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Abstract

Surface crack detection is paramount for ensuring the safety and longevity of
civil infrastructure. Traditional manual inspection methods are time-consuming,
costly, and operator-dependent. Prior automated methods based on traditional
image processing showed promise, though a step forward, but their reliance on
handcrafted features and sensitivity to imaging conditions and real-world vari-
ations in lighting and texture limited their global applicability. Deep learning
is a more powerful tool, but achieving reliable pixel-level remains a significant
challenge separation of cracks especially fine, hairline cracks, usually only a few
pixels thick with low contrast and easily discarded in the downsampling stages of
standard encoder-decoder frameworks; and intricate, or lengthy crack networks.
The current paper proposes a better deep learning technique for this task using
the UNet++ architecture. This model was chosen specifically over others due to
its design strategy. Although standard U-Net innovated vital skip connections
to maintain detail, UNet++ enhances that by utilizing nested and dense skip
pathways to bridge the semantic gap between shallow encoder and deep decoder.
This architecture is especially well-suited to marrying high-resolution spatial data
with deep semantic context, which is necessary for being capable of segmenting
the fine-grained crack structure accurately. Compared to architectures such as
SegNet, which are efficient in terms of computations but lose boundary detail,
UNet++ is high-fidelity segmentation optimized and thus is particularly well-suited
to this task. The proposed UNet++ model achieved excellent quantitative re-
sults: a Dice coefficient of 0.9338, an Intersection over Union (IoU) of 0.8805,
an F1-score of 0.9609, precision of 0.9603, and recall of 0.9614, outper forming
a baseline U-Net and other contemporary semantic segmentation methods. A
prototype system demonstrated the model’s applicability for real-world crack de
tection tasks. These findings indicate that the UNet++ architecture, coupled with
robust data augmentation, offers a highly accurate and reliable solution for pixel
level surface crack segmentation, advancing automated structural health monitoring.

Keywords : Deep Learning, Crack Detection, UNet++, Semantic Segmen-
tation



Résumé
La détection des fissures de surface est primordiale pour assurer la sécurité et

la longévité des infrastructures civiles. Les méthodes traditionnelles d’inspection
manuelle prennent du temps, sont coûteuses et dépendent de l’opérateur. Les
méthodes automatisées antérieures basées sur le traitement d’image traditionnel
se sont révélées prometteuses, bien qu’un pas en avant, mais leur dépendance à
des fonctionnalités artisanales et leur sensibilité aux conditions d’imagerie et aux
variations réelles de l’éclairage et de la texture ont limité leur applicabilité globale.
L’apprentissage en profondeur est un outil plus puissant, mais la fiabilité au niveau
des pixels reste un défi important séparation des fissures particulièrement fines,
des fissures capillaires, généralement de seulement quelques pixels d’épaisseur avec
un faible contraste et facilement éliminées dans les étapes de sous-échantillonnage
des frameworks codeur-décodeur standard; et des réseaux de fissures complexes
ou longs. Le présent article propose une meilleure technique d’apprentissage en
profondeur pour cette tâche en utilisant l’architecture UNet++. Ce modèle a été
choisi spécifiquement par rapport à d’autres en raison de sa stratégie de conception.
Bien que standard U-Net ait innové des connexions de saut vitales pour maintenir
les détails, UNet++ améliore cela en utilisant des chemins de saut imbriqués et
denses pour combler le fossé sémantique entre l’encodeur peu profond et le décodeur
profond. Cette architecture est particulièrement bien adaptée pour marier des
données spatiales à haute résolution avec un contexte sémantique profond, ce qui
est nécessaire pour pouvoir segmenter avec précision la structure de fissure à grain
fin. Par rapport aux architectures telles que SegNet, qui sont efficaces en termes
de calculs mais perdent des détails sur les limites, UNet++ est une segmentation
haute fidélité optimisée et est donc particulièrement bien adaptée à cette tâche. Le
modèle UNet++ proposé a obtenu d’excellents résultats quantitatifs: un coefficient
de dés de 0,9338, une Intersection sur Union (IoU) de 0,8805, un score F1 de
0,9609, une précision de 0,9603 et un rappel de 0,9614, outper formant une ligne
de base U-Net et d’autres méthodes de segmentation sémantique contemporaines.
Un système prototype a démontré l’applicabilité du modèle pour des tâches de
détection de fissures dans le monde réel. Ces résultats indiquent que l’architecture
UNet++, associée à une augmentation robuste des données, offre une solution
hautement précise et fiable pour la segmentation des fissures de surface au niveau
des pixels, faisant progresser la surveillance automatisée de l’état des structures.

Mots clés : Apprentissage profond, détection de fissures, UNet++, segmenta-
tion sémantique
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Introduction

The structural integrity of civil infrastructure, encompassing bridges, roads,
tunnels, and buildings, is paramount for public safety and economic stability. Sur
face cracks are the most basic indicators of material degradation and structural
distress. The traditional method for detecting cracks is by employing Manual Visual
Inspection (MVI). MVI methods for crack detection and other forms of visual
inspections can be limited since they are usually time-consuming, labor-intensive,
subjective, and typically expose inspectors to hazards. These limitations indicate
the need to develop automated, objective, and efficient methods of inspection.

Early efforts were devoted to automating the detection using conventional Image
Processing Techniques (IPTs) and conventional Machine Learning (ML). Early
practices were rooted in central image processing concepts like the detection of
edges, represented by the highly influential Canny edge detector [7], and automatic
thresholding to separate crack pixels [8]. They were also developed more advanced
systems, applying methods such as the continuous wavelet transform to analyze
features on numerous varying scales [9], graph-theory models such as the Cracktree
system in order to connect potential crack pieces [10], and even fuzzy logic in
order to deal with image uncertainty [11]. In parallel, other studies tended to
feed these manually created features to conventional classifiers most importantly
Support Vector Machines (SVMs) [12] and shallow early neural networks [13] to
automatically classify image regions.

The advent of Deep Learning (DL), particularly Convolutional Neural Networks
(CNNs), was a paradigm shift as it enabled the model to learn on its own from
raw data and thus avoid the inherent weakness of earlier methods. The problem
can be conceptualized in multiple ways within the DL community. Straightforward
activities like image categorization or object recognition also possess their own
constraints for this specific job. Image classification is able to ensure the presence
of a crack in a patch but not localize it, while object detection provides coarse
localization with geometrically unsuitable rectangular bounding boxes for describing
thin curvilinear crack patterns.
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Introduction

For proper structural assessment, geometric measurement accurately is required.
This has made semantic segmentation the labeling of every pixel in a photograph,
assigning a class label (e.g., ’crack’ or ’background’) within the most suitable
methodology. This approach provides a high-resolution pixel-wise map that can
accurately label a crack’s length, width, and topology. The aim of this thesis is
therefore to study, implement, and experiment a deep learning-designed semantic
segmentation model for crack automatic detection.

The purpose of this thesis is to study, implement, and evaluate a deep learning-
based semantic segmentation model for automated crack detection in civil infras-
tructure. More specifically, this research will evaluate U-Net, and an advanced
version of U-Net called U-Net++, since both are well-known for their consider-
able success in biomedical and other complex segmentation applications. The
methodology sections will cover training these models using a publicly available
crack dataset, evaluating performance using common metrics, comparing them to
existing approaches, and discussing the potential of the models using a simple crack
detection system.

The thesis is structured as follows:

Chapter 1: Foundations and Problem Formulation lays the foundational
groundwork, starting with the significance of crack detection and the critical lim-
itations of traditional inspection methods. It then charts the evolution toward
automated approaches, highlighting how the reliance on hand-crafted features in
classical computer vision necessitated the paradigm shift to Deep Learning. The
chapter concludes by defining the key challenges inherent to modern DL-based
solutions, thereby framing the problem this thesis aims to solve.

Chapter 2: State of the Art and Methodological Context provides a comprehen-
sive review of the state of the art in automated crack detection. It critically analyzes
the progression of deep learning applications from coarse image classification and
object detection to the currently favored, more precise semantic segmentation ap-
proaches. By surveying seminal and contemporary works, this chapter establishes
the methodological context and justifies the focus on segmentation as the most
effective paradigm for quantitative structural analysis.

Chapter 3 details the experimental setup and implementation, including the
dataset used, data preprocessing and augmentation techniques, the proposed model
architectures (U-Net and U-Net++), the training process, evaluation metrics,
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presentation of results, a comparative analysis with previous methods, and the
development of a simple crack detection system, along with a discussion on limita-
tions and future directions.

Finally, a General Conclusion summarizes the key findings, contributions, and
potential avenues for future research.
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Chapter 1

Generalities and preliminary
knowledge

Introduction
This chapter serves as a fundamental overview of surface crack detection with

a focus on the shift from Manual Visual Inspection to Deep Learning Automation.
The traditional Manual Visual Inspection (MVI) methods are limited by their
inherent subjectivity, high cost, and safety challenges, requiring more rigorous and
objective methods. In this chapter, we have summarized the history of surface
crack detection starting with one component of MVI. It is obviously an advantage
over manual inspection, yet the earliest of these systems were absolutely dependent
on hand-crafted features from classical Image Processing Techniques (IPTs) and
traditional Machine Learning (ML) approaches. This situation resulted in a schema
whereby improvements to the overall product were solely dependent on either
incorporating quality control measures from the MVI phase or improving Image
Processing Techniques (IPT) in conjunction with supervised training of the machine
learning models. Thus, the evolution from MVI resulted in the need for Deep
Learning (DL) which reduces the need for hand-crafted features by allowing the
DL model to extract features from the raw image data. Ultimately, we wanted to
provide a description of the technical challenges that still exist in the DL domain
with respect to surface crack detection - particularly data annotations costs, class
imbalance issues, and fine-grained crack typologies - all of which form the technical
framework for the sophisticated segmentation models we operated within this thesis.
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1.1 Definition and Significance
Surface cracks are discontinuities or breaks that form on the material’s surface,

usually in civil engineering structures like bridge decks, concrete pavements, ex-
terior walls of buildings, asphalt roads, tunnels, and rail components [13, 14, 15].
Regardless of whether these are minor at the start or huge, they are highly critical
indications of material deterioration and structural distress [16, 14]. They have
threefold significance: they impair structural integrity by reducing load-bearing
capacity and modifying stress patterns directly [17]; they undermine durability
dramatically by creating routes for water, chlorides, and other attacking chemicals
to find their way inside and cause or promote internal harm mechanisms like corro-
sion of reinforcement or freeze-thaw damage [18, 14]; and they ultimately influence
safety by potentially triggering secondary deterioration and, in the most serious
cases, structural failure [13, 19]. Therefore, monitoring of cracks is significant for
maintenance as well as maintaining continuous serviceability and safety of key
infrastructure [20, 13, 14].

1.2 General Causes
Cracking results from a series of causes like material aging, mechanical loads

stresses (vehicle, operating loads), environmental conditions (temperature fluctu-
ation causing thermal stress, humidity change, chemical attack, UV radiations),
shrinkage (plastic, evaporation), and material or construction defects [14, 21].

1.3 The Problem of Crack Detection

1.3.1 Need for Inspection
Material fact of the behavior requires that cracks are essentially unavoidable

in civil infrastructure throughout its lifespan [14]. These cracks, as just outlined,
are more than mere surface blemishes; they are crucial indicators to underpinning
structural health and potential weaknesses [16]. The inherent necessity for rou-
tine and organized inspection all stems as a result of the need to control risks
pertaining to the inadequacies. Those infrastructures made up of roads, bridges,
and buildings are pillars on which today’s world stands, and collapsing or breaking
may not only cause considerable economic blow and loss, most importantly but
potentially lead to death. The inspection is therefore unambiguously imperative for:

5



Chapter 1 – Generalities and preliminary knowledge

Public Safety: This is the most critical one. Early identification of potentially
critical cracks before structural failure is necessary in order to protect users and
the public [13, 19].

Serviceability: Cracks can compromise the intended performance of a struc-
ture (e.g., ride comfort on pavements, water tightness in tunnels or buildings).
Inspection exposes issues that affect serviceability, allowing remediation before it is
too late.

Integrity and Long-term Service Life: Cracking accelerates degradation
by allowing deleterious agents to penetrate the structure [14]. Early detection and
restoration (e.g., sealing cracks) can effectively slow this degradation, preserving
the asset in a sound condition while extending its effective service life beyond
original estimates [20].

