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Introduction

Fractional calculus (FC) is an extension of ordinary calculus with more than 300 years
of history. Fractional calculus appeared when l’Hopital, one of the founders of Calculus,
wrote to Leibnitz the father of Calculus about the meaning of dn

dxn f (x) when n = 1/2. Leib-
nitz replied in 1695 saying that it could be

√
dx : x an apparent paradox from which useful

consequences would be drawn one day. The name ”fractional calculus” may have originated
from the question ”what if n = 1/2 ?”. Therefore, FC generalizes integrals and derivatives to
noninteger orders.

During the last decades, fractional differential equations (FDEs) have become an area of
interest to researchers due to its high accuracy and applicability in various fileds of science
and technology. As many physical, dynamical, biological and chemical phenomenons are re-
presented in more realistic way by using fractional differential equations instead of integer
order differential equation. More realistic approach is the main reason for attracting the at-
tention of researchers. Fractional differential equations are equally suitable not only to the
mathematicians but also to engineers and physicists. The fractional order differential equa-
tions have a large numbers of applications in many fields of science and technology, we refer
the readers to the more recent results, e.g., works of Kilbas et al. [76], Podlubny [99] and Ca-
ponetto et al. [46] (control theory), Metzler et al. [93] (relaxation in filled polymer networks),
Podlubny et al. [100] (heat propagation), Chern [45] (modeling of the behavior of viscoelas-
tic and viscoplastic materials under external influences), Bai and Feng [21] and Cuesta and
Finat Codes [53] (image processing) and Gaul et al. [59] (description of mechanical systems
subject to damping).

Many techniques have been developed for studying the existence and uniqueness of so-
lutions of initial (IVPs) and boundary value problem (BVPs) for fractional differential equa-
tions. Several authors tried to develop a technique that depends on the Darbo or the Mönch
fixed point theorems with the measure of noncompactness (MNCs). The concept of mea-
sure of noncompactness was first introduced by Kuratowski [81] in 1930. In 1955, the Italian
mathematician Darbo [48] used the Kuratowski measure in order to investigate a class of
operators(condensing operators) whose properties can be characterized as being intermediate
between those of contraction and compact mappings. Darbo’s fixed point theorem is useful
in establishing existence results for different classes of operator equations. Other measures
of noncompactness have been defined since then. The most important ones are the Hausdorff
measure of noncompactness introduced by Goldenstein et al. [60] in 1957 (and later studied
by Goldenstein and Markus [61]). The notion of the measure of weak noncompactness was
introduced by De Blasi in 1977 [26]. This measure can be regarded as a counterpart of the
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Hausdorff measure of noncompactness. This theory plays a significant role in topological
fixed point problems (cf. [55]) and many existence results for weak solutions of differential
and integral equations in Banach spaces. This technique of measure of weak noncompact-
ness and the fixed point theorem of Mönch type were mainly initiated in the monograph of
Banas̀ Goebel [27] and subsequently developed and used in many papers ; see for example,
Akhmerov et al.[16], Alvàrez [17], Benchohra et al. [32], Guo et al. [62], and the references
therein. Recently, a lot of papers have been devoted to weak solutions of nonlinear fractional
differential equations [3, 6, 32, 34, 37, 127].

Moreover, topological degree theory may be one of the most effective tools in solving
nonlinear equations. As a measure of the number of solutions of equation f x = y for a fixed
y, the degree has fundamental properties such as existence, normalization, additivity, and
homotopy invariance. The most powerful one in which the value of the degree is invariant
under appropriate perturbations plays a crucial role in the study of nonlinear differential and
integral equations. After a pioneering work of Kronecker [80] of 1869, the first definition of
degree for maps between Euclidean spaces is due to Brouwer [41] in 1912. In 1951, Nagumo
[89] redefines the concept, today commonly known as Brouwer degree. The Brouwer degree
degB( f ,Ω,y), defined for any continuous mapping f : Ω ⊂ Rn → Rn such that y 6∈ f (∂Ω),
where Ω is open and bounded,

degB( f ,Ω,y) =
∑

x∈ f−1(y)

sign f ′(x)

where degB( f ,Ω,y)= 0 if f−1(y)= /0, sign f ′(x) is the sign of the determinant of the Jacobian
matrix.

In 1934, Leray and Schauder [86] generalized Brouwer degree theory to an infinite Ba-
nach space and established the so-called Leray Schauder degree. The latter has been re-
cognized as a very important tool for the study of many problems in ordinary and partial
differential equations. Afterwards, many authors defined and developed the topological de-
gree theory for various classes of non-compact nonlinear mappings between Banach spaces ;
see,e.g., [51, 108, 109, 118]. Browder [42, 43] introduced a topological degree for nonlinear
operators of monotone type in reflexive Banach spaces, where the Galerkin method is used to
apply the Brouwer degree. Berkovits [38, 39] gave a new construction of the Browder degree,
based on the Leray-Schauder degree. An interesting and accurated description of important
applications of the Leray-Schauder degree is due to Mawhin in [91]. Mawhin continuation
theorem introduced in [90] and developed in [91] in the frame of a degree theory for map-
pings of the type L+N between normed vector spaces, with L Fredholm of index zero and
N satisfying a suitable compactness property. A fundamental result in proving this continua-
tion theorem is the reduction of the Leray-Schauder degree of some compact perturbation
of identity in a normed vector space to the Brouwer degree of the associated mapping in a
finite-dimensional vector space (reduction property). Such fractional differential equations
can be written as Lx = Nx, where L and N are operators from a Banach space X to another
Banach space Y (L is a linear and N is a nonlinear). If the kernel of the linear part of the
above equation contains only zero, the corresponding BVP is called non-resonant, in this
case L is invertible. This means that there exists an integral operator ; then, topological me-
thods can be applied to prove existence theorems. Otherwise, if L is a non-invertible, i.e.
dimKerL≥ 1, then the problem is said to be at resonance, an important class of resonant pro-
blems when L is a Fredholm operator with zero-index, the problem can be solved by using the
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continuation theorem of coincidence degree theory. More recently, many authors investigated
the existence of solutions for fractional differential equations at resonance. For instance see
[22, 23, 24, 25, 47, 66, 67, 68, 71, 72, 77, 78, 119] and the references therein.

Let us now briefly describe the organization of this thesis :
Chapter one is devoted to some notations, definitions, and preliminary facts that will be

used throughtout this thesis.
Chapter two investigates the existence of weak solutions, for the fractional differential

equations that contain both the integral boundary condition and the multi-point boundary
condition : 

Dα

0+x(t)+ f (t,x(t)) = 0, t ∈ J = [0;1],
x(i)(0) = 0, i = 0,1,2, . . . ,n−2,

x(1) =
∑m−2

i=1 σi
∫ ηi

0 x(s)ds+
∑m−2

i=1 νix(ηi),

where Dα represents the standard Riemann-Liouville fractional derivative of order α satis-
fying n−1 < α ≤ n with n≥ 3 and n ∈ N+. In addition, 0 < η1 < η2 < · · ·< ηm−2 < 1 and
σi,νi > 0 with 1≤ i≤ m−2, where m is an integer satisfying m≥ 3. f : [0;1]×E → E is a
given function satisfying some assumptions that will be specified later, E is a Banach space
with norm ‖ · ‖.

The third Chapter considers more precisely, in section 3.1, the following boundary
value problem of nonlinear hybrid fractional differential equations :

cDα

0+
[

x(t)
f (t,x(µ(t)))

]
= g(t,x(ν(t))), t ∈ J = [0;1],

a
[

x(t)
f (t,x(µ(t)))

]
t=0

+b
[

x(t)
f (t,x(µ(t)))

]
t=1

= c,

where 0 < α ≤ 1,a,b,c are real constants such that a+ b 6= 0, cDα

0+ is the Caputo fractional
derivative, f ∈C(J×R,R\{0}),g ∈C(J×R,R),µ and ν are functions from J into itself.

In section 3.2, we looked for the following boundary value problem for hybrid fractional
differential equations with fractional separated integral boundary conditions

cDα

0+
(

x(t)
f (t,x(t))

)
= g(t,x(t)), t ∈ J = [0;1],

a1

(
x(t)

f (t,x(t))

)
t=0

+b1
cDσ

0+
(

x(t)
f (t,x(t))

)
t=0

=
∫ 1

0 h(t,x(t))dt,

a2

(
x(t)

f (t,x(t))

)
t=1

+b2
cDσ

0+
(

x(t)
f (t,x(t))

)
t=1

=
∫ 1

0 k(t,x(t))dt.

Where 0 < σ ≤ 1 < α ≤ 2, cDα

0+ is the Caputo fractional derivative, f ,g,h,k are a given
continuous function and ai,bi, i = 1,2 are real constants such that a1 6= 0.

Our approch will be based on the technique of measures of noncompactness in the Banach
algebras and a fixed point theorem for the product of two operators verifying a Darbo type
condition.

In Chapter four, we discussed the existence of solutions for the following multi-point
boundary value problems by using Mawhin’s continuation theorem{ Ä

φ(t)cDα

0+u(t)
ä′
= f (t,u(t),u′(t),u′′(t), cDα

0+u(t)), t ∈ J = [0;1],
u(0) = 0, cDα

0+u(0) = 0, u′′(0) =
∑m

i=1 aiu′′(ξi), u′(1) =
∑l

j=1 b ju′(η j),

where cDα

0+ is the Caputo fractional derivative, 2 < α ≤ 3, 0 < ξ1 < · · ·< ξm < 1, 0 < η1 <

· · ·< ηl < 1, ai,b j ∈ R, (i = 1, . . . ,m, j = 1, . . . , l), φ(t) ∈C1[0;1] and µ = mint∈J φ(t)> 0
while f : [0;1]×R4→ R is a Carathéodory function with a nonlinear growth.
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Finally, in Chapter five, we established the solvability of multi-point BVP of nonlinear
fractional differential equations at resonance with three dimensional kernels :

Ä
φ(t)cDα

0+u(t)
ä′
= f (t,u(t),u′(t),u′′(t),u′′′(t), cDα

0+u(t)), t ∈ J = [0;1]
u(0) = 0, cDα

0+u(0) = 0, u′′′(0) =
∑m

i=1 aiu′′′(ξi),
u′′(0) =

∑l
j=1 b ju′′(η j), u′(1) =

∑n
k=1 cku′(ρk),

where cDα

0+ is the Caputo fractional derivative, 3 < α ≤ 4, 0 < ξ1 < · · · < ξm < 1, 0 <
η1 < · · · < ηl < 1, 0 < ρ1 < · · · < ρn < 1, ai,b j,ck ∈ R, (i = 1, . . . ,m, j = 1, . . . , l, k =
1, . . . ,n), φ(t)∈C1[0;1], µ =mint∈J φ(t)> 0 and f : [0;1]×R5→R is a Carathéodory func-
tion.
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Chapitre 1
Preliminaries

The aim of this chapter is to introduce some basic concepts, notation and elementary
results that are used throughout this thesis.

1.1 Weak Topologies

1.1.1 General Statements
Definition 1.1. Let E be a set and let τ1 and τ2 be topologies on E. τ1 is said to be weaker
than τ2 if

τ1 ⊂ τ2.

This means that every τ1-open set is a τ2-open set.

Remark 1.2. A topology τ1 is weaker than a topology τ2 if for every τ1-open set A, every
point a ∈ A has a τ2-neighborhood Ua contained in A, as

A =
⋃

a∈A
Ua,

i.e., A is also τ2-open.

Remark 1.3. If τ1 is weaker than τ2 then

Id : (E,τ1)→ (E,τ2)

is an open mapping and
Id : (E,τ2)→ (E,τ1)

is continuous.

Proposition 1.4. Let τ1,τ2 be topologies on a set E with τ1 ⊂ τ2. If (E,τ1) is Hausdorff then
so is (E,τ2).

Proposition 1.5. Let τ1,τ2 be topologies on a set E with τ1 ⊂ τ2. If (E,τ1) is Hausdorff and
(E,τ2) is compact then τ1 = τ2.

This means that one cannot weak en a compact Hausdorff topology without losing the
Hausdorff property. This also means that one cannot strengthen a compact Hausdorff space
without losing compactness.

7



1.1. WEAK TOPOLOGIES

Let E be a set and let F be a family of mappings from E into topological spaces :

F= { fi : E→ Gi | i ∈ I} .

Let τ be the topology generated by the subbase¶
f−1
i (V ) | i ∈ I, V ∈ τGi

©
.

Then τ is the weakest topology on E for which all the fa are continuous maps (it is the
intersection of all topologies having this property). It is called the weak topology induced
by F, orthe F-topology of E.

Proposition 1.6. Let F be a family of mappings E → Gi where E is a set and each Gi is a
Hausdorff topological space. If F separates points on E then the F-topology on E is Haus-
dorff.

Here separates between point means that x 6= y implies that f (x−y) 6= f (0). In the linear
case it reduces to f (x) 6= f (y).

Proposition 1.7. Let (E,τ) be a compact topological space. If there is a sequence { fn | n∈N}
of continuous real-valued functions that separates points in E then E is metrizable.

Theorem 1.8. Let E be a vector space (no topology) and let E∗ be a separating vector space
of linear functionals on E. Denote by τ∗ the E∗-topology on E. Then (E, τ∗) is a locally
convex topological vector space whose dual space is E∗.

Local convexity is important because of the Hahn-Banach theorem. An extension of the
separation theorem states that if E is a locally convex topological vector space, A is compact,
and B closed, then there exists a continuous linear map f : E→ R and s, t ∈ R such that

f (a)< t < s < f (b)

for all a ∈ A and b ∈ B.

1.1.2 The Weak Topology of a Topological Vector Space
Given a topology, we can determine whether a function is continuous. This argument can

be reversed : given a space and functions on that space, we can define a topology with respect
these functions are continuous. For example, we can take the discrete topology, which is not
interesting (only sequence that are eventually constant converge). In the previous subsection,
we have laid the foundations to en dow the space with the weakest topology that makes those
function continuous. This is the context of weak topologies over topological vector spaces.

Weak and Original Topologies

Definition 1.9. Let (E,τ) be a topological vector space whose dual E∗ (the vector space of
continuous linear functionals) separates points. The E∗-topology on E is called the weak
topology (it is the weakest topology with respect every τ-continuous linear functional is
continuous).

We denote the weak topology by τw (the space it self is often denoted by Ew).

8



1.1. WEAK TOPOLOGIES

Corollaire 1.1.1. Ew is locally convex and E∗w = E∗.

An other corollary is :

Corollaire 1.1.2. (Ew)w = Ew.

Note that since every f ∈ E∗ is τ continuous and since τw is the weakest topology with
this property, it follows that

τw ⊂ τ,

justifying the name of weak topology.
The next propositions shows that weak convergence is consistent with what we know :

Proposition 1.10. A sequence xn in a topological vector space (E,τ) weakly converges to
zero, xn ⇀ 0, if and only if

∀ f ∈ E∗ f (xn)→ 0.

Corollaire 1.1.3. Every τ-convergent sequence is τw convergent.

Weak and Original Boundedness

Proposition 1.11. Let (E,τ) be a topological vector space. A set B ⊂ E is τw-bounded
(weakly bounded) if and only if

∀ f ∈ E∗ f is a bounded functional on B.

Proposition 1.12. If (E,τ) is an infinite-dimensional topological vector space then every τw-
neighborhood of zero contains an infinite-dimensional subspace ; in particular (E,τw) is not
locally bounded.

Recall that at opological vector space is metrizable if and only if it has a countable local
base. Local boundedness implies the existence of acountable local base. Not being locally
bounded does not imply a lack of metrizability.

Weak and Original Closedness

We next come to the concept of closure. If a set is τw-closed then it is clearly τ-closed.
Let B be a set in a topological vector space (E,τ). Its τ-closure B is the intersection of all
τ-closed sets that contain it, whereas its τw-closure Bw is the intersection of all τw-closed sets
that contain it. Since there are more τ-closed sets than τw-closed sets,

B⊂ Bw.

Theorem 1.13. Let B be a convex subset of alocally convex topological vector space (E,τ).
Then,

B = Bw.

This theorem states that if B is a convex set in a locally convex topological vector space
and there is a sequence xn ∈ B that weakly converges to x (which is not necessarily in B), then
there is also a sequence yn ∈ B that originally-converges to x.

Corollaire 1.1.4. For convex subsets of locally convex topological vector spaces :
1. τ-closed equals τw-closed.
2. τ-dense equals τw-dense.
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1.1. WEAK TOPOLOGIES

1.1.3 The Weak-* Topology
Let (E, τ) be a topological vector space. The dual space E∗ does not come with a priori

topology. In Banach spaces, the dual space has a natural operator norm, and we proved that
the dual space end owed with that norm is also a Banach space (in fact, we proved that the
dual of a normed space is a Banach space). But for general topological vector spaces, we
don’t have as for now a topology.

Recall the natural in clusion from E to linear functionals on E∗,

ι : x→ Fx,

where for f ∈ E∗ :
Fx( f ) = f (x),

The family of functionals {ι(x) | x ∈ E} (which we can’t call continuous because there is no
topology on E∗) separates points on E∗ as if

ι(x)( f ) = ι(x)(g)

for all x ∈ E then
f (x) = g(x)

i.e., f = g.
If follows from Theorem 1.8 that the ι(E)-topology of E∗ turns it in toalocally convex topo-
logical vector space whose dual space is ι(E). The ι(E)-topology of E∗ is called the weak-*
topology. Every linear functional on E∗ that is weak-* continuous is of the form ι(t) for
some t ∈ E. The open sets in the weak star topology (E,τ∗) are generated by the subbase :

V (x,r) = { f ∈ E∗ | | f (x)|< r}.

Weak-*convergence of a sequence ( fn)⊂ E∗ to f ∈ E∗ denoted fn
∗
⇀ f means that

∀x ∈ E lim
n→∞

fn(x) = f (x).

The following central theorem states a compactness property of the weak-*topology. It was
proved in 1932 by Banach for separable spaces and in 1940 by Alaoglu in the general case.
(Leonidas Alaoglu (1914-1981) was a Greek mathematician.)

Theorem 1.14. Banach-Alaoglu. Let (E,τ) be a topological vector space. Let V ⊂ E and
let

K = { f ∈ E∗ | | f (x)| ≤ 1 for all x ∈V},

Then K is weak*-compact. (The set of functionals K is call the polar of the set of vectors V ).

Reflexive Spaces

For any Banach E space, we note its bidual by E∗∗, equipped with the norm

‖ξ‖= sup
‖ f‖E∗≤1

|ξ ( f )|

10



1.2. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

Definition 1.15. The mapping j : E→ E∗∗ defined by

j(x)(x∗) = x∗(x), x∗ ∈ E∗,

defines an isometric embedding of E into the bidual E∗∗ ; this is an immediate consequence
of the Hahn-Banach theorem. We shall always identify E with its image in E∗∗.

Proposition 1.16. E is weak*-dense in E∗∗.

A Banach space E is called reflexive if this embedding is surjective. As a consequence of
the Banach-Alaoglu theorem we have the following characterisation of reflexivity :

Proposition 1.17. A Banach space E is reflexive if and only if BE is weakly compact.

Proposition 1.18. A Banach space E is reflexive if and only if its dual E∗ is reflexive.

1.2 Elements From Fractional Calculus Theory
In this section, we have given the definitions of the fractional integrals, Riemann-Liouville

and Caputo fractional derivatives on a finite interval J = [0;T ] of the real line and present
some of their properties in spaces of summable and continuous functions. More detailed see
for example [76, 95, 97, 99, 105].

1.2.1 Absolutely Continuous Functions
We consider finite collections of closed intervals Jk = [ak ;bk], included in a fixed interval

[0;T ], with k = 1,2, . . . ,n, 0≤ bk ≤ a j+1 < bk+1 ≤ T for 1≤ j ≤ n−1. We use the notation

J ([0;T ]) = {{J1, . . . ,Jn} | n ∈ N}

to represent the set of all such collections. A partition is an element P ∈J ([0;T ]) such that
[0;T ] =

⋃n
k=1 Jk. We denote by P([0;T ]) the set of all partitions. We’ll write J ,P when

the interval [0;T ] is clear from the context.

Definition 1.19. A function f : [0;T ]→R is said to be of bounded variation, f ∈ BV [0;T ] if

V T
0 = sup

P∈I ([0;T ])

n∑
k=1
| f (bk)− f (ak)|.

is finite. V a
0 ( f ) is called the total variation of f on [0;T ].

Clearly, the total variation remains the same if we replace J by P .

Definition 1.20. We say that the function f : [0;T ]→R is absolutely continuous, f ∈AC[0;T ]
is for every ε > 0 there exists δ > 0 such that, for every P∈J ([0;T ]) with

∑n
k=1(bk−ak)<

δ we have
∑n

k=1 | f (bk)− f (ak)|< ε .
Clearly, an absolutely continuous function on [0;T ] is uniformly continuous. Moreover,

a Lipschitz continuous function on [0;T ] is absolutely continuous. Let f and g be two abso-
lutely continuous functions on [0;T ]. Then f +g, f −g, and f g are absolutely continuous on
[0;T ]. If, in addition, there exists a constant C > 0 such that |g(t)| ≥C for all t ∈ [0;T ], then
f/g is absolutely continuous on [0;T ].

11



1.2. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

Proposition 1.21 ([79]). AC[0;T ]⊂C[0;T ]∩BV [0;T ]

Proposition 1.22 ([79]). If f ∈ AC[0;T ] then f ′ exists almost everywhere, and is integrable.

Theorem 1.23 ([79]). Let f ∈ AC[0;T ] and assume f ′(t) = 0 almost everywhere. Then f is
constant.

Theorem 1.24 ([79]). Let h ∈ L1[0;T ]. Consider

f (t) = f (0)+
∫ t

0
h(x)dx

with some constant f (0). Then f ∈ AC[0;T ] and f ′ = h almost everywhere.

Theorem 1.25 ([79]). Let f : [0;T ]→ R the following are equivalent :
(i) f ∈ AC[0;T ]
(ii) The function f is differentiable almost everywhere, f ′ ∈ L1[0;T ] and

f (t) = f (0)+
∫ t

0
f ′(x)dx

holds for all t ∈ [0;T ].

Definition 1.26. For n ∈ N∗ we denote by ACn[0;T ] the space of real-valued functions f (x)
which have continuous derivatives up to order n−1 on [0;T ] such that f (n−1) ∈ AC[0;T ] :

ACn[0;T ] =
{

f : [0;T ]→ R, f (k) ∈C[0;T ],k = 0 . . .n−1, f (n−1) ∈ AC[0;T ]
}

In particular, AC1[0;T ] = AC[0;T ].

A characterization of the functions of this space is given by the following lemma :

Lemma 1.27. [105, Lemma 2.4] f ∈ ACn[0;T ],n ∈ N∗, if and only if, it is represented in the
form

f (t) =
1

(n−1)!

∫ t

0
(t− x)n−1 f (n)(x)dx+

n−1∑
k=0

f (k)(0)
k!

tk

1.2.2 The Gamma Function
The definition and certain properties of the Gamma function are reviewed in this subsec-

tion.

Definition 1.28. The Gamma function is defined as a definite integral over the positive part
of the real axis,

Γ(α) =
∫ +∞

0
e−ttα−1 dt. (1.1)

For our purposes, we assume that the independent parametric variable, α , is real. Note that
singularities occur when α is zero or a negative integer.

Known exact values of the Gamma function are

Γ(
1
2
) = 2

∫ +∞

0
e−t2

dt =
√

π.

Γ(
3
2
) =

1
2
√

π, Γ(2) = 1.

Other exact values can be deduced using the properties of the Gamma function.

12



1.2. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

Proposition 1.29. Integrating by parts on the right-hand side of (1.1), we obtain the impor-
tant property

Γ(α +1) = αΓ(α).

Working recursively, we obtain

Γ(α +n−1) = α(α +1) · · ·(α +n−2)Γ(α).

for any integer, n. Consequently,

Γ(n+1) = 1 ·2 · · ·n = n!.

for any integer, n, where the exclamation mark denotes the factorial.
A refection property states that

Γ(1−α) =−αΓ(−α) =
1

Γ(α)

π

sin(πα)
.

for 0<α < 1. Replacing α with 2α and using the trigonometric identity sin(2α)= 2sinα cosα ,
we obtain

Γ(1−2α) =−2αΓ(−2α) =
1

2Γ(2α)

π

sin(πα)cos(πα)
.

pour 0 < α < 1
2 .

1.2.3 Riemann-Liouville Integrals
Definition 1.30. The Riemann-Liouville (RL) fractional integral Iα

0+ of order α ∈R+ is given
as

Iα

0+ f (t) =
1

Γ(α)

∫ t

0
(t− x)α−1 f (x)dx, t > 0,

where the operator Iα

0+ is defined on L1[0;T ]. Moreover, for α = 1, we set I1
0+ := Id, the

identity operator.

Remark 1.31. The notation Iα

0+ f (t) |t=0 means that the limit is taken at almost all points of
the right-sided neighborhood (0,ε)(ε > 0) of 0 as follows :

Iα

0+ f (t) |t=0= lim
t→0+

Iα

0+ f (t).

Generally, Iα

0+ f (t) |t=0 is not necessarily to be zero. For instance, let α ∈ (0;1), f (t) = t−α .
Then

Iα

0+t−α |t=0 = lim
t→0+

1
Γ(α)

∫ t

0
(t− s)α−1s−α ds = lim

t→0+
Γ(1−α) = Γ(1−α).

