into the existence of solutions for the
following hybrid Caputo fractional differential equation :



cDα

0+
[

x(t)− f (t,x(t))
g(t,x(t))

]
= h(t,x(t)), 1 < α ≤ 2, t ∈ J := [0,T ],

a1

[
x(t)− f (t,x(t))

g(t,x(t))

]
t=0

+b1

[
x(t)− f (t,x(t))

g(t,x(t))

]
t=T

= λ1,

a2
cDβ

0+
[

x(t)− f (t,x(t))
g(t,x(t))

]
t=η

+b2
cDβ

0+
[

x(t)− f (t,x(t))
g(t,x(t))

]
t=T

= λ2, 0 < η < T,

where cDα

0+,
cDβ

0+ denote the Caputo fractional derivatives of order α and β , respectively,
0 < β ≤ 1, ai,bi,ci, i = 1,2 are real constants such that a1 + b1 6= 0,a2η1−β + b2T 1−β 6= 0
g ∈C

Ä
J×R,R \ {0}

ä
, f ,h ∈C

Ä
J×R,R

ä
.The main results of this problem are published in

[56]
As a second problem we discuss in Section 3.3 the existence of solutions for the following

boundary value problem of hybrid fractional differential equations with p-Laplacian operator

cDβ

0+

Ç
φp

ñ
cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

åôå
= h(t,x(t)), t ∈ I := [0,1],Ç

φp

ñ
cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

åôå(i) ∣∣∣∣
t=0

= 0, i = 0,2,3 . . . ,n−1Ç
φp

ñ
cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

åôå ∣∣∣∣
t=1

= 0,Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

å( j) ∣∣∣∣
t=0

= 0, for j = 2,3 . . . ,n−1

cDµ

0+

ñ
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

ô
t=1

= 0, x(0) = 0,

5
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where cDν

0+ is the Caputo fractional derivative of order ν ∈ {α,β ,µ} such that n− 1 <
α,β ≤ n, 0 < µ ≤ 1, Iθ

0+ is the Riemann–Liouville fractional integral of order θ > 0,θ ∈
{σ1,σ2, . . . ,σm},φp(u) is a p-Laplacian operator, i.e., φp(u) = |u|p−2u for p > 1,φ−1

p = φq

where 1
p +

1
q = 1 and g ∈ C

Ä
I×R,R \ {0}

ä
,h ∈ C

Ä
I×R,R

ä
, fk ∈ C

Ä
I×R,R

ä
,0 < σk,k =

1,2, . . . ,m. This problem has been considered in the paper [57].
In Section 3.4, we present an existence results for fractional hybrid differential equations

with hybrid conditions. More precisely, we will consider the following problem :

cDα

0+

[
x(t)

f
Ä

t,x(t),x(ϕ(t))
ä]= g

Ä
t,x(t),x(ρ(t))

ä
,∀t ∈ I = [0,1],

[
x(t)

f
Ä

t,x(t),x(ϕ(t))
ä]

t=1
= 0, cDβ

0+

[
x(t)

f
Ä

t,x(t),x(ϕ(t))
ä]

t=η

= 0, x(2)(0) = 0.

Where 2<α ≤ 3, 0< β ≤ 1 are a real number, cDα

0+,
cDβ

0+ are the Caputo fractional derivative, f ∈
C
Ä
I×R×R,R\{0}

ä
,g ∈C

Ä
I×R×R,R

ä
,ϕ and ρ are functions from [0,1] into itself. The

results are obtained using the technique of measures of noncompactness in the Banach al-
gebras and a fixed point theorem for the product of two operators verifying a Darbo type
condition. This problem has been considered in the paper [58].

Finally, to illustrate the theoretical results, an example is given at the end of each section.
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Chapitre 1
Preliminaries and Background Materials

In this chapter, we discuss the necessary mathematical tools we need in the succeeding
chapters. We look at some essential properties of fractional differential operators, limiting
our scope to the Riemann-Liouville and Caputo versions. We also review some of the basic
properties of measures of noncompactness and fixed point theorems which are crucial in our
results regarding fractional differential equations.

1.1 Functional spaces
Let R= (−∞,+∞) and let J := [0,T ] the compact interval of R. we present the following

functional spaces :

Definition 1.1. Let C(J,R) is the Banach space of continuous functions u : J −→R have the
valued in R, equipped with the norm

‖u‖∞ = sup
t∈J
|u(t)|.

Analogoustly, Cn(J,R) the Banach space of functions u : J −→ R where u is n time
continuously differentiable on J.

Denote by L1(J,R) the Banach space of functions u Lebesgues integrable with the norm

‖u‖L1 =
∫ T

0
|u(t)|dt.

and we denote Lp(J,R) the space of Lebesgue integrable functions on J where |u|p belongs
to L1(J,R), endowed with the norm

‖u‖Lp =

ñ∫ T

0
|u(t)|pdt

ô 1
p
.

In particular, if p = ∞, L∞(J,R) is the space of all functions u that are essentially bounded on
J with essential supremum

‖u‖L∞ = esssup
t∈J
|u(t)|= inf{c≥ 0 : |u(t)| ≤ c for a.e. t}.

7



1.1. FUNCTIONAL SPACES

Definition 1.2. A function u : J→ R is said absolutly continuous on J if for all ε > 0 there
exists a number δ > 0 such that ; for all fnite partition [ai,bi]

n
i=1 in J then

∑n
k=1(bk−ak)< δ

implies that
∑n

k=1 | f (bk)− f (ak)|< ε

We denote by AC(J,R) (or AC1(J,R)) the space of all absolutely continuous functions
defined on J. It is known that AC(J,R) coincides with the space of primitives of Lebesgue
summable functions :

u ∈ AC(J,R)⇔ u(t) = c+
∫ t

0
ψ(s)ds, ψ ∈ L1(J,R), (1.1)

and therefore an absolutely continuous function u has a summable derivative u′(t) = ψ(t)
almost everywhere on J. Thus (1.1) yields

u′(t) = ψ(t) and c = u(0).

Definition 1.3. For n ∈ N∗ we denote by ACn(J,R) the space of functions u : J −→ R which
have continuous derivatives up to order n−1 on J such that u(n−1) belongs to AC(J,R) :

ACn(J,R) =
{

u ∈Cn−1(J,R) : u(n−1) ∈ AC(J,R)
}

=
{

u ∈Cn−1(J,R) : u(n) ∈ L1(J,R)
}
.

The space ACn(J,R) consists of those and only those functions u which can be represented
in the form

u(t) =
1

(n−1)!

∫ t

0
(t− s)n−1

ψ(s)ds+
n−1∑
k=0

cktk, (1.2)

where ψ ∈ L1(J,R),c j (k = 1, . . . ,n−1) ∈ R.
It follows from (1.2) that

ψ(t) = u(n)(t) and ck =
u(k)(0)

k!
, (k = 1, . . . ,n−1).

Throughout this thesis, X denotes a real Banach space with a norm ‖ · ‖ and X∗ its dual.
By Xw we denotes the space X when endowed with the weak topology (i.e., generated by
the continuous linear functionals on X). We will let C(J,Xw) denotes the Banach space of
continuous functions from J to X , with its weak topology (see also [45, 107]).

Denote by C(J,X) the Banach space of continuous functions J→ X , with the usual su-
premum norm

‖x‖∞ = sup{‖x(t)‖, t ∈ J}.
A measurable function x : J → X is said to be Bochner integrable if and only if ‖x‖ is

Lebesgue integrable.
Let L1(J,X) denote the Banach space of measurable functions x : J→ X which are Boch-

ner integrable with the norm

‖x‖L1 =
∫ T

0
‖x(t)‖dt.

Definition 1.4 ([115]). The function x : J→ X is said to be Pettis integrable on J if and only
if there is an element xI ∈ X corresponding to each I ⊂ J such that ϕ(xI) =

∫
I ϕ(x(s))ds for

all ϕ ∈ X∗, where the integral on the right is supposed to exist in the sense of Lebesgue. By
definition, xI =

∫
I x(s)ds.

8



1.2. SPECIAL FUNCTIONS

Let P(J,X) be the space of all X-valued Pettis integrable functions in the interval J.

Proposition 1.5 ([115]). If x(·) is Pettis integrable and h(·) is a measurable and essentially
bounded real-valued function, then x(·)h(·)is Pettis integrable.

For the Pettis integral properties, see the monograph of Schwabik [126].

Definition 1.6 ([122]). A function h : X → X is said to be weakly sequentially continuous if
h takes each weakly convergent sequence in X to weakly convergent sequence in X (i.e. for
any (xn)n in X with xn→ x in (X ,w) then h(xn)→ h(x) in (X ,w) for each t ∈ J).

Definition 1.7 ([122]). If the function ϕ(x(·)) is differentiable for every ϕ ∈ X∗ and if there
is a function y : [0,T ]→ X such that d

dt (ϕ(x(t))) = ϕ(y(t)) for every ϕ ∈ X∗ and every t ∈
[0,T ], then x is weakly differentiable and we write x′(t) = y(t), where x′(t) denotes the weak
derivative of the function x.

1.2 Special Functions
Before introducing the basic facts on fractional operators, we recall two types of functions

that are important in Fractional Calculus : the Gamma and Beta functions. Some properties
of these functions are also recalled. More details about these functions can be found in [5, 63,
64, 117].

1.2.1 Gamma function
The Euler Gamma function is an extension of the factorial function to real numbers and is

considered the most important Eulerian function used in fractional calculus because it appears
in almost every fractional integral and derivative definitions.

Definition 1.8 ([117]). The Gamma function, or second order Euler integral, denoted Γ(·) is
defined as :

Γ(α) =
∫ +∞

0
tα−1e−tdt, α > 0. (1.3)

For positive integer values n, the Gamma function becomes Γ(n) = (n−1)! and thus can be
seen as an extension of the factorial function to real values.
An important property of the gamma function Γ(α) is that it satisfies :

Γ(α +1) = αΓ(α), α > 0.

1.2.2 Beta Function
Definition 1.9 ([117]). The Beta function, or the first order Euler function, can be defined as

B(p,q) =
∫ 1

0
t p−1(1− t)q−1dt, p,q > 0.

We use the following formula which expresses the beta function in terms of the gamma
function :

B(p,q) =
Γ(p)Γ(q)
Γ(p+q)

, p,q > 0.

9



1.3. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

1.3 Elements From Fractional Calculus Theory
In this section, we recall some definitions of fractional integral and fractional differential

operators that include all we use throughout this thesis.

1.3.1 Fractional Integrals
Definition 1.10 ([93]). The Riemann-Liouville fractional integral of order α > 0 of a function
f ∈ L1([0,T ]) is defined by

Iα

0+ f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, (t > 0, α > 0).

Moreover, for α = 0, we set I0
0+ f := f .

Example 1.11. Let α > 0, and β >−1. Then

Iα

0+tβ =
Γ(β +1)

Γ(α +β +1)
tα+β .

Lemma 1.12 ([93]). The following basic properties of the Riemann-Liouville integrals hold :
1. The integral operator Iα

0+ is linear ;
2. The semigroup property of the fractional integration operator Iα

0+ is given by the follo-
wing result

Iα

0+(I
β

0+ f (t)) = Iα+β

0+ f (t), α,β > 0,

holds at every point if f ∈C([0,T ]) and holds almost everywhere if f ∈ L1([0,T ]),

3. Commutativity
Iα

0+(I
β

0+ f (t)) = Iβ

0+(I
α

0+ f (t)), α,β > 0;

4. The fractional integration operator Iα

0+ is bounded in Lp[0,T ] (1≤ p≤ ∞) ;

‖Iα

0+ f‖Lp ≤ T α

Γ(α +1)
‖ f‖Lp .

1.3.2 Fractional Derivatives
From the definition of the Riemann-Liouville fractional integral, the fractional derivative

is obtained not by replacing α with −α because the integral
∫ t

0(t− s)−α−1 f (s)ds is, in ge-
neral, divergent. Instead, differentiation of arbitrary order is defined as the composition of
ordinary differentiation Dn and fractional integration, i.e.,we can define fractional derivative
of order n−1 < α ≤ n by two ways :
(1) Riemann-Liouville fractional derivative : Take fractional integral of order (n−α) and

then take a n derivative, i.e.,
RLD

α

0+ f (t) = DnIn−α

0+ f (t), n = [α]+1.

(2) Caputo fractional derivative : Take n-order derivative and then take a fractional integral
of order (n−α)

cDα

0+ f (t) = In−α

0+ Dn f (t), n = [α]+1.

10



1.3. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

The Riemann-Liouville fractional derivative

Definition 1.13 ([93, 117]). The Riemann-Liouville fractional derivative of order α of a
function f ∈ L1([0,T ]) is defined by

RLD
α

0+ f (t) = DnIn−α

0+ f (t) =
1

Γ(n−α)

dn

dtn

∫ t

0
(t− s)n−α−1 f (s)ds, 0 < t < T,

where n = [α]+1 and [α] denotes the integer part of α .

Example 1.14. Let α > 0, and β >−1. Then

RLD
α

0+tβ =
Γ(β +1)

Γ(β −α +1)
tβ−α .

Remark 1.15. If we let β = 0 in the previous example, we see that the Riemann-Liouville
fractional derivative of a constant is not 0. In fact,

RLD
α

0+1(t) =
t−α

Γ(1−α)
.

Remark 1.16. On the other hand, for j = 1,2, · · · , [α]+1,

RLD
α

0+tα− j(t) = 0.

We could say that tα− j plays the same role in Riemann-Liouville fractional differentiation
as a constant does in classical integer-ordered differentiation.

As a result, we have the following fact :

Lemma 1.17 ([93, 117]). α > 0, and n = [α]+1 then

RLD
α

0+ f (t) = 0⇔ f (t) =
n∑

j=1
c jtα− j,

where c j ( j = 1, . . . ,n) are arbitrary constants.

The next result describes RLDα

0+ in the space ACn([0,T ]).

Lemma 1.18 ([117, 93]). Let α > 0, and n = [α]+1. If f ∈ ACn([0,T ]), then the fractional
derivative RLDα

0+ exists almost everywhere on [0,T ] and can be represented in the form :

RLD
α

0+ f (t) =
1

Γ(n−α)

∫ t

0
(t− s)n−α−1 f n(s)ds+

n−1∑
k=0

f (k)(0)
Γ(1+ k−α)

tk−α .

The following lemma shows that the fractional differentiation is an operation inverse to
the fractional integration from the left.

Lemma 1.19 ([93, 117]). If α > 0 and f ∈ Lp([a,b]) (1≤ p≤ ∞), then the following equa-
lities

RLD
α

0+Iα

0+ f (t) = f (t), (1.4)

hold almost everywhere on [a,b].
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The Caputo Fractional Derivative

Definition 1.20 ([93, 117]). For a function f ∈ ACn([0,T ]), the Caputo fractional derivative
of order α defined by

cDα

0+ f (t) = In−α

0+ Dn f (t)

=
1

Γ(n−α)

∫ t

0
(t− s)n−α−1 f (n)(s)ds,

where n = [α]+1 and [α] denotes the integer part of the real number α .

Example 1.21. Let α,β > 0 and n = [α]+1 Then the following relation hold

cDα

0+tβ =


Γ(β+1)

Γ(β−α+1)t
β−α , (β ∈ N and β ≥ n or β /∈ N and β > n−1),

0, β ∈ {0, . . . ,n−1}.
(1.5)

Remark 1.22. We see that consistent with classical integer-ordered derivatives, for any constant
C

cDα

0+C = 0.

We also recognize from (1.5) that :

Lemma 1.23 ([93, 117]). Let α > 0 and n = [α]+1 then the differential equation

cDα

0+ f (t) = 0

has solutions

f (t) =
n−1∑
j=0

c jt j, c j ∈ R, j = 0 · · ·n−1.

Lemma 1.24 ([93, 117]). Let α > β > 0, and f ∈ L1([0,T ]). Then we have :

(1) The Caputo fractional derivative is linear ;

(2) Iα

0+

Å
cDα

0+ f (t)
ã
= f (t) +

∑n−1
j=0 c jt j, for some c j ∈ R, j = 0,1,2, · · · ,n− 1, where n =

[α]+1 ;

(3) cDα

0+Iα

0+ f (t) = f (t) ;

(4) cDβ

0+Iα

0+ f (t) = Iα−β

0+ f (t).

Remark 1.25. We note that if f ∈ ACn([0,T ]), then Lemma 1.18 is equivalent to saying that

RLD
α

0+ f (t) = cDα

0+ f (t)+
n−1∑
k=0

f (k)(0)
Γ(1+ k−α)

tk−α .

Clearly, we see that if f (k)(0) = 0 for k = 0,1, . . . ,n−1 then we have

cDα

0+ f (t) = RLD
α

0+ f (t).
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1.4. BACKGROUND ABOUT MEASURES OF NON-COMPACTNESS

Remark 1.26. Note that for an abstract function u : [0,T ]−→ X , the integrals which appear
in the previous definitions are taken in Bochner’s sense for background and details about
fractional calculus in Banach spaces see for instance [10, 60, 122, 123].

We will also need the following well-known lemmas :

Lemma 1.27 ([50]). Let f : R+ −→ R+ be the function defined by f (t) = tα .

