Peoples Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research
Faculty of Science and Technology

Department of Mathematics and Computer Science
University of Ghardaia

3rd Year License Computer Science (LMD)

Course Handout
Software Engineering

Dr Ahmed Saidi

Academic year: 2025-2026

CONTENTS

Contents
Introduction 1
Brief History and Scope of the Subject 1
Pre-Requisites 1
Course Objectives 1
Course Outcomes 1
1 Introduction to Software Engineering 2
1.1 Terminology 2
1.2 Theevolving roleof software 3
1.3 Positive impacts of software o Lo Lo L 4
1.4 Impacts of low-quality software 4
1.5 What makes software development difficult and complex? 4
1.6 Softwarecrisis 6
1.7 Reasons for low software quality 6
1.8 The challenges of software quality 6
1.9 Software quality criteria Lo oo o 7
1.10 Exercicesand solutions L o oo 8
2 The Software development life cycle 10
21 WhatisSDLC? e 10
21.1 Feasibility study (Why?) oo 11
2.1.2 Requirement analysis and specification (What?) 11
213 Design (How?) 12
214 Programming e 12
2.1.5 Validation and verification. o000 12

2.1.6 Maintenance e e e e e e, 13

CONTENTS

22 SDLCmodel e 13
221 Linearmodels 13
222 Incrementalmodels L. 17
223 Iterativemodels 19
224 Agilemodel L 21
2.2.5 Priorities for agilemethods 22
23 ClassicvsAgilemodels. 22
24 Exercisesandsolutions o Lo 22
Software Modeling 24
31 UseCasediagram 24
311 Actor e 24
312 Usecases (UC) it 27
3.1.3 Textual descriptionofusecases 33
3.2 Exercicesandsolutions o Lo 35
33 Sequencediagram L Lo 37
33.1 Typesofsequencediagrams 37
3.3.2 Elements of sequence diagrams 37
333 Messagetypes. e 38
334 Casestudy (ATM) 40
3.3.5 Combined fragments o0 L. 42
34 Exercicesandsolutions o 45
35 Classdiagram e 47
351 Class 47
352 Object 47
3.6 Relationship betweenclasses 50
3.6.1 Inheritance(Generalization/Specialization) 50
3.6.2 Association L 52
363 Aggregation L 56
364 Composition. 0 57
3.6.5 When to use a composition rather than an aggregation?. 59
3.6.6 Abstractclass L 59
3.6.7 Interfaces 60
37 EXercices 61
371 Exercisel 61
372 Exercise2 62
373 Exercise3 e 62
374 Exercise4d 63

3.7.5 Exerciseb e e e e 64

CONTENTS

376 Exercise 6 e e e e 64
377 EXxercise7 e e e e 64

3.8 Objectdiagram 65
3.9 Exercicesand solutions 67
3.10 Object sequencediagram 68
3.10.1 Elements of an object sequence diagram 69

3.11 State-transitiondiagram L. 71
3111 Status. e e e 72
3.11.2 Transition e 73
3113 Event e e e e 73
3.11.4 Timeevent e e e e e 74
3.11.5 Action e e e e 74
3.11.6 Using state-transition diagrams 74
3.11.7 Compositestates Lo L 75
3.11.8 Orthogonalstate 76
3.11.9 Internal actions, activitiesandevents 77

3.12 Exercicesand solutions 77
3.12.1 Exercice 1: DigitalPets 77
3.12.2 Exercice2:Chessgame 78

3.13 Activitydiagram Lo 79
3.13.1 Startstateandendstate, .. 80
3.13.2 Activities e e 81
3.13.3 Transition e e e 82

3.14 Exercicesand solutions 88
3.14.1 Exercicel 88

3.15 Component and deployment diagram 89
3.15.1 Componentdiagram 89
3.15.2 Deploymentdiagram 92

3.16 Exercicesand solutions 93
3.16.1 Exercice 1:-The Smarteam application- 93
3.16.2 Exercice 2 e e e e e 94

4 Exams with Answers 96

Bibliographie 124

Introduction

Introduction

Scope of the Subject

Software engineering is a discipline of computer science that applies scientific knowledge
to build cost-effective solutions for computing and information processing challenges. It fo-
cuses on developing software systems that benefit humanity. This course teaches the prin-
ciples of software engineering, including system requirements, engineering compromises,
design, coding, and testing techniques, team software development, and tool application.

Course Pre-Requisites

B Familiar with the fundamental concepts of Algorithms, information systems, and object
oriented programming (OOP).

