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Abstract

This thesis investigates machine learning (ML) for fault diagnosis in high voltage
direct current (HVDC) systems, emphasizing generalization to unseen fault conditions.
A line commutated converter (LCC) HVDC system was modeled in MATLAB/Simulink
to simulate diverse faults, generating data from which statistical features were extracted.
Seven ML models (logistic regression, SVM, KNN| decision tree, random forest, gradient
boosting, MLP) were evaluated. Experiments included a standard random split and a
crucial generalization test on unseen fault resistances. Random forest, neural network,
and gradient boosting demonstrated superior robustness, with random forest achieving the
highest accuracy in generalization. The study highlights the importance of generalization
testing for reliable fault diagnosis.

Key words: Fault diagnosis, Machine learning, HVDC systems, Generalization, Ran-
dom forest, Simulation.

Résumé

Cette these étudie I'utilisation de 'apprentissage automatique (AA) pour le diagnostic
des défauts dans les systémes a courant continu haute tension (CCHT), en mettant I’ac-
cent sur la généralisation a des conditions de défaut non observées. Un systeme CCHT a
convertisseur commuté par le réseau (LCC) a été modélisé dans MATLAB/Simulink pour
simuler divers défauts, générant des données a partir desquelles des caractéristiques sta-
tistiques ont été extraites. Sept modeles d’AA (régression logistique, SVM, KNN, arbre
de décision, forét aléatoire, gradient boosting, MLP) ont été évalués. Les expériences
comprenaient une division aléatoire standard et un test de généralisation crucial sur des
résistances de défaut non utilisées lors de ’entrainement. La forét aléatoire, le réseau neu-
ronal et le gradient boosting ont démontré une robustesse supérieure, la forét aléatoire
atteignant la meilleure précision lors du test de généralisation. L’étude souligne I'impor-
tance des tests de généralisation pour un diagnostic de défaut fiable.

Mots clés : Diagnostic des défauts, Apprentissage automatique, Systemes CCHT, Génér-
alisation, Forét aléatoire, Simulation.
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General Introduction

High voltage direct current (HVDC) systems have emerged as a cornerstone of modern
power transmission, offering significant advantages over traditional alternating current (AC)
systems for long-distance and inter-grid connectivity. HVDC systems enable efficient power
transfer with reduced transmission losses, facilitate the integration of renewable energy sources,
and allow asynchronous grid interconnections [!]. These benefits have driven the global adop-
tion of HVDC technology, particularly in applications such as offshore wind farms, cross-border
power exchanges, and large-scale renewable energy integration [2]. However, the complexity
and high power ratings of HVDC systems make them susceptible to faults, which can lead to

severe consequences, including system outages, equipment damage, and economic losses [3].

Faults in HVDC systems, such as DC line-to-ground, phase-to-phase, and phase-to-ground
faults, arise from various causes, including insulation failures, lightning strikes, and equipment
malfunctions [4]. Detecting and diagnosing these faults rapidly and accurately is critical to
maintaining system reliability and preventing cascading failures. Traditional fault detection
methods, such as overcurrent relays and differential protection, often struggle with the dynamic
and nonlinear behavior of HVDC systems, leading to delayed responses or false positives [5].
The limitations of these conventional approaches have spurred interest in advanced techniques,
particularly machine learning (ML), which offers the potential to model complex patterns in

fault data and achieve high diagnostic accuracy [6].

Machine learning has shown promise in power system applications, including fault detec-
tion, due to its ability to learn from large datasets and generalize to unseen conditions [7].
In HVDC systems, ML can leverage simulated or real-world data to identify fault signatures,
classify fault types, and even predict system behavior under normal and faulty conditions. The
motivation for this study stems from the need to enhance fault diagnosis in HVDC systems using
ML, addressing the shortcomings of traditional methods and exploring innovative approaches
to improve model generalization. Unlike many existing studies that randomly split fault data
for training and testing, this research recognizes that the probability of a fault recurring with
the same resistance is low in real-world scenarios. Therefore, evaluating ML models on unseen

fault resistances is essential to ensure robust performance in practical applications.

The significance of this study lies in its comprehensive approach to fault diagnosis, com-
bining simulation techniques with a diverse set of ML models to benchmark performance. By
open-sourcing the MATLAB/Simulink simulation scripts and models on GitHub, this work aims
to foster collaboration and enable other researchers to build upon or improve the proposed meth-

ods. Additionally, the inclusion of a non-fault case in the dataset allows for the characterization
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of normal system behavior, laying the groundwork for future real-time monitoring capabilities.
These contributions position this study as a valuable resource for advancing HVDC system

reliability and supporting the global transition to sustainable energy systems.

Fault detection in HVDC systems is a challenging task due to the diversity of fault types,
the variability of fault parameters (e.g., resistance, location, and duration), and the nonlinear
dynamics of the system [3]. Conventional fault detection methods often rely on predefined
thresholds or manual feature engineering, which may not capture the full complexity of fault
signatures [8]. Moreover, the random splitting of fault data for training and testing, as com-
monly practiced in prior studies, does not adequately address the real-world scenario where
faults with specific resistances are unlikely to repeat [9]. This raises questions about the gener-

alization ability of ML models when applied to unseen fault conditions.

The problem addressed in this study is the development of an effective fault diagnosis frame-
work for HVDC systems using ML, with a focus on evaluating model performance under re-
alistic conditions. Specifically, the study aims to simulate a variety of fault scenarios using
MATLAB/Simulink, generate comprehensive fault and non-fault datasets, and train multiple
ML models to diagnose faults accurately. A key challenge is to assess whether these models
can generalize to fault resistances not seen during training, mimicking the unpredictability of

real-world faults.

The primary objectives of this study are as follows:

* Develop a detailed MATLAB/Simulink model of an HVDC system and simulate various
fault scenarios, including DC line-to-ground, phase-to-phase, and phase-to-ground faults,

as well as non-fault conditions.

* Generate a comprehensive dataset using custom MATLAB scripts and the parsim func-

tion for parallel simulations, capturing voltage and current signals for ML training.

* Train and benchmark multiple ML models—Ilogistic regression, support vector machine
(SVM), k-nearest neighbors (KNN), decision tree, random forest, gradient boosting, and
neural network—using the scikit-learn library and grid search for hyperparameter opti-

mization.

 Evaluate the generalization performance of these models by testing on unseen fault resis-

tances, in addition to standard train-test splits, to reflect real-world fault variability.

* Open-source the simulation scripts and Simulink models, enabling contributions and fur-

ther development.

Univ-Ghardaia/Industrial Maintenance 2



General Introduction

* Analyze the results and recommend the best-performing model for HVDC fault diagnosis,

with insights into future applications like real-time monitoring.

Industrial maintenance focuses on ensuring the reliability, safety, and efficiency of com-
plex industrial systems. In the context of HVDC transmission systems, early fault detection
plays a crucial role in preventive and predictive maintenance strategies. This research directly
contributes to industrial maintenance by providing a machine learning-based framework for ac-
curate and timely fault diagnosis. By enabling maintenance teams to identify potential issues
before they escalate into major failures, the proposed approach helps to reduce downtime, op-
timize repair schedules, and extend the lifespan of critical components. Thus, the outcomes
of this study align closely with the core objectives of industrial maintenance, supporting data-

driven and proactive decision-making for improved system reliability.

The scope of this study encompasses the simulation, data generation, preprocessing, and
ML-based fault diagnosis for a two-terminal HVDC system modeled in MATLAB/Simulink.
The fault types considered include DC line-to-ground, phase-to-phase (in the AC section), and
phase-to-ground (in the AC section) faults, with a non-fault case included to characterize normal
behavior. The ML models are implemented using the scikit-learn library, and their performance
is evaluated using standard metrics (accuracy, precision, recall, Fl1-score) and generalization

tests on unseen resistances.

The main limitations of this study are:

* The study does not involve real-world HVDC system data; findings are based on simula-

tion results.

* The study relies on simulated data rather than real-world measurements, which may not

fully capture environmental factors like temperature or aging effects.

* The inclusion of non-fault data is a step toward future real-time monitoring, but this ap-

plication is not implemented within the current study.

This thesis is organized as follows:

* Chapter 1: reviews HVDC systems, fault types, and fault detection methods.
* Chapter 2: describes HVDC modeling in MATLAB/Simulink and fault simulation.

* Chapter 3: explains scenario generation, dataset creation, and data preprocessing.

Univ-Ghardaia/Industrial Maintenance 3
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* Chapter 4: presents machine learning models, experiments, and results analysis.

We conclude this thesis with Conclusion and future work, summarizing the key findings
of our study and providing suggestions for future research directions to enhance HVDC fault

diagnosis and system reliability.

Univ-Ghardaia/Industrial Maintenance 4



Chapter 1

Bibliography and Literature Review

1.1 Introduction

This chapter reviews the existing literature pertinent to fault diagnosis in High Voltage Di-
rect Current (HVDC) systems, emphasizing Machine Learning (ML) applications. It aims to
survey the current state of the art, identify key advancements, and analyze limitations and gaps

in existing research to contextualize this thesis.

The review covers HVDC technology fundamentals, common fault types and their char-
acteristics, and various diagnostic methods, from traditional approaches to contemporary ML
techniques. A significant focus is placed on ML in HVDC fault detection, including algorithm
surveys, feature engineering, and dataset utilization in prior studies. Finally, the chapter syn-
thesizes these findings to highlight research gaps, particularly concerning model generalization

and open-source contributions.

1.2 HVDC Technology and Applications

High Voltage Direct Current (HVDC) transmission systems have become integral to modern
power grids, offering efficient and reliable solutions for long-distance and high-capacity power
transfer. Among the various HVDC technologies, thyristor-based systems, also known as Line
Commutated Converter (LCC) HVDC, have been widely adopted due to their robustness and

suitability for bulk power transmission [5].
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HVDC
Transmisson
Line

Distribution
Line
| [
‘\/. ‘ ‘ i
(. > e
Wind Power
AC AC to DC DC to AC AC
Transmission Converter Converter Transmission
Line Station Station Line

Figure 1.1: HVDC system schematic representation [ 10].

1.2.1 Evolution and Key Milestones

The concept of transmitting electricity using direct current dates back to the late 19th cen-
tury. However, practical HVDC systems emerged in the mid-20th century, with the first com-
mercial HVDC link established between Sweden and the island of Gotland in 1954. This pi-
oneering project utilized mercury-arc valves for conversion between AC and DC, marking a

significant milestone in power transmission technology [£].

Vastervik
.\0 Ygne

Figure 1.2: The first commercial HVDC link: Gotland, Sweden (1954) [11].

Subsequent advancements led to the development of thyristor-based Line Commutated Con-
verters (LCC) in the 1970s, enhancing the efficiency and capacity of HVDC systems. The
introduction of Voltage Source Converters (VSC) in the 1990s further revolutionized HVDC
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technology, enabling more flexible and compact converter stations suitable for a wider range of

applications [12].

1.2.2 Fundamental Principles of HVDC Systems

HVDC transmission involves converting alternating current (AC) to direct current (DC) at
the sending end, transmitting the DC power over long distances, and then converting it back to
AC at the receiving end. This process is facilitated by converter stations equipped with rectifiers

and inverters. The primary components of an HVDC system include:

» Converter stations: utilize power electronic devices (e.g., thyristors or IGBTSs) to perform
AC/DC and DC/AC conversions.

* Transmission medium: comprises overhead lines or submarine cables designed for high-

voltage DC transmission.

* Control systems: manage the operation of converters, ensuring stability and efficient

power flow.

The choice between LCC and VSC technologies depends on factors such as system re-
quirements, cost, and the nature of the connected networks. LCC-HVDC systems are typically
employed for bulk power transmission over long distances, while VSC-HVDC systems are fa-
vored for their ability to connect weak or isolated grids and for applications requiring rapid

control of power flow [13].

HVDC systems can also be configured in various ways, including monopolar, bipolar, ho-
mopolar, back-to-back, and multi-terminal systems (MTDC), each suited to specific application

needs and offering different levels of reliability and cost [3].

1.2.3 Advantages and Disadvantages of HVDC Transmission

High Voltage Direct Current (HVDC) transmission systems offer several advantages over
traditional Alternating Current (AC) systems, particularly for specific applications. However,

they also present certain challenges and limitations.
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A - Advantages of HVDC:

— HVDC is more efficient for long-distance transmission due to lower resistive (I°R)
losses and the absence of reactive power, which significantly reduces transmission
losses over hundreds of kilometers. This makes HVDC especially beneficial for

remote generation sources.

— Reduced transmission losses: HVDC transmission lines experience lower electrical
losses than AC lines, especially over extended distances. this reduction in losses

contributes to improved overall system efficiency [14].

— Asynchronous interconnection of grids: HVDC allows for the interconnection of
power systems operating at different frequencies or without synchronized phases.
this capability facilitates energy exchange between regions with incompatible AC

systems [].

— Enhanced control and stability: HVDC systems provide precise control over power
flow, which enhances the stability of interconnected power networks. this controlla-
bility is particularly beneficial in mitigating the effects of disturbances and prevent-

ing cascading failures [&].

— Integration of renewable energy sources: HVDC systems are ideally suited for in-
tegrating remote renewable sources like offshore wind and desert solar farms. they
support bulk power transfer with minimal loss and help overcome the geographical

mismatch between generation and load centers [ 1, 6].

— Lower right-of-way requirements: compared to AC transmission, HVDC lines re-
quire narrower right-of-way and smaller tower sizes, which is advantageous in urban

or environmentally protected areas [3].

— Reduced electromagnetic interference (EMI): HVDC lines produce minimal EMI
due to constant voltage and current, which is beneficial for minimizing disturbances

to nearby communication infrastructure.

— Simplified cable design for submarine and underground applications: unlike AC sys-
tems, which suffer from capacitive charging currents in long cables, HVDC cables
can be laid over much longer distances with reduced losses, making them ideal for

submarine or underground installations (e.g., inter-island or cross-border links) [3].

B - Disadvantages of HVDC:

— High initial investment and converter costs: The major drawback of HVDC is the
high capital cost of converter stations, which require complex power electronic de-

vices like thyristor or IGBT-based valves, transformers, and filters [3].
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— Converter station complexity: Converter stations (especially Line-Commutated Con-
verters or LCCs, used in thyristor-based systems) require intricate control systems,
harmonic filters, and reactive power support equipment, making their design and

operation complex [12].

— Limited short-term overload capability: HVDC converters often have limited over-
load capacity compared to AC transformers or lines. This constraint can affect emer-

gency operation scenarios [15].

— DC circuit breaker challenges: DC current lacks natural zero crossings, which makes
interrupting faults more difficult. Specialized and often expensive DC circuit break-

ers are required, particularly in meshed or multi-terminal HVDC grids [12].

— Harmonics and filtering requirements: LCC-based HVDC systems generate har-
monics that must be filtered out to protect equipment and ensure power quality.

This adds to both the cost and footprint of converter stations.

— Lower operational flexibility in voltage transformation: Unlike AC systems, where
voltage levels can be easily modified with transformers, changing DC voltage levels
requires complex DC-DC converters, which are not yet widely implemented in high-

power applications.

— Skilled maintenance and operational requirements: HVDC systems demand a spe-
cialized workforce for design, commissioning, and maintenance, especially due to

the use of advanced digital control and protection systems.

— Integration with existing AC infrastructure: Integrating HVDC into an AC-dominated
grid must be carefully engineered to avoid operational issues like sub-synchronous

resonance, harmonic interactions, or inadequate reactive power support [ 14].

1.3 Types of Faults in HVDC Systems

High voltage direct current (HVDC) transmission systems are pivotal for long-distance and
high capacity power transfer. However, their reliable operation is susceptible to various faults
that can compromise system stability, damage equipment, and interrupt power supply. Under-
standing these faults is essential for developing effective detection and protection strategies,
especially in LCC-HVDC systems, which are widely used due to their efficiency and cost-

effectiveness.
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1.3.1 Classification of HVDC faults

HVDC transmission systems can experience various types of faults, impacting performance and

reliability. The following figure categorizes these fault types:

Classification of HVDC Faults

l

Converter Station Faults AC Side Faults
DC Line Faults Valve Short-Circuit Single Line-to-Ground Fault
Pole-to-Ground Fault
Commutation Failure Line-to-Line Fault

Pole-to-Pole Fault

DC-Link Capacitor Fault Double Line-to-Ground Fault

Open-Circuit Fault
Control System Malfunction Three-Phase Fault

Figure 1.3: Classification of faults in HVDC transmission systems.