Maintenance Resource Optimization: Infrastructure owners manage enor-
mous sets of assets with limited budgets. Condition data collected through in-
spection allows maintenance and repair work to be prioritized, focusing resources
where they are most needed and moving away from costly reactive repairs to less
expensive, planned, proactive maintenance [14, 13].

Regulatory Compliance: Regular compulsory structural inspections are
required by law in the majority of jurisdictions to meet safety requirements [22, 21].

1.3.2 Traditional Inspection Methods (Manual Visual In-
spection)

The prevalent method over the past decades for addressing crack inspection de-
mand has been Manual Visual Inspection (MVI) [21, 23] as described in Figure 1.1.
Through this method, inspectors as humans, in general, engineers or experienced
technicians, personally travel to the structure and examine its surface meticulously
[16].

Process: Visual inspection is the primary task. Inspectors visually inspect
surfaces, sometimes along predetermined paths or across known critical areas, for
any discontinuities that indicate cracking [14]. Simple hand tools can be used, such
as magnifying lenses to examine fine details, crack width gauges or comparators
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Figure 1.1: Crack detection by manual visual inspection (MVI).

for basic measurements, marking tools (paint and chalk) to define boundaries, and
cameras to document images [21]. For concrete, acoustic methods such as hammer
sounding, described in Figure 1.2, can be additionally used to detect scaling that
often occurs with cracking.

Access: The second major element of MVI is reaching the involved surfaces,
which may include specialized equipment like scaffolding, cherry pickers, man-lifts,
UBIUs, or even rope access systems in the scenario of bridges and structures [21].
This usually involves closing traffic or service disruption.

Recording: Observations are generally recorded by hand on field sheets, stan-
dard forms, or sketches, usually supplemented by photographs. Formal inspection
reports are then formalized by summarizing the field notes [16].
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Figure 1.2: Hammer sounding and chain-drag testing [1].

1.3.3 Limitations of Traditional Inspection Methods
Albeit being antiquated and continuing to be utilized, MVI has inherent weak-

nesses that significantly influence its validity, effectiveness, cost-effectiveness, and
applicability to current infrastructure management [14, 16, 21, 24]:

There is a Lack of Consistency and Subjectivity: It is one of the greatest
flaws. Crack detection and assessment heavily depend on the individual inspector’s
vision, training, experience, alertness, current fatigue level, and even individual
biases [21, 16, 25, 26]. Definitions of crack severity (e.g., hairline vs. fine vs.
medium) can vary, and the identification of small cracks heavily depends on the
observer. This leads to very large inconsistency of results across various inspectors
(low reproducibility) and even across the same inspector at different times (low
repeatability). This inconsistency makes it extremely difficult to reliably compare
condition states over time or across different structures [16].

Time-Consuming and Labor-Intensive: MVI entails highly skilled staff
taking significant time to travel, setup (access equipment, traffic control), meticu-
lous surface scanning, and documentation [14, 21, 15]. Scanning large or complex
structures can take days, weeks, or months, consuming significant human resources.

High Costs: The extensive labor hours, together with the direct and indi-
rect cost of hire equipment access, traffic control, potential revenue loss due to
interruption of services, travel, and report production, make MVI an expensive
undertaking [21, 16, 14].

Safety Risks: Inspectors have much of their working lives spent laboring
under hazardous conditions—at height, in confined spaces, near live traffic, exposed
to weather conditions, or on structures potentially weakened—presenting significant

8



Chapter 1 – Generalities and preliminary knowledge

safety hazards [21, 27, 15]. Reducing human exposure to these conditions is a
primary goal of automation.

Scalability and Coverage Problems: The cost and time requirements
are great, hence MVI cannot scale up very conveniently to the massive amounts
of existing infrastructure. Often enough, inspections are not done at the de-
sired level or frequency due to budget and resource constraints [16]. Also, physical
access limitations impede adequate inspection of certain structural components [21].

Limited Detection Capabilities: Human vision, specifically in the field
environment (varying lighting, distance, glancing angles of view), is unable to
consistently see very thin hairline cracks or cracks obscured by surface soiling (dirt,
efflorescence) or complex textures [28]. The initial damage may go unnoticed until
it becomes extensive.

Data Format and Administration: Manually recorded data (notes, draw-
ings, photos) can be difficult to integrate into digital asset management systems,
and quantitative analysis, trend monitoring, and decision-making based on data
can be less effective than natively digital automated outcomes [16].

A cumulative effect of such deep flaws of traditional manual visual inspection is
the compelling necessity for new solutions. Calls for greater objectivity, consistency,
affordability, cost-savings, security, and expandability in getting detailed, quantifi-
able information have been the foremost driver of R&D into computerized crack
detection technology, first based on IPTs and traditional ML, now increasingly
driven by advances in Deep Learning.

1.4 Pre-Deep Learning Automated Detection Ap-
proaches

Driven by the need for surpassing the limitations of conventional visual inspec-
tion (subjectivity, cost, time, safety, scalability [21, 16, 26]), significant quantities
of research effort went into development of computer vision-driven automatic sur-
face crack detection techniques before the popularization of deep learning. These
methods can be broadly classified as those that are primarily Image Processing
Technique (IPT) based and those which integrate IPTs with traditional Machine
Learning (ML).
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Figure 1.3: A close-up image of a crack in a concrete surface.

1.4.1 Image Definition
The image is the original input photo of a material surface (e.g., concrete,

asphalt, or metal) taken by a camera. It shows the real-world scene, possibly
containing visible cracks. These images serve as the input data for the crack
detection model.

Format: RGB as shown in Figure 1.3 or grayscale image.
Content: Surface with or without cracks.

1.4.2 Mask Definition
The mask (also called a ground truth mask or label) is a binary or multi-class

image of the same size as the original image. It indicates the locations of cracks in
a pixel-wise manner.

Format: Usually a binary image (same height and width as the original image)
as shown in Figure 1.4.

• 1 (white) = crack

• 0 (black) = background (non-crack)

1.4.3 Image Processing Techniques (IPTs)
This algorithm family spans a wide range of algorithms aimed at inspecting

digital images to extract some information, here crack features. The general idea
was typically to leverage observed intensity, shape, or texture contrast between
background and pixels in the crack, for example. Typical IPT families used for
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Figure 1.4: The binary ground truth mask for the original image.

crack detection are:

Thresholding Methods: Of the easier techniques, those which attempt to
bypass segmentation by breaking up the image’s histogram based on intensity of
pixels. The general assumption made here is that cracks have a tendency to be
darker (or maybe lighter, depending upon condition and image type) compared
to the background [29]. Even though basic global thresholding does not work
typically in uneven illumination and low contrast, newer methods came in its place,
e.g., adaptive thresholding (thresholds are calculated locally), Otsu’s thresholding
(maximizing intra-class variance) [8], valley-emphasis methods [13], or even fuzzy
logic-based thresholding in order to address uncertainty [11]. But thresholding
alone will result only in noisy and fragmented responses.

Edge Detection: Cracks will likely be represented as sharp changes or edges
in image intensity. Cracks will likely be detected by edge detection algorithms.
Primarily utilized are Sobel and Prewitt operators (approximation of gradient
through simple convolution) [30, 23] and more sophisticated Canny edge detector
(with hysteresis thresholding and non-maximum suppression for better edge linking)
[30, 28, 7].An example is shown in Figure 1.5. Though proficient at detecting edges,
they are image-noise sensitive and will identify plenty of spurious non-crack edges
(e.g., aggregate boundary, texture, joint edges in pavements), and thereby result in
extremely high false positive rates and tons of subsequent post-processing [23].

Morphological Operations: These procedures involve the use of structuring
elements (pre-defined small objects) to examine the image’s geometry. For crack de-
tection, they are utilized in subsequent post-processing operations after preliminary
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.png

Figure 1.5: Visual comparison of edge detection results [2].

detection. Morphological closing (dilation of erosion) will close up small detected
cracks openings or bridge close proximity fragments [23]. Morphological opening
(erosion followed by dilation) will remove small noise objects with a restricted
size. Thinning or skeletonization algorithms convert recognized crack areas to
centerlines of one pixel width, which is easier to measure length and topology
analysis subsequently [31, 23].

Filtering: Filters are applied for feature enhancement or noise removal. Median
filters are commonly employed in noise removal since they are capable of removing
salt-and-pepper noise and have fewer chances of blurring edges compared to linear
filters like Gaussian filters [23, 29]. More advanced filtering techniques specifically
studied for cracks are anisotropic diffusion (in the direction of edge-preserving
smoothing) [29], wavelet transforms (to analyze features at different scales and
frequency, possibly separating cracks from noise) [9], Gabor filters (to extract crack-
related information in texture and orientation) [32], and Bidimensional Empirical
Mode Decomposition (BEMD) (a data-driven algorithm to decompose images into
modes, possibly discriminating noise or crack features) [30].

Texture Analysis: These methods examine the spatial texture pattern of
pixel values and, on the assumption that cracks have a different contrasting texture
pattern than the remainder of the background, detect cracks by having a unique
different texture pattern. Examples include the use of Local Binary Patterns (LBP)
or GLCM feature-based descriptors known as Haralick features [33]. These texture
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characteristics themselves were not generally used directly for the detection but as
inputs to subsequent ML classifiers.

Graph-Based and Path-Finding Techniques: Some techniques mapped
out potential crack pixels or segments as graph vertices and utilized graph traversal
methods (e.g., minimum path finding, Minimum Spanning Tree generation) to
connect fragments into reasonable crack lines, often based on perceptual features
such as proximity and continuity [31, 10].

1.4.4 Limitations of Traditional IPTs
Despite the variability of the methodology, IPT-based methodologies as a whole

were not that flexible and robust. They were highly sensitive to certain image
conditions (light, view, presence or absence of shadowing, noise level, blurriness)
[30, 28]. They were most likely to require careful, by-hand parameter adjustment
on a case-by-case or per-data-set basis [22]. Distinguishing actual cracks from
fine background texture details, stains, joints, filled cracks, or other fractured-like
features was a challenging process, tending to cause over-occurrence of false posi-
tive or fractured detection [23, 10]. They essentially relied on assumptions about
what cracks look like (e.g., lower intensity, edge occurrence), which may not hold
everywhere.

1.4.5 Conventional Machine Learning Approaches (ML)
To improve decision-making capabilities and possibly introduce robustness,

researchers have combined IPTs with conventional ML classifiers. This was a devi-
ation from purely rule-based systems toward data-driven yet still feature-explicit
approaches.

Two-Stage Process: The standard pipeline included:

1. Handcrafted Feature Extraction: Engineers would handcraft a feature
set thought to be beneficial for crack differentiation by combining some of
the IPTs mentioned above (thresholding output, edge responses, texture
features, shape descriptors, pixel intensity statistical summaries in regions,
etc.) [13, 33]. This feature engineering process was still necessary and required
a lot of domain knowledge and trial-and-error.
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2. Classifier Training: The extracted features, typically arranged into a
feature vector per image patch or region, were then used to train a standard
ML classifier. Traditional choices were Support Vector Machines (SVM)
[12, 33, 32], traditional Artificial Neural Networks (ANNs, i.e., multi-layer
perceptrons) [13, 34, 32], Random Forests (RF) [16], or Boosting algorithms
[32]. These models performed a mapping from the handcrafted feature space
to the class labels (crack/non-crack)..

Main Shortcoming: Although generally improving class accuracy compared
to purely IPT-based rules, the inherent shortcoming of conventional ML approaches
to breaking identification was their dependence on engineered features [28, 33, 16].
The system’s overall performance was subsequently limited by the discriminability
and quality of the handcrafted features defined by the human designer. If the
chosen features did not control for the intrinsic variations or were non-intrinsic
variable-sensitive, even the best classifier would fail. This limitation in feature
engineering prohibited the development of truly robust and general automatic crack
detection systems that could operate in a range of real-world conditions, and this
led to the breakthrough in deep learning.

1.5 Deep Learning (DL)
The constraints of the traditional Image Processing Techniques (IPTs) and clas-

sical Machine Learning (ML) approaches, particularly their reliance on hand-crafted
features and susceptibility to real-world fluctuations, necessitated a shift towards
more resilient and adaptive solutions for computer vision inspection tasks like crack
detection. This transformation was initiated by the advent of Deep Learning (DL),
one of the streams of machine learning that has transformed computer vision and
numerous other domains of Artificial Intelligence [35, 36].

