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ABSTRACT

The proliferation of digital learning platforms has generated vast amounts of student
interaction data, creating opportunities to leverage machine learning for early predic-
tion of student performance and timely intervention for at-risk learners. This thesis
investigates the effectiveness of traditional machine learning algorithms (Random Forest,
Logistic Regression, Decision Tree, KNN) versus sequential deep learning models (LSTM,
GRU, RNN) in forecasting student outcomes, with particular focus on capturing temporal
patterns in learning behaviors.

The models were trained and evaluated on two real-world datasets: the UK OULAD
Dataset and the Chinese TsinghuaX MOOC Dataset, using comprehensive performance
metrics including accuracy, precision, recall, Fl-score, and AUC-ROC across different
course timeline stages.

Results show that sequential models, especially GRU, outperform traditional meth-
ods, achieving 93.09% accuracy on the OULAD dataset and 85.84% on the TsinghuaX
dataset, particularly excelling in mid-course predictions. Temporal analysis highlights
that predictive accuracy improves as more sequential data accumulates, emphasizing the
value of temporal modeling in educational data mining.

These findings demonstrate the effectiveness of deep learning methods in modeling
sequential educational data. They also support the development of more accurate early
warning systems and adaptive learning interventions, ultimately enhancing student re-
tention and success in online education environments.

Keywords: Student performance prediction, Machine Learning, Deep Learning, Se-
quential modeling, Educational Data Mining, Early warning system.



RESUME

La prolifération des plateformes d’apprentissage numérique a généré d’importantes
quantités de données sur les interactions des étudiants, offrant des opportunités d’exploiter
I’apprentissage automatique pour prédire précocement les performances des étudiants et
intervenir rapidement aupres des apprenants a risque. Cette these examine ['efficacité des
algorithmes d’apprentissage automatique traditionnels (Forét Aléatoire, Régression Logis-
tique, Arbre de Décision, KNN) par rapport aux modeles d’apprentissage profond séquen-
tiels (LSTM, GRU, RNN) dans la prévision des résultats des étudiants, avec un accent
particulier sur la capture des motifs temporels dans les comportements d’apprentissage.

Les modeles ont été entrainés et évalués sur deux ensembles de données réelles :
I’ensemble de données OULAD du Royaume-Uni et ’ensemble de données TsinghuaX
MOOC de la Chine, en utilisant des métriques de performance completes incluant ’exactit-
-ude, la précision, le rappel, le score F1 et TAUC-ROC a différents stades de la chronologie
des cours.

Les résultats montrent que les modeles séquentiels, en particulier le GRU, surpassent
les méthodes traditionnelles, atteignant un taux de précision de 93,09% sur I’ensemble de
données OULAD et de 85,84% sur I’ensemble de données TsinghuaX MOOC, en particuler
lors de la prédictions aux milieu de cours. L’analyse temporelle révele que la précision
prédictive s’améliore a mesure que davantage de données séquentielles sont disponibles,
soulignant l'importance du modélisation temporelle dans le domaine du data mining
éducatif.

Ces résultats contribuent au domaine en démontrant I’efficacité des méthodes d’apprent-
-issage profond pour traiter les données éducatives séquentielles. ils soutiennent également
le développement de systemes d’alerte précoce plus précis et d’interventions d’apprentissage
adaptatives, améliorant ainsi la rétention et la réussite des étudiants dans les environ-
nements d’apprentissage en ligne.

Mots-clés : Prédiction des performances des étudiants, Apprentissage automatique,
Apprentissage profond, Modélisation séquentielle, Fouille de données éducatives, Systeme
dalerte précoce,
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INTRODUCTION

The fast development of digital technologies has led to major changes in many areas,
especially in the field of education. In recent years, e-learning platforms such as Massive
Open Online Courses (MOOCs) and Virtual Learning Environments (VLEs) have rede-
fined how educational content is delivered and consumed by students.

As these platforms have become more popular, they have generated large amounts of
data from learners. This data provides important opportunities to better understand the
learning process using data-driven methods.

The availability of this data has supported the growth of two research areas: Learn-
ing Analytics (LA) and Educational Data Mining (EDM). Researchers in these fields use
analytical tools to find insights and patterns about student behavior, predict learning
outcomes, and detect students who may be at risk of failure or dropping out.

One important type of educational data is time series data. This includes repeated
and ordered records such as weekly quiz scores, assignment results, login times, video
views, discussion participation, and time spent on study materials. This type of data is
useful because it can show changes in student behavior over time.

Time series classification (TSC) is different from regular classification tasks. In TSC,
the order of the data matters, and the goal is to understand patterns that unfold over
time. To handle this, models must be able to capture the sequence and timing of learner
actions.

Despite this, most existing research still relies heavily on traditional machine learn-
ing approaches that overlook temporal dependencies. In contrast, sequential models like
Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Recurrent Neural
Networks (RNN) are specifically designed to capture time-based patterns. These models
are better suited to detecting early warning signs of academic risk, such as declining
engagement or erratic behavior, which are crucial for timely intervention.

This highlights an important research problem:

o How can educational time series data be effectively used to develop early prediction
models for identifying at-risk students?
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» how do temporal deep learning models (such as LSTM, GRU, and RNN) in cap-
turing temporal dynamics and enhancing predictive accuracy?

To address these gaps, our study aims to:

o develop new models and compare both traditional and temporal models including
LSTM, GRU, and RNN.

o and build early prediction models that can provide actionable insights during the
early stages of a course .

This study is structured as follows:

o Chapter 1: Introduces the main concept necessary to understand the rest of the
study.

o Chapter 2: Reviews the related work, providing an overview of previous studies
o Chapter 3: Outlines the research design and methodology.

o Chapter 4: Presents the implementation and evaluation results, along with the
discussion.



CHAPTER 1

MAIN CONCEPTS

1.1 Introduction

This chapter introduces the foundational concepts and core pillars that underpin our
research, providing the necessary context for understanding the subsequent chapters . It
is organized into several key sections : defining education and its importance, exploring
learning analytics and educational data mining, the significance of predicting at-risk
students , and the role of time series data. Finally, we present the machine learning
(ML) and deep learning (DL) methods employed in our study. The goal is to establish a
foundation for using machine learning approaches to predict and prevent student failure
through early intervention.

1.2 Definition and role of education

1.2.1 Definition of education

Education is a process of acquiring knowledge, skills, values, beliefs, and habits that
enable an individual to develop and grow throughout their life, for themselves or for the
betterment of society. Education encompasses various forms of learning, such as basic
education , humanistic education, technical education, vocational education, financial
education, social education, science and technology education, and more [I].

Education plays a crucial role in the overall development of individuals and societies.
It helps individuals develop their critical thinking, problem-solving, decision-making, and
communication skills, which are necessary for personal and professional growth. Educa-
tion also contributes to the social, economic , and cultural development of societies by
producing a skilled and knowledgeable workforce, promoting scientific and technological
advancements, and preserving cultural heritage [IJ.

1.2.2 Importance of Education
a. Personal Benefits

o Personal Development: Education provides basic skills such as writing, reading,
and speaking, as well as foster critical thinking, creativity, and problem-solving
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skills.

e Economic Opportunity: Higher education expands career opportunities and im-
proves long-term earning potential.

o Healthier Lifestyle: Education can make you wiser about your health choices.
Studies highlight that there is a correlation between education and improved health
outcomes [2].

b. Societal Benefits

e Economic Growth: Education plays an essential role in economic growth, de-
velopment, and stabilization of society. That is because national economic growth
requires individual economic growth.

« Promotes Equality: Education achieves true equity where everyone gains access
to the same educational opportunities; this would help close the gaps in socioeco-
nomic status.

o Civic Engagement: Educated individuals are more likely to participate in com-
munity activities and civic life, fostering social cohesion and democratic participa-
tion [3].

1.2.3 Impact of Technological Advancements

Technological advancements have significantly impacted multiple fields, specifically
education, leading to the spread of e-learning platforms. Platforms such as Massive
Open Online Courses (MOOCs) and Virtual Learning Environments (VLEs) have gained
popularity among students , with their adoption increasing dramatically. This growth has
resulted in the generation of vast amounts of educational data, which attracts researchers
to analyze it. Consequently, the fields of Learning Analytics (LA) and Educational Data
Mining (EDM) have emerged and expanded. Researchers now leverage predictive learning
analytics and educational data mining techniques to uncover patterns and trends, gain
insights into educational experiences, predict student performance, and identify at-risk
students [].

1.3 Learning Analytics (LA) and Educational Data
Mining (EDM)

1.3.1 Definition of Learning Analytics

Learning Analytics (LA) can be defined as the processes of measurement, collection,
analysis, and reporting of data about learners and their contexts, for the purposes of
understanding and optimizing learning and the environments in which it occurs [5]. This
field has gained attention as a result of the spread of digital educational platforms and the
availability of educational data . LA techniques can be applied to educational datasets
to understand the learning process and experience and gain insight into them, in order
to enhance the educational environment.
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1.3.2 Learning Analytics Methodologies

Descriptive Analytics: Summarizes past learning data to describe what hap-
pened. For example, a heatmap showing which parts of a course are most accessed.

Diagnostic Analytics: Explains why something happened by identifying patterns
and correlations in the data. For example, analyzing why students performed poorly
in a specific module by correlating quiz attempts, forum participation, and video
watch time.

Predictive Analytics: Uses historical data to predict future student performance
or behavior. For example, predicting whether a student is at risk of failing based
on their engagement and early assessments, using machine learning algorithms.

Prescriptive Analytics: Recommends actions to improve learning outcomes based
on predictions. For example, suggesting personalized learning materials to a student
who is falling behind, using recommendation systems [0].

1.3.3 Definition of Educational Data Mining EDM

Educational Data Mining (EDM) is an emerging multidisciplinary research area in
which methods and techniques for exploring data originating from various educational
information systems have been developed. In short, EDM is a new growing field that
focuses on using data analysis tools on educational data to gain insights into the learning
experience and improve educational outcomes [7].

1.3.4 EDM Stakeholders

Students: Can receive personalized recommendations or advises (e.g., courses,
resources).

Teachers: Assess the effectiveness of materials provided and monitor student
progress.

Study Adviser: Identify students needing intervention.

Directors: Analyze curriculum bottlenecks [IJ.

1.3.5 EDM tasks

Classification: Profiling students by learning styles and preferences.
Predictive Modeling: Creating models that forecast course completion or dropout.

Clustering: Grouping students by behavior or performance, or grouping courses
or assessments.

Frequent Pattern Mining: Discovering common course combinations, popular
paths in study programs, or frequent actions in LMS platforms.

Process Mining: Mapping student pathways through curricula.

Collaborative Filtering: Recommending learning materials based on the analysis
of other learners’ performance [7].
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1.3.6 Difference between LA and EDM

Learning Analytics (LA) and Educational Data Mining (EDM) share similar goals:
both aim to improve educational practice through the analysis of large-scale data. They
focus on enhancing the analysis of educational data to support decision-making and
practice in educational context. In terms of their major differences, in LA, leveraging
human judgement is key, and automated discovery is a tool to accomplish this goal, while
in EDM, automated discovery is key, and human judgment is a tool to accomplish this
goal; LA has a stronger emphasis on understanding systems as a whole in full complexity,
while EDM has a stronger emphasis on reducing components and analyzing individual
components and the relationships between them [§]. Table[L.1]summarizes the differences
between them.