Faults in HVDC systems can be broadly categorized based on their location and nature:

* DC line faults: these occur along the HVDC transmission lines and are primarily due to

external factors. Common types include:

— Pole-to-ground faults: caused by insulation failure or external interference, leading

to a direct connection between one pole and the ground.

— Pole-to-pole faults: result from simultaneous faults on both positive and negative

poles, often due to severe insulation breakdown.

— Open-circuit faults: occur when a conductor is physically broken or disconnected,

interrupting the current flow.
¢ Converter station faults: these internal faults within converter stations can arise from:

— Valve short circuits: due to semiconductor device failures (e.g., thyristors in LCC or

IGBTs in VSC), leading to uncontrolled current paths.

— Commutation failures: specific to LCC systems, inadequate commutation margin

can cause overlap between incoming and outgoing valves, disrupting current transfer
[15].

— DC-link capacitor faults: in VSC systems, failures in the DC-link capacitors can

lead to significant operational issues.
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— Submodule faults: in Modular Multilevel Converters (MMCs), a common VSC
topology, faults within individual submodules (e.g., IGBT open-circuit or short-

circuit) are critical [12, 16].

— Control system malfunctions: errors in control logic or hardware can lead to im-

proper firing of valves or incorrect converter operation.

* AC side faults: while primarily affecting the AC network, these faults can influence
HVDC operation, especially in LCC systems where commutation depends on the AC
voltage stability. these can also impact VSC systems by affecting power exchange capa-

bilities.

In LCC-HVDC systems, DC line faults are particularly critical due to the rapid rise in fault

current and the absence of natural current zero crossings, which complicates fault interruption

[5].

1.3.2 Characteristics of HVDC faults

HVDC faults exhibit distinct characteristics that differentiate them from AC system faults:

» Rapid fault current rise: the low inductance in HVDC lines allows fault currents to esca-

late rapidly, often reaching several kiloamperes within milliseconds [17].

* Absence of natural current zero: unlike AC systems, HVDC lacks natural current zero
crossings, making it challenging to interrupt fault currents using conventional circuit

breakers [18, 19].

* Voltage collapse: faults can lead to a sudden drop in DC voltage, potentially causing

system instability and equipment damage [16].

e Commutation failures: in LCC systems, faults (both DC and AC side) can disrupt the
commutation process, leading to misfiring of valves and further exacerbating system in-
stability [15].

* Overvoltages: certain fault types or clearing actions can lead to significant overvoltages

in the HVDC system, stressing insulation and components [ 5].
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1.4 Fault Diagnosis Methods in HVDC Systems

High voltage direct current (HVDC) systems are pivotal in modern power transmission,
offering efficient long-distance electricity transfer. However, their unique characteristics, such
as low system inertia and rapid fault propagation, necessitate advanced fault diagnosis methods.
These methods integrate principles from control theory, signal processing, artificial intelligence,

and statistical analysis to ensure system reliability and safety.

Analytical Modeling Approach
mmm Given
W Wanted * Data is NOT always needed to
_nput | Output | develop models
¢ Knowledge is required
* Can predict future without data

ML Approach

¢ Data is ALWAYS needed to train
models

* No Knowledge required

e Can’t predict future if did not
exist in past data

Input Output

Figure 1.4: Model based Analytics vs. data based ML.

1.4.1 Analytical Model-Based Methods

Analytical model-based approaches involve creating mathematical representations of HVDC

systems to detect deviations indicative of faults. These methods are categorized into:

 State estimation: this technique estimates the system’s internal states using observers
or filters. Discrepancies between estimated and actual measurements generate residu-
als, which, when analyzed statistically, can indicate faults. The accuracy of this method

hinges on the observability of the system.

* Parameter estimation: faults often alter system parameters (e.g., line resistance, induc-
tance). By estimating these parameters in real-time and monitoring their variations from
nominal values, faults can be detected and localized. This method is particularly effective

when direct measurement of certain parameters is challenging [3].

* Parity space method: this approach compares actual system outputs with those predicted

by the model. Significant deviations, or residuals, suggest the presence of faults. The
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method is advantageous due to its ability to handle incomplete or uncertain information.

1.4.2 Signal Processing-Based Methods

Signal processing techniques analyze electrical signals (voltages and currents) to identify

anomalies indicative of faults. Key methods include:

* Wavelet transform (WT): WT decomposes signals into time-frequency components, mak-
ing it adept at detecting transient events in non-stationary signals. It is particularly useful
for identifying fault-induced transients (e.g., high-frequency components) in HVDC sys-

tems and is often used for feature extraction [5, 1 7].

* Hilbert—-Huang transform (HHT): HHT combines empirical mode decomposition (EMD)
with Hilbert spectral analysis to extract instantaneous frequency data from non-linear and
non-stationary signals. This method is effective in capturing the dynamic behavior of

HVDC systems during faults and can adaptively analyze fault signatures.

* Natural frequency-based methods: these techniques analyze the natural frequencies gen-
erated during faults, which are influenced by system parameters (e.g., line length, ground-
ing resistance) and fault locations. By examining these frequencies, faults can be detected

and localized without necessarily tracking traveling wavefronts [20].

e S-Transform: the S-Transform provides a time-frequency representation with frequency-
dependent resolution, combining features of WT and Short-Time Fourier Transform (STFT).
It has been applied to extract features from non-stationary fault signals in HVDC systems

for subsequent classification [21].

1.4.3 Pattern Recognition and Machine Learning Methods

Pattern recognition and machine learning (ML) methods learn to classify system states (nor-
mal or faulty) or identify fault types based on features extracted from operational data. These

methods encompass:

* Atrtificial neural networks (ANNs): ANNs learn complex patterns from data, making
them suitable for fault detection and classification in HVDC systems. They can handle

non-linear relationships and adapt to varying system conditions [3,22].
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* Support vector machines (SVMs): SVMs classify data by finding the optimal hyperplane
that separates different fault conditions. They are effective in scenarios with limited data

and high-dimensional feature spaces [0].

* K-nearest neighbors (KNN): KNN classifies faults based on the majority class among the
k> closest data points in the feature space. It is a simple yet effective non-parametric

method, especially when dealing with small and well-characterized datasets [23,24].

* Hybrid models: combining different ML algorithms or integrating ML with signal pro-
cessing techniques (e.g., WIT-ANN) can enhance fault diagnosis accuracy by capturing
diverse data characteristics, such as both spatial and temporal features from CNN-LSTM

models [23].

1.4.4 Hybrid and Advanced Methods

Advanced fault diagnosis approaches integrate multiple methodologies to leverage their re-

spective strengths and overcome individual limitations:

* Hybrid protection algorithms: these algorithms combine various detection techniques,
sometimes dynamically selecting the most appropriate one based on system conditions or
confidence levels. For instance, a hybrid primary protection algorithm for multi-terminal
HVDC systems might utilize context clustering to choose the optimal fault detector from

a pool, enhancing robustness against diverse fault scenarios [3, 24].

* Bayesian regression models: bayesian approaches incorporate prior knowledge (e.g.,
about fault probabilities) and observed data to predict fault locations or classify fault
types. A Bayesian Ridge Regression model has been proposed to estimate fault locations
in multi-terminal HVDC networks using single-ended measurements, demonstrating re-

silience to measurement noise and varying fault conditions [25].

* Transient-based protection: these methods analyze high-frequency components of voltage
and current signals generated during transients to detect faults rapidly. By examining the
differences in transient energy, frequency content, or arrival times at various points in the
system, faults can be accurately identified and localized [3,5]. These often serve as inputs
to ML classifiers.

* Fuzzy logic systems: fuzzy logic can handle uncertainties and imprecise information
inherent in fault diagnosis. It uses linguistic variables and fuzzy rules derived from expert

knowledge or data to make decisions [26]. Fuzzy logic is often combined with other
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techniques, like ANNs (Adaptive Neuro-Fuzzy Inference Systems - ANFIS) or WT, to

improve diagnostic performance [27].

1.5 Machine Learning in Power System Fault Detection (Focus on HVDC)

Machine Learning (ML) has emerged as a powerful paradigm for enhancing fault detection
and diagnosis (FDD) in power systems, particularly in complex High Voltage Direct Current
(HVDC) environments [3,28]. The ability of ML algorithms to learn intricate patterns from vast
amounts of operational data, without necessarily requiring an exact mathematical model of the
system, makes them well-suited for the non-linear and dynamic nature of HVDC systems and
their associated faults [8]. This section provides a survey of ML algorithms applied to HVDC
fault detection, discusses input feature considerations, contrasts data-driven with model-driven
approaches, critically examines dataset handling in previous studies, and highlights research

addressing key operational challenges.
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Figure 1.5: General workflow for ML model building.

1.5.1 Survey of Machine Learning Algorithms

A variety of ML algorithms have been investigated for HVDC fault detection, each with its

own strengths and weaknesses.

* Artificial neural networks (ANNs) and deep learning (DL): ANNSs, inspired by bio-
logical neural systems, are widely used due to their capability to model complex non-
linear relationships. Multi-Layer Perceptrons (MLPs) are common foundational archi-
tectures [3,22]. Deep Learning, a subfield of ML involving ANNs with multiple hidden

layers (deep architectures), has shown significant promise.

Univ-Ghardaia/Industrial Maintenance 15



Chapter 1: Bibliography and Literature Review

— Convolutional neural networks (CNNs) are adept at automatically extracting hier-
archical features from grid-like data, such as time-series signals (1D CNNs) or
time-frequency representations (2D CNNs), making them effective for analyzing

raw current and voltage waveforms [23,29].

— Recurrent neural networks (RNNs), particularly Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) variants, are designed to handle sequential data
and capture temporal dependencies, crucial for understanding fault evolution over

time [23, 30].

— Autoencoders (AEs), a type of unsupervised neural network, can be used for anomaly
detection by learning to reconstruct normal operational data; high reconstruction er-

rors may indicate faults. Deep AEs are also used for feature learning [31].

The combination of metaheuristic optimization algorithms like Ant Colony Optimization
(ACO) or Grey Wolf Optimization (GWO) with ANNs has also been explored to enhance
feature selection and network training for HVDC fault detection [32, 33].

* Support vector machines (SVMs): SVMs are powerful supervised learners effective for
classification tasks, especially with high-dimensional feature spaces and potentially small
datasets [0]. They work by finding an optimal hyperplane that maximizes the margin
between different classes (e.g., fault types). The choice of kernel function (e.g., linear,
polynomial, Radial Basis Function - RBF) is critical for SVM performance. SVMs have
been used for identifying, classifying, and locating faults in MT-HVDC systems.

¢ Decision trees (DTs) and ensemble methods:

— Decision trees create a tree-like model of decisions. They are relatively easy to

interpret but can be prone to overfitting.

— Ensemble methods combine multiple base learners to improve prediction accuracy
and robustness. Random forests (RF) build multiple decision trees on different sub-
sets of data and features, averaging their predictions. RFs are robust to overfitting
and can handle high-dimensional data. Gradient boosting machines (GBM), such as
XGBoost and LightGBM, build trees sequentially, where each new tree corrects the
errors of the previous ones, often achieving state-of-the-art results [34]. Ensemble

methods like Bagged Trees have shown high accuracy in HVDC fault diagnosis.

* K-nearest neighbors (KNN): KNN is a non-parametric, instance-based learning algo-
rithm. It classifies a new data point based on the majority class of its ’k’ nearest neighbors
in the feature space [23,24]. While simple and often effective for well-defined datasets,
its performance can degrade with high-dimensional data and large datasets due to com-

putational costs and the "curse of dimensionality."

Univ-Ghardaia/Industrial Maintenance 16



Chapter 1: Bibliography and Literature Review

* Other ensemble and hybrid approaches: researchers frequently combine different MLL
models (heterogeneous ensembles) or integrate ML with other techniques like signal pro-
cessing (e.g., Wavelet-ANN, S-Transform-SVM ) or fuzzy logic to leverage their com-

plementary strengths and achieve superior diagnostic performance [35].

1.5.2 Input Features for Machine Learning Models

The performance of ML models heavily relies on the quality and relevance of input features.

Common feature types include:

* Raw signals: direct use of sampled voltage and current waveforms, often suitable for

deep learning models like CNNs and LSTMs that can learn features automatically [23].

* Statistical features: calculated from segments of raw signals, such as mean, variance,
Root Mean Square (RMS), skewness, kurtosis, peak values, energy, and standard devia-

tion [6, 35].

* Time-domain features: features extracted directly from the time-domain signals, includ-

ing peak-to-peak values, crest factor, and shape factor.

* Frequency-domain features: derived using techniques like Fast Fourier Transform (FFT),
providing information about the spectral content of signals, such as harmonic magnitudes

and total harmonic distortion.

* Time-frequency domain features: extracted using methods like Wavelet Transform
(WT), Hilbert-Huang Transform (HHT), or S-Transform, which provide simultaneous
time and frequency information. Coefficients from WT (e.g., detail and approximation

coefficients) are commonly used as inputs to ML classifiers [5,21].

* Derived quantities: features engineered based on domain knowledge, such as rates of
change of voltage/current (di/dt, dv/dt), differential currents/voltages, sequence compo-

nents (in AC-side faults affecting HVDC), or correlation coefficients between signals.

Feature selection and dimensionality reduction techniques (e.g., Principal Component Analy-
sis (PCA) [6, 36]) are often employed to select the most informative features, reduce model

complexity, and improve generalization.
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1.5.3 Data-Driven vs. Model-Driven Approaches

Fault diagnosis methodologies can be broadly categorized as model-driven or data-driven,

with a growing trend towards hybrid approaches.

* Model-driven approaches: as discussed in Section 1.4 (Analytical Model-Based Meth-
ods), these rely on an accurate mathematical model of the HVDC system. They offer
interpretability and can perform well if the model is precise. However, developing such
models can be complex, and their accuracy may degrade with system uncertainties or

unmodeled dynamics.

* Data-driven approaches: these primarily use historical or simulated data to train ML
models that learn the mapping between input measurements and fault status/type [3].
Their main advantage is the ability to handle complex systems without requiring an ex-
plicit physical model. However, they depend heavily on the availability of large, diverse,
and high-quality datasets, and some ML models (especially deep learning) can act as

"black boxes," lacking transparency.

* Hybrid approaches: these aim to combine the strengths of both. For instance, a physical
model might be used to generate synthetic data for training ML models, or ML techniques
could be used to estimate parameters within a physical model or to process residuals from
model-based observers. Knowledge graphs, which structure system knowledge, are also
being explored with ML algorithms like KNN for HVDC fault diagnosis.

1.5.4 Critical Examination of Datasets in Previous Studies

The reliability and generalizability of ML-based FDD heavily depend on the datasets used
for training and testing.

¢ Data sources:

— Simulation data: the majority of studies utilize data generated from simulation soft-
ware like PSCAD/EMTDC or MATLAB/Simulink [6, 8, 30, 34]. This allows for
extensive fault scenarios with varying types, locations, and parameters. However,

the fidelity of simulated data to real-world conditions is always a concern.

— Real-world data: data from actual HVDC installations (e.g., from Phasor Measure-
ment Units (PMUs) or Digital Fault Recorders (DFRs)) is the most desirable but
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is often scarce, proprietary, imbalanced (few fault instances compared to normal

operation), and may lack detailed labels for fault characteristics [23].

* Dataset size and diversity: many studies rely on datasets of limited size or diversity,
which may not adequately represent the wide spectrum of possible fault types, fault resis-
tances, locations, varying operational conditions (e.g., power flow levels, system topology
changes), and noise levels. This can lead to models that perform well on specific test sets

but generalize poorly to unseen conditions.

* Data splitting methodologies: as highlighted in Section 1.6, a common practice is ran-
dom splitting of data into training, validation, and testing sets. While straightforward,
this approach may not adequately assess a model’s ability to generalize to truly novel
fault scenarios (e.g., fault resistances or locations not encountered during training). More
rigorous generalization testing, such as splitting based on specific fault parameter ranges

or different operational scenarios, is crucial but less frequently reported.

1.6 Gaps and Research Opportunities

The application of machine learning (ML) to fault detection in High Voltage Direct Current
(HVDC) systems, particularly Thyristor-Based Line-Commutated Converter (LCC-HVDC) sys-
tems, has demonstrated considerable potential to improve system reliability, reduce downtime,
and enhance operational efficiency. However, a comprehensive review of the existing literature
reveals several critical shortcomings that impede the practical deployment and scalability of
ML-based fault diagnosis techniques. These gaps include the lack of comprehensive datasets
covering diverse fault types and parameters, insufficient investigation into model generalization
beyond simple random data splits, limited benchmarking comparing a wide range of ML models
on the same dataset, and the need for open-source tools and datasets to facilitate reproducibil-
ity and further research. This section elaborates on these shortcomings, clearly articulates how
this study addresses them in alignment with the objectives outlined in general introduction, and

identifies opportunities for contribution to advance the field.