Deep Learning employs Artificial Neural Networks (ANNs) of multiple layers
(and hence "deep") situated between input and output. Roughly inspired by hi-
erarchical processing believed to occur within living nervous systems, the layers
progressively reinterpret the input data into progressively higher levels of abstrac-
tion and complexity [36]. Unlike conventional ML in which feature extraction
is a direct, standalone process, DL aims to directly learn intricate patterns and
hierarchical features from the raw data by a series of non-linear transformations
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between these layers. The key notion is to allow the model itself discover the
most salient features for a given task by minimizing its vast number of internal
parameters (weights and biases) during training on large datasets.

1.6 Key Challenges in DL-Based Crack Detection
and Segmentation

In spite of the unprecedented achievement accomplished with Deep Learning
(DL) for surface crack detection automation, several challenges remain relevant
to restraining progress in making well-rounded, universally applicable, and easily
deployable systems. These challenges emanate from the nature of cracks, natural-
world imaging conditions’ imperfections, DL model inherent requirements, and
implementational deployment considerations.

1.6.1 Data Sparsity and Annotation Cost

DL models, especially deep structures like CNNs and Transformers, are noto-
riously known to be hungry for data. They typically require gigantic volumes of
labeled data in order to learn generalizable features and avoid overfitting [28, 16, 14].
While big public datasets of computer vision overall (e.g., ImageNet) do exist,
domain-specialized datasets for infrastructure cracks are usually relatively small
[37, 16, 38].

Annotation Bottleneck (Especially for Segmentation)

The major bottleneck is collecting sufficient labeled data. While image/patch-
level classification labels (crack/non-crack) are simple to obtain, generating precise
pixel-level segmentation masks is extremely time-consuming, labor-intensive, and
requires a lot of domain knowledge [39, 16, 40]. This manual process limits the size
and variety of publicly segmented datasets [37, 29], making it hard to train gener-
alized models over many structure types, materials, and environmental conditions.
Subjectivity of manual labeling, especially at crack boundaries, introduces label
noise as well [16].
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Mitigation Strategies

Studies examine data augmentation [41, 15], transfer learning (fine-tuning pre-
trained models on big datasets like ImageNet or COCO) [42, 16, 14], semi-supervised
learning (using lots of unlabeled data in combination with limited labeled data)
[37, 40], weakly supervised learning, and synthetic data generation [37] to reduce
dependence on large fully annotated datasets.

1.6.2 Class Imbalance
Problem Definition

In regular surface images, crack pixels are just an extremely small percentage
(typically «1%) of the total pixels compared to the background [22, 39, 24, 38].
Such tremendous disproportion between foreground (crack) and background classes
is a critical problem to be encountered during the training process.

Impact

Standard loss functions (e.g., pixel-wise cross-entropy) can be overwhelmed by
the easily labeled background pixels. The model may achieve high overall accuracy
by labeling everything as background, failing to learn useful representations for
the minority crack class, and hence having poor crack detection performance (low
recall) [24, 38].

Mitigation Techniques

Techniques to fight this are employing tailored loss functions that put higher
weight on the minority class or focus on challenging examples (e.g., weighted
cross-entropy, Focal Loss [43], Dice Loss [39], IoU Loss [38], hybrid losses [43]),
specific sampling methods at training time (e.g., oversampling crack pixels/patches
[44]), or structural modifications.

1.6.3 Detection of Fine, Faint, and Complex Cracks
Subtle Features

Cracks can be extremely thin (hairline cracks, perhaps only 1-2 pixels wide),
weak (low contrast with the background), or partially occluded [22, 39, 24]. Such
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subtle features can easily get lost in the downsampling steps in typical encoder-
decoder architectures or completely ignored if their intensity profile is not adequately
distinct.

Complex Patterns

Cracks are intricate patterns (e.g., alligator cracking) with many branches and
intersections, or occur with greatly irregular paths [10]. It is challenging for models
with appropriate receptive fields to learn the whole topology and connectivity of
complex patterns. Simple CNNs with limited receptive fields might not be capable
of handling that.

Mitigation Strategies

Architectures that maintain high-resolution detail (e.g., U-Net skip connections
[16]), avoid aggressive downsampling [16], use multi-scale feature fusion [22, 45],
or implement attention mechanisms/transformers so as to get long-range context
[39, 15] are likely to be beneficial.

1.6.4 Robustness to Real-World Variations
Environmental Conditions

Field observation images are subject to very irregular conditions like uneven
and problematic illumination (sunny areas, shadows, dark spots) [28, 10], surface
conditions (dirt, stains, water, uneven textures, different materials) [22, 29], and
the presence of noise or blur due to sensor deficits or motion artifacts [28, 41].

Crack-Like Characteristics

It is important to identify real cracks from other linear features or surface blem-
ishes (e.g., pavement joints, filled cracks, scratches, utility marks, object boundaries,
rust stains, tire marks) to minimize false positives [22, 16, 23].
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Mitigation Strategies

Training on different datasets that explicitly represent these variations is impor-
tant for resilience [22]. Data augmentation techniques simulating such conditions
are standard practice [41, 15]. Architectures with the ability to learn invariant
features are preferred.

1.6.5 Computational Efficiency and Deployment
Real-Time Processing

For most uses, especially persistent observation from vehicles in motion (drones),
ongoing or virtual ongoing processing within real-time is necessary [22]. Neverthe-
less, advanced DL segmentation models might be computationally intensive.

Lightweight Models

Deployment of models on resource-constrained hardware like mobile phones,
embedded systems of UAVs, or edge computing platforms needs lighter models with
fewer parameters and lower FLOPs at the expense of sacrificing little on accuracy
[22, 46, 41, 43, 47].

Mitigation Strategies

Research focuses on efficient architecture design (e.g., the use of depth-wise
separable convolutions, group convolutions, specific modules like GhostNet or
GSConv [22, 46, 47]), model compression techniques (pruning, quantization), and
hardware acceleration.

Conclusion
In this chapter, we have identified the scientific and practical rationale for

utilizing deep learning in crack detection. We demonstrated the scientific limitations
of human inspection (which can be described as both subjective and inefficient), and
compared those pitfalls to the shortcomings of earlier work that sought to automate
visual inspection through an explicit feature engineering phase. We demonstrated
a clear case for a paradigm shift toward end-to-end learning. The main takeaway is,
while Deep Learning can solve the issue of feature design, the application of Deep

18



Chapter 1 – Generalities and preliminary knowledge

Learning introduces a new set of specific problems to contend with - including
data sparsity, extreme class imbalance (which we will see in Chapter 2), and the
need for high computational efficiency. The results of that analysis set the stage
for a review of specific DL architectures in Chapter 2, where we outline what the
solutions were to the problems discussed here.
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Related Work

Introduction
Based on the shared challenges presented in Chapter 1, this chapter discusses

the particular application of deep learning methods in detecting cracks. It begins
by framing the problem in the three broad computer vision paradigms of image clas-
sification, object detection, and semantic segmentation. One of the primary stress
points lies in describing why semantic segmentation stands out, with explication
of its sole facility for precise geometric quantification and morphological analysis
that is of utmost importance for structure assessment. The chapter continues
with a formal summary of the most significant architectures enabling pixel-level
examination, including specialization within encoder-decoder models from the
original U-Net to more advanced variants like UNet++. Finally, a comprehensive
review of the seminal and current literature informs these principles, surveying the
manner in which these tasks and structures have been achieved and advanced by
the academic community to this purpose.

2.1 Foundations of Deep Learning for Crack De-
tection

Deep Learning (DL) is distinguished from traditional Machine Learning (ML)
primarily through automatic feature learning, or representation learning [28, 35],
whereby models acquire sophisticated and robust discriminative features indirectly
from data during training [16, 14], in place of hand-designed features and end-
to-end learning from raw pixels to final output being natively unsupported [16].
The foundation of this computer vision methodology is the Convolutional Neural
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Network (CNN), the de facto standard for visual tasks including crack detection
[16, 48, 49], constructed from specialized building blocks—like convolution lay-
ers with parameter sharing to identify translation-invariant features [35], pooling
layers to down-sample and conserve memory [22, 35], and non-linear activation
functions [28, 14] to develop a hierarchical representation of visual information,
learning low-level edges to high-level, task-specific patterns [22, 36]. The training
of these models follows several paradigms, the most common one being super-
vised learning [37, 16], in which a model learns a mapping from inputs directly to
ground-truth labels as they are familiar [35]; while this can be extremely accurate,
its reliance heavily on large quantities of expensive, time-consuming labeled data
places a massive bottleneck, especially for pixel-level segmentation [16, 39, 40].
To respond to this, unsupervised learning is done without any explicit labels [35],
typically by training on typical, crack-free surfaces in order to detect cracks as
abnormalities [37], though this can struggle with the accuracy and vast variety
of normal surface appearances. Placing itself midway between these two poles,
semi-supervised learning (SSL) offers a reasonable compromise by leveraging on a
small amount of labeled data alongside enormous amounts of unlabeled data [40],
by employing consistency regularization and pseudo-labeling techniques to achieve
performance levels equivalent to fully supervised methods at significantly reduced
annotation costs [16], thus making high-performance DL solutions more affordable
and cost-effective for deployment on real-world infrastructure inspection [37, 16, 40].

2.2 Deep Learning Tasks for Crack Detection
The successful implementation of deep learning for crack detection is dependent

on the formalization of the inspection objective in the form of an explicit computer
vision paradigm. This problem formulation is crucial because it characterizes the
overall process and the nature of the output, ranging from a simple binary classifi-
cation to a dense pixel-wise map. The paradigms that were most researched for this
purpose Image/Patch Classification, Object Detection, and Semantic Segmentation
are each an optimal compromise between the granularity of spatial information,
associated annotation effort, and model computational demand. Selecting the best
task is therefore not at random but depends on the specific engineering require-
ments, whether this is initial screening, coarse localization, or precise geometric
and morphological measurement of defects.
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2.2.1 Framing the Problem
After the capability of Deep Learning (DL) to learn automatically from visual

data was achieved, the subsequent challenge was to position the specific problem
of crack detection within the realm of established computer vision task paradigms.
The choice of framework decides the type of output generated, the type of training
data annotations required, the suitable network architectures, and lastly, the level
of detail provided about the found cracks. Depending on the specific goals of the
inspection—ranging from simple detection of damage presence to precise mapping
and quantification thereof—crack detection using DL is largely dealt with by three
main tasks: Image/Patch Classification, Object Detection, and Semantic Segmen-
tation.

2.2.2 Image/Patch Classification
Patch/image classification would be the simplest formulation of crack detection,

which would be a single-label classification problem such that one would predict an
input image unit to be one of the class labels, for instance, "crack" or "non-crack"
[28, 42]. Since large-scale infrastructure images are usually of high intra-image
variability and whole-image labeling becomes not feasible, the approach is most
effective at the patch level, where the surface image is divided into small, preferably
square patches e.g., patch sizes of 99×99 [32] or 256×256 [28, 42] have been used
and each patch is processed separately. A generic CNN classification network,
ranging from shallow handcrafted networks to well-known backbones like AlexNet
[14], VGG [42], or ResNet [21], is learned on labeled patches. In the case of
large inspection images, a sliding window mechanism is commonly used, scanning
patches in a dense manner over the image, classifying each one with the learned
CNN, and combining the results into an approximate probability map of cracked
regions [28, 22]. Annotation needs are minimal, with patch-level or image-level
labels (crack/non-crack) being sufficient, much less time-consuming compared to
pixel-level annotation. With conceptual simplicity, minimal annotation effort, and
effective utilization of transfer learning from pre-trained networks on big datasets
like ImageNet very useful where labeled crack data is scarce [21, 14, 42], it is
optimally utilized for preliminary screening or filtering of images that are likely to
contain damage. But it provides only rough localization, that is, a patch is cracked
without the indication of where its center is or the width of it. The sliding window
algorithm is computationally costly as it contains repeated processing of overlapping
pixels [22], and the resulting crack maps are blocky, resolution-dependent, and
unsuitable for direct measurement-based geometry like length or width.
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2.2.3 Object Detection
Object detection aims to locate and categorize cracks within an image and

report a list of bounding boxes (typically rectangles) around the detected cracks,
together with a class label (e.g., "crack") and a confidence score [16]. Architectures
for this task generally follow standard object detection architectures, divided into
two-stage detectors such as the Faster R-CNN family [16, 50], which first propose
regions and then classify them, and one-stage detectors such as the YOLO family
[51, 52] and SSD citeliu2016ssd, which perform localization and classification simul-
taneously. Annotation involves drawing bounding boxes around all crack instances
in the training images. Object detection gives direct localization feedback and
is more inference-efficient, at least for one-stage detectors, compared to sliding
window patch classification. Its main limitation for crack analysis is the low geo-
metric appropriateness of rectangular bounding boxes for representing elongated,
curvilinear, and often networked thin cracks [16, 15]. Bounding boxes may enclose
large regions of background or only partially encompass lengthy crack systems, and
it is difficult to glean morphological information such as precise width or length.
Hence, object detection is seldom the preferred option for detailed crack analysis
over segmentation.