(1) If α ≥ 1 and t1, t2 ∈ [0,1] with t2 > t1, then tα
2 − tα

1 ≤ α(t2− t1) ;

(2) If 0 < α < 1 and t1, t2 ∈ [0,1] with t2 > t1, then tα
2 − tα

1 ≤ (t2− t1)α .

Lemma 1.28 ([89]). Let ϕ : R+ −→ R+ be the function defined by ϕ(t) = (t + 1)k− 1 for
t ∈ [0,∞), where k ∈ (0,1). then, we have.

(a) ϕ is nondecreasing ;

(b) |ϕ(t)−ϕ(t ′)| ≤ ϕ(|t− t ′|) for any t, t ′ ∈ [0,∞).

Lemma 1.29 ([27, 96]). Let a,b ∈ R, p > 0

(i) If 0 < p≤ 1, then
(|a|+ |b|)p ≤ |a|p + |b|p.

(ii) If p > 1, then
(|a|+ |b|)p ≤ 2p−1(|a|p + |b|p).

Observe that from Lemma 1.29 if p > 0 and a,b ∈ R then

(|a|+ |b|)p ≤max{1,2p−1}(|a|p + |b|p).

1.4 Background about measures of non-compactness
In this section, we present the main definitions and we give several examples measures of

noncompactness in certain specific spaces that will be used in the sequel

1.4.1 The general notion of a measure of noncompactness
Firstly, we need to fix the notation. In what follows, (E,d) will be a metric space, and

(X ,‖ · ‖) a Banach space. By B(x,r) we denote the closed ball centered at x with radius r.
By Br we denote the ball B(0,r). If Q is non-empty subset of X , then Q and ConvQ denote
the closure and the closed convex closure of Q, respectively. When Q is a bounded subset,
Diam(Q) denotes the diameter of Q. Also, we denote by BE (resp. BX ) the class of non-
empty and bounded subsets of E (resp. of X),

We begin with the following general definition.

Definition 1.30 ([30, 35]). A mapping µ : BE −→ R+ = [0,∞) will be called a measure of
noncompactness in E if it satisfies the following conditions :

(1) Regularity : µ(Q) = 0 if, and only if, Q is a precompact set.

(2) Invariant under closure : µ(Q) = µ(Q), for all Q ∈BE .
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1.4. BACKGROUND ABOUT MEASURES OF NON-COMPACTNESS

(3) Semi-additivity : µ(Q1∪Q2) = max{µ(Q1),µ(Q2)}, for all Q1,Q2 ∈BE .
To have a MNC in a Banach space X we need to add the two following additional pro-
perties :

(4) Semi-homogeneity : µ(λQ) = |λ |µ(Q) for λ ∈ R and Q ∈BX .

(5) Invariant under translations : µ(x+Q) = µ(Q), for all x ∈ X and Q ∈BX .

Three main and most frequently used MNCs : the Kuratowski MNC κ , the Hausdorff
MNC χ , and the De Blasi Measure of Weak Noncompactness β .

1.4.2 The Kuratowski and Hausdorff measure of noncompactness
we present a list of three important examples of measures of noncompactness which arise

over and over in applications. The first example is the Kuratowski measure of noncompact-
ness (or set measure of noncompactness).

Definition 1.31 ([97, 98]). Let (E,d) be a metric space and Q be a bounded subset of E.
Then the Kuratowski measure of noncompactness (the set-measure of noncompactness, κ-
measure) of Q, denoted by κ(Q), is the infimum of the set of all numbers ε > 0 such that Q
can be covered by a finite number of sets with diameters< ε , i.e.,

κ(Q) = inf

ε > 0 : Q⊂
n⋃

i=1
Si, Si ⊂ E,diam(Si)< ε, i = 1,2, . . . ,n,n ∈ N

 .

In general, the computation of the exact value of κ(Q) is difficult. Another measure of
noncompactness, which seems to be more applicable, is so-called Hausdorff measure of non-
compactness (or ball measure of noncompactness). It is defined as follows.

Definition 1.32. Let (E,d) be a complete metric space. The Hausdorff measure of noncom-
pactness of a nonempty and bounded subset Q of E, denoted by χ(Q), is the infimum of all
numbers ε > 0 such that Q can be covered by a finite number of balls with radi < ε , i.e.,

χ(Q) = inf

ε > 0 : Q⊂
n⋃

i=1
B(xi,ri), xi ∈ E,ri < ε, i = 1,2, . . . ,n,n ∈ N

 .

If (X ,‖ · ‖) is a Banach space, we have the following equivalent definition.

Definition 1.33. Let (X ,‖·‖) be a Banach space. The Hausdorff measure of noncompactness
of a nonempty and bounded subset Q of X , denoted by χ(Q), is the infimum of all numbers
ε > 0 such that Q has a finite ε-net in X , i.e.,

χ(Q) = inf{ε > 0 : Q⊂ S+ εB(0,1),S⊂ X ,S is finite} .

We list below some properties are common to κ and χ and so we are going to use φ to
denote either of them. These properties follow immediately from the definitions and show
that both mappings are measures of noncompactness in the sense of Definition 1.30.

Properties 1. ([30, 97]) Let φ denote κ or χ . Then the following properties are satisfied in
any complete metric space E :
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(a) Regularity : φ(Q) = 0 if, and only if, Q is a precompact set.

(b) Invariant under passage to the closure : φ(Q) = φ(Q), for all Q ∈BE .

(c) Semi-additivity : φ(Q1∪Q2) = max{φ(Q1),φ(Q2)}, for all Q1,Q2 ∈BE .

(d) Monotonicity :Q1 ⊂ Q2⇒ φ(Q1)≤ φ(Q2).

(e) φ(Q1∩Q2)≤min{φ(Q1),φ(Q2)}, for all Q1,Q2 ∈BE .

(f) Non-singularity : If Q is a finite set, then φ(Q) = 0.

(g) Generalized Cantor’s intersection. If {Qn}∞
n=1 is a decreasing sequence of bounded and

closed nonempty subsets of E and limn→∞ φ(Qn) = 0 then
⋂∞

n=1 Qn is nonempty and
compact in E. If X is a Banach space, then we also have :

(h) Semi-homogeneity : φ(λQ) = |λ |φ(Q) for λ ∈ R and Q ∈BX .

(i) Algebraic semi-additivity : φ(Q1 +Q2)≤ φ(Q1)+φ(Q2), for all Q1,Q2 ∈BX .

(j) Invariant under translations : φ(x+Q) = φ(Q), for all x ∈ X and Q ∈BX .

(k) invariant under passage to the convex hull : φ(A) = φ(conv(A)),

(l) Lipschitzianity : |φ(Q1)−φ(Q2)| ≤ Lφ dH(Q1,Q2), where Lχ = 1, Lκ = 2 and dH denotes
the Hausdorff semimetric.

(m) Continuity : For every Q∈BX and for all ε > 0, there is δ > 0 such that |φ(Q)−φ(Q1)| ≤
ε for all Q1satisfying dH(Q,Q1)< δ .

Theorem 1.34 ([67, 110]). Let B(0,1) be the unit ball in a Banach space X. Then κ(B(0,1))=
χ(B(0,1)) = 0 if X is finite dimensional, and κ(B(0,1)) = 2,χ(B(0,1)) = 1 otherwise.

The next result shows the equivalence between the Kuratowski’s measure of noncompact-
ness and the Hausdorff measure of noncompactness.

Theorem 1.35 ([39]). Let (E,d) be a complete metric space and B be a nonempty and boun-
ded subset of E. Then

χ(Q)≤ κ(Q)≤ 2χ(Q).

1.4.3 The De Blasi Measure of Weak Noncompactness
The measure of weak noncompactness is an MNC in the sense of the general definition

provided X is endowed with the weak topology. The important example of a measure of weak
noncompactness was defined by De Blasi [52] in 1977 and it is the map β : B(X)−→ [0,∞)
defined by

β (Q) = inf
¶

ε > 0 : there exists W ∈K w(X) with Q⊂W + εB1
©
.

for every Q ∈B(X). Here, B(X) means the collection of all nonempty bounded subsets of
X and K w(X) is the subset of B(X) consisting of all weakly compact subsets of X . Now,
we are going to recall some basic properties of β (·).

Properties 2. Let Q1,Q2 be two elements of B(X). Then De Blasi measure of noncom-
pactness has the following properties. For more details and the proof of these properties see
[52]
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(a) Q1 ⊂ Q2⇒ β (Q1)≤ β (Q2),

(b) β (Q) = 0⇔ Q is relatively weakly compact,

(c) β (Q1∪Q2) = max{β (Q1),β (Q2)},
(d) β (Qw

) = β (Q), where Qw denotes the weak closure of Q,

(e) β (Q1 +Q2)≤ β (Q1)+β (Q2),

(f) β (λQ)≤ |λ |β (Q),λ ∈ R,
(g) β (conv(Q)) = β (Q),

(h) β (∪|λ |≤hλQ) = hβ (Q).

Lemma 1.36 ([76]). Let V ⊂ C(J,X) be a bounded and equicontinuous subset. Then the
function t→ β (V (t)) is continuous on J,

βC(V ) = max
t∈J

β (V (t)),

and
β

Å∫
J

u(s)ds : u ∈V
ã
≤
∫

J
β (V (s))ds,

where V (s) = {u(s) : u ∈V},s ∈ J and βC is the De Blasi measure of weak noncompactness
defined on the bounded sets of C(J,X).

On the other hand, the use of the Hausdorff measure χ in practice requires expressing of
χ with the help of a handy formula associated with the structure of the underlying Banach
space X in which the measure χ is considered. Unfortunately, it turns out that such formulas
are known only in a few Banach spaces such as the classical space C([0,T ]) of real func-
tions defined and continuous on the interval [0,T ] or Banach sequence spaces c0 and `p. We
illustrate this assertion by a few examples.

1.4.4 Measures of Noncompactness in Some Spaces
The Hausdorff MNC in the Spaces C[0,T ]

Let C[0,T ] denote the classical Banach space consisting of all real functions defined and
continuous on the interval [0,T ]. We consider C[0,T ] furnished with the standard maximum
norm, i.e.,

‖x‖= max
t∈[0,T ]

|x(t)|.

Keeping in mind the Arzelà-Ascoli criterion for compactness in C[0,T ] we can express the
Hausdorff measure of noncompactness in the below described manner.

Namely, for x ∈C[0,T ] denote by ω(x,ε) the modulus of continuity of the function x :

ω(x,ε) = sup{|x(t)− x(s)| : t,s ∈ [0,T ], |t− s| ≤ ε}.

Next, for an arbitrary set Q ∈BC[a,b] let us put :

ω(Q,ε) = sup{ω(x,ε) : x ∈ Q},
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and
ω0(Q) = lim

ε→0
ω(Q,ε). (1.6)

It can be shown [36] that for Q ∈BC[a,b] the following equality holds :

χ(Q) =
1
2

ω0(Q).

This equality is very useful in applications.

The Hausdorff MNC in the Space c0

Let c0 denote the space of all real sequences x = {xn} converging to zero and endowed
with the maximum norm, i.e.,

‖x‖= ‖{xn}‖= max{|xn| : n = 1,2,3, . . .}.

To describe the formula expressing the Hausdorff measure χ in the space c0 fix arbitrarily a
set Q ∈Bc0 . Then, it can be shown that the following equality holds (cf. [36]) :

χ(Q) = lim
n→∞

{
sup
x∈Q

Ç
max
i≥n
|xi|
å}

.

The formula expressing the Hausdorff measure of noncompactness is also known in the space
`p for 1 ≤ p < ∞ [36]. On the other hand in the classical Banach spaces Lp(a,b) and `∞ we
only know some estimates of the Hausdorff measure of noncompactness with the help of
formulas that define measures of noncompactness in those spaces. Refer to [36] for details.

1.5 Fixed-Point Theorem
In this section, first we recall Schauder’s and Darbo’s fixed-point theorem and we review

some important generalizations of Darbo’s theorem, which has been proved recently.

Definition 1.37 ([30]). If E1 and E2 are metric spaces, µ1 and µ2 measures of noncompact-
ness defined on E1 and E2 respectively, and T : D(T )⊂ E1 −→ E2 a mapping, then

(a) T is a (µ1,µ2)-contractive operator with constant k > 0 (or simply k-(µ1,µ2)- contrac-
tive) if T is continuous and verifies that for every bounded subset Q of D(T ) we have

µ2(T (Q))≤ kµ1(Q).

In the particular case when E1 = E2 and µ1 = µ2 = µ we simply say that T is a k-µ-
contractive operator.

(b) T is a (µ1,µ2)-condensing operator with constant k> 0 (or simply k-(µ1,µ2)-condensing)
if T is continuous and verifies that for every bounded and nonprecompact subset Q of
D(T ) we have

µ2(T (Q))< kµ1(Q).

In the particular case when E1 = E2 and µ1 = µ2 = µ we simply say that T is a k-µ-
condensing operator. Moreover, if k = 1 we say that T is a µ-condensing operator.
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Remark 1.38. (1) If µ = κ , the k-κ-contractive (or k-κ-condensing) operators are usually
called k-set-contractive (or k-set-condensing) operators.

(2) If µ = χ , the k-χ-contractive (or k-χ-condensing) operators are usually called k-ball-
contractive (or k-ball-condensing) operators.

We are now going to give some easy properties of these operators (see [30]).

Proposition 1.39. If E1,E2 and E3 are metric spaces, µ1,µ2 and µ3 measures of non-
compactness defined on E1,E2 and E3 respectively, and T : D(T ) ⊂ E1 −→ E2 and
S : E2 −→ E3 mappings, then

(i) If T is k-(µ1,µ2)-contractive, then T is k′-(µ1,µ2)-condensing for every k′ > k.

(ii) If T is k1-(µ1,µ2)-contractive (condensing) and S is k2-(µ1,µ2) -contractive (conden-
sing), then S ◦T is k1k2-(µ1,µ2)-contractive (condensing).

(iii) If X and Y are Banach spaces, µ2 algebraically semi-additive, T1 : D(T1)⊂X −→Y k1-
(µ1,µ2)-contractive (condensing) and T2 : D(T2) ⊂ X −→ Y k2-(µ1,µ2)-contractive
(condensing), then T1 +T2 (k1 + k2)-(µ1,µ2)-contractive (condensing).

At first, let us recall the well-known Schauder fixed point theorem that will be used later.

Theorem 1.40. (Schauder’s fixed point theorem [125]) . Let C be a nonempty, convex and
compact subset of a Banach space X. Then, every continuous mapping T : C −→C has at
least one fixed point.

Darbo formulated his celebrated fixed point theorem in 1955 for the case of the Kura-
towski measure of non-compactness (cf. [49, 121]). This was the first theorem that involves
the notion of measure of non-compactness. Quite recently in [13, 88], given an extension of
Darbo’s fixed point theorem and used it to study the problem of existence of solutions for a
general system of nonlinear integral equations. Here we present Darbo’s theorem.

Theorem 1.41. (Darbo and Sadovskii [36, 49]) Let Ω be a nonempty, bounded, closed and
convex subset of a Banach space X and let T : Ω→ Ω be a continuous operator. If T is a
µ-condensing operator. Then T has at least one fixed point.

Remark 1.42. Schauder’s theorem extends Brouwer’s theorem (from Rn to infinite dimen-
sional Banach spaces) and Darbo’s theorem extends Schauder’s theorem (from compact to
condensing operators).

1.5.1 A Fixed Point Theorem for θ -µ-Contractive Mappings
The following generalization of Darbo’s fixed point theorem appears in [88] and it is the

version in the context of measures of non-compactness of a recent result about fixed point
theorem which appears in [87], we present this result. Previously, we need to introduce the
class Θ of functions. By Θ we denote the class of functions θ : (0,∞)→ (1,∞) satisfying the
following condition : For any sequence (tn)⊂ (0,∞)

lim
n→∞

θ(tn) = 1⇐⇒ lim
n→∞

tn = 0.
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Theorem 1.43. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space
X and let T : Ω→Ω be a continuous mapping. Suppose that there exist θ ∈Θ and k ∈ [0,1)
such that, for any nonempty subset X of Ω with µ(T B)> 0,

θ(µ(T B))≤ (θ(µ(B)))k,

for any non-empty subset B of Ω, where µ is a measure of non-compactness in X. Then T
has a fixed point in Ω.

Examples of functions belonging to the class of Θ are θ(t) = e
√

t ,θ(t) = 2− 2
π

arctan
Ä

1
tα

ä
with 0 < α < 1 and θ(t) = (1+ t2)β with β > 0, [88].

Remark 1.44. Taking θ(t) = et in Theorem 1.43, we obtain Darbo’s fixed point result (see
Theorem 1.41).

1.5.2 A Fixed Point Result in a Banach Algebra
In this section, we recall some definitions and we give some results that we will need in

the sequel.

Definition 1.45. An algebra X is a vector space endowed with an internal composition law
noted by (·) that is, X ×X −→X

(x,y) −→ x · y,

which is associative and bilinear.
A normed algebra is an algebra endowed with a norm satisfying the following property

for all x,y ∈X ‖x · y‖ ≤ ‖x‖‖y‖.

A complete normed algebra is called a Banach algebra.

Now, we recall a useful concept (see [38]).

Definition 1.46. Let (X ,‖ · ‖X ) be a Banach algebra. A measure of non-compactness µ in
X said to satisfy condition (m) if it satisfies the following condition :

µ(AB)≤ ‖A‖µ(B)+‖B‖µ(A),

for any A,B ∈BX .