1.6.1 Shortcomings in Existing Literature

A - Insufficient Investigation into Model Generalization Beyond Simple Random Splits

A critical methodological gap in the literature is the reliance on random dataset splitting

for training and testing ML models, which fails to adequately assess model generalization to
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unseen fault conditions. Nearly all studies split their datasets randomly across fault resistances,
locations, and other parameters, assuming that this approach sufficiently evaluates model per-
formance. However, in real-world HVDC systems, faults are stochastic, and the likelihood of a
fault recurring with the same resistance (e.g., 2{2) or at the same location (e.g., 50% of the line
length) is extremely low. For example, a model trained on faults with resistances between 0.1£2
and 5¢2 may perform well on test data within this range but fail when encountering a fault with
a resistance of 8¢ or at a different line position (e.g., 10% of the line). This raises significant
concerns about the true generalization capability of existing models, as they are rarely tested on
truly novel fault scenarios that differ substantially from the training data. The lack of rigorous
generalization testing limits the reliability of ML models in operational settings, where adapt-
ability to new fault conditions is essential for ensuring system stability and preventing outages.
This gap is particularly pronounced in LCC-HVDC systems, where fault dynamics are influ-
enced by complex interactions between DC and AC components, necessitating models that can

handle variability in fault parameters [23,37,38].

B - Need for Open-Source Tools and Datasets to Facilitate Reproducibility and Further
Research

Reproducibility and collaboration are cornerstones of scientific progress, yet the field of
HVDC fault detection using ML suffers from a significant lack of open-source simulation
model, scripts, and datasets. Most studies utilize proprietary or custom-built simulation en-
vironments, such as MATLAB/Simulink models or PSCAD/EMTDC configurations, which are
not shared with the broader research community. Similarly, fault datasets are rarely made pub-
licly available, forcing researchers to independently generate their own data, often duplicating
efforts and introducing inconsistencies in simulation parameters or fault scenarios. This lack of
accessibility restricts the ability of other researchers to validate findings, replicate experiments,
or build upon existing work, slowing the pace of innovation. The absence of open-source re-
sources also limits collaborative opportunities, as researchers cannot easily contribute improve-
ments or adapt existing tools to new fault detection challenges. Open-source tools and datasets
are critical for fostering a collaborative research ecosystem, enabling standardized comparisons,
and accelerating the development of reliable ML-based fault detection systems for HVDC ap-

plications.
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1.6.2 Addressing the Gaps Through This Study

This study directly addresses the identified shortcomings by implementing a series of tar-
geted contributions that align with the objectives outlined in general introduction, which include
developing robust ML models for HVDC fault detection, ensuring generalization to unseen
fault conditions, laying the groundwork for system monitoring, and promoting reproducibil-
ity through open-source resources. The following sections detail how each gap is addressed,

linking back to the study’s objectives.

A - Comprehensive Dataset Development

To address the lack of diverse datasets, MATLAB/Simulink is used to simulate various faults
in a two-terminal LCC-HVDC system. The dataset includes DC line-to-ground, AC phase-to-
phase/ground faults, with variations in resistance (0.01€2, 0.1€2, 12, 10€2, 50¢2, 1002, 50052),
location (10%, 50%, 90%), duration (0.01s, 0.05s, 0.1s, 0.2s, 0.3s, 0.5s). No-fault scenarios are
also included to support system monitoring.

B - Generalization Testing

To improve robustness, the dataset is split by excluding certain fault resistances and loca-
tions from training. Models trained on a subset (0.01€2, 0.1€2, 1£2, 50¢2, 500¢2) are tested on
unseen ranges (10€2, 1002), simulating real-world unpredictability and ensuring models gener-

alize to new conditions.

C - Model Benchmarking

Multiple ML models (Logistic Regression, SVM, KNN, Decision Trees, Random Forests,
Gradient Boosting, and Neural Networks) are benchmarked using Scikit-learn with hyperpa-
rameter tuning. Metrics like accuracy, precision, and F1-score are used to evaluate model per-

formance, addressing the lack of standardized comparisons in HVDC fault detection.
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D - Open-Source Tools and Dataset

To promote reproducibility all MATLAB scripts and Simulink models are open-sourced
on GitHub. These include fault scenario generation, automation tools, and documentation,

allowing researchers to replicate or extend the work.

1.7 Conclusion

This literature review has surveyed HVDC technology, associated fault types, and the evolu-
tion of diagnostic methods, culminating in modern machine learning approaches. A key finding
is the persistent need for more rigorous ML model generalization testing beyond standard ran-
dom data splits. Additionally, there is a clear call for greater availability of open-source tools

and datasets to enhance reproducibility and collaboration in the field.

These identified shortcomings have directly informed the objectives of this thesis. The sub-
sequent chapters will focus on developing a comprehensive simulation framework, generating
an open dataset, and evaluating ML models with a strong emphasis on their generalization ca-

pabilities, aiming to contribute to more reliable HVDC fault diagnosis solutions.
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Chapter 2

HVDC System Modeling, Fault

Characterization, and Simulation

2.1 Introduction

The accurate detection and classification of faults in high voltage direct current (HVDC)
systems using machine learning techniques necessitates a thorough understanding of the sys-
tem’s operational principles, component characteristics, and the distinct signatures of various
fault types. Furthermore, the generation of high-quality, representative data through simulation
is paramount for training robust machine learning models. This chapter details the modeling of
a benchmark 12-pulse HVDC transmission system, describes its principal components, outlines
the simulation environment and parameters, and characterizes the various AC and DC side faults
investigated in this thesis. The simulation model, developed in MATLAB/Simulink, serves as
the foundation for generating the dataset used for training and evaluating the machine learning

algorithms discussed in subsequent chapters.

2.2 HVDC System Components and Configuration

The HVDC system under consideration is a point-to-point, 12-pulse, two-level, thyristor-
based line commutated converter (LCC) system, a widely adopted configuration for bulk power
transmission. The key components of such a system, as represented in the simulation model

(refer to figure 2.4), are described below.
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2.2.1 Converters (Rectifier and Inverter)

Converters are the heart of high voltage direct current (HVDC) systems, playing a crucial
role in converting alternating current (AC) to direct current (DC) at the sending end (rectifi-
cation) and reversing the process at the receiving end (inversion). This conversion is essential
for efficient long-distance power transmission, as DC reduces energy losses compared to AC.
HVDC systems utilize two main types of converters: line-commutated converters (LCC), which
are robust and suited for high-power applications, and voltage-source converters (VSC), which
offer greater flexibility and are ideal for integrating renewable energy. Beyond enabling efficient
power transmission, converters enhance grid stability by allowing precise control of power flow,

making them indispensable in modern power networks [14,39].

2o ,
Figure 2.1: LCC valve hall with thyristor valves [40].

* Operation principle: the simulated system employs 12-pulse converters. A 12-pulse
arrangement is achieved by using two three-phase, 6-pulse thyristor bridges connected in
series on the DC side. The AC supply to these two bridges is phase-shifted by 30 degrees,
typically achieved using two converter transformers with Yg-Y (wye-grounded secondary
to wye) and Yg-D (wye-grounded secondary to delta) winding configurations [41].

* Advantages of 12-pulse configuration: this configuration significantly reduces har-
monic distortion on both the AC and DC sides compared to a 6-pulse system. Specif-
ically, it eliminates characteristic harmonics of orders 6k + 1 (where k is an integer),
leaving 12k £ 1 (i.e., 11th, 13th, 23rd, 25th, etc.) on the AC side and 12k (i.e., 12th, 24th,
etc.) on the DC side [42].

* Thyristor valves: each 6-pulse bridge consists of six thyristor valves. These are high-
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power semiconductor devices that can be controlled (turned on) by a gate pulse when
forward biased. They turn off when the current through them falls below a holding current

(line commutation).

* In the simulation (figure 2.4): the blocks labeled "Rectifier" and "Inverter" represent
these 12-pulse thyristor bridge configurations. They are controlled by firing angle con-
trollers (alpha for rectifier, gamma for inverter) to regulate DC voltage, current, and power

flow. The diagram shows the standard bridge connections.

2.2.2 AC Filters and Reactive Power Source

LCC-HVDC converters inherently generate current harmonics on the AC side and consume

reactive power.

1

Figure 2.2: AC and DC filter reactors in an HVDC system [43].

* Harmonic filters: these are passive L-C circuits tuned to specific harmonic frequencies
(e.g., 11th, 13th, high-pass for higher orders) to shunt these harmonic currents, preventing
them from flowing into the AC network and ensuring power quality [14].

* Reactive power source: converters typically consume reactive power equivalent to 40-
60% of the active power transmitted. This reactive power demand is usually supplied by
the AC filters themselves (which are capacitive at fundamental frequency), shunt capaci-

tor banks, or synchronous condensers [14].

* In the simulation (figure 2.4): blocks labeled "AC filters" are present on the AC side of
both the rectifier (60 Hz, 600 Mvar) and the inverter (50 Hz, 600 Mvar). These typically
represent a combination of tuned harmonic filters and shunt capacitor banks.
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2.2.3 DC Smoothing Reactors

Large inductors, known as smoothing reactors, are connected in series on the DC side,
typically at each end of the DC line.

S
4

5
$

\/

-

* Functions: smoothing reactors serve several critical functions in HVDC systems. They
smooth the DC current ripple generated by the converters, thereby reducing harmonic cur-
rents on the DC line. Additionally, they limit the rate of rise of DC fault current during
DC line faults, providing protection systems with sufficient time to operate effectively. By
mitigating current dips during transients, smoothing reactors also help prevent commuta-
tion failures in the inverter. Furthermore, they play a vital role in addressing resonance

issues within the DC circuit, ensuring stable and reliable system operation [3].

¢ In the simulation (figure 2.4): smoothing reactors are represented by inductors (labeled
0.5 H in the diagram) on the DC side of both the rectifier and inverter, connected between
the converter bridges and the DC line.

2.2.4 DC Transmission Line

The DC transmission line carries the bulk power between the converter stations.
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* Configuration (poles): HVDC lines can be monopolar (one conductor, typically with
ground or metallic return) or bipolar (two conductors, one positive and one negative po-
larity). The provided diagram suggests a bipolar setup as it shows positive and negative

terminals (+ and -) and fault locations between these and ground.

* Modeling: for transient studies, DC lines are often modeled using distributed parameter
models or cascaded pi-sections to accurately represent wave propagation phenomena. The
diagram shows the DC line segmented into multiple sections (30 km, 45 km, 75 km, 75
km, 45 km, 30 km, totaling 300 km), allowing for faults to be applied at various points
along its length.

* In the simulation (figure 2.4): the DC line is clearly depicted with segments. The "DC
Fault", "DC Faultl", ..., "DC Fault4" blocks indicate locations where DC line-to-ground

faults can be initiated.

2.2.5 AC Circuit Breakers

While not explicitly detailed as a separate HVDC component block in the core DC system,

AC circuit breakers are essential on the AC side of the converter transformers.

* Function: they protect the HVDC system from AC side faults and are used to con-
nect/disconnect the HVDC converter stations from the AC grid. Their operation is critical

during fault conditions to isolate the faulted section [20].

* In the simulation context: the AC sources (5000 MVA and 10,000 MVA equivalents)
implicitly include the upstream AC network with its protective devices. AC faults are

simulated on the AC bus near the converters.

2.3 Simulation Model and Parameters

The study uses a detailed simulation of a 1000 MW high-voltage direct current (HVDC)
system, designed to mirror real-world setups. Operating at +500 kV with a 2 kA current, this
12-pulse LCC-HVDC model is built in MATLAB/Simulink using the Simscape Power Systems
toolbox. It simplifies complex electrical behavior into a clear, accurate representation. This
benchmark system helps researchers study how HVDC systems work without needing the full

technical details. Its main purpose is to provide data for training machine learning tools to
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detect and classify faults. This makes it a valuable tool for improving the reliability of power

transmission in practical applications.
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Figure 2.4: Overview of the MATLAB/Simulink model of the 12-pulse HVDC transmission
system.
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2.3.1 System Specifications

Table 2.1: Main specifications of the simulated HVDC system.

Parameter Value / Description

Rated power 1000 MW

DC voltage 4500 kV (bipolar configuration assumed based on fault lo-
cations)

Rated DC current 2 kA

DC transmission line length | 300 km

Rectifier side AC system 500 kV, 60 Hz. The AC source is modeled as a 5000 MVA

equivalent three-phase source.

Inverter side AC system 345 kV, 50 Hz. The AC source is modeled as a 10,000 MVA
equivalent three-phase source.

Converter configuration Two 6-pulse thyristor bridges per pole, forming a 12-pulse
converter.

Smoothing reactors 0.5 H at each end (rectifier and inverter side).

AC filters 600 Myvar (capacitive at fundamental frequency) on both AC
sides.

The choice of different frequencies (60 Hz sending end, 50 Hz receiving end) and voltage
levels for the connected AC systems is typical for asynchronous interconnections facilitated by
HVDC.

2.3.2 Simulation Parameters

To capture both steady-state operation and transient fault behavior accurately, the following

simulation parameters were adopted:

* Simulation software: MATLAB/Simulink with Simscape Power Systems.

* Total simulation time: 3.5 seconds. This duration allows the system to reach a steady

state before fault inception and provides sufficient post-fault data.
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* Solver time step: 500 us (microseconds). This small time step is necessary to accurately
simulate the fast electromagnetic transients associated with faults and converter switch-

ing.

 Fault initiation time: faults are triggered at 2.5 seconds into the simulation. A random
start-time variation (e.g., &= a few milliseconds around 2.5s) is introduced for each fault
scenario. This ensures that faults are not always initiated at the exact same point on the
AC waveform, adding realism and diversity to the dataset. The pre-fault duration allows

the system to operate in a stable steady state.

2.3.3 Note on Per-Unit (pu) System Representation

Throughout this thesis, particularly in the simulation results and graphical representations,
electrical quantities such as voltage and current are often expressed in per-unit (pu) values.

This is a standard and widely adopted practice in power system analysis.

A per-unit value is the ratio of an actual physical quantity to a pre-defined base value of the
same dimension:
Actual Value

Per-Unit Value = ——— 2.1)
Base Value

The use of the per-unit system offers several significant advantages, making it particularly useful

for simulations and graphical analysis:

* Normalization and Comparison: it normalizes quantities, bringing values from differ-
ent parts of the system (which may have vastly different absolute magnitudes) onto a
common dimensionless scale. This greatly simplifies the comparison of equipment per-

formance and system behavior, especially in graphs where multiple signals are plotted.

» Simplified Analysis: system parameters, such as transformer impedances, tend to fall

within a relatively narrow range when expressed in per-unit.

* Clarity of Deviation: per-unit values provide an immediate and intuitive understanding
of how much a quantity deviates from its nominal or rated value. For instance, a voltage

of 0.9 pu clearly indicates it is 10% below its nominal level.

In the context of this work, the specific base values for the per-unit system are derived from
the HVDC system’s rated specifications and the conventions used in the simulation model, as

detailed in the provided simulation parameters.
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For DC Quantities: The base values for DC voltage and current are explicitly defined by

the simulation:

* The base DC voltage is 500 kV. Therefore, in graphs depicting DC voltage, 1 pu corre-
sponds to 500 kV.

* The base DC current is 2 kA. Therefore, in graphs depicting DC current, 1 pu corresponds
to 2 kA.

For AC Quantities: The representation of AC quantities in per-unit is as follows:

* AC Voltages: voltages on the AC side are presented in per-unit based on the nominal AC
system line-to-line voltage at the point of measurement. This is 500 kV for the rectifier
side AC system and 345 kV for the inverter side AC system.

* AC Currents: currents on the AC side, often indicated by axis labels such as 'pu/100
MVA’, are expressed in per-unit relative to a base current. This base current is derived
using a common system apparent power base ’S_base’ of 100 MVA and the respective
nominal AC system line-to-line voltage at the point of measurement (500 kV for the

rectifier side or 345 kV for the inverter side). The formula for this base current 'I_base’
is Ibase = Sbase/(\/§ : %ase,LL)~

This consistent use of the per-unit system with these defined base values allows for a standard-
ized representation and straightforward interpretation of the system’s dynamic behavior under
various fault conditions across different parts of the HVDC link. This is particularly evident in

the graphical analysis presented in subsequent figures.