Learning Analytics (LA) Educational Data Mining
(EDM)
Goals Understand learning processes to Develop models to discover
improve teaching and learning patterns and support
experiences decision-making from

educational data

Methods Descriptive analytics, Machine learning, classification,
visualization tools, dashboards clustering, statistical analysis
Applications Adaptive learning systems, Detecting student behavior
personalized feedback, early patterns, performance
warning systems prediction, adaptive learning
Users Educators, students, Data scientists, researchers,
policymakers administrators

Table 1.1: Comparison between Learning Analytics and Educational Data Mining

1.4 Predicting At-Risk Students

1.4.1 Definition of at-risk students

At-risk students are learners who are considered to have a higher probability of fail-
ing academically or dropping out of school due to various factors such as socioeconomic
challenges, low academic performance, language or cultural barriers, or family-related
problems. Identifying at-risk students early is a critical process that enables early in-
terventions. This can be achieved by building predictive models using machine learning
algorithms and deep learning [39].

1.4.2 Importance of early prediction

» FEarly identification of at-risk students allows early interventions (e.g., academic
counseling, tutoring).

e Reduces dropout rates and improves students outcomes.
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« Personalized support systems based on predictions.

» Reduces institutional costs and enhances overall educational quality.

1.4.3 Data and features

« Demographics: Age, gender socioeconomic status ...etc.
o Academic Records: Exam scores, assessments results ...etc.

« LMS data: Log data, forum participation, video views, clickstream activity .....etc.

1.4.4 Challenges:

o Privacy and Ethics: Student data is sensitive must be anonymized and secured.

e« Model Interpretability: Teachers may need to understand the reasons behind
predictions specially when use deep learning models.

o Data Quality: like missing value, incomplete logs, imbalanced data.

1.5 Time series analysis in educational data

Time series data refers to data that are collected or recorded sequentially at regular
time intervals. In educational contexts, this can include weekly quiz scores, assessment
results, clickstream activity, LMS login frequency, video watch time, forum participation
rates, and time spent on course materials. Time series classification (TSC) problems are
different from traditional classification problems in that the attributes are ordered. There
are several TSC algorithms such as deep learning approaches RNNs, LSTM, GRU...etc.
or statistical methods like ARIMA. These algorithms can serve as powerful tools for
uncovering patterns in learner interaction that correlate with dropout risk [5].

1.6 Machine Learning and Deep Learning Approaches

1.6.1 Definition of machine learning

Machine learning (ML) is a subfield of artificial intelligence (Al) that provides com-
puters with the ability to learn from data. This contrasts with traditional computing
algorithms, which are explicitly programmed by humans and rely on pre-defined rules.
The purpose of machine learning is to understand data to build data-driven models and
programming through the systematic detection of statistically significant patterns in the
available data. The impact of ML methods on research and practical applications in
the educational sciences is still limited, it continues to grow as larger and more complex
datasets become available through massive open online courses (MOOCs) and large-scale
investigations [9].

1.6.2 Types of machine learning

Machine learning can be divided into different types:
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a. Supervised Learning

Supervised learning is a machine learning technique that uses labeled data, where the
environment has a set of corresponding inputs and outputs (z,y). The model learns from
this data in order to predict the output y for a new input x [37]. Supervised learning
includes two tasks:

o Regression: In this task, the output is continuous (quantitative). For example
predicting house prices. The most famous algorithm is Linear Regression.

« Classification: In this task, the output is discrete (qualitative), such as class labels.
For example, the classification of email as spam or not spam. The most famous
algorithm is SVM (Support Vector Machine).

b. Unsupervised Learning

Unsupervised learning is a technique where the machine uses unlabeled data. In this
case, the algorithm learns the internal representation or important features to discover
relationships or structures within the input data. [37]. Two common tasks in this category
are:

o Clustering: This task is based on dividing data into groups (clusters) such that
the data are similar within each cluster and dissimilar from the other. The most
famous clustering algorithms is K-means.

e Dimensionality Reduction : The aim of this task is to reduce the complexity or size
of the data by reducing features dimensions while trying to maintain important one’s
dimensions. PCA (Principal Component Analysis) is the most famous algorithm.

c. Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning where an agent learns
to make decisions by interacting with an environment. The agent takes actions in the
environment, receives feedback in the form of rewards or penalties, and uses this feedback
to improve its future actions. The most famous algorithm is Q-Learning [37].

1.6.3 Logistic regression

Logistic regression is a statistical and machine learning algorithm used for binary
classification problems, situations where the output is one of two possible classes (e.g.,
spam or not spam, success or failure) [10].

It works by modeling the probability that a given input belongs to a particular class
using the logistic (sigmoid) function equatio which maps any real-valued number
into the range (0, 1). The algorithm estimates the parameters (weights) of a linear
equation and then applies the sigmoid function to the result. If the predicted probability
is above a certain threshold (commonly 0.5), the algorithm classifies the instance as class
1; otherwise, class 0, figure [L.T] provide logistic regression example using sigmoid function.
[11].

L 1.1
1 + 6_(ﬂ0+ﬁlx1+“'+6nxn) ( : )
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where:
o« X =(x1,29,...,x,) is the input feature vector
e [y the intercept

e [1,..., 3, are the model coefficients

Logistic Regression

I
—
1
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\ within
0 and 1 range
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Figure 1.1: logistic regression using sigmoid function

1.6.4 K Nearest Neighbors

k-NN or K-Nearest Neighbors is a supervised classification algorithm. It works by
finding the K closest training examples (neighbors) Typically uses Euclidean distance to
find nearest neighbors to a given input and making predictions based on the majority
class among those neighbors [12].

Choosing the right K is critical, too small can overfit, too large can underfit. KNN
is a lazy learning algorithm meaning no training phase, all computation happens during

prediction. It’s easy to implement and interpret, but can be inefficient with large datasets
or high-dimensional data, figure shows an example of KNN [I1].
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Figure 1.2: K Nearest Neighbors classification

1.6.5 Decision tree

A decision tree is a simple model for supervised classification. It is used for classify
a single discrete target feature. Each internal node performs a Boolean test on an input
feature (in general, a test may have more than two options, but they can be converted
into a series of Boolean tests). The edges are labeled with the values of that input feature,
and Each leaf node specifies a value for the target feature [13].

So, classifying an example using a decision tree is very intuitive, we traverse down
the tree, evaluating each test and following the corresponding edge. When a leaf node
is reached, we return the classification on that leaf. The figure [L.3| provide an example
of Decision Tree. Decision trees are easy to interpret, can handle both numerical and
categorical data, and don’t require much data preprocessing. However, they can overfit
if not pruned or regularized properly. [11].

10
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Root Node

Sub Tree

Leaf N ;des

Figure 1.3: Decision Tree example

1.6.6 Random Forest

Random Forest is a powerful ensemble learning algorithm used for classification tasks.
It operates by constructing multiple decision trees during the training process and aggre-
gating their outputs to make a final prediction, typically using majority vote for classifi-
cation. The core idea is to combine the predictions of several base estimators, each built
with a certain degree of randomness, to produce a more accurate and stable prediction
than any individual model. Each tree in the forest is trained on a random subset of the
training data using a technique called bootstrap sampling. At each split in the tree, a
random subset of features is considered, rather than using all available features. figure
provide an example of Random forest [11].

v An 0

DECISION TREE-1 DECISION TREE-1 DECISION TREE-1

RESULT-1 RESULT-2 RESULT-N

I—ol MAJORITY VOTING / AVERAGING |0—|

FINAL RESULT

Figure 1.4: Ransom Forest Example
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1.6.7 Deep learning definition

Deep learning is an advanced branch of machine learning that uses neural networks
with many layers (also called deep neural networks) to model complex patterns in large
datasets. What makes deep learning different from traditional machine learning is its
ability to automatically extract relevant features from raw data, without needing for
manual feature engineering.

Deep learning is inspired by the structure of the human brain, where layers of neurons
process information step by step. These models are particularly powerful when it comes
to working with high-dimensional and unstructured data like images, speech, or text.
For example, deep learning has been responsible for major improvements in tasks such
as image recognition, machine translation, and speech processing [14].

1.6.8 Neural Network

A neural network is an interconnected assembly of simple processing elements, called
units or nodes, whose functionality is loosely based on the biological neuron. The process-
ing capability of the network is stored in the inter-unit connection strengths, or weights,
obtained by a process of adaptation to, or learning from, a set of training patterns [15].

1.6.9 Artificial neuron

Artificial neural networks are popular machine learning techniques that simulate the
mechanism of biological learning, where each neuron from a network can be implemented
as shown in Figure[l.5|, its parameters are:

 Input connections (inputs) : is a vector (ay, as, ..., a,) with weights (wy, ws, ..., wy,)
each input is multiplied by its weight.

o Pre-activation function z : is a summation function that sums weights after mul-
tiplies each of input by their own associated weight, with the addition of the bias
(used to adjust the output along with the weighted sum of the inputs to the neuron)
z=y" aw;,+0b

 Activation function g : transforms the pre-activation; g(z).

« Output : output the final activation; aout = g(z).

12
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Figure 1.5: artificial neuron

Activation function

Are nonlinear mathematical functions that calculate the level of neuron activation.
The function is chosen according to the problem and outputs, we list the most popular
activation function:

o Sigmoid : Normalizes the output of each neuron, its output value is in the range

0,1].
1

- 1+ e %

9(2) (1.2)
« Rictifier (ReLU) : It’s gives 0 if it receives a negative input, and returns the same

positive value x otherwise.
g(z) = max(z,0) (1.3)

o Hyperbolic Tangent (TanH) : Normalizes the output of each neuron, its output
value is in the range [-1,1].
B 1 — 672,2

= 14
1 + 6—22 ( )

9(2)
« Softmax : Used when outputs are multi class (multi-classification) and its output
value is in the range [0,1].

g(2i>:ne71’ 1=1,2,3,...,n (1.5)

j=0¢7

1.6.10 Architecture of ANN

The basic architecture of an artificial neural network consists of three basic parts,
figurdL.6| shows that:

 Input layer : it is the first layer responsible for receiving information (data) from
the external environment.

« Hidden (intermediate or invisible) layers : these layers perform most of the basic
work in a network. The layers are made up of neurons responsible for excreting
features.

13
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e Output layer : after processing with neurons in the previous layers, this layer

produces and delivers the final network outputs.

Hidden Layers

Input Layer Output Layer

TR
N2 O\

Figure 1.6: ANN architecture

1.6.11 Recurrent Neural Networks (RNNs)

> :
S e s
LIRS )

Recurrent Neural Networks (RNNs) are a class of neural networks that are used for
sequence modeling tasks, such as Natural Language Processing (NLP) and speech pro-

cessing applications.