It is known that the family of all real-valued and continuous functions defined on the in-
terval [0,T ] is denoted by C([0,T ],R). Also, C([0,T ],R) is a Banach space with the standard
norm

‖x‖= sup{|x(t)| : t ∈ [0,T ]}.

Obviously, the space C([0,T ],R) has also the structure of Banach algebra.
In [36], it is proved that ω0 is a measure of non-compactness in C[0,T ] where ω0 is given

in (1.6) .
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Proposition 1.47 ([?, 51]). The measure of noncompactness ω0 on C[0,T ] satisfies condition
(m).

The following hybrid fixed point theorem for three operators in a Banach algebra X
due to Dhage [59] will be used to prove the existence result for the nonlocal boundary value
problem.

Lemma 1.48. Let S be a closed convex , bounded and nonempty subset of a Banach algebra
X , and let A ,C : X −→X and B : S−→X be three operators such that

(a) A and C are Lipschitzian with Lipschitz constants δ and ξ , respectively ;

(b) B is compact and continuous ;

(c) x = A xBy+C x⇒ x ∈ S for all y ∈ S,

(d) δM+ξ < 1 where M =
∥∥∥B(S)

∥∥∥.
Then the operator equation A xBx+C x = x has a solution in S.

Theorem 1.49 ([113]). Let D be a closed convex and equicontinuous subset of a Banach
space X such that 0 ∈ D. Assume that N : D→ D is weakly sequentially continuous. If the
implication

V = conv({0}∪N (V ))⇒V is relatively weakly compact, (1.7)

holds for every subset V ⊂ D , then N has a fixed point.
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Chapitre 2
The existence of solutions for a nonlinear
differential equation involving the Caputo
fractional-order in Banach Spaces

2.1 Introduction
In this chapter, we are concerned with the existence of weak solutions for certain classes

of nonlinear fractional differential equations in Banach Spaces via Caputo’s fractional deri-
vative. First, we investigate the problem of existence for a boundary value problem for frac-
tional differential equations with fractional integral boundary conditions in Banach spaces.
Next, we study the existence of weak solutions for an initial value problem for fractional
Langevin equations involving two fractional orders posed on an arbitrary Banach space. The
used approach is based on Mönch’s fixed point theorem combined with the technique of mea-
sures of weak noncompactness. We also provide some illustrative examples in support of our
existence theorems.

2.2 Weak Solutions For some Nonlinear Fractional Differential
Equations with fractional integral boundary conditions in
Banach Spaces

In this section, we give conditions for the existence of solution for a class of fractional
differential equations with fractional integral boundary conditions of the type :

cDα

0+x(t) = f (t,x(t)), t ∈ J := [0,T ],
a1x(0)+b1x(T ) = λ1Iσ1

0+x(η),

a2
cDσ2

0+x(ξ )+b2
cDσ3

0+x(η) = λ2.

(2.1)

where cDµ

0+ is the Caputo fractional derivative of order µ ∈ {α,σ2,σ3} such that 1 < α ≤
2,0<σ2,σ3≤ 1, Iσ1

0+ the Riemann-Liouville fractional integral of order σ1 > 0 and f : [0,T ]×
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X −→ X is a given function satisfying some assumptions that will be specified later, X is a
Banach space with norm ‖.‖,λ1,ai,bi,(i= 1,2) are suitably chosen real constants, and λ2 ∈E

We remark that when X =R,b1 = T = σ2 = 1,a1 = λ2 = 0, the problem (2.1) reduces to
the one considered in [77] in the scalar case using Banach contraction principal, Schaefer’s
fixed point theorem and Krasnoselskii’s fixed point theorem. Here we extend the results of
[77] to cover the abstract case.

2.2.1 Existence of solutions 1

First of all, we define what we mean by a weak solution for the boundary value problem
(2.1).

Definition 2.1. By a weak solution of (2.1), we mean a function x : J −→ X such that the
weak fractional derivative cDα

0+ exists and is weakly continuous and satisfies problem (2.1).

For the existence of weak solutions for the boundary value problem (2.1), we need the
following auxiliary lemma.

Lemma 2.2. Let 1 < α ≤ 2 and h be continuous function on J := [0,T ]. Then the linear
problem

cDα

0+x(t) = h(t), (2.2)

with boundary conditions

a1x(0)+b1x(T ) = λ1Iσ1
0+x(η), a2

cDσ2
0+x(ξ )+b2

cDσ3
0+x(η) = λ2. (2.3)

is equivalent to the fractional integral equation

x(t) = Iα

0+h(t)+
1
v0
{λ1Iα+σ1

0+ h(η)−b1Iα

0+h(T )}

+
v1

v0v2
{λ2− (a2Iα−σ2

0+ h(ξ )+b2Iα−σ3
0+ h(η))}

+
t
v2
{a2Iα−σ2

0+ h(ξ )+b2Iα−σ3
0+ h(η)−λ2}. (2.4)

where

v0 = a1 +b1−
λ1ησ1

Γ(σ1 +1)
, v1 = b1T − λ1ησ1+1

Γ(σ1 +2)
, v2 =

a2ξ 1−σ2

Γ(2−σ2)
+

b2η1−σ3

Γ(2−σ3)
, (2.5)

and v0v2 6= 0.

Proof. By applying Lemmas 1.12, 1.24, we may reduce (2.2) to an equivalent integral equa-
tion

x(t) = Iα

0+h(t)− c0− c1t, c0,c1 ∈ R. (2.6)

1. C. Derbazi, H. Hammouche, M. Benchohra, Weak solutions for some nonlinear fractional differential
equations with fractional integral boundary conditions in Banach spaces, J. Nonlinear Funct. Anal. 2019 (2019),
Article ID 7.
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Applying the boundary conditions (2.3) in (2.6) we may obtain

Iσ1
0+x(η) = Iσ1+α

0+ h(η)− c0
ησ1

Γ(σ1 +1)
− c1

ησ1+1

Γ(σ1 +2)
,

cDσi
0+x(t) = Iα−σi

0+ h(t)− c1
Γ(2)

Γ(2−σi)
t1−σi, i = 2,3.

After collecting the similar terms in one part, we have the following equation :Ç
a1 +b1−

λ1ησ1

Γ(σ1 +1)

å
c0 +

(
b1T − λ1ησ1+1

Γ(σ1 +2)

)
c1 = b1Iα

0+h(T )−λ1Iσ1+α

0+ h(η) (2.7)

(
a2ξ 1−σ2

Γ(2−σ2)
+

b2η1−σ3

Γ(2−σ3)

)
c1 = λ2−

Ä
a2Iα−σ2

0+ h(ξ )+b2Iα−σ3
0+ h(η)

ä
. (2.8)

Rewriting equations (2.7) and (2.8) by using (2.5) we obtain

v0c0 + v1c1 = b1Iα

0+h(T )−λ1Iσ1+α

0+ h(η)

v2c1 = λ2−
Ä
a2Iα−σ2

0+ h(ξ )+b2Iα−σ3
0+ h(η)

ä
. (2.9)

Solving (2.9), we find that

c1 =
λ2−

Ä
a2Iα−σ2

0+ h(ξ )+b2Iα−σ3
0+ h(η)

ä
v2

c0 =
b1Iα

0+h(T )−λ1Iσ1+α

0+ h(η)

v0
+

v1

v0v2

¶
a2Iα−σ2

0+ h(ξ )+b2Iα−σ3
0+ h(η)−λ2

©
.

Substituting the value of c0,c1 in (2.6) we get (2.4). The converse follows by direct compu-
tation which completes the proof.

For simplicity of presentation, we give some notations :

M =
T α

Γ(α +1)
+

|b1|T α

|v0|Γ(α +1)
+

|λ1|
|v0|Γ(α +σ1 +1)

η
α+σ1

+
|a2|(|v1|+ |v0|T )ξ α−σ2

|v0v2|Γ(α−σ2 +1)
+
|b2|(|v1|+ |v0|T )ηα−σ3

|v0v2|Γ(α−σ3 +1)
,

L =
1

Γ(α)
+

1
|v2|

ñ |a2|ξ α−σ2

Γ(α−σ2 +1)
+
|b2|ηα−σ3

Γ(α−σ3 +1)
+ |λ2|

ô
.

We will need to introduce the following hypotheses which are assumed thereafter :

(H1) For each t ∈ J, the function f (t, ·) is weakly sequentially continuous ;

(H2) For each x ∈C(J,X), the function f (·,x(·)) is Pettis integrable on J ;

(H3) There exist p ∈ L∞(J,R+) and a continuous nondecreasing function
ψ : R+ −→ R+ such that

‖ f (t,x(t))‖ ≤ p(t)ψ(‖x‖);
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2.2. WEAK SOLUTIONS FOR SOME NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL
INTEGRAL BOUNDARY CONDITIONS IN BANACH SPACES

(H4) There exists a constant R > 0 such that

R

‖p‖L∞ψ(R)M + |λ2|(|v1|+|v0|T )
|v0v2|

≥ 1; (2.10)

(H5) For each bounded set D⊂ X , and each t ∈ J, the following inequality holds

β ( f (t,D))≤ p(t)β (D).

Now we are in able to establish the main results.

Theorem 2.3. Assume that assumptions (H1)-(H5) hold. If

‖p‖L∞M < 1, (2.11)

then the boundary value problem (2.1) has at least one solution.

Proof.
Transform the integral equation (2.4) into a fixed point equation. Consider the operator

N : C(J,X)−→C(J,X) defined by :

N x(t) = Iα

0+ f (s,x(s))(t)+
1
v0

¶
λ1Iα+σ1

0+ f (s,x(s))(η)−b1Iα

0+ f (s,x(s))(T )
©

+
v1

v0v2

¶
λ2− (a2Iα−σ2

0+ f (s,x(s))(ξ )+b2Iα−σ3
0+ f (s,x(s))(η))

©
+

t
v2

¶
a2Iα−σ2

0+ f (s,x(s))(ξ )+b2Iα−σ3
0+ f (s,x(s))(η)−λ2

©
. (2.12)

First notice that, for x ∈C(J,X), we have f (·,x(·)) ∈ P(J,X) (assumption (H2)). Since

(t−·)α−1

Γ(α)
,
(T −·)α−1

Γ(α)
,
(η−·)α+σ1−1

Γ(α +σ1)
,
(ξ −·)α−σ2−1

Γ(α−σ2)
,
(η−·)α−σ3−1

Γ(α−σ3)
,

are ∈ L∞(J) then

(t− s)α−1

Γ(α)
f (·,x(·)), (T − s)α−1

Γ(α)
f (·,x(·)), (η− s)α+σ1−1

Γ(α +σ1)
f (·,x(·)),

(ξ − s)α−σ2−1

Γ(α−σ2)
f (·,x(·)), (η− s)α−σ3−1

Γ(α−σ3)
f (·,x(·)),

for all t ∈ J are Pettis integrable (Proposition 1.5) and thus, the operator N is well defined.
Let R > 0, and consider the set

D = {x ∈C(J,X) : ‖x‖∞ ≤ R,‖x(t2)− x(t1)‖ ≤ ‖p‖L∞ψ(R)L (t2− t1)},

where R satisfies inequality (2.10). Notice that D is a closed, convex, bounded, and equicon-
tinuous subset of C(J,X) .We shall show that the operator N satisfies all the assumptions of
Theorem 1.49. The proof will be given in several steps.
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�� ��Step 1 :We will show that the operator N maps D into D.

Take x∈D, t ∈ J and assume that N x(t) 6= 0. Then there exists ϕ ∈X∗ such that ‖N x(t)‖=
ϕ(N x(t)). Thus

‖N x(t)‖= ϕ

Ç
Iα

0+ f (s,x(s))(t)+
1
v0
{λ1Iα+σ1

0+ f (s,x(s))(η)−b1Iα

0+ f (s,x(s))(T )}

+
v1

v0v2
{λ2− (a2Iα−σ2

0+ f (s,x(s))(ξ )+b2Iα−σ3
0+ f (s,x(s))(η))}

+
t
v2
{a2Iα−σ2

0+ f (s,x(s))(ξ )+b2Iα−σ3
0+ f (s,x(s))(η)−λ2}

å
≤ Iα

0+ϕ( f (s,x(s)))(t)+
|b1|
|v0|

Iα

0+ϕ( f (s,x(s)))(T )+
|λ1|
|v0|

Iα+σ1
0+ ϕ( f (s,x(s)))(η)

+
|λ2|(|v1|+ |v0|T )

|v0v2|
+
|a2|(|v1|+ |v0|T )

|v0v2|
Iα−σ2
0+ ϕ( f (s,x(s)))(ξ )

+
|b2|(|v1|+ |v0|T )

|v0v2|
Iα−σ3
0+ ϕ( f (s,x(s)))(η).

From (H3), we have

‖N x(t)‖ ≤ ψ(‖x‖)
®

Iα

0+ p(s)(T )+
|b1|
|v0|

Iα

0+ p(s)(T )+
|λ1|
|v0|

Iα+σ1
0+ p(s)(η)

+
|a2|(|v1|+ |v0|T )

|v0v2|
Iα−σ2
0+ p(s)(ξ )+

|b2|(|v1|+ |v0|T )
|v0v2|

Iα−σ3
0+ p(s)(η)

´
+
|λ2|(|v1|+ |v0|T )

|v0v2|

≤ ‖p‖L∞ψ(R)
®

Iα

0+(1)(T )+
|b1|
|v0|

Iα

0+(1)(T )+
|λ1|
|v0|

Iα+σ1
0+ (1)(η)

+
|a2|(|v1|+ |v0|T )

|v0v2|
Iα−σ2
0+ (1)(ξ )+

|b2|(|v1|+ |v0|T )
|v0v2|

Iα−σ3
0+ (1)(η)

´
+
|λ2|(|v1|+ |v0|T )

|v0v2|

≤ ‖p‖L∞ψ(R)
®

T α

Γ(α +1)
+

|b1|T α

|v0|Γ(α +1)
+

|λ1|ηα+σ1

|v0|Γ(α +σ1 +1)

+
|a2|(|v1|+ |v0|T )ξ α−σ2

|v0v2|Γ(α−σ2 +1)
+
|b2|(|v1|+ |v0|T )ηα−σ3

|v0v2|Γ(α−σ3 +1)

´
+
|λ2|(|v1|+ |v0|T )

|v0v2|

≤ ‖p‖L∞ψ(R)M +
|λ2|(|v1|+ |v0|T )

|v0v2|
≤ R.

Next, let t1, t2 ∈ J be such that t1 < t2 and let x ∈ D be such that

N x(t2)−N x(t1) 6= 0.

Then there exists ϕ ∈ X∗ such that

‖N (x)(t2)−N (x)(t1)‖= ϕ(N (x)(t2)−N (x)(t1)).
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Then, we have

‖N (x)(t2)−N (x)(t1)‖ ≤ Iα

0+ϕ( f (s,x(s))(t2)− f (s,x(s))(t1))

+
t2− t1
|v2|

{|a2|Iα−σ2
0+ ϕ( f (s,x(s)))(ξ )+ |b2|Iα−σ3

0+ ϕ( f (s,x(s)))(η)+ |λ2|},

≤ 1
Γ(α)

∫ t1

0
[(t2− s)α−1− (t1− s)α−1]ϕ( f (s,x(s)))ds+

∫ t2

t1
(t2− s)α−1

ϕ( f (s,x(s)))ds

+
t2− t1
|v2|

{|a2|Iα−σ2
0+ ϕ( f (s,x(s)))(ξ )+ |b2|Iα−σ3

0+ ϕ( f (s,x(s)))(η)+ |λ2|},

≤ ‖p‖L∞ψ(R)
Γ(α)

∫ t1

0
[(t2− s)α−1− (t1− s)α−1]ds+

∫ t2

t1
(t2− s)α−1ds

+
(t2− t1)‖p‖L∞ψ(R)

|v2|
{|a2|Iα−σ2

0+ (1)(ξ )+ |b2|Iα−σ3
0+ (1)(η)+ |λ2|},

≤ ‖p‖L∞ψ(R)
Ç

1
Γ(α)

+
1
|v2|

ñ |a2|ξ α−σ2

Γ(α−σ2 +1)
+
|b2|ηα−σ3

Γ(α−σ3 +1)
+ |λ2|

ôå
(t2− t1).

Hence N (D)⊂ D.�� ��Step 2 : We will show that the operator N has a weakly sequentially continuous.

Let (xn) be a sequence in D and let xn(t)→ x(t) in (E,w) for each t ∈ J. Fix t ∈ J. Since
f satisfies assumption (H1), we have f (t,xn(t)) converges weakly uniformly to f (t,x(t)).
Hence the Lebesgue Dominated Convergence theorem for Pettis integral implies N xn(t)
converges weakly uniformly to N x(t) in (X ,w). We do it for each t ∈ J so N xn →N x.
Then N : D−→ D is weakly sequentially continuous.�� ��Step 3 : The implication (1.7) holds.

Now let V be a subset of D such that V = conv(N (V )∪{0}).
Clearly,

V (t)⊂ conv(N (V (t))∪{0}), t ∈ J.