2.2.4 Semantic Segmentation
Semantic segmentation provides the most accurate type of analysis by perform-

ing pixel-level labeling [16], a class label (for instance, "crack" or "background") to
every pixel of the input image. It outputs a segmentation mask, an output normally
a binary image the same size as the input, where crack pixels are marked [22]. This
is mainly achieved by Fully Convolutional Networks (FCNs) [53], which replace
the dense classification layers in CNNs with convolutional layers for maintaining
spatial information. Most current segmentation networks are an encoder–decoder
architecture [39, 40, 47], where the encoder (for example, VGG, ResNet, or Ef-
ficientNet) progressively downsamples to learn high-level semantic data and the
decoder progressively upsamples, sometimes injecting information from previous
encoder layers via skip connections, as initially developed in U-Net [54], or using
specialized upsampling layers, as in SegNet [4]. Performance has been improved
subsequently by applying higher-order abstractions such as atrous convolutions
(DeepLab family) [55], dense connectivity [24], attention mechanisms [15, 43], and
transformers [41, 39]. The most computationally expensive step in the annotation
process for semantic segmentation is the process of annotation, which includes
pixel-to-pixel ground truth masks in which each crack pixel is hand-annotated
[16, 40]. But this method provides the highest localization precision, distinctly
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describing spatial position and geometry of cracks, and enabling direct measurement
of the key geometric parameters such as length (skeletal orientation), alternating
width, area, density, and directionality [23, 29, 47]. It is the best approach to
thorough condition inspection, deterioration assessment, and accurate repair plan-
ning, and has left a permanent impression on standard deep learning techniques in
crack detection [37, 16], although requiring high annotation effort and potentially
more computationally demanding than classification—issues addressed in successful
applications [22, 43].

These three deep learning paradigms – Image/Patch Classification, Object
Detection, and Semantic Segmentation – offer varying means of framing the crack
detection problem, each with its own relative strengths and weaknesses regarding
output resolution, annotation requirements, and suitability for analysis. The most
notable differences are presented in Table 2.1.

Table 2.1: Comparison of Deep Learning task formulations for surface crack
detection.

Feature/Aspect Image/Patch Classifi-
cation

Object Detection Semantic Segmenta-
tion

Primary Output Single Class Label (Crack
/ No-Crack) per im-
age/patch.

Bounding Boxes around
detected cracks + Class
Label + Score.

Pixel-level Classification
Map (Segmentation
Mask).

Level of Detail Coarse: Indicates pres-
ence/absence within the
input unit.

Moderate: Locates a
rectangular region contain-
ing the crack.

Fine-grained: Precisely
outlines the crack’s shape
at the pixel level.

Localization Accuracy Low (Limited to the
patch/image boundary).

Moderate (Limited by the
bounding box shape).

High (Pixel-level preci-
sion).

Annotation Required Image/Patch-level Labels
(Least effort/cost).

Bounding Box Coordi-
nates for each crack (Mod-
erate effort).

Pixel-level Masks for all
crack pixels (Highest ef-
fort/cost).

Handling Crack Geom-
etry

Does not capture geome-
try.

Poor fit for thin, long,
branching, or networked
cracks (rectangular
boxes).

Excellent fit, directly
maps the crack’s true
shape and continuity.

Typical Use Case Initial screening, filtering
data, simple presence de-
tection.

Locating distinct crack re-
gions, counting separate
major cracks.

Detailed analysis, precise
mapping, geometric quan-
tification, severity assess-
ment, monitoring propaga-
tion.
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2.3 Motivation for DL-Based Crack Segmenta-
tion

While DL-based image classification and object detection offer helpful function-
ality for coarse localization and first-level screening of cracks [28, 52], they fall short
in providing the rich, fine-grained information required for thorough structural
assessment and well-informed maintenance decisions. The inherent weaknesses
of such approaches—i.e., the coarse localization provided by patch classification
[22] and the geometrically poor fit of bounding boxes to intricate crack patterns
[16, 15]—mandate a more detailed-grained approach. This need for precise spatial
understanding is the underlying cause of the popularity of semantic segmentation
as the preferred DL framework to be employed in advanced crack identification and
inspection [37, 16, 38]. The main reasons for focusing on pixel-level segmentation
are:

2.3.1 Correct Geometric Quantification
The greatest advantage of segmentation is that it yields a pixel-by-pixel map

outlining the tiny detail and contour of cracks [22]. This kind of output makes it
possible to extract and quantify crucial geometric parameters determining a crack’s
severity and impact potential, i.e.:

Length: A measure of the total length of the crack along its path, normally
from the crack skeleton [23, 47]. Length is a key propagation indicator.

Width: The measurement of the width of the crack, often variable in its length
and proportional to the likelihood of water and deleterious substance penetration
[29, 47]. Segmentation allows for measurement at multiple points or averaging of
the width.

Area and Density: Calculation of the total area of cracks in an area or crack
density (crack area per unit surface area) provides a quantitative measure of surface
distress [47].

Topology and Shape: Segmentation masks reveal the subtle shape, including
branching patterns, intersections, and network structures (e.g., alligator cracking),
which offer information beyond linear measurements [31, 10]. This morphologi-
cal information is crucial in the interpretation of crack type and potential causes [16].
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2.3.2 Better Localization and Mapping
Compared to bounding boxes which may contain a lot of background or patch

classification which only defines areas impacted, segmentation defines exactly which
pixels constitute the crack. High-accuracy spatial mapping is essential for:

Targeted Repairs: Guiding repair processes directly to where damage has
happened, optimal material efficiency, and effectiveness.

Crack Propagation Monitoring: Segmentation masks of inspections carried
out at different points in time may be compared to accurately monitor growth
(length, width, or area increase) and propagation direction of cracks, providing
useful information for remaining service life estimation [19].

2.3.3 Objective and Consistent Assessment
A transformative advantage of semantic segmentation is that it entails a fact-

based, objective description of cracks and thus transcends the inherent subjectivity
and inconsistency of human visual inspection [21, 16]. Human inspections are
influenced by the well-established between- and within-inspector inconsistency due
to human factors like experience and fatigue, which renders the data unreliable for
the critical process of monitoring defect growth with time. In sharp contrast, a deep
learning model trained is a deterministic model and therefore for any given input
image, the output segmentation mask is reproducibly accurate and unbiased by
humans. This consistency lays down a repeatable and auditable baseline for every
inspection on which real quantitative longitudinal analysis can allow engineers to
actually quantify crack growth, calculate deterioration rates, and make data-based
decisions for risk-informed asset management.

2.3.4 Foundation for Advanced Analysis
The highly accurate crack maps from segmentation may be used as input to

further analysis, such as Finite Element Modeling (FEM) in order to determine
stress concentrations near the crack tip or correlation against other sensor readings
in a bigger SHM setting.
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2.4 Enabling DL Architectures for Crack Seg-
mentation

The effective application of Deep Learning to the challenging problem of pixel-
level crack segmentation depends on the development of custom neural network
architectures that are capable of both understanding high-level semantic context
(i.e., identifying crack-like patterns) and precisely localizing such features in spa-
tial locations. Generic CNNs are actually excellent feature extractors, but they
increasingly give up spatial resolution using pooling or strided convolutions, and
their final fully connected layers give up all spatial information. To enable dense
prediction (annotate all pixels), there needed to be special architectures. The
dominant paradigm that emerged is the encoder-decoder network [39, 37, 40].

2.4.1 The Encoder-Decoder Paradigm
This structure forms the backbone of most modern segmentation models.

Encoder

This part typically copies a base classification CNN (e.g., VGG [56], ResNet [57],
EfficientNet [40], etc.). Its purpose is to pass the input image through a sequence
of convolutional and downsampling (pooling or strided convolution) layers. With
the reduction in spatial resolution, typically more feature channels are utilized,
where the network can successively identify higher-level and more abstract semantic
features and increase the receptive field (the area in the input image influencing a
particular feature). Hierarchical feature detection is important while identifying the
context and crack-like features from cluttered backgrounds. Encoders learned from
huge image datasets like ImageNet are utilized in most instances using transfer
learning, capitalizing on strong general visual features learned on the prior dataset,
especially useful where labeled data for cracks is limited [21, 42, 14].

Decoder

The decoder is responsible for mapping the encoder’s low-resolution, seman-
tically meaningful feature maps and progressively upsample them to the original
image size. Decoder constructs the spatial information necessary for pixel-level
classification. Simple upsampling methods (e.g., bilinear interpolation or simple
transposed convolutions) confined to encoder’s lowest features have a tendency to
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output coarse segmentation masks with ill-defined edges, too rough to precisely
define thin cracks [22]. It is therefore necessary that multi-level information com-
bining has high-level decoder structures and procedures.

2.4.2 Notable Architectural Advances and Designs
Some notable architectural advances have been constructed and adapted to

further boost the performance of encoder-decoder networks in segmentation tasks,
some specifically aimed at addressing crack detection problems:

Fully Convolutional Networks (FCN)

The paper [53] had established that end-to-end dense prediction was possible
by substituting the last fully connected classification CNN layers with 1x1 con-
volutional layers. Central to FCNs was the discovery of skip connections, where
shallow encoder feature maps (more spatial detail preserved) are concatenated with
upsampled feature maps from deeper layers in the decoder. This blending of coarse
semantic information and high spatial information was a revolutionary step and
permitted more precise localization of segmented objects.

U-Net

Highly impactful, particularly within medical imaging when boundary demarca-
tion must be very accurate and adopted regularly to detect cracks [24, 54, 15, 40].
U-Net is a mirror encoder-decoder network with extremely widespread adoption of
deep concatenative skip connections. Properties of an encoder layer are, instead of
summation, concatenated channel-wise with the upsampling corresponding features
in the decoder and subsequently convolved again, as shown in Figure 2.1. This
gives the decoder path much richer sets of high-resolution features of the encoder,
greatly improving its ability to reconstruct high details and outline objects with
intricate boundaries, e.g., thin cracks [58].

Nested UNet (UNet++) architecture

Re-designed skip pathways This is a major development in the original U-Net
architecture, where innovations were made to improve segmentation performance.
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Figure 2.1: U-Net Architecture.

This development involved redesigning the skip pathways for the encoder-decoder
subnetwork connection. In U-Net, this connection occurs directly from the encoder
to the decoder, whereas in UNet++, these connections are subject to a dense
convolution block, the number of which depends on the level of the hierarchy.
The skip pathways between nodes in the dense blocks X0,0 and X1,3, for example,
pass through three convolution layers, where the outputs of the previous layer
of the same node are merged with the corresponding calibration outputs of the
node with the lowest heuristic before each successive convolution layer. These
skip pathways were strategically designed to bridge the semantic gap between
the feature maps produced by the encoder and decoder. The basic principle is
to make the optimization process easier when the merged feature maps are more
semantically similar. The skip pathway is formulated as follows: Let xi,j denote the
output of node X i,j, where i indexes the down-sampling layer along the encoder,
and j indexes the convolution layer of the block along the skip path [3]. The set of
feature maps represented by xi,j is calculated as follows:

xi,j =


H(xi−1,j), j = 0
H
([

xi,j−1
k

]j−1

k=0
, U(xi+1,j−1)

)
, j > 0

(2.4.1)

H(· · · ) : The convolution operation function followed by the activation function.
U(· · · ) : Denotes the sampling layer.
[· · · ] : Denotes the pooling layer.