RNNs are called recurrent because they perform the same task for every element
in a sequence. RNN can be described in other way that they have a “memory” which
captures information about what has been calculated so far. Figurdl.7]shows a graphical

illustration of a structure of an RNN [16].
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Figure 1.7: RNN architecture

o 2% designates the input of the network at time step t.

14

T Wih

Whh

—_——  htHl> |
wah



Chapter 1. MAIN CONCEPTS

o <">: represents the hidden state of the network at time step, t and it is computed
by equation:

WO = gy (Winh"™V + Wapa + by ) (1.6)

o y<': Signified the output of the network at time step t and it is computed by

equation:

' = g, (Whyh<t> + by) (1.7)

Where wgp,, Whi, Why, by, by are coefficients that are shared temporally and ¢, g2 acti-
vation functions.

1.6.12 Long Short-Term Memory (LSTM)

LSTM was first introduced in 1997 by Sepp Hochrieiter and Jirgen Schmidhuber.
LSTMs are capable of bridging time intervals in excess of 1000 time steps, even in the
case of noisy incompressible input sequences, without loss of short time lag capabilities.
The architecture enforces constant error flow through internal states of special unit known
as the memory cell.

There are three gates to the cell: the forget gate, input gate, and output gate. These
gates are sigmoid functions that determine how much information to pass or block from
the cell. Sigmoid functions takes in values and outputs them in the range of [0,1]. In
terms of acting as a gate, a value of 0 means let nothing through, and a value of 1 means
let everything through. These gates have their own weights that are adjusted via gradient
descent. the figurdl.8 provide LSTM memory cell with their gates[I7].

()—s

b 11

Y

Figure 1.8: LSTM memory cell

« Cell state (ct): Vector of fixed shape with random value initialization. It contains
the information that was present in the memory after the previous time step.

» Forget gate (ft): Changes the cell state, intending to eliminate non-important values
from previous time steps. This helps the LSTM network to forget the irrelevant
information that does not have any impact on the future price prediction.

15
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o Input gate (it): Changes the cell state with the aim of adding new information
about the current time step. It adds new information that may affect the stock
price movement.

« Output gate (ot): Decides what the next hidden state should be. The new cell state
and the new hidden is then carried over to the next time step. Returns the final
relevant information, which will be used for stock price prediction.

« Hidden state (ht): It is calculated by multiplying output gate vector by cell state
vector.

1.6.13 Gated Recurrent Unit (GRU)

To address the vanishing gradient problem in Recurrent Neural Networks (RNNs),
the Gated Recurrent Unit (GRU) was proposed by Cho et al.[33]. The GRU shares many
similarities with the Long Short-Term Memory (LSTM) model, such as gating mecha-
nisms to control the flow of information. However, unlike LSTM, GRU does not include
a separate output gate, making it computationally simpler while retaining comparable
performance.

As shown in Figure the GRU architecture includes two main gates: the update
gate and the reset gate. These gates determine the information to be passed through
the network at each time step, enabling the GRU to capture long-term dependencies
efficiently.

« Update gate (z;): Determines how much of the past information needs to be
passed along to the future.

2z = o(W,[hi—1, 2] + b,) (1.8)

« Reset gate (r;): Controls how much of the previous hidden state to forget.

re = o(Wylhe—1, 2¢) + b;) (1.9)

« Candidate hidden state (h,): Computes a new memory content using the reset
gate. R
ht = tanh(Wh ['I"t ® ht—la I’t]) (]_]_0)

« Final memory (h;): Combines the previous hidden state and the candidate hidden
state.

ht: (1—Zt)@ht,1+zt®ibt (111)
e Output vector (o;): The output at time ¢ based on the hidden state.

Oy = UO(Woht + bo) (112)
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Figure 1.9: The structure of a GRU unit [32].

The use of fewer gates in GRU, compared to LSTM, allows for a simpler design and
faster training time, while still maintaining the capability of capturing dependencies in
sequential data, making it highly effective for classification and time-series prediction
tasks.

1.7 Conclusion

This chapter explained the main concepts and tools used in our research. We looked at
how education is changing with technological advancements. We explained what Learning
Analytics and Educational Data Mining are, and how they are used to understand student
behavior and predict who might be at risk of failing. We also reviewed different machine
learning and deep learning methods, especially those that work with time-based data such
as LSTM. The next chapter reviews related works. Explores existing research efforts,
methodologies, results achieved, and the gaps our study aims to address.
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CHAPTER 2

RELATED WORKS

2.1 Introduction

This chapter presents a review of existing research on student performance prediction
using machine learning and deep learning techniques. It is organized as follows: Liter-
ature Reviews provides a comprehensive overview covering traditional machine learning
approaches, deep learning methods, time-series analysis, and early prediction models.
The section on Traditional Machine Learning Approaches examines techniques including
decision trees, random forests, and support vector machines. Deep Learning Approaches
explores advanced neural network methods and their applications in educational contexts.
Time-Series Data and Temporal Models discusses the importance of capturing sequential
learning behaviors over time. Farly Prediction Models focuses on methods that enable
timely interventions for at-risk students, and finally, Summary and Research Gaps iden-
tifies current limitations and opportunities for improvement in existing methodologies.

The goal is to understand the current research landscape and highlight gaps that
demonstrate the need for better temporal modeling techniques in educational analytics.

2.2 Literature Reviews

Prediction of student academic performance has gained significant attention from re-
searchers in educational data mining (EDM) and learning analytics (LA). With the rise
of online educational platforms that record student information such as demographics,
assessments, interaction data. a large amount of data has been available, enabling data-
driven approaches for early prediction and timely interventions that improve retention
and learning outcomes. Several studies demonstrate that traditional machine learning
methods such as logistic regression, decision tree, random forest achieve acceptable accu-
racy using static features, while they struggle with time series data. In contrast, temporal
models offer useful insights about learners behaviours.

2.2.1 Traditional Machine Learning Approaches

According to [20], the most used machine learning algorithms include decision tree,
random forest, support vector machine, and logistic regression. While deep learning
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approaches have also seen increased adoption in recent years and have showed good results
compared to traditional ML. study [19] build a prediction models using non personal data,
where it compare traditional ML algorithms (SVM, decision tree, naive bayes) with deep
learning approaches, and to enhance results authors apply feature engineering techniques,
ML algorithms achieve good results with accuracy up to 92% with decision tree while
deep learning achieves slightly better result with 93% of accuracy, The authors highlight
the importance of using nonpersonal data to avoid ethical concerns, while it lack of
benefits in the dataset due to the reduction of activity interactions into a single feature,
"click-sum." This simplification may prevent the discovery of important and meaningful
learning activities.

Study [22] compares ensemble learning algorithms with ML algorithms, where they
demonstrates the effectiveness of ensemble learning in predicting student performance.
The ensemble learning method Light GBM achieved the best performance with 94% of
accuracy compared to traditional machine learning algorithms (Naive Bayes, KNN, DT,
LR, SVM, DNN) and others ensemble learning methods (Random Forest, AdaBoost,
GBDT, XGBoost).

2.2.2 Deep Learning Approaches

Study [23] employed a deep learning model to predict student performance using
student interaction data on VLEs, the authors minimized the number of features and
select those that are more effective. The model achieve a high accuracy of 96%. While
the study lacks of comparison with machine learning approaches, it also lacks comparison
with other deep learning approaches.

The authors in study [8] proposed the BCEP prediction framework which includes
feature selection and feature fusion. The authors introduced PBC model, which cate-
gorizes interactions behavior into four stages. They conducted experiments comparing
three groups: one with all interaction data, one with feature selection, and one using
BCEP framework (feature selection and fusion based on the PBC model) and they used
SVM Naive Bayes KNN SoftMax. The results showed that the BCEP model outper-
formed the others in terms of accuracy, Fl-score, Kappa. Further experiments compared
the proposed PBC classification model with three other common behavior classification
methods. The PBC model demonstrated superior and more stable performance.

Despite the good results achieved by precedent studies, there is three main limitations
can be observed. Firstly interpretability, while complex models such as deep learning and
ensemble methods often achieve higher accuracy, they are typically black-box in nature,
making it difficult to explain how specific predictions are made or what features make
student success or failure. This lack of interpretability can hinder the adoption of these
models by educators and policymakers who require transparent and actionable insights.
Secondly generalizability, many studies develop and test models only on the OULAD
dataset. As a result, models that perform well in one context may not maintain the
same effectiveness when applied to different student populations, learning management
systems, or course structures. thirdly the use of time series data, Many studies overlook
the use of time series data even when their datasets include temporal information. This
limits the ability to capture trends, and sequential patterns that could improve predictions
and insights.
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2.2.3 Time-Series Data and Temporal Models:

Time series data refers to data collected over time; this data can be log interactions.
Time series classification (T'SC) problems are different from traditional classification prob-
lems because the attributes are ordered. There are several TSC algorithms such as deep
learning approaches RNNs, LSTM, GRU ...etc or statistical methods like ARIMA.

This article [5] explores how student interaction data, specifically clickstream logs
from learning management systems, can be utilized to predict academic performance.
Clickstream data was aggregated into weekly and monthly features. The researchers
compared traditional machine learning models (Logistic Regression, Random Forest) with
deep learning approaches (LSTM, 1D-CNN). LSTM outperformed other models, achiev-
ing up to 89.25% (+0.97%) accuracy with weekly data, with the authors emphasizing
its strength in handling sequential patterns. This study employed only a single tem-
poral model, whereas incorporating multiple comparative approaches would have been
beneficial for validating the results and potentially improving accuracy.

2.2.4 Early Prediction Models

Early prediction is essential for early intervention where predictions are needed as
early as possible to enable timely and effective support. This study [24] proposes an
early prediction model for student success in MOOCs by integrating both behavioral and
demographic indicators using the Open University Learning Analytics Dataset (OULAD).
The authors employ Bayesian Additive Regression Trees (BART) to classify students into
four categories Withdrawn, Fail, Pass, and Distinction achieving accuracies of 81%, 80%,
69%, and 92%, respectively.

Another notable study [31] proposes a predictive model that identifies at-risk students
at different percentages of course completion using machine learning and deep learning
algorithms. The model analyzes demographic data, assessment scores, and clickstream
behavior to enable timely intervention. The results showed a progressive improvement
in accuracy from 59% using only demographic data to 92% when trained on complete
course data with Random Forest performing best. This study emphasizes the value of
early-stage data and feature engineering to improve prediction and intervention strategies
for at-risk students. However, this study is limited by its use of demographic data, which
may raise ethical concerns regarding privacy and bias.

2.2.5 Summary and researcher gaps

The table2.T]provide a complete comparison of various studies that focus on predicting
student performance using OULAD dataset. Most studies successfully predicted student
performance, achieving high accuracy up to 90%. Several machine learning methods were
employed, including tree-based algorithms, Support Vector Machines (SVM), Logistic
Regression (LR), ensemble learning, as well as deep learning approaches.

However, most studies used the complete course data, which poses a limitation for
real-world applications, especially in the context of early intervention, where predictions
are needed as early as possible to enable timely and effective support.