Further, as V is bounded and equicontinuous, the function t → v(t) = β (V (t)) is continuous
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on J. By assumption (H5), and the properties of the measure β , for any t ∈ J, we have

v(t)≤ β (conv(N (V )(t)∪{0}))≤ β (N (V )(t))

≤ β

Ç
Iα

0+ f (s,V (s))(t)+
1
v0
{λ1Iα+σ1

0+ f (s,V (s))(η)−b1Iα

0+ f (s,V (s))(T )}

+
v1

v0v2
{λ2− (a2Iα−σ2

0+ f (s,V (s))(ξ )+b2Iα−σ3
0+ f (s,V (s))(η))}

+
t
v2
{a2Iα−σ2

0+ f (s,V (s))(ξ )+b2Iα−σ3
0+ f (s,V (s))(η)−λ2}

å
≤ Iα

0+β ( f (s,V (s)))(t)+
|b1|
|v0|

Iα

0+β ( f (s,V (s)))(T )+
|λ1|
|v0|

Iα+σ1
0+ β ( f (s,V (s)))(η)

+
|a2|(|v1|+ |v0|T )

|v0v2|
Iα−σ2
0+ β ( f (s,V (s)))(ξ )+

|b2|(|v1|+ |v0|T )
|v0v2|

Iα−σ3
0+ β ( f (s,V (s)))(η)

≤ Iα

0+(p(s)v(s))(t)+
|b1|
|v0|

Iα

0+(p(s)v(s))(T )+
|λ1|
|v0|

Iα+σ1
0+ (p(s)v(s))(η)

+
|a2|(|v1|+ |v0|T )

v0v2
Iα−σ2
0+ (p(s)v(s))(ξ )+

|b2|(|v1|+ |v0|T )
|v0v2|

Iα−σ3
0+ (p(s)v(s))(η)

≤ ‖p‖L∞‖v‖∞

®
Iα

0+(1)(T )+
|b1|
|v0|

Iα

0+(1)(T )+
|λ1|
|v0|

Iα+σ1
0+ (1)(η)

+
|a2|(|v1|+ |v0|T )

|v0v2|
Iα−σ2
0+ (1)(ξ )+

|b2|(|v1|+ |v0|T )
|v0v2|

Iα−σ3
0+ (1)(η)

´
≤ ‖p‖L∞‖v‖∞

®
T α

Γ(α +1)
+

b1T α

|v0|Γ(α +1)
+

λ1

|v0|Γ(α +σ1 +1)
η

α+σ1

+
a2(v1 + |v0|T )ξ α−σ2

|v0|v2Γ(α−σ2 +1)
+

b2(v1 + |v0|T )ηα−σ3

|v0|v2Γ(α−σ3 +1)

´
≤ ‖p‖L∞‖v‖∞M .

which gives

‖v‖∞ ≤ ‖p‖L∞‖v‖∞M .

This means that

‖v‖∞(1−‖p‖L∞M )≤ 0.

By (2.11) it follows that ‖v‖∞ = 0, that is v(t) = 0 for each t ∈ J, and then V (t) is relatively
weakly compact in X . Applying Theorem 1.49 we conclude that N has a fixed point which
is a solution of the problem (2.1).

2.2.2 An Example
In this section we give an example to illustrate the usefulness of our main result. Let

X = `1 =

x = (x1,x2, . . . ,xn, . . .),
∞∑

n=1
|xn|< ∞
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be the Banach space with the norm ‖x‖X =
∑∞

n=1 |xn|

Example 2.4. Let us consider the following fractional boundary value problem :
cD

7
4
0+xn(t) = 1

et+4 (
1
n2 + |xn(t)|) ∀t ∈ J = [0,1]

xn(0)− xn(1) = 2I
3
4
0+xn(

1
3),

3 cD
1
7
0+xn(

2
3)−

cD
1
2
0+xn(

1
3) = (1,0, . . . ,0, . . .).

(2.13)

Here

α =
7
4
,a1 = 1,b1 =−1,a2 = 3,b2 =−1,σ1 =

3
4
,σ2 =

1
7
,σ3 =

1
2
,ξ =

2
3
,η =

1
3
,λ1 = 2,λ2 = e1.

Set
x = (x1,x2, . . . ,xn, . . .), f = ( f1, f2, . . . , fn, . . .),

fn(t,x(t)) =
1

et+4

Ç
1
n2 + |xn(t)|

å
, t ∈ J.

For each xn ∈ R , t ∈ J we have

| fn(t,xn)| ≤
1

et+4 (1+ |xn(t)|).

Hence conditions (H1), (H2) and (H3) hold with p(t) = 1
et+4 , t ∈ J and ψ(x) = 1+ x, x ∈

[0,∞). For any bounded set D⊂ `1, we have

β ( f (t,D))≤ 1
et+4 β (D), for each t ∈ J.

Hence (H5) is satisfied.
We have

‖p‖L∞(1+R)M +
|λ2|(|v1|+ |v0|T )

|v0v2|
≤ R,

thus

R≥
‖p‖L∞M + |λ2|(|v1|+|v0|T )

|v0v2|
1−‖p‖L∞M

,

using the Matlab program, we can find R≥ 1072
687 .

We shall check that condition (2.11) is satisfied. Indeed

‖p‖L∞M =
10

173
< 1.

Consequently, theorem 2.3 implies that problem (2.13) has a solution defined on J.
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2.3 Weak Solutions for fractional Langevin equations involving
two fractional orders with initial value problems in Banach
Spaces.

2.3.1 Introduction
The Langevin equation (first formulated by Langevin in 1908 to give an elaborate descrip-

tion of Brownian motion) is found to be an effective tool to describe the evolution of physical
phenomena in fluctuating environments [48]. Although the existing literature on solutions of
fractional Langevin equations is quite wide (see, for example, [6, 14, 15, 31, 101, 132, 133,
134, 143]). But, to the best of the author’s knowledge, there is no literature to research the
existence of weak solutions for fractional Langevin equations involving two fractional orders
in Banach Spaces, so the research of this paper is new.

In this section, we study the existence of weak solutions for an initial value problem,
posed in a given Banach space. More specifically, we pose the following fractional Langevin
equations involving two fractional orders with initial value problems

cDβ

0+(
cDα

0+ + γ)x(t) = f (t,x(t)), t ∈ I := [0,1],
x(k)(0) = µk, 0≤ k < l,
x(α+k)(0) = νk, 0≤ k < n.

(2.14)

Where cDα

0+,
cDβ

0+ are the Caputo fractional derivatives m− 1 < α ≤ m, n− 1 < β < n, l =
max{m,n},m,n ∈ N,γ ∈ R, f : [0,1]×X −→ X is a given function satisfying some assump-
tions that will be specified later, X is a Banach space with norm ‖ · ‖,µk,νk ∈ X .

This problem was studied recently in [134] in the scalar case using Banach contraction
principal and the nonlinear alternative of Leray–Schauder. Here we extend the results of [134]
to cover the abstract case.

2.3.2 Existence of solutions 2

First of all, we define what we mean by a weak solution for the initial value problem
(2.14).

Definition 2.5. By a weak solution of (2.14), we mean a function x : I −→ X such that the
weak fractional derivative cDα

0+,
cDβ

0+ exists and are weakly continuous and satisfies problem
(2.14).

For the existence of weak solutions for the initial value problem (2.14), we need the
following auxiliary lemma.

Lemma 2.6 ([134]). x(t) is a solution of the initial problem (2.14) if and only if x(t) is a
solution of the integral equation :

x(t) =Iα+β

0+ f (t,x(t))− γIα

0+x(t)+Q(t). (2.15)

2. C. Derbazi, H. Hammouche, M. Benchohra, J. Henderson, Weak Solutions for fractional Langevin
equations involving two fractional orders with initial value problems in Banach Spaces.(submitted)
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Where

Q(t) =
n−1∑
i=0

νi + γµi

Γ(α + i+1)
tα+i +

m−1∑
j=0

µ j

Γ( j+1)
t j.

For simplicity of presentation, we give some notations and list some conditions as fol-
lows :

Mp f =
‖p f ‖

Γ(α +β +1)
+

|γ|
Γ(α +1)

,

L =

Ç |γ|
Γ(α)

+
‖p f ‖L∞

Γ(α +β )

å
R+

n−1∑
i=0

‖νi‖+ |γ|‖µi‖
Γ(α + i)

+
m−1∑
j=1

‖µi‖
Γ( j)

 ,
Q∗ = sup{‖Q(t)‖, t ∈ I}.

(H1) For each t ∈ I, the function f (t, ·) is weakly sequentially continuous ;

(H2) For each x ∈C(I,X), the function f (·,x(·)) is Pettis integrable on I ;

(H3) There exist p f ∈ L∞(I,R+) such that

‖ f (t,x)‖ ≤ p f (t)‖x‖,∀(t,x) ∈ I×X .

(H4) For each bounded set D⊂ X , and each t ∈ I, the following inequality holds

β ( f (t,D))≤ p f (t)β (D).

Now we are in able to establish the main results.

Theorem 2.7. Assume that assumptions (H1)-(H4) hold. If

Mp f < 1. (2.16)

Then the initial value problem (2.14) has at least one solution.

Proof.
Transform the integral equation (2.15) into a fixed point equation. Consider the operator

N : C(I,X)−→C(I,X) defined by :

N x(t) = Iα+β

0+ f (t,x(t))− γIα

0+x(t)+Q(t)

=
1

Γ(α +β )

∫ t

0
(t− s)α+β−1 f (s,x(s))ds

+
1

Γ(α)

∫ t

0
(t− s)α−1x(s)ds+Q(t). (2.17)

First notice that, for x ∈C(I,X), we have f (·,x(·)) ∈ P(I,X) (assumption (H2)). Since s 7→
(t−s)α−1

Γ(α) ,s 7→ (t−s)α+β−1

Γ(α+β ) are ∈ L∞(I) then (t−s)α−1

Γ(α) x(·), (t−s)α+β−1

Γ(α+β ) f (·,x(·)) for all t ∈ I are Pettis
integrable (Proposition 1.5) and thus, the operator N is well defined.

Let

R≥ Q∗

1−Mp f

, (2.18)
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and consider the set

D = {x ∈C(I,X) : ‖x‖∞ ≤ R,‖x(t2)− x(t1)‖ ≤ L|t2− t1|} ,

Notice that D is a closed, convex, bounded, and equicontinuous subset of C(I,X) .We shall
show that the operator N satisfies all the assumptions of Theorem 1.49. The proof will be
given in several steps.�� ��Step 1 :We will show that the operator N maps D into D.

Take x∈D, t ∈ I and assume that N x(t) 6= 0. Then there exists ϕ ∈X∗ such that ‖N x(t)‖=
ϕ(N x(t)). Thus

‖N x(t)‖= ϕ

(
Iα+β

0+ f (t,x(t))− γIα

0+x(t)+Q(t)
)

≤ Iα+β

0+ ϕ( f (t,x(t)))+ |γ|Iα

0+ϕ(x(t)))+ϕ(Q(t)).

From (H3) we get

‖N x(t)‖ ≤ ‖x‖
{

Iα+β

0+ p f (t)+ |γ|Iα

0+(1)(t)
}
+‖Q(t)‖

≤ R
® ‖p f ‖L∞

Γ(α +β +1)
+

|γ|
Γ(α +1)

´
+Q∗,

≤ RMp f +Q∗ ≤ R.

Next, let t1, t2 ∈ I be such that t1 < t2 and let x ∈ D be such that

N x(t2)−N x(t1) 6= 0.

Then there exists ϕ ∈ X∗ such that

‖N (x)(t2)−N (x)(t1)‖= ϕ(N (x)(t2)−N (x)(t1)).
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Then, we have

‖N (x)(t2)−N (x)(t1)‖ ≤ ϕ

®
1

Γ(α +β )

∫ t2

0
(t2− s)α+β−1 f (s,x(s))ds

− γ

Γ(α)

∫ t2

0
(t2− s)α−1x(s)ds+Q(t2)−

1
Γ(α +β )

∫ t1

0
(t1− s)α+β−1 f (s,x(s))ds

+
γ

Γ(α)

∫ t1

0
(t1− s)α−1x(s)ds−Q(t1)

´
≤ 1

Γ(α +β )

∫ t1

0

ï
(t2− s)α+β−1− (t1− s)α+β−1

ò
ϕ( f (s,x(s))ds

+
1

Γ(α +β )

∫ t2

t1
(t2− s)α+β−1

ϕ( f (s,x(s)))ds

+
1

Γ(α)

∫ t1

0

ï
(t2− s)α−1− (t1− s)α−1

ò
ϕ(x(s))ds

+
1

Γ(α)

∫ t2

t1
(t2− s)α−1

ϕ(x(s))ds+ϕ(Q(t2)−Q(t1))

≤

Ç |γ|
Γ(α)

+
‖p f ‖L∞

Γ(α +β )

å
R+

n−1∑
i=0

‖νi‖+ |γ|‖µi‖
Γ(α + i)

+
m−1∑
j=1

‖µi‖
Γ( j)

 |t2− t1|

= L|t2− t1|.

Hence N (D)⊂ D.�� ��Step 2 : We will show that the operator N has a weakly sequentially continuous.

Let (xn) be a sequence in D and let xn(t)→ x(t) in (E,w) for each t ∈ I. Fix t ∈ J. Since
f satisfies assumption (H1), we have f (t,xn(t)) converges weakly uniformly to f (t,x(t)).
Hence the Lebesgue Dominated Convergence theorem for Pettis integral implies N xn(t)
converges weakly uniformly to N x(t) in (X ,w). We do it for each t ∈ I so N xn →N x.
Then N : D−→ D is weakly sequentially continuous.�� ��Step 3 : The implication (1.7) holds.

Now let V be a subset of D such that V = conv(N (V )∪{0}).
Clearly,

V (t)⊂ conv(N (V (t))∪{0}), t ∈ I.

Further, as V is bounded and equicontinuous, the function t → v(t) = β (V (t)) is continuous
on I. By assumption (H5), and the properties of the measure β ,for any t ∈ I, we have
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v(t)≤ β (conv(N (V )(t)∪{0}))≤ β (N (V )(t))

≤ β (Iα+β

0+ f (t,V (t))+ γIα

0+V (t)+Q(t))

≤ Iα+β

0+ β ( f (t,V (t)))+ |γ|Iα

0+β (V (t))

≤ Iα+β

0+ (p f (t)v(t))+ |γ|Iα

0+(v(t))

≤ ‖v‖∞

® ‖p f ‖L∞

Γ(α +β +1)
+

|γ|
Γ(α +1)

´
,

≤ ‖v‖∞Mp f .

which gives

‖v‖∞ ≤ ‖v‖∞Mp f .

This means that

‖v‖∞(1−Mp f )≤ 0.

By (2.16) it follows that ‖v‖∞ = 0, that is v(t) = 0 for each t ∈ I, and then V (t) is relatively
weakly compact in X . Applying Theorem 1.49 we conclude that N has a fixed point which
is a solution of the problem (2.14).

2.3.3 An Example
In this section we give an example to illustrate the usefulness of our main result. Let

X = c0 = {x = (x1,x2, . . . ,xn, . . .) : xn→ 0(n→ ∞)} ,

be the Banach space of real sequences converging to zero, endowed its usual norm

‖x‖∞ = sup
n≥1
|xn|.

Example 2.8. Consider the following fractional Langevin problem posed in c0 :
cD

1
4
0+(

cD
1
2
0+ +

1
10)x(t) = f (t,x(t)), t ∈ I := [0,1]

x(0) = µ0 = (0,0, . . . ,0, . . .)
x(

1
2 )(0) = ν0 =

Ä
1
2 ,

1
4 , . . . ,

1
2n , . . .

ä
.

(2.19)

Note that, this problem is a particular case of IVP (2.14), where

α =
1
2
,β =

1
4
,γ =

1
10

,

and f : J× c0 −→ c0 given by

f (t,x) =
1

(t2 +2)2

ß n
n+1

ln(|xn|+1)
™

n≥1
, for t ∈ I,x = {xn}n≥1 ∈ c0.
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It is clear that condition (H1) and (H2) holds, and as

‖ f (t,x)‖∞ =
1

(t2 +2)2

∥∥∥∥ n
n+1

ln(|xn|+1)
∥∥∥∥

≤ 1
(t2 +2)2‖x‖∞,

for each t ∈ J and x ∈ c0, condition (H3) follows with p f (t) = 1
(t2+2)2 , t ∈ I.

On the other hand, for any bounded set D⊂ c0, we have

β ( f (t,D))≤ 1
(t2 +2)2 β (D), for each t ∈ I.

Hence (H4) is satisfied.
We shall check that condition (2.11) is satisfied. Indeed

Mp f = 0.3849 < 1.

and

Q∗

1−Mp f

= 0.9172.

Then r can be chosen as r = 1 ≥ 0.9172. Consequently, Theorem 2.7 implies that problem
(2.19) has at least one solution x ∈C(I,c0).

34



Chapitre 3
Fractional differential equations in Banach
algebras

3.1 Introduction
The aim of this chapter is to prove the existence of solutions for a class of hybrid frac-

tional differential equations in the Banach algebra of all continuous functions on a bounded
interval. We also present examples to show the validity of conditions and efficiency of our
results. This exposition is divided into three parts. The first one deals with the existence of
solutions for fractional hybrid differential equations with three-point boundary hybrid condi-
tions. The second one deals with results connecting the existence of solution fractional hybrid
differential equations with p-Laplacian operator. Our approach mainly depends on a hybrid
fixed point theorem for three operators in a Banach algebra due to Dhage [59], while the last
part of this chapter is devoted to the existence of solutions for fractional hybrid differential
equations with deviating arguments under hybrid conditions with the help of a technique as-
sociated with the measure of noncompactness and generalized Darbo fixed point theorem in
a Banach algebra. Moreover, an example is given at the end of each section to illustrate the
validity of our main results. The chapter is inspired in the papers [56, 57, 58].