Lemma 1.32 ([76]). If α > 0,β > 0. Then

Iα

0+tβ =
Γ(β +1)

Γ(α +β +1)
tα+β .

13



1.2. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

The semigroup property of the fractional integration operators Iα

0+ is given by the follo-
wing result

Lemma 1.33 ([76]).
Iα

0+Iβ

0+ f = Iα+β

0+ f α > 0, β > 0. (1.2)

Equations (1.2) is satisfied in any point for f (t) ∈ C[0;T ] and in almost every point for
f (t) ∈ L1[0;T ]. They are true in any point even for f (t) ∈ Lp[0;T ] (1≤ p≤∞) if α +β > 1.

Lemma 1.34. Let α > 0, f ∈ L1[0;T ]. Then for all t ∈ [0;T ] we have

Iα+1
0+ f (t)≤ ‖Iα

0+ f‖L1.

Proof. Let f ∈ L1[0;T ], from Lemma 1.33, we have

Iα+1
0+ f (t) = I1

0+Iα

0+ f (t) =
∫ t

0
Iα

0+ f (s)ds≤
∫ T

0
|Iα

0+ f (s)|ds = ‖Iα

0+ f‖L1.

Lemma 1.35 ([76]). Let α > 0, the fractional integration operators Iα

0+ are bounded in
Lp[0;T ] (1≤ p≤ ∞) ;

‖Iα

0+ f‖Lp ≤ T α

Γ(α +1)
‖ f‖Lp.

1.2.4 The Riemann-Liouville Fractional Derivative
The Riemann-Liouville fractional derivative of order α of a suitable function, f (t), is

defined as

(Dα

0+ f )(t) =
1

Γ(n−α)

dn

dtn

∫ t

0

1
(t− x)1−n+α

f (x)dx (1.3)

where Γ is the Gamma function, 0≤ t is a specified lower integration limit,

n = [α]+1 > α. (1.4)

is the integral ceiling of the fractional order, α , and the square brackets indicate the integral
part. For example, if 0≤ α < 1, then n = 1 ; if 1≤ α < 2, then n = 2.

Defining w = t− x, we obtain

(Dα

0+ f )(t) =
1

Γ(n−α)

dn

dtn

∫ t

0

1
w1−n+α

f (t−w)dw

or
(Dα

0+ f )(t) =
1

Γ(n−α)

dn

dtn

∫ 0

−t

1
|v|1−n+α

f (t + v)dv

where v =−w = x− t, and we recall that 0≤ t.
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1.2. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

Lemma 1.36 ([76]). If α > 0,β > 0 . Then

Dα

0+tβ−1 =
Γ(β )

Γ(α−β )
tβ−α−1.

In particular, if β = 1 the Riemann-Liouville fractional derivatives of a constant are, in ge-
neral, not equal to zero.

The next result characterizes the conditions for the existence of the fractional derivatives
Dα

0+ in the space ACn[0;T ].

Lemma 1.37 ([76]). Let α > 0, and n = [α] + 1. If f (t) ∈ ACn[0;T ], then the fractional
derivatives Dα

0+ exist almost everywhere on [0;T ] and can be represented in the forms

Dα

0+ f (t) =
1

Γ(n−α)

∫ t

0

1
(t− x)1−n+α

f n(x)dx+
n−1∑
k=0

f (k)(0)
Γ(1+ k−α)

tk−α

The following assertion shows that the fractional differentiation is an operation inverse to
the fractional integration from the left.

Lemma 1.38 ([76]). If α > 0 and f (t) ∈ Lp[0;T ] (1≤ p≤ ∞), then the following equalities

Dα

0+(I
α

0+ f (t)) = f (t)

hold almost everywhere on [0;T ].

From Lemmas 1.37-1.38 we derive the following composition relations between fractio-
nal differentiation and fractional integration operators.

Lemma 1.39 ([76]). If α ≤ β > 0 and f ∈ Lp[0;T ] (1≤ p≤ ∞) then

Dβ

0+(I
α

0+ f (t)) = Iα−β

0+ f (t)

hold almost everywhere on [0;T ].

Lemma 1.40 ([76]). If α > 0 and n = [α]+1, then

[Dα

0+ f ](t) = 0 ⇐⇒ f (t) =
n∑

j=1
c jtα− j,

where c j ( j = 1, . . . ,n) are arbitrary constants.

The composition of the fractional integration operator Iα

0+ with the fractional differentia-
tion operator Dα

0+ is given by the following result.

Lemma 1.41 ([76]). Let α > 0, n = [α]+1, and f ∈C(0;T )∩L1(0;T ) ; then

Iα

0+Dα

0+ f (t) = f (t)+
n∑

j=1
c jtα− j,

where c j ( j = 1, . . . ,n) are arbitrary constants.
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1.3. BOCHNER INTEGRAL

1.2.5 Caputo Fractional Derivative
The Caputo fractional derivative is a variation of the Riemann-Liouville fractional deri-

vative, defined as

(cDα

0+ f )(t) =
1

Γ(n−α)

∫ t

0

1
(t− x)α+1−n f (n)(x)dx

where
n = [α]+1 si α 6∈ N; n = α si α ∈ N∗. (1.5)

Defining v = t− x, we obtain

(cDα

0+ f )(t) =
1

Γ(n−α)

∫ t

0

1
vα+1−n f (n)(t− v)dv

Lemma 1.42 ([76]). Let α > 0 and let n be given by (1.5). Also let η > 0. Then the following
relations hold :

cDα

0+tη−1 =
Γ(η)

Γ(η−α)
tη−α−1, (η > n),

and
cDα

0+tk = 0, (k = 0, . . . ,n−1).

In particular, if η = 1 the Caputo fractional derivatives of a constant are equal to zero.

The following assertion shows that the fractional differentiation is an operation inverse to
the fractional integration from the left.

Lemma 1.43 ([76]). Let α ≥ β ≥ 0, and f ∈ L1[0;T ]. Then cDα

0+Iβ

0+ f (t) = Iα−β

0+ f (t), for all
t ∈ [0;T ]

Lemma 1.44 ([76]). Let α > 0 and let n be given by (1.5). If f (t) ∈ ACn[0;T ] or f (t) ∈
Cn[0;T ], then

Iα

0+(
cDα

0+ f (t)) = f (t)−
n−1∑
k=0

f (k)(0)
k!

tk

1.3 Bochner Integral
In this section, we summarize some results about the integration of Banach space valued

functions of a single variable. In a rough sense, vector-valued integrals of integrable functions
have similar properties, often with similar proofs, to scalar-valued L1-integrals. Nevertheless,
the existence of different topologies (such as the weak and strong topologies) in the range
space of integrals that take values in an infinite-dimensional Banach space introduces signi-
ficant new issues that do not arise in the scalar-valued case.

Let J = [0;T ] such that (T > 0) be a finite interval on the real axis R. E will be a Banach
space with the norm ‖ · ‖E and dual space E∗.
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1.3. BOCHNER INTEGRAL

1.3.1 Measurability
Definition 1.45. A simple function f : J→ E is a function of the form

f =
n∑

i=1
ciχAi (1.6)

where A1, . . . ,An are Lebesgue mesurable subsets of J and c1, . . . ,cn ∈ E.
Here χA denotes the indicator function of the set A.

Definition 1.46. A function f : J → E is strongly measurable, or measurable for short, if
there exists a sequence of simple functions fn : J→ E such that limn→∞ fn(t) = f (t) strongly
in E (i.e. in norm) for t a.e. in J.

Clearly, if f is simple function then f is measurable.

Measurability is preserved under natural operations on functions.

(1) If f : J→ E is measurable then the real function ‖ f‖ : J→ R is measurable.

(2) If f : J→ E is measurable and ϕ : J→R is measurable, then ϕ f : J→ E is measurable.

(3) If { fn : J→ E} is a sequence of measurable functions and fn(t)→ f (t) strongly in E for
t pointwise a.e. in J, then f : J→ E is measurable.

Definition 1.47. A function f : J → E is called weakly measurable if for each x∗ ∈ E∗ the
real function x∗( f ) : J→ R is measurable.

For finite dimensional, or separable, Banach spaces these definitions of measurability and
weak measurability are coincide, but for non-separable spaces a weakly measurable function
need not be strongly measurable. The relationship between weak and strong measurability is
given by the following Pettis theorem (1938).

Theorem 1.48. [106, Pettis] A function f : J → E is measurable if and only if f is weakly
measurable and almost everywhere separable valued, i.e. there is a set N ⊂ J of measure zero
such that the set

{ f (t); t ∈ J\N} ⊂ E

is separable.

Proposition 1.49 ([106]). If E is a separable Banach space then f : J→ E is measurable if
and only if f is weakly measurable.

Remark 1.50. Since a continuous function is measurable, every almost separably valued,
weakly continuous function is strongly measurable.

1.3.2 Integral
In this subsection, we discuss the vector-valued extension of the Lebesgue integral, the

so-called Bochner integral. we will also need its ”weak” companion, the Pettis integral.
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1.3. BOCHNER INTEGRAL

The Bochner integral

Definition 1.51. Let

f =
n∑

i=1
ciχAi

be the simple function in (1.6). The integral of f is defined by

∫
J

f dt =
n∑

i=1
|Ai|ci ∈ E (1.7)

where |Ai| denotes the Lebesgue measure of Ai.
It is routine to check that this definition does not depend on the particular representation

of f and that ∥∥∥∥∫
J

f dt
∥∥∥∥≤ ∫

J
‖ f‖dt

If f and g are simple functions then∫
J

f +gdt =
∫

J
f dt +

∫
J

gdt.

Moreover, if A ⊂ J is measurable, it is easy to see that the function f χA is again simple and
we set ∫

A
f dt =

∫
J

f χA dt.

Definition 1.52. A strongly measurable function f : J → E is Bochner integrable, or inte-
grable for short, if there is a sequence of simple functions such that fn(t)→ f (t) pointwise
a.e. in J and

lim
n→∞

∫
J
‖ fn− f‖dt = 0.

The integral of f is defined by ∫
J

f dt = lim
n→∞

∫
J

fn dt.

where the limit exists strongly in E.
The value of the Bochner integral of f is independent of the sequence { fn} of approxi-

mating simple functions, and ∥∥∥∥∫
J

f dt
∥∥∥∥≤ ∫

J
‖ f‖dt

If f is Bochner integrable and f = g almost everywhere, then g is Bochner integrable and
the Bochner integrals of f and g agree.

Moreover, if L : E → F is a bounded linear operator between Banach spaces E,F and
f : J→ E is integrable, then L f : J→ F is integrable and

L
Å∫

J
f dt
ã
≤
∫

J
L f dt (1.8)

More generally, this equality holds whenever L : D(L)⊂ E → F is a closed linear operator
and f : J→ D(L), in which case

∫
J f dt ∈ D(L).

18



1.3. BOCHNER INTEGRAL

Remark 1.53. For the case E =R, i.e. for f : J→R, the definition of Bochner integral gives
an alternative approach to Lebesgue integral. This means that f : J→R is Bochner integrable
in the sense of if and only if f is Lebesgue integrable and the two integrals of f have the same
value.

The following result, due to Bochner (1933), characterizes integrable functions as ones
with integrable norm.

Theorem 1.54 ([69]). A function f : J→ E is Bochner integrable if and only if it is strongly
measurable and ∫

J
‖ f‖dt <+∞.

Thus, in order to verify that a measurable function f is Bochner integrable one only
has to check that the real valued function ‖ f‖ : J→ R, which is necessarily measurable, is
integrable.

The dominated convergence theorem holds for Bochner integrals. The proof is the same
as for the scalar-valued case, and we omit it.

Theorem 1.55 ([69]). Suppose that fn : J→ E is Bochner integrable for each n ∈ N,

fn(t)→ f (t) asn→ ∞ strongly inE for t a.e. in J

and there is an integrable function g : J→ R such that

‖ fn(t)‖ ≤ g(t) for t a.e. in J and every n ∈ N.

Then f : J→ E is Bochner integrable and∫
J

fn dt→
∫

J
f dt,

∫
J
‖ fn− f‖dt→ 0 as n→ ∞.

The definition and properties of L1-spaces of E-valued functions are analogous to the case of
real-valued functions.

Definition 1.56. For 1≤ p < ∞ the space Lp(J;E) consists of all strongly measurable func-
tions f : J→ E such that ∫

J
‖ f‖p dt < ∞

equipped with the norm

‖ f‖Lp(J;E) =
ï∫

J
‖ f‖p dt

ò 1
p
.

The space L∞(J;E) consists of all strongly measurable functions f : J→ E such that

‖ f‖L∞(J;E) = sup
t∈J
‖ f (t)‖,

where sup denotes the essential supremum.
Note that the elements of L1(J;E) are precisely the (equivalence classes of) Bochner

integrable functions. For 1≤ p≤ ∞ we write

Lp(J) = Lp(J;E)

Theorem 1.57 ([69]). If E is a Banach space and 1≤ p≤ ∞, then Lp(J) is a Banach space.
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The Pettis integral

Although the theory of Bochner integration is very satisfactory, the conditions for Boch-
ner integrability are sometimes quite restrictive. In this subsection, we briefly sketch a more
general integral, the Pettis integral, which can be thought of as the weak analogue of the
Bochner integral.

Suppose that f : J→ E is a function with the property that x∗( f ) belongs to L1(J) for all
x∗ ∈ E∗. Such a function induces a linear mapping L f : E∗→ L1(J) by putting

L f (x∗) = x∗( f ), x∗ ∈ E∗.

We claim that L f is a closed operator. Suppose that limn→∞ x∗n = x∗ in E∗ and limn→∞ L f x∗n = g
in L1(J). By passing to a subsequence, we may assume that limn→∞ L f x∗n = g almost everyw-
here on J. On the other hand, limn→∞ L f x∗n = limn→∞ x∗n( f ) = x∗( f ) pointwise on J. Therefore
g = x∗( f ) in L1(J) and the claim is proved. By the closed graph theorem, L f is bounded.

Let L∗f : (L1(J))∗ = L∞(J)→ E∗∗ be the adjoint of the operator L f defined by

L∗f (g)(x
∗) =

∫
J

g ·L f (x∗)dt =
∫

J
g · x∗( f )dt ∈ R, g ∈ L∞(J).

L∗f (g) is a linear functional on E∗ for any g ∈ L∞(J) because∫
J

g · (ax∗1 +bx∗2)( f )dt = a
∫

J
g · x∗1( f )dt +b

∫
J

g · x∗2( f )dt

and it is also bounded because the boundedness of the operator L f gives

|L∗f (g)(x∗)|=
∣∣∣∣∫

J
g ·L f (x∗)dt

∣∣∣∣≤ ‖g‖L∞ · ‖L f ‖ · ‖x∗‖E∗.

Hence L∗f (g) ∈ E∗∗ for every g ∈ L∞(J).
Assuming g = χA where A⊂ J is measurable, we have

L∗f (χA)(x∗) =
∫

J
χA · x∗( f )dt =

∫
A

x∗( f )dt.

Then L∗f (χA) ∈ E∗∗ for every mesurable A⊂ J.
For each measurable set A⊂ J we now define

τ(E,E∗)−
∫

A
f dt = L∗f (χA).

We call τ(E,E∗)−
∫

A f dt the τ(E,E∗)-integral of f over A. It is the unique element in E∗∗

which satisfies
L∗f (χA)(x∗) =

∫
A

x∗( f )dt, x∗ ∈ E∗∗.

Definition 1.58 ([69]). A weakly integrable function f : J→ E is called Pettis integrable if
the adjoint of the operator L f : x∗ 7→ x∗( f ) maps L∞(J) into E.

We denote by P(J,E) the set of all Pettis integrable functions f : J→ E.
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Note that if f is Pettis integrable, then for every mesurable set A ⊂ J, there exists an
element xA ∈ E such that for all x∗ ∈ E∗ we have

x∗(xA) =
∫

A
x∗( f ) (1.9)

The requirement (1.9) defines the element xA ∈ X uniquely ; in fact, xA = L∗f (χA). We call xA
the Pettis integral of f over A, notation

xA = (P)−
∫

A
f dt.

Clearly, every Bochner integrable function is Pettis integrable and the integrals agree on every
measurable set A ∈ J.

The following result gives a sufficient condition for the Pettis integrability of a strongly
measurable function.

Theorem 1.59. [69,Pettis] Let 1 < p≤∞ and 1≤ q < ∞ satisfy 1
p +

1
q = 1. Let f : J→ E be a

strongly measurable function satisfying x∗( f ) ∈ Lp(J) for all x∗ ∈ E∗. Then for all ϕ ∈ Lq(J)
the function

s 7→ ϕ(s) f (s)

is Pettis integrable.

Corollaire 1.3.1 ([69]). Let f : J→ E be a strongly measurable function satisfying x∗( f ) ∈
Lp(J), p > 1 for all x∗ ∈ E∗ then f is Pettis integrable.

For p = 1 and q = ∞, Theorem 1.59 and Corollary 1.3.1 break down :

Proposition 1.60 ([98]). If f (·) is Pettis integrable and h(·) is a measurable and essentially
bounded real-valued function, then f (·)h(·) is Pettis integrable.

Let us now recall the definitions of the fractional Pettis integral.

Definition 1.61 ([76]). Let h : J→ E be a function. The fractional Pettis integral of the func-
tion h of order α > 0 is defined by

Iα

0+h(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds,

where the sign
∫

denotes the Pettis integral.

1.4 Measure of Noncompactness in Banach Spaces
Measures of noncompactness are very useful tools in the theory of operator equations

in Banach spaces. They are very often used in the theory of functional equations, inclu-
ding ordinary differential equations, equations with partial derivatives, integral and integro-
differential equations, optimal control theory, etc. In particular, the fixed point theorems de-
rived from them have many applications. Most facts provided here come from the books
[16, 19, 26, 27, 29].
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1.4.1 Kuratowski and Hausdorff MNCs in Banach Spaces
In this subsection, we review the concept of Kuratowski and Hausdorff measure of non-

compactness in Banach spaces, also we consider specific properties and examples in some
special spaces.

Assume that (E,‖ · ‖) is a real Banach space with zero element 0. By B(x,r), we denote
the closed ball in E centred at x with the radius r. By Br, we denote the ball B(0,r). Moreover,
in place of B1, we will write BE (the unit ball in the space E). If Ω is nonempty subset of E,
then Ω and CoΩ denote the closure and the convex hull of Ω, respectively.

Definition 1.62 ([16]). The Kuratowski measure of noncompactness α(Ω) of the set Ω, is
the infimum of the numbers d > 0, such that Ω admits a finite covering by sets of diameter
smaller than d.

Definition 1.63 ([16]). The Hausdorff measure of noncompactness χ(Ω) of the set Ω, is the
infimum of the numbers ε > 0, such that Ω has a finite ε-net in E.

Recall that a set S⊂ E is called an ε-net of Ω if Ω⊂ S+ εBE = {s+ εb : s ∈ S,b ∈ BE}.

The next properties are common to α and χ , and so we are going to use φ to denote either
of them.

Proposition 1.64 ([16]). Let φ denote α or χ . Then the following properties are satisfied in
any Banach space E :

(a) Regularity : φ(Ω) = 0 if and only if Ω is compact.

(b) Semi-additivity : φ(Ω1∪Ω2) = max{φ(Ω1),φ(Ω2)}.
(c) Monotonicity : Ω1 ⊂Ω2 implies φ(Ω1)≤ φ(Ω2).

(d) Non-singularity : If Ω is a finite set, then φ(Ω) = 0.

(e) Semi-homogeneity : φ(λΩ) = |λ |φ(Ω) for any number λ .

( f ) Algebraic semi-additivity : φ(Ω1 +Ω2)≤ φ(Ω1)+φ(Ω2).

(g) Invariance under translations : φ(x+Ω) = φ(Ω), for any x ∈ E.

(h) Lipschitzianity : |φ(Ω1)−φ(Ω2)| ≤ Lφ ρ(Ω1,Ω2), where Lχ = 1,Lα = 2 and ρ denotes
the Hausdorff metric. (ρ(Ω1,Ω2) = inf{ε > 0 : Ω2 ⊂Ω1 + εBE ,Ω1 ⊂Ω2 + εBE}).

(i) Continuity : for any Ω⊂ E and for all ε > 0, there is δ > 0 such that |φ(Ω)−φ(Ω1)|< ε

for all Ω1 satisfying ρ(Ω,Ω1)< δ .

Some less trivial properties of these measures of noncompactness are obtained in the next
theorems.

Theorem 1.65 ([16]). The Kuratowski and Hausdorff MNCs are invariant under passage to
the closure and to the the convex hull : φ(Ω) = φ(Ω) = φ(CoΩ).

Theorem 1.66 ([16]). Let BE be the unit ball in a Banach space E. Then, α(BE) = χ(BE) = 0
if E is finite dimensional, and α(BE) = 2,χ(BE) = 1 otherwise.

Since α and χ are invariant under passage to the convex hull, we obtain the following
corollary :

22



1.4. MEASURE OF NONCOMPACTNESS IN BANACH SPACES

Corollaire 1.4.1. Let SE be the unit sphere in a Banach space E. Then, α(SE) = χ(SE) = 0
if E is finite dimensional, and α(SE) = 2,χ(SE) = 1 otherwise.

Theorem 1.67 ([16]). The Kuratowski and Hausdorff MNCs are related by the inequalities

χ(Ω)≤ α(Ω)≤ 2χ(Ω).

In the class of all infinite dimensional Banach spaces, these inequalities are the best possible.

Remark 1.68. Though, in general, α and χ are different MNCs, in some Banach spaces, we
can find a direct relation between them.

Now, we mention the Hausdorff MNC in special spaces `p, c0,C[0;T ], Lp[0;T ]. For more
details see [16].

The Hausdorff MNC in the Spaces `p(1≤ p < ∞) and c0

In the spaces `p(1≤ p < ∞) and c0 of sequences summable in the p-th power and respec-
tively sequences converging to zero, the MNC χ can be computed by means of the formula,

χ(Q) = lim
n→∞

sup
x∈Q
‖(Id−Pn)x‖. (1.10)

where Pn is the projection onto the linear span of the first n vectors in the standard basis.

The Hausdorff MNC in the Spaces C[0;T ]

In the space C[0;T ] of continuous real-valued functions on the segment [0;T ], the value
of the set-function χ on a bounded set Ω can be computed by means of the formula,

χ(Ω) =
1
2

lim
δ→0

®
sup
x∈Ω

ñ
max

0≤r≤δ

‖x− xr‖
ô´

, (1.11)

where xr denotes the r-translate of the function x,

xr(t) =
®

x(t + r) , 0≤ t ≤ T − r,
x(T ) , T − r ≤ t ≤ T.

The Hausdorff MNC in the Spaces Lp[0;T ]

In the space Lp[0;T ] of equivalence classes x of measurable functions x : [0;T ]→R with

integrable p-th power, endowed with the norm ‖x‖=
Ä∫ T

0 |x(s)|p ds
ä 1

p . Then

1
2

µ(Ω)≤ χ(Ω)≤ µ(Ω). (1.12)

The function µ appearing above is defined by the formula,

µ(Ω) = lim
δ→0

sup
x∈Ω

max
0≤r≤δ

‖x− xr‖,

where xr denotes the r-translate of the function x, or, alternatively, the Steklov function

xr(t) =
1
2r

∫ t+r

t−r
x(s)ds.
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1.4.2 Axiomatic Definition of MNC in Banach Spaces
We will mention here the axiomatic approach for measure of noncompactness, developed

by Banas̀ and Goebel [27] in 1980.
Let ME denotes the family of all nonempty bounded subsets of E and NE indicates the

family of all relatively compact sets.

Definition 1.69. A mapping µ : ME → R+ is said to be a measure of noncompactness if it
satisfies the following conditions :

(1) The family Ker µ = {X ∈ME ; µ(X) = 0} is non-empty and Ker µ ⊂NE .

(2) X ⊂ Y ⇒ µ(X)≤ µ(Y ).

(3) µ(CoX) = µ(X).

(4) µ(X) = µ(X).

(5) µ(λX +(1−λ )Y )≤ λ µ(X)+(1−λ )µ(Y ) for λ ∈ [0;1].

(6) If (Xn) is a sequence of closed subsets of ME such that Xn+1⊂Xn (n≥ 1) and limn→∞ µ(Xn)=
0 then

⋂∞
n=1 Xn 6= /0.

Let us pay attention to the fact that, one of the most important properties of the measure
of noncompactness is a consequence of axiom (6). Indeed, since µ(X∞) ≤ µ(Xn) for any
n = 1,2, . . . , we get that µ(X∞) = 0. This means that the set X∞, belongs to the kernel Ker µ

of the measure µ .

Further on, we indicate a few important classes of measures of noncompactness [27].

Definition 1.70. Let µ be a measure of noncompactness in the Banach space E. We will call
the measure µ homogeneous if

(7) µ(λX) = |λ |µ(X)

for λ ∈ R. If the measure µ satisfies the condition

(8) µ(X +Y )≤ µ(X)+µ(Y )

it is called subadditive. The measure µ being both homogeneous and subadditive is said to be
sublinear.

Definition 1.71. We say that a measure of noncompactness µ has the maximum property if

(9) µ(X ∪Y ) = max{µ(X),µ(Y )}.

The most important class of measures of noncompactness is described in the below given
definition.