There is a noticeable lack of temporal methods such as LSTM, TSF, GRU, etc. these
methods are capable of capturing and discovering sequential and time-dependent pat-
terns. Interaction data between learners and resources provided by Virtual Learning
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Environments VLEs collected over time can be considered as time series data that should
be treated by temporal models.

Overall, the related works highlight two key gaps: the underutilization of temporal
methods in prediction tasks and the scarcity of early prediction models. Our study
addresses these gaps by employing temporal models, comparing them with traditional
approaches, and developing a robust and efficient early prediction model that enables
timely interventions.

Study Objective Methods Results
[19] Forecast whether a ANN, SVM, Naive VLE interaction
student will pass a Bayes, Random features achieved high
course avoiding the Forest AUC values (up to
use of 0.91 for dropout
personal /sensitive prediction and 0.93
data. for result prediction
with GBM).
[23] To predict student Deep Neural Network High accuracy with
academic performance 96%
based on interactions
in Virtual Learning
Environments (VLE).
[22] Predict student Naive Bayes, KNN, Light GBM
performance using DT, LR, SVM, DNN, outperformed other
Light GBM Light GBM ML algorithms with
94.1% accuracy.
[25] Predict academic SVM, KNN, C4.5 Predicted academic
success/failure using success/failure using
diverse student data diverse student data
[24] Predict student BART (Bayesian BART outperformed
success early using Additive Regression other models.
behav- Trees), Decision Tree,
ioral /demographic Random Forest
data for finer
classification
(Withdrawn, Fail,
Pass, Distinction).
5] Predicting student Machine Learning LSTM achieved the
performance using (LR, k-NN, RF, highest accuracy
clickstream data and GBT) and Deep (89.25%). With
machine learning Learning (1D-CNN, weekly data
LSTM)
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Study Objective Methods Results
8] Predicting student SVC, Naive Bayes, BCEP framework
performance behavior Softmax, KNN achieved
classification-based 95.44%-97.40%
e-learning accuracy

performance (BCEP)
prediction framework
and process-behavior

classification (PBC)

model.

[31] Identifies at-risk RF, SVM, KNN, ET, Random Forest
students at different AdaBoost Classifier, achieved the best
percentages of course Gradient Boosting performance with

Classifier, and ANN | accuracy from 59% to
models 92%
[38] Predict students at Logistic Regression, | LSTM outperformed
risk of failure and Decision Tree, SVM, other models even
enable early KNN, ANN, Gradient | with only 5 weeks of
prediction using Boosting, and LSTM data

limited weeks of
course data
Table 2.1: Related Work Summary

2.3 Conclusion

This chapter reviewed existing research in student performance prediction, examining
approaches from traditional machine learning to deep learning methods. While many
studies achieve good accuracy, most have significant limitations for practical educational
applications.

Traditional machine learning methods like decision trees and logistic regression pro-
vide good interpretability but struggle with temporal patterns in learning data. Deep
learning approaches show superior performance but lack explainability, making it difficult
for educators to understand predictions and implement interventions.

The review revealed two critical research gaps: the under-utilization of temporal
methods despite the sequential nature of learning data, and the scarcity of early prediction
models that work with limited initial data. Most existing studies rely on complete course
data, which reduces their practical value for timely interventions.

The next chapter presents the methodology used to address these gaps, covering data
selection, preprocessing, model development with grid search, and evaluation metrics.
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METHODOLOGY

3.1 Introduction

This chapter presents the methodology employed to achieve the objectives of devel-
oping and comparing predictive models for identifying at-risk students in online learning
environments using time series data. It outlines the research design, proposed system,
data preparation, evaluation metrics, and experiments. By leveraging two datasets, the
OULAD dataset and the TsinghuaX MOOC Dataset, this study compares traditional
machine learning models (Random Forest, Decision Tree, Logistic Regression, KNN)
with the deep learning models (RNN, LSTM, GRU) across one-dimensional and two-
dimensional data representations. Through this comprehensive approach, our goal is to
identify the most accurate and generalizable model for predicting student performance ,
enabling timely interventions to support student success.

3.2 Research Design

This research aims to develop predictive models to identify at-risk students in on-
line learning environments by analyzing time-series data from Virtual Learning Environ-
ments (VLEs). The study compares traditional machine learning methods—such as Ran-
dom Forest, Decision Tree, Logistic Regression, and K-Nearest Neighbors (KNN)—with
deep learning models designed for sequential data, including Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU), and Recurrent Neural Networks (RNN).

Two datasets are utilized in this research: the UK Open University Learning Analytics
Dataset (OULAD) and the Chinese TsinghuaX MOOC dataset. The research design is
structured into two main parts:

Part One: This phase focuses on data preprocessing and model development. Stu-
dent interaction data is transformed into two input formats:

e A one-dimensional (1D) model representation that aggregates total clicks
over time.

« A two-dimensional (2D) model representation that capturing activity-type-
specific clicks over time.
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Machine learning and deep learning models are trained on both representations. Hyper-
parameter optimization is conducted using Grid Search, and models are evaluated using
classification metrics such as Accuracy, Precision, Recall, F1 Score, and AUC-ROC.

Part Two: This phase investigates early prediction by evaluating model performance
at various stages of course progression (10% to 100% of the course timeline). This allows
assessment of how early in the course reliable predictions can be made, which is essential
for timely interventions and student support.

3.3 Proposed System

In this section we proposed a system aims to predict student risk status in online
learning environments. The system follows a structured process contain of several key
phases, as illustrated in Figure The process begins with data selection, where two
datasets were chosen: the OULAD dataset and the TsinghuaX MOOC dataset. These
datasets provide detailed information on student interactions, academic performance, and
engagement over time.

Once the data was selected, the next step is data preprocessing, which involved clean-
ing the data to handle missing values and inconsistencies. The activity records were then
grouped by individual students to form time-series data. After cleaning and organiz-
ing the data, various transformations was applied to prepare it for modeling. A critical
transformation involved reshaping the data into two formats:

+ A two-dimensional (2D) representation, where each student is represented as a table
with weeks as rows and learning activities as columns.

A one-dimensional (1D) representation, where weekly values are aggregated to form
a simplified feature vector for each student, resulting in a table where rows represent
students and columns represent weeks.

Next, the model training phase involved applying both deep learning and classic
machine learning models:

e Deep learning models such as GRU, LSTM, and RNN were used due to their ability
to model time-series data and capture sequential patterns in student behavior.

o Traditional machine learning models, including Random Forest, Decision Tree, Lo-
gistic Regression, and K-Nearest Neighbors, were also tested to explore simpler and
potentially more interpretable approaches.

To improve model performance, hyperparameter tuning was performed using a grid
search strategy, allowing for optimal parameter selection based on validation results.

Once the best parameters were identified, the models were trained on the training
dataset. During the training phase, key performance metrics — including accuracy,
precision, recall, F1-score, and AUC-ROC — were recorded to evaluate the effectiveness
of each model in identifying at-risk students.

Finally, the best-performing model was selected and used to make predictions on
new student data. The ultimate goal of this system is to enable early intervention by
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identifying students at risk of failure or dropout based on their learning behavior. This
allows educators to provide timely support and improve overall student success rates.
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Figure 3.1: Architecture of the proposed system

3.4 Data preparation

3.4.1 Data selection

Our study leverages two datasets to analyze student engagement and predict per-
formance in online learning environments. The first dataset is the Open University
Learning Analytics Dataset (OULAD), this dataset is prepared by Open University
(OU) of United Kingdom (UK), It is a subset of real students anonymized informa-
tion, this dataset is highly regarded in the research community due to its breadth and
quality. It provides detailed information on students demographics, course enrollments,
and interactions within the Virtual Learning Environment (VLE). The OULAD is pub-
licly available under a CC-BY 4.0 license, and has been officially verified by the Open
Data Institute (ODI), ensuring its credibility and openness for research use. Access
to this dataset can be obtained through the official ODI platform [35], can download
it from this URL: https://www.kaggle.com/api/v1/datasets/download/anlgrbz/student-
demographics-online-education-dataoulad

Figure Overall dataset structure. The student is linked with the information
about his/her demographics and registrations for the modules. For each student-module-
presentation triplet, the dataset contains the results of the students assessments and logs
of student interactions with VLE [35].
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Student
Demographics | | Registrations | | Assessments M2
L&D 9 interactions

Figure 3.2:  Overall OULAD structure [35]

These features are crucial for understanding the multifaceted nature of student learn-
ing and for building predictive models. So some features may contain missing or incom-
plete data, necessitating careful preprocessing and handling during analysis. The dataset
covers information from 32,593 students across 22 module presentations during 2013 and
2014, over a 9 month period, resulting in a total of over 10 million clickstream entries
[35]. Students engaged with 7 different modules, each offered at multiple points during
the year, the clickstream data within the VLE specifically tracks student activities such
as logging in, accessing content, participating in discussions, and navigating course pages,
providing critical behavioral insights into the learning process [35]. The dataset comprises
multiple interrelated tables, with key ones being studentInfo, studentVle, and courses.
For this study, a focus was placed on the studentVle table, which provides time-stamped
records of student interactions with various Virtual Learning Environment (VLE) ac-
tivities. Each record includes a student ID, date, activity type, and number of clicks,

to better visualize the dataset structure, Figure |3.3| illustrates how the 7 interconnected
tables relate to each other :

Student - activities Module Presentation
] studentAssessment ¥

1 id_student INT ] assessments v
¥ id_sssessment INT ¥ code_module VARCHAR(45)

date_submitted INT ? code_presentation VARGHAR(45)
7] studentRegistration ¥ is_banked TINYINT id_sssessment INT
? code_module VARCHAR(45) score FLOAT assessment_type VARCHAR(45)
! code_presentation VARCHAR(45) Y date INT
id_student INT B
date_registation INT ] studentvie v
date_unregistration INT ¥ id_site INT
1 id_student INT
! code_module VARCHAR(45)
! code_presentation VARGHAR(45) [ v
date INT code_module VARCHAR(45)
‘sum_dick INT code_presentation VARCHAR(45)
Student - demographics
] studentinfo v

* code_module VARCHAR(45)
? code_presentation VARCHAR(45)
id_student INT
‘gender VARCHAR(3) jd“:! o '
imd_band VARCHAR(16) o
highest_education VARCHAR(45) ! code_moddie VARCHAR(SS)
‘age_band VARCHAR(16)

? code_presentation VARGH

tity_type VARGHAR(45)
num_of_pres_atiempts INT actiity_type (45)

week_from INT

studied_credits INT neektom
week_to INT

region VARCHAR(45) -

disability VARCHAR(3)

final_result VARCHAR(45)

Figure 3.3: Schema of the OULAD Dataset Tables [30]

e assessments: it contains data related to assessments and final exams in course
presentations, the table consists of 206 rows.

« courses: it contains the list of all courses and presentations, the table consists of 22
TOWS.
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 studentAssessment: it contains the results of students’ assessments (usually, final
exam results are missing), the table consists of 173,912 rows.

o studentInfo: it contains demographics and students’ final result in each course they
studied, the table consists of 32,593 rows.