2.4 Fault Characterization and Modeling in Simulation

This study explores various fault types in high voltage direct current (HVDC) systems, di-
viding them into DC line faults and AC side faults, while also considering normal (no-fault)
operation. Each fault type produces distinct electrical signatures, marked by specific voltage
and current deviations. Using simulations, the research models these faults to understand their
effects on system performance. This approach is vital for improving fault detection and protec-
tion strategies without relying on real-world incidents. The comprehensive analysis of diverse

fault scenarios enhances the study’s relevance to practical HVDC applications. Ultimately,
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identifying and classifying these unique signatures advances the reliability and safety of HVDC

power networks.

2.4.1 Normal Operation (’None’)

Under normal, steady-state operation, the HVDC system transmits power smoothly from
the rectifier to the inverter. DC voltages and currents are relatively constant (with some ripple
due to converter operation), and AC voltages and currents at the converter buses are balanced

and sinusoidal (after filtering).

* Characteristics: stable DC power flow, nominal DC voltage and current levels, filtered

AC waveforms.

* Simulation: this scenario involves simulating the system without any fault triggers for

the entire 3.5-second duration.

2.4.2 DC Line Faults

Faults on the DC transmission line are common and can be severe. This study focuses on

DC line-to-ground faults at various locations.

¢ Simulated locations: 10%, 25%, 50%, 75%, and 90% of the 300 km transmission line
length, measured from the rectifier end. These are denoted as "'DC10’, ’DC25’, ’DCS50’,
"DC75’, and "'DC90’.

* Modeling in simulation: a DC line-to-ground fault is typically simulated by closing a
switch that connects one of the DC poles to ground through a specified fault resistance.
The Simulink diagram (figure 2.4) shows fault blocks ("DC Fault" to "DC Fault4") along
the DC line for this purpose.

¢ General characteristics:

— Rapid collapse of DC voltage on the faulted pole.

— Sharp increase in DC current flowing from the converters towards the fault point,

limited initially by smoothing reactors and line impedance.

— Potential for commutation failures at the inverter due to DC voltage depression.
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— The severity and characteristics (e.g., rate of rise of current, voltage drop magnitude)
depend on the fault location, fault resistance, and system parameters.
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Figure 2.5: Waveforms of rectifier AC voltage and current during a DC line-to-ground fault at
50% of the transmission line.
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Figure 2.6: Waveforms of rectifier DC voltage and current during a DC line-to-ground fault at
50% of the transmission line.
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Figure 2.7: Waveforms of inverter DC voltage and current during a DC line-to-ground fault at
50% of the transmission line.
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Figure 2.8: Waveforms of inverter AC voltage and current during a DC line-to-ground fault at
50% of the transmission line.

2.4.3 AC Side Faults

Faults on the AC systems connected to the rectifier or inverter can significantly impact the
operation of the HVDC link. The simulated AC faults occur on the AC bus close to the converter
transformers (as shown near the inverter in figure 2.4, but applicable to either side).

A - Single-Phase-to-Ground (L-G) AC Faults

These faults involve one phase conductor shorting to ground.
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* Simulated types: AG’ (phase A to ground), 'BG’ (phase B to ground), ’CG’ (phase C
to ground).

* Modeling in simulation: achieved by closing a switch connecting the faulted phase to
ground through a fault resistance at the AC bus.

¢ General characteristics:

— Voltage drop in the faulted phase and potential voltage swells in healthy phases
(depending on grounding).

Increase in current in the faulted phase.

Unbalanced AC voltages supplied to the converters, leading to increased non-characteristic

harmonics.

High probability of commutation failures, especially if the fault is electrically close
to the converter and severe. This results in a temporary inability of the inverter
to commutate current from one valve to the next, often leading to a DC-like short

circuit through the converter valves and a rapid increase in DC current.
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Figure 2.9: Waveforms of rectifier AC voltage and current during an AC single-phase-to-ground
fault (AG).
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Figure 2.10: Waveforms of rectifier DC voltage and current during an AC single-phase-to-
ground fault (AG).
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Figure 2.11: Waveforms of inverter DC voltage and current during an AC single-phase-to-
ground fault (AG).
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Figure 2.12: Waveforms of inverter AC voltage and current during an AC single-phase-to-
ground fault (AG).
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B - Phase-to-Phase (L-L) AC Faults

These faults involve two phase conductors shorting together.

* Simulated types: 'AB’ (phase A to phase B), 'BC’ (phase B to phase C), ’AC’ (phase A
to phase C).

* Modeling in simulation: achieved by closing a switch connecting the two faulted phases

through a fault resistance at the AC bus.
* General characteristics:
— Severe voltage dips in the faulted phases and potential overvoltages or distortions in
the unfaulted phase.
— Large fault currents flowing between the faulted phases.
— Significant unbalance in the AC voltages supplied to the converters.

— Very high likelihood of repeated commutation failures in the converters, often lead-
ing to a complete, albeit temporary, interruption of power transfer. The DC current
rises significantly due to the effective short-circuiting of the DC link through the

commutating valves.
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Figure 2.13: Waveforms of rectifier AC voltage and current during an AC phase-to-phase fault
(AB).
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Figure 2.14: Waveforms of rectifier DC voltage and current during an AC phase-to-phase fault
(AB).
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Figure 2.15: Waveforms of inverter DC voltage and current during an AC phase-to-phase fault
(AB).
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Figure 2.16: Waveforms of inverter AC voltage and current during an AC phase-to-phase fault
(AB).
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For all fault types, variations in fault resistance and fault duration are also introduced during

data generation (as detailed in Chapter 3) to create a diverse dataset for machine learning.

2.5 Conclusion

This chapter explores the 12-pulse line-commutated converter high-voltage direct current
(LCC-HVDC) transmission system, a cornerstone of this research. It details critical compo-
nents: converters, transformers, AC filters,DC smoothing reactors, and
the DC 1ine and their functions, all modeled in MATLAB/Simulink. The system, a robust
1000 MW, £500 kV, 300 km setup, showcases large-scale power transmission. Simulation
specifics include a 3.5-second duration and a 500 ps time step, ensuring accuracy. These el-
ements are meticulously represented to mirror real-world behavior. The model enables safe
analysis of system responses, like faults, in a controlled environment. MATLAB/Simulink’s
platform enhances accessibility and precision. This approach deepens insights into HVDC dy-
namics and supports advanced research outcomes. The different fault types analyzed in high
voltage direct current (HVDC) systems, including normal operation, DC line-to-ground faults
occurring at five distinct locations, AC single-phase-to-ground faults, and AC phase-to-phase
faults. For each type, the discussion covers their specific electrical characteristics and their
effects on the HVDC system, offering valuable insights into how the system responds under
various fault conditions. Additionally, the chapter explains how these faults are carefully mod-
eled within simulations to reflect real-world behavior accurately. This thorough fault analysis
and modeling effort is vital for producing a high-fidelity dataset, which is essential for building
and evaluating machine learning-based fault detection and classification methods central to this
thesis. The following chapter will provide a deeper look into the systematic creation of fault

scenarios and the preparation of this data for machine learning applications.
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Chapter 3

Scenario Generation and Data Preparation

3.1 Introduction

The foundation of any successful machine learning endeavor, particularly in complex do-
mains like high voltage direct current (HVDC) fault diagnosis, lies in the quality, diversity, and
representativeness of the data used for training and evaluation. This chapter meticulously de-
tails the systematic methodology employed to generate and prepare a comprehensive dataset

tailored for this study.

The process begins with the careful design of various fault scenarios pertinent to line-
commutated converter (LCC) HVDC systems, encompassing different fault types, locations, re-
sistances, and durations, alongside normal operating conditions. Subsequently, it describes the
automated simulation framework developed, leveraging MATLAB/Simulink for system model-
ing and Python for orchestrating parallel simulations and efficient data aggregation. The chapter
then outlines the comprehensive data acquisition strategy, the selection of key electrical signals,
and the subsequent feature engineering process, where meaningful statistical features are ex-
tracted from the raw time-series data. Finally, it details the crucial data preprocessing pipeline,
including signal segmentation, data cleaning, and normalization, all essential steps to create a
robust and well-structured dataset ready for the machine learning tasks discussed in the subse-

quent chapter.
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Chapter 3: Scenario generation and data preparation

3.2 Fault Scenario Design for LCC-HVDC Systems

To develop ML models capable of accurately identifying and classifying various distur-
bances in an LCC-HVDC system, a diverse range of fault scenarios was meticulously designed
and simulated. The selection of fault types and their parameter variations was guided by their
prevalence in real-world systems and their impact on system operation, as documented in exist-

ing literature [3, 5].

3.2.1 Fault Types and Characteristics

The simulated dataset encompasses the following primary fault categories:

HVDC
Transmission

Line
AC System AC System|]
Rectifier l Inverter ‘

Figure 3.1: Simulated HVDC fault types.

A - DC Line Faults: these are among the most common and critical faults in HVDC trans-

mission lines [17].

* Pole-to-Ground (P-G) Faults: involving a short circuit between one of the DC poles

and the ground.

For DC line faults, the following parameters were systematically varied to ensure a rich

dataset:

* Fault Resistance (Ry): values such as 0.01€2, 0.1€2, 1€2, 10€2, 50€2, 1002, and 5002
were used. This range covers low-impedance (severe) to high-impedance (incipient
or arcing) faults, significantly influencing the fault current magnitude and voltage

depression [16].

* Fault Location (Ly): faults were simulated at different points along the DC trans-
mission line, specifically at 10%, 25%, 50%, 75%, and 90% of the line length from
the rectifier end. Fault location critically affects the traveling wave phenomena and

the measured impedances from either terminal [20].
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e Fault Duration (T};): varied durations such as 0.01s, 0.05s, 0.1s, 0.2s, 0.3s, and 0.5s

were considered to capture both transient and more sustained fault events.

B - AC System Faults at Converter Terminals: faults on the AC side connected to the
converter stations can lead to commutation failures and significantly impact HVDC oper-

ation [15].

» Single Phase-to-Ground (AG, BG, CG) Faults: on the AC bus at both rectifier and

inverter sides.

e Phase-to-Phase (AB, BC, CA) Faults: on the AC bus at both rectifier and inverter

sides.

For AC system faults, the same range of Fault Resistance (Ry) and Fault Duration (1)
values as used for DC line faults were applied to ensure consistency and comprehensive
coverage of fault severities and persistence. The impact of these AC faults on the HVDC
system is highly dependent on these parameters, influencing the extent of voltage distor-

tion and potential for commutation failure.

C - No-Fault (Normal Operation) Scenarios: a significant number of simulations under
normal operating conditions, including minor load variations or system parameter drifts,
were included. This is crucial for training ML models to distinguish between fault and

non-fault states, thereby minimizing false alarms.

The systematic variation of these parameters ensures that the generated dataset captures a wide

operational envelope, crucial for training generalizable ML models as discussed in Section 1.6.

3.3 Automated Simulation Framework

Generating a large and diverse dataset, as described above, necessitates an automated sim-
ulation framework. This study leveraged MATLAB/Simulink for modeling the LCC-HVDC
system and developed custom Python scripts for orchestrating the numerous individual simula-

tion runs and managing the resultant data.

3.3.1 MATLAB/Simulink Model and Scripted Single Simulations

A detailed electromagnetic transient (EMT) model of a two-terminal LCC-HVDC system
was developed in MATLAB/Simulink. This model includes representations of the converter
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bridges, transformers, AC and DC filters, DC transmission line, and control systems. Each fault

scenario was simulated individually by a MATLAB script. This script was responsible for:

1. Programmatically setting the specific fault parameters (type, location, resistance, dura-

tion, etc.) within the Simulink model workspace.
2. Running a single simulation for the configured scenario.

3. Extracting the specified output signals and saving them to a temporary CSV file upon

simulation completion.

This approach of scripting individual simulations provides fine-grained control over each sce-
nario. The simulation automation scripts, along with the base Simulink model, are open-sourced

and available for reproducibility and further research (see Appendix .2).

3.3.2 Python-Orchestrated Parallel Simulation and Data Aggregation

To expedite the generation of the extensive dataset required (tens of thousands of scenarios)
and to manage the workflow efficiently, a distributed and parallelized simulation strategy was

implemented using Python.

* Distributed Simulation Chunks: the total list of defined fault scenarios was logically

divided into manageable chunks.

* Python-based Parallel Orchestration: a Python script utilizing the multiprocessing li-
brary was developed to manage the execution of these individual MATLAB simulations

in parallel. This script was responsible for:

— Iterating through the list of all defined fault scenarios (or chunks thereof).

— For each scenario, preparing the necessary input configuration to be passed to the
MATLAB simulation script.

— Launching multiple instances of MATLAB (each running one simulation scenario
at a time) in parallel across available CPU cores or even distributed across mul-
tiple servers. In this study, each server was configured to run 10 such MATLAB

simulations concurrently.

— Monitoring the completion of each MATLAB process and handling the output CSV
file.
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* Data Storage and Organization on Hugging Face Datasets: upon successful com-
pletion and data extraction, each individual fault scenario simulation resulted in a CSV
file. These CSV files were then systematically uploaded to a dedicated Hugging Face
Dataset repository. This centralized cloud-based storage offers robust accessibility, ver-
sioning, and management capabilities. The dataset within the Hugging Face repository
is organized into folders, where each folder name indicates a specific fault type and, for
DC faults, its location. The folder structure includes names such as: DC10, DC25,
DC50, DC75, DC90 (for DC line faults at 10%, 25%, 50%, 75%, and 90% of the line
length, respectively), and AG, BG, CG, AB, AC, BC (for various AC fault types).
Each CSV file within these folders is named according to the convention:
runNumber_faultType_tInception_dDuration_rResistance.csv
For example, 123_AG_t0.50_d0.10_r50.csv would represent run number 123, a

A phase-to-ground fault, occurring at 0.50s, with a duration of 0.10s, and a fault resistance
of 5012.

This parallelized approach, combining MATLAB’s simulation capabilities with Python’s or-
chestration and Hugging Face’s data infrastructure, enabled the efficient generation of a sub-
stantial dataset comprising 22612 individual CSV files, each representing a unique fault or

operational scenario.

3.4 Comprehensive Data Acquisition

During each simulation run, a comprehensive set of electrical signals from various points
within the LCC-HVDC model was captured. The rationale for collecting such a wide array of
signals is to provide a rich dataset that can support not only the current study but also future
research, exploration of alternative features, or the development of more detailed diagnostic

algorithms. Table 17 in Appendix .1 provides a detailed overview of the key signals logged.

These signals represent voltages, currents at various key locations, control system param-
eters, and internal operational states from both the rectifier and inverter stations, as well as
currents directly associated with the fault path. Each CSV file generated, as mentioned in Sec-
tion 3.3, contains a time-series record of these signals for the duration of that specific simulation

scenario.
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3.5 Feature Engineering and Selection for Machine Learning

While a vast amount of raw signal data was captured, specific signals were selected, and
statistical features were derived from them for the initial phase of ML model training detailed
in this thesis. This selection and engineering process is crucial for transforming raw data into a

format that ML algorithms can effectively learn from.

3.5.1 Signal Selection for Current Study

For the present study, the following subset of signals was chosen as the primary input for
feature extraction, representing key electrical quantities at both ends of the HVDC link and
on the AC sides. These signals are known to exhibit distinct transient and steady-state changes

during fault conditions, providing valuable information for fault detection and classification [8]:

* DC Voltage at Rectifier.

* DC Current at Rectifier.

* DC Voltage at Inverter.

* DC Current at Inverter.

* AC Phase Voltages at Rectifier.
* AC Phase Currents at Rectifier.
* AC Phase Voltages at Inverter.

¢ AC Phase Currents at Inverter.

3.5.2 Feature Calculation

From each selected time-series signal within a defined post-fault window (see Section 3.6.1),
a set of statistical features was calculated. These features aim to summarize the temporal behav-
ior of the signals into a concise numerical representation that is more readily digestible by ML

algorithms than raw time-series data. The calculated features for each signal segment include:
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* Maximum (max): this feature captures the peak positive amplitude of the signal within
the window. During faults, voltages might experience sags (lower max) or swells (higher
max), while currents often exhibit significant overshoots. The maximum value is thus

crucial for identifying the severity and type of transient disturbance.

* Minimum (min): this represents the peak negative amplitude or the lowest point of a sag
in the signal window. Similar to the maximum, it provides critical information about the
extent of voltage depressions or negative peaks in current waveforms, characteristic of

many fault types.

* Mean (u): the average value of the signal over the window. Post-fault, the mean value
of a signal may shift significantly from its pre-fault steady-state level. For example, DC
voltage typically drops, and its mean value reflects this new quasi-steady state during the
fault.