Definition 1.72. A sublinear measure of noncompactness µ which has the maximum property
and is such that Ker µ =NE is called the regular measure.
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Measure of Noncompactness in C[0;T ]

Given Q ∈MC[0;T ] and δ > 0, let

ω(Q,δ ) = sup{w(x,δ ) : x ∈ Q}

where
ω(x,δ ) = sup{|x(t)− x(s)| : t,s ∈ [0;T ], |t− s| ≤ δ}.

The quantity ω(Q,δ ) denotes the so-called modulus of continuity of the set Q.
We have the following result, which is due to Banas̀ and Goebel [27].

Theorem 1.73. Let ω0 : MC[0;T ]→ R+ be the mapping defined by

ω0(Q) = lim
δ→0

ω(Q,δ ). (1.13)

Then ω0 is a measure of noncompactness in C[0;T ] in the sense of Definition 1.69. Moreover,
we have

ω0(Q) = 2χ(Q).

Definition 1.74. Let E be a Banach algebra. A measure of noncompactness µ in E said to
satisfy condition (m) if it satisfies the following condition :

µ(XY )≤ ‖X‖µ(Y )+‖Y‖µ(X),

for any X ,Y ∈ME .
This definition appears in [28].

As is known the family of all real valued and continuous functions defined on interval
[0;T ] is a Banach space with the standard norm

‖x‖= sup{|x(t)|, t ∈ [0;T ]}.

Notice that (C[0;T ],‖·‖) is a Banach algebra, where the multiplication is defined as the usual
product of real functions.

Lemma 1.75. The measure of noncompactness ω0 on C[0;T ] satisfies condition (m).

Proof. Let X ,Y be a fixed subset of MC[0;T ], ε > 0 and t,s ∈ [0;T ] with |t− s| ≤ ε . Then,
for x ∈ X and y ∈ Y , we have

|x(t)y(t)− x(s)y(s)| ≤ |x(t)y(t)− x(t)y(s)|+ |x(t)y(s)− x(s)y(s)|
≤ |x(t)||y(t)− y(s)|+ |y(s)||x(t)− x(s)|
≤ ‖x‖ω(y,ε)+‖y‖ω(x,ε).

Thus,
ω(xy,ε)≤ ‖x‖ω(y,ε)+‖y‖ω(x,ε),

so,
ω(XY,ε)≤ ‖X‖ω(Y,ε)+‖Y‖ω(X ,ε).

Therefore, we get

ω0(XY ) = lim
ε→0

ω(XY,ε)≤ ‖X‖ω0(Y )+‖Y‖ω0(X).

This completes the proof.
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1.4.3 The Axiomatic Measure of Weak Noncompactness
The notion of a measure of weak noncompactness was introduced by De Blasi [26] in

1977 and it is the map β : ME → R+, defined by

β (Ω) = inf{ε > 0 : Ω has a weakly compact ε−net in E},

Now, we are going to recall some basic properties of β (·).

Properties 1.76 ([26]). Let X ,Y be to elements of ME . The following properties hold :
(1) X ⊂ Y , then β (X)≤ β (Y ).
(2) β (X) = 0 if and only if Xw is weakly compact.
(3) β (Xw

) = β (X), where Xw denotes the weak closure of X .
(4) β (X ∪Y ) = max{β (X),β (Y )}.
(5) β (X +Y )≤ β (X)+β (Y ).
(6) β (λX) = |λ |β (X), for λ ∈ R.
(7) β (CoX) = β (X).

Theorem 1.77 ([26]). The measure β is regular.

Theorem 1.78 ([26]). Let BE be the unit ball in a Banach space E. Then β (BE) = 0 if E is
reflexive and β (BE) = 1 otherwise.

Next, we present a theorem of Ambrosetti type.

Theorem 1.79 ([62]). Let J = [0;T ] and H ⊂ C(J,E) be a bounded and equicontinuous
subset. Then the function t→ β (H(t)) is continuous on J, and

βC(H) = max
t∈J

β (H(t)), β

Å∫
J

u(s)ds
ã
≤
∫

J
β (H(s))ds,

where H(s) = {u(s) : u ∈ H},s ∈ J and βC is the De Blasi measure of weak noncompactness
defined on the bounded sets of C(J,E).

1.4.4 Some Fixed Point Theorems Involving a MNC
The main application of measures of noncompactness in the fixed point theory is contai-

ned in the following theorem, which is called the fixed-point theorem of Darbo type, as ex-
tension of Schauder’s theorem. In this subsection, first we recall Schauder’s and Darbo’s
fixed-point theorem, and we review some important generalizations of Darbo’s theorem.

Theorem 1.80. (Schauder [5]) Let Ω be a nonempty, bounded, closed and convex subset of
a Banach space E. Then each continuous and compact map T : Ω→Ω has at least one fixed
point in the set Ω.

The mapping T : Ω→ Ω is said to be a µ-contraction if there exists a positive constant
k < 1 such that

µ(TW )≤ kµ(W ) (1.14)

for any bounded closed subset W ⊂Ω.
Darbo’s fixed point theorem is a very important generalization of Schauder’s fixed point

theorem and Banach’s fixed point theorem.
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Theorem 1.81 ([27, 48]). Let Ω be a nonempty, bounded, closed and convex subset of a
Banach space X and let T : Ω→Ω be a continuous operator. If T is a µ-contraction, then T
has at least one fixed point.

A generalization of Theorem 1.81 for the case that µ is a regular measure of noncompact-
ness was proved by Sadovskii in [117] and we present it in the following theorem.

Theorem 1.82 ([117]). Suppose that Ω is a nonempty, bounded, closed, and convex subset of
E and T : Ω→Ω a continuous mapping. If for any nonempty subset W of Ω with µ(W )> 0
we have

µ(TW )≤ µ(W )

where µ is a regular measure of noncompactness in E, then T has at least one fixed point in
Ω.

Recently, Aghajani et al. [9] extended the Darbo’s fixed point theorem using control func-
tions and presented the following result.

Theorem 1.83 ([9]). Let Ω be a nonempty, bounded, closed and convex subset of a Banach
space E and let T : Ω→Ω be a continuous operator satisfying

µ(TW )≤ ϕ(µ(W )), (1.15)

for any non-empty subset W of Ω, where µ is a measure of noncompactness in E and
ϕ : R+→R+ is a nondecreasing function such that limn→∞ ϕn(t) = 0 for each t ∈R+, where
ϕn(t) denotes the n-iteration of ϕ . Then T has at least one fixed point.

In [9] the authors proved the following Lemma which will be useful in our considerations.

Lemma 1.84 ([9]). Let ϕ : R+→R+ be a nondecreasing and upper semicontinuous function.
Then the following conditions are equivalent :

(i) limn→0 ϕn(t) = 0, for any t ≥ 0,

(ii) ϕ(t)< t, for any t > 0.

By commodity, we will denote by A the class of functions given by

A = {ϕ : R+→ R+ : ϕ is nondecreasing and lim
n→∞

ϕ
n(t) = 0 for any t ∈ R+},

where ϕn(t) denotes the n-iteration of ϕ .

Remark 1.85. It is easy to see that if ϕ ∈A then ϕ(t)< t, for any t > 0. Indeed, in contrary
case, we can find t0 > 0 and t0 ≤ ϕ(t0). By using the nondecreasing character of ϕ , we have

0 < t0 ≤ ϕ(t0)≤ ϕ
2(t0)≤ ·· · ≤ ϕ

2(t0)≤ . . . ,

and, consequently, 0< t0≤ limn→∞ ϕn(t0) and this contradicts the fact that ϕ ∈A . Moreover,
this proves that if ϕ ∈A then ϕ is continuous at t0 = 0.

Remark 1.86. Taking into account Remark 1.85, the contractive condition appearing in
Theorem 1.83, i.e.,µ(TW ) ≤ ϕ(µ(W )) can be rewritten as µ(TW ) < µ(W ) for any W ∈
ME \Ker µ and, therefore, Theorem 1.83 is a immediate consequence of Sadovskii theorem
1.82.
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Examples of functions belonging to A are ϕ(t) = ln(1+ t),ϕ(t) = arctan t and ϕ(t) =
t

1+t .
The following generalization of Darbo’s fixed point theorem appears in [74] and it is the

version in the context of measures of noncompactness of a recent result about fixed point
theorem which appears in [73].

Let Θ be the class of functions θ : (0;∞)→ (1;∞) satisfying the following condition : For
every sequence (tn)⊂ (0;∞), limn→∞ θ(tn) = 1 if and only if limn→∞ tn = 0.

Examples of functions belonging to the class of Θ are θ(t) = e
√

t ,θ(t) = 2− 2
π

arctan
Ä

1
tα

ä
with 0 < α < 1,θ(t) = (1+ t2)β with β > 0 and θ(t) = t +1.

Theorem 1.87 ([74]). Let Ω be a nonempty, bounded, closed and convex subset of a Banach
space E and let T : Ω→ Ω be a continuous mapping. Suppose that there exist θ ∈ Θ and
k ∈ [0;1) such that, for any nonempty subset W of Ω with µ(TW )> 0,

θ(µ(TW ))≤ [θ(µ(W ))]k,

where µ is a measure of noncompactness in E. Then T has a fixed point in Ω.

The following fixed point theorem is a variant of the Darbo-Mönch fixed point theorem
given by O’Regan [101] in 1998, which was motived by some ideas used in [18].

Theorem 1.88 ([101]). Let D be a closed convex and equicontinuous subset of a Banach
space E such that 0 ∈ D. Assume that N : D→ D is weakly sequentially continuous. If the
implication

V = Co({0}∪N(V ))⇒V is relatively weakly compact, (1.16)

holds for every subset V ⊂ D, then N has a fixed point.

1.5 Coincidence Degree Theory
In the 1970s, Mawhin systematically studied a class of mappings of the form L+N, where

L is a Fredholm mapping of index zero and N is a nonlinear mapping, which he called a L-
compact mapping.

In this section, we introduce Mawhin’s degree theory for L-compact mappings and various
properties of this degree.

1.5.1 Fredholm and L-Compact Mappings
Definition 1.89. Let E and F be normed spaces. A linear mapping L : domL ⊂ E → F is
called a Fredholm mapping if

(1) KerL has finite dimension ;

(2) ImL is closed and has finite codimension.

Proposition 1.90 ([102]). Let E be a Banach space, T : E→E be a linear bounded Fredholm
operator and K : E→ E be a linear continuous compact mapping. Then T +K is a Fredholm
mapping.
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Recall that the codimension of ImL is the dimension of CokerL = F/ ImL. If L is a
Fredholm mapping, then its index is defined by

IndL = dimKerL− codimImL.

Now, assume that L is a Fredholm mapping. Then, there exist two linear continuous pro-
jections P : E→ E and Q : F → F such that such that

ImP = KerL, KerQ = ImL.

Also, we have
E = KerL⊕KerP, F = ImL⊕ ImQ

as the topological direct sums.
Obviously, the restriction of Lp of L to domL∩KerP is one to one and onto ImL and so

its inverse KP : ImL→ domL∩KerP is defined. We denote by KP,Q : F→ domL∩KerP the
generalized inverse of L defined by

KP,Q = KP(Id−Q).

Let L : E → F be a Fredholm operator of index zero. Then, there exists a bijection
J : KerL→ ImQ (the existence of J is ensured by the fact that dimKerL = dimImQ = n). It
is easy to prove that L+ JP : domL→ F is a bijection and

(L+ JP)−1 = J−1Q+KP,Q.

Notice that JP : E→ F is linear continuous operator of finite rank (dimIm JP = dimImQ <
∞. Denote by F(L) the set of all continuous mapping A : E → F such that ImA has finite
dimension and L+A : domL→ F is an bijection. Since JP ∈ F(L), then F(L) 6= /0. Assume
that Λ ⊂ E and N : Λ→ F a mapping (generally nonlinear operators). Then, for each A ∈
F(L), we have

Lx = Nx, x ∈ domL∩Λ

is equivalent to the equation
(L+A)x = (N +A)x,

leading to the fixed point problem

x = (L+A)−1(N +A)x, x ∈ Λ,

because (L+A)−1(N +A)x ∈ domL for all x ∈ Λ.
In particular, for A = JP, the equation Lx = Nx, x ∈ domL∩Λ is equivalent to the fixed

point problem
x = (P+ J−1QN +KP,QN)x, x ∈ Λ.

Let Λ be a metrique space and N : Λ→ N be a mapping.

Lemma 1.91 ([91]). If there exists A ∈ F(L) such that (L+A)−1N is compact on Λ, then for
all B ∈ F(L), (L+B)−1N is also compact on Λ.
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Proof. Let B ∈ F(L), then

(L+B)−1N = (L+B)−1(L+A)(L+A)−1N

= (L+B)−1(L+B+A−B)(L+A)−1N

= (Id +(L+B)−1(A−B))(L+A)−1N

= (L+A)−1N +(L+B)−1(A−B)(L+A)−1N.

As A−B is continuous with finite rank and (L+B)−1 is bijective, therefore (L+B)−1(A−B)
is a linear continuous mapping of finite rank, hence compact. On the other hand, we have by
hypothesis (L+A)−1N is compact then so is (L+B)−1(A−B)(L+A)−1N.

Definition 1.92. We say that N : Λ→ F is L-compact on Λ if there exists A ∈ F(L) such that
(L+A)−1N : Λ→ E is compact on Λ.

This definition is justied by Lemma 1.91.

Definition 1.93. For the operator N : Λ→ F to be L-compact on Λ, it is necessary and suffi-
cient that the operator

M = P+ J−1QN +KP,QN,

is compact on Λ, in this case L+N is called L-compact perturbation of the Fredholm operator
L.

For E = F and L = Id, this concept reduces to the classical one of compact mapping.
It is easy to verify that N : Λ→ F is L -compact on Λ if and only if QN : Λ→ F is

continuous, QN(Λ) is bounded and KP,Q N = Kp(Id−Q)N : Λ→ E is compact.
If L is invertible, it is sufficient to take 0 = A ∈ F(L) and consequently the L-compactness

of N on is reduced to the compactness of L−1N on Λ.

Proposition 1.94 ([91]). (1) If the operator N : Λ → F is L-compact on Λ, then N is L-
compact on every subset Ω of Λ.

(2) The sum of two L-compact operators on the same set is as well L-compact on Λ.

Definition 1.95. If N : Λ→ F is L-compact on each bounded subset B of E, we shall say that
N is L-completely continuous on E.

Proposition 1.96 ([91]). If the linear operator A : E → F is L-completely continuous on E
with Ker(L+A)= {0}, then the operator L+A is bijective, and for any operator N : Λ→F L-
compact on Λ, the operator (L+A)−1N : Λ→ E is compact on Λ.

Proof. For B ∈ F(L) we have

L+A = (L+B)
Ä
Id +(L+B)−1(A−B)

ä
,

as L+B is bijective, then

Ker(Id +(L+B)−1(A−B)) = Ker(L+A) = {0},
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Moreover, (L+B)−1(A−B) is completely continuous on E ; because A−B is L-completely
continuous on E. Therefore, Id +(L+B)−1(A−B) is a completely continuous linear pertur-
bation of identity and one-to-one, then Id +(L+B)−1(A−B) is a linear homeomorphism of
E onto E. As a consequence, (L+A) : domL→ F is a bijection. Suppose now that N : Λ→ F
is L-compact on Λ ; then

(L+B)−1N = (L+B)−1(L+A)(L+A)−1N

= (L+B)−1(L+B+A−B)(L+A)−1N

= Id +(L+B)−1(A−B)(L+A)−1N.

Since (L+B)−1(A−B) is bijective and (L+B)−1N is compact on Λ , then (L+A)−1N =
Id +(L+B)−1(A−B)−1(L+B)−1N is compact on Λ.

1.5.2 Degree Theory for L-Compact Mappings
Let E,F be two real normed vector space and L : domL ⊂ E → F a Fredholm operator

of index 0 ; denoted by CL the set of pairs (L+N,Ω), where Ω is an open bounded subset
in E with N : Ω→ F is L-compact on which satisfies the condition (L+N)(x) 6= 0, for all
x ∈ domL∩∂Ω.

A mapping DL : CL→ Z will be called a degree with respect to L if it is not identically
zero and satisfies the following axioms.
(a) Additivity-excision property : If (L+N,Ω) ∈CL ; and Ω1,Ω2 are two disjoint open sub-

sets in Ω such that

(L+N)x 6= 0, for all x ∈ domL∩ (Ω\Ω1∪Ω2),

then (L+N;Ω1) ∈CL, (L+N,Ω2) ∈CL and

DL(L+N,Ω) = DL(L+N,Ω1)+DL(L+N,Ω2).

(b) Homotopy invariance axiom : Let H : (domL× [0;1])∩Γ→ F be the operator defined
by

H(x,λ ) = Lx+N(x,λ ),

where Γ is an opan bunded in E× [0;1], and N : Γ→ F is L-Compact on Γ. Assume that

H(x,λ ) 6= 0, for all (x,λ ) ∈ domL∩ (∂Γ)λ × [0;1],

where (∂Γ)λ = {x∈E : (x,λ )∈ ∂Γ}, then for each λ ∈ [0;1] we have (H(·,λ ),Γλ )∈CL
and DL(H(·,λ ),Γλ ) is constant on [0;1], where Γλ denotes the set

Γλ = {x ∈ E : (x,λ ) ∈ Γ}.

From these axioms, we can immediately deduce the following properties :
(1) Excision property : Suppose that (L+N,Ω) ∈CL and Ω1 ⊂ Ω an open subset such that

(L+N)(x) 6= 0 ; for all x ∈ domL∩ (Ω\Ω1), then

(L+N,Ω1) ∈CL and DL(L+N,Ω) = (L+N,Ω1).
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(2) Existence property : If DL(L+N,Ω) 6= 0 ; then the equation Lx+Nx = 0 has at least one
solution in Ω.

(3) Invariance on the boundary : If (L +N1,Ω) and (L +N2,Ω) belong to CL ; such that
N1x = N2x for all x ∈ D(L)∩∂Ω, then DL(L+N1,Ω) = DL(L+N2;Ω).

(4) Normalization property : If (L+N,Ω) ∈CL, where L+N = A|
Ω

with A is a linear one-
to-one mapping from domA into F ; then

|DL(L+N−b,Ω)|=
®

1 if b ∈ (L+N)(domL∩Ω),
0 if b 6∈ (L+N)(domL∩Ω).

For further details, we refer to [92] and [91].

Brouwer degree

Assume that dimE = dimF < ∞, L = 0 and N is continuous on Ω such that Nx 6= 0 for
all x ∈ ∂Ω. As N is a continuous mapping of finite rank, then N = 0+N ∈C0. In this case D0
is reduced to the Brouwer degree and is usually denoted by

D0(N,Ω) = degB(N,Ω,0).

Proposition 1.97. Let E,F,G be three real normed vector space such that dimE = dimF =
dimG < ∞, N : Ω⊂ E→ F, (N,Ω) ∈C0 and A : F → G is a bijection, then

D0(AN,Ω) = sign(detA)D0(N,Ω).

Leray-Schauder degree

If E = F is a real Banach space, L = Id and N is compact (hence Id-compact) such that
for all x ∈ ∂Ω, x+Nx 6= 0. Then Id+N ∈CId and DId is the same so-called Leray-Schauder
degree denoted by

DId(Id +N,Ω) = degLS(Id +N,Ω,0).

Let δ = infx∈∂Ω ‖(Id +N)x‖ > 0, N is continuous compact mapping. Then, for any ε > 0,
there exist a finite dimensional space Fε and a continuous mapping Nε : Ω→ Fε such that
‖Nεx−Nx‖< ε for all x ∈Ω. If 0 < ε < δ

2 then

inf
x∈∂Ω

‖(Id +Nε)x‖= inf
x∈∂Ω

‖(Id +Nε)x− (Id +N)x− (Id +N)x‖

≥ inf
x∈∂Ω

|‖(Id +N)x‖−‖(Id +Nε)x− (Id +N)x‖|

>
δ

2
> 0.

which proves that 0 6∈ (Id + Nε)(∂Ω) and in particular 0 6∈ (Id + Nε)(Fε ∩ ∂Ω). Conse-
quently, the degree degB(Id +Nε |Fε ,Ω∩Fε ,0) is well defined, and so we define

degLS(Id +N,Ω,0) = degB(Id +Nε |Fε ,Ω∩Fε ,0)

this definition is independent of the chosen subspace Fε and approximation Nε (see [113]).
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Proposition 1.98. For (Id +N,Ω) ∈CId , Let E0 be a closed subspace of E and N(Ω)⊂ E0,
then

degLS(Id +N,Ω,0) = degLS(Id +N|E0 ,Ω∩E0,0)

Proof. Since N(Ω) ⊂ E0, we may choose a finite dimensional space Eε
0 ⊂ E0 and a conti-

nuous mapping Nε : Ω→ Eε
0 such that ‖Nεx−Nx‖< ε for small ε > 0. Then we have

degLS(Id +N,Ω,0) = degB(Id +Nε |Eε
0
,Ω∩Eε

0 ,0) = degLS(Id +N|E0 ,Ω∩E0,0).

Remark 1.99. (1) If dimE < ∞, then degLS(Id +N,Ω,0) = degB(Id +N,Ω,0).

(2) Brouwer degree and Leray-Schauder degree satisfy all the axioms above and properties
which will be used subsequently.

1.5.3 Coincidence Degree for L-Compact Mappings
In this subsection, we define coincidence degree for L-compact mappings and give some

properties of coincidence degree
Denote by C(L) the set of all linear mappings A : E → F L-completely continuous on E

such that Ker(L+A) = {0}. Notice that F(L)⊂C(L).

Lemma 1.100 ([91]). For all A,B ∈C(L), the following assertions are true

(1) ∆A,B = (L+A)−1(B−A) is completely continuous on E,

(2) Id +(L+B)−1(N−B) = (Id +∆A,B)(Id +(L+A)−1(N−A)),

(3) for all r > 0, |DId(Id +∆A,B,Br)|= 1.

Proof. It is clear that ∆A,B is completely continuous on E because if B ∈C(L), then in view
of proposition 1.96 (A−B) is L-completely continuous on E. On the other hand, we have

Id +(L+B)−1(N−B) = Id +(L+B)−1(L+B+A−B)(L+A)−1(N−A+A−B)

= Id +
Ä
Id +(L+B)−1(A−B)

ä
(L+A)−1(N−A)+(L+B)−1(A−B)

= (Id +∆A,B)+(Id +∆A,B)(L+A)−1(N−A)

= (Id +∆A,B)
Ä
Id +(L+A)−1(N−A)

ä
Id +∆A,B : E→ E is a completely continuous perturbation of identity with Id +∆A,B = (L+
B)−1(L+A) ; then Id +∆A,B is an isomorphism, which completes the proof.

Lemma 1.101 ([91]). For (L+N,Ω)∈CL, where N is fixed, |DId(Id+(L+A)−1(N−A),Ω)|,
does not depend on the choice of the operator A in C(L).

Proof. From Lemma 1.100 and the product formula of Leray-Schauder degree (see [?, 102],
we find

DId(Id +(L+A)−1(N−A),Ω) = DId(Id +∆A,B,Br)DId(Id +(L+B)−1(N−B),Ω),
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then
|DId(Id +(L+A)−1(N−A),Ω)|= |DId(Id +(L+B)−1(N−B),Ω)|.

Let P : E→E, Q : F→F, KP,Q : F→E and J : KerL→ ImQ be the operators introduced
in subsection 1.5.1, where the isomorphism J is chosen such that DId(Id+∆B,JP,Br)= 1, then
we may note

Id +(L+ JP)−1(N− JP) = Id +(J−1Q+KP,Q)(N− JP) = Id− (P− J−1QN−KP,QN).

As (L+N,Ω) ∈CL, then P− J−1QN−KP,QN is compact and satisfies x 6= Px− J−1QNx−
KP,QNx, for all x ∈ domL∩∂Ω, which justifies the following definition.

Definition 1.102. If (L+N,Ω) ∈CL, the degree of L+N in Ω with respect to L is defined by

DL(L+N,Ω) = degLS(Id−P+ J−1QN +KP,QN,Ω,0).

The degree defined is called the coincidence degree of L and −N on domL∩Ω. This
degree was introduced by J. Mawhin in 1972 (see [91]).

Using the properties of Leray-Schauder degree, one can show that DL satisfies the pro-
perties of excision-additivity, invariance by homotopy, and the non-nullity of the degree.

The computation of DL(L+N,Ω) is reduced to that of Brouwer degree in the following
interesting particular case.

Proposition 1.103 ([91]). If (L+N,Ω)∈CL with N(Ω)⊂ ImQ, then (N|KerL,Ω∩KerL)∈C0
and DL(L+N,Ω) = sign(detJ−1)degB(N|KerL,Ω∩KerL,0).

Proof. Using the definition of DL with the same notations, we get QN = N,(Id−P)|KerL =

0,KP,QN = 0 and (P−J−1N)(Ω)⊂KerL, thus by the definition of the Leray-Schauder degree
and propositions 1.97-1.98 we have

DL(L+N,Ω) = degLS(Id−P+ J−1N,Ω,0)

= degB(Id−P+ J−1N|KerL,Ω∩KerL,0)

= degB(J
−1N|KerL,Ω∩KerL,0)

= sign(detJ−1)degB(N|KerL,Ω∩KerL,0)

1.5.4 Existence Theorems for Operator Equations
Let E,F be real normed spaces, L : domL ⊂ E → F be a linear Fredholm mapping of

index zero and Ω⊂ E be an open bounded subset with domL
⋂

Ω 6= /0.