« studentRegistration: it contains the time when the students registered for (and
eventually unregistered from) a course presentation, it consists of 32,593 rows.

o studentVle: it contains students interactions with the LMS, the table consists of
10,655,280 rows.

o vle: it contains data related to the online teaching material provided by the LMS,
the table consists of 6,364 rows.

On this dataset we focused on the FFF module for this study because of it represents
a Science Technology Engineering and Mathematics (STEM) course with a substantial
number of enrolled students 7,762 providing a robust sample for analysis. The modules
data includes diverse learning activities and assessment types, offering a comprehensive
view of student engagement and performance. Additionally, the FFF module structure
and content are conducive to exploring the impact of various factors on student success,
making it an ideal candidate for this research [35].

The second dataset it is the TsinghuaX MOOC dataset.so it is a chinese dataset
sourced from moocdata.cn , primarily derived from Massive Open Online Courses (MOOCs)
offered on the XuetangX platform , represents a large-scale educational repository con-
taining detailed student interaction logs across multiple courses spanning from 2013 to
2024 (11 years) [26]. It contains approximately 100-150 unique courses covering subjects
such as Computer Science, Mathematics, Physics, Chinese, English, Economics, and Ed-
ucation , with each course typically consisting of 10-15 modules [27]. Across all datasets,
there are an estimated 500,000 to over 1,000,000 unique students , generating 100 mil-
lion to 500 million total interaction events , including video views, quiz submissions, and
clickstream logs |28].

On the the TsinghuaX MOOC dataset., we focused on two instances of the same course:
TsinghuaX+30640014+2016__T2 and TsinghuaX+30640014+4-2015_T2. Together, these
offerings include approximately 10,000-20,000 enrolled students, with around 40%—-60%
active users, and span a duration of about 12-14 weeks per offering, generating over 5
million interaction events combined [29].

Each dataset instance typically includes six structured files:

o student.csv: Contains student-level metadata and performance data.

e log _data.csv: Clickstream logs capturing student interactions with the platform.
e video.csv: Detailed records of video watching behavior.

e quiz.csv: Student quiz and problem submission logs.

e forum.csv: Forum activity including posts, replies, and comments.
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e course_structure. json: Hierarchical structure of the course modules, sections,
units, and components.

These files enable granular analysis of learning behaviors. The dataset has been widely
used in Educational Data Mining (EDM) and Learning Analytics (LA) for tasks such as
dropout prediction, engagement modeling, behavioral clustering, and adaptive learning
systems [30].

Finlay, we selected these two datasets the OULAD dataset from UK, and the Ts-
inghuaX MOOC dataset from China, because of they allow us to build a more general-
izable model that can work across different regions, cultures and languages. So also we
select them because of they public to access and use, and they offer rich and detailed
information about student behavior, including demographics, assessment performance,
and the most important the interaction logs with the online learning platforms. And also
the size and the structure of these datasets provide enough variety and depth to build
and test meaningful predictive models.

So these datasets are created ensuring its credibility and openness for research use.
Having this kind of diversity in our data makes our model stronger and more likely to
work well not just in one specific place or group, but in a wide range of online learning
environments around the world.

3.4.2 Data preprocessing

Preprocessing plays a vital role in preparing raw educational data for machine learning
and deep learning models. It ensures that the input data is structured consistently,
noise is minimized, and temporal or behavioral patterns are captured effectively-all of
which significantly impact model accuracy and generalizability. In this study, we applied
a unified preprocessing pipeline to two distinct MOOC datasets: the Open University
Learning Analytics Dataset (OULAD) and the TsinghuaX MOOC Dataset, enabling
direct comparison of sequence-based models under the same structural and architectural
assumptions. So it is the most importance phase to preparing the data to training
the model so this phase is directly influences model accuracy and generalizability. The
preprocessing included multiple transformations aimed at cleaning and preparing the data
for machine learning and deep learning tasks, so we followed an identical preprocessing
to ensure consistency across both datasets.

For our study using the OULAD dataset, we use two tables: studentInfo and stu-
dentVle. We start by selecting data from the studentVle table and grouped it by the
code_module field. From this, we focused specifically on the FFF module, which in-
cludes the presentations 2013B, 2013J, 2014B, and 2014J.

Next, we merged this grouped data with the studentInfo table using the common
fields id_student, code module, and code presentation. After merging, we grouped
the resulting dataset by id_student, final result, and code_presentation. This process
resulted in 7,762 unique student records.

The date feature in the dataset is originally recorded in days. but, for the purpose
of our study, we needed the data in weekly intervals. as result in a total of 41 weeks of
data.

We prepared the data in two different formats, the first model student interaction
data is aggregated into a one-dimensional array. the second model interaction data is
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structured into a two-dimensional array.

For the TsinghuaX MOOC dataset, we combining train_log.csv and test_log.csv table
into one DataFrame with about 42 million rows of student activity. Next, we grouped the
data by course_id and found 247 courses. we select the course with high the number of
interaction records and the most stable performance and lowest overfitting was: course-
v1:TsinghuaX+30640014+2015_ T2 and its 2016 version. After selecting the course, We
then added pass/fail labels from train_truth.csv and test_ truth.csv, matching them to
each student using enroll id.

We then prepared the time column by converting it from string to datetime format.
We removed any invalid or missing timestamps. A new date column was created to group
student activity by day. Finally, we generated a continuous date range from the earliest
to the latest date for each course.

3.4.3 Feature engineering

We used two different presentations of the data for both datasets to enable compre-
hensive model comparison:

a. 1D-Model: After grouping the data, we created a pivot table as the final target
format. Each student ID was set as the row index, resulting in 7,762 rows (7,092 from
OULAD and 6,822 from the MOOC dataset). The columns represent dates (by week),
and the values are the total number of clicks for all activities during each week. We also
included the final result (pass/fail) for each student. This transformed the interaction
data into a one-dimensional time series format, as shown in Figure [3.4}

weeko week2 — week40 outcomes
169 233 304 0 (fail)
153 214 362 1(pass)

173 270 381 1

82 122 292 (6]

Figure 3.4: One-Dimensional (1D) Model Representation

b. 2D-Model: After grouping the data, each group present a table for one student
7,092 tables for the OULAD dataset and 6,822 for the MOOC dataset. These tables were
created using a pivot, where dates (41 weeks for OULAD, 37 days for MOOC) were set
as row indices, and activity types were used as columns. For OULAD, we had 12 activity
types, resulting in 12 columns. For the MOOC dataset, we had 20 activity types. The
values in the table are the sum of clicks the total number of interactions per activity
type, per time unit (week for OULAD, day for MOOC). This transformation created a
time-series like structure for each student, as is illustrated in Figure |3.5
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student 7092 activityl activity2 e activity12
activityl activity2 ey activity12
swdens? | '
ns 102 1
activity1 activity2 e activity12 ®©

student 1
16 45 0 (fail)

10 84 1(pass) 1

n3 80 1

Figure 3.5: Two-Dimensional (2D) Model Representation

3.4.4 Handling missing values

After analyzing the OULAD data, we identified missing values, particularly for stu-
dents with no recorded VLE interactions. A total of 670 students had no interaction
data and were removed, reducing the dataset to 7,092 students. For the MOOCDataset,
similar checks were performed, and wo don’t found any students with no interaction data
so the number of student as the same 6822, This approach ensured compatibility with the
1D and 2D model representations for robust analysis across both datasets.

3.4.5 Label Merging and Class Simplification

To simplify the classification task and align with the binary prediction objective
(pass/fail), the OULAD Dataset original four outcome labels (Pass, Fail, Withdrawn,
Distinction) were merged into two classes: “Withdrawn” was merged with “Fail,” and
“Distinction” was merged with “Pass.” This resulted in a balanced dataset with 3,648
students labeled as “Pass” (51.44%) and 3,444 labeled as “Fail” (48.56%) after doing the
preprocessing. For the MOOC Dataset, the truth labels were already binary (Pass as 1
and Fail as 0), requiring no further merging. This step reduced model complexity while
maintaining dataset relevance for predicting student performance and identifying at-risk
students across both datasets. To further address potential class imbalance introduced
through this binary simplification, we also computed and applied class weights during
model training. This step helped reduce bias toward the majority class and improved
generalization across both datasets.

3.4.6 Imballanced data handling

We addressed potential class imbalance in the target variable during preprocessing.
Since the distribution of pass/fail outcomes was not perfectly balanced , we computed
class weights to be used during model training. These weights were calculated using the
compute_class weight function from scikit-learn with the "balanced’ mode, which assigns
higher weights to underrepresented classes based on their frequency in the training set.
The resulting class weights were then passed to the loss function during training to ensure
the model did not become biased toward the majority class. This step was critical in
improving generalization and ensuring fair evaluation of student performance prediction
across both datasets.
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3.4.7 Feature scaling

To ensure consistent feature scales and improve model performance, both standard-
ization and normalization techniques were applied to the input data [15].

a. Standardization: This transformation adjusts the data to have a mean of zero
and a standard deviation of one, where x is the original feature value, p is the mean, and
o is the standard deviation of the feature across all samples. according to the formula:

L=t H (3.1)
g

b. Normalization: This transformation was used to rescale the values into the range
[0,1], where z is the original value, x,,;, and x,,,, and are the minimum and maximum
values of the feature, respectively. as defined by:

T — T
= (3.2)

Tmax — Tmin

3.5 Evaluation metrics

e Accuracy: is a fundamental metric for evaluating the performance of a classifica-
tion model, it’s show the effectiveness of a model in classification tasks it’s measures
the proportion of correctly classified instances (positive and negative) among the
all instances.

TP+TN

TP+ FP+TN + FN (3.3)

Accuracy =

The accuracy working great when each class has the same number of instances, but
in case of imbalanced data can be misleading.

o Precision: measures the proportion of true positive predictions instance among
all positive predictions instance made by the model.

TP
Precision = ————— 3.4
TP+ FP (34)
e Recall: or sensitivity measures the proportion of true positive predictions instance

among all actual positive instance:

TP
Recall = TP LN (3.5)
Where:
TP (True Positive): Model correctly predicts the positive class.
TN (True Negative): Model correctly predicts the negative class.
FP (False Positive): Model predicts positive, but it’s actually negative.
FN (False Negative): Model predicts negative, but it’s actually positive.
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e F1 score: is the harmonic mean of precision and recall. It combines them into a
single metric that balances the two. It shows the trade-off between precision and
recall. It’s especially useful when the class distribution is imbalanced and you want
a balance between false positives and false negatives.

B 2 - Precision - Recall

F = (3.6)

Precision + Recall

« AUC-ROC: is an essential tool used for evaluating the performance of binary
classification models. helps us understand how well a classification model distin-
guishes between the two classes (positive and negative). ROC-curve: plots TPR
(true Positive rate or Recall) vs. FPR (false positive rate)

FP

FPR = ———
R FP+TN

(3.7)
AUC measures the entire tow-dimensional area underneath the ROC curve ranging
from 0 to 1. High AUC (close to 1) The model effectively distinguishes between
positive and negative instances. Low AUC (close to 0) The model struggles to
differentiate between the two classes. AUC around 0.5 The model doesn’t learn any
meaningful patterns i.e. it is doing random guessing. AUC-ROC is effective when
the dataset is balanced and the model needs to be evaluated across all thresholds,
False positives and false negatives are of similar importance.