1N
p= D T (3.1
N =

* Standard Deviation (0): this measures the dispersion or variability of the signal around
its mean within the window. A higher standard deviation indicates greater fluctuation,
which can be indicative of oscillatory transients, harmonics, or instability introduced by

the fault. It quantifies the signal’s dynamic activity.

1 N
std = N1 ;(xz — p)? (3.2)

* Energy (E): calculated as the sum of the squared instantaneous values of the signal within
the window. The energy of a signal is related to its overall power content. Faults typically
cause a substantial change in the energy of voltage and current signals—currents often see
increased energy due to fault current contribution, while voltage energy might decrease

due to sags. This feature provides a robust indicator of the disturbance’s intensity.

N
energy = y_ 7 (3.3)

i=1

The combination of these five statistical features for each of the selected signals creates a feature
vector. This vector serves as a "fingerprint" for the system’s behavior during the analyzed win-
dow, aiming to provide sufficient discriminatory information for the ML models to distinguish
between different fault types, characteristics, and normal operation [45,46]. Extracting such fea-
tures helps transform complex temporal patterns into a more structured and lower-dimensional
representation, which can improve both the performance and computational efficiency of the

subsequent ML classification task.
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3.6 Data Preprocessing Pipeline

Before feeding the extracted features into ML models, several preprocessing steps were

essential to ensure data quality and optimize model performance.

3.6.1 Signal Segmentation and Windowing

The raw time-series data generated from simulations includes the pre-fault steady-state,
the fault onset, and the subsequent transient response. In this study, feature extraction was
performed using a fixed time window centered around the fault initiation point. Specifically,
a few milliseconds of signal were captured both before and after the fault occurred, allowing
the window to capture the transition from normal operation to fault conditions. This approach
ensures that both pre-fault behavior and the immediate fault transient are represented, which is

critical for distinguishing subtle signal changes.

3.6.2 Data Cleaning

The generated dataset was meticulously inspected for any inconsistencies or missing data.

Although simulations generally produce clean data, it is good practice to check for:

* NaN (Not-a-Number) Values: in rare cases, simulation convergence issues or data log-
ging errors might introduce NaN values. Any scenario (CSV file) or signal containing
NaN values within the analysis window was either carefully inspected and corrected if
the issue was minor and identifiable, or excluded from the training/testing set to prevent

errors in ML model training.

* Constant or Corrupted Signals: signals that were unexpectedly constant (indicating
a possible issue with the sensor modeling or data logging in the simulation) or showed
obviously erroneous patterns were flagged. If a scenario contained such data that could

not be rectified, it was typically removed from the dataset.

This cleaning process ensures that the ML algorithms are trained on reliable and meaningful
data.
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3.6.3 Normalization/Scaling

Features extracted from different signals or calculated using different methods can have

widely varying scales and ranges (e.g., voltage in per-unit vs. energy which can be much

larger). Most ML algorithms, particularly those relying on distance calculations (like KNN,

SVM) or gradient descent optimization (like Neural Networks, Logistic Regression), perform

better or converge faster when input features are on a relatively similar scale [

]. Normal-

ization or scaling prevents features with larger numerical values from dominating those with

smaller values during model training.

Two common techniques considered are:

* Min-Max Scaling (Normalization): rescales features to a fixed range, typically [0, 1] or

[-1, 1]. It is calculated as: X,,opm =

Xmaz _Xmin

e Z-score Standardization: rescales features to have zero mean and unit variance. It is

calculated as: X 4 = % where f is the mean and o is the standard deviation of the

feature across the training samples.
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Figure 3.2: Example of normalization and standardization.
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In this study, Z-score standardization using scikit-learn’s StandardScaler was applied
to the feature set. The scaling parameters (1 and o for standardization, or X,,;, and X,,q.
for normalization) were computed from the training data and then applied consistently to the
validation and test datasets. This critical step prevents data leakage from the test set into the
training process, ensuring an unbiased evaluation of model performance and promoting robust

generalization.

3.7 Conclusion

This chapter has comprehensively outlined the systematic approach undertaken to generate
and prepare the dataset crucial for the machine learning-based fault diagnosis in HVDC systems.
The process commenced with a detailed fault scenario design for a two-terminal LCC-HVDC
system, incorporating a wide range of fault types (DC line faults, AC system faults) and param-
eters (resistance, location, duration), alongside no-fault conditions. An automated simulation
framework, combining MATLAB/Simulink for modeling and Python for parallel execution and
data management, was developed to efficiently generate a substantial dataset of 22612 individ-

ual simulation runs.

Key electrical signals were captured, from which statistical features such as maximum, min-
imum, mean, standard deviation, and energy were calculated for selected signals within a de-
fined post-fault window. This feature set was then subjected to data preprocessing pipeline,
including data cleaning to handle any anomalies, and Z-score standardization to ensure feature
consistency. The result of these well-structured dataset, ready to support training, validating,
and testing the machine learning models in the next chapter. The open availability of these sim-
ulation scripts and the dataset itself is intended to foster further research and reproducibility in

this domain.
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Machine Learning Framework and
Results Analysis

4.1 Introduction

This chapter presents the core experimental work of the thesis, focusing on two main eval-

uation scenarios for HVDC fault detection and classification using machine learning models:

» Standard evaluation (random 80/20 split): models are trained and tested using a con-
ventional random 80/20 train-test split, serving as a baseline and reflecting common prac-

tice.

* Generalization testing (unseen fault resistances): models are trained without samples
containing fault resistances of 10 €2 and 100 €2, and then evaluated specifically on these

unseen conditions to assess real-world robustness.

This approach enables a critical assessment of both standard performance and generalization
capability. The chapter concludes with a comparative analysis of all models across both sce-
narios, highlighting their strengths, weaknesses, and robustness. All datasets and scripts used,
as described in Chapter 3, are openly available on Hugging Face and GitHub to support repro-

ducibility and further research, as discussed in Section 1.6.
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4.2 Machine Learning Models and Framework

This section details the machine learning algorithms chosen for the HVDC fault detection
task. A diverse set of models was selected from the scikit-1learn library to benchmark
their performance and generalization capabilities. For each model, a brief theoretical overview
is provided, along with key hyperparameters that were tuned. Hyperparameter optimization was
performed using GridSearchCV with 5-fold cross-validation on the training set to find the

best combination of parameters for each model.

4.2.1 Logistic Regression

Logistic regression is a linear model used for binary or multi-class classification problems.
Despite its name, it is a classification algorithm rather than a regression one. For binary classi-
fication, it models the probability that an input x belongs to a particular class using the logistic

(or sigmoid) function:
1

P(?J:”X):m

4.1

where w are the weights and b is the bias term, learned during training by minimizing a loss
function (typically log-loss). For multi-class problems, as in this study (multiple fault types), a
"one-vs-rest" (OvR) or multinomial approach can be used. Scikit-learn’s ‘LogisticRegression*

handles this automatically [48].

* Key hyperparameters tuned:

— C:inverse of regularization strength. Smaller values specify stronger regularization.

— solver: algorithm to use in the optimization problem (e.g., ’liblinear’, ’1bfgs’,

‘saga’).

— penalty: specifies the norm used in the penalization (e.g., ’11°, ’127).

* Strengths: simple, interpretable, computationally efficient, performs well on linearly

separable data.

* Weaknesses: may not perform well on complex, non-linear data; assumes linear rela-

tionship between features and log-odds.
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Figure 4.1: The Sigmoid function used in Logistic Regression [48].

4.2.2 Support Vector Machine (SVM)

Support vector machines (SVMs) are powerful supervised learning models used for clas-
sification and regression. For classification, SVMs aim to find an optimal hyperplane in an
N-dimensional space (where N is the number of features) that maximally separates data points
of different classes. The "margin" is the distance between the hyperplane and the closest data
points (support vectors) from each class. For non-linearly separable data, SVMs can use the
"kernel trick" to map the data into a higher-dimensional space where a linear separation might

be possible.

Decision Function: sign (Z 1y K (x4, %) + b) 4.2)

=1
where K (x;,x) is the kernel function, «; are Lagrange multipliers, y; are class labels, and b is

the bias term [49, 50].

* Key hyperparameters tuned:

— C:regularization parameter. A smaller C creates a wider margin but may misclassify
more points, while a larger C aims to classify all training examples correctly but may

lead to a narrower margin and overfitting.

— kernel: specifies the kernel type to be used in the algorithm (e.g., ’linear’, *poly’,

rbf’, ’sigmoid’). The radial basis function (RBF) kernel is commonly used.
— gamma: kernel coefficient for 'rbf’, *poly’, and ’sigmoid’. Higher gamma means

more influence of single training examples, potentially leading to overfitting.

* Strengths: effective in high-dimensional spaces, robust to overfitting if C is chosen care-

fully, versatile due to different kernel functions.
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* Weaknesses: can be computationally intensive for large datasets. Performance depends
heavily on hyperparameter tuning (especially C, kernel, and gamma). Less interpretable

than decision trees.
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Figure 4.2: Conceptual Illustration of a Support Vector Machine (SVM) Classifier [50].

4.2.3 K-Nearest Neighbors (KNN)

K-nearest neighbors (KNN) is a non-parametric, instance-based learning algorithm. It clas-
sifies a new data point based on the majority class of its 'k’ nearest neighbors in the feature
space. The "nearness" is typically measured using a distance metric, such as Euclidean dis-

tance:
n

d(p,q) = | >_(pi — ¢:)? (4.3)

i=1

where p and q are two points in n-dimensional space [51,52].

* Key hyperparameters tuned:

— n_neighbors (k): the number of neighbors to consider.

— weights: weight function used in prediction. ’'uniform’ assigns equal weights
to all neighbors, while ’distance’ assigns weights proportional to the inverse of the

distance from the query point.

— metric: the distance metric to use (e.g., ’euclidean’, *'manhattan’, *minkowski’).
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» Strengths: simple to understand and implement, no explicit training phase (lazy learner),

adapts well to complex decision boundaries.

* Weaknesses: computationally expensive during prediction for large datasets (needs to
compute distances to all training points), sensitive to irrelevant features and the scale
of data (necessitating normalization), performance degrades in high-dimensional spaces
(curse of dimensionality). Choosing an optimal ’k’ is crucial.

L 4
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® *

tategory 2

’ ?Q new data point
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Figure 4.3: Conceptual Illustration of K-Nearest Neighbors (KNN) Classification [52].

4.2.4 Decision Tree

Decision trees (DTs) are non-parametric supervised learning methods used for classification
and regression. They create a model that predicts the value of a target variable by learning
simple decision rules inferred from the data features. The tree is built by recursively splitting
the data based on feature values that best separate the classes, typically measured by impurity

metrics like Gini impurity or entropy.

K
Gini impurity = 1 — Y _ p} (4.4)
k=1
where py, is the proportion of samples belonging to class k at a given node [53, 54].

* Key hyperparameters tuned:

— criterion: the function to measure the quality of a split (e.g., ’gini’, ’entropy’).
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— max_depth: the maximum depth of the tree. Controls complexity and potential

for overfitting.

— min_samples_split: the minimum number of samples required to split an in-

ternal node.

— min_samples_leaf: the minimum number of samples required to be at a leaf

node.

* Strengths: easy to understand and interpret, can handle both numerical and categorical
data, requires little data pre-processing (e.g., normalization is often not needed), captures

non-linear relationships.

* Weaknesses: prone to overfitting, especially with deep trees. Can be unstable (small

changes in data can lead to different trees). Biased towards features with more levels.

Predicting whether a customer will buy a product

Income > 50,0007 Root Node

o

Internal Node Age>307? No Purchase

D el

Previous Purchase >0 No Purchase

e

Purchase No Purchase Leaf Node

Figure 4.4: Example of a Simple Decision Tree Structure [54].

4.2.5 Random Forest

Random forest is an ensemble learning method that operates by constructing a multitude
of decision trees at training time and outputting the class that is the mode of the classes (clas-
sification) or mean prediction (regression) of the individual trees. It introduces randomness
by:

1. Building each tree on a bootstrapped sample of the training data (sampling with replace-

ment).

2. Considering only a random subset of features for splitting at each node in each tree.
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This randomness helps to de-correlate the trees, reducing variance and making the model more

robust to overfitting compared to a single decision tree [55, 56].

* Key hyperparameters tuned:

— n_estimators : the number of trees in the forest.

— max_features : the number of features to consider when looking for the best
split.

— max_depth : the maximum depth of each tree.

— min_samples_split,min_samples_leaf : same as for decision trees.

— criterion : same as for decision trees.

* Strengths: high accuracy, robust to overfitting, handles high-dimensional data well, can

estimate feature importance.

* Weaknesses: less interpretable than a single decision tree, can be computationally inten-

sive for a large number of trees.

» Training Data
Instance

Model 3

Training
Decision
A Trees
Class A Clalss B
[ Bagging (voting majority) ]
Model
Testing
Y

Prediction output

Class A

Figure 4.5: Illustration of a Random Forest Ensemble [56].

4.2.6 Gradient Boosting

Gradient boosting (specifically, gradient boosting machines or GBMs) is another powerful
ensemble technique that builds models (typically decision trees) in a sequential, stage-wise fash-

ion. Each new tree attempts to correct the errors made by the previous ensemble of trees. It fits
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new models to the residual errors of the previous models, effectively "boosting" the performance
by focusing on difficult-to-classify instances. The scikit-learn ‘GradientBoostingClassifier* is

an implementation of this [55,57].

* Key hyperparameters tuned:

— n_estimators: the number of boosting stages (trees) to perform.

— learning_rate: shrinks the contribution of each tree. Lower values require

more trees but often lead to better generalization.

max_depth: maximum depth of the individual regression estimators.

subsample: the fraction of samples to be used for fitting the individual base learn-

ers. If smaller than 1.0, this results in stochastic gradient boosting.

» Strengths: often achieves state-of-the-art performance on many tasks, can handle various

types of data, provides feature importance.

* Weaknesses: prone to overfitting if not tuned carefully (especially n_estimators and
learning_rate), can be computationally expensive and slower to train than random

forests.

2T IN= Py — Py

(X, ) (X, r) (X, r7) (X )

Figure 4.6: Illustration of Gradient Boosted Trees [57].

4.2.7 Neural Network (Multi-Layer Perceptron)

A multi-layer perceptron (MLP) is a class of feedforward artificial neural network (ANN).
An MLP consists of at least three layers of nodes: an input layer, one or more hidden layers,

and an output layer. Each node (neuron) in one layer connects with a certain weight to every
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node in the following layer. Neurons in the hidden layers typically use a non-linear activation
function (e.g., ReLU, sigmoid, tanh). The network learns by adjusting the weights using an
algorithm like backpropagation based on a loss function. The output ¥, of a neuron % in a layer

is typically:
J

where ¢ is the activation function, wj;, are the weights from neuron j in the previous layer, x;

are the outputs of those neurons (or input features), and by, is the bias [58].

* Key hyperparameters tuned (using ‘MLPClassifier¢):

— hidden_layer_sizes: atuple specifying the number of neurons in each hidden
layer (e.g., (100,), (50, 25)).

— activation: activation function for the hidden layers (e.g., ‘relu’, ’tanh’, ’logis-
tic’).

— solver: the solver for weight optimization (e.g., ’adam’, ’sgd’, ’1bfgs’).

— alpha: L2 penalty (regularization term) parameter.

— learning_rate_init: the initial learning rate used.

* Strengths: can model highly complex, non-linear relationships; capable of learning fea-
tures automatically in deeper architectures (though this MLP is relatively shallow).

* Weaknesses: prone to overfitting, computationally intensive to train, requires careful

hyperparameter tuning, can be a "black box" (difficult to interpret). Sensitive to feature
scaling.
rlnput
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Figure 4.7: Structure of a Multi-layer Perceptron (MLP) with one hidden layer.
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4.3 Experimental Setup and Evaluation Metrics

This section outlines the methodology used to evaluate the performance of the selected ma-
chine learning models. Two main experimental scenarios are considered to assess both standard

performance and generalization capabilities.

4.3.1 Performance Metrics

To quantitatively evaluate the performance of the classification models, the following stan-

dard metrics derived from the confusion matrix are used:

* Accuracy: the proportion of correctly classified samples out of the total number of sam-
ples.
Number of Correct Predictions TP+TN

ceuracy Total Number of Predictions TP+TN+ FP+ FN (4.6)

(For multi-class, TP, TN, FP, FN are considered per class in a one-vs-rest manner or via

macro/micro averaging of per-class metrics).

* Precision: the ability of the classifier not to label as positive a sample that is negative.
For a given class, it is the ratio of true positives to the sum of true positives and false

positives.
TP
Precision = m (47)

* Recall (sensitivity or true positive rate): the ability of the classifier to find all the posi-
tive samples. For a given class, it is the ratio of true positives to the sum of true positives

and false negatives.