• From the previous layer of the encoder, there is one input at level j = 0.

• From the encoder subnetwork, there are two inputs at two successive levels
at level j = 1.
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Figure 2.2: Nested UNet (UNet++) architecture [3].

• Nodes at level j > 1 receive two inputs j + 1, of which j inputs are the outputs
of previous j nodes in the same skip pathway .

• The last input is the optimizer’s output from the lower skip pathway.

• Using a dense convolution block along the overflow path causes all previous
feature maps to accumulate and reach the current node. Figure 2.2 further
illustrates how the feature maps travel through the overflow path of U Net++
[3].

Deep supervision U-Net++ with deep supervision enables the model to
operate in two modes: Accurate mode: The mean is mathematically extracted
for each output of the segmentation branches; Fast mode: A single segmentation
branch enables the selection of the final segmentation map. This determines the
extent to which the model is pruned and increases speed. Figure 2.2 shows how
the branch is selected in Fast mode. Overlapping skip pathways makes the feature
maps highly accurate at multiple semantic levels and amenable to deep supervision.
A loss function is added to each of the four levels in {X0,j,j {1,2,3,4}}, limited to
a combination of the binary cross-entropy and the Dice coefficient, as shown in the
following equation:

L(Y, Ŷ ) = − 1
N

N∑
b=1

(
1
2Yb log Ŷb + 2YbŶb

Yb + Ŷb

)
(2.4.2)

Yb: the flattened ground truths of the bth image.
Ŷb: the flattened predicted probabilities.
N : Batch size.
In short, U-Net differs from UNet++ in 3 ways:
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• The semantic gap between the encoder and decoder feature maps is bridged
by convolutional layers on the skip paths (shown in green).

• Gradient flow is improved by providing dense skip connections on skip path-
ways (shown in blue).

• Pruning and improving the model by providing deep supervision (shown in
red), or in the worst case, achieving performance similar to using only one
loss layer [3].

SegNet

SegNet architecture focuses on memory and computation efficiency in the de-
coder [4, 47]. In max-pooling operations during the encoder, SegNet retains the
indices (locations) of the max values. In the decoder, it utilizes the retained
indices to perform non-linear upsampling and restore the features to their original
locations before convolution, as shown in Figure 2.3. This does not learn the
upsampling filters but may be less precise in restoring the fine details compared to
the concatenation mechanism of U-Net.

Figure 2.3: SegNET Architecture [4].

Atrous (Dilated) Convolution and DeepLab

In trying to get multi-scale context without losing spatial resolution too pre-
maturely, DeepLab models [59]depend heavily on atrous convolution. Atrous
convolution is all about incorporating gaps (controlled by a dilation rate) into
standard convolution filters, effectively expanding the filter receptive field without
increasing the number of parameters or reducing the output resolution, as shown
in Figure 2.4. The Atrous Spatial Pyramid Pooling (ASPP) module carries out
several parallel atrous convolutions with different dilation rates (and sometimes
global average pooling) on the bottom encoder feature map. This allows the
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network to analyze features of different scales simultaneously in an end-to-end
manner, which is particularly helpful for the detection of cracks of different sizes [22].

Figure 2.4: DeepLab Architecture.

Dense Connectivity (e.g., FC-DenseNet)

As a variant of DenseNets for classification [60], fully convolutional variants
including FC-DenseNet [61] use dense blocks in which the feature maps from all
previous layers are consumed by each layer while offering its feature maps to
all subsequent layers within the block. This encourages reuse of features, im-
proves gradient flow (less vanishing gradients for deep networks), and can lead
to parameter-sparsity models. These are advantages that have been leveraged in
some crack segmentation networks [37, 24], An illustration of the FC-DenseNet
architecture is shown in Figure 2.5.

Attention Mechanisms and Transformers

Understanding that not all spatial locations or all features are equal, attention
mechanisms allow models to choose to consider only the most relevant information.
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Figure 2.5: FC-DenseNet Architecture.

These can be added to CNNs as modules with regard to channel or spatial relations
[15, 43]. More abstractly, Vision Transformers (ViTs) and their variants process
images by dividing them into patches and using self-attention to capture patch
relations [62]. These models like the Segment Anything Model (SAM) [63] or spe-
cific segmentation transformers (e.g., those based on SWIN transformer blocks [15])
utilize this capability to segment so that they can capture long-range relationships
and global context, which could be useful to segment highly big or inter-connected
crack networks. Hybrid architectures fusing CNN encoders (for local details) and
transformer decoders or blocks are also becoming increasingly popular [39].

Figure 2.6: Illustration of the transformer architecture and the attention mechanism.
(A) Transformer structure; (B) Attention mechanism [5].
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Lightweight and Efficient Designs

Computational efficiency is a prerequisite for realistic deployment, particularly
on mobile devices (vehicles, drones) or edge devices. This has led to the creation
of light-weight models with an emphasis on speed and lower resource utilization,
typically through techniques like depth-wise separable convolutions (employed in
MobileNet [64] and adapted in [47, 22]), Ghost modules [46], group convolutions,
or domain-specific blocks like those employed in SDDNet [22] and AnomalySeg
[43].

2.4.3 Comparison of Deep Learning Segmentation Archi-
tectures for Crack Detection

The choice of a particular deep learning architecture is determinantal dur-
ing crack segmentation framework design. Dominant models like FCN, U-Net,
SegNet, DeepLab, and more recently transformer-based architectures are each
design philosophies competing for optimal semantic understanding and accurate
localization. Understanding their underlying principles and inherent trade-offs,
as presented in Table 2.2, is critical to results interpretation and future improvement:

2.5 Related Works
Automated detection of cracks in civil infrastructures has garnered considerable

interest in research and practice to improve the efficiency, objectivity, and safety of
structural health monitoring. Traditional detection processes primarily involved
human intervention or classical image processing techniques for cracks including
threshold images, edge detection, and so on, which were limited in robustness,
scalability, and adaptability to different real-world situations in the pavement (e.g.,
differences in light conditions, shadows, textures, etc.) [42, 28, 14, 65]. Deep learning
has become an important means to address some of these challenges; in particular,
Convolutional Neural Networks (CNNs) offer immensely useful computational
frameworks for crack detection. The existing deep learning strategies for crack
detection can be categorized on the basis of the main output and input structure:
image classification, object detection, and semantic segmentation.
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Table 2.2: Comparison of Architecture Families for Crack Segmentation

Architecture Family Core Distinguishing
Feature / Principle

Key Strength (Rele-
vant to Cracks)

Key Potential Weak-
ness (Relevant to
Cracks)

FCN (Baseline) End-to-end convolutional;
Basic skip connections
(sum).

Foundational; Enables
pixel-level output.

Often produces
coarse/blurry bound-
aries.

U-Net Family Encoder-Decoder with
Concatenative Skip Con-
nections.

Excellent Fine Detail
Preservation (good for
thin cracks).

Standard receptive field
might limit broad context
understanding.

SegNet Family Uses max-pooling indices
from the encoder for non-
linear upsampling in the
decoder.

High memory and com-
putational efficiency, espe-
cially in the decoder.

Can be less precise in
restoring fine details and
sharp boundaries com-
pared to concatenation-
based methods.

DeepLab Family Atrous (Dilated) Convolu-
tions & ASPP.

Strong Multi-Scale Con-
text (good for varying
widths).

Can sometimes miss the
very finest details or have
artifacts.

Transformer / Hybrid Self-Attention Mecha-
nisms.

Captures Long-Range De-
pendencies / Global Con-
text.

Computationally heavier;
potential loss of local de-
tail if not hybrid.

Lightweight Designs Replaces standard convo-
lutions with computation-
ally efficient operations
(e.g., depth-wise separa-
ble, group convolutions) to
drastically reduce model
parameters and FLOPs.

Enables real-time infer-
ence on mobile or edge
devices (drones, vehicles)
with limited computa-
tional power and battery
life.

May exhibit a slight re-
duction in segmentation
accuracy, especially for
very fine or complex low-
contrast cracks, due to a
more constrained feature
extraction capacity com-
pared to larger models.
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2.6 image classification
Early deep learning applications to crack detection predominantly framed the

problem as an image classification task. This methodology typically involves
dividing larger images into smaller patches, which are then fed into a CNN to
classify each patch as either containing a crack or being defect-free.

Zhang et al. [32] were one of the earliest efforts to successfully deploy deep
convolutional neural networks (DCNNs) to classify patches of images containing
pavement cracks, and their performance demonstrated that DCNNs can perform
better than conventional machine learning approaches such as support vector
machine (SVM) and boosting methods. Zhang et al. [32] had evidence of showing
that DCNNs learn discriminative features from raw pixels of input images. Cha &
Choi [28] developed the first DCNN-based system for pavement crack detection
using wearable images. They trained their model, where they reported using 40,000
concrete image patches (256 x 256 pixels) of various cracks on pavement, and found
their model achieved roughly 98% accuracy. Analyzed too, was the application
of the FCN on larger images, as well as slipping window approach on the images
revealed a good classification/detection results. They reported their DCNN systems
outperformed traditional edge detectors, primarily Canny and Sobel. Furthermore,
Cha and Choi concluded that they DCNN with software toolbox was still efficient
under real conditions where there is variety in lighting and even when cracks were
thin.

Given the enormous amounts of data that need to be collected to train deep
CNNs from scratch, transfer learning was a popular option. Da Silva et al. [42]
accomplished this by fine-tuning the VGG16 architecture used video of 3,500
concrete surfaces and reported 92.27% accuracy for its application in Unmanned
Aerial Vehicle (UAV) inspections. Their research acknowledged the importance
of some factors such as the learning rate, the number of nodes included in the
last fully connected layer and the size of training dataset. Chen et al. [21] further
demonstrated the effectiveness of transfer learning when compared to a CNN
trained from scratch that achieved 89% accuracy with their detection of building
surface cracking model after training on a dataset of 3,600 images compared to a
transfer approach using ResNet101 which produced an accuracy of 94%. Rajadurai
Kang [14], explicitly used AlexNet for crack detection, and constructed an image
dataset that included "no-cracks" and "crack" scenarios. They used transfer learning
to fine-tune the weights of the architecture and changed the classification layer
to produce two output classes. The fine-tuned AlexNet was intended for image
classification, they trained the architecture using optimization algorithm stochastic
gradient descent with momentum and achieved 99.9% accuracy, precision, recall and
F1 scores on the validation and test datasets. AlexNet demonstrated robustness
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in performance when tested against a very different dataset although there was a
small drop off in performance in a couple of areas due to user obstruction example
shadow and surface roughness.

While effective for identifying the presence of cracks within regions, these patch-
based classification methods generally require a subsequent scanning mechanism for
full surface inspection and do not inherently provide precise localization or detailed
morphological information about the cracks, which is crucial for quantitative
assessment.

2.7 Object Detection
Object detection frameworks that predict bounding boxes around defects have

been used more regularly for crack detection in a more precise way than pure patch
classification (which involves classifying defects in an image as one or more labels
- no spatial information is given). Object detection methods provide a label and
also spatial coordinates of defects.

The You Only Look Once (YOLO) family of models has been widely adopted due
to the trade-off between speed and accuracy of real-time solutions. Yu [52] proposed
YOLO V5s-based solution for detecting concrete cracks using 3500 manually labeled
images, which served to improve the original YOLO V5s model by using Otsu
thresholding to remove background noise and K-Means to predict the best initial
anchor box sizes. After applying these techniques, Yu’s [52] article reported an
average precision (AP) of 84.37%, average recall (AR) of 76.01% and F1-score of
79.97%.

Dong et al. [46] advanced YOLO based detection significantly with a variation
of the original lightweight YOLOv8-based algorithm called YOLOv8-CD. They
developed an improved model architecture based on YOLOv8, combining a Large
Separable Kernel Attention (LSKA) module, integrating visual attention networks
and large convolutional attention and effectively capturing crack and local feature
information to adapt for fracture susceptibility and slender shapes. The authors
included the Ghost module into the YOLOv8 backbone for an efficient extraction
of features, and they replaced the original convolution structure in the neck of the
network with GSConv and a VoV-GSCSP module, reducing floating point operations
while still achieving accuracies. YOLOv8-CD was tested (on the RDD2022 dataset
and Wall Crack dataset) and ultimately achieved substantial mAP50 increases of
15.2% and 12.3%, respectively, over a baseline YOLOv8n model. They reported a
detection speed of 88 FPS. The work by Fu et al. [65] contextualizes the relevance
of their work by reviewing the development progression of object detection from
R-CNN and its derivations (Fast R-CNN, Faster R-CNN), and other single-stage
detectors including YOLO and SSD, and highlighted the constant pursuit of
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improved speed and accuracy.
Even though object detection provides us with advantageous localizations with

bounding boxes, such rectangular outputs do not always represent the intricacies,
linearity, complexity, and usually poor geometric representation of a crack as
accurately as pixel-based segmentation methods.