3.2 Fractional hybrid differential equations with three-point boun-
dary hybrid conditions

3.2.1 Introduction
In recent years, hybrid fractional differential equations have achieved a great deal of inter-

est and attention from several researchers. By hybrid differential equations, we mean that the
terms in the equation are perturbed either linearly or quadratically or through the combination
of first and second types. Perturbation taking place in the form of the sum or difference of
terms in an equation is called linear. On the other hand, if the equation is perturbed through
the product or quotient of the terms in it, then it is called quadratic perturbation. So the study
of the hybrid differential equation is more general and covers several dynamic systems for
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some developments on the existence results of hybrid fractional differential equations, we
can refer to [20, 21, 81, 82, 104, 108, 128, 129, 137] and the references therein.

The main theme of this section is to discuss the existence of solutions on a bounded
interval J := [0,T ] for the following hybrid differential equation with three-point boundary
hybrid conditions

cDα

0+
[

x(t)− f (t,x(t))
g(t,x(t))

]
= h(t,x(t)), 1 < α ≤ 2, t ∈ J := [0,T ],

a1

[
x(t)− f (t,x(t))

g(t,x(t))

]
t=0

+b1

[
x(t)− f (t,x(t))

g(t,x(t))

]
t=T

= λ1,

a2
cDβ

0+
[

x(t)− f (t,x(t))
g(t,x(t))

]
t=η

+b2
cDβ

0+
[

x(t)− f (t,x(t))
g(t,x(t))

]
t=T

= λ2, 0 < η < T,

(3.1)

where cDα

0+,
cDβ

0+ denote the Caputo fractional derivatives of order α and β , respectively,
0 < β ≤ 1, ai,bi,ci, i = 1,2 are real constants such that a1 + b1 6= 0,a2η1−β + b2T 1−β 6= 0
g ∈C(J×R,R\{0}), f ,h ∈C(J×R,R).

This results can be consedered as a generalization of [66]. For example, if we choose
f (t,x(t)) = 0,g(t,x(t)) = 1 as constant functions, then our problem (3.1) will reduce to boun-
dary value problems for fractional order differential equations of the type :

cDα

0+x(t) = h(t,x(t)), 1 < α ≤ 2, t ∈ J := [0,T ],
a1x(0)+b1x(T ) = λ1,

a2
cDβ

0+x(η)+b2
cDβ

0+x(T ) = λ2, 0 < η < T.

(3.2)

3.2.2 Existence of solutions 1

By E =C(J,R) we denote the Banach space of all continuous functions from J := [0,T ]
into R with the norm

‖x‖= sup
t∈J
|x(t)|,

and a multiplication in E by
(xy)(t) = x(t)y(t).

Clearly, E is a Banach algebra with respect to the above supremum norm and the multiplica-
tion in it. In this section, we give our main existence result for problem (3.1). Before stating
Let us define what we mean by a solution to the problem (3.1).

Definition 3.1. A function x ∈ C(J,R), is said to be a solution of (3.1) if it satisfies the
equation cDα

0+
[

x(t)− f (t,x(t))
g(t,x(t))

]
= h(t,x(t)) on J, and the condition

a1

ñ
x(t)− f (t,x(t))

g(t,x(t))

ô
t=0

+b1

ñ
x(t)− f (t,x(t))

g(t,x(t))

ô
t=T

= λ1,

a2
cDβ

0+

ñ
x(t)− f (t,x(t))

g(t,x(t))

ô
t=η

+b2
cDβ

0+

ñ
x(t)− f (t,x(t))

g(t,x(t))

ô
t=T

= λ2, 0 < η < T.

1. C. Derbazi, H. Hammouche, M. Benchohra and Y. Zhou, Fractional hybrid differential equations with
three-point boundary hybrid conditions, Adv. Difference Equ. 2019, Paper No. 125, 11 pp.
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The integral form that is equivalent to problem (3.1) is given by the following.

Lemma 3.2. Let h be a continuous function on J then the hybrid linear differential equation

cDα

0+

ñ
x(t)− f (t,x(t))

g(t,x(t))

ô
= h(t), t ∈ J =: [0,T ],1 < α ≤ 2, (3.3)

with boundary conditions

a1

ñ
x(t)− f (t,x(t))

g(t,x(t))

ô
t=0

+b1

ñ
x(t)− f (t,x(t))

g(t,x(t))

ô
t=T

= λ1,

(3.4)

a2
cDβ

0+

ñ
x(t)− f (t,x(t))

g(t,x(t))

ô
t=η

+b2
cDβ

0+

ñ
x(t)− f (t,x(t))

g(t,x(t))

ô
t=T

= λ2, 0 < η < T,

is equivalent to

x(t) = f (t,x(t))+g(t,x(t))
ñ
Iα

0+h(t)− b1

a1 +b1
Iα

0+h(T )+
λ1

a1 +b1

+
(b1T − (a1 +b1)t)Γ(2−β )(a2Iα−β

0+ h(η)+b2Iα−β

0+ h(T )−λ2)

(a1 +b1)(a2η1−β +b2T 1−β )

 . (3.5)

Proof. Applying the Riemann-Liouville fractional integral operator of order α to both sides
of (3.3) and using Lemmas 1.12, 1.24, we have

x(t)− f (t,x(t))
g(t,x(t))

= Iα

0+h(t)− c0− c1t, ∀ c0,c1 ∈ R. (3.6)

Consequently, the general solution of (3.3) is

x(t) = g(t,x(t))(Iα

0+h(t)− c0− c1t)+ f (t,x(t)), ∀c0,c1 ∈ R. (3.7)

Applying the boundary conditions (3.4) in (3.6) we find that

−a1c0 +b1(Iα

0+h(T )− c0− c1T ) =λ1,

a2Iα−β

0+ h(η)+b2Iα−β

0+ h(T )− a2η1−β +b2T 1−β

Γ(2−β )
c1 =λ2.

Therefore, we have

c0 =−
b1T Γ(2−β )(a2Iα−β

0+ h(η)+b2Iα−β

0+ h(T )−λ2)

(a1 +b1)(a2η1−β +b2T 1−β )
+

b1

a1 +b1
Iα

0+h(T )− λ1

a1 +b1
,

c1 =
Γ(2−β )(a2Iα−β

0+ h(η)+b2Iα−β

0+ h(T )−λ2)

a2η1−β +b2T 1−β
.

Substituting the value of c0,c1 in (3.7) we get (3.5). Conversely, it is clear that if x satisfies
equation (3.5), then equations (3.3)–(3.4) hold.

For developing the existence result, we consider some assumptions which are the follo-
wing.

37



3.2. FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS WITH THREE-POINT BOUNDARY HYBRID CONDITIONS

(H1) The functions g : J×R−→ R\{0} and h, f : J×R−→ R are continuous such that

(H2) There exist two positive functions φ0,φ1 with bound ‖φ0‖ and ‖φ0‖ respectively, such
that

| f (t,x)− f (t,y)| ≤ φ0(t)|x− y|, (3.8)

and
|g(t,x)−g(t,y)| ≤ φ1(t)|x− y|, (3.9)

for each (t,x,y) ∈ J×R×R.
(H3) There exist a functions p ∈ L∞(J,R+) and there exist continuous nondecreasing func-

tion ψ : [0,∞)−→ [0,∞) such that

|h(t,x)| ≤ p(t)ψ(|x|), (3.10)

for each t ∈ J and all x ∈ R.

(H4) There exists a number r > 0 such that

r ≥ g0Λ+ f0

1−‖φ0‖Λ−‖φ1‖
. (3.11)

and
‖φ0‖Λ+‖φ1‖< 1. (3.12)

where f0 = supt∈J | f (t,0)|,g0 = supt∈J |g(t,0)|, and

Λ = ‖p‖ψ(r)
[

T α

Γ(α +1)

Ç
1+

|b1|
|a1 +b1|

å
+

(|a1|+2|b1|)Γ(2−β )(|a2|ηα−β + |b2|T α−β )T
|a1 +b1||a2η1−β +b2T 1−β |Γ(α−β +1)

]

+
(|a1|+2|b1|)Γ(2−β )T
|a1 +b1||a2η1−β +b2T 1−β |

|λ2|+
|λ1|
|a1 +b1|

(3.13)

Our main existence result is based on a hybrid fixed point theorem for a sum of three operators
due to Dhage [59], which we have provided in Lemma 1.48.

Theorem 3.3. Assume that conditions (H1)-(H4) hold. Then the problem (3.1) has at least
one solution on J .

Proof. Define a subset S of E defined by

S =
¶

x ∈ E : ‖x‖E ≤ r
©
.

Clearly, S is a closed, convex and bounded subset of the Banach space E. By Lemma 3.2, the
boundary value problem (3.1) is equivalent to the equation

x(t) = f (t,x(t))+g(t,x(t))
ñ
Iα

0+h(s,x(s))(t)− b1

a1 +b1
Iα

0+h(s,x(s))(T )+
λ1

a1 +b1

+
(b1T − (a1 +b1)t)Γ(2−β )

(a1 +b1)(a2η1−β +b2T 1−β )
(a2Iα−β

0+ h(s,x(s))(η)+b2Iα−β

0+ h(s,x(s))(T )−λ2)

ô
, t ∈ J.

(3.14)
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Define three operators A ,C : E −→ E and B : S−→ E by

A x(t) = g(t,x(t)), t ∈ J.

Bx(t) = Iα

0+h(s,x(s))(t)− b1

a1 +b1
Iα

0+h(s,x(s))(T )+
(b1T − (a1 +b1)t)Γ(2−β )

(a1 +b1)(a2η1−β +b2T 1−β )
×

(a2Iα−β

0+ h(s,x(s))(η)+b2Iα−β

0+ h(s,x(s))(T )−λ2)+
λ1

a1 +b1
, t ∈ J,

and

C x(t) = f (t,x(t)), t ∈ J.

Then the integral Equation (3.14) can be written in the operator form as

x(t) = A x(t)Bx(t)+C x(t), t ∈ J.

We shall show that the operators A ,B and C satisfy all the conditions of Lemma 1.48. This
will be achieved in the following series of steps.
Step 1 : First, we show that A and C are Lipschitzian on E. Let x,y ∈ E, then by (H2), for
t ∈ J, we have

|A x(t)−A y(t)|= |g(t,x(t))−g(t,y(t))| ≤ φ0(t)|x(t)− y(t)|,

for all t ∈ J. Taking supremum over t, we obtain

‖A x−A y‖ ≤ ‖φ0‖‖x− y‖,

for all x,y ∈ E. Therefore, A is a Lipschitzian on E with Lipschitz constant ‖φ0‖.
Now for C : E −→ E,x,y ∈ E , we have

|C x(t)−C y(t)|= | f (t,x(t))− f (t,y(t))| ≤ φ1(t)|x(t)− y(t)|,

for all t ∈ J. Taking supremum over t, we obtain

‖C x−C y‖ ≤ ‖φ1‖‖x− y‖,

Hence,C : E −→ E is a Lipschitzian on E with Lipschitz constant ‖φ1‖.
Step 2 : we show that B is is completely continuous operator on S into E. First, we show
that B is continuous on S. Let {xn} be a sequence in S converging to a point x ∈ S. Then for
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each t ∈ J

|Bxn(t)−Bx(t)| ≤ 1
Γ(α)

∫ t

0
(t− s)α−1|h(s,xn(s))−h(s,x(s))|ds

+
|b1|

|a1 +b1|Γ(α)

∫ T

0
(T − s)α−1|h(s,xn(s))−h(s,x(s))|ds

(|a1|+2|b1|)Γ(2−β )T
|a1 +b1||a2η1−β +b2T 1−β |Γ(α−β )

Å
|a2|

∫
η

0
(η− s)α−β−1|h(s,xn(s))−h(s,x(s))|ds

+|b2|
∫ T

0
(T − s)α−β−1|h(s,xn(s))−h(s,x(s))|ds

å
≤ 1

Γ(α)

∫ t

0
(t− s)α−1 sup

s∈[0,T ]
|h(s,xn(s))−h(s,x(s))|ds

+
|b1|

|a1 +b1|Γ(α)

∫ T

0
(T − s)α−1 sup

s∈[0,T ]
|h(s,xn(s))−h(s,x(s))|ds

(|a1|+2|b1|)Γ(2−β )T
|a1 +b1||a2η1−β +b2T 1−β |Γ(α−β )

Ñ
|a2|

∫
η

0
(η− s)α−β−1 sup

s∈[0,T ]
|h(s,xn(s))−h(s,x(s))|ds

+|b2|
∫ T

0
(T − s)α−β−1 sup

s∈[0,T ]
|h(s,xn(s))−h(s,x(s))|ds

é
≤
[

T α

Γ(α +1)

Ç
1+

|b1|
|a1 +b1|

å
+

(|a1|+2|b1|)Γ(2−β )(|a2|ηα−β + |b2|T α−β )T
|a1 +b1||a2η1−β +b2T 1−β |Γ(α−β +1)

]
×

‖h(·,xn(·))−h(·,x(·))‖.

Since h is continuous, we have ‖Bxn−Bx‖ → 0 as n→ ∞. Next we will prove that the set
B(S) is a uniformly bounded in S. For any x ∈ S, we have

|Bx(t)| ≤ Iα

0+|h(s,x(s))|(t)+
|b1|
|a1 +b1|

Iα

0+|h(s,x(s))|(T )

+
(|a1|+2|b1|)Γ(2−β )T

|a1 +b1||a2η1−β +b2T 1−β |Γ(α−β )
(|a2|Iα

0+|h(s,x(s))|(η)

+ |b2|Iα

0+|h(s,x(s))|(T )+ |λ2|)+
|λ1|
|a1 +b1|

.

Using (3.34) we can write

|Bx(t)| ≤ Iα

0+ p(s)ψ(|x(s)|)(t)+ |b1|
|a1 +b1|

Iα

0+ p(s)ψ(|x(s)|)(T )

+
(|b1|T +(|a1|+ |b1|)T )Γ(2−β )

|a1 +b1||a2η1−β +b2T 1−β |
(|a2|Iα

0+ p(s)ψ(|x(s)|)(η)

+ |b2|Iα

0+ p(s)ψ(|x(s)|)(T )+ |λ2|)+
|λ1|
|a1 +b1|

≤ ‖p‖ψ(r)
[

T α

Γ(α +1)

Ç
1+

|b1|
|a1 +b1|

å
+

(|a1|+2|b1|)Γ(2−β )(|a2|ηα−β + |b2|T α−β )T
|a1 +b1||a2η1−β +b2T 1−β |Γ(α−β +1)

]

+
(|a1|+2|b1|)Γ(2−β )T
|a1 +b1||a2η1−β +b2T 1−β |

|λ2|+
|λ1|
|a1 +b1|

.
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Thus ‖Bx‖≤Λ with Λ given in (3.31). for all x∈ S. This shows that B is uniformly bounded
on S. Furthermore, we have

|(Bx)′(t)| ≤ Iα−1
0+ |h(s,x(s))|(t)+

Γ(2−β )

|a2η1−β +b2T 1−β |
×

(|a2|Iα

0+|h(s,x(s))|(η)+ |b2|Iα

0+|h(s,x(s))|(T )+ |λ2|).

Some computations give

|(Bx)′(t)| ≤ ‖p‖ψ(r)
[

T α−1

Γ(α)
+

Γ(2−β )(|a2|ηα−β + |b2|T α−β )

|a2η1−β +b2T 1−β |Γ(α−β +1)

]
+

Γ(2−β )

|a2η1−β +b2T 1−β |
|λ2| := L.

Now, for t1, t2 ∈ J with t1 < t2, we get

|Bx(t2)−Bx(t1)| ≤
∫ t2

t1

∣∣∣(Bx)′(s)
∣∣∣ds≤ L(t2− t1).

Therefore, B is equicontinuous. Thus, by Ascoli–Arzelà theorem, the operator B is comple-
tely continuous.
Step 3 : The hypothesis (c) of Lemma 1.48 is satisfied.
Let x ∈ E and y ∈ S be arbitrary elements such that x = A xBy+C x. Then we have

|x(t)| ≤ |A x(t)| |By(t)|+ |C x(t)|

≤ |g(t,x(t))|
®

Iα

0+|h(s,y(s))|(t)+
|b1|
|a1 +b1|

Iα

0+|h(s,y(s))|(T )

+
(|a1|+2|b1|)Γ(2−β )T

|a1 +b1||a2η1−β +b2T 1−β |Γ(α−β )
(|a2|Iα

0+|h(s,y(s))|(η)

+|b2|Iα

0+|h(s,y(s))|(T )+ |λ2|)+
|λ1|
|a1 +b1|

´
+ | f (t,x(t))|,

≤ (|g(t,x(t))−g(t,0))|+ |g(t,0))|)
®

Iα

0+ p(s)ψ(|y(s)|)(t)+ |b1|
|a1 +b1|

Iα

0+ p(s)ψ(|y(s)|)|(T )

+
(|a1|+2|b1|)Γ(2−β )T

|a1 +b1||a2η1−β +b2T 1−β |Γ(α−β )
(|a2|Iα

0+ p(s)ψ(|y(s)|)(η)

+|b2|Iα

0+ p(s)ψ(|y(s)|)(T )+ |λ2|)+
|λ1|
|a1 +b1|

´
+ | f (t,x(t))− f (t,0))|+ | f (t,0)|,

|x(t)| ≤ (‖φ0‖|x(t)|+g0)Λ+‖φ1‖|x(t)|+ f0.