Theorem 1.104 ([91, 102]). Let N,T : Ω→ F be two L-compact. If the following conditions
are satisfied :

(1) Lx+λNx+(1−λ )T x 6= 0 for all (x,λ ) ∈ domL∩∂Ω× [0;1);

(2) DL(L+T,Ω) 6= 0;
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then, Lx+Nx = 0 has a solution in domL
⋂

Ω.

Proof. If the equation Lx+Nx = 0 has a solution in domL∩ ∂Ω, the theorem is proved.
Otherwise, let H : Ω× [0;1]→ F be defined by

H(x,λ ) = λNx+(1−λ )T x for all (x,λ ) ∈Ω× [0;1],

H is L-compact on Ω× [0;1], by assumption we have Lx+H(x,λ ) 6= 0 for all x ∈ domL∩
∂Ω× [0;1]. By the invariance homotopy property, we obtain

DL(L+N,Ω) = DL(L+T,Ω) 6= 0,

then it is sufficient to use the existence property to complete the proof.

The following result is a special case of theorem 1.104 where KerL 6= {0}.

Theorem 1.105 ([91, 102]). Let N,T : Ω→ F be L-compact. Let F0 ⊂ F be a subspace with
F = ImL⊕F0 algebraically and T (Ω)⊂ F0. Suppose that the following conditions hold :

(1) Lx+λNx+(1−λ )T x 6= 0 for all (x,λ ) ∈ domL∩∂Ω× (0;1)

(2) T x 6= 0 for all x ∈ KerL∩∂Ω

(3) degB(T |KerL,Ω∩KerL,0) 6= 0.

Then, the equation Lx+Nx = 0 has a solution in domL∩Ω.

Proof. Let Q : F→F be the projection such that ImQ=F0 and KerQ= ImL. Then QT = T
and (L+T )x = 0 if and only if

Q(L+T )x = 0, (Id−Q)(L+T )x = 0,

i.e., T x = 0 and Lx = 0. Therefore, by the assumption (2) we deduce (L+T,Ω) ∈CL and in
view of Proposition1.103, we have

|DL(L+T,Ω,0)|= |degB(T |KerL,Ω∩KerL,0)| 6= 0.

Thus, it follows from Theorem 1.104 that Lx=Nx has a solution in domL∩Ω. This completes
the proof.

A useful consequence of Theorem 1.105 is the following one

Theorem 1.106. [91, 102, Mawhin’s continuation theorem ] Let N : E→ F L-compact. Sup-
pose that the following conditions hold :

(1) Lx+λNx 6= 0 for every (x, λ ) ∈ (domL\KerL)
⋂

∂Ω× (0;1).

(2) Nx /∈ ImL for every x ∈ KerL
⋂

∂Ω.

(3) degB (QN |KerL,Ω
⋂

KerL,0) 6= 0, where Q : F → F is a projection such that ImL =
KerQ.

Then, the abstract equation Lx = Nx has at least one solution in domL
⋂

Ω.

35



1.5. COINCIDENCE DEGREE THEORY

Proof. Let us apply Theorem 1.105 with F0 = ImQ and T = QN it is clear that T is L-
compact. By the assumption (2), we know that

QNx 6= 0 for all x ∈ KerL∩∂Ω.

Now, if Lx+λNx+(1−λ )QNx = 0 for some (x,λ ) ∈ domL∩∂Ω× (0;1), then we have

QNx = 0, Lx+λNx = 0.

But QNx = 0 implies that Nx ∈ ImL hence, x ∈ (domL\KerL)∩ ∂Ω and Lx+ λNx = 0,
which contradicts the assumption (1), this means that

Lx+λNx+(1−λ )QNx 6= 0 for all (x,λ ) ∈ domL∩∂Ω× (0;1)

Thus, the conditions of Theorem 1.105 are satisfied, and consequently, Lx=Nx has a solution
in domL

⋂
Ω.

Remark 1.107. As degB
Ä
J−1QN |KerL,Ω

⋂
KerL,0

ä
= ±degB (QN |KerL,Ω

⋂
KerL,0) we

can replace the condition (3) in Theorem 1.106 by the more general condition

degB
Ä
J−1QN |KerL,Ω

⋂
KerL,0

ä
6= 0.
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Chapitre 2
Weak Solutions for Nonlinear Fractional
Differential Equations with Integral and
Multi-Point Boundary Conditions 1

2.1 Introduction
In this chapter we investigate the existence of weak solutions, for the fractional differen-

tial equations that contain both the integral boundary condition and the multi-point boundary
condition : 

Dα

0+x(t)+ f (t,x(t)) = 0, t ∈ J = [0;1],
x(i)(0) = 0, i = 0,1,2, . . . ,n−2,

x(1) =
∑m−2

i=1 σi
∫ ηi

0 x(s)ds+
∑m−2

i=1 νix(ηi),

(2.1)

where Dα represents the standard Riemann-Liouville fractional derivative of order α satis-
fying n−1 < α ≤ n with n≥ 3 and n ∈ N+. In addition, 0 < η1 < η2 < · · ·< ηm−2 < 1 and
σi,νi > 0 with 1≤ i≤ m−2, where m is an integer satisfying m≥ 3. f : [0;1]×E → E is a
given function satisfying some assumptions that will be specified later, E is a Banach space
with norm ‖ · ‖.

This problem was studied recently in [114] in the scalar case using Krasnoselkii’s fixed
point theorem, Schauder type fixed point theorem, Banach’s contraction mapping principle
and nonlinear alternative for single-valued maps.

Here we extend the results of [114] to cover the abstract case. We establish the existence of
weak solutions of the problem (2.1) using method associated with the technique of measures
of weak noncompactness and a fixed point theorem of Mönch’s type, which is an important
method for seeking solutions of differential and integral equations.

1. Z. Baitiche, K. Guerbati and M. Benchohra, Weak solutions for some nonlinear fractional differential
equations with fractional integral boundary conditions in Banach spaces, PanAmerican Mathematical Journal
Volume 29 (2019), Number 1, 86 - 100.
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2.2 Existence Results
In this section we discuss the existence theorem of weak solutions for the problem (2.1).

E denotes the real Banach space with norm ‖·‖ and dual E∗ also Ew = (E,w) = (E,σ(E,E∗))
denotes the space E with its weak topology. C(J,E) is the Banach space of continuous func-
tions x : J→ E, with the usual supremum norm.

‖x‖∞ = sup
t∈J
‖x(t)‖E ,

Definition 2.1. A function h : E → E is said to be weakly sequentially continuous if h takes
each weakly convergent sequence in E to weakly convergent sequence in E (i.e. for any (xn)n
in E with xn→ x in (E,w) then h(xn)→ h(x) in (E,w) for each t ∈ J).

Lemma 2.2. Let n−1 < α ≤ n with n≥ 3 and let h ∈C(J,E) be a given function, the unique
solution of the fractional differential equation

Dα

0+x(t)+h(t) = 0, t ∈ J

with multi-point and integral boundary conditions{
x(i)(0) = 0, i = 0,1,2, . . . ,n−2,

x(1) =
∑m−2

i=1 σi
∫ ηi

0 x(s)ds+
∑m−2

i=1 νix(ηi),

is given by

x(t) =− 1
Γ(α)

∫ 1

0
(1− s)α−1h(s)ds+

tα−1

ξ Γ(α)

∫ 1

0
(1− s)α−1h(s)ds

− tα−1

ξ

m−2∑
i=1

σi

Γ(α +1)

∫
ηi

0
(ηi− s)αh(s)ds− tα−1

ξ

m−2∑
i=1

νi

Γ(α)

∫
ηi

0
(ηi− s)α−1h(s)ds

=
∫ 1

0
G(t,s)h(s)ds+

tα−1

ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s)h(s)ds

+
tα−1

ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s)h(s)ds

where ξ = 1− 1
α

∑m−2
i=1 σiη

α
i −

∑m−2
i=1 νiη

α
i > 0 and

G(t,s) =
1

Γ(α)

{
tα−1(1− s)α−1− (t− s)α−1 , 0≤ s≤ t ≤ 1,

tα−1(1− s)α−1 , 0≤ t ≤ s≤ 1.

H(t,s) =
1

Γ(α +1)

{
tα(1− s)α−1− (t− s)α , 0≤ s≤ t ≤ 1,

tα(1− s)α−1 , 0≤ t ≤ s≤ 1.

The proof is similar to the one given in [114].

Remark 2.3. From the expression of G(t,s) and H(t,s), it is obvious that G(t,s) and H(t,s)
are continuous and nonnegative on J× J. It is easy to figure out that 0 ≤ G(t,s) ≤ 1

Γ(α) and

0≤ H(t,s)≤ 1
Γ(α+1) hold for all t,s ∈ J.
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To prove the main results, we need the following assumptions :

(H1) For each t ∈ J, the function f (t, ·) is weakly sequentially continuous ;

(H2) For each x ∈C(J,E), the function f (·,x(·)) is Pettis integrable on J ;

(H3) There exist p∈ L∞(J,R+) and a continuous nondecreasing function ψ : R+→R+ such
that

‖ f (t,x(t))‖ ≤ p(t)ψ(‖x‖∞);

(H4) There exists a constant R > 0 such that

R
‖p‖L∞ψ(R)K

> 1, (2.2)

where

K =
1

Γ(α)
+

1
ξ

m−2∑
i=1

σi
(α +1)ηα

i −αη
α+1
i

αΓ(α +2)
+

1
ξ

m−2∑
i=1

νi
η

α−1
i −ηα

i
Γ(α +1)

(H5) For each bounded and measurable set D⊂ E, and for each t ∈ J, we have

β ( f (t,D))≤ p(t)β (D).

Theorem 2.4. Assume that the hypotheses (H1)− (H5) hold. If

‖p‖L∞ <
1
K
, (2.3)

then the boundary value problem (2.1) has at least one solution,

Proof. Transform the integral equation (2.1) into a fixed point equation. Consider the ope-
rator N : C(J,E)→C(J,E) defined by :

N x(t) =
∫ 1

0
G(t,s) f (s,x(s))ds+

tα−1

ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s) f (s,x(s))ds

+
tα−1

ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s) f (s,x(s))ds.

Since, s 7→ G(t,s),s 7→ H(t,s) are ∈ L∞(J) then G(t, ·) f (·,x(·)),H(t, ·) f (·,x(·)) for all t ∈ J
are Pettis integrable (Proposition 1.60) and thus, the operator N is well defined.
Let R > 0 and consider the set

D =

 x ∈C(J,E) : ‖x‖∞ ≤ R, ‖x(t2)− x(t1)‖E ≤
‖p‖L∞ψ(R)

Γ(α+1)

î
(1+Γ(α +1)K)(tα−1

2 − tα−1
1 )+(tα

2 − tα
1 )
ó
, t1, t2 ∈ J, t1 < t2


It is clear that the convex closed and equicontinuous subset D⊂C(J,E).

We will show that the operator N satisfies all the assumptions of Theorem 1.88 ; the
proof will be given in three steps.

Step 1 : We shall show that the operator N maps into itself. First of all, we begin to show
that N : D→D. To see this, let x∈D, t ∈ J. Without loss of generality, assume that N x(t) 6=
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0. By the Hahn-Banach theorem, there exists ϕ ∈E∗ with ‖ϕ‖= 1 and ‖N x(t)‖E =ϕ(N x(t)).
Thus

‖N x(t)‖E = ϕ

Å∫ 1

0
G(t,s) f (s,x(s))ds+

tα−1

ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s) f (s,x(s))ds

+
tα−1

ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s) f (s,x(s))ds

ã
≤
∫ 1

0
G(t,s)ϕ( f (s,x(s)))ds+

tα−1

ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s)ϕ( f (s,x(s)))ds

+
tα−1

ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s)ϕ( f (s,x(s)))ds.

Using hypotheses (H3) we get

‖N x(t)‖E

≤ ‖p‖L∞ψ(R)
Å∫ 1

0
G(t,s)ds+

tα−1

ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s)ds+

tα−1

ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s)ds

ã
≤ ‖p‖L∞ψ(R)

Å 1
Γ(α)

+
1
ξ

m−2∑
i=1

σi
(α +1)ηα

i −αη
α+1
i

αΓ(α +2)
+

1
ξ

m−2∑
i=1

νi
η

α−1
i −ηα

i
Γ(α +1)

ã
≤ ‖p‖L∞ψ(R)K ≤ R.

then ‖N x‖∞ = supt∈J ‖N x(t)‖E ≤ R.
Next, let t1, t2 ∈ J, t1 < t2,x∈D, without loss of generality, assume that N x(t2)−N x(t1) 6=

0. By the Hahn-Banach theorem, there exists ϕ ∈ E∗ with ‖ϕ‖= 1 and

‖N (x)(t2)−N (x)(t1)‖E = ϕ
Ä
N (x)(t2)−N (x)(t1)

ä
.
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So,

‖N (x)(t2)−N (x)(t1)‖E = ϕ

Å∫ 1

0
G(t2,s) f (s,x(s))ds−

∫ 1

0
G(t1,s) f (s,x(s))ds

+
tα−1
2 − tα−1

1
ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s) f (s,x(s))ds

+
tα−1
2 − tα−1

1
ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s) f (s,x(s))ds

ã
≤
∫ 1

0
|G(t2,s)−G(t1,s)|‖ f (s,x(s))‖ds

+
tα−1
2 − tα−1

1
ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s)‖ f (s,x(s))‖ds

+
tα−1
2 − tα−1

1
ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s)‖ f (s,x(s))‖ds

≤ ‖p‖L∞ψ(R)
Å∫ 1

0
|G(t2,s)−G(t1,s)|ds

+
tα−1
2 − tα−1

1
ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s)ds

+
tα−1
2 − tα−1

1
ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s)ds

ã
≤ ‖p‖L∞ψ(R)

Γ(α +1)

î
(1+KΓ(α +1))(tα−1

2 − tα−1
1 )+(tα

2 − tα
1 )
ó

This estimation shows that N maps D into itself.
Step 2 : We will show that the operator N has a weakly sequentially continuous. To see

this, by Lemma 9 of [96], a sequence xn(·) weakly convergent to x(·) ∈ D if and only if xn(·)
tends weakly to x(·) for each t ∈ J. Let (xn) be a sequence in D and let xn(t)→ x(t) in (E,w)
for each t ∈ J. Fix t ∈ J. Since f satisfies assumption (H1), we have f (t,xn(t)) converges
weakly uniformly to f (t,x(t)). Hence the Lebesgue Dominated Convergence theorem for
Pettis integral implies N xn(t) converges weakly uniformly to N x(t) in (E,w). We do it for
each t ∈ J so N xn→N x. Then N : D→ D is weakly sequentially continuous.

Step 3 : The implication (1.16) holds. Now let V be a subset of D such that V =Co(N (V )∪
{0}). Clearly, V (t) ⊂ Co(N (V (t))∪ {0}), t ∈ J. Further, as V is bounded and equiconti-
nuous, by theorem 1.79 the function t → v(t) = β (V (t)) is continuous on J. By assumption
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(H5), and the properties of the measure β , for any t ∈ J, we have

v(t)≤ β
Ä
Co(N (V )(t)∪{0})

ä
≤ β (N (V )(t))

≤ β

Å∫ 1

0
G(t,s) f (s,V (s))ds+

tα−1

ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s) f (s,V (s))ds

+
tα−1

ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s) f (s,V (s))ds

ã
≤
∫ 1

0
G(t,s)β ( f (s,V (s)))ds+

tα−1

ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s)β ( f (s,V (s)))ds

+
tα−1

ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s)β

Ä
f (s,V (s))

ä
ds

≤
∫ 1

0
G(t,s)p(s)β (V (s))ds+

tα−1

ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s)p(s)β (V (s))ds

+
tα−1

ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s)p(s)β (V (s))ds

≤
∫ 1

0
G(t,s)p(s)v(s)ds+

tα−1

ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s)p(s)v(s)ds

+
tα−1

ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s)p(s)v(s)ds

≤ ‖p‖L∞‖v‖∞

Å∫ 1

0
G(t,s)ds+

tα−1

ξ

m−2∑
i=1

σi

∫ 1

0
H(ηi,s)ds

+
tα−1

ξ

m−2∑
i=1

νi

∫ 1

0
G(ηi,s)ds

ã
which gives

‖v‖∞ ≤ ‖p‖L∞‖v‖∞K.

This means that

(1−‖p‖L∞K)‖v‖∞ ≤ 0.

By (2.3) it follows that ‖v‖∞ = 0, that is v(t) = β
Ä
V (t)

ä
= 0 for each t ∈ J, and then by

Theorem 2 of [96], V is weakly relatively compact in E. Applying Theorem 1.88 we conclude
that N has a fixed point which is a solution of the problem (2.1).

2.2.1 Example
Let

E = `1 =

x = (x1,x2, . . . ,xn, . . .),
∞∑

n=1
|xn|< ∞

 ,
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be the Banach space with the norm

‖x‖E =
∞∑

n=1
|xn|.

We consider the following fractional boundary value problem

D
9
2
0+xn(t)+ e−t sinxn(t) = 0, ∀t ∈ J = [0;1],

x
′
n(0) = x

′′
n(0) = x

′′′
n (0) = 0,

xn(1) = 3
∫ 1

3
0 xn(s)ds+2

∫ 1
2

0 xn(s)ds+4
∫ 2

3
0 xn(s)ds

+xn(
1
3)+

5
2xn(

1
2)+

1
2xn
Ä

2
3

ä
.

(2.4)

Set
x = (x1,x2, . . . ,xn, . . .), f = ( f1, f2, . . . , fn, . . .),

f (t,x(t)) = {e−t sinxn(t)}n≥1, t ∈ J.

From the equation above, it is clear that α = 9
2 ,m= n= 5,σ1 = 3,σ2 = 2,σ3 = 4,ν1 = 1,ν2 =

5
2 ,ν3 =

1
2 ,η1 =

1
3 ,η2 =

1
2 ,η3 =

2
3 . Using the Matlab program, we can find ξ = 0.4689,K =

0.0949.
For each x ∈ `1, t ∈ J we have

| fn(t,x)| ≤ e−t |xn|.

Hence conditions (H1),(H2) and (H3) hold with

p(t) = e−t , t ∈ J and ψ(x) = |x|, x ∈ [0,∞).

For any bounded set D⊂ E, we have

β ( f (t,D))≤ e−t
β (D), for each t ∈ J.

Hence (H5) is satisfied. On the other hand we have

R
‖p‖L∞ψ(R)K

> 1.

is equivalent to

R >
10K

1−K
,

Hence the condition (H4) holds for R > 1.0485. Consequently, Theorem 1.88 implies that
problem (2.4) has a solution defined on J.

43



Chapitre 3
Boundary Value Problems for Hybrid
Fractional Differential Equations

Perturbation techniques are useful in the nonlinear analysis for studying the dynamical
systems represented by nonlinear differential and integral equations. Evidently, some dif-
ferential equations representing a certain dynamical system have no analytical solution, so
the perturbation of such problems can be helpful. The perturbed differential equations are
categorized in to various types. An important type of these such perturbations is called a
hybrid differential equation (i.e.quadratic perturbation of a nonlinear differential equation).
This class of equations involves the fractional derivative of an unknown function hybrid with
the nonlinearity depending on it. The study of hybrid differential equations is implicit in
the works of Krasnose’lskii, Dhage and Lakshmikantham and extensively studied by many
researchers, we refer [13, 49, 52, 64, 65, 75, 88, 107, 110, 112, 121, 122].

Dhage and Lakshmikantham [52] discussed the existence and uniqueness theorems of the
solution to the ordinary first-order hybrid differential equation with perturbation of first type d

dt

(
x(t)

f (t,x(t))

)
= g(t,x(t)), a.e. t ∈ J,

x(t0) = x0 ∈ R.

where f ∈C(J×R,R\{0}) and g ∈C(J×R,R), where J = [t0 ; t0+a] is a bounded interval
in R for some t0 and a ∈ R with a > 0.

Zhao et al.[121] studied existence and uniqueness results for the following hybrid diffe-
rential equations involving Riemann-Liouville differential operators :Dq

0+
(

x(t)
f (t,x(t))

)
= g(t,x(t)), a.e. t ∈ J = [0;T ],

x(0) = 0,

where 0< q< 1, f ∈C(J×R,R\{0}) and g∈C(J×R,R). A fixed point theorem in Banach
algebras was the main tool used in this work.

Hilal and Kajouni [65] extended the results to the following boundary value problem for
fractional hybrid differential equations involving Caputo’s derivative

cDα

0+
[

x(t)
f (t,x(t))

]
= g(t,x(t)), a.e. t ∈ J = [0;T ],

a x(0)
f (0,x(0)) +b x(T )

f (T,x(T )) = c,
(3.1)
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where 0 < α < 1, f ∈C(J×R,R\{0}), g ∈C(J×R,R) and a,b,c are real constants with
a+b 6= 0. They proved the existence result for boundary fractional hybrid differential equa-
tions under mixed Lipschitz and Caratheodory conditions. Some fundamental fractional dif-
ferential inequalities are also established which are utilized to prove the existence of extremal
solutions.

Darwish and Sadarngani [49], where using a measure of noncompactness argument com-
bined with the generalized version of Darbo’s theorem, authors provide sufficient conditions
for the following fractional hybrid initial value problem with supremumcDα

0+
[

x(t)
f (t,x(t),max0≤τ≤t x(τ))

]
= g(t,x(t)), 0 < t < 1,

x(0) = 0,

where α ∈ (0;1), f ∈C(J×R×R,R\{0}), g ∈C(J×R,R).
Benchohra et al. [35] studied the existence and uniqueness of solutions of the following

nonlinear fractional differential equations :®cDα

0+y(t) = f (t,y(t)), for each t ∈ J = [0;T ], 0 < α < 1,
ay(0)+by(T ) = c, (3.2)

where where cDα

0+ is the Caputo fractional derivative, f : [0;T ]×R→ R is continuous and
a,b,c are real constants with a+b 6= 0.

Ahmad and Ntouyas [13] discussed the following fractional boundary value problem with
fractional separated boundary conditions® cDq

0+x(t) = f (t,x(t)), t ∈ [0;1], 1 < q≤ 2
α1x(0)+β1

cDp
0+x(0) = γ1, α2x(1)+β2

cDp
0+x(1) = γ2, 0 < p≤ 1, (3.3)

where cDq
0+ is the Caputo fractional derivative, f is a given continuous function, and αi,βi,γi (i=

1,2) are real constants such that α1 6= 0. The results is obtained by using appropriate standard
fixed point theorems.

Motivated by some recent studies on hybrid fractional differential equations (HFDEs),
in this chapter, we shall establish sufficient conditions for the existence of solutions for two
boundary value problems for hybrid Caputo fractional differential equations.

In section 3.1, we give our main result for the following boundary value problem of
nonlinear fractional hybrid differential equations :

cDα

0+
[

x(t)
f (t,x(µ(t)))

]
= g(t,x(ν(t))), t ∈ J = [0;1],

a
[

x(t)
f (t,x(µ(t)))

]
t=0

+b
[

x(t)
f (t,x(µ(t)))

]
t=1

= c,
(3.4)

where 0 < α ≤ 1,a,b,c are real constants such that a+ b 6= 0, cDα

0+ is the Caputo fractional
derivative, f ∈ C(J×R,R \ {0}),g ∈ C(J×R,R),µ and ν are functions from J into itself.
Note that if µ(t) = ν(t) = t, then the first problem of (3.4) is reduces to the problem (3.1).
Also if µ(t) = ν(t) = t, f (t,x(t)) = 1, then the problem (3.4) is reduces to the problem (3.2).

In section 3.2, we consider the following boundary value problem for hybrid fractional
differential equations with fractional separated integral boundary conditions

cDα

0+
(

x(t)
f (t,x(t))

)
= g(t,x(t)), t ∈ J = [0;T ],

a1

(
x(t)

f (t,x(t))

)
t=0

+b1
cDσ

0+
(

x(t)
f (t,x(t))

)
t=0

=
∫ 1

0 h(t,x(t))dt,

a2

(
x(t)

f (t,x(t))

)
t=1

+b2
cDσ

0+
(

x(t)
f (t,x(t))

)
t=1

=
∫ 1

0 k(t,x(t))dt.

(3.5)
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Where 0 < σ ≤ 1 < α ≤ 2, cDα

0+ is the Caputo fractional derivative, f ,g,h,k are a given
continuous functions and ai,bi, i = 1,2 are real constants such that a1 6= 0. Note that if
f (t,x(t)) = 1,h(t,x(t)) = c1 and k(t,x(t)) = c2, c1,c2 are real constants, then the first pro-
blem of (3.5) is reduces to the problem (3.3).

The main tools in our analysis are Darbo fixed point theorem and the measure of non-
compactness related to monotonicity which was introduced by Banas̀ and Olszowy [30].