TP
Recall = — - 4,
= TPYFEN (4.8)

* Fl-score: the harmonic mean of Precision and Recall. It provides a balance between

these two metrics.

Precision x Recall
F1-S =2 4.9
core % Precision + Recall 4.9)

For multi-class classification problems like this one, these metrics are typically reported as
weighted averages (weighted by the number of true instances for each label) to account for
class imbalance, or as macro averages (unweighted mean per class). In this study, weighted

averages will be primarily reported.
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Figure 4.8: Confusion matrix illustrating binary classification metrics.

4.3.2 Experiment 1: Standard Evaluation (Random 80/20 Split)

This experiment follows a common methodology in machine learning literature. The entire
dataset, containing all fault types and variations in fault resistance, duration, and start time, is

randomly shuffled and split into:

* Training set (80%): used to train the machine learning models and perform hyperpa-

rameter tuning via 5-fold cross-validation with GridSearchCV.

* Testing set (20%): used to evaluate the performance of the trained models on unseen

data.

The random split ensures that the training and testing sets have similar distributions of fault
types and parameters. This scenario assesses how well the models learn from a representative

sample of the overall data distribution.

4.3.3 Experiment 2: Generalization Testing (Unseen Fault Resistances)

This experiment is designed to critically evaluate the generalization capability of the mod-
els, particularly their ability to correctly classify faults with characteristics (specifically, fault
resistances) that were not encountered during training. This scenario more closely mimics real-

world situations where novel fault conditions can occur. The dataset is split as follows:

* Training set: comprises all normal operation samples and all fault samples except those
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with fault resistances of 10 {2 and 100 2. This modified training set is then further split

internally (e.g., 80/20) for training and validation during hyperparameter tuning.

* Testing set (unseen resistances): consists exclusively of fault samples with resistances
of 10 2 and 100 €2. These specific resistance values are completely held out from the

training process.

This setup tests whether the models can interpolate or extrapolate learned patterns to correctly
identify faults even when a key parameter like fault resistance falls into a range not explicitly

seen during training.

4.4 Results and Analysis

This section presents the performance results of the seven machine learning models for both
experimental scenarios. The discussion will focus on comparing model accuracies, F1-scores,

and their generalization abilities.

4.4.1 Results of Experiment 1: Standard Evaluation (Random 80/20 Split)

This section presents the detailed performance results for each of the seven models when
trained and tested using the standard random 80/20 split. This serves as a baseline representing

performance under conditions where the test data distribution closely mirrors the training data.

A - Logistic Regression Results (Experiment 1)

The Logistic Regression model achieved the performance shown in Table 4.1.

Table 4.1: Performance of Logistic Regression (Random 80/20 Split - Exp 1).

Metric Score

Accuracy 0.7554
Precision (Weighted) 0.7745
Recall (Weighted) 0.7554
F1-Score (Weighted) 0.7422
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Figure 4.9: Confusion Matrix for Logistic Regression (Random 80/20 Split - Exp 1).

Discussion: Logistic Regression provided a solid baseline performance with an F1-score
(weighted) of 0.7422 and an accuracy of 0.7554. However, as seen in Figure 4.9, the model
exhibited significant confusion among several fault types. A prominent pattern was the mis-
classification of various DC fault types (‘DC10°¢, ‘DC25°¢, ‘DC50¢, ‘DC75¢, ‘DC90°) as the
‘BC* fault type. For instance, ‘DC75° was misclassified as ‘BC* 55 times, ‘DC25¢ as ‘BC* 51
times, and ‘DC90° as ‘BC* 43 times. Furthermore, there was substantial inter-class confusion
among the AC-ground/phase faults, particularly ‘AC‘, ‘AG*, ‘BG*, and ‘CG*‘. Key examples
include ‘AC‘ being misclassified as ‘AG* (114 times) and ‘CG* (106 times), and ‘BG* being
misclassified as ‘CG* (105 times). The ‘AB‘ fault was also notably confused with ‘AG* (54
times), and ‘CG* with ‘AB° (64 times). Minor confusion was also observed for the ‘no_fault*
class (e.g., misclassified as ‘BC* 11 times) and between different DC fault types (e.g., ‘DC50°
as ‘DCI0°‘ 9 times). The performance of this linear model suggests that accurately distinguish-
ing these highly confused fault types likely requires models capable of capturing more complex,

non-linear relationships in the feature space.

B - Support Vector Machine (SVC) Results (Experiment 1)

The Support Vector Classifier, using the best hyperparameters found (e.g., likely an RBF
kernel), yielded the results in Table 4.2.
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Table 4.2: Performance of Support Vector Machine (Random 80/20 Split - Exp 1).

Metric Score

Accuracy 0.5807
Precision (Weighted) 0.5981
Recall (Weighted) 0.5807
F1-Score (Weighted) 0.5606
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Figure 4.10: Confusion Matrix for Support Vector Machine (Random 80/20 Split - Exp 1).

Discussion: The Support Vector Classifier achieved moderate performance in this standard
evaluation, with a weighted F1-score of 0.5606 and an accuracy of 0.5807. An analysis of its
misclassifications (visualized in Figure 4.10) reveals several key challenges. A very significant
issue is the misclassification of the AB’ fault type, predominantly into *CG’ (226 instances).
Strong confusion also exists with the *AC’ fault type, which is frequently misclassified as ’CG’
(194 instances) and AG’ (48 instances). Similarly, the ’AG’ fault is often mistaken for 'CG’

(166 instances).

Furthermore, there is considerable inter-confusion among the ’AG’, ' BG’, and "CG’ classes;
for example, ’BG’ is often predicted as "CG’ (138 instances) or "AG’ (125 instances), and
"CG’ is frequently misclassified as ’AG’ (127 instances). Another widespread pattern is the
misclassification of 'no_fault’ and various DC fault types CDC10’, "'DC25’, ’DC50’, ’DC75°,
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"DC90’) into the "BC’ class. These systematic misclassifications highlight the SVM’s difficulty

in effectively separating these specific fault categories under the current experimental setup.

C - K-Nearest Neighbors (KNN) Results (Experiment 1)

The KNN classifier performance, based on the optimal "k’ neighbors found, is presented in
Table 4.3.

Table 4.3: Performance of K-Nearest Neighbors (Random 80/20 Split - Exp 1).

Metric Score

Accuracy 0.9958
Precision (Weighted) 0.9958
Recall (Weighted) 0.9958
F1-Score (Weighted) 0.9958
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Figure 4.11: Confusion Matrix for K-Nearest Neighbors (Random 80/20 Split - Exp 1).

Discussion: The K-Nearest Neighbors (KNN) classifier achieved exceptionally high per-
formance in the standard random 80/20 split scenario, demonstrating near-perfect classification

with a weighted F1-score, accuracy, precision, and recall all at 0.9958. The confusion matrix
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(Figure 4.11) visually confirms this, showing that the vast majority of predictions fall along
the diagonal, indicating correct classifications. There were only a minimal number of misclas-
sifications. Specifically, 'no_fault’ was misclassified as "’DC50’ in 4 instances. Other minor
errors included "DC50’ being misclassified as "DC75’ (2 times), 'DC75 as "DC25’ (3 times),
’DCI0’ as "DC50’ (2 times), 'BG’” as AC’ (2 times), and *AC’ as "DC50’ (1 time). The high
performance suggests that in this standard split, the different fault types and the "no_fault’ con-
dition are highly separable in the feature space based on proximity. This outcome highlights the
effectiveness of KNN’s instance-based approach and its ability to model potentially complex

decision boundaries when sufficient, similar training data is available close to the test points.

D - Decision Tree Results (Experiment 1)

The Decision Tree classifier, when evaluated on the standard random 80/20 train-test split,

produced the performance metrics listed in Table 4.4.

Table 4.4: Performance of Decision Tree (Random 80/20 Split - Exp 1).

Metric Score

Accuracy 0.5299
Precision (Weighted) 0.5130
Recall (Weighted) 0.5299
F1-Score (Weighted) 0.4684
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Figure 4.12: Confusion Matrix for Decision Tree (Random 80/20 Split - Exp 1).

Discussion: The Decision Tree classifier exhibited relatively low performance in this stan-
dard evaluation, achieving an F1-score (weighted) of 0.4684 and an accuracy of 0.5299. A de-
tailed look at its misclassifications (visualized in Figure 4.12) reveals a significant and dominant
pattern: a large number of instances from various classes are overwhelmingly misclassified as
‘DC25°. Specifically, ‘no_fault® (273 times), ‘DC10° (243 times), ‘DC50° (244 times), ‘DC75°
(252 times), ‘DCI90‘ (274 times), and ‘AC* (264 times) were all predominantly misclassified
as ‘DC25°¢. Other misclassifications, such as ‘CG* to ‘DC25° (3 times), ‘DC50° to ‘DC10° (1
time), and ‘AC* to ‘BC* (1 time), were minor in comparison. This extreme tendency to predict
‘DC25° suggests that the learned decision rules are overly simplistic or biased towards features
indicative of the ‘DC25° fault, leading to poor discrimination between ‘DC25° and many other
fault types, as well as the ‘no_fault‘ condition. The model struggles significantly to establish

effective boundaries for most classes in this experimental setup.

E - Random Forest Results (Experiment 1)

The ensemble Random Forest classifier yielded the performance metrics listed in Table 4.5

when evaluated on a standard random 80/20 train-test split.
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Table 4.5: Performance of Random Forest (Random 80/20 Split - Exp 1).

Metric Score

Accuracy 0.9631
Precision (Weighted) 0.9735
Recall (Weighted) 0.9631
F1-Score (Weighted) 0.9642
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Figure 4.13: Confusion Matrix for Random Forest (Random 80/20 Split - Exp 1).

Discussion: Random Forest demonstrated strong performance in this standard evaluation,
achieving a high Fl-score (weighted) of 0.9642 and an accuracy of 0.9631. This indicates
good overall predictive capability. However, an analysis of its misclassifications (visualized in
Figure 4.13) reveals specific challenges. The model notably struggled with distinguishing cer-
tain DC fault types, with ‘DC75‘ and ‘DC90° faults being frequently misclassified as ‘DC25°.
While most other classes were well-identified, this confusion involving ‘DC25° represents the
primary area where the model’s discriminative power could be improved in this experimental
setup. The ensemble nature of Random Forest generally contributes to robust performance, yet

these specific inter-class similarities present a hurdle.
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F - Gradient Boosting Results (Experiment 1)

The Gradient Boosting classifier performance on the standard random 80/20 train-test split

is summarized in Table 4.6.

Table 4.6: Performance of Gradient Boosting (Random 80/20 Split - Exp 1).

Metric Score

Accuracy 0.8975
Precision (Weighted) 0.9188
Recall (Weighted) 0.8975
F1-Score (Weighted) 0.8987
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Figure 4.14: Confusion Matrix for Gradient Boosting (Random 80/20 Split - Exp 1).

Discussion: Gradient Boosting delivered a good performance in this standard evaluation,
achieving an F1-score (weighted) of 0.8987 and an accuracy of 0.8975. However, the misclas-
sification analysis (visualized in Figure 4.14) highlights specific areas of difficulty. A prominent
issue is the misclassification of several fault types into the ‘BC* class; notably, ‘no_fault® was
misclassified as ‘BC* 67 times, ‘DC10° as ‘BC* 61 times, and ‘DC50° as ‘BC* 36 times. Addi-
tionally, there was notable confusion among certain DC fault categories: ‘DC75° was frequently
misclassified as ‘DC25°¢ (44 times), and ‘DC90‘ was also commonly mistaken for ‘DC25° (47
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times). Other misclassifications, such as ‘no_fault‘ into ‘DC50¢ (14 times) and ‘DC10° into
‘no_fault® (14 times), were also observed. While Gradient Boosting’s sequential ensemble ap-
proach often leads to strong predictive power, these specific inter-class confusions, particularly
with the ‘BC‘ class and between certain DC faults, impacted its overall effectiveness in this

experiment.

G - Neural Network (MLP) Results (Experiment 1)

The Multi-layer Perceptron (MLP) classifier, when evaluated on the standard random 80/20
train-test split, achieved the performance metrics shown in Table 4.7.

Table 4.7: Performance of Neural Network (MLP) (Random 80/20 Split - Exp 1).

Metric Score

Accuracy 0.9571
Precision (Weighted) 0.9654
Recall (Weighted) 0.9571
F1-Score (Weighted) 0.9579
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Figure 4.15: Confusion Matrix for Neural Network (MLP) (Random 80/20 Split - Exp 1).
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Discussion: The Neural Network (MLP) demonstrated strong performance in this standard
evaluation, with a high F1-score (weighted) of 0.9579 and an accuracy of 0.9571. This suggests
its capability to learn complex, non-linear relationships within the HVDC fault data. However,
an analysis of misclassifications (visualized in Figure 4.15) indicates specific areas of confusion.
The most notable issue was the misclassification of ‘CG* faults, which were frequently predicted
as ‘AG* (63 instances). Similarly, ‘AC* faults were often misclassified as ‘AG* (48 instances),
and ‘BG* faults were mistaken for ‘CG* (16 instances). Confusion among DC faults, such
as ‘DC75° being misclassified as ‘DC25° (8 times), was also observed but to a lesser extent.
While the MLP achieved good overall results, these particular inter-class confusions, especially
involving the ‘AG*, ‘CG*, and ‘AC* fault types, represent the primary challenges for the model

in this experimental setup.

4.4.2 Summary of Experiment 1 Results

Experiment 1 evaluated the performance of various machine learning models using a stan-
dard random 80/20 train-test split. This serves as a baseline to understand how well each model
can learn to classify HVC faults when the test data is drawn from the same distribution as
the training data. The key performance metrics for all evaluated models are summarized in

Table 4.8 and visually compared in Figure 4.16.

Table 4.8: Performance Summary of All Models (Random 80/20 Split - Exp 1). Best values per
column are bolded.

Model Accuracy Precision (W) Recall (W) FI-Score (W)
Logistic Regression 0.7554 0.7745 0.7554 0.7422
Support Vector Machine  0.5807 0.5981 0.5807 0.5606
K-Nearest Neighbors 0.9958 0.9958 0.9958 0.9958
Decision Tree 0.5299 0.5130 0.5299 0.4684
Random Forest 0.9631 0.9735 0.9631 0.9642
Gradient Boosting 0.8975 0.9188 0.8975 0.8987
Neural Network (MLP) 0.9571 0.9654 0.9571 0.9579
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Figure 4.16: Comparison of Accuracy for All Models in Experiment 1 (Random Split).

Summary Discussion: As presented in Table 4.8 and illustrated in Figure 4.16, the models
exhibited a wide range of performances in the standard 80/20 random split evaluation. K-
Nearest Neighbors (KNN) delivered an outstanding, near-perfect performance, achieving the
highest scores across all metrics (F1-score of 0.9958). This suggests that, under these condi-
tions, fault classes are highly separable based on feature proximity. The ensemble methods,
Random Forest (F1-score 0.9642) and Neural Network (MLP) (F1-score 0.9579), also demon-
strated excellent classification capabilities, achieving high F1-scores indicative of their abil-
ity to model complex data patterns effectively. Gradient Boosting (F1-score 0.8987) followed,
showing strong performance. Logistic Regression (F1-score 0.7422) offered a respectable base-
line performance, though it encountered more significant challenges with inter-class confusions

compared to the top-tier models, highlighting the limitations of a linear model for this dataset.

In contrast, the Support Vector Machine (F1-score 0.5606) and particularly the Decision
Tree (F1-score 0.4684) showed considerably weaker performance. The Decision Tree’s low
score was largely due to its tendency to misclassify many instances into a single dominant class
(‘DC25°), while the SVM struggled with significant confusion between several specific fault
categories.

These results establish a crucial baseline, highlighting that several sophisticated models

can achieve high accuracy and F1-scores when the training and testing data share a similar
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distribution. However, this scenario does not test the models’ robustness to variations or novel
conditions not seen during training. The true measure of practical applicability will come from
assessing generalization performance, particularly in Experiment 2, which focuses on unseen

fault resistances.

4.4.3 Results of Experiment 2: Generalization Testing (Unseen Fault Resistances)

This section presents the crucial results from the generalization test. Models were trained
on data excluding 10 and 100 fault resistances and then evaluated on samples containing these
specific, unseen resistances. This tests the models’ ability to extrapolate or interpolate effec-

tively.