Thus,

|x(t)| ≤ g0Λ+ f0

1−‖φ0‖Λ−‖φ1‖
.

Taking the supremum over t,

‖x‖ ≤ g0Λ+ f0

1−‖φ0‖Λ−‖φ1‖
≤ r.

Step 4 : Finally we show that δM+ξ < 1, that is, (d) of Lemma 1.48 holds.
Since

M = ‖B(S)‖= sup
x∈S

ß
sup
t∈J
|Bx(t)|

™
≤ Λ,
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and so
‖φ0‖M+‖φ1‖ ≤ ‖φ0‖Λ+‖φ1‖< 1,

with δ = ‖φ0‖,ξ = ‖φ1‖. Thus all the conditions of Lemma 1.48 are satisfied and hence
the operator equation x = A xBx+C x has a solution in S. As a result, problem (3.1) has a
solution on J.

3.2.3 An Example
In this section we give an example to illustrate the usefulness of our main results. Let us

consider the following boundary value problem :

Example 3.4. 

cD
3
2
0+
[

x(t)− f (t,x(t))
g(t,x(t))

]
= e−2t√

(9+t)
sinx(t). ∀t ∈ J := [0,1]

[
x(t)− f (t,x(t))

g(t,x(t))

]
t=0

+2
[

x(t)− f (t,x(t))
g(t,x(t))

]
t=1

= 1
2 ,

3 cD
1
2
0+
[

x(t)− f (t,x(t))
g(t,x(t))

]
t= 1

2
+0.25 cD

1
2
0+
[

x(t)− f (t,x(t))
g(t,x(t))

]
t=1

= 1

(3.15)

In this case we take

α =
3
2
,β =

1
2
,a1 = 1,a2 = 3,λ1 =

1
2
,b1 = 2,b2 =

1
4
,λ2 = 1,η =

1
2
,T = 1.

f (t,x(t)) =
t2

100

Ç
1
2
(x(t)+

»
x2(t)+1+ e−t)

å
g(t,x(t)) =

√
πe−2πt cos(πt)
(7π +15et)2

x(t)
1+ x(t)

+
t

10

h(t,x(t)) =
e−2t»
(9+ t)

sinx(t).

We can show that

| f (t,x)− f (t,y)| ≤ t2

100
|x− y|, |g(t,x)−g(t,y)| ≤

√
πe−2πt

(7π +15et)2 |x− y|

|h(t,x)| ≤ p(t)ψ(|x|),

where
ψ(|x|) = |x|, p(t) = e−2t ,

hence, we have

φ0(t) =
t2

100
,φ1(t) =

√
πe−2πt

(7π +15et)2 .
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Then,

‖φ0‖=
1

100
,‖φ1‖=

√
π

(7π +15)2 ,‖p‖= 1, f0 = sup
t∈J
| f (t,0)|= 1

100
,g0 = sup

t∈J
|g(t,0)|= 1

10
,

using the Matlab program, it follows by (3.35), (3.36) that the constant r satisfies the inequa-
lity 0.0146 < r < 21.8589. As all the conditions of Theorem 3.3 are satisfied, therefore the
problem (3.15) has at least one solution on J.

3.3 Fractional Hybrid Differential Equations with p-Laplacian
operator.

3.3.1 Introduction
A p-Laplacian differential equation was first introduced by Leibenson [100] when he stu-

died the turbulent flow in a porous medium. Since then, fractional differential equation and
the differential equation with a p-Laplacian operator are widely applied in different fields
of physics and natural phenomena, for example, non-Newtonian mechanics, fluid mechanics,
viscoelasticity mechanics, combustion theory, mathematical biology, the theory of partial dif-
ferential equations. Hence, there have been many published papers which are devoted to the
existence of solutions of boundary value problems for the p-Laplacian operator equations, see
[32, 65, 85, 86, 91, 92, 103, 127] and their references. However, to our knowledge, there are
few literatures deal with the existence of solutions to hybrid fractional differential equations
(HFDEs for short) with p-Laplacian operator (see [92]). Based on the reason mentioned, in
this paper, we study the existence of solutions for the following boundary value problem of
hybrid fractional differential equations with p-Laplacian operator

cDβ

0+

Ç
φp

ñ
cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

åôå
= h(t,x(t)), t ∈ I := [0,1],Ç

φp

ñ
cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

åôå(i)∣∣∣∣∣∣
t=0

= 0, i = 0,2,3 . . . ,n−1Ç
φp

ñ
cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

åôå∣∣∣∣∣
t=1

= 0,Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

å( j)
∣∣∣∣∣∣
t=0

= 0, for j = 2,3 . . . ,n−1

cDµ

0+

ñ
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

ô
t=1

= 0, x(0) = 0,

(3.16)

where cDν

0+ is the Caputo fractional derivative of order ν ∈ {α,β ,µ} such that n− 1 <
α,β ≤ n, 0 < µ ≤ 1, Iθ

0+ is the Riemann–Liouville fractional integral of order θ > 0,θ ∈
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{σ1,σ2, . . . ,σm},φp(u) is a p-Laplacian operator, i.e., φp(u) = |u|p−2u for p > 1,φ−1
p = φq

where 1
p +

1
q = 1 and g ∈ C(I×R,R \ {0}),h ∈ C(I×R,R), fk ∈ C(I×R,R),0 < σk,k =

1,2, . . . ,m.

3.3.2 Existence Results 2

In this section, we give our main existence result for problem (3.16). Before stating. Let
us defining what we mean by a solution of the problem (3.16).

Definition 3.5. A function x ∈ C(I,R), is said to be a solution of (3.16) if it satisfies the

equation cDβ

0+

Ç
φp

ñ
cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

åôå
= h(t,x(t)) on I, and the condition

Ç
φp

ñ
cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

åôå(i)∣∣∣∣∣∣
t=0

= 0, i = 0,2,3 . . . ,n−1Ç
φp

ñ
cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

åôå∣∣∣∣∣
t=1

= 0,Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

å( j)
∣∣∣∣∣∣
t=0

= 0, for j = 2,3 . . . ,n−1

cDµ

0+

ñ
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

ô
t=1

= 0, x(0) = 0,

(3.17)

The integral form that is equivalent to problem (3.16) is given by the following.

Lemma 3.6. Let h be continuous function on I. The solution of the boundary value problem

cDβ

0+

(
φp

[
cDα

0+

(
x(t)−∑m

k=1 Iσk
0+ fk(t,x(t))

g(t,x(t))

)])
= h(t), t ∈ I := [0,1], (3.18)

with boundary conditions

Ç
φp

ñ
cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

åôå(i)∣∣∣∣∣∣
t=0

= 0, i = 0,2,3 . . . ,n−1Ç
φp

ñ
cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

åôå∣∣∣∣∣
t=1

= 0,Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

å( j)
∣∣∣∣∣∣
t=0

= 0, for j = 2,3 . . . ,n−1

cDµ

0+

ñ
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

ô
t=1

= 0, x(0) = 0,

(3.19)

2. C. Derbazi, H. Hammouche, M. Benchohra and S. K. Ntouyas, Existence results for fractional hybrid
differential equations with p–Laplacian operator. (submitted).
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is given by

x(t) =
®

δ1

∫ t

0
(t− s)α−1

φq

Ç∫ s

0
(s− τ)β−1h(τ)dτ− s

∫ 1

0
(1− τ)β−1h(τ)dτ

å
ds

−δ2t
∫ 1

0
(1− s)α−µ−1

φq

Ç∫ s

0
(s− τ)β−1h(τ)dτ− s

∫ 1

0
(1− τ)β−1h(τ)dτ

å
ds
´

g(t,x(t))

+
m∑

k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1 fk(s,x(s))ds,

where

δ1 =
(Γ(β ))1−q

Γ(α)
,

δ2 =
Γ(2−µ)(Γ(β ))1−q

Γ(α−µ)
. (3.20)

Proof. Step 1. We know the following BVP

cDα

0+

ñ
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

ô
= h(t)Ç

x(t)−
∑m

k=1 I
σk
0+

fk(t,x(t))
g(t,x(t))

å( j)
∣∣∣∣∣∣
t=0

= 0, for j = 2,3 . . . ,n−1

cDµ

0+

ñ
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

ô
t=1

= 0, x(0) = 0,

(3.21)

has a unique solution satisfying

x(t) = g(t,x(t))
ñ

1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds− Γ(2−µ)t

Γ(α−µ)

∫ 1

0
(1− s)α−µ−1h(s)ds

ô
+

m∑
k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1 fk(s,x(s))ds. (3.22)

In fact, applying the Riemann–Liouville fractional integral operator of order α to both sides
of (3.21) and using Lemmas 1.12, 1.24, we have

x(t)−∑m
k=1 Iσk

0+ fk(t,x(t))
g(t,x(t))

= Iα

0+h(t)+
n∑

k=1
dktk−1. (3.23)

By the use of
Ç

x(t)−
∑m

k=1 I
σk
0+

fk(t,x(t))
g(t,x(t))

å( j)
∣∣∣∣∣∣
t=0

= 0, for j = 2,3 . . . ,n−1 we get d3 = d4 = · · ·=

dn = 0 and hence (3.23) takes the form

x(t)−∑m
k=1 Iσk

0+ fk(t,x(t))
g(t,x(t))

= Iα

0+h(t)+d1 +d2t. (3.24)

45



3.3. FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS WITH P-LAPLACIAN OPERATOR.

From condition x(0) = 0 yields d1 = 0. Applying Caputo’s fractional derivative of order µ to
(3.24), we get

cDµ

0+

[
x(t)−∑m

k=1 Iσk
0+ fk(t,x(t))

g(t,x(t))

]
= Iα−µ

0+ h(t)+d2
t1−µ

Γ(2−µ)
.

The boundary condition cDµ

0+

ñ
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

ô
t=1

= 0, implies

d2 =−Γ(2−µ)Iα−µ

0+ h(1).

Thus, (3.24) becomes

x(t)−∑m
k=1 Iσk

0+ fk(t,x(t))
g(t,x(t))

= Iα

0+h(t)−Γ(2−µ)tIα−µ

0+ h(1),

which implies that

x(t) = g(t,x(t))
ñ

1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds− Γ(2−µ)t

Γ(α−µ)

∫ 1

0
(1− s)α−µ−1h(s)ds

ô
+

m∑
k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1 fk(s,x(s))ds.

Step 2. Let y = cDα

0+

Ç
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

å
and z = φp(y). It is easy to know that y = φq(z).

Then, the solution of the following boundary value problem
cDβ

0+z(t) = h(t), t ∈ I,

z(0) = z′′(0) = z(3)(0) = · · ·= z(n−1), z(1) = 0,

(3.25)

can be written as

z(t) = Iβ

0+h(t)− tIβ

0+h(1). (3.26)

In fact, applying the Riemann-Liouville fractional integral operator of order β to both sides
of (3.25) and using Lemmas 1.12, 1.24, we have

z(t) = Iβ

0+h(t)+
n∑

k=1
cktk−1, (3.27)

By the use of z(i)(0) = 0, for i = 0,2,3 . . . ,n− 1 we get c1 = c3 = · · · = cn = 0 and hence
(3.27) takes the form

z(t) = Iβ

0+h(t)+ c2t, (3.28)

and z(1) = 0, implies
c2 =−Iβ

0+h(1).
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Therefore, we have

z(t) = Iβ

0+h(t)− tIβ

0+h(1). (3.29)

Combining with the expression of y, we know that the solution of (3.18)–(3.19) satisfies

cDα

0+

ñ
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

ô
= φ−1

p

(
Iβ

0+h(t)− tIβ

0+h(1)
)
, t ∈ I,Ç

x(t)−
∑m

k=1 I
σk
0+

fk(t,x(t))
g(t,x(t))

å( j)
∣∣∣∣∣∣
t=0

= 0, for j = 2,3 . . . ,n−1

cDµ

0+

ñ
x(t)−

∑m
k=1 I

σk
0+

fk(t,x(t))
g(t,x(t))

ô
t=1

= 0, x(0) = 0.

(3.30)

As we have stated in Step 1, we can easily get the solution of BVP (3.30) as follows :

x(t) =
®

δ1

∫ t

0
(t− s)α−1

φq

Ç∫ s

0
(s− τ)β−1h(τ)dτ− s

∫ 1

0
(1− τ)β−1h(τ)dτ

å
ds

−δ2t
∫ 1

0
(1− s)α−µ−1

φq

Ç∫ s

0
(s− τ)β−1h(τ)dτ− s

∫ 1

0
(1− τ)β−1h(τ)dτ

å
ds
´

g(t,x(t))

+
m∑

k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1 fk(s,x(s))ds.

For simplicity of presentation, we give some notations :

Mh = (Γ(β +1))1−q max{1,2q−2}‖ph‖ψ(r)
ñ

Γ(β (q−1)+1)
Γ(α +β (q−1)+1)

+
Γ(q)

Γ(α +q)

+
Γ(2−µ)Γ(β (q−1)+1)
Γ(α−µ +β (q−1)+1)

+
Γ(2−µ)Γ(q)
Γ(α−µ +q)

ô
. (3.31)

Now we list some hypotheses as follows :

(H1) The functions g : I×R−→R\{0} h, and fk : I×R−→R, k = 1,2,3 . . . ,m, are conti-
nuous.

(H2) There exist positive functions µg(t) and λk(t), k = 1,2,3 . . . ,m, with bound ‖µg‖ and
‖λk‖, k = 1,2,3 . . . ,m, respectively, such that

| fk(t,x)− fk(t,y)| ≤ λk(t)|x− y|, k = 1,2,3 . . . ,m, (3.32)

and
|g(t,x)−g(t,y)| ≤ µg(t)|x− y|, for each (t,x,y) ∈ I×R×R. (3.33)

(H3) There exist a function ph ∈ L∞(J,R+) and a continuous nondecreasing function ψ :
[0,∞)−→ (0,∞) such that

|h(t,x)| ≤ φp(ph(t)ψ(‖x‖)), for each t ∈ I and all x ∈ R. (3.34)
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(H4) There exists a number r > 0 such that

r ≥
G0Mh +

∑m
k=1

Fk
Γ(σk+1)

1−‖µg‖Mh−
∑m

k=1
‖λk‖

Γ(σk+1)

, (3.35)

and

‖µg‖Mh +
m∑

k=1

‖λk‖
Γ(σk +1)

< 1, (3.36)

where

G0 = sup
t∈I
|g(t,0)|,Fk = sup

t∈I
| fk(t,0)|, k = 1,2,3 . . . ,m. (3.37)

Theorem 3.7. Assume that conditions (H1)-(H4) hold. Then the problem (3.16) has at least
one solution on I.

Proof. Define the closed, convex and bounded subset S of the Banach space E as

S = {x ∈ E : ‖x‖E ≤ r} .

By Lemma 3.9, the boundary value problem (3.16) is equivalent to the equation

x(t) =
®

δ1

∫ t

0
(t− s)α−1

φq

Ç∫ s

0
(s− τ)β−1h(τ,u(τ))dτ− s

∫ 1

0
(1− τ)β−1h(τ,u(τ))dτ

å
ds

−δ2t
∫ 1

0
(1− s)α−µ−1

φq

Ç∫ s

0
(s− τ)β−1h(τ,u(τ))dτ− s

∫ 1

0
(1− τ)β−1h(τ,u(τ))dτ

å
ds
´

g(t,x(t))

+
m∑

k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1 fk(s,x(s))ds. (3.38)

Define three operators A ,C : E −→ E and B : S−→ E by

A x(t) = g(t,x(t)), t ∈ I.

Bx(t) = δ1

∫ t

0
(t− s)α−1

φq

Ç∫ s

0
(s− τ)β−1h(τ,x(τ))dτ− s

∫ 1

0
(1− τ)β−1h(τ,x(τ))dτ

å
ds

−δ2t
∫ 1

0
(1− s)α−µ−1

φq

Ç∫ s

0
(s− τ)β−1h(τ,x(τ))dτ− s

∫ 1

0
(1− τ)β−1h(τ,x(τ))dτ

å
ds, t ∈ I,

and

C x(t) =
m∑

k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1 fk(s,x(s))ds, t ∈ I.

Then the integral Equation (3.38) can be written in the operator form as

x(t) = A x(t)Bx(t)+C x(t), t ∈ I.