3.1 Boundary Value Problems for Hybrid Fractional Differential
Equations 1

3.1.1 Existence of Solutions
In this subsection, we discuss the existence of solutions of the the problem (3.4).

Lemma 3.1. For any y ∈C(J), the unique solution of the hybrid fractional differential equa-
tion,

cDα

0+

ñ
x(t)

f (t,x(µ(t)))

ô
= y(t), 0 < t < 1, (3.6)

with boundary conditions

a
ñ

x(t)
f (t,x(µ(t)))

ô
t=0

+b
ñ

x(t)
f (t,x(µ(t)))

ô
t=1

= c, (3.7)

is given by

x(t) = f (t,x(µ(t)))
®∫ 1

0
G(t,s)y(s)ds+

c
a+b

´
, (3.8)

where

G(t,s) =
1

Γ(α)


(t− s)α−1− b

a+b
(1− s)α−1 , 0≤ s≤ t ≤ 1,

− b
a+b

(1− s)α−1 , 0≤ t ≤ s≤ 1.
(3.9)

Here G(t,s) is called the Green function of the boundary value problem (3.6) and (3.7).

Proof. We may apply Lemma 1.44 to reduce (3.6) to an equivalent integral equation

x(t)
f (t,x(µ(t)))

= Iα

0+y(t)+ c0, c0 ∈ R. (3.10)

Consequently, the general solution of (3.6) is

x(t) = f (t,x(µ(t)))(Iα

0+y(t)+ c0). (3.11)

Applying the boundary conditions (3.7) in (3.2.1) we find that

ac0 +b(Iα

0+y(1)+ c0) = c.

1. Z. Baitiche, K. Guerbati, M. Benchohra and Yong Zhou, Boundary Value Problems for Hybrid Fractio-
nal Differential Equations, Mathematics. 2019 7(3), 282.
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Therefore, we have

c0 =
1

a+b
(c−bIα

0+y(1)).

Substituting the value of c0 in (3.2.1) we get (3.17).

x(t) = f (t,x(µ(t)))
®

Iα

0+y(t)− b
a+b

Iα

0+y(1)+
c

a+b

´
. (3.12)

that can be written as

x(t) = f (t,x(µ(t)))
®∫ 1

0
G(t,s)y(s)ds+

c
a+b

´
,

where G is defined by (3.9). The proof is complete.

Remark 3.2. From the expression of G(t,s), it is obvious that G(t,s) is continuous on J×J.

Thanks to Lemma 3.1, the proposed problem is equivalent to the following integral equa-
tion

x(t) = f (t,x(µ(t)))
®∫ 1

0
G(t,s)g(s,x(ν(s)))ds+

c
a+b

´
.

Firstly, we list some assumptions :

(A1) The functions µ,ν : J→ J are continuous.

(A2) f ∈C(J×R, R\{0}) and g ∈C(J×R,R).

(A3) There exists a constant k ∈ (0;1) such that

| f (t,x1)− f (t,x2)| ≤ (|x1− x2|+1)k−1, t ∈ J, x1,x2 ∈ R.

(A4) There exists a continuous nondecreasing function ψ : R+→ (0,+∞) such that

|g(t,x)| ≤ ψ(|x|), t ∈ J, x ∈ R+.

(A5) There exists r > 0 such that

[(r+1)k−1+M]

® |a|+2|b|
|a+b|Γ(α +1)

ψ(r)+
|c|
|a+b|

´
≤ r,

and
|a|+2|b|

|a+b|Γ(α +1)
ψ(r)+

|c|
|a+b|

≤ 1,

where
M = sup{| f (t,0)| : t ∈ J}.

Now, we are in a position to state and prove our main result in this paper.

Theorem 3.3. Assume that assumptions (A1)−(A5) hold. Then the Problem (3.4) has at least
one solution in the Banach algebra C(J).

47



3.1. SOLUTION FOR BVP FOR HYBRID CAPUTO FDE

Proof. To prove this result using Theorem 1.87, we consider the operator T on the Banach
algebra C(J) as follows

T x(t) = f (t,x(µ(t)))
®∫ 1

0
G(t,s)g(s,x(ν(s)))ds+

c
a+b

´
for t ∈ J. By virtue of Lemma 3.1, a fixed point of T gives us the desired result.

We define operators F and G on the Banach algebra C(J) in the following way :

F x(t) = f (t,x(µ(t))),

and
G x(t) =

∫ 1

0
G(t,s)g(s,x(ν(s)))ds+

c
a+b

for t ∈ J. Then T x = (F x) · (G x) for any x ∈C(J).
We divide the proof into five steps.

Step 1 : T transforms C(J) into itself.
In fact, since the product of continuous functions is a continuous function, it is sufficient to
prove that F x,G x ∈ C(J) for any x ∈ C(J). Now, from the assumptions (A1) and (A2), it
follows that if x ∈C(J) then F x ∈C(J). Next, we will prove that if x ∈C(J) then G x ∈C(J).
To do this, let ε > 0 be fixed, take x ∈C(J) and t1, t2 ∈ J with t2− t1 ≤ ε and we can assume
that t1 ≤ t2. Then, in view of assumption (A4), we get

|G x(t2)−G x(t1)| ≤
∫ t1

0
|G(t1,s)−G(t2,s)||g(s,x(ν(s)))|ds

+
∫ t2

t1
|G(t1,s)−G(t2,s)||g(s,x(ν(s)))|ds

+
∫ 1

t2
|G(t1,s)−G(t2,s)||g(s,x(ν(s)))|ds

≤ ψ(‖x‖)
Å∫ t1

0 |G(t1,s)−G(t2,s)|ds

+
∫ t2

t1
|G(t1,s)−G(t2,s)|ds+

∫ 1

t2
|G(t1,s)−G(t2,s)|ds

ã
≤ ψ(‖x‖)

Γ(α +1)

Å
2(t2− t1)α +(tα

1 − tα
2 )
ã

≤ 2ψ(‖x‖)
Γ(α +1)

(t2− t1)α

≤ 2ψ(‖x‖)
Γ(α +1)

ε
α .

From the above inequality, we conclude that |G x(t2)−G x(t1)| → 0 when ε → 0. Therefore,
G x ∈C(J). This proves that if x ∈C(J) then T x ∈C(J).

Step 2 : An estimate of ‖T x‖ for x ∈C(J).
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Now, let us fix x ∈C(J), then using our assumptions for t ∈ J, we obtain

|(T x)(t)| =

∣∣∣∣∣ f (t,x(µ(t)))
®

Iα

0+g(t,x(ν(t)))− b
a+b

Iα

0+g(1,x(ν(1)))+
c

a+b

´∣∣∣∣∣
≤ (| f (t,x(µ(t)))− f (t,0)|+ | f (t,0)|)

×
®

1
Γ(α)

∫ t

0

|g(s,x(ν(s)))|
(t− s)1−α

ds+
|b|

|a+b|Γ(α)

∫ 1

0

|g(s,x(ν(s)))|
(1− s)1−α

ds+
|c|
|a+b|

´
≤ [(|x(µ(t))|+1)k−1+M]

×
®

1
Γ(α)

∫ t

0

ψ(|x(ν(s)|)
(t− s)1−α

ds+
|b|

|a+b|Γ(α)

∫ 1

0

ψ(|x(ν(s)|)
(1− s)1−α

ds+
|c|
|a+b|

´
≤
î
(‖x‖+1)k−1+M

ó® |a|+2|b|
|a+b|Γ(α +1)

ψ(‖x‖)+ |c|
|a+b|

´
.

Therefore,

‖T x‖ ≤
î
(‖x‖+1)k−1+M

ó® |a|+2|b|
|a+b|Γ(α +1)

ψ(‖x‖)+ |c|
|a+b|

´
.

By assumption (A5), we deduce that the operator T maps the ball Br ⊂ C(J) into itself.
Moreover, let us observe that from the last estimates, we obtain‖FBr‖ ≤ (r+1)k−1+M,

‖G Br‖ ≤ |a|+2|b|
|a+b|Γ(α+1)ψ(r)+ |c|

|a+b| .
(3.13)

Step 3 : The operators F and G are continuous on the ball Br.
In fact, firstly we prove that the operator F is continuous on the ball Br. To do this, fix ε > 0
and take arbitrary x,y ∈ Br such that ‖x− y‖ ≤ ε . Then for t ∈ J, we have

|(F x)(t)− (F y)(t)| = | f (t,x(µ(t)))− f (t,y(µ(t)))|
≤ (|x(µ(t))− y(µ(t))|+1)k−1
≤ (‖x− y‖+1)k−1
≤ (ε +1)k−1,

and, since (ε +1)k−1→ 0 when ε → 0. Thus, from the above inequality the operator F is
continuous on the ball Br.

Next, we prove that the operator G is continuous on the ball Br. To do this, we take a
sequence {xn} ⊂ Br and x ∈ Br such that ‖xn− x‖ → 0 as n→ ∞, and we have to prove that
‖G xn−G x‖→ 0 as n→∞. Since G(t,s) and g(t,x) are uniformly continuous on the compact
J× J and J× [−r ;r], respectively, we may denote®

K = sup{|G(t,s)| : t,s ∈ J},
H = sup{|g(t,x)| : t ∈ J,x ∈ [−r ;r]}.

Since µ : J→ J is continuous, then for any n and t ∈ J, we have |xn(ν(t))| ≤ r. Thus, for any
n and t ∈ J, we get

|G(t,s)||g(t,xn(ν(t)))| ≤ KH, s ∈ J.
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By applying Lebesgue dominated convergence theorem, we get

lim
n→∞

(G xn)(t) = lim
n→∞

∫ 1

0
G(t,s)g(s,xn(ν(t)))ds+

c
a+b

=
∫ 1

0
G(t,s)g(s,x(ν(s)))ds+

c
a+b

= (G x)(t).

Thus, the above inequality shows that the operator G is continuous in Br. Hence we conclude
that T is continuous operator on Br.

Step 4 : Estimates of ω0(FX) and ω0(G X) for /0 6= X ⊂ Br.
Firstly, we estimate ω0(FX). Let ε > 0 be fixed, since µ : J → J is uniformly continuous,
we can find δ > 0 (which can be taken with δ < ε ) such that, for |t1− t2| < δ we have
|µ(t1)−µ(t2)|< ε . Let x∈ X and t1, t2 ∈ J with |t1−t2| ≤ δ < ε . Then, in view of assumption
(A3), we have

|(F x)(t1)− (F x)(t1)| = | f (t1,x(µ(t1)))− f (t2,x(µ(t2)))|
≤ | f (t1,x(µ(t1)))− f (t1,x(µ(t2)))|+ | f (t1,x(µ(t2)))− f (t2,x(µ(t2)))|
≤
î
(|x(µ(t1))− x(µ(t2))|+1)k−1

ó
+ω( f ,ε)

≤
î
(ω(X ,ε)+1)k−1

ó
+ω( f ,ε),

where

ω( f ,ε) = sup{| f (t1,x)− f (t2,x)| : t1, t2 ∈ J, |t1− t2| ≤ ε, x ∈ [−r ;r]} .

So,
ω(FX ,ε)≤

î
(ω(X ,ε)+1)k−1

ó
+ω( f ,ε).

Observe that the function f (t,x) is uniformly continuous on the set J× [−r ;r]. Hence, we
deduce that ω( f ,ε)→ 0 as ε → 0. Thus, from the above inequality, we conclude

ω0(FX)≤ (ω0(X)+1)k−1. (3.14)

Next, we estimate ω0(G X). Fix ε > 0, since G(t,s) is uniformly continuous on J× J, there
exists δ > 0 (which can be taken with δ < ε ) such that, for any t1, t2 ∈ J with |t2−t1| ≤ δ < ε ,

|G(t1,s)−G(t2,s)| ≤
ε

H
, s ∈ J.

Thus,

|G x(t2)−G x(t1)| =
∫ 1

0
|G(t1,s)−G(t2,s)||g(s,x(ν(s)))|ds

≤ H
∫ 1

0
|G(t1,s)−G(t2,s)|ds < ε.

So,
ω(G x,ε)≤ ε.

Taking ε → 0, we get
ω0(G X) = 0. (3.15)
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Step 5 : An estimate of ω0(T X) for /0 6= X ⊂ Br.
From Lemma 1.75 and the estimates (3.13), (3.14) and (3.15), we have

ω0(T X) = ω0(FX .G X)≤ ‖FX‖ω0(G X)+‖G X‖ω0(FX)

≤ ‖FBr0‖ω0(G X)+‖G Br0‖ω0(FX)

≤
î
(ω0(X)+1)k−1

óñ |a|+2|b|
|a+b|Γ(α +1)

ψ(r0)+
|c|
|a+b|

ô
.

Under the assumption (A5), we know that
|a|+2|b|

|a+b|Γ(α +1)
ψ(r0)+

|c|
|a+b|

≤ 1.

Hence,
ω0(T X)+1≤ (ω0(X)+1)k.

Thus, the contractive condition appearing in Theorem 1.81 is satisfied with θ(t) = t + 1,
where θ ∈ Θ. By applying Theorem 1.87 we get that the operator T has at least one fixed
point in the ball Br. Consequently, the problem (3.4) has at least one solution in Br. This
completes the proof.

3.1.2 Example
Consider the following fractional hybrid problem

cD
1
2
0+

ñ
x(t)√

1+|x(et−1)|

ô
= 1

3 sinx(
√

t), t ∈ J = [0;1]ñ
x(t)√

1+|x(et−1)|

ô
t=0

+

ñ
x(t)√

1+|x(et−1)|

ô
t=1

= 0.
(3.16)

Corresponding to the problem (3.4), we have that f (t,x)=
»

1+ |x|, |g(t,x)|= 1
3 sinx, µ(t)=

et−1,ν(t) =
√

t,α = 1
2 ,a = b = 1,c = 0,M = supt∈J | f (t,0)|= 1. It is clear that the assump-

tion (A1)− (A2) hold. On the other hand, since the function β (x) =
»

1+ |x|−1 is concave
(because β ′′(x)≤ 0) and β (0) = 0, we infer that β is subadditive and, therefore, for any t ∈ J
and x1,x2 ∈ R, we have

| f (t,x1)− f (t,x2)| = |β (x1)−β (x2)| ≤ β (x1− x2)

=
»

1+ |x1− x2|−1.

So, the assumption (A3) holds, with k = 1/2. Moreover, for any t ∈ J and x ∈ R, we have

|g(t,x)|= 1
3
|sinx| ≤ 1

3
|x|.

Hence the assumption (A4) holds, where ψ(x) = 1
3x.

Observe that the assumption (A5) is equivalent to
√

r+1√
π
≤ 1 and

r√
π
≤ 1,

Thus, assumption (A5) is satisfied for all 0 < r ≤
√

π.
So, all the assumption of Theorem 3.3 are satisfied, and consequently problem
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3.2 Existence of Solutions for Hybrid Fractional Differential Equa-
tions with Fractional Separated Integral Boundary Condi-
tions 2

3.2.1 Existence of Solutions
In this subsection, we are concerned with the existence of solutions of the problem (3.5).

Lemma 3.4. Let y,ρ,θ ∈C(J). The unique solution of the hybrid fractional differential equa-
tion,

cDα

0+

Ç
x(t)

f (t,x(t))

å
= y(t), t ∈ J =: [0;1], (3.17)

with separated integral boundary conditions

a1

Ç
x(t)

f (t,x(t))

å
t=0

+b1
cDσ

0+

Ç
x(t)

f (t,x(t))

å
t=0

=
∫ 1

0
ρ(t)dt,

a2

Ç
x(t)

f (t,x(t))

å
t=1

+b2
cDσ

0+

Ç
x(t)

f (t,x(t))

å
t=1

=
∫ 1

0
θ(t)dt,

(3.18)

is given by :

x(t) = f (t,x(t))
®

Iα

0+y(t)− a2t
v

Iα

0+y(1)+
b2t
v

Iα−σ

0+ y(1)

+
v−a2t

a1v

∫ 1

0
ρ(t)dt +

t
v

∫ 1

0
θ(t)dt

´
,

(3.19)

where

v =
a2Γ(2−σ)+b2

Γ(2−σ)
.

Proof. By Lemma 1.44, we reduce Eq.(3.17) to an equivalent integral equation

x(t)
f (t,x(t))

= Iα

0+y(t)+ c0 + c1t, c0,c1 ∈ R.

Consequently, the general solution of (3.17) is

x(t) = f (t,x(t))
Ä
Iα

0+y(t)+ c0 + c1t
ä
. (3.20)

By Lemma 1.42 and 1.43 we get

cDσ

0+

Ç
x(t)

f (t,x(t))

å
= Iα−σ

0+ y(t)+ c1
t1−σ

Γ(2−σ)
.

From the boundary condition (3.18), we have

a1c0 =
∫ 1

0
ρ(t)dt,

2. Z. Baitiche, K. Guerbati, M. Benchohra, Solutions for HFDE with Fractional Separated Integral Boun-
dary Conditions, J. Nonlinear Studies.
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a2
Ä
Iα

0+y(1)+ c0 + c1
ä
+b2

Å
Iα−σ

0+ y(1)+
d1

Γ(2−σ)

ã
=
∫ 1

0
θ(t)dt.

Therfore, we get

c0 =
1
a1

∫ 1

0
ρ(t)dt,

and

c1 =
a2

v
Iα

0+y(1)+
b2

v
Iα−σ

0+ y(1)+
a2

a1v

∫ 1

0
ρ(t)dt +

1
v

∫ 1

0
θ(t)dt.

Substituting the value of c0,c1 in (3.20) we get (3.19).

By Lemma 3.4, the BVP (3.5) is equivalent to the equation

x(t) = f (t,x(t))
®

Iα

0+g(t,x(t))− a2t
v

Iα

0+g(1,x(1))+
b2t
v

Iα−σ

0+ g(1,x(1))

+
v−a2t

a1v

∫ 1

0
h(t,x(t))dt +

t
v

∫ 1

0
k(t,x(t))dt

´
.

In [9] the authors proved the following Lemma which will be useful in our considerations.

Lemma 3.5 ([50]). Let f : R+→ R+ be the function defined by f (t) = tα .

(i) If α ≥ 1 and t1, t2 ∈ J with t2 > t1, then tα
2 − tα

1 ≤ α(t2− t1),

(ii) If 0 < α < 1 and t1, t2 ∈ J with t2 > t1, then tα
2 − tα

1 ≤ (t2− t1)α .

For the next theorem we use the assumptions :

(C1) f ∈C(J×R,R\{0}) and g,h,k ∈C(J×R,R).
(C2) There exists an upper semi-continuous function ϕ : R+→ R+ such that ϕ(t) < t, for

any t > 0, ϕ is nondecreasing, and

| f (t,x1)− f (t,x2)| ≤ ϕ(|x1− x2|), t ∈ J, x1,x2 ∈ R.

(C3) There exist functions φ1,φ2,φ3 ∈ L1(J,R+) and ψ1,ψ2,ψ3 : R+→R+ continuous, non-
decreasing such that

|g(t,x)| ≤ φ1(t)ψ1(|x|), |h(t,x)| ≤ φ2(t)ψ2(|x|), |k(t,x)| ≤ φ3(t)ψ3(|x|).

(C4) There exists r > 0 such that

[ϕ(r)+M] (Agψ1(r)+Ahψ2(r)+Akψ3(r))≤ r,

and
Agψ1(r)+Ahψ2(r)+Akψ3(r)≤ 1,

where

M = sup
t∈J
| f (t,0)|, Ag =

Ç
v+ |a2|
|v|Γ(α)

+
|b2|

|v|Γ(α−σ)

å
‖φ1‖L1,

Ak =
‖φ3‖L1

|v|
, Ah =

|v|+ |a2|‖φ2‖L1

|a1v|
.
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Theorem 3.6. Assume that assumptions (C1)−(C4) hold. Then the Problem (3.5) has at least
one solution in the Banach algebra C(J).

Proof. To prove this result using Theorem 1.83, we consider the operator T on the Banach
algebra C(J) as follows

T x(t) = f (t,x(t))
®

Iα

0+g(t,x(t))− a2t
v

Iα

0+g(1,x(1))+
b2t
v

Iα−σ

0+ g(1,x(1))

+
v−a2t

a1v

∫ 1

0
h(t,x(t))dt +

t
v

∫ 1

0
k(t,x(t))dt

´
for t ∈ J. By virtue of Lemma 3.4, a fixed point of T gives us the desired result. We define
operators F and P on the Banach algebra C(J) in the following way :

F x(t) = f (t,x(t)),

and

Px(t) = Iα

0+g(t,x(t))− a2t
v

Iα

0+g(1,x(1))+
b2t
v

Iα−σ

0+ g(1,x(1))

+
v−a2t

a1v

∫ 1

0
h(t,x(t))dt +

t
v

∫ 1

0
k(t,x(t))dt

for t ∈ J. Then T x = (F x) · (Px) for any x ∈C(J).
We divide the proof into several steps.

Step 1 : T transforms C(J) into itself.
In fact, since the product of continuous functions is a continuous function, it is sufficient to
prove that F x,Px ∈C(J) for any x ∈C(J). Now, from the assumptions (C1), it follows that
if x ∈C(J) then F x ∈C(J). Next, we will prove that if x ∈C(J) then Px ∈C(J). To do this,
let t ∈ J be fixed, take x ∈ C(J) and let (tn) be a sequence in J such that tn → t as n→ ∞.
Without restriction of the generality, we may assume that tn ≥ t for n large enough. For every
n, we have

|Px(tn)−Px(t)|

≤
∫ t

0

(tn− s)α−1− (t− s)α−1

Γ(α)
|g(s,x(s))|ds+

∫ tn

t

(tn− s)α−1

Γ(α)
|g(s,x(s))|ds

+
tn− t

v

{
|a2|

∫ 1

0

(1− s)α−1

Γ(α)
|g(s,x(s))|ds+ |b2|

∫ 1

0

(1− s)α−σ−1

Γ(α−σ)
|g(s,x(s))|ds

+|a2|
∫ 1

0
|h(s,x(s))|ds+

∫ 1

0
|k(s,x(s))|ds

´
≤
∫ t

0

(tn− s)α−1− (t− s)α−1

Γ(α)
|g(s,x(s))|ds+

∫ tn

t

(tn− s)α−1

Γ(α)
|g(s,x(s))|ds

+
tn− t

v

{
|a2|

∫ 1

0

(1− s)α−1

Γ(α)
|g(s,x(s))|ds+ |b2|

∫ 1

0

(1− s)α−σ−1

Γ(α−σ)
|g(s,x(s))|ds

+|a2|‖φ2‖L1ψ2(‖x‖)+‖φ3‖L1ψ3(‖x‖)} .
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Since g ∈ C(J×R,R),g will be bounded on the compact J× [−‖x‖ ;‖x‖] and we put L =
sup{|g(s,x)| : s ∈ J,x ∈ [−‖x‖ ;‖x‖]}. From the last estimate and Lemma 3.5, we get

|Px(tn)−Px(t)|

≤ L(tα
n − tα)

Γ(α +1)
+

tn− t
v

® |a2|L
Γ(α +1)

+
|b2|L

Γ(α−σ +1)
+ |a2|‖φ2‖L1ψ2(‖x‖)+‖φ3‖L1ψ3(‖x‖)

´
≤ L(tn− t)

Γ(α)
+

tn− t
v

® |a2|L
Γ(α +1)

+
|b2|L

Γ(α−σ +1)
+ |a2|‖φ2‖L1ψ2(‖x‖)+‖φ3‖L1ψ3(‖x‖)

´
.

From the above inequality, we conclude that (Px)(tn)→ (Px)(t) when n→ ∞. Therefore,
Px ∈C(J). This proves that if x ∈C(J) then T x ∈C(J).

Step 2 : An estimate of ‖T x‖ for x ∈C(J).
Now, let us fix x ∈C(J), then using the assumptions (C2) and (C3), for t ∈ J we obtain

|(T x)(t)|=
∣∣∣∣∣ f (t,x(t))

ß
Iα

0+g(t,x(t))− a2t
v

Iα

0+g(1,x(1))+
b2t
v

Iα−σ

0+ g(1,x(1))

+
v−a2t

a1v

∫ 1

0
h(s,x(s))ds+

t
v

∫ 1

0
k(s,x(s))ds

™∣∣∣∣∣
≤
Ä
| f (t,x(t))− f (t,0)|+ | f (t,0)|

ä®
Iα

0+|g(t,x(t))|+
|a2|
|v|

Iα

0+|g(1,x(1))|

+
|b2|
|v|

Iα−σ

0+ |g(1,x(1))|+ |v|+ |a2|
|a1v|

∫ 1

0
|h(s,x(s))|ds+

1
|v|

∫ 1

0
|k(s,x(s))|ds

´
≤
î
ϕ(|x(t)|)+M

ó®
ψ1(‖x‖)Iα

0+φ1(t)+
|a2|ψ1(‖x‖)
|v|

Iα

0+φ1(1)

+
|b2|ψ1(‖x‖)
|v|

Iα−σ

0+ φ1(1)+
(|v|+ |a2|)|‖φ2‖L1

|a1v|
ψ2(‖x‖)+

‖φ3‖L1

|v|
ψ3(‖x‖)

´
.

It follows from, Lemma 1.34 and 1.35 that

|(T x)(t)| ≤
î
ϕ(‖x‖)+M

ó®‖φ1‖L1

Γ(α)
ψ1(‖x‖)+

|a2|‖φ1‖L1

|v|Γ(α)
ψ1(‖x‖)

+
|b2|‖φ1‖L1

|v|Γ(α−σ)
ψ1(‖x‖)+

(|v|+ |a2|)|‖φ2‖L1

|a1v|
ψ2(‖x‖)+

‖φ3‖L1

|v|
ψ3(‖x‖)

´
≤ [ϕ(‖x‖)+M] (Agψ1(‖x‖)+Akψ3(‖x‖)+Ahψ2(‖x‖)) .