2.8 Semantic Segmentation
For applications demanding detailed morphological information and precise

delineation of crack boundaries, semantic segmentation techniques, which classify
each pixel in an image, have become the standard. These methods generate a
pixel-wise mask identifying crack regions, enabling more accurate quantitative
analysis.

Originally designed for biomedical image segmentation, the U-Net architecture
[54] has been adapted for crack detection reliably and successfully due to the
inherently strong encoder-decoder structure and skip layers that combine multi-scale
features and maintain spatial information. Ronneberger et al. [54] demonstrated U-
Net’s abilities for image segmentation with very little training data in combination
with a strong level of data augmentation, such as elastic deformations. Cheng et al.
[66] used U-Net for pixel-wise crack detection, being distinct to process the entire
image rather than using patches and also introduced a new cost function based
on the distance transform to give pixel level weights for handling class imbalance.
Their U-Net performed very well, with over 92% pixel-wise segmentation accuracy
for the two public road crack datasets tested (CFD and AigleRN). Similarly, Gao
[67] constructed a (U-Net) approach for road and tunnel crack detection using data
taken via a mobile mapping system. Following which he focused on improving
accuracy through new parameter settings, fine-tuning, class imbalance treatment,
and post-processing for vectorization to represent crack length and width.

U-Net and other Fully Convolutional Network (FCN) based architectures are the
subject of recent interest mostly focused on variations or improvements. Liu et al.
[6] proposed "DeepCrack", a deep hierarchical (without fully connected layers) FCN
architecture based on FCNs and Deeply-Mocked Networks (DSN). The motivation
for DeepCrack is to learn and combine multi-scale and multi-level features from
each stage of the convulutional path (low to high), while also applying a DSN
approach by having integrated direct supervision at each of the convolutional
stages. The authors employed guided filtering and Conditional Random Field
(CRF) techniques as post processing steps to adjust the predictions they made
using their new benchmark (537 images) dataset, achieved a mean Intersection
over Union (IoU) of 85.9% and best F-score of 86.5%.

Zheng et al. [47] established a lightweight technique for detecting cracks in
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bridges, extending their model from SegNet (another variant of encoder-decoder
architecture) with bottleneck depth-separable convolutions and residuals. This
development has been created to enhance efficiency and robustness. Their model
achieved increases in accuracy to 97.95% and MIoU to 77.76% scores when compared
to other methods such as DeepCrack and CrackU-net on their dataset. Li et al.
[24] were focused on pavement cracks and provided a detection algorithm based on
a densely connected and deeply supervised network. They used densely connected
layers to support feature propagation and feature reuse, and deeply supervised
modules to extract more prominent features at multi-scale levels. Their major
contribution was a class-balanced cross-entropy loss function. They demonstrated
a superior performance to other approaches specifically dealing with the imbalance
between the small area of crack pixels and the larger area of background. Li
et al. [24] assessed their model on three public datasets: AEL, Crack500, and
Cracktree200.

Wang & Su [40] proposed a semi-supervised semantic segmentation network
for detecting surface cracks and used a modified version of EfficientUNet as the
backbone of their model. They used a student and teacher model (the teacher
model weights updated by the exponential moving average of the student model.),
and trained the network with both annotated and unannotated data while injecting
noise for robustness. The authors focused on the amount of annotated data used;
after using only a modest 60% of the annotated data, they achieved an F1 score of
0.6540 on their concrete crack dataset and 0.8321 using the Crack500 dataset, thus
greatly reducing the amount of labeled data needed.

To address the issue of small or unusual flaws being detected, Song et al. [43]
proposed "AnomalySeg," which was a refined U-Net. Instead of a normal residual
module, their model introduced a hybrid residual module where the improved
spatial attention mechanism (which featured multi-scale dilated convolutions) and
a feed-forward neural network were combined to replace almost all of the down
sampling layers of the encoder in order to preserve information regarding small
imperfections. Dilated convolutions were also adopted in the decoder and a more
generic hybrid loss function (Dice and focal loss) was proposed to overcome the
small defect segmentation problem. AnomalySeg achieved better Dice coefficients
on KolektorSDD, KolektorSDD2 and RSDD datasets using fewer parameters than
any other generic segmentation benchmarks.

Tabernik et al. [68] presented a segmentation-based deep learning architecture
to learn from a very small number of defective training samples (around 25 to 30)
using their newly developed Kolektor Surface-Defect Dataset (KolektorSDD). Their
two-stage architecture had a segmentation network (11 convolutional layers) for
pixel-wise localization, and decision network on top to predict per-image defect
presence, which surpasses comparator methods and commercial software in their
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specific industrial product defect area.
Fan & Zou [69] proposed a new technology for road crack detection based on

"deep dictionary learning and encoding networks (DDLCN)" along with a new
activation function MeLU. The DDLCN replaces traditional convolution layers with
dictionary learning encoding layers - they use this DDLCN within an improved Mask
R-CNN framework (an instance segmentation model combining object detection
and pixel level mask). This proposed technology was not just about detection but
about also analyzing specific characteristics of cracks, measurements and features,
etc.

Fu et al. [65] improved the DeepLabv3+ architecture specifically for bridge crack
semantic segmentation. They altered the structure of the DeepLabv-3+ network by
adding a "densely connected atrous spatial pyramid pooling (ASPP)" module. The
modification allowed the network to make denser pixel sampling and to extract
detail features better, by concatenating feature maps from atrous convolution with
small rates to be input to lots with large atrous rates, thus maintaining a larger
receptive field with the total number of parameters of the model identical. The
improved model achieved an average intersection ratio of 82.37% on the bridge
crack dataset they collected.

Li et al. [70], Shenyang Jian Zhu University proposed a lightweight model
called "Mini-Unet" specifically designed for the detection of tunnel lining cracks.
This lightweight model builds off of the U-Net architecture by utilizing fewer
downsampling steps, and replacing some of the normal convolution layers with
depthwise separable convolution (DSConv) layers to increase efficiency. A hybrid
loss function that included Dice loss and cross-entropy was also employed to
address the imbalance between the backgrounds and cracks categories. Mini-Unet
performed well, yielding a mean IoU of 60.76%, mean precision of 84.18%, and a
mean inference speed (FPS) of 5.635. The Mini-Unet outperformed a number of
mainstream models in terms of efficiency.

Goo et al. [39], introduced "Hybrid-Segmentor," an encoder-decoder model
consisting of a CNN model (ResNet-50) path for fine-grained local features and a
Transformer model (SegFormer concepts: Overlapping Patch project, Efficient Self-
Attention, and Mix-FFN) path for global context to create a hybrid encoder-decoder
architecture. The entire feature maps from both paths were straight-forwardly fused
at multiple levels before the simple decoder. The hybrid model was trained using a
BCE-DICE loss function and achieved state-of-the-art results (0.971 accuracy, 0.770
F1-score, and 0.630 IoU) on a large refined dataset by combining and augmenting
13 open-source crack datasets.

These varied types of semantic segmentation approaches clearly illustrate the
trend of more accurate, efficient, and robust pixel-level crack detection applications
that deal with all sorts of complex crack morphology and imaging conditions, while
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often seeking to minimize dependancy on massive amounts of labelled data.
The previous literature reviewed a clear trajectory in deep learning for crack

detection. These developments move increasingly away from patch-image clas-
sification and bounding-box object detection to semantic segmentation at the
pixel level. Although patch-image classification validated the use of deep learning,
and bounding-box object detection enhanced the localization of cracks, pixel-level
semantic segmentation is the most accurate representation of crack morphology,
particularly in using architectures like U-Net [54] and SegNet-based models [47]
and the various modified versions of U-Net [66, 67, 40, 43].

Conclusion
In this chapter, we established semantic segmentation as the optimal approach

for crack detection, mainly due to its unique ability to provide the pixel-wise
precision needed for quantitative geometric analysis. The review of enabling
architectures, found the most successful approach to be the encoder-decoder model,
and more importantly those architecture instances such as U-Net and UNet++ with
proposed advanced skip pathways, as the most successful paradigm to balance the
crucial relationship between deep semantic feature extraction and spatial localization
at a fine-grained spatial extent. This methodological choice is supported by a noted
in the literature with a tendency to dwell towards a pixel-wise analysis. We have
now presented a robust methodological and architectural rationale, and we will
move to demonstrate the empirical application and evaluation of the proposed
segmentation model.
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Our Solution

Introduction
This chapter provides the details of the practical application of the deep

learning-based crack segmentation model. First, this chapter discusses the dataset
from which the data was obtained, data preprocessing, and data-augmentation
methods used to improve model generalization. The chapter also talks about the
proposed deep learning architecture and the training pipeline. Next, describes the
experimental environment (the programming tools and computational environment
used to support the development and evaluation of the model). Next, performance
evaluation metrics, along with comparative results against other state-of-the-art
approaches. Finally, a simple but efficient crack detection system has been created
and demonstrated to showcase the real-world applicability of the model. This
experimental framework will help to conclude the theoretical exploration and
theoretical development of the proposed approaches, while also addressing how to
transition to software deployment within structural health monitoring.

3.1 Dataset
For this study, we utilized the DeepCrack dataset [6], a well-respected open-

standard benchmark for the detection of cracks via image segmentation. There are
a handful of other publicly available datasets for this purpose, such as CrackTree200
[10], but we selected DeepCrack because it contains high-quality pixel-level annota-
tions, which are instrumental in training and testing good semantic segmentation
models.

The data set consists of 537 image-mask pairs. Input images are RGB photos in
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Figure 3.1: The first row is the original image which is the DeepCrack data set,
and the second row is the artificial mark of the crack.

the JPEG format. The compression algorithm for this format is lossy compression,
which is very effective at storing exact visual data but perhaps introduces subtle
artifacts. Every image has an accompanying binary crack mask, and it is employed
as training truth ground. Importantly, these masks are supplied in the PNG format.
The use of PNG is intentional and important, for it is a lossless compression format.
This means that the exact, pixel-wise position of all cracks is maintained with
perfect fidelity, free from any compression artifacts that would potentially debase
the quality of the ground truth data. The dataset is split into two subsets, with
a training set of 300 images and a test set of 237 images, and each image is at a
fixed resolution (544 × 384 pixels). Each image has an associated binary mask that
traces the spatial distribution of crack pixels, as shown in Figure 3.1. Table 3.1 lists
that the predominant pixel represents the background (no crack) so there is a clear
class imbalance. Images consist of predominantly asphalt and concrete surfaces;
the crack width varies between 1 pixel and 180 pixels, which makes multi-scale
crack segmentation a difficult task [6].

Table 3.1: The percentages of crack pixels and non-crack ones [6].

Crack pixels (%) Non-crack pixels (%)

Training 2.91 97.09

Test 4.33 95.67

Total 3.54 96.46
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3.2 Environment

3.2.1 Working Environment
The model’s development, training, and subsequent evaluation were conducted

utilizing the Colab Pro environment, which provided critical computational advan-
tages. Access to high-performance Graphics Processing Units (GPUs), such as the
Nvidia T4 or P100, was instrumental in accelerating the intensive computations
inherent in deep learning model training. Furthermore, the provision of substantial
Random Access Memory (RAM), typically 25GB or greater, and extended runtime
limits ensured the uninterrupted and efficient execution of prolonged, resource-
intensive processes ran seamlessly and efficiently during the course of this work.

3.2.2 Programming Language
Python: Python is the most popular high-level programming language recently.

It allows developers to write less code compared to other languages. Its strength
lies in its support for diverse programming paradigms and its rich, extensible library
[71]. Among its most important features and advantages are:

• Easy to use and learn: Its syntax is simple.

• Free and open-source: Anyone can use it.

• Multi-platform and portability: It runs on various operating systems.