A - Logistic Regression Results (Experiment 2)

When tested on unseen fault resistances (10 €2 and 100 (2), the Logistic Regression model

achieved the performance metrics detailed in Table 4.9.

Table 4.9: Performance of Logistic Regression (Unseen Resistances - Exp 2).

Metric Score

Accuracy 0.8520
Precision (Weighted) 0.8066
Recall (Weighted) 0.8520
F1-Score (Weighted) 0.8130
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Figure 4.17: Confusion Matrix for Logistic Regression (Unseen Resistances - Exp 2).

Discussion: In the generalization test on unseen fault resistances, Logistic Regression achieved
an Fl-score (weighted) of 0.8130 and an accuracy of 0.8520. Despite this overall score, the
confusion matrix (Figure 4.17) reveals significant challenges in generalizing to these new con-
ditions. Most notably, there was extensive misclassification involving the ‘CG* fault type,
which was frequently confused with ‘BG* (152 times) and ‘AB* (143 times). Additionally,
the ‘AC* fault type was commonly misclassified as ‘AG* (140 times). While some DC fault
confusions were present (e.g., ‘DC25° as ‘DC90° 21 times), they were less prominent than the
AC/ground/phase fault misclassifications. This indicates that the linear boundaries learned by
Logistic Regression did not adequately generalize to the feature variations introduced by the

unseen resistances, particularly for these complex fault types.

B - Support Vector Machine (SVC) Results (Experiment 2)

The SVC’s performance when tested on the unseen fault resistances (10 €2 and 100 €2) is
detailed in Table 4.10.
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Table 4.10: Performance of Support Vector Machine (Unseen Resistances - Exp 2).

Metric Score

Accuracy 0.6037
Precision (Weighted) 0.5976
Recall (Weighted) 0.6037
F1-Score (Weighted) 0.5728
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Figure 4.18: Confusion Matrix for Support Vector Machine (Unseen Resistances - Exp 2).

Discussion: In the generalization test on unseen fault resistances, the Support Vector Ma-
chine achieved an Fl-score (weighted) of 0.5728 and an accuracy of 0.6037. The confusion
matrix (Figure 4.18) indicates significant difficulties in generalizing to these new conditions.
There was widespread misclassification among the AC-ground/phase faults, with very high in-
stances of confusion such as ‘AG* being misclassified as ‘CG* (149 times), ‘BG* as ‘AG* (142
times) or ‘CG* (122 times), ‘CG* as ‘AG* (143 times), ‘AC‘ as ‘AG* (140 times) or ‘CG* (101
times), and ‘AB‘ as ‘AG* or ‘CG* (140 times each). Additionally, significant confusion per-
sisted within DC fault types, for example, ‘DC75° was frequently misclassified as ‘DC25° (71
times) and ‘DC90‘ as ‘DC25° (66 times). These results suggest that the decision boundaries
learned by the SVM did not adapt well to the feature variations introduced by the unseen fault

resistances, leading to poor discrimination across many classes.
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C - K-Nearest Neighbors (KNN) Results (Experiment 2)

KNN’s performance when classifying faults with unseen resistances (10 {2 and 100 2) is

given in Table 4.11.

Table 4.11: Performance of K-Nearest Neighbors (Unseen Resistances - Exp 2).

Metric Score

Accuracy 0.7078
Precision (Weighted) 0.7466
Recall (Weighted) 0.7078
F1-Score (Weighted) 0.6816
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Figure 4.19: Confusion Matrix for K-Nearest Neighbors (Unseen Resistances - Exp 2).

Discussion: When faced with unseen fault resistances, the K-Nearest Neighbors classifier
achieved an F1-score (weighted) of 0.6816 and an accuracy of 0.7078. This represents a notable
decrease from its near-perfect performance in Experiment 1. The confusion matrix (Figure 4.19)
reveals significant generalization challenges. Prominent misclassifications included ‘BG* faults
being mistaken for ‘AG*‘ (172 times), ‘CG* for ‘BG* (152 times) or ‘AB* (143 times), ‘AC* for
‘CG* (140 times) or ‘BG* (98 times), and ‘AB‘ for ‘CG* (140 times). Additionally, ‘DC75°
was frequently misclassified as ‘DC90° (55 times). KNN'’s reliance on local proximity makes

it sensitive to shifts in the feature space caused by unseen conditions. The feature values for
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the unseen resistances likely placed these instances in neighborhoods dominated by incorrect

classes from the training data, leading to these widespread misclassifications.

D - Decision Tree Results (Experiment 2)

The single Decision Tree’s generalization performance when tested on unseen fault resis-
tances (10 €2 and 100 2) is shown in Table 4.12.

Table 4.12: Performance of Decision Tree (Unseen Resistances - Exp 2).

Metric Score

Accuracy 0.5301
Precision (Weighted) 0.4577
Recall (Weighted) 0.5301
F1-Score (Weighted) 0.4673
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Figure 4.20: Confusion Matrix for Decision Tree (Unseen Resistances - Exp 2).

Discussion: The Decision Tree demonstrated poor generalization to unseen fault resistances,
achieving a low F1-score (weighted) of 0.4673 and an accuracy of 0.5301. The confusion ma-
trix (Figure 4.20) reveals a severe and dominant misclassification pattern: a vast majority of

instances from various classes, including ‘no_fault® (273 times), ‘DC10° (245 times), ‘DC50°
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(245 times), ‘DC75° (250 times), ‘DC90° (272 times), and ‘AC* (267 times), were overwhelm-
ingly misclassified as ‘DC25°¢. This indicates that the specific decision rules and feature thresh-
olds learned by the tree during training were not robust to the feature variations introduced by
the unseen resistances. The model failed to discriminate effectively, collapsing many distinct

fault types into a single category (‘DC25°) when faced with these new conditions.

E - Random Forest Results (Experiment 2)

Random Forest’s performance on the unseen fault resistances (10 €2 and 100 €2) test set is
presented in Table 4.13.

Table 4.13: Performance of Random Forest (Unseen Resistances - Exp 2).

Metric Score

Accuracy 0.9682
Precision (Weighted) 0.9721
Recall (Weighted) 0.9682
F1-Score (Weighted) 0.9672

300

200

- 150

True Fault Type

- 100

- 50

0 0 0

BC- 0 0 0 0 0 0 0 0 0 0 0

]
N PP A P
SIS
Predicted Fault Type

Y P EERF

Figure 4.21: Confusion Matrix for Random Forest (Unseen Resistances - Exp 2).

Discussion: Random Forest demonstrated excellent generalization capabilities when tested

on unseen fault resistances, achieving a high F1-score (weighted) of 0.9672 and an accuracy of
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0.9682. Remarkably, these scores are comparable to, and even slightly better than, its perfor-
mance in Experiment 1, indicating strong robustness. The ensemble nature of Random Forest
likely contributed significantly to this robust generalization. An analysis of misclassifications
(Figure 4.21) shows that the errors were minimal and primarily confined to confusion between
specific DC fault types: ‘DC75° was sometimes misclassified as ‘DC25° (27 times) or ‘DC90°
(52 times), and ‘DC90° as ‘DC25° (26 times). Overall, Random Forest proved highly effective

at classifying fault types even under novel resistance conditions not encountered during training.

F - Gradient Boosting Results (Experiment 2)

Gradient Boosting’s generalization performance when tested on unseen fault resistances (10
2 and 100 €2) is summarized in Table 4.14.

Table 4.14: Performance of Gradient Boosting (Unseen Resistances - Exp 2).

Metric Score

Accuracy 0.9173
Precision (Weighted) 0.9523
Recall (Weighted) 0.9173
F1-Score (Weighted) 0.9205
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Figure 4.22: Confusion Matrix for Gradient Boosting (Unseen Resistances - Exp 2).
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Discussion: Gradient Boosting demonstrated good generalization capabilities, achieving
an Fl-score (weighted) of 0.9205 and an accuracy of 0.9173 when evaluated on unseen fault
resistances. While the overall performance was strong, an analysis of misclassifications (Fig-
ure 4.22) indicates that the primary challenge involved the ‘BC* fault type. Specifically, ‘no_fault*
was misclassified as ‘BC* 88 times, ‘DC10‘ as ‘BC* 83 times, and ‘DC50° as ‘BC* 86 times.
Other misclassifications, such as ‘DC10° to ‘no_fault® (10 times) and ‘AB‘ to ‘BC* (4 times),
were less frequent. The sequential nature of Gradient Boosting, which aims to correct errors
of previous learners, likely contributed to its solid generalization, though it still struggled to

perfectly distinguish certain classes from ‘BC* under these novel conditions.

G - Neural Network (MLP) Results (Experiment 2)

The MLP’s performance when tested on unseen fault resistances (10 €2 and 100 €2) is shown
in Table 4.15.

Table 4.15: Performance of Neural Network (MLP) (Unseen Resistances - Exp 2).

Metric Score

Accuracy 0.9316
Precision (Weighted) 0.9343
Recall (Weighted) 0.9316
F1-Score (Weighted) 0.9306
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Figure 4.23: Confusion Matrix for Neural Network (MLP) (Unseen Resistances - Exp 2).

Discussion: The Neural Network (MLP) demonstrated strong generalization to unseen fault
resistances, achieving a high Fl-score (weighted) of 0.9306 and an accuracy of 0.9316. While
the overall performance was robust, an analysis of misclassifications (Figure 4.23) highlighted a
specific area of difficulty: the ‘CG* fault type was frequently misclassified as ‘AB* (143 times),
and conversely, ‘AB‘ was often misclassified as ‘CG* (62 times). Misclassifications among
DC faults (e.g., ‘DC90° as ‘DC25° 9 times) were comparatively minor. The MLP’s ability to
learn complex feature representations likely enabled it to adapt well to most variations from
the unseen resistances, though the similarity between ‘CG‘ and ‘AB°‘ faults under these new

conditions posed a notable challenge.

4.4.4 Summary of Experiment 2 Results

Experiment 2 was designed to rigorously test the models’ generalization capabilities by eval-
uating them on fault data with resistances (10 €2 and 100 €2) that were entirely excluded from the
training set. This scenario mimics a more realistic deployment where models encounter condi-
tions not perfectly represented in their initial training. The performance of each model under

these challenging conditions is summarized in Table 4.16 and visually compared in Figure 4.24.
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Table 4.16: Performance Summary of All Models (Unseen Resistances - Exp 2). Best values
per column are bolded.

Model Accuracy Precision (W) Recall (W) F1-Score (W)
Logistic Regression 0.8520 0.8066 0.8520 0.8130
Support Vector Machine  0.6037 0.5976 0.6037 0.5728
K-Nearest Neighbors 0.7078 0.7466 0.7078 0.6816
Decision Tree 0.5301 0.4577 0.5301 0.4673
Random Forest 0.9682 0.9721 0.9682 0.9672
Gradient Boosting 0.9173 0.9523 0.9173 0.9205
Neural Network (MLP) 0.9316 0.9343 0.9316 0.9306
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Figure 4.24: Comparison of Accuracy for All Models in Experiment 2 (Unseen Resistances).

Summary Discussion: Experiment 2 provided critical insights into the models’ ability to
generalize to novel fault conditions, as shown in Table 4.16 and Figure 4.24. The results
clearly differentiated the models based on their robustness. Random Forest emerged as the
top-performing model, achieving an outstanding F1-score of 0.9672, remarkably maintaining
its high performance from Experiment 1. This highlights its excellent generalization capabili-
ties. The Neural Network (MLP) (F1-score 0.9306) and Gradient Boosting (F1-score 0.9205)
also demonstrated strong robustness, yielding high Fl-scores that indicated a good ability to

adapt to the feature variations introduced by the unseen resistances.
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Logistic Regression (F1-score 0.8130) showed a notable improvement compared to its Ex-
periment 1 performance, suggesting that while it struggled with the overall complexity of the
full dataset in Experiment 1, it found more generalizable (albeit still imperfect) linear bound-
aries that were coincidentally effective for the specific subset of unseen resistances, albeit with

some significant misclassifications remaining.

In contrast, K-Nearest Neighbors (F1-score 0.6816) experienced a substantial performance
degradation compared to its near-perfect score in Experiment 1. Its instance-based nature
proved sensitive to the feature shifts. The Support Vector Machine (F1-score 0.5728) and the
single Decision Tree (F1-score 0.4673) performed poorly, struggling significantly with the un-
seen conditions and exhibiting widespread misclassifications. The Decision Tree, in particular,

continued to collapse many classes into one, underscoring its lack of generalization.

This experiment underscores the importance of robust model architectures, such as ensem-
bles (Random Forest, Gradient Boosting) and potentially well-tuned Neural Networks, when
dealing with real-world scenarios where operational conditions might deviate from the train-
ing data. Simple models or those overly sensitive to local data structure may not generalize

effectively.

4.5 Comparative Analysis and Discussion

This section synthesizes the findings from both Experiment 1 (Standard Evaluation) and
Experiment 2 (Generalization Testing) to provide a holistic comparison of the models’ perfor-
mance and, critically, their generalization capabilities when faced with unseen fault resistances.
The aim is to identify models that are not only accurate on data similar to training but also

robust to novel conditions.

Figure 4.25 directly compares the Accuracy for each model across both experiments. This
visualization is crucial for understanding how each model’s performance changes when transi-

tioning from a standard evaluation scenario to a more challenging generalization test.
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Figure 4.25: Comparison of Models Accuracy: Experiment 1 (Random 80/20 Split) vs. Exper-
iment 2 (Unseen Fault Resistances of 10 €2 and 100 €2).

Overall Discussion: The comparative analysis starkly illustrates the difference between
standard evaluation and generalization testing, which is a central theme of this thesis. While
several models, notably K-Nearest Neighbors (F1-score 0.9958), Random Forest (0.9642), and
Neural Network (MLP) (0.9579), achieved high to near-perfect scores on the random 80/20
split (Experiment 1), their reliability and performance under the novel conditions of unseen

fault resistances (Experiment 2) varied considerably.

The results from Experiment 2 are particularly revealing. Random Forest emerged as the
most robust model, not only performing exceptionally well in Experiment 1 (F1-score 0.9642)
but also maintaining, and even slightly improving, this high level of performance in Experi-
ment 2 (F1-score 0.9672) when faced with unseen resistances. This demonstrates its excellent
generalization capability. The Neural Network (MLP) also showed strong generalization, with
a high Fl-score of 0.9579 in Experiment 1 and a resilient 0.9306 in Experiment 2. Gradient
Boosting similarly proved robust, with F1-scores of 0.8987 and 0.9205 in Experiment 1 and
2 respectively. The ability of these ensemble methods (Random Forest, Gradient Boosting) to
average out biases and reduce variance, and the capacity of Neural Networks to learn complex,

robust feature representations, likely contribute to their superior generalization.
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Conversely, K-Nearest Neighbors, despite its stellar performance in Experiment 1, expe-
rienced a dramatic drop in Experiment 2 (F1-score from 0.9958 to 0.6816). This highlights
KNN’s sensitivity to shifts in the feature space; its reliance on local proximity means that
when test instances with unseen characteristics fall into "neighborhoods" dominated by incor-
rect classes from the training data (which did not include those specific resistances), its per-
formance degrades significantly. Logistic Regression showed an interesting trend: its F1-score
improved from 0.7422 in Experiment 1 to 0.8130 in Experiment 2. This suggests that while it
struggled with the overall complexity of the full dataset in Experiment 1, it might have learned
more generalizable (albeit still imperfect) linear boundaries that were coincidentally effective
for the specific subset of unseen 10 2 and 100 €2 fault resistances. However, its confusion
matrices still indicated notable misclassifications. The Support Vector Machine also showed
a slight increase (F1-score from 0.5606 to 0.5728) but remained a relatively poor performer
in both scenarios, struggling with significant inter-class confusion. The single Decision Tree
consistently performed poorly (F1-scores of 0.4684 and 0.4673), often collapsing many classes
into one, underscoring its tendency to overfit to specific paths in the training data and its lack of

robustness.

These findings directly support the research objective of evaluating generalization and ad-
dressing the gap in literature that often relies solely on random splits. This study clearly shows
that random splits can overestimate real-world performance. The necessity of targeted gener-
alization testing, such as evaluating on unseen fault parameters, is paramount for developing

reliable ML-based fault diagnosis systems.

In terms of trade-offs, the best generalizing models (Random Forest, Gradient Boosting,
MLP) are generally more complex and computationally intensive to train than simpler models
like Logistic Regression or a single Decision Tree. However, their superior robustness often

justifies this additional upfront cost, especially for critical infrastructure like HVDC systems.

It is important to acknowledge limitations: this study focused on generalization to unseen
fault resistances. Further research could explore generalization to other unseen parameters like
fault location, duration, or different system operating conditions. Moreover, the results are
based on simulation data, and validation on real-world HVDC system data would be an essential

next step.