Therefore,

‖T x‖ ≤ [ϕ(‖x‖)+M] (Agψ1(‖x‖)+Ahψ2(‖x‖)+Akψ3(‖x‖)) .

By assumption (C4), we deduce that the operator T maps the ball Br ⊂ C(J) into itself.
Moreover, let us observe that from the last estimates, we obtain

‖FBr‖ ≤ ϕ(r)+M,

‖PBr‖ ≤ Agψ1(r)+Ahψ2(r)+Akψ3(r).
(3.21)

Step 3 : The operators F and P are continuous on the ball Br.
In fact, firstly we prove that the operator F is continuous on the ball Br. To do this, we take
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a sequence {xn} ⊂ Br and x ∈ Br such that ‖xn−x‖→ 0 as n→∞, and we have to prove that
‖F xn−F x‖→ 0 as n→ ∞. In fact, for all t ∈ J, using the assumption (C2), we have

|(F xn)(t)− (F x)(t)|= | f (t,xn(t))− f (t,x(t))| ≤ ϕ(|xn(t)− x(t)|)
≤ ϕ(‖xn− x‖)≤ ‖xn− x‖.

So we get
‖F xn−F x‖ ≤ ‖xn− x‖.

Thus, from the above inequality we obtaind

lim
n→∞
‖F xn−F x‖= 0.

Therefore, the operator F is continuous on the ball Br.
Next, we prove that the operator P is continuous on the ball Br. To do this, fix ε > 0 and

take arbitrary x,y ∈ Br such that ‖x− y‖ ≤ ε . Then for t ∈ J, we get

(Px)(t)− (Py)(t)

=
∫ t

0

g(s,x(s))−g(s,y(s))
Γ(α)(t− s)1−α

ds− a2t
v

∫ 1

0

g(s,x(s))−g(s,y(s))
Γ(α)(1− s)1−α

ds

+
b2t
v

∫ 1

0

g(s,x(s))−g(s,y(s))
Γ(α−σ)(1− s)1+σ−α

ds+
(v−a2t)

a1v

∫ 1

0

Ä
h(s,x(s))−h(s,y(s))

ä
ds

+
t
v

∫ 1

0

Ä
k(s,x(s))− k(s,y(s))

ä
ds.

So,

|(Px)(t)− (Py)(t)|

≤ ωg(r,ε)
(∫ t

0

(t− s)α−1

Γ(α)
ds+

|a2|
|v|

∫ 1

0

(1− s)α−1

Γ(α)
ds+

|b2|
|v|

∫ 1

0

(1− s)α−σ−1

Γ(α−σ)
ds
)

+
|v|+ |a2|
|a1v|

ωh(r,ε)+
1
|v|

ωk(r,ε)

≤
Ç |v|+ |a2|

Γ(α +1)
+

|b2|
|v|Γ(α−σ +1)

å
ωg(r,ε)+

|v|+ |a2|
|a1v|

ωh(r,ε)+
1
|v|

ωk(r,ε),

where

ωg(r,ε) = sup{|g(t,u)−g(t,v)| : t ∈ J,u,v ∈ [−r ;r], |u− v| ≤ ε} ,
ωh(r,ε) = sup{|h(t,u)−h(t,v)| : t ∈ J,u,v ∈ [−r ;r], |u− v| ≤ ε} ,
ωk(r,ε) = sup{|k(t,u)− k(t,v)| : t ∈ J,u,v ∈ [−r ;r], |u− v| ≤ ε} .

Therefore,

‖Px−Py‖ ≤
Ç |v|+ |a2|

Γ(α +1)
+

|b2|
|v|Γ(α−σ +1)

å
ωg(r,ε)+

|v|+ |a2|
|a1v|

ωh(r,ε)+
1
|v|

ωk(r,ε)

Since, we know that the function g(t,x),h(t,x) and k(t,x) are uniformly continuous on the
compact J× [−r ;r], we conclude that ωg(r,ε),ωh(r,ε) and ωk(r,ε)→ 0 as ε → 0. Thus, the
above inequality gives us

lim
ε→0
‖Px−Py‖= 0.
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So, the operator P is continuous in Br. Hence we conclude that T is continuous operator on
Br.

Step 4 : Estimates of ω0(FX) and ω0(PX) for /0 6= X ⊂ Br.
Firstly, we estimate ω0(FX). Let ε > 0 be fixed, x ∈ X and t1, t2 ∈ J with |t1− t2| ≤ ε . Then,
in view of assumption (C2), we have

|(F x)(t1)− (F x)(t1)|= | f (t1,x(t1))− f (t2,x(t2))|
≤ | f (t1,x(t1))− f (t1,x(t2))|+ | f (t1,x(t2))− f (t2,x(t2))|
≤ ϕ(|x(t1)− x(t2)|)+ω( f ,ε)

≤ ϕ
Ä
ω(x,ε)

ä
+ω( f ,ε),

where

ω( f ,ε) = sup
¶
| f (t1,x)− f (t2,x)| : t1, t2 ∈ J, |t1− t2| ≤ ε, x ∈ [−r ;r]

©
.

So,
ω(FX ,ε)≤ ϕ

Ä
ω(X ,ε)

ä
+ω( f ,ε).

Observe that the function f (t,x) is uniformly continuous on the set J× [−r ;r]. Hence, we
deduce that ω( f ,ε)→ 0 as ε → 0. Thus, from the above inequality, we conclude

ω0(FX)≤ ϕ
Ä
ω0(X)

ä
. (3.22)

Next, we estimate ω0(PX). Fix ε > 0, and we take x ∈ X and t1, t2 ∈ J with t2− t1 ≤ ε and
we can assume that t1 ≤ t2. Then, in view of assumptions (C3), we get

|Px(t2)−Px(t1)|

≤
∫ t1

0

(t2− s)α−1− (t1− s)α−1

Γ(α)
|g(s,x(s))|ds+

∫ t2

t1

(t2− s)α−1

Γ(α)
|g(s,x(s))|ds

+
t2− t1

v

{
|a2|

∫ 1

0

(1− s)α−1

Γ(α)
|g(s,x(s))|ds+ |b2|

∫ 1

0

(1− s)α−σ−1

Γ(α−σ)
|g(s,x(s))|ds

+|a2|
∫ 1

0
h(s,x(s))ds+

∫ 1

0
k(s,x(s))ds

´
≤
∫ t1

0

(t2− s)α−1− (t1− s)α−1

Γ(α)
|g(s,x(s))|ds+

∫ t2

t1

(t2− s)α−1

Γ(α)
|g(s,x(s))|ds

+
t2− t1

v

{
|a2|

∫ 1

0

(1− s)α−1

Γ(α)
|g(s,x(s))|ds+ |b2|

∫ 1

0

(1− s)α−σ−1

Γ(α−σ)
|g(s,x(s))|ds

+|a2|‖φ2‖L1ψ2(‖x‖)+‖φ3‖L1ψ3(‖x‖)} .
Since g∈C(J×R,R),g will be bounded on the compact J×[−r ;r] and we put N = sup{|g(s,x)| :
s ∈ J, x ∈ [−r ;r]}. From the last estimate and Lemma 3.5, we get

|Px(t2)−Px(t1)|

≤ N(tα
2 − tα

1 )

Γ(α +1)
+

t2− t1
v

® |a2|N
Γ(α +1)

+
|b2|N

Γ(α−σ +1)
+ |a2|‖φ2‖L1ψ2(r)+‖φ3‖L1ψ3(r)

´
≤ N(t2− t1)

Γ(α)
+

t2− t1
v

® |a2|N
Γ(α +1)

+
|b2|N

Γ(α−σ +1)
+ |a2|‖φ2‖L1ψ2(r)+‖φ3‖L1ψ3(r)

´
≤ Nε

Γ(α)
+

ε

v

® |a2|N
Γ(α +1)

+
|b2|N

Γ(α−σ +1)
+ |a2|‖φ2‖L1ψ2(r)+‖φ3‖L1ψ3(r)

´
.
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Therefore,

ω(Px,ε)≤ Nε

Γ(α)
+

ε

v

® |a2|N
Γ(α +1)

+
|b2|N

Γ(α−σ +1)
+ |a2|‖φ2‖L1ψ2(r)+‖φ3‖L1ψ3(r)

´
.

Taking ε → 0, we get
ω0(PX) = 0. (3.23)

Step 5 : An estimate of ω0(T X) for /0 6= X ⊂ Br.
From Lemma 1.75 and the estimates (3.21), (3.22) and (3.23), we have

ω0(T X) = ω0(FX .PX)≤ ‖FX‖ω0(PX)+‖PX‖ω0(FX)

≤ ‖FBr0‖ω0(PX)+‖PBr0‖ω0(FX)

≤ (Agψ1(r)+Ahψ2(r)+Akψ3(r))ϕ(ω0(X)).

Under the assumption (C3), we know that

Agψ1(r)+Ahψ2(r)+Akψ3(r)≤ 1.

Hence,
ω0(T X)≤ ϕ(ω0(X)).

Then by Theorem 1.83, we deduce that the operator T has at least one fixed point in the ball
Br. Consequently, the problem (3.5) has at least one solution in Br. This completes the proof.

3.2.2 Example
Consider the following fractional hybrid problem

cD
3
2
0+
(

x(t)
1+ln(1+|x(t)|)

)
= t3

3 sin |x(t)|, t ∈ J = [0;1](
x(0)

1+ln(1+|x(0)|)

)
+b1

cD
1
2
0+
(

x(0)
1+ln(1+|x(0)|)

)
=
∫ 1

0
s2

2 sinx(s)ds
1
2

(
x(1)

1+ln(1+|x(1)|)

)
+
√

π

4
cD

1
2
0+
(

x(1)
1+ln(1+|x(1)|)

)
=
∫ 1

0
s
2x(s)cosx(s)ds

(3.24)

Corresponding to the problem (3.5), we have that α = 3/2, σ = 1/2, a1 = 1 6= 0, a2 =

1/2, b2 =
√

π/4, b1is arbitrary, f (t,x)= 1+ln(1+|x|), g(t,x)= t3

3 sinx, h(t,x)= t2

2 sinx, k(t,x)=
t
2xcosx. Further v = M = 1.
It is clear that the functions f ,g,h and k satisfy (C1) of Theorem 3.6.

On the other hand, for any t ∈ J and x1,x2 ∈ R we can assume that |x1|< |x2|. Then

| f (t,x2)− f (t,x1)|= | ln(1+ |x2|)− ln(1+ |x1|)|

≤ ln
Ç

1+ |x2|
1+ |x1|

å
= ln

Ç
1+
|x2|− |x1|
1+ |x1|

å
≤ ln(1+(|x2|− |x1|))≤ ln(1+ |x2− x1|).

Therefore, assumption (C2) of the Theorem 3.6 is satisfied, with ϕ(t) = ln(1+ t).
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Moreover, for any t ∈ J and x ∈ R, we have

|g(t,x)|= t3

3
|sinx| ≤ t3

3
|x|,

|h(t,x)|= t2

2
|sinx| ≤ t2

2
|x|,

|k(t,x)|= t
4
|xcosx(s)| ≤ t

2
|x|.

We can get that the condition (C3) of the Theorem 3.6 holds ; that is

ψ1(x) = ψ2(x) = ψ3(x) = x,

and

φ1(t) =
t3

3
, φ2(t) =

t2

2
, φ3(t) =

t
2
.

By simple calculations we get

Ag +Ah +Ak =
13π +6

24π

The inequality appearing in (C4) of Theorem 3.6 has the expression

r ≤ exp
Ç

1−Ag−Ah−Ak

Ag +Ah +Ak

å
−1 = 1.3771,

and
r ≤ 1

Ag +Ah +Ak
= 1.6097.

So, assumption (C4) of the Theorem 3.6 is satisfied for all 0 < r ≤ 1.3771.
Thus, all the assumption of Theorem 3.6 are satisfied, and consequently problem (3.24)

has at least one solution in C(J).
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Chapitre 4
Solvability of Fractional Multi-Point BVP
with Nonlinear Growth at Resonance 1

4.1 Introduction
In this chapter, by using Mawhin’s continuation theorem, we establish some sufficient

conditions for the existence of at least one solution for the following fractional multi-point
boundary value problems (BVPs) at resonance{ Ä

φ(t)cDα

0+u(t)
ä′
= f (t,u(t),u′(t),u′′(t), cDα

0+u(t)), t ∈ I = [0;1],
u(0) = 0, cDα

0+u(0) = 0, u′′(0) =
∑m

i=1 aiu′′(ξi), u′(1) =
∑l

j=1 b ju′(η j),
(4.1)

where cDα

0+ is the Caputo fractional derivative, 2 < α ≤ 3, 0 < ξ1 < · · ·< ξm < 1, 0 < η1 <

· · · < ηl < 1, ai,b j ∈ R, (i = 1, . . . ,m, j = 1, . . . , l), φ(t) ∈C1[0;1], µ = mint∈[0;1]φ(t) > 0.
The nonlinearity is such that

(H0) f : [0;1]×R4→ R is a Carathéodory function, that is,

(i) for each x ∈ R4, the function t→ f (t,x) is Lebesgue measurable ;

(ii) for almost every t ∈ [0;1], the function t→ f (t,x) is continuous on R4;

(iii) for each r > 0, there exists ϕr(t)∈ L1[0;1] such that, for a.e. t ∈ [0;1] and every |x| ≤ r,
we have | f (t,x)| ≤ ϕr(t).

The resonant conditions of (4.1) are as follows

(H1)
∑m

i=1 ai = 1,
∑l

j=1 b j = 1,
∑l

j=1 b jη j = 1.

This means that the linear operator Lu =
Ä
φ cDα

0+u
ä′ corresponding to (4.1) has a nontrivial

solutions or, in a functional framework, L is not invertible i.e. dimKerL≥ 1.
In order to make sure that the linear operator Q (to be specified later on) is well defined,

we assume in addition, that

1. Z. Baitiche, K. Guerbati, M. Benchohra and Yong Zhou, Solvability of Fractional Multi-Point BVP with
Nonlinear Growth at Resonance, Journal of Contemporary Mathematical Analysis.
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(H2) There exist p,q ∈ Z+,q≥ p+1 such that ∆(p,q) = d11d22−d12d21 6= 0, where

d11 =
m∑

i=1
ai

∫
ξi

0

sp(ξi− s)α−3

pφ(s)
ds, d21 =

m∑
i=1

ai

∫
ξi

0

sq(ξi− s)α−3

qφ(s)
ds,

d12 =
∫ 1

0

sp(1− s)α−2

pφ(s)
ds−

l∑
j=1

b j

∫
η j

0

sp(η j− s)α−2

pφ(s)
ds.

d22 =
∫ 1

0

sq(1− s)α−2

qφ(s)
ds−

l∑
j=1

b j

∫
η j

0

sq(η j− s)α−2

qφ(s)
ds.

The existence of solutions for fractional boundary-value problems at resonance case has been
extensively studied by many authors ; see [22, 23, 24, 25, 47, 66, 67, 68, 71, 72, 77, 78, 119]
and the references therein. It is considerable that there are many papers that have dealt with
the solutions of multi-point boundary value problems of fractional differential equations at
resonance [23, 24, 47, 71].

In this chapter, we study (4.1) at resonance which allow f to have nonlinear growth.

4.2 Main Results
For our purpose, the adequate functional space is :

X = {u : cDα

0+u ∈C[0;1],usatisfies boundary value conditions of (4.1) } .

Equipped with norm

‖u‖X = ‖u‖∞ +‖u′‖∞ +‖u′′‖∞ +‖cDα

0+u‖∞, where ‖u‖∞ = max
t∈[0;1]

|u(t)|.

By means of the functional analysis theory, we can prove that (X ,‖ · ‖X) is Banach space.
Let Y = L1[0;1] be the Lebesgue space of real measurable functions t → y(t) defined

on [0;1] and such that t → |y(t)| is Lebesgue integrable. Y is Banach space with the norm
‖y‖L1 =

∫ 1
0 |y(t)|dt. Define L to be the linear operator from domL

⋂
X to Y :

Lu = (φ cDα

0+u)′ , u ∈ domL. (4.2)

where
domL = {u ∈ X | cDα

0+u(t) is absolutely continuous on [0;1]}

and define the operator N : X → Y as :

Nu(t) = f (t,u(t),u′(t),u′′(t), cDα

0+u(t)), t ∈ [0;1].

Then the boundary value problem (4.1) can be written in abstract form as :

Lu = Nu, u ∈ domL.

To study the compactness of operator N, we need the following Lemma.
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Lemma 4.1. U ⊂ X is a relatively compact set in X if and only if U is uniformly bounded
and equicontinuous. Here uniformly bounded means there exists M > 0 such that for every
u ∈U

‖u‖X = ‖u‖∞ +‖u′‖∞ +‖u′′‖∞ +‖cDα

0+u‖∞ ≤M.

and equicontinuous means that ∀ε > 0, ∃δ > 0, such that

|u(i)(t1)−u(i)(t2)|< ε, ∀u ∈U, ∀t1, t2 ∈ I, |t1− t2|< δ , ∀i ∈ {0,1,2}.

and
|cDα

0+u(t1)− cDα

0+u(t2)|< ε, ∀u ∈U, ∀t1, t2 ∈ I, |t1− t2|< δ .

Let T1, T2 : Y → Y be two linear operators defined as follows

T1(y) =
m∑

i=1
ai

∫
ξi

0

(ξi− s)α−3

φ(s)

∫ s

0
y(r)dr ds,

T2(y) =
∫ 1

0

(1− s)α−2

φ(s)

∫ s

0
y(r)dr ds−

l∑
j=1

b j

∫
η j

0

(η j− s)α−2

φ(s)

∫ s

0
y(r)dr ds.

Lemma 4.2. Let L be the operator defined by (4.2). Then

KerL = {u | u(t) = c1t + c2t2, c1,c2 ∈ R},

and ImL = {y ∈ Y | T1(y) = T2(y) = 0}. (4.3)

Proof. Firstly, u∈KerL if and only if
Ä
φ(t)cDα

0+u(t)
ä′
= 0 which from condition cDα

0+u(0)=
0 has cDα

0+u(t) = 0 ; this with u(0) = 0 yield u(t) = c1t + c2t2. So we just characterize ImL.
Given y ∈ ImL, there exists u ∈ domL such that

Ä
φ(t)cDα

0+u(t)
ä′
= y(t) we have

cDα

0+u(t) =
1

φ(t)

∫ t

0
y(s)ds.

By Lemma 1.44 and u(0) = 0, we find

u(t) = c1t + c2t2 +
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)dr ds, c1,c2 ∈ R, (4.4)

By u′′(0) =
∑m

i=1 aiu′′(ξi) and
∑l

i=1 ai = 1. We obtain

l∑
i=1

ai

∫
ξi

0

(ξi− s)α−3

φ(s)

∫ s

0
y(r)dr ds = 0.

From the conditions u′(1) =
∑l

j=1 b ju′(η j) and
∑l

j=1 b j =
∑l

j=1 b jη j = 1. We get

∫ 1

0

(1− s)α−2

φ(s)

∫ s

0
y(r)dr ds−

l∑
j=1

b j

∫
η j

0

(η j− s)α−2

φ(s)

∫ s

0
y(r)dr ds = 0.
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On the other hand, we let

u(t) = c1t + c2t2 +
∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)dr ds,

where c1,c2 are arbitrary constants. It is clear that u(0) = 0, in view of Lemma 1.42 and 1.43,
we obtain cDα

0+u(0) = 0 and
Ä
φ(t)cDα

0+u(t)
ä′
= y(t) for all t ∈ [0;1]. If T1(y) = T2(y) = 0

holds, we can calculate the following equations

u′′(0)−
m∑

i=1
aiu′′(ξi) =

T1(y)
Γ(α−2)

= 0, u′(1)−
l∑

j=1
b ju′(η j) =

T2(y)
Γ(α−1)

= 0.

So, u ∈ domL and y ∈ ImL. Then, we complete the proof.

Lemma 4.3. L is a Fredholm operator of index zero, and the inverse linear operator Kp =
L−1

p : ImL→ domL∩KerP is defined by

(Kpy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)dr ds. (4.5)

It satisfies,

‖Kpy‖X ≤ ρ1‖y‖L1. (4.6)

where

ρ1 =
1
µ

Ç
1

Γ(α +1)
+

1
Γ(α)

+
1

Γ(α−1)
+1
å

(4.7)

Proof. Consider continuous linear mapping Q : Y → Y defined by

Qy = Q1(y).t p−1 +Q2(y).tq−1 (4.8)

where p,q are given by (H2) and

Q1(y) =
1

∆(p,q)
(d22T1(y)−d21T2(y)),

Q2(y) =
1

∆(p,q)
(−d12T1(y)+d11T2(y)),

We will prove that KerQ = ImL. Obviously, ImL⊂ KerQ. As well, if y ∈ KerQ, then®
d22T1(y)−d21T2(y) = 0.
−d12T1(y)+d11T2(y) = 0. (4.9)

The determinant of coefficiency for (4.9) is ∆(p,q) 6= 0. we get T1(y) = T2(y) = 0 and that
implies y ∈ ImL. So, KerQ⊂ ImL. Now, we prove Q2y = Qy, y ∈ Y . For y ∈ Y, we have

Q1(Q1(y).t p−1) =
1

∆(p,q)

î
d22T1(Q1(y).t p−1)−d21T2(Q1(y).t p−1))

ó
=

1
∆(p,q)

(d22d11−d21d12)Q1y

= Q1y,
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Q1(Q2(y).tq−1) =
1

∆(p,q)

î
d22T1(Q2(y).tq−1)−d21T2(Q2(y).tq−1)

ó
=

1
∆(p,q)

(d22d21−d21d22)Q2y

= 0,

Similarly, we obtain

Q2(Q1(y).t p−1) = 0, Q2(Q2(y).tq−1) = Q2y.

Therefore, we get

Q2y = Q1(Q1(y).t p−1).t p−1 +Q1(Q2(y).tq−1).t p−1

+Q2(Q1(y).t p−1).tq−1 +Q2(Q2(y).tq−1).tq−1

= Q1(y).t p−1 +Q2(y).tq−1

= Qy.

That implies the operator Q is a projector.
Take y ∈Y in the form y = (y−Qy)+Qy. Then, (y−Qy) ∈KerQ = ImL and Qy ∈ ImQ.

Thus Y = ImQ+ ImL. And for any y ∈ ImQ∩ ImL, from y ∈ ImQ, there exists constants
c1, c2 ∈ R such that y(t) = c1.t p−1 + c2.tq−1, from y ∈ ImL, we obtain®

d11c1 +d21c2 = 0,
d12c1 +d22c2 = 0. (4.10)

The determinant of coefficiency for (4.10) is ∆(p,q) 6= 0. Therefore (4.10) has an unique
solution c1 = c2 = 0, which implies ImQ∩ ImL = 0. Then, we have

Y = ImQ⊕KerQ = ImQ⊕ ImL. (4.11)

Thus, dimKerL= 2= dimImQ= codimKerQ= codimImL, this means that L is a Fredholm
operator of index zero.

Let a mapping P : X → X be defined by

Pu(t) = u′(0)t +
u′′(0)

2
t2. (4.12)

We note that P is a linear continuous projector and ImP = KerL. It follows from u = (u−
Pu)+Pu that X = KerP+KerL. By simple calculation, we obtain that KerL∩KerP = {0}.
Hence

X = KerL⊕KerP. (4.13)

Define Kp : ImL→ domL∩KerP as follows :

(Kpy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)dr ds.
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Now, we will prove that Kp is the inverse of L |domL∩KerP. In fact, for u ∈ domL∩KerP, we
have

(KpL)u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
(φ cDα

0+u)′ (r)dr ds = Iα

0+
cDα

0+u(t)

= u(t)+u(0)+u′(0)t +
u′′(0)

2
t2,

In view of u ∈ domL∩KerP, u(0) = 0 and Pu = 0. Thus

(KpL)u(t) = u(t), (4.14)

and for y ∈ ImL, we find

(LKp)y(t) = L(Kpy)(t) =
[
φ(t) cDα

0+Iα

0+

(
I1
0+y
φ

)
(t)
]′
= y(t).

Thus, Kp = (L |domL∩KerP)
−1. Again for each y ∈ ImL, and from Lemmas 1.43, 1.34 and

1.35, we have

‖Kpy‖X =
2∑

i=0
max

t∈[0;1]
|(Kpy)(i)(t)|+ max

t∈[0;1]
|cDα

0+(Kpy)(t)|

=
2∑

i=0
max

t∈[0;1]

∣∣∣∣∣Iα−i
0+

(
I1
0+y
φ

)
(t)
∣∣∣∣∣+ max

t∈[0;1]

∣∣∣∣∣
(

I1
0+y
φ

)
(t)
∣∣∣∣∣

≤
2∑

i=0
max

t∈[0;1]

∣∣∣∣∣∣ I
α+1−i
0+ y(t)

µ

∣∣∣∣∣∣+ max
t∈[0;1]

∣∣∣∣∣ I1
0+y(t)

µ

∣∣∣∣∣
≤

2∑
i=0

‖y‖L1

µΓ(α +1− i)
+
‖y‖L1

µ

≤ ρ1‖y‖L1 .

Lemma 4.4. Suppose that Ω is an open bounded subset of X such that domL
⋂

Ω 6= /0. Then
N is L-compact on Ω.