We shall show that the operators A ,B and C satisfy all conditions of Lemma 1.48. This will
be achieved in the following series of steps.
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Step 1 : First we show that A and C are Lipschitzian on E. Let x,y ∈ E , then by (H2), for
t ∈ I, we have

|A x(t)−A y(t)|= |g(t,x(t))−g(t,y(t))| ≤ µg(t)|x(t)− y(t)|,

for all t ∈ I. Taking supremum over t, we obtain

‖A x−A y‖ ≤ ‖µg‖‖x− y‖,

for all x,y ∈ E. Therefore, A is a Lipschitzian on E with Lipschitz constant ‖µg‖.
Now for C : E −→ E,x,y ∈ E , we have

|C x(t)−C y(t)|=
∣∣∣∣∣∣

m∑
k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1 fk(s,x(s))ds−

m∑
k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1 fk(s,y(s))ds

∣∣∣∣∣∣
≤

m∑
k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1| fk(s,x(s))− fk(s,y(s))|ds

≤
m∑

k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1

λk(s)|x(s)− y(s)|ds

≤ ‖x− y‖
m∑

k=1

‖λk‖
Γ(σk +1)

,

for all t ∈ I. Taking supremum over t, we obtain

‖C x−C y‖ ≤
m∑

k=1

‖λk‖
Γ(σk +1)

‖x− y‖,

Hence, C : E −→ E is a Lipschitzian on E with Lipschitz constant
∑m

k=1
‖λk‖

Γ(σk+1) .
Step 2 : We show that B is a completely continuous operator from S into E. Firstly, observe
that continuity of B follows from the continuity of h and φq(·).
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Next we will prove that the set B(S) is a uniformly bounded in S. For any x ∈ S, we have

|Bx(t)| ≤

δ1

∫ t

0
(t− s)α−1

φq

Ç∫ s

0
(s− τ)β−1|h(τ,x(τ))|dτ + s

∫ 1

0
(1− τ)β−1|h(τ,x(τ))|dτ

å
ds

+δ2

∫ 1

0
(1− s)α−µ−1

φq

Ç∫ s

0
(s− τ)β−1|h(τ,x(τ))|dτ + s

∫ 1

0
(1− τ)β−1|h(τ,x(τ))|dτ

å
ds

≤ δ1

∫ t

0
(t− s)α−1

φq

Å∫ s

0
(s− τ)β−1

φp(ph(τ)ψ(|x(τ)|))dτ

+s
∫ 1

0
(1− τ)β−1

φp(ph(τ)ψ(|x(τ)|))dτ

å
ds

+δ2

∫ 1

0
(1− s)α−µ−1

φq

Å∫ s

0
(s− τ)β−1

φp(ph(τ)ψ(|x(τ)|))dτ

+s
∫ 1

0
(1− τ)β−1

φp(ph(τ)ψ(|x(τ)|))dτ

å
ds

≤ δ1‖ph‖ψ(‖x‖)
∫ t

0
(t− s)α−1

φq

Ç∫ s

0
(s− τ)β−1dτ + s

∫ 1

0
(1− τ)β−1dτ

å
ds

+δ2‖ph‖ψ(‖x‖)
∫ 1

0
(1− s)α−µ−1

φq

Ç∫ s

0
(s− τ)β−1dτ + s

∫ 1

0
(1− τ)β−1dτ

å
ds

≤ ‖ph‖ψ(‖x‖)
[
δ1

∫ t

0
(t− s)α−1

φq

(
sβ

β
+

s
β

)
ds+δ2

∫ 1

0
(1− s)α−µ−1

φq

(
sβ

β
+

s
β

)
ds
]

≤ ‖ph‖ψ(‖x‖)
β q−1

ñ
δ1

∫ t

0
(t− s)α−1

(
sβ + s

)q−1
ds+δ2

∫ 1

0
(1− s)α−µ−1

(
sβ + s

)q−1
ds
ô

≤ max{1,2q−2}‖ph‖ψ(‖x‖)
β q−1

ï
δ1

∫ t

0
(t− s)α−1

(
sβ (q−1)+ sq−1

)
ds

+δ2

∫ 1

0
(1− s)α−µ−1

(
sβ (q−1)+ sq−1

)
ds
ô

≤ (Γ(β +1))1−q max{1,2q−2}‖ph‖ψ(r)
ñ

Γ(β (q−1)+1)
Γ(α +β (q−1)+1)

+
Γ(q)

Γ(α +q)

+
Γ(2−µ)Γ(β (q−1)+1)
Γ(α−µ +β (q−1)+1)

+
Γ(2−µ)Γ(q)
Γ(α−µ +q)

ô
.

Thus ‖Bx‖ ≤Mh with Mh given in (3.31) for all x ∈ S. This shows that B is uniformly
bounded on S. Furthermore, we have

|(Bx)′(t)| ≤ (α−1)δ1

∫ t

0
(t− s)α−2

φq

Å∫ s

0
(s− τ)β−1|h(τ,x(τ))|dτ

+s
∫ 1

0
(1− τ)β−1|h(τ,x(τ))|dτ

å
ds+δ2

∫ 1

0
(1− s)α−µ−1

φq

Å∫ s

0
(s− τ)β−1|h(τ,x(τ))|dτ

+s
∫ 1

0
(1− τ)β−1|h(τ,x(τ))|dτ

å
ds.
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Some computations give

|(Bx)′(t)| ≤ (Γ(β +1))1−q max{1,2q−2}‖ph‖ψ(r)
ñ

Γ(β (q−1)+1)
Γ(α +β (q−1))

+
Γ(q)

Γ(α−1+q)

+
Γ(2−µ)Γ(β (q−1)+1)
Γ(α−µ +β (q−1)+1)

+
Γ(2−µ)Γ(q)
Γ(α−µ +q)

ô
:= L.

Now, for t1, t2 ∈ I with t1 < t2, we get

|Bx(t2)−Bx(t1)| ≤
∫ t2

t1

∣∣∣(Bx)′(s)
∣∣∣ds≤ L(t2− t1).

Therefore, B is equicontinuous. Thus, by Ascoli–Arzelà theorem, the operator B is comple-
tely continuous.
Step 3 : The hypothesis (c) of Lemma 1.48 is satisfied.
Let x ∈ E and y ∈ S be arbitrary elements such that x = A xBy+C x. Then we have

|x(t)| ≤ |A x(t)| |By(t)|+ |C x(t)| ≤ |g(t,x(t))|×ñ
δ1

∫ t

0
(t− s)α−1

φq

Ç∫ s

0
(s− τ)β−1|h(τ,y(τ))|dτ + s

∫ 1

0
(1− τ)β−1|h(τ,y(τ))|dτ

å
ds

+δ2

∫ 1

0
(1− s)α−µ−1

φq

Ç∫ s

0
(s− τ)β−1|h(τ,y(τ))|dτ + s

∫ 1

0
(1− τ)β−1|h(τ,y(τ))|dτ

å
ds
ô

+
m∑

k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1| fk(t,x(t))|ds

≤ (|g(t,x(t))−g(t,0))|+ |g(t,0))|)Mh

+
m∑

k=1

1
Γ(σk)

∫ t

0
(t− s)σk−1(| fk(t,x(t))− fk(t,0))|+ | f (t,0)|)ds,

≤ (‖µg‖|x(t)|+G0)Mh +
m∑

k=1

|x(t)|‖λk‖+Fk

Γ(σk +1)
.

Thus,

|x(t)| ≤
G0Mh +

∑m
k=1

Fk
Γ(σk+1)

1−‖µg‖Mh−
∑m

k=1
‖λk‖

Γ(σk+1)

.

Taking the supremum over t, we get

‖x‖ ≤
G0Mh +

∑m
k=1

Fk
Γ(σk+1)

1−‖µg‖Mh−
∑m

k=1
‖λk‖

Γ(σk+1)

≤ r.

Step 4 : Finally we show that δM+ξ < 1, that is, (d) of Lemma 1.48 holds.
Since

M = ‖B(S)‖= sup
x∈S

ß
sup
t∈I
|Bx(t)|

™
≤Mh,

and so

‖µg‖M+
m∑

k=1

‖λk‖
Γ(σk +1)

≤ ‖µg‖Mh +
m∑

k=1

‖λk‖
Γ(σk +1)

< 1,
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with

δ = ‖µg‖,ξ =
m∑

k=1

‖λk‖
Γ(σk +1)

.

Thus all conditions of Lemma 1.48 are satisfied and hence the operator equation x=A xBx+
C x has a solution in S. As a result, problem (3.16) has a solution on I.

3.3.3 An Example
In this section we give an example to illustrate the usefulness of our main results. Let us

consider the following boundary value problem :

cD
5
2
0+

Ñ
φ5

cD
11
4

0+

Ñ
x(t)−

∑m
k=1 I

2k+1
2

0+
fk(t,x(t))

g(t,x(t))

éé= φp

Å
1

(t2+2)2 (1+ sinx(t))
ã
, t ∈ I := [0,1]

Ñ
φ5

cD
11
4

0+

Ñ
x(t)−

∑m
k=1 I

2k+1
2

0+
fk(t,x(t))

g(t,x(t))

éé(i)

|t=0 = 0, i = 0,2,Ñ
φ5

cD
11
4

0+

Ñ
x(t)−

∑m
k=1 I

2k+1
2

0+
fk(t,x(t))

g(t,x(t))

éé |t=1 = 0,

Ñ
x(t)−

∑m
k=1 I

2k+1
2

0+
fk(t,x(t))

g(t,x(t))

é(2)

|t=0 = 0,

cD
1
2
0+

 x(t)−
∑m

k=1 I
2k+1

2
0+

fk(t,x(t))
g(t,x(t))


t=1

= 0, x(0) = 0.

(3.39)
In this case we take

n = 3, p = 5, q =
5
4
, α =

11
4
, β =

5
2
, µ =

1
2
,σk =

2k+1
2

,k = 1,2, . . . ,10,

fk(t,x(t)) =
1

2(t2 + k)2

(
x(t)+

»
x2(t)+1+ e−t

)
,k = 1,2, . . . ,10,

g(t,x(t)) =
e−2πt cos(πt)
(et +9)2

x(t)
1+ x(t)

+
1

10

h(t,x(t)) =
1

(t2 +2)2 (1+ sinx(t)).

We can show that

| fk(t,x)− fk(t,y)| ≤
1

(t2 + k)2 |x− y|,k = 1,2, . . . ,10,
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|g(t,x)−g(t,y)| ≤ 1
(et +9)2 |x− y|

hence, we have

λk(t) =
1

(t2 + k)2 , µg(t) =
1

(et +9)2 .

Then,

‖λk‖=
1
k2 , ‖µg‖=

1
100

Fk = sup
t∈I
| fk(t,0)|=

1
k2 , G0 = sup

t∈I
|g(t,0)|= 1

10
.

On the other hand, For each x ∈ R , t ∈ J we have

| f (t,x)|=
∣∣∣∣∣φp

Ç
1

(t2 +2)2 (1+ sinx)
å∣∣∣∣∣

≤ φp

Ç
1

(t2 +2)2 (1+ |x|)
å
.

Therefore, assumption (H3) of the Theorem 3.7 is satisfied with ph(t) = 1
(t2+2)2 , t ∈ I, and

ψ(x) = x+1, x ∈ [0,∞). Using the Matlab program, we see that equations (3.35), (3.36) are
followed with a number r∈ (0,6.0086)∪(119.6157,135.6242). As all conditions of Theorem
3.7 are satisfied, the problem (3.39) has at least one solution on I.
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3.4 Fractional Hybrid Differential Equations with deviating ar-
guments under hybrid conditions

3.4.1 Introduction
In this section, we use the technique based upon measures of noncompactness in conjunc-

tion with a generalization of Darbo’s fixed point theorem with a view to studying the exis-
tence of solutions for a hybrid fractional differential equation involving the Caputo fractional
derivative with deviating argument of the form

cDα

0+
[

x(t)
f (t,x(t),x(ϕ(t)))

]
= g(t,x(t),x(ρ(t))), t ∈ I := [0,1],

[
x(t)

f (t,x(t),x(ϕ(t)))

]
t=1

= 0, cDβ

0+
[

x(t)
f (t,x(t),x(ϕ(t)))

]
t=η

= 0, x(2)(0) = 0.
(3.40)

Where 2 < α ≤ 3, 0 < β ≤ 1 are a real number, cDα

0+,
cDβ

0+ are the Caputo fractional deriva-
tive, f ∈ C(I×R×R,R \ {0}),g ∈ C(I×R×R,R),ϕ and ρ are functions from [0,1] into
itself. The result is illustrated with a suitable example. To see more applications about the
usefulness of MNC in the study of some classes of nonlinear integral equations in Banach
algebra the reader can be referred to [65, 47, 62, 88, 89].

3.4.2 Existence of Solutions 3

Let us start by defining what we mean by a solution of the problem (3.40).

Definition 3.8. By a solution of the problem (3.40) we mean a function x ∈ C(J,R) that
satisfies the conditions

[
x(t)

f (t,x(t),x(ϕ(t)))

]
t=1

= cDβ

0+
[

x(t)
f (t,x(t),x(ϕ(t)))

]
t=η

= x(2)(0) = 0 and the

equation cDα

0+
[

x(t)
f (t,x(t),x(ϕ(t)))

]
= g(t,x(t),x(ρ(t))) on I

For the existence of solutions for the problem (3.40) we need the following auxiliary
lemma

Lemma 3.9. Let 2 < α ≤ 3 and suppose that f ∈C(I×R×R,R\{0}) and h ∈C(I). Then
the fractional hybrid BVP

cDα

0+

ñ
x(t)

f (t,x(t),x(ϕ(t)))

ô
= h(t), 0 < t < 1, (3.41)

with boundary conditionsñ
x(t)

f (t,x(t),x(ϕ(t)))

ô
t=1

= cDβ

0+

ñ
x(t)

f (t,x(t),x(ϕ(t)))

ô
t=η

= x(2)(0) = 0, (3.42)

where ϕ : [0,1]−→ [0,1] has the following unique solution :

x(t) = f (t,x(t),x(ϕ(t)))
®

Iα

0+h(t)− Iα

0+h(1)+
1− t

v0
Iα−β

0+ h(η)

´
. (3.43)

3. C. Derbazi, H. Hammouche, M. Benchohra, Fractional Hybrid Differential Equations with deviating
arguments under hybrid conditions. (submitted).
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where

v0 =
η1−β

Γ(2−β )

Proof. Applying the Riemann-Liouville fractional integral operator of order α to both sides
of (3.41) and using Lemmas 1.12, 1.24, we have

x(t)
f (t,x(t),x(ϕ(t)))

= Iα

0+h(t)+ c0 + c1t + c2t2, ∀ c0,c1,c2 ∈ R.

By the use of initial condition x(2)(0) = 0, we get c2 = 0 ,
and so,

x(t)
f (t,x(t),x(ϕ(t)))

= Iα

0+h(t)+ c0 + c1t, ∀ c0,c1 ∈ R.

Consequently, the general solution of (3.41) is

x(t) = f (t,x(t),x(ϕ(t)))(Iα

0+h(t)+ c0 + c1t) ∀ c0,c1 ∈ R. (3.44)

Then, by using Lemmas 1.12 and 1.24, we may obtain

cDβ

0+

ñ
x(t)

f (t,x(t),x(ϕ(t)))

ô
t=η

= Iα−β

0+ h(η)+ c1
Γ(2)

Γ(2−β )
η

1−βñ
x(t)

f (t,x(t),x(ϕ(t)))

ô
t=1

= Iα

0+h(1)+ c0 + c1,

which together with the boundary condition cDβ

0+
[

x(t)
f (t,x(t),x(ϕ(t)))

]
t=η

=
[

x(t)
f (t,x(t),x(ϕ(t)))

]
t=1

=

0, implies that

c1 =−
1
v0

Iα−β

0+ h(η),

c0 =
1
v0

Iα−β

0+ h(η)− Iα

0+h(1).

Substituting the value of c0,c1 in (3.44) we get (3.43).

We study the Problem (3.40) under the following assumptions :
(H1) f ∈C(I×R×R,R\{0}) and g ∈C(I×R×R,R).
(H2) The functions ϕ,ρ : [0,1]−→ [0,1] are continuous.
(H3) The function f satisfy

| f (t,x1,y1)− f (t,x2,y2)| ≤ (max(|x1− x2|, |y1− y2|)+1)k−1,

for any t ∈ [0,1] and x1,x2,y1,y2 ∈ R, where k,∈ (0,1).
(H4) There exist continuous nondecreasing function ψ : [0,∞) −→ [0,∞) and function p ∈

C(I,R+) such that
|g(t,x,y)| ≤ p(t)(ψ1(|x|)+ψ2(|y|)) ,

for each (t,x,y) ∈ I×R×R.
Notice that assumption (H1) gives us the existence nonnegative constant K1 such that

K1 = sup{| f (t,0,0)| : t ∈ [0,1]}.
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(H5) There exists r0 > 0 such that

r0 ≥
î
(r0 +1)k−1+K1

ó
‖p‖(ψ1(r0)+ψ2(r0))

{
2

Γ(α +1)
+

ηα−β

|v0|Γ(α−β +1)

}
,

(3.45)
and

(‖p‖(ψ1(r0)+ψ2(r0))

{
2

Γ(α +1)
+

ηα−β

|v0|Γ(α−β +1)

}
≤ 1.

Theorem 3.10. Under assumptions (H1)-(H5), problem (3.40) has at least one solution in
C(I).

Proof. In view of Lemma 3.9 we consider the operator T defined on C(I) by

T x(t) = f (t,x(t),x(ϕ(t))){Iα

0+g(s,x(s),x(ρ(s)))(t)− Iα

0+g(s,x(s),x(ρ(s)))(1)

−t−1
v0

Iα−β

0+ g(s,x(s),x(ρ(s)))(η)

´
, t ∈ I.