3.6 Experiments

3.6.1 Model selection

The models selected for this study were chosen to address two key goals: capturing
the time-based nature of student activity in Virtual Learning Environments (VLEs) and
comparing deep learning approaches with traditional machine learning methods.

Recurrent models such as RNN, LSTM, and GRU were chosen over deep learning
approaches due to their superior ability to model sequential data. while feedforward net-
works like ANN or spatially-focused models like CNN are not designed for time-dependent
inputs, RNN, LSTM and GRU are built specifically to handle time-series data. They
maintain memory of past events, allowing them to learn patterns over time, which is
essential for accurately predicting student performance based on evolving behaviors.

Decision Tree and Random Forest represent traditional, interpretable methods. These
models help identify which features are most important for predicting outcomes. Random
Forest, in particular, helps reduce overfitting and handles high-dimensional data better
than single decision trees. K-Nearest Neighbors (KNN) and Logistic Regression were
included for their simplicity and to provide additional benchmarks and comparison.

3.6.2 Grid search

Grid Search is an exhaustive search strategy in which a machine learning algorithm
is trained and evaluated using all possible combinations of hyperparameter values. The
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goal is to find the hyperparameter configuration that optimizes a chosen performance
metric (e.g., accuracy, Fl-score, RMSE) on a validation set or through cross-validation.
For example, hyperparameters for the SVM algorithm (¢, gamma, kernel), or for random
forest (n_estimators, max_ depth, min_samples_split, min_samples_ leaf).

3.6.3 Cross validation

Cross-validation is a statistical method used to estimate the performance (general-
ization ability) of machine learning models.it involves splitting the dataset into multiple
subsets (called folds), training the model on some folds, and testing it on the remaining
fold(s). This process is repeated several times so that each data point gets to be in the
test set once. The final performance is usually the average of all test performances. [I]

3.7 Conclusion

This chapter has outlined the comprehensive experimental methodology employed to
preprocess and manage data for training predictive models. The research design integrates
robust data preprocessing, feature engineering, and data structuring to ensure consistency
and generalizability across both datasets useing same preprocessing structure to both
OULAD and TsinghuaX MOOC dataset. By applying a unified preprocessing , handling
missing values, simplifying class labels, and addressing class imbalance, the methodology
establishes a solid foundation for training traditional machine learning and deep learning
models. the next chapter presents the implementation of these models, detailing the
architecture and configuration of each algorithm. It also evaluate and compares model
performance across datasets.
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CHAPTER 4

IMPLEMENTATION AND EVALUATION

4.1 Introduction

This chapter presents the implementation details of the proposed models, including
the development environment, training procedure, evaluation metrics, and performance
comparison; for predicting student performance based on interaction data within a Vir-
tual Learning Environment (VLE). It starts by describing the development environment
and tools used, including Python, Anaconda, TensorFlow, and other useful libraries.
Then, a detailed description of the models’ architectures and hyperparameters is pro-
vided, covering sequentiel model (LSTM, GRU, RNN) and traditional machine learning
methods (Random Forest, Decision Tree, Logistic Regression, and KNN). Two models
are analyzed (Model 1 and Model 2), were trained and tested on two different datasets.
Furthermore, The chapter also includes a section to early prediction, evaluating how well
the models perform at different stages of the course timeline. This work compares the
effectiveness of different methods and determines the most suitable techniques for early
identification of at-risk students.

4.2 Development environment

The development and implementation of the proposed models were carried out using a
combination of a personal computer and a cloud-based environment to ensure flexibility,
efficiency, and sufficient computational power for training deep learning models.

Initially, data preprocessing, feature engineering, and preliminary experiments were
conducted on a personal computer equipped with an Intel Core i5 processor, 16 GB of
RAM, and a 512 GB SSD running Windows 10. This local setup provided an effective
environment for dataset preparation, exploratory data analysis, and initial testing of
machine learning algorithms.

For the training and evaluation of deep learning models, the Google Colab environ-
ment was employed. Google Colab offers a free cloud-based platform that integrates GPU
acceleration, making it well suited for computationally intensive tasks such as training
Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Re-
current Unit (GRU) models.

o Anaconda: Anaconda is a free and open-source software distribution that sim-
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plifies package management and deployment for scientific computing, data science,
and machine learning. It primarily supports the Python and R programming lan-
guages and is designed to make it easier for users, especially researchers, analysts,
and developers to work with large-scale data processing, statistical modeling, and
complex computational tasks. Anaconda includes over of 250 popular data science
and machine learning packages right out of the box. This eliminates the need to
install each package separately and ensures compatibility across tools and libraries.
Additionally, it includes tools such as Jupyter Notebook, Spyder, and RStudio,
which provide interactive environments for writing and testing code [40].

o Python: is a high-level, interpreted programming language that emphasizes code
readability, simplicity, and flexibility. Created by Guido van Rossum and first re-
leased in 1991, Python has become one of the most popular programming languages
in the world due to its easy-to-understand syntax and powerful features. Python is
widely used across various domains such as web development, data science, machine
learning [41].

e TensorFlow: is an open-source machine learning library developed by Google
that provides tools to build, train, and deploy machine learning and deep learning
models. It supports computations on CPUs, GPUs, and TPUs and is widely used
for tasks like image recognition, natural language processing, and neural network
training [42].

o Numpy: (Numerical Python) is an open-source Python library used for numerical
computing. It provides support for large, multi-dimensional arrays and matrices,
along with a collection of mathematical functions to operate on them efficiently.
It’s a foundational library for scientific computing in Python [43].

o Pandas: is an open-source Python library used for data manipulation and anal-
ysis. It provides powerful data structures like Datakrame and Series to handle
structured data easily, allowing for data cleaning, transformation, aggregation, and
visualization. It is commonly used in data science and machine learning workflows
[44].

« Scikit-learn: (or sklearn) is an open-source Python library for machine learning.
It provides simple and efficient tools for data mining and data analysis, including
algorithms for classification, regression, clustering, dimensionality reduction, model
selection, and preprocessing. It is built on top of NumPy, SciPy, and matplotlib
[45].

o Matplotlib: is an open-source Python library used for creating static, interactive,
and animated visualizations. It is widely used for plotting graphs, such as line
charts, bar charts, scatter plots, histograms, and more, making it a fundamental
tool for data visualization in Python [46].

4.3 Model building

This section provides a comprehensive overview of the parameters and architecture of
the models developed using the Grid Search technique.
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4.3.1 Model 1

This section presents the parameters and architecture of the one-dimensional models.

a. Long Short-Term Memory (LSTM)

The table[d.I| presents the detailed architecture of the LSTM model. The learning rate
was set to 0.0001 and optimized using the Adam optimizer. The number of epochs was
set to 50, with a batch size of 64. An L2 regularization technique was applied with a value
of 0.001. All these hyperparameters were fine-tuned using the Grid Search optimization
method.

Layer Type | Num neurons | activation fun | add info
1| input layer
2 LSTM 16 tanh
3 Dropout value=0.3
4 LSTM 8 tanh
4 Dropout value=0.3
6 Dense 8 sigmoid
7 Dropout value=0.3
8 | output layer sigmoid

Table 4.1: LSTM architecture

b. Gated Recurrent Unit:

The table [£.2) presents the detailed architecture of the GRU model. The learning rate
was set to 0.0001 and optimized using the Adam optimizer. The number of epochs was
set to 50, with a batch size of 64. An L2 regularization technique was applied with a value
of 0.01. All these hyperparameters were fine-tuned using the Grid Search optimization
method.

Layer Type | Num neurons | activation fun | add info
1| input layer
2 GRU 16 tanh
3 Dropout value=0.3
4 GRU 8 tanh
4 Dropout value=0.3
6 Dense 8 sigmoid
7 Dropout value=0.3
8 | output layer sigmoid

Table 4.2: GRU architecture

c. Recurrent Neural Network

The table presents the detailed architecture of the RNN model. The learning rate
was set to 0.0001 and optimized using the Adam optimizer. The number of epochs was
set to 50, with a batch size of 64. An L2 regularization technique was applied with a value
of 0.01. All these hyperparameters were fine-tuned using the Grid Search optimization
method.
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Layer Type | Num neurons | activation fun | add info
1| input layer
2 RNN 16 tanh
3 Dropout value=0.3
4 RNN 8 tanh
4 Dropout value=0.3
6 Dense 8 sigmoid
7 | output layer sigmoid

Table 4.3: RNN architecture

d. Random Forest

The table [.4] presents the parameters trained by the models for both Datasets. These
parameters were selected through the Grid Search optimization technique.

OULAD | MOOC
Max_ depth 5 3
n_estimators 50 5!
Min_samples leaf 1 1
Min_samples  split 2 2
Max leaf nodes NONE 3

Table 4.4: Random Forest parameters

e. Decision Tree

For decision tree, the OULAD dataset models used a max_depth of 3 and The crite-
rion was set to entropy while TsinghuaX dataset, max depth was set to 7 and criterion
to gini to guide the split decisions. These parameters were selected using grid search.

f. Logistic Regression

For linear regression models, the solver was set to 'liblinear’ for both datasets. These
solvers were chosen using grid search to ensure optimal convergence and performance for
each dataset.

g. k-Nearest Neighbors (KNN)
The table represent the parameter tuning using grid search.

OULAD | TsinghuaX
N, etghbors 9 3
metrics Euclidean | Manhanttan
weights uniform distance

Table 4.5: KNN parameters

4.3.2 Model 2

This section presents the parameters and architecture of the two-dimensional models.
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a. Long Short-Term Memory (LSTM)

The table[4.6] presents the detailed architecture of the LSTM model. The learning rate
was set to 0.0001 and optimized using the Adam optimizer. The number of epochs was
set to 50, with a batch size of 64. An L2 regularization technique was applied with a value
of 0.001. All these hyperparameters were fine-tuned using the Grid Search optimization
method.

Layer Type | Num neurons | activation fun | add info
1| input layer
2 LSTM 32 tanh
3 Dropout value=0.3
4 LSTM 16 tanh
4 Dropout value=0.3
6 Dense 8 sigmoid
7 Dropout value=0.3
8 | output layer sigmoid

Table 4.6: LSTM architecture

b. Gated Recurrent Unit (GRU)

The table .7 and the Figure presents the detailed architecture of the GRU model.
The learning rate was set to 0.0001 and optimized using the Adam optimizer. The number
of epochs was set to 50, with a batch size of 64. An L2 regularization technique was
applied with a value of 0.01. All these hyperparameters were fine-tuned using the Grid
Search optimization method. While the TsinghuaX dataset has the same layers with 16

neurons for the first GRU layer and 8 neuron for the second GRU layer.