Proof. It is clear that QN(Ω) and Kp(Id−Q)N(Ω) are bounded, due to the fact that f realize
the Carathéodory conditions. Using the Lebesgue dominated convergence theorem 1.55, we
can easily find that QN and KP,Q N =Kp(Id−Q)N : Ω→X are continuous. By the hypothesis
(iii) on the function f , there exists a constant M > 0, such that |(Id−Q)N(u(t))| ≤M, for all
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u ∈Ω, t ∈ [0;1]. For i = 0,1,2, 0≤ t1 ≤ t2 ≤ 1, and u ∈Ω, we have∣∣∣(KP,Q Nu)(i)(t2)− (KP,Q Nu)(i)(t1)
∣∣∣

=
1

Γ(α− i)

∣∣∣∣∣
∫ t2

0

(t2− s)α−i−1

φ(s)

∫ s

0
(Id−Q)Nu(r)dr ds

−
∫ t1

0

(t1− s)α−i−1

φ(s)

∫ s

0
(Id−Q)Nu(r)dr ds

∣∣∣∣∣
≤ M

µΓ(α− i)

®∫ t1

0
(t2− s)α−i−1− (t1− s)α−i−1 ds+

∫ t2

t1
(t2− s)α−i−1 ds

´
=

M
µΓ(α +1− i)

(tα−i
2 − tα−i

1 ).

Furthermore, we have∣∣∣cDα

0+KP,Q Nu(t2)− cDα

0+KP,Q Nu(t1)
∣∣∣

=

∣∣∣∣∣ 1
φ(t2)

∫ t2

0
(Id−Q)Nu(s)ds− 1

φ(t1)

∫ t1

0
(Id−Q)Nu(s)ds

∣∣∣∣∣
=

∣∣∣∣∣
Ç

1
φ(t2)

− 1
φ(t1)

å∫ t1

0
(Id−Q)Nu(s)ds+

1
φ(t2)

∫ t2

t1
(Id−Q)Nu(s)ds

∣∣∣∣∣
≤ M

µ2 |φ(t2)−φ(t1)|+
M
µ
(t2− t1).

Since tα , tα−1, tα−2 and φ(t) are uniformly continuous on [0;1], we get that Kp(Id−Q)N : Ω→
X is compact. The Lemma is then proved.

Theorem 4.5. In addition to (H0)− (H2), suppose that the following conditions hold :

(H3) There exists a Carathéodory function Φ : [0;1]×(R+)
4→R+ nondecreasing with res-

pect to the last four arguments such that

| f (t,x0,x1,x2,x3)| ≤Φ(t, |x0|, |x1|, |x2|, |x3|),

(H4) limr→∞ sup 1
r
∫ 1

0 |Φ(s,r,r,r,r)|ds < 1
ρ1+ρ2

where ρ1 is defined by (4.7) and

ρ2 =
1
µ

Ç
2

Γ(α)
+

5
Γ(α−1)

å
.

(H5) There exists a constant A> 0 such that for u∈ domL\KerL, if |u′(t)|>A or |u′′(t)|>A
for all t ∈ [0;1], then T1(Nu) 6= 0 or T2(Nu) 6= 0.

(H6) There exists a constant B > 0 such that for any c1, c2 ∈ R, if |c1| > B, |c2| > B, then
either

T1N(c1t + c2t2)+T2N(c1t + c2t2)< 0,

or
T1N(c1t + c2t2)+T2N(c1t + c2t2)> 0.

66



4.2. MAIN RESULTS

Then, the problem (4.1) has at least one solution.

Remark 4.6. A sufficient condition for (H3) be satisfied is the existence of functions θi(t) ∈
Y, i = 0, . . . ,5 and a constant ν ∈ (0;1) such that for all x0,x1,x2,x3 ∈ R and t ∈ [0;1] the
nonlinearity f verifies one of the following growth conditions :

| f (t,x0,x1,x2,x3)| ≤
3∑

i=0
θi(t)|xi|+θ4(t)|x0|ν +θ5(t),

| f (t,x0,x1,x2,x3)| ≤
3∑

i=0
θi(t)|xi|+θ4(t)|x1|ν +θ5(t),

| f (t,x0,x1,x2,x3)| ≤
3∑

i=0
θi(t)|xi|+θ4(t)|x2|ν +θ5(t),

| f (t,x0,x1,x2,x3)| ≤
3∑

i=0
θi(t)|xi|+θ4(t)|x3|ν +θ5(t).

In this case, (H4) reduces to
(H∗4 )

∑3
i=0 ‖θi‖L1 < 1

ρ1+ρ2
.

Proof. Consider the set

Ω1 = {u ∈ domL\KerL | Lu = λNu, λ ∈ [0;1]}

Then for u ∈ Ω1, Lu = λNu, thus λ 6= 0, Nu ∈ ImL = KerQ⊂ Y , hence, Q(Nu) = 0 that is,
T1(Nu) = T2(Nu) = 0. From (H5) we have that the exists t1, t2 ∈ [0;1] such that, |u′(t1)| ≤
A, |u′′(t2)| ≤ A.

If t1 = t2 = 0, we have that |u′(0)| ≤ A, |u′′(0)| ≤ A. Otherwise, by Lu = λNu, we obtain

u(t) = u′(0)t +
u′′(0)

2
t2 +

λ

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
Nu(r)dr ds.

If t2 6= 0, then

u′′(t2) = u′′(0)+
λ

Γ(α−2)

∫ t2

0

(t2− s)α−3

φ(s)

∫ s

0
Nu(r)dr ds,

together with |u′′(t2)| ≤ A, we have

|u′′(0)| ≤ |u′′(t2)|+
1

Γ(α−2)

∫ t2

0

(t2− s)α−3

φ(s)

∫ s

0
|Nu(r)|dr ds

≤ A+
‖Nu‖L1

µΓ(α−1)
.

Consequently

|u′′(0)| ≤ A+
1

µΓ(α−1)
‖Nu‖L1. (4.15)
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If t1 6= 0, thus

u′(t1) = u′(0)+u′′(0)t1 +
λ

Γ(α−1)

∫ t1

0

(t1− s)α−2

φ(s)

∫ s

0
Nu(r)dr ds,

according to (4.15) and |u′(t1)| ≤ A, we get

|u′(0)| ≤ |u′(t1)|+ |u′′(0)|+
1

Γ(α−1)

∫ t1

0

(t1− s)α−2

φ(s)

∫ s

0
|Nu(r)|dr ds

≤ 2A+
1
µ

Ç
1

Γ(α)
+

1
Γ(α−1)

å
‖Nu‖L1 .

So

|u′(0)| ≤ 2A+
1
µ

Ç
1

Γ(α)
+

1
Γ(α−1)

å
‖Nu‖L1. (4.16)

Again for u ∈Ω1, we get

‖Pu‖X =
2∑

i=0
max

t∈[0;1]
|(Pu)(i)(t)|+ max

t∈[0;1]
|cDα

0+(Pu)(t)| ≤ 2|u′(0)|+3|u′′(0)|.

From (4.15) and (4.16), we obtain

‖Pu‖X ≤ 7A+ρ2‖Nu‖L1. (4.17)

Again for all u ∈Ω1, we have (Id−P)u ∈ domL∩KerP ; thus by (4.14) and (4.6), we find

‖(Id−P)u‖X = ‖KpL(Id−P)u‖X ≤ ρ1‖L(Id−P)u‖L1 = ρ1‖Lu‖L1 ≤ ρ1‖Nu‖L1. (4.18)

From (4.17) and (4.18), we obtain

‖u‖X ≤ ‖Pu‖X +‖(Id−P)u‖X ≤ 7A+(ρ1 +ρ2)‖Nu‖L1. (4.19)

On the other hand from (H3), we have

‖Nu‖L1 =
∫ 1

0

∣∣∣ f (s,u(s),u′(s),u′′(s), cDα

0+u(s))
∣∣∣ds

≤
∫ 1

0

∣∣∣Φ(s,u(s),u′(s),u′′(s), cDα

0+u(s))
∣∣∣ds

≤
∫ 1

0
|Φ(s,‖u‖X ,‖u‖X ,‖u‖X ,‖u‖X)|ds

(4.20)

Because the function Φ is Carathéodory, then the function Ψ : R+→ R+ given by Ψ(r) =
1
r
∫ 1

0 |Φ(s,r,r,r,r)|ds is well defined. Let ` = limr→∞ supΨ(r). By (H4) 0 < ` < 1
ρ1+ρ2

, then
for each 0 < ε < 1

ρ1+ρ2
− `, there exists rε such that

r ≥ rε =⇒Ψ(r)< `+ ε.
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If ‖u‖X ≥ rε , then Ψ(‖u‖X)<
1

ρ1+ρ2
and thus (4.20) implies that

‖Nu‖L1 ≤ (`+ ε)‖u‖X . (4.21)

Therefore, (4.19) and (4.21), it yield

rε ≤ ‖u‖X ≤
7A

1− (ρ1 +ρ2)(`+ ε)
.

Consequently

‖u‖X ≤max
®

rε ,
7A

1− (`+ ε)(ρ1 +ρ2)

´
=

7A
1− (`+ ε)(ρ1 +ρ2)

. (4.22)

Since (4.22) is valid for all 0 < ε < 1
ρ1+ρ2

− `, then

‖u‖X ≤
7A

1− `(ρ1 +ρ2)
.

So, Ω1 is bounded. Let
Ω2 = {u ∈ KerL | Nu ∈ ImL}

For u ∈ Ω2, then u ∈ KerL =
¶

u | u(t) = c1t + c2t2, c1,c2 ∈ R
©
, and Q(Nu) = 0, that is,

T1N(c1t+c2t2) = T2N(c1t+c2t2) = 0. From condition (H6), we get |c1| ≤B, |c2| ≤B. Hence,
Ω2 is bounded. Let

Ω3 = {u ∈ KerL | −λJu+(1−λ )QNu = 0, λ ∈ [0;1]}

if the first part of (H6) holds.
Or we’ll set

Ω3 = {u ∈ KerL | λJu+(1−λ )QNu = 0, λ ∈ [0;1]}

if the second part of (H6) holds.
Where J : KerL→ ImQ is the linear isomorphism given by

J(c1t + c2t2) = ω1.t p−1 +ω2.tq−1, c1,c2 ∈ R. (4.23)

where
ω1 =

1
∆(p,q)

(d22|c1|−d21|c2|), ω2 =
1

∆(p,q)
(−d12|c1|+d11|c2|).

Without loss of generality, we assume that the first part of (H6) hold.
In fact u ∈Ω3, means that u = c1t + c2t2 and −λJu+(1−λ )QNu = 0. Then we obtain

−λJ(c1t + c2t2)+(1−λ )QN(c1t + c2t2) = 0. (4.24)

If λ = 0, then |c1| ≤ B, |c2| ≤ B. If λ = 1, then®
d22|c1|−d21|c2|= 0,
−d12|c1|+d11|c2|= 0. (4.25)
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The determinant of coefficiency for (4.25) is ∆(p,q) 6= 0. Thus, (4.25) only have zero solu-
tions, that is c1 = c2 = 0.
Otherwise, if λ 6= 0 and λ 6= 1, again from (4.23), (4.24) becomes

λ (ω1.t p−1 +ω2.tq−1) = (1−λ )
Ä
Q1N(c1t + c2t2).t p−1 +Q2N(c1t + c2t2).tq−1ä .

Hence, ®
λω1 = (1−λ )Q1(c1t + c2t2),
λω2 = (1−λ )Q2(c1t + c2t2).

Thus, ®
λ |c1|= (1−λ )T1N(c1t + c2t2),
λ |c2|= (1−λ )T2N(c1t + c2t2).

Then, we get

λ (|c1|+ |c2|) = (1−λ )
Ä
T1N(c1t + c2t2)+T2N(c1t + c2t2)

ä
< 0.

By the first part of (H6), we have |c1| ≤ B, |c2| ≤ B. Here, Ω3 is bounded.
Now, we shall prove that all the conditions of Theorem 1.106 are satisfied. Let Ω to be

a bounded open set of X containing
⋃3

i=1 Ωi. By Lemma 4.4, N is L-compact on Ω. Because
Ω1 and Ω2 are bounded sets, then

(1) Lu 6= λNu for each (u,λ ) ∈ [(domL\KerL)∩∂Ω]× (0;1);
(2) Nu /∈ ImL for each u ∈ KerL∩∂Ω.

At least we will prove that (3) of Theorem 1.106 is satisfied. Let

H(u,λ ) =±λJu+(1−λ )QNu

Because Ω3 is bounded, then

H(u,λ ) 6= 0, ∀u ∈ KerL
⋂

∂Ω.

Appealing to the homotopy property of the degree, we obtain

deg(QN |KerL,Ω
⋂

KerL,0) =deg(H(·,0),Ω
⋂

KerL,0)

=deg(H(·,1),Ω
⋂

KerL,0)

=deg(±J,Ω
⋂

KerL,0) 6= 0.

Then by Theorem 1.106, Lu = Nu has at least one solution in domL
⋂

Ω, we conclude that
the boundary value problem (4.1) has at least one solution in X . The proof is finished.

4.2.1 Example
To illustrate our main results, we will present an example.

Example 4.7. Let us consider the following fractional boundary value problem

(φ(t)cD
5
2
0+u(t))′ = f (t,u(t),u′(t),u′′(t), cD

5
2
0+u(t)), t ∈ [0;1]

u(0) = cDα

0+u(0) = 0, u′′(0) =−u′′(
1
3
)+2u′′(

1
6
), u′(1) =−2u′(

1
4
)+3u′(

1
2
).

(4.26)
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where φ(t) = et−3 and

f (t,x0,x1,x2,x3) = x2 + cosx3(1− sinx1)+
»
|x2|.

Corresponding to the problem (4.1), we have that α = 5
2 , l = 2, m= 2, a1 =−1, a2 = 2, ξ1 =

1
3 , ξ2 = 1

6 , b1 = −2, b2 = 3, η1 = 1
4 , η2 = 1

2 , µ = mint∈[0;1]φ(t) = e−3 > 0. Then we get
a1 +a2 = b1 +b2 = 1, b1η1 +b2η2 = 1. Thus the condition (H1) holds. Also we find

T1(y) =−
∫ 1

3

0

Ç
1
3
− s
å− 1

2
e3−s

∫ s

0
y(r)dr ds+2

∫ 1
6

0

Ç
1
6
− s
å− 1

2
e3−s

∫ s

0
y(r)dr ds,

T2(y) =
∫ 1

0
(1− s)

1
2 e3−s

∫ s

0
y(r)dr ds−2

∫ 1
4

0

Ç
1
4
− s
å 1

2
e3−s

∫ s

0
y(r)dr ds

+3
∫ 1

2

0

Ç
1
2
− s
å 1

2
e3−s

∫ s

0
y(r)dr ds.

By calculations, we get

∆(1,2) =
∣∣∣∣∣ −761/993 −301/982

1545/311 463/431

∣∣∣∣∣= 263
376
6= 0,

Therefore, the condition (H2) holds. On the other hand, we have

| f (t,x0,x1,x2,x3)| ≤ |x2|+
»
|x2|+2.

We can get that the condition (H3) holds, where

θ0(t) = θ1(t) = θ3(t) = 0, θ2(t) = 1, θ4(t) =
1
2
, θ5(t) = 2, ν =

1
2
.

Also we have

(ρ1 +ρ2)
3∑

i=0
‖θi‖L1 = e−3

Ç
1

Γ(3.5)
+

3
Γ(2.5)

+
6

Γ(1.5)
+1
å
=

833
1620

< 1.

Therefore, the condition (H∗4 ) holds.
Let A = 9 and assume that |u′′(t)| > 9 holds for all t ∈ [0;1], by the continuity of u′′(t),

we either have u′′(t) > 9, for all t ∈ [0;1], or u′′(t) < −9, for all t ∈ [0;1]. If u′′(t) > 9, for
all t ∈ [0;1] we obtain

T2(y) =
∫ 1

0
(1− s)

1
2 e3−s

∫ s

0

(
u′′(r)+ cos cDα

0+u(r)(1− sinu′(r))+
»
|u′′(r)|

)
dr ds

−2
∫ 1

4

0

Ç
1
4
− s
å 1

2
e3−s

∫ s

0

(
u′′(r)+ cos cDα

0+u(r)(1− sinu′(r))+
»
|u′′(r)|

)
dr ds

+3
∫ 1

2

0

Ç
1
2
− s
å 1

2
e3−s

∫ s

0

(
u′′(r)+ cos cDα

0+u(r)(1− sinu′(r))+
»
|u′′(r)|

)
dr ds.

≥ 5
∫ 1

0
s(1− s)

1
2 e3−s ds−14

∫ 1
4

0
s
Ç

1
4
− s
å 1

2
e3−s ds+15

∫ 1
2

0
s
Ç

1
2
− s
å 1

2
e3−s ds

≥ 7280
257
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If u′′(t)<−9, for all t ∈ [0;1] we obtain

T2(y) =
∫ 1

0
(1− s)

1
2 e3−s

∫ s

0

(
u′′(r)+ cos cDα

0+u(r)(1− sinu′(r))+
»
|u′′(r)|

)
dr ds

−2
∫ 1

4

0

Ç
1
4
− s
å 1

2
e3−s

∫ s

0

(
u′′(r)+ cos cDα

0+u(r)(1− sinu′(r))+
»
|u′′(r)|

)
dr ds

+3
∫ 1

2

0

Ç
1
2
− s
å 1

2
e3−s

∫ s

0

(
u′′(r)+ cos cDα

0+u(r)(1− sinu′(r))+
»
|u′′(r)|

)
dr ds.

≤−4
∫ 1

0
s(1− s)

1
2 e3−s ds+14

∫ 1
4

0
s
Ç

1
4
− s
å 1

2
e3−s ds−12

∫ 1
2

0
s
Ç

1
2
− s
å 1

2
e3−s ds

≤−12329
544

So condition (H5) is satisfied.
Let B = 1 and c1,c2 ∈ R be such that |c1|> 1, |c2|> 1, we have

T1N(c1t + c2t2)+T2N(c1t + c2t2) = (2|c2|+
»

2|c2|)(d11 +d12)< 0.

So, (H6) hold.
Then, all the assumptions of Theorem 4.5 hold. Thus, the problem (4.26) has at last one
solution.
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Chapitre 5
Solvability for Multi-Point BVP of
Nonlinear Fractional Differential Equations
at Resonance with Three Dimensional
Kernels 1

5.1 Introduction
The present work in this chapter is concerned with a kind of fractional differential equa-

tion witch can be written as Lx = Nx, where L is a linear Fredholm operator of index zero
and N is a nonlinear operator. It is well known that if the kernel of the linear part of the
above equation contains only zero, the corresponding boundary value problem is called non-
resonant, in this case L is invertible, the equation can be reduced to a fxed point problem for
the L−1N operator. Otherwise, if L is a non-invertible, i.e. dimKerL≥ 1, then the problem is
said to be at resonance, and then the problem can be solved by using the coincidence degree
theory. The higher value of dimKerL, is the more difficult, it will solve the problem. More
recently, many authors investigated the existence of solutions for fractional differential equa-
tions at resonance. For instance see [22, 23, 24, 25, 47, 66, 67, 68, 71, 72, 77, 78, 119] and
the references therein.

The case of dimKerL = 1 has been discussed by many authors [22, 24, 25, 47, 66, 67,
68, 72, 77, 78, 119]. In [24], Z. Bai and Zhang investigated the boundary value problem for a
fractional differential equation with nonlinear growth with dimKerL = 1 :®

Dα

0+u(t) = f (t,u(t),Dα−1
0+ u(t)), t ∈ [0;1],

u(0) = 0, u(1) = σu(η),

where Dα

0+ is the standard Riemann-Liouville derivative, 1 < α ≤ 2, f : [0;1]×R2 → R is
continuous and σ ∈ (0,∞), η ∈ (0;1) are given constants such that σηα−1 = 1.

Z. Hu et al. showed in [67] an existence of solutions a two-point boundary value problems

1. Z. Baitiche, M. Benbachir and K. Guerbati, Solvability for Multi-Point BVP of Nonlinear Fractional
Differential Equations at Resonance with Three Dimensional Kernels, Kragujevac Journal of Mathematics.
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for fractional differential equations at resonance with dimKerL = 1 :®
Dα

0+u(t) = f (t,u(t),u′(t)), t ∈ [0;1],
u(0) = 0, u(1) = u′(1),

where Dα

0+ is the Caputo fractional derivative, 1 < α ≤ 2, f : [0;1]×R2 → R satisfies the
Carathéodory condition.

L. Hu et al. have studied in [68] a two-point boundary value problems for fractional
differential equations at resonance with dimKerL = 1 : Dα

0+u(t) = f (t,u(t),Dα−1
0+ u(t),Dα−2

0+ u(t), . . . ,Dα−(N−1)
0+ u(t)),

u(0) = Dα−2
0+ u(0) = · · ·= Dα−(N−1)

0+ u(0) = 0, Dα−1
0+ u(0) = Dα−1

0+ u(1),

where 0< t < 1, N−1<α ≤N, Dα

0+ is Riemann-Liouville fractional derivative, and f : [0;1]×
R2→ R, is continuous function.

Y. Chen and Tang studied in [47] the existence of solutions for the following fractional
multi-point boundary value problems at resonance with dimKerL = 1 :{Ä

a(t)cDα

0+u(t)
ä′
= f (t,u(t),u′(t), cDα

0+u(t)), t ∈ J,
u(0) = 0, cDα

0+u(0) = 0, u(1) =
∑m−1

j=1 σ ju(ξ j),

where cDα

0+ is the Caputo fractional derivative, 1<α ≤ 2, f : [0;1]×R3→R satisfies the Ca-
rathéodory conditions, a(t) ∈C1[0;1], mint∈J a(t)> 0, J = [0;1], σ j ∈ R∗+, ξ j ∈ (0,1), j =
1, . . . ,m−1, m ∈ N, m > 1, and

∑m−1
j=1 σ jξ j = 1.

For the case of dimKerL= 2, there are some results in [23, 71]. Bai and Zhang established
in [23] the existence of at least one solution for the m-point boundary value problems for
fractional differential equations at resonance with dimKerL = 2,{

Dα

0+u(t) = f (t,u(t),Dα−2
0+ u(t),Dα−1

0+ u(t)), t ∈ (0;1),
Iα−1
0+ u(0) = 0, Dα−1

0+ u(0) = D3−α

0+ (η), u(1) =
∑m

i=1 αiu(ηi),

where 2<α < 3, 0<η ≤ 1, 0<η1 <η2 < · · ·<ηm < 1, m≥ 2,
∑m

i=1 αiη
α−1
i =

∑m
i=1 αiη

α−2
i =

1.Dα

0+ and Iα

0+ are the standard Riemann-Liouville fractional derivative and fractional inte-
gral respectively and f : [0;1]×R3 → R satisfies the Carathéodory conditions. The results
are obtained under the assumption that

R =
1
α

η
α Γ(α)Γ(α−1)

Γ(2α−1)

1−
m∑

i=1
αiη

2α−2
i

− 1
α−1

η
α−1 (Γ(α))2

Γ(2α)

1−
m∑

i=1
αiη

2α−1
i

 6= 0.

W. Jiang showed in [71] an existence result for the boundary value problems of fractional
differential equations at resonance with dimKerL = 2 :{

Dα

0+u(t) = f (t,u(t),Dα−1
0+ u(t)), ∀t ∈ J = [0;1],

u(0) = 0, Dα−1
0+ u(0) =

∑m
i=1 aiDα−1

0+ (ξi), Dα−2
0+ u(0) =

∑n
j=1 b jDα−2

0+ (η j),

where 2 < α < 3, Dα

0+ is Riemann-Liouville fractional derivative, 0 < ξ1 < ξ2 < · · ·< ξm <

1, 0 < η1 < η2 < · · ·< ηn < 1,
∑m

i=1 ai = 1,
∑n

j=1 b j = 1,
∑n

j=1 b jη j = 1, f : [0;1]×R2→R
satisfies the Carathéodory conditions. The results are obtained under the assumption that

1
3

1−
n∑

j=1
b jη

3
j

 m∑
i=1

aiξi−
1
2

1−
n∑

j=1
b jη

2
j

 m∑
i=1

aiξ
2
i 6= 0.
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Thus, motivated by the results mentioned, in this paper, we discuss the existence of solu-
tions for the following multi-point boundary value problems by using Mawhin’s continuation
theorem :

Ä
φ(t)cDα

0+u(t)
ä′
= f (t,u(t),u′(t),u′′(t),u′′′(t), cDα

0+u(t)), t ∈ I = [0;1]
u(0) = 0, cDα

0+u(0) = 0, u′′′(0) =
∑m

i=1 aiu′′′(ξi),
u′′(0) =

∑l
j=1 b ju′′(η j), u′(1) =

∑n
k=1 cku′(ρk),

(5.1)

where cDα

0+ is the Caputo fractional derivative, 3 < α ≤ 4, 0 < ξ1 < · · · < ξm < 1, 0 <
η1 < · · · < ηl < 1, 0 < ρ1 < · · · < ρn < 1, ai,b j,ck ∈ R, (i = 1, . . . ,m, j = 1, . . . , l, k =
1, . . . ,n), φ(t)∈C1[0;1], µ =mint∈I φ(t)> 0 and f : [0;1]×R5→R is a Carathéodory func-
tion, that is,

(i) for each x ∈ R5, the function t→ f (t,x) is Lebesgue measurable ;

(ii) for almost every t ∈ [0;1], the function t→ f (t,x) is continuous on R5;

(iii) for each r > 0, there exists ϕr(t) ∈ L1[0;1] such that, for a.e. t ∈ [0;1] and every |x| ≤ r,
we have | f (t,x)| ≤ ϕr(t).