Notice that the fixed point problem T x = x is equivalent to problem (2.1). Next we introduce
two operators F ,G defined on C(I) by

F x(t) = f (t,x(t),x(ϕ(t))),

and

G x(t) = Iα

0+g(s,x(s),x(ρ(s)))(t)− Iα

0+g(s,x(s),x(ρ(s)))(1)− t−1
v0

Iα−β

0+ g(s,x(s),x(ρ(s)))(η),

for any x ∈C(I) and t ∈ I.
Observe that T x = (F x) · (G x) for any x ∈C(I).
We split the proof into several steps.
Step 1 : T applies C(I) into itself.
In order to show that T x ∈C(I) it is sufficient to show that F x,G x ∈C(I) for any x ∈C(I).
Obviously the conditions of Theorem 3.10 guarantee that if x ∈C(I) then F x ∈C(I). Next,
we will prove that if x ∈C(I) then G x ∈C(I).

To do this, let t ∈ I be fixed and {tn} be a sequence in I such that tn→ t as n→∞. Without
loss of generality, we may assume tn > t. Then, we get

|G x(tn)−G x(t)| ≤ 1
Γ(α)

∫ tn

0
|(tn− s)α−1− (t− s)α−1||g(s,x(s),x(ρ(s)))|ds

+
1

Γ(α)

∫ tn

t
|t− s|α−1|g(s,x(s),x(ρ(s)))|ds

+
|t− tn|

|v0|Γ(α−β )

∫
η

0
(η− s)α−β−1|g(s,x(s),x(ρ(s)))|ds.
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In view of (H4) we obtain

|G x(tn)−G x(t)| ≤ ‖p‖(ψ1(‖x‖)+ψ2(‖x‖))
Γ(α)

∫ tn

0
|(tn− s)α−1− (t− s)α−1|ds

+
‖p‖(ψ1(‖x‖)+ψ2(‖x‖))

Γ(α)

∫ tn

t
|t− s|α−1ds

+
|tn− t|‖p‖(ψ1(‖x‖)+ψ2(‖x‖))

|v0|Γ(α−β )

∫
η

0
(η− s)α−β−1ds

≤ ‖p‖(ψ1(‖x‖)+ψ2(‖x‖))
Γ(α)

ï∫ t

0

∣∣∣(tn− s)α−1− (t− s)α−1
∣∣∣ds

+
∫ tn

t

∣∣∣(tn− s)α−1− (t− s)α−1
∣∣∣ds+

∫ tn

t
|t− s|α−1 ds

ò
+
|tn− t|‖p‖(ψ1(‖x‖)+ψ2(‖x‖))

|v0|Γ(α−β )

∫
η

0
(η− s)α−β−1 ds

=
‖p‖(ψ1(‖x‖)+ψ2(‖x‖))

Γ(α)

ï∫ t

0

î
(tn− s)α−1− (t− s)α−1óds

+
∫ tn

t
(tn− s)α−1 ds+

∫ tn

t
(s− t)α−1 ds+

∫ tn

t
(s− t)α−1 ds

ò
+
|tn− t|‖p‖(ψ1(‖x‖)+ψ2(‖x‖))

|v0|Γ(α−β )

∫
η

0
(η− s)α−β−1 ds

≤ ‖p‖(ψ1(‖x‖)+ψ2(‖x‖))
Ç

2
Γ(α +1)

(tn− t)α +
(tn− t)
Γ(α)

+
(tn− t)

|v0|Γ(α−β +1)
η

α−β

å
,

where we have used the fact that tα
n − tα ≤ α(tn− t). From the last estimate, we deduce that

(G x)(tn)→ (G x)(t) when n→ ∞.Therefore, G x ∈ C(I). This proves that if x ∈ C(I). then
T x ∈C(I).
Step 2 : An estimate of ‖T x‖for x ∈C(I).
Fix x ∈C(I). and t ∈C(I). In view of assumptions, we have

|(T x)(t)|= |(F x)(t)||(G x)(t)|
= | f (t,x(t),x(ϕ(t)))| |Iα

0+g(s,x(s),x(ρ(s)))(t)− Iα

0+g(s,x(s),x(ρ(s)))(1)

−t−1
v0

Iα−β

0+ g(s,x(s),x(ρ(s)))(η)

∣∣∣∣∣
≤ | f (t,x(t),x(ϕ(t)))|− f (t,0,0)|+ | f (t,0,0)|)

×
®

Iα

0+|g(s,x(s),x(ρ(s)))|(t)+ Iα

0+|g(s,x(s),x(ρ(s)))|(1)+
1
|v0|

Iα−β

0+ |g(s,x(s),x(ρ(s)))|(η)

´
≤ [(max(|x(t)|, |x(ϕ(t))|)+1)k−1+K1]

×{Iα

0+ p(s)[ψ1(|x(s)|)+ψ2(x(ρ(s)))](t)+ Iα

0+ p(s)[ψ1(|x(s)|)+ψ2(x(ρ(s)))](1)

+
1
|v0|

Iα−β

0+ p(s)[ψ1(|x(s)|)+ψ2(x(ρ(s)))](η)

´
≤ [(max(‖x‖,‖x‖)+1)k−1+K1]‖p‖(ψ1(‖x‖)+ψ2(‖x‖))

[
2

Γ(α +1)
+

ηα−β

|v0|Γ(α−β +1)

]
.
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Therefore,

‖T x‖ ≤ [(‖x‖+1)k−1+K1]‖p‖(ψ1(‖x‖)+ψ2(‖x‖))
[

2
Γ(α +1)

+
ηα−β

|v0|Γ(α−β +1)

]
.

By assumption (H5), we infer that the operator T applies Br0 into itself. Moreover, from the
last estimates, it follows that

‖FBr0‖ ≤ (r0 +1)k−1+K1

and

‖G Br0‖ ≤ ‖p‖(ψ1(‖x‖)+ψ2(‖x‖))
[

2
Γ(α +1)

+
ηα−β

|v0|Γ(α−β +1)

]
.

Step 3 : The operators F and G are continuous on the ball Br0 .
In fact, firstly we prove that F is continuous on Br0 . To do this, we fix ε > 0 and we take
x,y ∈ Br0 with ‖x− y‖ ≤ ε . Then, for t ∈ [0,1], we have

|(F x)(t)− (F y)(t)|= | f (t,x(t),x(ϕ(t)))− f (t,y(t),y(ϕ(t)))|
≤ (max(|x(t)− y(t)|, |x(ϕ(t))− y(ϕ(t))|)+1)k−1

≤ (max(‖x− y‖,‖x− y‖)+1)k−1

= (‖x− y‖+1)k−1≤ (ε +1)k−1,

and since (ε +1)k−1→ 0 when ε → 0, we have proved that F is continuous in Br0 .
Next, we prove that G is continuous in Br0 . In order to do this, we fix ε > 0 and we take

x,y ∈ Br0 with ‖x− y‖ ≤ ε . Then, for t ∈ [0,1], we get

|(G x)(t)− (G y)(t)| ≤ Iα

0+|g(s,x(s),x(ρ(s)))−g(s,y(s),x(ρ(s)))|(t)
+ Iα

0+|g(s,x(s),x(ρ(s)))−g(s,y(s),x(ρ(s)))|(1)

+
1
|v0|

Iα−β

0+ |g(s,x(s),x(ρ(s)))−g(s,y(s),x(ρ(s)))|(η)

≤ ωg(I,ε)
[

2
Γ(α +1)

+
ηα−β

|v0|Γ(α−β +1)

]
,

where ωg(I,ε) = sup{|g(t,x1,x2)−g(t,y1,y2)| : t ∈ I = [0,1],xi,yi ∈ [−r0,r0],1≤ i≤ 2, |xi−
yi| ≤ ε}. Since g is uniformly continuous on the compact [0,1]× [−r0,r0]× [−r0,r0], we have
ωg(I,ε)→ 0 as ε→ 0 and, therefore, the last inequality proves that operator G is continuous
on Br0 .
Consequently, since T = F ·G , it follows that T is continuous on Br0 .
Step 4 : Estimates of ω0(FX) and ω0(G X) for /0 6= X ⊂ Br0 . Firstly, we estimate ω0(FX).
For ε > 0 given, since ϕ : [0,1]→ [0,1] is uniformly continuous, we can find δ > 0 (which
can be taken with δ < ε ) such that, for |t1− t2|< δ we have |ϕ(t2)−ϕ(t1)|< ε .
Now, we take x ∈ X and t1, t2 ∈ [0,1] with |t1− t2| ≤ δ < ε . Then

|(F x)(t2)− (F x)(t1)|= | f (t2,x(t2),x(ϕ(t2)))− f (t1,x(t1),x(ϕ(t1)))|
≤ | f (t2,x(t2),x(ϕ(t2)))− f (t2,x(t1),x(ϕ(t1)))|
+ | f (t2,x(t1),x(ϕ(t1)))− f (t1,x(t1),x(ϕ(t1)))|
≤ [(max(|x(t2)− x(t1)|, |x(ϕ(t2))− y(ϕ(t1))|)+1)k−1]+ω( f ,ε)

≤ [(ω(X ,ε)+1)k−1]+ω( f ,ε),

58



3.4. FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS UNDER HYBRID
CONDITIONS

where ω( f ,ε) denotes the quantity

ω( f ,ε) = sup{| f (t2,x,y)− f (t1,x,y)| : t1, t2 ∈ [0,1], |t1− t2| ≤ ε,x,y ∈ [−r0,r0]}.

Therefore,
ω(FX ,ε)≤ [(ω(X ,ε)+1)k−1]+ω( f ,ε).

Since f (t,x,y) is uniformly continuous on the compact [0,1]× [−r0,r0]× [−r0,r0],ω( f ,ε)→
0 when ε → 0 , and, consequently, from the last inequality, we infer

ω0(FX)≤ (ω0(X)+1)k−1.

Next, we estimate ω0(G X) . Fix ε > 0, and we take x ∈ X and t1, t2 ∈ [0,1] with |t1− t2| ≤ ε

. Without loss of generality, we can suppose that t1 < t2 . Then, we have

|G x(t2)−G x(t1)|=
∫ t2

t1

∣∣∣(G x)′(s)
∣∣∣ds

≤ ‖p‖(ψ1(r0)+ψ2(r0))

[
1

Γ(α)
+

ηα−β

|v0|Γ(α−β +1)

]
(t2− t1)

≤ ‖p‖(ψ1(r0)+ψ2(r0))

[
1

Γ(α)
+

ηα−β

|v0|Γ(α−β +1)

]
ε.

Therefore,

ω(G x,ε)≤ ‖p‖(ψ1(r0)+ψ2(r0))

[
1

Γ(α)
+

ηα−β

|v0|Γ(α−β +1)

]
ε,

and this gives us ω0(G X) = 0.
Step 5 : An estimate of ω0(T X) for /0 6= X ⊂ Br0 . Taking into account that ω0(XY ) ≤
‖X‖ω0(Y )+‖Y‖ω0(X) from the estimates obtained in Steps 2 and 4, we deduce

ω0(T X) = ω0(FX ·G X)≤ ‖FX‖ω0(G X)+‖G X‖ω0(FX)

≤ ‖FBr0‖ω0(G X)+‖G Br0‖ω0(FX)

≤ [(ω0(X)+1)k−1]‖p‖(ψ1(r0)+ψ2(r0))

[
1

Γ(α)
+

ηα−β

|v0|Γ(α−β +1)

]
.

By assumption (H5), ‖p‖(ψ1(r0)+ψ2(r0))
ï

1
Γ(α) +

ηα−β

|v0|Γ(α−β+1)

ò
≤ 1, and from the last esti-

mate, we infer that
ω0(T X)≤ (ω0(X)+1)k−1,

or, equivalently,
ω0(T X)+1≤ (ω0(X)+1)k.

Therefore, the contractive condition appearing in Theorem 1.43 is satisfied with ϕ(t) = t+1,
where ϕ ∈ Θ. By Theorem 1.43, the operator T has at least one fixed point in Br0 . Which is
a solution of the problem (3.40). This completes the proof.
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3.4.3 An Example
In this section we give an example to illustrate the usefulness of our main results. Let us

consider the following boundary value problem :

Example 3.11.

cD
5
2
0+

 x(t)

1
µ

Å
5
√

1+|sinx(t)|+ 5
…

1+ |x(t2)|
1+|x(t2)|

ã= g(t,x(t),x(ρ(t))), t ∈ I = [0,1]

 x(t)

1
µ

Å
5
√

1+|sinx(t)|+ 5
…

1+ |x(t2)|
1+|x(t2)|

ã
t=1

= cD
1
2
0+

 x(t)

1
µ

Å
5
√

1+|sinx(t)|+ 5
…

1+ |x(t2)|
1+|x(t2)|

ã
t= 1

4

= 0,

x(2)(0) = 0.
(3.46)

In this case we take

α =
3
2
,β =

1
2
,η =

1
4
,

f (t,x,y) =
1
µ

Ñ
5
»

1+ |sinx|+ 5

Ã
1+

|y|
1+ |y|

é
,

g(t,x,y) =
e−2t»
(9+ t)

Ñ
sinx

4
+

3
8

y

Ñ
1+

y»
1+ y2

éé
,

ϕ(t) = t2,ρ(t) =
√

t,

K1 = sup{| f (t,0,0)| : t ∈ [0,1]}= 2
µ
.

It is easy to check that

|g(t,x,y)|=
∣∣∣∣∣∣ e−2t»

(9+ t)

Ñ
sinx

4
+

3
8

y

Ñ
1+

y»
1+ y2

éé∣∣∣∣∣∣
≤ p(t)(ψ1(|x|)+ψ2(|y|)),

with p(t) = e−2t ,ψ1(|x|) = |x|
4 ,ψ2(|y|) = 3|y|

4 .
On the other hand, for any t ∈ [0,1] and x,y,x1,y1 ∈ R we have
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| f (t,x,y)− f (t,x1,y1)| ≤∣∣∣∣∣∣∣
1
µ

Ñ
5
»

1+ |sinx|+ 5

Ã
1+

|y|
1+ |y|

é
− 1

µ

Ñ
5
»

1+ |sinx1|+ 5

Ã
1+

|y1|
1+ |y1|

é∣∣∣∣∣∣∣
≤ 1

µ

∣∣∣ 5
»

1+ |sinx|− 5
»

1+ |sinx1|
∣∣∣+ 1

µ

∣∣∣∣∣∣∣ 5

Ã
1+

|y|
1+ |y|

− 5

Ã
1+

|y1|
1+ |y1|

∣∣∣∣∣∣∣
≤ 1

µ

∣∣∣( 5
»

1+ |sinx|−1
)
−
(

5
»

1+ |sinx1|−1
)∣∣∣

+
1
µ

∣∣∣∣∣∣∣
Ñ

5

Ã
1+

|y|
1+ |y|

−1

é
−

Ñ
5

Ã
1+

|y1|
1+ |y1|

−1

é∣∣∣∣∣∣∣ .
Applying Lemma 1.28 we get
| f (t,x,y)− f (t,x1,y1)| ≤

≤ 1
µ

(
5
»

1+ ||sinx|− |sinx1||−1
)
+

1
µ

Ñ
5

Ã
1+

∣∣∣∣∣ |y|1+ |y|
− |y1|

1+ |y1|

∣∣∣∣∣−1

é
≤ 1

µ

(
5
»

1+ |x− x1|−1
)
+

1
µ

(
5
»

1+ |y− y1|−1
)

≤ 2
µ

5
»

max(|x− x1|, |y− y1|)+1−1.

Therefore, assumption (H3) of the Theorem 3.10 is satisfied when µ ≥ 2 with k = 1/5 .
Observe that in this case the inequality involved in (3.45) has the form :

r0

ñ
(r0 +1)

1
5 −1+

2
µ

ô{
2

Γ(α +1)
+

ηα−β

|v0|Γ(α−β +1)

}
≤ r0.

For µ = 2, we have

r0 ≤
1ï

2
Γ(α+1) +

ηα−β

|v0|Γ(α−β+1)

ò5 −1,

which is satisfied by r0 = 7. Thus, all the conditions of Theorem 3.10 are satisfied, and
consequently problem (3.46) has at least one solution x(t) ∈C[0,1].
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Conclusion and Perspective

In this thesis, we have considered the problem of existence of solutions for various classes
of initial value problem and boundary value problem for nonlinear fractional differential
equations involving the Caputo fractional-order in Banach Spaces. The results are based on
the technique of measures of noncompactness. and the argument of fixed points. Some ap-
propriate fixed point theorems have been used, in particular ; Mönch’s fixed point theorem,
Darbo’s fixed point theorem and Dhage fixed point theorem.

For the perspective, it would be interesting to extend the results of the present thesis
by considering differential inclusions involving new formulations of fractional derivatives
and integrals have been presented recently (namely, Caputo–Hadamard, Caputo-Fabrizio, ψ–
Caputo and ψ–Hilfer are just a few). Also, we will study the problem of stability for a class
of boundary value problem for nonlinear fractional differential equations.

Another possible future work is to use a novel technique developed by G. García [69]
based on the so called degree of nondensifiability (briefly, DND), which is not a measure of
noncompactness but can be used as an alternative tool in certain fixed point problems, where
such measures do not work out. For more applications about the usefulness of DND in the
study of existence of solutions for certain integral equations, the reader can be referred to
[68, 69, 70, 71].
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