The comparative analysis strongly suggests that ensemble methods like Random Forest and
Gradient Boosting, along with well-tuned Neural Networks, offer a promising balance of high
accuracy and superior robustness for HVDC fault detection when faced with variations in fault

parameters not explicitly seen during training.
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4.6 Computational Considerations

While accuracy and generalization were the primary evaluation criteria in this study, com-
putational load is a relevant factor for the practical implementation and deployment of machine

learning models in HVDC fault diagnosis systems.

Training times varied significantly across the evaluated models, particularly when con-
sidering the hyperparameter optimization phase using GridSearchCV with 5-fold cross-
validation. Simpler models like Logistic Regression and a single Decision Tree were the fastest
to train, often completing in minutes. K-Nearest Neighbors has a negligible explicit training
phase (as it is an instance-based learner), but its prediction time can be high for large datasets
as it needs to compute distances to all training points (though optimized implementations can
mitigate this). Support Vector Machine training time, especially with non-linear kernels like
RBEF, can scale non-linearly with the size of the dataset, making it more time-consuming for

larger datasets.

The ensemble methods (Random Forest and Gradient Boosting) and the Neural Network
(MLP) were the most computationally intensive to train. Building multiple trees (for RF and
GB) or training a network through multiple epochs with backpropagation, combined with an
exhaustive GridSearchCV over a range of hyperparameters, required substantial computa-
tional resources and time, sometimes spanning several hours depending on the search space and

dataset size.

However, once the models were trained and optimized, their prediction times for classifying
new, unseen fault instances were generally very low, typically in the range of milliseconds or
even sub-milliseconds per instance on modern hardware. This rapid prediction capability is
crucial for HVDC fault detection systems, which require swift responses to mitigate potential

damage and ensure system stability.

The initial data generation phase, which involved simulating numerous fault scenarios in
MATLAB/Simulink, was also computationally intensive. The use of MATLAB’s Parallel Com-
puting Toolbox (‘parsim‘ command) significantly accelerated this phase by distributing the
simulations across multiple processor cores, making it feasible to generate the comprehensive

dataset required for this study in a reasonable timeframe.

In summary, while some of the best-performing and most robust models require a significant
upfront investment in terms of training time and computational resources for hyperparameter

tuning, their fast prediction speeds make them viable for real-time or near real-time fault diag-
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nosis applications.

4.7 Conclusion

This chapter presented the machine learning framework and detailed results analysis for
HVDC fault detection and classification. The core of the experimental work focused on two
evaluation scenarios: Experiment 1 utilized a standard random 80/20 train-test split for base-
line performance assessment, while Experiment 2 critically evaluated model generalization by
testing on fault resistances (10 €2 and 100 2) entirely excluded from the training data. Data was
derived from simulations (as detailed in Chapter 3), involving statistical feature extraction and

scaling, with all resources made openly available.

Seven classifiers (Logistic Regression, Support Vector Machine, K-Nearest Neighbors, De-
cision Tree, Random Forest, Gradient Boosting, and a Neural Network (MLP) ) were tuned

using GridSearchCV and evaluated using metrics like the weighted F1-score.

Experiment 1 showed high baseline F1-scores, particularly for KNN (0.9958), Random For-
est (0.9642), and MLP (0.9579). However, Experiment 2, the generalization test, revealed
significant performance differences. Random Forest demonstrated excellent robustness, main-
taining a high F1-score (0.9672). The MLP (0.9306) and Gradient Boosting (0.9205) also gen-
eralized well. In contrast, KNN’s performance substantially decreased (F1-score 0.6816), while

Decision Tree and SVM struggled with the unseen conditions.

These findings underscore that standard random splits can overestimate practical model
performance, highlighting the necessity of rigorous generalization testing. Ensemble meth-
ods (Random Forest, Gradient Boosting) and Neural Networks showed the most promise for
developing robust and accurate HVDC fault diagnosis systems capable of handling novel con-
ditions. Computational aspects were also briefly considered. The insights gained here pave the

way for the thesis’s concluding discussions.
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This thesis embarked on an investigation into the application of machine learning techniques
for fault diagnosis in high voltage direct current (HVDC) systems. The primary motivation
stemmed from the critical need for reliable and rapid fault detection to ensure the stability and
security of modern power grids, which increasingly rely on HVDC technology. A significant
emphasis was placed on evaluating not just the standard performance of machine learning mod-
els but, more importantly, their generalization capabilities when faced with fault conditions not

explicitly encountered during training—a crucial aspect for real-world deployment.

The work began with an extensive review of existing literature on HVDC systems, fault
types, conventional diagnostic methods, and prior applications of machine learning. This review
identified key gaps, particularly the common reliance on simple random data splits for model
evaluation, which may not adequately reflect a model’s ability to generalize to truly novel fault
scenarios. The problem was thus defined as developing and rigorously evaluating machine

learning models with a specific focus on their generalization to unseen fault parameters.

A detailed 12-pulse line commutated converter (LCC) HVDC transmission system was
modeled in MATLAB/Simulink. This model served as the foundation for simulating a wide
array of fault types, including DC line-to-ground faults at various locations, and AC side faults
(phase-to-ground and phase-to-phase). The characteristics of these faults and their impact on
system signals were analyzed. To generate a comprehensive dataset, numerous fault scenarios
were scripted with variations in fault type, location, resistance, and duration. An automated
framework, combining MATLAB for simulation and Python for orchestration of parallel sim-
ulations, was implemented. Key electrical signals were captured. The generated dataset and
simulation scripts were made publicly available to promote reproducibility. Data preprocessing

steps, including cleaning and standardization, were applied.

Seven machine learning classifiers (logistic regression, support vector machine, k-nearest
neighbors, decision tree, random forest, gradient boosting, and a multi-layer perceptron neural
network) were selected from the scikit-learn library. Hyperparameters for each model were
tuned using grid search with cross-validation. Two distinct experimental evaluation scenarios
were designed: a standard evaluation using a random 80/20 split, and a generalization test where
models were trained on data excluding specific fault resistances and then evaluated exclusively
on these unseen resistance values. Performance was assessed using accuracy, precision, recall,

and F1-score, with detailed analysis of confusion matrices and comparative performance.

The results demonstrated that performance on standard random train-test splits can be overly
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optimistic and does not reliably predict performance on novel fault conditions. For instance,
k-nearest neighbors achieved near-perfect scores in the standard evaluation but suffered a sig-
nificant performance drop in the generalization test. Random forest emerged as the most robust
model, exhibiting excellent performance in both scenarios, while the neural network and gradi-
ent boosting also demonstrated strong generalization capabilities. This suggests that ensemble
techniques and appropriately tuned neural networks are well-suited for handling the variabil-
ity inherent in real-world fault scenarios. The study provides a comprehensive benchmark of
seven different machine learning algorithms on a consistently generated and processed dataset
for HVDC fault diagnosis, offering valuable insights into the relative strengths and weaknesses

of these models for this specific application.

Several challenges and limitations were encountered during the research. The entire study
was based on data generated from MATLAB/Simulink simulations, which may not fully capture
all the complexities, noise, uncertainties, and unmodeled dynamics present in real-world HVDC
operational data. The generalization testing focused specifically on unseen fault resistances,
while real-world novelty can also arise from unseen fault locations, variations in fault inception
angle, or evolving system operating conditions not explicitly covered in the generalization test.
The study utilized a set of common statistical features; while effective, other advanced feature
engineering techniques or features derived from deeper domain expertise might provide addi-
tional discriminatory power. The hyperparameter optimization process for the more complex
models was computationally intensive and time-consuming. The study focused on a specific
type of HVDC system (12-pulse LCC), so the findings might not directly translate to other
HVDC technologies without further investigation.

Based on the findings and limitations of this study, several promising directions for future
research can be identified. The most critical next step is to validate the developed models and
the generalization testing methodology using data from actual HVDC installations. Future work
should broaden the scope of generalization testing to include other types of unseen variations,
such as faults at novel locations, variations in system operating conditions, and robustness to
measurement noise. More sophisticated signal processing techniques for feature extraction and
the application of deep learning models directly on raw time-series data could be explored to
enable automatic feature learning. Applying explainable Al techniques to the best-performing
complex models could provide insights into their decision-making processes and enhance model
trustworthiness. Developing frameworks for online learning where models can adapt to evolv-
ing system conditions or new fault signatures, and addressing data imbalance and rare faults, are
also important avenues. Extending the methodologies to multi-terminal HVDC systems and ex-
ploring hardware implementation for real-time performance would further enhance the practical
applicability of the research. Additionally, simulating and testing on different HVDC configu-

rations such as bipolar and homopolar links would help evaluate and improve the adaptability
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and robustness of the developed models across various HVDC topologies.

In summary, this thesis successfully developed and evaluated a range of machine learning
models for HVDC fault diagnosis, with a critical emphasis on their generalization capabilities.
The findings clearly demonstrate that while many models can achieve high accuracy on data
similar to their training set, their performance can vary significantly when faced with novel fault
conditions. Ensemble methods, particularly random forest, and neural networks showed supe-
rior robustness and adaptability, making them promising candidates for practical deployment.
The research underscored the importance of moving beyond simplistic random-split evaluations
towards more rigorous generalization testing methodologies to build truly reliable ML-based di-
agnostic systems. The open-sourcing of the simulation tools and datasets aims to contribute to
a more collaborative and reproducible research environment in this domain. While limitations
exist, the insights gained and the proposed avenues for future work pave the way for continued
advancements in developing intelligent, robust, and reliable fault diagnosis solutions for critical
HVDC infrastructure, ultimately contributing to the resilience and efficiency of future power

systems.
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Appendix

.1 Overview of Key Signals Captured During Simulation

This section provides a detailed overview of the key electrical signals captured during the

simulation of fault scenarios in the LCC-HVDC system. These signals form the basis of the

dataset used for training and evaluating the machine learning models, as discussed in Chapter 3.

Table 17: Overview of Key Signals Captured During Simulation

Signal Name(s) in CSV

Description

DCFaultCurrent

FaultCurrent_AG_PhA, _BG_PhBR,

_CG_PhC

FaultCurrent_AB PhA, _AC_PhA,

_BC_PhB
Rectifier Station Signals:

Rectifier_V[a,b,c]l_pu
Rectifier_I[a,b,c]l_pu
Rectifier_ VdL_pu
Rectifier_TId_pu
Rectifier TIdreflLim_pu
Rectifier_AlphaOrd_deg
Rectifier LowACVolt
Rectifier_ForcedAlpha
Rectifier_Valvel_Voltage

Rectifier Valve[l,3]_Current

Rectifier_Valve_AlphaOrd
Inverter Station Signals:

Inverter_V[a,b,c]l_pu
Inverter_TI[a,b,c]_pu
Inverter_VdL_pu
Inverter_VdRef_ pu
Inverter_TId_pu
Inverter_IdreflLim_pu
Inverter_AlphaOrd_deg

Inverter_GammaMean_deg

Current flowing directly through the fault
impedance path.

Fault current in the specified phase during AC
phase-to-ground faults

Fault current in phase A (for AB, AC) or B (for
BC) during AC phase-to-phase faults

AC side three-phase voltages

AC side three-phase currents

DC line voltage at the rectifier output

DC current flowing from the rectifier
Limited DC current reference

Ordered firing angle for rectifier valves
Flag indicating low AC voltage condition
Flag indicating forced alpha operation
Voltage across a specific rectifier valve
Current through specific rectifier valves

Actual firing angle of valves

AC side three-phase voltages

AC side three-phase currents

DC line voltage at the inverter input

DC voltage reference for the inverter

DC current flowing into the inverter
Limited DC current reference for inverter
Ordered extinction angle for inverter valves

Mean measured extinction angle

Continued on next page

Univ-Ghardaia/Industrial Maintenance

96



Appendix

Table — continued from previous page

Signal Name (s) in CSV Description
Inverter_GammaRef_deg Reference extinction angle
Inverter_LowACVolt Flag indicating low AC voltage condition
Inverter AMin Minimum alpha limit (related to inverter
control)
Inverter_Valvel_Voltage Voltage across a specific inverter valve
Inverter_Valvel_Current Current through a specific inverter valve
Inverter_Ucoml_Current Commutation overlap current (related to a

specific valve)

Inverter_Valve_G_GammaMean_deg Mean extinction angle of inverter valves

.2 Repository Link

The simulation automation scripts, the base Simulink model, and links to the Hugging Face
dataset are available on GitHub:

https://github.com/taha2002/hvdc-fault-diagnosis-ml.git.

Univ-Ghardaia/Industrial Maintenance 97



dal) Lol iyl 4y 13 4 ) gl
(galad) Caddl g (Al PAELA] I B1BY)

Université de Ghardaia Al daala
Faculté des Sciences et de |3 Technologie o sl g o glat) 4t

ilSaa g 4l g AdYI; anid

IV maailly (el i sale

2025-»)?&?5.3..3;.0..: RIS

............... .. .{-__)ngm)(s)ou.“;’l LI
# sl (15585 e/ ilAll) 7 55 ke pgompas e APL Y RERVITRFYIN
..... ‘ .v.\....}.‘.‘..V.DC........»S)/J?ZM.S... Vi

mc\clﬂiv\e

S
e Vh:":?j J
{CPUN[) BTN ([ PRTIN

alslt a.ud dja O “4.:‘91‘4-'.' QWBQM_MQ |34L§/ ‘alj
uéﬁmdjéén‘ga.zdﬂ'lps'ﬂg
o gllal | g il arox S givl U8y

8 A/ Cliaf of s




	List of Abbreviations 
	General Introduction
	Bibliography and Literature Review
	Introduction
	HVDC Technology and Applications
	Evolution and Key Milestones
	Fundamental Principles of HVDC Systems
	Advantages and Disadvantages of HVDC Transmission

	Types of Faults in HVDC Systems
	Classification of HVDC faults
	Characteristics of HVDC faults

	Fault Diagnosis Methods in HVDC Systems
	Analytical Model-Based Methods
	Signal Processing-Based Methods
	Pattern Recognition and Machine Learning Methods
	Hybrid and Advanced Methods

	Machine Learning in Power System Fault Detection (Focus on HVDC)
	Survey of Machine Learning Algorithms
	Input Features for Machine Learning Models
	Data-Driven vs. Model-Driven Approaches
	Critical Examination of Datasets in Previous Studies

	Gaps and Research Opportunities
	Shortcomings in Existing Literature
	Addressing the Gaps Through This Study

	Conclusion

	HVDC System Modeling, Fault Characterization, and Simulation
	Introduction
	HVDC System Components and Configuration
	Converters (Rectifier and Inverter)
	AC Filters and Reactive Power Source
	DC Smoothing Reactors
	DC Transmission Line
	AC Circuit Breakers

	Simulation Model and Parameters
	System Specifications
	Simulation Parameters
	Note on Per-Unit (pu) System Representation

	Fault Characterization and Modeling in Simulation
	Normal Operation ('None')
	DC Line Faults
	AC Side Faults

	Conclusion

	Scenario Generation and Data Preparation
	Introduction
	Fault Scenario Design for LCC-HVDC Systems
	Fault Types and Characteristics

	Automated Simulation Framework
	MATLAB/Simulink Model and Scripted Single Simulations
	Python-Orchestrated Parallel Simulation and Data Aggregation

	Comprehensive Data Acquisition
	Feature Engineering and Selection for Machine Learning
	Signal Selection for Current Study
	Feature Calculation

	Data Preprocessing Pipeline
	Signal Segmentation and Windowing
	Data Cleaning
	Normalization/Scaling

	Conclusion

	Machine Learning Framework and Results Analysis
	Introduction
	Machine Learning Models and Framework
	Logistic Regression
	Support Vector Machine (SVM)
	K-Nearest Neighbors (KNN)
	Decision Tree
	Random Forest
	Gradient Boosting
	Neural Network (Multi-Layer Perceptron)

	Experimental Setup and Evaluation Metrics
	Performance Metrics
	Experiment 1: Standard Evaluation (Random 80/20 Split)
	Experiment 2: Generalization Testing (Unseen Fault Resistances)

	Results and Analysis
	Results of Experiment 1: Standard Evaluation (Random 80/20 Split)
	Summary of Experiment 1 Results
	Results of Experiment 2: Generalization Testing (Unseen Fault Resistances)
	Summary of Experiment 2 Results

	Comparative Analysis and Discussion
	Computational Considerations
	Conclusion

	Conclusion and Future Work
	Appendix
	Overview of Key Signals Captured During Simulation
	Repository Link