In this work, we will always suppose that the following condition hold :

(H1)
∑m

i=1 ai =
∑l

j=1 b j =
∑n

k=1 ck = 1,
∑l

j=1 b jη j = 0,
∑n

k=1 ckρk =
∑n

k=1 ckρ2
k = 1.

(H2)

∆ =

∣∣∣∣∣∣∣
d11 d12 d13
d21 d22 d23
d31 d32 d33

∣∣∣∣∣∣∣ 6= 0,

where for ν = 1,2,3, we define

dν1 =
m∑

i=1
ai

∫
ξi

0

sν(ξi− s)α−4

νφ(s)
ds, dν2 =

l∑
j=1

b j

∫
η j

0

sν(η j− s)α−3

νφ(s)
ds,

dν3 =
∫ 1

0

sν(1− s)α−2

νφ(s)
ds−

n∑
k=1

ck

∫
ρk

0

sν(ρk− s)α−2

νφ(s)
ds.

5.2 Existence Results
In this section, we shall present and prove our main result.
Let Y = L1[0;1] with the norm ‖y‖L1 =

∫ 1
0 |y(t)|dt. Define

X = {u : cDα

0+u ∈C[0;1],usatisfies boundary value conditions of (5.1) } .

Equipped with norm

‖u‖X =
3∑

i=0
‖u(i)‖∞ +‖cDα

0+u‖∞, where ‖u‖∞ = max
t∈[0;1]

|u(t)|.

By means of the functional analysis theory, we can prove that (X ,‖ · ‖X) is Banach space.
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Define the operator of differentiation L : domL
⋂

X → Y :

Lu = (φ cDα

0+u)′ , u ∈ domL.

where
domL = {u ∈ X | cDα

0+u(t) is absolutely continuous on [0;1]}
and the Nemytskii operator N : X → Y as :

Nu(t) = f (t,u(t),u′(t),u′′(t),u′′′(t), cDα

0+u(t)), t ∈ [0;1].

Thus, bvp (5.1) is equivalent to

Lu = Nu, u ∈ domL.

Lemma 5.1. U ⊂ X is a relatively compact set in X if and only if U is uniformly bounded
and equicontinuous. Here uniformly bounded means there exists M > 0 such that for every
u ∈U

‖u‖X =
3∑

i=0
‖u(i)‖∞ +‖cDα

0+u‖∞ ≤M.

and equicontinuous means that ∀ε > 0, ∃δ > 0, such that

|u(i)(t1)−u(i)(t2)|< ε, ∀u ∈U, ∀t1, t2 ∈ I, |t1− t2|< δ , ∀i ∈ {0,1,2,3}.

and
|cDα

0+u(t1)− cDα

0+u(t2)|< ε, ∀u ∈U, ∀t1, t2 ∈ I, |t1− t2|< δ .

With arguments similar to those of Lemma 4.2, we obtain the following lemma.

Lemma 5.2. Let y ∈ Y , then u ∈ X is the solution of the following fractional differential
equation : 

Ä
φ(t)cDα

0+u(t)
ä′
= y(t), t ∈ I = [0;1]

u(0) = 0, cDα

0+u(0) = 0, u′′′(0) =
∑m

i=1 aiu′′′(ξi),
u′′(0) =

∑l
j=1 b ju′′(η j), u′(1) =

∑n
k=1 cku′(ρk),

(5.2)

where u is given by :

u(t) =
3∑

i=1
δit i +

1
Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)dr ds, δ1,δ2,δ3 ∈ R, (5.3)

and
T1(y) = T2(y) = T3(y) = 0. (5.4)

Where T1, T2, T3 : Y → Y are three linear operators defined as follow :

T1(y) =
m∑

i=1
ai

∫
ξi

0

(ξi− s)α−4

φ(s)

∫ s

0
y(r)dr ds,

T2(y) =
l∑

j=1
b j

∫
η j

0

(η j− s)α−3

φ(s)

∫ s

0
y(r)dr ds,

T3(y) =
∫ 1

0

(1− s)α−2

φ(s)

∫ s

0
y(r)dr ds−

n∑
k=1

ck

∫
ρk

0

(ρk− s)α−2

φ(s)

∫ s

0
y(r)dr ds.
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Lemma 5.3. Assume (H1) and (H2) hold. Let φ(t) ∈C1[0;1], µ = mint∈[0;1]φ(t) > 0, then
L : domL ⊂ X → Y is a Fredholm operator of index zero, and the inverse linear operator
Kp = L−1

p : ImL→ domL∩KerP is defined by

(Kpy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)dr ds. (5.5)

It satisfies

‖Kpy‖X ≤
4+Γ(α−2)
µΓ(α−2)

‖y‖L1. (5.6)

Proof. It is clear that KerL = {u | u(t) =∑3
k=1 δktk, δ1,δ2,δ3 ∈ R}. Furthermore, Lemma

5.2 implies
ImL = {y ∈ Y | T1(y) = T2(y) = T3(y) = 0}. (5.7)

Consider continuous linear mapping Q : Y → Y defined by

Qy = Q1(y)+Q2(y).t +Q3(y).t2 (5.8)

where Q1, Q2, Q3 : Y → Y be three linear operators defined as follows

Q1(y) =
1
∆

3∑
i=1

e1iTi(y), Q2(y) =
1
∆

3∑
i=1

e2iTi(y), Q3(y) =
1
∆

3∑
i=1

e3iTi(y),

ei j(i, j = 1,2,3) are the algebraic complements of di j.
We will prove that KerQ = ImL. Obviously, ImL⊂ KerQ. As well, if y ∈ KerQ, then

e11T1(y)+ e12T2(y)+ e13T3(y) = 0.
e21T1(y)+ e22T2(y)+ e23T3(y) = 0.
e31T1(y)+ e32T2(y)+ e33T3(y) = 0.

(5.9)

The determinant of coefficiency for (5.9) is ∆2 6= 0. we find T1(y) = T2(y) = T3(y) = 0 and
that implies y ∈ ImL. So, KerQ⊂ ImL. By the definitions of Q1,Q2, and Q3 we cancalculate
the following equations hold :

Q2
1(y) = Q1y, Q1(Q2(y).t) = 0, Q1(Q3(y).t2) = 0.

Q2(Q1(y)) = 0, Q2(Q2(y).t) = Q2y, Q2(Q3(y).t2) = 0.

Q3(Q1(y)) = 0, Q3(Q2(y).t) = 0, Q3(Q3(y).t2) = Q3y.

Thus,

Q2g = Q1(Q1(y))+Q1(Q2(y).t)+Q1(Q3(y).t2)

+Q2(Q1(y)).t +Q2(Q2(y).t).t +Q2(Q3(y).t2).t

+Q3(Q1(y)).t2 +Q3(Q2(y).t).t2 +Q3(Q3(y).t2).t2

= Q1(y)+Q2(y).t +Q3(y).t2

= Qg.
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That implies the operator Q is a projector.
Take y ∈Y in the form y = (y−Qy)+Qy. Then, (y−Qy) ∈KerQ = ImL and Qy ∈ ImQ.

Thus Y = ImQ+ ImL. And for any y ∈ ImQ∩ ImL, from y ∈ ImQ, there exists constants
δ1, δ2, δ3 ∈ R such that y(t) =

∑3
k=1 δktk−1, from y ∈ ImL, we obtain
d11δ1 +d12δ2 +d13δ3 = 0,
d21δ1 +d22δ2 +d23δ3 = 0,
d31δ1 +d32δ2 +d33δ3 = 0.

(5.10)

The determinant of coefficiency for (5.10) is ∆ 6= 0. Therefore (5.10) has an unique solution
δ1 = δ2 = δ3 = 0, which implies ImQ∩ ImL = 0. Then, we have

Y = ImQ⊕KerQ = ImQ⊕ ImL. (5.11)

Thus, dimKerL= 3= dimImQ= codimKerQ= codimImL, this means that L is a Fredholm
operator of index zero.

Let a mapping P : X → X be defined by

Pu(t) =
3∑

k=1

u(k)(0)
k!

tk. (5.12)

We note that P is a linear continuous projector and ImP = KerL. It follows from u = (u−
Pu)+Pu that X = KerP+KerL. By simple calculation, we obtain that KerL∩KerP = {0}.
Hence

X = KerL⊕KerP. (5.13)

Define Kp : ImL→ domL∩KerP as follows :

(Kpy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)dr ds.

Note that
(KpL)u(t) = u(t), ∀u ∈ domL∩KerP (5.14)

and for y ∈ ImL, we find
(LKp)y(t) = L(Kpy)(t) = y(t).

Thus, Kp = (L |domL∩KerP)
−1. Again for each y ∈ ImL, and from Lemmas 1.43, 1.34 and

1.35, we have

‖Kpy‖X ≤
4+Γ(α−2)
µΓ(α−2)

‖y‖L1.

With arguments similar to those of Lemma 4.4, we obtain the following lemma.

Lemma 5.4. Suppose that Ω is an open bounded subset of X such that domL
⋂

Ω 6= /0. Then
N is L-compact on Ω.

Theorem 5.5. Let f be a Carathéodory function, φ(t) ∈ C1[0,1], µ = mint∈[0;1]φ(t) > 0.
(H1) and (H2) hold. In addition, assume that the following conditions all hold.
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(H3) There exist functions non-negative θi(t) ∈ Y, i = 0, . . . ,5 such that

| f (t,x0,x1,x2,x3,x4)| ≤
4∑

i=0
θi(t)|xi|+θ5(t),

where

Λ =
22+Γ(α−2)

µΓ(α−2)

4∑
i=0
‖θi‖L1 < 1.

(H4) There exists a constant M > 0 such that for u∈ domL\KerL, if |u′(t)|> M or |u′′(t)|>
M or |u′′′(t)|> M for all t ∈ [0;1], then T1(Nu) 6= 0 or T2(Nu) 6= 0 or T3(Nu) 6= 0.

(H5) There exists a constant M∗ > 0 such that for any δ1, δ2, δ3 ∈ R, if |δ1| > M∗, |δ2| >
M∗, |δ3|> M∗, then either

3∑
i=1

TiN(
3∑

k=1
δktk)< 0,

or
3∑

i=1
TiN(

3∑
k=1

δktk)> 0.

Then, the problem (5.1) has at least one solution.

Proof. Consider the set

Ω1 = {u ∈ domL\KerL | Lu = λNu, λ ∈ [0;1]}

Then for u ∈ Ω1, Lu = λNu, thus λ 6= 0, Nu ∈ ImL = KerQ⊂ Y , hence, Q(Nu) = 0 that is,
T1(Nu) = T2(Nu) = T3(Nu) = 0. From (H4) we have that the exists t1, t2, t3 ∈ [0;1], such that,
|u′(t1)| ≤M, |u′′(t2)| ≤M, |u′′′(t3)| ≤M.

If t1 = t2 = t3 = 0, we have that |u′(0)| ≤ M, |u′′(0)| ≤ M, |u′′′(0)| ≤ M. Otherwise, if
max{t1, t2, t3} 6= 0, by Lu = λNu, we obtain

u(t) =
3∑

k=1

u(k)(0)
k!

tk +
λ

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
Nu(r)dr ds.

Then,

u′′′(t) = u′′′(0)+
λ

Γ(α−3)

∫ t

0

(t− s)α−4

φ(s)

∫ s

0
Nu(r)dr ds,

If t3 6= 0, we get

u′′′(t3) = u′′′(0)+
λ

Γ(α−3)

∫ t3

0

(t3− s)α−4

φ(s)

∫ s

0
Nu(r)dr ds,

together with |u′′′(t3)| ≤M, we have

|u′′′(0)| ≤ |u′′′(t3)|+
1

Γ(α−3)

∫ t3

0

(t3− s)α−4

φ(s)

∫ s

0
|Nu(r)|dr ds

≤M+
‖Nu‖L1

µΓ(α−2)
.

(5.15)
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If t2 6= 0, then

u′′(t2) = u′′(0)+u′′′(0)t2 +
λ

Γ(α−2)

∫ t2

0

(t2− s)α−3

φ(s)

∫ s

0
Nu(r)dr ds,

from (5.15) and |u′′(t2)| ≤M, we find

|u′′(0)| ≤ |u′′(t2)|+ |u′′′(0)|+
1

Γ(α−2)

∫ t2

0

(t2− s)α−3

φ(s)

∫ s

0
|Nu(r)|dr ds

≤ 2M+
2‖Nu‖L1

µΓ(α−2)
.

(5.16)

If t1 6= 0, thus

u′(t1) = u′(0)+u′′(0)t1 +
u′′′(0)

2
t2
1 +

λ

Γ(α−1)

∫ t1

0

(t1− s)α−2

φ(s)

∫ s

0
Nu(r)dr ds,

according to (5.15), (5.16) and |u′(t1)| ≤M, we get

|u′(0)| ≤ |u′(t1)|+ |u′′(0)|+ |u′′′(0)|+
1

Γ(α−1)

∫ t1

0

(t1− s)α−2

φ(s)

∫ s

0
|Nu(r)|dr ds

≤ 4M+
4‖Nu‖L1

µΓ(α−2)
.

(5.17)

Again for u ∈Ω1, we get

‖Pu‖X =
3∑

i=0
max

t∈[0;1]
|(Pu)(i)(t)|+ max

t∈[0;1]
|cDα

0+(Pu)(t)|

≤ 2|u′(0)|+3|u′′(0)|+4|u′′′(0)|.

From (5.15), (5.16) and (5.17), we obtain

‖Pu‖X ≤ 18M+
18‖Nu‖L1

µΓ(α−2)
. (5.18)

Again for all u ∈Ω1, we have (Id−P)u ∈ domL∩KerP ; thus by (5.6) and (5.14) , we find

‖(Id−P)u‖X = ‖KpL(Id−P)u‖X ≤
4+Γ(α−2)
µΓ(α−2)

‖L(Id−P)u‖L1 =
4+Γ(α−2)
µΓ(α−2)

‖Lu‖L1

≤ 4+Γ(α−2)
µΓ(α−2)

‖Nu‖L1. (5.19)

From (5.18) and (5.19), we obtain

‖u‖X ≤ ‖Pu‖X +‖(Id−P)u‖X ≤ 18M+
22+Γ(α−2)

µΓ(α−2)
‖Nu‖L1 . (5.20)
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On the other hand from (H4), we have

‖Nu‖L1 =
∫ 1

0
|(Nu)(s)|ds =

∫ 1

0

∣∣∣ f (t,u(t),u′(t),u′′(t),u′′′(t), cDα

0+u(t))
∣∣∣ds

≤
3∑

i=0

∫ 1

0
|θi(s)| · |u(i)(s)|ds+

∫ 1

0
|θ4(s)| · |cDα

0+u(s)|ds+
∫ 1

0
|θ5(s)|ds

≤ ‖u‖X

4∑
i=0
‖θi‖L1 +‖θ5‖L1.

(5.21)

Therefore, (5.20) and (5.21), it yield

‖u‖X ≤
18µΓ(α−2)M+(22+Γ(α−2))‖θ5‖L1

µ(1−Λ)Γ(α−2)
.

So, Ω1 is bounded. Let
Ω2 = {u ∈ KerL | Nu ∈ ImL}

For u ∈ Ω2, then u ∈ KerL =
¶

u | u(t) =∑3
k=1 δktk, δ1,δ2,δ3 ∈ R

©
, and Q(Nu) = 0, that

is, T1N
Ä∑3

k=1 δktk
ä
= T2N

Ä∑3
k=1 δktk

ä
= T3N

Ä∑3
k=1 δktk

ä
= 0. From condition (H5), we get

|δ1| ≤M∗, |δ2| ≤M∗, |δ3| ≤M∗. Hence, Ω2 is bounded. Let

Ω3 = {u ∈ Ker L | −λJu+(1−λ )QNu = 0, λ ∈ [0;1]}

if the first part of (H5) hold.
Or we’ll set

Ω3 = {u ∈ KerL |+λJu+(1−λ )QNu = 0, λ ∈ [0;1]}

if the second part of (H5) hold.

Where J : KerL→ ImQ is the linear isomorphism given by

J(
3∑

k=1
δktk) = ω1 +ω2.t +ω3.t2, δ1,δ2,δ3 ∈ R. (5.22)

where

ω1 =
1
∆

3∑
i=1

e1i|δi|, ω2 =
1
∆

3∑
i=1

e2i|δi|, ω3 =
1
∆

3∑
i=1

e3i|δi|.

Without loss of generality, we assume that the first part of (H5) hold.
In fact u ∈Ω3, means that u =

∑3
k=1 δktk and −λJu+(1−λ )QNu = 0. Then we obtain

−λJ(
3∑

k=1
δktk)+(1−λ )QN(

3∑
k=1

δktk) = 0. (5.23)

If λ = 0, then |δ1| ≤M∗, |δ2| ≤M∗, |δ3| ≤M∗. If λ = 1, then
e11|δ1|+ e12|δ2|+ e13|δ3|= 0
e21|δ1|+ e22|δ2|+ e23|δ3|= 0
e31|δ1|+ e32|δ2|+ e33|δ3|= 0

(5.24)
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The determinant of coefficiency for (5.24) is ∆2 6= 0. Thus, (5.24) only have zero solutions,
that is δ1 = δ2 = δ3 = 0.
Otherwise, if λ 6= 0 and λ 6= 1, again from (5.22), (5.23) becomes

λ (ω1 +ω2.t +ω3.t2) = (1−λ )

Q1N(
3∑

k=1
δktk)+Q2N(

3∑
k=1

δktk).t +Q3N(
3∑

k=1
δktk).t2

 .
Hence,

λωi = (1−λ )QiN(
3∑

k=1
δktk), for i = 1,2,3.

Thus,

λ |δi|= (1−λ )TiN(
3∑

k=1
δktk), for i = 1,2,3.

Then, we get

λ

3∑
i=1
|δi|= (1−λ )

3∑
i=1

TiN(
3∑

k=1
δktk)< 0.

By the first part of (H5), we have |δ1| ≤M∗, |δ2| ≤M∗, |δ3| ≤M∗. Here, Ω3 is bounded.
Now, we shall prove that all the conditions of Theorem 1.106 are satisfied. Let Ω to be

a bounded open set of X containing
⋃3

i=1 Ωi. By Lemma 5.4, N is L-compact on Ω. Because
Ω1 and Ω2 are bounded sets, then

(1) Lu 6= λNu for each (u,λ ) ∈ [(domL\KerL)∩∂Ω]× (0;1);

(2) Nu /∈ ImL for each u ∈ KerL∩∂Ω.

At least we will prove that (3) of Theorem 1.106 is satisfied. Let

H(u,λ ) =±λJu+(1−λ )QNu

Because Ω3 is bounded, then

H(u,λ ) 6= 0, ∀u ∈ KerL
⋂

∂Ω.

Appealing to the homotopy property of the degree, we obtain

deg
Ä
QN |KerL,Ω

⋂
KerL,0

ä
=deg

Ä
H(·,0),Ω

⋂
KerL,0

ä
=deg

Ä
H(·,1),Ω

⋂
KerL,0

ä
=deg

Ä
±J,Ω

⋂
KerL,0

ä
6= 0.

Then by Theorem 1.106, Lu = Nu has at least one solution in domL
⋂

Ω, we conclude that
the boundary value problem (5.1) has at least one solution in X . The proof is finished.

Remark 5.6. It is very important to note that the condition ∆ 6= 0 is not necessary since L
still Fredholm even if this condition is dropped. Indeed the role of Q in Mawhin’s theory
is purely auxiliary and conditions like that usually arise from the authors of hundreds of
paper choosing ImQ just simply being KerL. Avoiding such an assumption is just a matter of
choosing Q differently, for more details see [71, 77, 78].
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5.2.1 Example
To illustrate our main results, we will present an example.

Example 5.7. let us consider the following fractional boundary value problem
(φ(t)cD

7
2
0+u(t))′ = f (t,u(t),u′(t),u′′(t),u′′′(t), cD

7
2
0+u(t)), t ∈ [0;1]

u(0) = 0, cDα

0+u(0) = 0, u′′′(0) =−u′′′
Ä

1
6

ä
+2u′′′

Ä
1
5

ä
,

u′′(0) = 4u′′
Ä

1
4

ä
−3u′′

Ä
1
3

ä
, u′(1) = u′

Ä
1
4

ä
−3u′

Ä
1
2

ä
+3u′

Ä
3
4

ä
.

(5.25)

where φ(t) = e−12t and

100e12 f (t,x0,x1,x2,x3,x4) =
|x3|

1+(x3)2 + cosx4(1− sinx1)(1− x1)+
2
π

arctan(x0x4).

Corresponding to the problem (5.1), we have that α = 7
2 , l = 2,m = 2,n = 3,a1 = −1,a2 =

2,ξ1 = 1
6 ,ξ2 = 1

5 ,b1 = 4,b2 = −3,η1 = 1
4 ,η2 = 1

3 ,c1 = 1,c2 = −3,c3 = 3,ρ1 = 1
4 ,ρ2 =

1
2 ,ρ3 =

3
4 ,µ = e−12. Then we get

a1 +a2 = b1 +b2 = c1 + c2 + c3 = 1,b1η1 +b2η2 = 0,c1ρ1 + c2ρ2 + c3ρ3 = c1ρ2
1 + c2ρ2

2 +
c3ρ2

3 = 1. Thus the condition (H1) holds. Also we find

T1(y) =−
∫ 1

6

0
e12s
Ç

1
6
− s
å− 1

2
∫ s

0
y(r)dr ds+2

∫ 1
5

0
e12s
Ç

1
5
− s
å− 1

2
∫ s

0
y(r)dr ds,

T2(y) = 4
∫ 1

4

0
e12s
Ç

1
4
− s
å 1

2
∫ s

0
y(r)dr ds−3

∫ 1
3

0
e12s
Ç

1
3
− s
å 1

2
∫ s

0
y(r)dr ds,

T3(y) =
∫ 1

0
e12s(1− s)

3
2

∫ s

0
y(r)dr ds−

∫ 1
4

0
e12s
Ç

1
4
− s
å 3

2
∫ s

0
y(r)dr ds

+3
∫ 1

2

0
e12s
Ç

1
2
− s
å 3

2
∫ s

0
y(r)dr ds−3

∫ 3
4

0
e12s
Ç

3
4
− s
å 3

2
∫ s

0
y(r)dr ds.

By calculations, we get

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣

1881
1420

207
1669

143
9103

− 920
1803 − 484

6725 − 277
20262

15770
51

6489
50

5427
74

∣∣∣∣∣∣∣∣∣∣∣∣
=−655

539
.

Therefore, the condition (H2) holds. On the other hand, we have

| f (t,x0,x1,x2,x3,x4)| ≤ 0.01e−12|x3|+0.05e−12.

We can get that the condition (H3) holds, where

θ0(t) = θ1(t) = θ2(t) = θ4(t) = 0, θ3(t) = 0.01e−12, θ5(t) = 0.05e−12,
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and
Λ =

838
3245

< 1.

Let M = 1 and assume that |u′′′(t)|> 1 holds for all t ∈ [0;1], we obtain

T3(y)> 0.01e−12
∫ 1

0
e12s(1− s)

3
2 sds−0.06e−12

∫ 1
4

0
e12s
Ç

1
4
− s
å 3

2
sds

+0.03e−12
∫ 1

2

0
e12s
Ç

1
2
− s
å 3

2
sds−0.18e−12

∫ 3
4

0
e12s
Ç

3
4
− s
å 3

2
sds.

=
43818
2900

e−12 > 0

So, condition (H4) is satisfied.
Let M∗ = 1 and δ1,δ2,δ3 ∈ R be such that |δ1|> 1, |δ2|> 1, |δ3|> 1, we have

N(δ1t +δ2t2 +δ3t3)

= 0.06e−12 |δ3|
1+36δ 2

3
+0.01e−12 cos cD

7
2
0+(δ1t +δ2t2 +δ3t3)(1− sin(δ1 +2δ2t +3δ3t2))

× (1− sin(2δ2 +6δ3t))+
0.02e−12

π
arctan((δ1t +δ2t2 +δ3t3)cD

7
2
0+(δ1t +δ2t2 +δ3t3))

= 0.06e−12 |δ3|
1+36δ 2

3
.

Hence,

TiN(
3∑

k=1
δktk) = 0.06e−12 |δ3|

1+36δ 2
3

d1i, for i = 1,2,3.

Thus,
3∑

i=1
TiN(

3∑
k=1

δktk) = 0.06e−12 |δ3|
1+36δ 2

3
(d11 +d12 +d13)> 0.

So, (H5) hold. Then, all the assumptions of Theorem 5.5 hold. Thus, the problem (5.25) has
at last one solution.
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Conclusion and perspectives

The proposed applications show that coincidence degree theory and the techniques of
measures of non-compactness play an important role in the study of these problems and this
concerns the existence of solutions, but not uniqueness.

In the future, we intend to study some questions related to the existence and uniqueness of
solutions of some boundary problems on bounded or unbounded domains in the case of reso-
nance and non-resonance. For this, the application of certain other methods can be associated
with the techniques measure of noncompactness, degree of nondensifiability ( [57, 58]), mo-
notone iterative technique ([82]) and the coincidence degre.
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