• Supports both procedural and object-oriented programming: It is flexible in
building applications.

• Interpreted language: Python instructions are not converted to machine code
for execution.

• Extensibility and embedding: Python can be integrated with other languages
or embedded into other applications.

• A comprehensive standard library: It provides ready-made tools and tem-
plates for a wide range of tasks.
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3.2.3 Libraries
• PyTorch: Python uses the PyTorch library, which is based on the origi-

nal Torch framework, developed by Facebook. It features dynamic graphs,
simplicity, and is more advanced than TensorFlow, allowing developers to
easily modify and debug their software. The gradient ranges from the data
tensor to the network abstraction levels, from tensor to variable to nn.Module,
respectively [72].

• TensorFlow: TensorFlow is used in various scientific fields. It is a framework
for defining and running computations with partially defined computational
objects that ultimately yield a value, called tensors. TensorFlow visualizes
computational graphs better, reduces errors by 50 to 60 percent in machine
learning, and features parallel computing for executing complex models. It
manages a series of libraries supported by Google, and offers faster updates
and the latest features through frequent releases. TensorFlow is useful for
speech and image recognition, text-based applications, and video detection
using time series analysis. It is high-performance, as attested to by 35,000
comments from a community of 1,500 contributors [73].

• NumPy: NumPy is the core numerical computation library in Python. Its
strength lies in its high-performance N-dimensional array and a comprehen-
sive set of functions and tools for efficient operation. NumPy overcomes
the slowness of Python numerical operations by enabling matrix-oriented
computation and pre-compiled vector operations. Its need for large-scale data
analysis is essential for many applications. It is the basis for other scientific
and analytical libraries such as SciPy and scikit-learn. It may be a suitable
alternative to MATLAB after integration with other libraries such as Mat-
plotlib and SciPy. It is widely popular and supported by many contributors
and users [73].

• Matplotlib: Matplotlib is a powerful Python library designed to create
effective and efficient visualizations and graphs. It has a broad user base and
contributors, making it an ideal choice for data visualization. Its graphs can
be easily integrated into various applications thanks to its object-oriented
interface. It is the best free and open-source alternative to MATLAB for
graphing, supporting various operating systems and output formats. Inter-
action with Matplotlib can be simplified by using the Pandas library as an
interface, as it is highly memory-efficient and performs well during execution.
Matplotlib is used for studying correlations between variables and represent-
ing confidence, identifying outliers through scatterplots, and analyzing data
distributions for quick and in-depth understanding [73].
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• Scikit-learn: Scikit-learn is a popular Python machine learning library that
seamlessly integrates with other libraries such as NumPy and Pandas. It is
considered the most prominent and preferred library for implementing classic
machine learning algorithms, as it is built on the SciPy and NumPy libraries.
It provides comprehensive support for most supervised and unsupervised
learning algorithms. It can be used effectively for data exploration and
analysis tasks, making it a valuable tool and ideal for beginners in machine
learning [73].

• OpenCV: OpenCV is a popular open-source computer vision library, specifi-
cally designed for applications requiring real-time processing. Its architecture
includes hundreds of dedicated computer vision algorithms. Its components
include diverse modules such as image processing, video analysis, object
detection, camera calibration, 3D modeling, and 2D feature frameworks [73].

• Argparse: argparse is used in most custom Python scripts, it is a module
that provides easy-to-use command-line interfaces [74].

• OS: The OS in Python serves as an interface that allows programs to interact
with the underlying operating system. Interacting with OS functions is
made easier using the OS, enhancing software portability across different
environments. The OS module features an OSError exception that it raises
when errors occur during interaction with the OS. It is essential for many
programming tasks and automated testing, and is used to locate specific files
such as configuration files, test reports, and even test data files in formats
such as Yaml and Excel. Although there are methods available that enable
interaction with the OS other than the OS to call specific system functions,
this negatively impacts code portability [75].

• SyS Modele: System-specific parameters and functions: This module allows
access to variables used or maintained by the Python interpreter. There are
functions with which sys interacts closely. This module is always accessible.
Variables in this module are read-only unless explicitly declared [76].

• Tqdm: Tqdm is a Python library that provides fast and scalable progress
bars for iterations and loops as well. tqdm makes it easy to track the progress
of time-consuming tasks and is able to update the display bar by counting
repetitions, calculating elapsed and remaining time. The library’s name
means "progress" in Arabic (taqadum, ), and is an abbreviation for "I love
you so much" in Spanish (te quiero demasiado).” It efficiently visualizes the
overall progress to improve performance and provide clear, consistent visual
information [77].
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• Glob: In Python, global is shortened to glob, and is a useful part of the
standard library, for searching for file pathnames that match a certain pattern.
It includes two functions glob.glob() and glob.iglob() and is also useful for
searching for text within files and csv files. It is simple, and glob library
styles can be considered similar to regular expressions. It is easy to use to
read similar files before analyzing them [78].

• Shutil: Backing up files and folders can be simplified using the shutil module.
The code for using the function shutil.copy(source, destination) copies the file
located at "source" to "destination." The code for shutil.copytree() implements
the same logic as file copying but handles an entire folder instead of a
single file. It’s worth noting that shutil.copytree() doesn’t retain all file
metadata, such as owner and group, which can be important in system
administration environments. To ensure proper execution, it’s essential to
schedule shutil function calls within Python scripts using the operating
system’s task scheduler [79].

3.3 Data augmentation
Effective training of deep learning models, especially for complex tasks like

image segmentation, heavily relies on the quality, quantity, and diversity of the
training data. Data augmentation techniques are employed to address these needs
by synthetically expanding the dataset and exposing the model to a wider range of
variations. Our process incorporates two key stages: firstly, the strategic generation
and filtering of patches from original large images and their segmentation masks
to form a refined base dataset. Secondly, this base dataset of image-mask pairs is
then augmented through a series of controlled geometric and photometric transfor-
mations, carefully designed to increase sample count and enhance feature learning
while preserving the essential spatial relationship between images and their masks.

3.3.1 Patch Generation and Filtering for Deep Learning
Image Segmentation Datasets

We comparatively segmented large input images and their corresponding seg-
mentation masks of size 544x384 pixels into comparatively smaller, fixed-size
subregions (patches) 384x384 pixels using a sliding window method defined by
PATCH_SIZE = 384 and STRIDE = 128. Overlapping patches (if STRIDE <
PATCH_SIZE) can help maintain contextual information at patch boundaries and
the enrichment of the dataset. This configuration yields two patches along the
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Figure 3.2: Data preprocessing pipeline for crack segmentation. (a) Original
544x384 image and label. (b) Generation of smaller, overlapping 384x384 patches
using a sliding window. (c) Filtering to remove patches with no positive crack
instances.

height dimension (floor((544 - 384) / 128) + 1 = 2) and one patch along the width
dimension (floor((384 - 384) / 128) + 1 = 1), producing a total of two overlapping
patches per original image. This is then followed by patches being removed where
the mask has no positive cases (i.e., no cracks) and enriches the dataset with the
proper samples to train the model.

3.3.2 Data Augmentation of Image-Mask Pairs
We expanded the image-mask pair dataset using TensorFlow image processing.

This processing generates multiple augmented samples from each input sample
in a deterministic manner by applying a series of random transformations, in-
cluding geometric transformations (random vertical/horizontal flip, 90° rotation)
and visual transformations (random brightness and contrast shift, Gaussian noise)
to the images only. Importantly, the same set of geometric transformations is
applied to both the image and its mask to maintain spatial congruence, which is
essential for tasks like semantic segmentation. This effectively increases the size
of the training dataset to 10,530 images and masks, improving model generaliza-
tion and overfitting resistance by exposing the model to a larger set of visual inputs.

3.3.3 Data split
We systematically split the dataset containing images and their corresponding

segmentation masks into subsets for training, validation, and testing, a critical step
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for developing and evaluating a robust machine learning model. The dataset is
randomly stratified into validated image-mask pairs based on specific ratios of 70%
for training, 15% for validation, and 15% for testing. Finally, the data is prepared
for model training and evaluation.

3.4 Proposed Model
U-Net Architecture: The U-Net architecture, originally designed for biomed-

ical image segmentation [54], was adapted for crack detection in the present study.
The U-Net architecture has a distinctive symmetric encoder-decoder structure,
as shown in Figure 3.3, with the encoder path downsampling (in this case, from
256x256 pixels) the original image through a series of DoubleConv blocks followed
by sequential 2x2 max-pooling layers, with each DoubleConv block containing two
3x3 convolution layers followed by Batch Normalization and a ReLU activation
function. The downsampling path enables the extraction of progressively more
abstract contextual features. The decoder path contains corresponding layers to
the encoder path allowing the output spatial resolution to be the same as the
original image. Similar to the encoder, the decoder, employs upsampling layers
(bilinear interpolation, in this case) to map-up the Upsampled layers, which are
then concatenated with their corresponding high-resolution feature maps from the
encoder path via skip connections. Skip Connections were included to maintain
and incorporate fine-grained details that were lost through the downsampling
process. The final step in the architecture is a 1x1 convolutional layer (OutConv)
that outputs the learned features into a binary crack segmentation map. U-Net is
well-known for its performance in tasks that require accurate localization.

U-Net++ Architecture: U-Net++, an evolution of the U-Net architecture,
was also employed and configured to process input images of 384x384 pixels. It
aims to enhance segmentation accuracy by redesigning the skip pathways to be
nested and dense. As does U-Net, the model follows a symmetrical encoder-decoder
model in hierarchical feature extraction and accurate spatial reconstruction. In-
stead of straightforward, direct skip connections between the decoder and the
encoder at the same hierarchical level, UNet++ introduces intermediate blocks of
convolution on these paths. These blocks increasingly include feature maps from
the encoder, added feature maps from increasingly deeper layers of the decoder,
and outputs from previous hierarchical convolutional blocks at the same hierar-
chical level through pooling and additional convolution, as described in Figure
3.4. The close coupling is useful in segmentation as it reduces the semantic gap
between low-resolution, semantically rich features of the decoder and low-level,
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Figure 3.3: U-Net architecture for semantic segmentation-based crack detection.
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high-resolution features of the encoder to result in improved object localization
and boundary definition. Some other specific model enhancements suggested are
residual ConvBlocks with skip connection within (self.conv(x) + self.skip(x)) that
enables training deeper networks and better gradient flow for representing richer
feature representations. Moreover, employing GroupNorm rather than batch nor-
malization is also uniform in the performance across various batch sizes. This
is particularly beneficial for high-resolution image segmentation where memory
must most frequently run smaller batches. Generally, these enhancements assist
in minimizing the construction of a superior model that is better equipped to rec-
ognize finer details and define segmentation masks, compared to the standard U-Net.

Figure 3.4: U-Net++ architecture for semantic segmentation-based crack detection.

3.5 Training the proposed model
The proposed model was trained for semantic crack segmentation via an iterative

training routine for 70 iterations. The network was supplied with image batches
and ground-truth masks at every training iteration. The model yielded logits
that were mapped onto target masks by a binary cross-entropy loss function with
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logits. This specific loss function is used as a best practice for numerical stability,
as it combines the probability conversion (via a sigmoid function) and the loss
calculation into a single, robust step. This information loss that measured the
gap between prediction and reality was backpropagated through the network to
update its internal weights by the Adam optimization algorithm. The training
speed and memory consumption were optimized by automatic mixed precision.
Model performance was also verified from time to time on a hold-out validation set
with metrics such as Dice coefficient and IoU, and the best-validation-score model
over epochs was retained as the final trained model.

Adam optimization algorithm: In the training of the semantic crack seg-
mentation model, many of the training epochs relied on the Adam optimization
algorithm to optimize the network’s internal weights. Once the binary cross-entropy
loss function computed the difference between the model’s probabilities (or logits)
and the ground-truth masks, this "information loss" began backpropagation to
compute the gradients for each weight. Then, Adam (Adaptive Moment Estimation)
would use these gradients for determining how to alter the weights. Adam adjusts
the adaptive learning rate for each weight, which speeds up and slows down learning
for different parameters, also uses "momentum" (an estimate for the first moment of
the gradients) to accelerate progress in directions of consistent gradients, employs
"RMSprop-like" scaling (an estimate for the second moment) to cause changes based
on the variance of the gradients, and would eventually guide this network towards
a point where we could adjust for semantic crack segmentation.