Layer Type | Num neurons | activation fun | add info
1| input layer
2 GRU 32 tanh
3 Dropout value=0.3
4 GRU 16 tanh
4 Dropout value=0.3
6 Dense 8 sigmoid
7 Dropout value=0.3
8 | output layer sigmoid

Table 4.7: GRU architecture
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Figure 4.1: Architecture of GRU model

c. Recurrent Neural Network

The table presents the detailed architecture of the RNN model. The learning rate
was set to 0.0001 and optimized using the Adam optimizer. The number of epochs was
set to 50, with a batch size of 64. An L2 regularization technique was applied with a value
of 0.01. All these hyperparameters were fine-tuned using the Grid Search optimization

method.

Layer Type | Num neurons | activation fun | add info
1| input layer
2 RNN 16 tanh
3 Dropout value=0.3
4 RNN 8 tanh
4 Dropout value=0.3
6 Dense 8 sigmoid
7 Dropout value=0.3
8 | output layer sigmoid

d. Random Forest

Table 4.8: RNN architecture

The table 1.9 presents the parameters trained by the models for both Datasets. These
parameters were selected through the Grid Search optimization technique.
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OULAD | TsinghuaX
Max depth ) 3
n_estimators 50 5
Min_samples leaf 1 1
Min_ samples_ split 2 2
Max_leaf nodes NONE 3

Table 4.9: Random Forest parameters

e. Decision Tree

For both datasets, the decision tree models used a max_depth of 5. The criterion was
set to ’entropy’ for OULAD and ’gini’ for TsinghuaX dataset to guide the split decisions.
These parameters were selected using grid search.

f. Logistic Regression

For linear regression models, the solver was set to ’liblinear’ for OULAD dataset and
‘Ibfgs’ for TsinghuaX dataset. These solvers were chosen using grid search to ensure
optimal convergence and performance for each dataset.

g. k-Nearest Neighbors (KNN)
The table represent the parameter tuning using grid search.

OULAD | TsinghuaX
N_ neighbors 9 3
metrics Euclidean | Manhanttan
weights uniform uniform

Table 4.10: KNN parameters

4.3.3 Early prediction

In the early prediction models of the experimental evaluation, the model architec-
ture and hyperparameter configurations were maintained in alignment with those de-
fined for TsinghuaX dataset under Model 1. This consistency was applied across all
selected methodologies, including Long Short-Term Memory (LSTM), Gated Recurrent
Unit (GRU), and Random Forest classifiers.

4.4 Model Evaluation

4.4.1 Model 1
Table and present the complete result of Model 1.
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a. Long Short-Term Memory (LSTM)

OULAD dataset: The LSTM model delivers strong performance with 93.13% accu-
racy, high recall (98.96%), and solid precision (88.97%). The F1 score (93.69%) reflects a
well-balanced detection of passing students. The AUC-ROC of 96.67% confirms excellent
class separation.

TsinghuaX dataset: While slightly weaker, performance remains robust with 85.36%
accuracy, precision (94.76%), and recall (87.82%), resulting in an F1 score of 91.16%.
AUC-ROC (86.25%) confirms decent reliability.

b. Gated Recurrent Unit (GRU)

OULAD Dataset: GRU slightly outperforms LSTM with 93.15% accuracy. It bal-
ances recall (99.05%) and precision (88.93%) to produce an excellent F1 score of 93.71%.
AUC-ROC (96.61%) reinforces strong class separation.

TsinghuaX dataset: Solid metrics with 85.84% accuracy, precision (94.64%), and
recall (88.55%), resulting in a balanced F1 score (91.48%). AUC-ROC (86.11%) reflects
reliable separation despite some trade-off.

c. Recurrent Neural Network (RNN)

OULAD Dataset: RNN posts a strong showing with 93.09% accuracy, high recall
(98.66%), and precision (89.11%), yielding an F1 score of 93.63%. The AUC-ROC of
95.96% confirms its effectiveness.

TsinghuaX dataset: the model achieve acceptable performance with Accuracy at
84.98%, with precision (94.71%) and recall (87.41%) figure [.3] F1 score (90.91%) shows
solid performance, As illustrated in figure [£.2], both accuracy and loss curves show stable
convergence. AUC-ROC (84.4%) is acceptable but weaker than OULAD Dataset.

d. Random Forest (RF)

OULAD Dataset: RF performs well with 92.31% accuracy. Recall is high (98.91%),
but precision drops slightly (87.74%), leading to a strong F1 score (92.99%). AUC-ROC
(96.53%) confirms effective classification.

TsinghuaX dataset: Performance drops with 82.04% accuracy, and F1 score (88.97%).
Lower AUC-ROC (78.87%) indicates weaker class separation.

e. Decision Tree (DT)

OULAD Dataset: DT achieves 91.65% accuracy, with good balance: precision
(88.07%), recall (96.92%), and F1 score (92.27%). AUC-ROC of 95.24% confirms strong
performance.

TsinghuaX dataset: Slight dip with 83.26% accuracy, but strong precision (93.42%)
and recall (86.63%) lead to a good F1 score (89.9%). AUC-ROC (73.67%) points to

weaker class discrimination.

f. K-Nearest Neighbors (KININ)

OULAD Dataset: KNN underperforms here. Accuracy (89.62%) is acceptable, but
recall (90.74%) is lowest among top models. F1 score (89.99%) is decent, yet AUC-ROC
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(94.93%) is weaker compared to others.

TsinghuaX dataset: Performs well on recall (93.26%) and maintains accuracy
(83.89%), precision (88.6%), and F1 score (90.87%). However, AUC-ROC plummets
to 59.86%, highlighting poor boundary definition.

g. Logistic Regression (LR)

OULAD Dataset: LR shows consistent results with 90.26% accuracy, balanced
precision (90.07%) and recall (91.16%), and F1 score (90.59%). AUC-ROC (95.5%)
confirms strong, stable performance.

TsinghuaX dataset: Results remain good: accuracy (84.07%), precision (91.61%),
recall (89.68%), and F1 score (90.64%). AUC-ROC (71.08%) is on the lower end, sug-
gesting limitations in distinguishing edge cases.
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h. Discussion

The results clearly show that deep learning models designed for sequences (like LSTM,
GRU, and RNN) perform better than traditional machine learning methods on both
datasets. On OULAD Dataset, these models reach high accuracy (about 93%) and strong
F1 scores (around 93.6-93.7%). This shows that they’re better at understanding the time-
based patterns in how students interact each week.

In comparison, traditional models like Random Forest, Decision Tree, Logistic Regres-
sion, and KNN don’t perform as well. For example, Random Forest hits 92.31% accuracy
and high recall (98.91%) on OULAD Dataset, but its lower precision (87.74%) shows it
makes more false positives. KNN and Logistic Regression do okay, but they can’t handle
time-based patterns well—especially visible in KNN’s weaker AUC-ROC on TsinghuaX
dataset.

All models do worse on TsinghuaX dataset, especially in terms of AUC-ROC. For
example, LSTM drops from 96.67% to 86.25%, and Random Forest from 96.53% to
78.87%. This suggests the TsinghuaX dataset is messier or less organized.

Model | Accuracy | Precision | Recall | F1 Score | AUC-ROC
LSTM 0.9313 0.8897 0.9896 0.9369 0.9667
GRU 0.9315 0.8893 0.9905 0.9371 0.9661
RNN 0.9309 0.8911 0.9866 0.9363 0.9596
RF 0.9231 0.8774 0.9891 0.9299 0.9653
DT 0.9165 0.8807 0.9692 0.9227 0.9524
KNN 0.8962 0.8928 0.9074 0.8999 0.9493
LR 0.9026 0.9007 0.9116 0.9059 0.9550

Table 4.11: Model 1 performance on OULAD Dataset

Model | Accuracy | Precision | Recall | F1 Score | AUC-ROC
LSTM 0.8536 0.9476 0.8782 0.9116 0.8625
GRU 0.8584 0.9464 0.8855 0.9148 0.8611
RNN 0.8498 0.9471 0.8741 0.9091 0.8440
RF 0.8204 0.9424 0.8427 0.8897 0.7887
DT 0.8326 0.9342 0.8663 0.8990 0.7367
KNN 0.8389 0.8860 0.9326 0.9087 0.5986
LR 0.8407 0.9161 0.8968 0.9064 0.7108

Table 4.12: Model 1 performance on TsinghuaX dataset

4.4.2 Model 2
Table and present the complete result of Model 2.

a. Long Short-Term Memory (LSTM)

OULAD Dataset: The model achieve high accuracy with 92.29%, and precision
(89.23%), recall (96.71%), indicate the model is highly effective at correctly identifying
passing students, while f1 score indicate strong balance between precision and recall.

TsinghuaX dataset: the model has good performance with an accuracy 85.43%,
The balanced and high F1 score (91.2%) confirms overall reliability.
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b. Gated Recurrent Unit (GRU)

OULAD Dataset: The GRU model demonstrates excellent performance with an
accuracy of 93.32%, As illustrated in figure both accuracy and loss curves show
stable convergence, The F1 score of 93.78% balances recall 97.84% and precision 90.04%
metrics well, showing strong reliability in both detecting and correctly classifying the
majority class figure

TsinghuaX dataset: the model record good result with accuracy 86.11%, despite
the difference value between recall 88.56% and precision 94.95%, The F1 score of 91.64%
reflects this trade-off between precision and recall.

c. Recurrent Neural Network

OULAD Dataset: The RNN performs strongly with accuracy 93.09%, also high
recall 97.57% and precision 89.88%, leading to a strong F1 score of 93.57%. The AUC-
ROC of 0.9653 confirms excellent class separation.

TsinghuaX dataset: The model realize good performance with 85.59% of accuracy,

precision 94.7%, and recall 88.19%. The F1 score of 91.32% shows a decent balance.

d. Random Forest

OULAD Dataset: The model perform very well with accuracy of 93.08%, and an
exceptionally high recall of 98.97%, Precision is slightly lower at 88.85%, The F1 score of
93.64% confirms strong overall performance.

TsinghuaX dataset: the model obtain a good results with 84.45% of accuracy and
f1 score 90.74%. AUC-ROC with 74.97% shows weaker class distinction.

e. Decision Tree

OULAD Dataset: model performs well on OULAD dataset, with high accuracy
(91.54%) and a balanced F1 score (91.93%), indicating solid overall performance. Preci-
sion (90.32%) and recall (93.63%) are both strong.

TsinghuaX dataset: the model achieve acceptable results, Accuracy is 85.25%,
precision (92.65%), recall (89.98%), a decent F1 score (91.29%). and slow AUC-ROC

72.08% pointing to weaker class separation.

f. Logistic regression

OULAD Dataset: Logistic regression performs strongly on OULAD Dataset, with
high accuracy (91.86%) and well-balanced precision (92.03%) and recall (92.19%). The
F1 score (92.1%) confirms consistent performance across both classes.

TsinghuaX dataset: the model achieve good results with Accuracy is 83.4%, preci-
sion (92.21%), recall (88.14%), a decent F1 score (91.29%). and low AUC-ROC 70.31%
indicating limited ability to distinguish pass/fail cases.

g. k-Nearest Neighbors (KNN)

OULAD Dataset: The model shows weak performance with low accuracy (77.86%)
and a poor recall of 62.93%. Despite a high precision (91.35%) and decent AUC-ROC
(91%), the low recall drags down the F1 score to 74.5%.
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TsinghuaX dataset: the model performs better in terms of recall (93.79%) and F1
score (90.32%), indicating improved balance. Accuracy (82.71%) and precision (87.1%)
are also solid. However, the AUC-ROC is very low (54.31%), pointing to poor class
separation.

h. Discussion

The results clearly show that sequential models such as LSTM, GRU, and RNN
perform better than traditional machine learning methods on both datasets. On OULAD
Dataset, these models reached high precision (92-93%) and strong F1 scores (over 93%),
proving they're good at handling student activity data over time. They can pick up
patterns in weekly clicks that regular models miss. LSTM and GRU also had a very high
recall (96.71% and 97.84%), which means they’re great at correctly identifying students
who are likely to succeed and are important for providing early support.

Traditional models like Random Forest and Logistic Regression did okay, but had clear
limits. Random Forest had solid accuracy (93.08%) on OULAD Dataset, mostly because
of very high recall (98.97%), but it came with lower precision. Logistic Regression and
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Decision Tree were steady but not as good at spotting complex patterns. KNN didn’t do
well on OULAD Dataset it had low recall and a weak F1 score, showing it struggles with
time-based and unbalanced data.

All models performed worse on TsinghuaX dataset, with accuracy dropping by 5-10%.
This suggests this Dataset may be messier or have less reliable patterns, maybe due to
inconsistent student activity or poor data recording. Still, LSTM, GRU, and RNN held
up well, with F1 scores around 91%, showing they’re resilient even with lower-quality
data. Traditional models dropped off more, especially in AUC-ROC scores, which means
they couldn’t separate successful and unsuccessful students as well.

In short, deep learning models that handle time-based data are better for predicting
student behavior. They’re more accurate and work better overall, especially when the
data has clear patterns. The lower performance on TsinghuaX dataset also shows how
important it is to have clean, consistent data in educational machine learning projects.

Model | Accuracy | Precision | Recall | F1 Score | AUC-ROC
LSTM 0.9229 0.8923 0.9671 0.9281 0.9630
GRU 0.9332 0.9004 0.9784 0.9378 0.9657
RNN 0.9309 0.8988 0.9757 0.9357 0.9653
RF 0.9308 0.8885 0.9897 0.9364 0.9689
DT 0.9154 0.9032 0.9363 0.9193 0.9499
LR 0.9186 0.9203 0.9219 0.9210 0.9668
KNN 0.7786 0.9135 0.6293 0.7450 0.9100

Table 4.13: Model 1 performance on OULAD Dataset

Model | Accuracy | Precision | Recall | F1 Score | AUC-ROC
LSTM 0.8543 0.9478 0.8791 0.9120 0.8674
GRU 0.8611 0.9495 0.8856 0.9164 0.8595
RNN 0.8559 0.9470 0.8819 0.9132 0.8535
RF 0.8445 0.9296 0.8863 0.9074 0.7497
DT 0.8525 0.9265 0.8998 0.9129 0.7208
LR 0.8340 0.9221 0.8814 0.9012 0.7031
KNN 0.8271 0.8710 0.9379 0.9032 0.5431

Table 4.14: Model 1 performance on TsinghuaX dataset

4.4.3 Early prediction model
a. Random Forest

Random Forest, a non-sequential ensemble method, demonstrates surprisingly strong
performance in the early weeks. With an F1 score of 0.7209 and accuracy of 0.7005 in
Week 1 (table , it shows that early click behavior even without modeling temporal
dependencies is informative. The model continues to improve steadily as more weekly
data becomes available, reaching an F1 score of 0.9376 by Week 10. However, because
Random Forest treats each input as static, its ability to capture progression or behavioral
trends over time is inherently limited. Its performance begins to plateau around Week
7, implying diminishing returns from just adding more time-sliced click data without
modeling the sequential nature of the input figure
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course stage | Accuracy | F1 Score | Precision | Recall | ROC-AUC
10% 0.7005 0.7209 0.6923 0.7521 0.6990
20% 0.7470 0.7691 0.7248 0.8192 0.7449
30% 0.7738 0.7873 0.7625 0.8137 0.7726
40% 0.8154 0.8296 0.7896 0.8740 0.8136
50% 0.8682 0.8797 0.8291 0.9370 0.8662
60% 0.8901 0.8987 0.8543 0.9479 0.8883
70% 0.9056 0.9125 0.8716 0.9575 0.9040
80% 0.9260 0.9309 0.8961 0.9685 0.9247
90% 0.9309 0.9362 0.8921 0.9849 0.9293
100% 0.9323 0.9376 0.8923 0.9877 0.9307

Table 4.15: RF performance at different course stages

b. Long Short-Term Memory (LSTM)

LSTM, a sequence-based deep learning model, starts with a similar results to early-
week performance to Random Forest but shows stronger growth as the sequence length
increases. Its F1 score rises from 0.7211 in Week 1 to 0.9456 by Week 10 table
and figure [L.7 outpacing Random Forest after Week 4. This model is better suited for
identifying patterns in the progression of student behavior—such as delayed engagement
or sudden drops in activity—due to its memory mechanism. The steep improvement
between Weeks 3 and 5 suggests that the temporal structure of the data becomes highly
predictive during this phase, highlighting the value of capturing not just how much in-
teraction occurred, but when and how it evolved.

course stage | Accuracy | F1 Score | Precision | Recall | ROC-AUC
10% 0.6970 0.7211 0.6847 0.7616 0.7476
20% 0.7393 0.7473 0.7452 0.7493 0.8167
30% 0.7569 0.7612 0.7692 0.7534 0.8372
40% 0.8323 0.8476 0.7957 0.9068 0.8959
50% 0.8647 0.8743 0.8371 0.9151 0.9254
60% 0.8830 0.8911 0.8552 0.9301 0.9373
70% 0.9006 0.9069 0.8752 0.9411 0.9499
80% 0.9253 0.9295 0.9031 0.9575 0.9603
90% 0.9387 0.9424 0.9117 0.9753 0.9695
100% 0.9422 0.9456 0.9165 0.9767 0.9721

Table 4.16: LSTM performance at different course stage

c. Gated Recurrent Unit (GRU)

GRU, a simpler version of LSTM with fewer parameters, performs strongly and
slightly better than LSTM in most weeks. With an F1 score of 0.7088 in Week 1 and
0.9431 by Week 10 tabldd.17 and figure it balances speed and accuracy effectively.
Notably, GRU achieves superior ROC-AUC scores in the later weeks, indicating better
generalization and class separation in risk prediction. It also shows a sharper rise in pre-
cision and recall from Week 3 onward, suggesting that it captures early warning signals
in student activity patterns more efficiently than both LSTM and Random Forest.
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course Stage | Accuracy | F1 Score | Precision | Recall | ROC-AUC
10% 0.7012 0.7088 0.7107 0.7068 0.7714
20% 0.7625 0.7836 0.7376 0.8356 0.8298
30% 0.7703 0.7782 0.7730 0.7836 0.8438
40% 0.8365 0.8554 0.7849 0.9397 0.8999
50% 0.8682 0.8783 0.8364 0.9247 0.9295
60% 0.8929 0.9012 0.8577 0.9493 0.9408
70% 0.9063 0.9135 0.8699 0.9616 0.9525
80% 0.9253 0.9288 0.9116 0.9466 0.9653
90% 0.9387 0.9422 0.9148 0.9712 0.9787
100% 0.9401 0.9431 0.9227 0.9644 0.9775

Table 4.17: GRU performance at different course stage

d. Discussion and Summary

In summary, while Random Forest performs adequately in the early weeks and is
computationally inexpensive, it lacks the temporal modeling power needed for optimal
performance in mid-to-late stages. LSTM and GRU, by contrast, leverage the sequence
structure of the data to achieve superior predictive accuracy, with GRU offering the best
overall trade-off between model complexity and performance. For early identification
of at-risk students—particularly between Weeks 3 and 6—GRU stands out as the most
effective approach.

4.5 Conclusion

This chapter divided into three main part developement environment, Model building,
Model evaluation. it demonstrated that sequentiel model(LSTM, GRU, RNN) outperform
traditional machine learning algorithms in predicting student performance. GRU proved
as the most effective model in early prediction tasks, While traditional models such as
Random Forest and Logistic Regression showed reasonable performance, they struggled
with temporal patterns, These results have provided valuable insights and perceptions
for further analysis.
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GENERAL CONCLUSION

This study focuses on an important and critical challenge in modern education: the
early prediction of at-risk students using artificial intelligence, with a particular focus on
temporal modeling of learner behavior over time within Virtual Learning Environments
(VLEs). By comparing traditional machine learning models (e.g., Random Forest, KNN,
Logistic Regression) with deep learning approaches (e.g., LSTM, GRU, RNN), we demon-
strated capability of the temporal models in capturing sequential patterns and improving
prediction accuracy. In addition, the study builds early prediction models capable of
providing actionable insights at various stages of the course timeline, thereby enabling
timely interventions to support students.

Our experiments on the OULAD and TsinghuaX datasets confirmed that time-series-
based models significantly outperform static models, especially in early-stage prediction.
GRU and LSTM architectures achieved the highest accuracy, proving their strength in
processing sequential educational data. Additionally, our preprocessing steps and dual-
format data representation (1D and 2D) offered a strong framework for training and
evaluating various algorithms under consistent conditions.

While this work has made valuable contributions, several areas still need improve-
ment and future research. Firstly, although temporal models obtain high performance,
their interpretability is still limited. Future work should explore explainable Al (XAI)
techniques to make the model decisions more transparent and explainable for teachers
and stakeholders. Secondly, the datasets used in this study, while valuable, are relatively
outdated. It is necessary to extend the analysis to include new and more diverse datasets
from different institutions and learning platforms would help evaluate the generalizability
of the models across multiple contexts. Third, although we looked at several models, the
study could be improved by comparing more advanced time-based models like Informer
and TimesNet.

Moreover, integrating additional features such as sentiment analysis from discussion
forums, real-time feedback, or social interactions could help the behavioral representation
of learners. Finally, developing prediction systems that can be integrated directly into
learning platforms would significantly enhance the practical impact of this research, can
allow instructors and learning platforms to offer timely, personalized support to at-risk
students. For example, an LMS could send automated feedback, recommend supplemen-
tary materials, or schedule tutoring sessions for students flagged as at-risk. Moreover,
instructors can access dashboards summarizing predictive insights, enabling them to take
proactive steps such as modifying teaching strategies or providing personalized support.
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GENERAL CONCLUSION

In summary, this study has shown that combining deep learning with educational time-
series data provides a powerful approach to improving student outcomes. By continuing
to refine these models and broaden their application, we can move closer to data-driven,
adaptive learning environments that proactively support every learner’s success.
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