Automatic Mixed Precision (AMP) speeds up training and consumes less
memory by performing many calculations for your model using faster and less
precision, half precision (FP16). This makes particular sense on GPUs, where
an AMP increase can show a substantial decrease in training times. PyTorch’s
autocast feature automatically identifies which operations can safely run in FP16,
halving memory for activations and leveraging hardware acceleration. To maintain
numerical stability and prevent issues like vanishing gradients common with FP16,
GradScaler dynamically scales the loss up before backpropagation and then unscales
gradients before optimizer steps, ensuring accurate weight updates while still
benefiting from FP16’s efficiencies.

3.6 Evaluation metrics
When training a deep learning model based on semantic segmentation, assessing

its quality through evaluation metrics is crucial, and multiple metrics exist to
achieve this. In our proposed crack detection model, we used Dice score, IoU score,
F1 score, recall, precision and accuracy as evaluation metrics.
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Figure 3.5: Training and Validation Loss curves over 70 epochs.

Avrage loss: Is a metric that quantifies how well the model’s predictions
match the ground truth labels on average, according to the specified loss_fn (e.g.,
Binary Cross-Entropy with Logits Loss). It is typically calculated on a validation
or test dataset to evaluate the model’s generalization performance.

Losspixel = − [G · log(σ(L)) + (1 − G) · log(1 − σ(L))] (3.6.1)

Figure 3.5 visualizes the training and validation loss curves over 70 epochs.
Both losses (BCEWithLogits) are consistently decreasing, with the validation loss
of 5 closely tracking the training loss of 2, indicating good generalization of the
model and the absence of significant overfitting.

Accuracy: It is the percentage of pixels that are correctly classified. This
effectively evaluates the model [80]. In general, the accuracy statement can be
modeled as:

Accuracy = TP + TN

TP + FP + TN + FN
(3.6.2)

Figure 3.6 visualizes the performance of a deep learning model for segmentation
tasks over 70 training epochs. The model effectively improves its ability to correctly
classify pixels over time, eventually reaching a very high level of accuracy on
the validation data. While a high pixel accuracy 99.7% is generally positive, for
segmentation tasks with potentially imbalanced classes (e.g., crack pixels being a
small minority compared to background pixels).
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Figure 3.6: Pixel accuracy advances in model training stages.

Precision: It is the ratio of true positive pixels to all predicted positive pixels
[80] and is expressed as follows:

Precision = TP

TP + FP
(3.6.3)

Recall: It measures how well the model can correctly identify and label all
positive pixels:

Recall = TP

TP + FN
(3.6.4)

where:
TP: True Positive (correctly segmented positives pixels).
TN: True Negative (correctly segmented negatives pixels).
FP: False positive (incorrectly segmented positive pixels).
FN: False negative (incorrectly segmented negatives pixels).
High recall means that the model is able to predict the majority of relevant

structures, without missing details.

Dice score: It measures how well the predicted segmentation matches the
ground truth segmentation [80], and is formulated as follows:

Dice score = Area of Overlap

Total Area
(3.6.5)
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Figure 3.7: Performance Trends of Validation Metrics During Model Training.

It is most sensitive to small objects, and its agreement with the ground truth and
the predicted result makes it useful for segmenting medical images and cracks.

IoU score: It represents the intersection ratio over union between the
prediction and the ground truth [80], its expression is:

IoU score = Area of Overlap

Area of Union
(3.6.6)

F1-score: It is a balanced measure of performance in imbalance scenarios,
equal to the harmonic mean of precision and recall, and is formulated as follows:

F1 score = 2 ∗ Precision ∗ Recall

Precision + Recall
(3.6.7)

F1 score explains the balance between precision and recall, this ensures that the
model performs well in detection and segmentation without excessive false positives
or negatives [80].

Firure 3.7 visualizes the performance of a deep learning model for segmentation
tasks over 70 training epochs. It tracks three important validation metrics: the Dice
score 0.9321, IoU score 0.8780 and F1 score 0.9602. Despite some fluctuations , all
metrics improve overall, indicating that the proposed model is learning effectively
and generalizing well on the validation set.
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3.7 Results
The evaluation results show that the proposed UNet++ model achieves excellent

performance on the crack segmentation task over 1579 test samples. The Dice score
of 0.9338, and the IoU score of 0.8805 are strong scores, and indicate high spatial
overlap or agreement between the predicted crack masks, and the ground truth
masks, which is necessary for accurate localization in segmentation. The Pixel Accu-
racy is exceptionally high at 99.71%, which can probably be somewhat misleading,
especially in imbalanced datasets (where non-crack pixels will dominate), however,
the high Dice and IoU scores highlight that the model was effective in identifying
the crack regions, and not simply classifying the background accurately. Moreover,
the model also had a well-balanced Precision (0.9603), and Recall (0.9614), with
a high F1 Score (0.9609) for the crack class, which means the model very rarely
misclassifies background as crack (hence low false positives), and finds the majority
of cracks actually present (hence low false negatives). Finally, the Average Loss
(0.0068) indicates that the predictions made by the model will be consistently close
to the target values predicted by the loss function that was traditionally used, and
further reinforces the strong quantitative performance across the board for this
crack segmentation application.

Table 3.2 presents a quantitative comparison of the proposed UNet++ model
against Modified U-Net model on a semantic segmentation task, for crack detection
over 1579 test sample.

Table 3.2: Performance Evaluation of Segmentation Proposed Models.

Proposed
Model

Dice score IoU score F1 score Precision Recall Accuracy

UNet++ 0.9338 0.8805 0.9609 0.9603 0.9614 99.71%

U-Net 0.8706 0.7802 0.9085 0.9287 0.8892 99.33%

Figure 3.8 shows a visual comparison between input images, ground truth
crack masks, and predicted crack masks (with a threshold of 0.5) from a trained
segmentation model.

The predicted masks also show a high similarity to the real-world masks in terms
of crack shape, orientation, and continuity. The segmentation appears accurate and
consistent, even in the presence of complex texture and background noise. This
confirms the model’s strong generalizability and accurate performance in detecting
crack boundaries in images.
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Figure 3.8: Qualitative Evaluation of Crack Segmentation Results.

3.8 Comparison of our method with previous
methods

Table 3.3 provides a quantitative comparison of the proposed UNet++ model’s
performance against several other established deep learning-based crack detection
methods, using standard evaluation metrics. The results clearly demonstrate
the superiority of the proposed UNet++ model, which achieved the highest F1-
score (96.09%), Precision (96.03%), Recall (96.14%), and IoU score (88.05%).
This performance significantly surpasses that of other notable methods, including
DeepCrack [6] (IoU 85.9%, F1-score 86.5%), DDLCN [69] (F1-score 90.98%). The
consistent lead across these critical metrics underscores the effectiveness of the
UNet++ architecture and the implemented training strategies for robust and
accurate crack segmentation compared to contemporary approaches.

Table 3.3: Comparative performance of crack detection methods using standard
evaluation metrics.

Method F1 score Precision Recall IoU score Inference Time per Image Throughput
DeepCrack [6] 86.5 86.8 86.9 85.9 0.1 sec 10 images/sec

Efficient UNet [40] 67.3 82.39 56.88 - - -
Hybrid-Segmentor [39] 77 80.4 74.4 63 0̃.0286 sec 35 images/sec

DDLCN [66] 86.09 88.80 83.09 - - -
Our method 96.09 96.03 96.14 88.05 0.0009 sec 1077.10 images/sec
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3.9 Development of a simple crack detection sys-
tem

This crack detection system allows users to interact with a multi-component
application, which distinguishes between a user-facing front-end and a processing
back-end. Users can either load a static image or utilize a live camera feed; for
phone camera input, this is typically achieved by running a separate app on the
phone "IP Webcam" that broadcasts its camera feed over the local Wi-Fi network,
which the desktop application’s back-end then connects to via a specific network
URL using OpenCV. The front-end, developed with PyQt5, provides the graphical
user interface (GUI) for these input methods and displays the processed results.
The back-end manages the core logic: after image acquisition, a data processing
pipeline prepares images (resizing, normalization via torchvision transforms) for the
inference stage. The heart of the system is a pre-trained UNetPlusPlus deep learning
model, implemented in PyTorch, which performs the semantic segmentation to
identify crack pixels, processes this incoming visual data. This AI model analyzes
each image or video frame to produce a probability map highlighting potential
crack regions, which is then refined into a distinct mask, resized, and overlaid onto
the original visual, highlighting detected cracks in real-time (for camera input) or
on the static image.

We tested the system by inputting different images containing cracks. We
obtained the results shown in Figure 3.9, which is a mask corresponding to the
input image, as well as an image in which the location of the crack is indicated
in red. When using a live feed from a phone camera of a house wall and then the
"Ahbas" dam located in Ghardaia province, cracks were detected in real time (after
the camera was input), and the results are shown in this Link to Google Drive File.

Figure 3.10 visually highlights the broad applicability of the proposed crack
detection system, demonstrating its usefulness in monitoring various critical in-
frastructures, such as monitoring long-distance bridges over water, assessing the
structural integrity of large concrete dams, inspecting urban building facades and
structures, and assessing the condition of highway surfaces. Together, these images
demonstrate the versatile system design, capable of identifying defects and sup-
porting structural integrity monitoring across a variety of critical civil engineering
assets.

3.10 Limitations and Future Directions
Although the results are encouraging, the model was only tried and tested

mainly on the DeepCrack dataset. Future work must include testing, and possibly
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Figure 3.9: Visual results of the crack detection system.
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Figure 3.10: The described crack detection system targets a wide range of civil
infrastructure, highlighting its versatile applicability for structural health monitor-
ing.
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additional refinement, of the model on an even broader range of datasets across
other surface materials (e.g., metal, other composites), crack types, and imaging
conditions (e.g., different lighting, shadows, occlusions) to further evaluate its
robustness and usability. The prototype system is capable of operating in real-time,
but can be optimized more for deployment on resource-constrained edge devices
used during field inspections, for example, surveillance cameras or drones. It would
be ideal to pursue different modes of model compression and acceleration with
minimal performance loss that is allowed by the end user. Moreover, extending
the system to also quantify crack characteristics (e.g., length, width, density, ori-
entation) and automatically classify the severity of cracks would be a significant
contribution. Finally, with respect to reducing the dependence on fully annotated
large datasets, it would be advantageous to explore unsupervised or semi-supervised
learning options that lessen the need for meticulously annotated datasets, which
are often costly and time-consuming to assemble.

Conclusion
The chapter effectively demonstrated the viability and performance of the

proposed deep learning model for crack detection from a series of systematic exper-
iments. Given a prepared dataset and good data augmentation and segmentation,
the proposed model achieved very good performance metrics (Dice score, IoU,
precision, recall, F1-score). In comparison to other methods of previous research,
the proposed model was often very impressive in its performance. Moreover, seeing
cracks detected in real-time and using a pre-trained UNet++ model has demon-
strated the feasibility and implications for civil infrastructure applications. All in
all, the proposed system provides a noteworthy contribution to the area of scalable,
accurate and lightweight systems for the identification of cracks.
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General Conclusion

This thesis presented a comprehensive study of crack detection based on deep
learning and posited semantic segmentation as a superior method to the automatic
extraction of structural surface defects. The work began with the disadvantages of
traditional inspection methods and, having identified those shortcomings, moved
on to rationalizing a move towards deep learning. This was preceded by a literature
review of the most prevalent architectures and techniques in the field aimed at this
task, which then informed the selection of the most appropriate model.

Next, a cutting-edge encoder-decoder architecture, UNet++, was utilized to
provide a solution for precise crack detection. The model was trained and validated
using the public DeepCrack dataset, which was preprocessed and extensively aug-
mented in an organized manner for improved generalization. Common measures
were employed to evaluate the model’s performance and output and compared with
alternative solutions. The model performed better in segmentation accuracy and
robustness and therefore has potential for deployment in real-time detection.

Additionally, a reduced complexity detection system was also developed to
demonstrate applicability. The results, while promising, did not come without
facets of ongoing issues such as data annotation bottleneck, real-world variability
and computational efficiency.

In conclusion, this study showed the benefits of deep learning and semantic
segmentation as a tool for infrastructure inspection. It provides a basis for future
research towards fully automated, scalable, and intelligent crack monitoring systems
that elevate the safety and sustainability of civil structures.
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