Course Objectives

B Learn object modelling with the universal language UML
B Illustrate basic taxonomy and terminology of software engineering.

B Plan and monitor the control aspects of the project.

Course Outcomes

B Understand how software is built.
B Be able to understand a customer needs and follow a software development process.

B Develop software development skills.

Chapter 1. Introduction to Software Engineering

Chapter 1

Introduction to Software Engineering

1.1 Terminology

e Model: representation of something or simplification of reality using a modeling lan-
guage. Modeling languages can be classified as Formal modeling languages like math,
Semi-formal modeling languages like graphs and diagrams, or informal modeling lan-
guages such as pseudo code or natural language (Figure 1.1).

Figure 1.1: Example of models

e Process: A series of successive steps.

e Engineering: A set of methods, techniques, and tools dedicated to the design, devel-
opment, and maintenance of industrial projects.

e Prototype: an early realization of a product, it’s simple to illustrate how a future prod-
uct looks (Figure 1.2).

Chapter 1. Introduction to Software Engineering

1.2

Figure 1.2: Example of prototype

Software engineering: apply engineering methods to the computer science field. Us-
ing the same approach, software engineering can be defined as a set of methods, tech-
niques, and tools dedicated to the design, development, and maintenance of software.

Stakeholders: The people or groups affected by a software development project in-
side the organization. Stakeholders exist either inside or outside the organization. For
example, a customer or end user is a type of outside stakeholder, whereas a project
manager is a type of inside stakeholder.

Software Requirement Specification (SRS) document: A document that describes
client requirements that need to be fulfilled for the successful development of the soft-
ware.

The evolving role of software

The role of computer software has undergone significant change over the last 50 years.

Dramatic improvements in hardware performance, profound changes in computing ar-
chitectures, vast increases in memory and storage capacity, and a wide variety of exotic
input and output options have led to the development of sophisticated and complex
computer-based systems.

Popular books published during the 1970s and 1980s described the changing nature of
computers and software and their impact on our culture. Some of them stated that com-
puters and software caused a new industrial revolution which led to a transformation
from an industrial society to an information society.

Chapter 1. Introduction to Software Engineering

1.3 Positive impacts of software

e It speeds up processing.

e It increases work efficiency.

It quickly solves complex problems.

It has incredible computing, storage, and processing power.

It has introduced new leisure activities.

It introduces a new social dimension.

1.4 Impacts of low-quality software

Several disasters of varying degrees of severity have been caused by software "errors":

e In 1962, a space rocket was thrown off course by a mathematical formula that had been
incorrectly transcribed into source code.

e In 1985, a machine was designed to treat the patients. Due to a bug in its software, at
least five patients died.

e In 1983, at the height of the Cold War, Soviet surveillance software detected fake ballistic
missiles being sent from the USA.

1.5 What makes software development difficult and complex?

Before responding to this question, let’s know the difference between a normal product (ex:
a car) and software(Figure 1.3).

Figure 1.3: Product vs Software

w

Chapter 1. Introduction to Software Engineering

Table 1.1: Product vs Software

Car Software

Concrete product Product not concrete

Product Manufactured Product developed

Components are easy to assemble and reuse | Difficult to assemble or reuse
Maintenance by component replacement Maintenance by the developer itself
Development process based on machines Development process based on humans

As we can see, software is an abstract product developed entirely by humans. As humans,
we have always difficulty in matching between what we say and what we want(Figure 1.4).
This language barrier makes it difficult for developers to understand customer needs. Soft-
ware development difficulties can be summarized as follows:

What the customer What the project What the analyst What the What the customer

. manager suggested programmer wrote really needed
explained understands

Figure 1.4: Reasons for low software quality

Software is invisible and not concrete.

Software failure mainly by human mistakes.

Difficult to measure software quality.

Critical consequences caused by minute modifications.

Continues updates and maintenance because of the rapidly evolving technology.

W

Chapter 1. Introduction to Software Engineering

1.6

Deployment and programming errors.

Mainly human software failures.

Software crisis

During the 1960s and 1970s, a crisis happened in the software world, which identified many
of the problems of software development such as:

1.7

Delivery times not respected.
Budgets not respected.
Does not meet user or customer needs.

Difficult to use, maintain and upgrade.

Reasons for low software quality

Software Complexity.

Software is an invisible product.

Difficult to measure software quality.

Size of development teams.

Lack of design methods.

Lack of methods and tools for validation/verification phases.
Neglect of the customer needs.

Lack of customer involvement in the development process.

The challenges of software quality

How to develop the right software that meets the customer’s needs ?
What do we expect from software ?.
What are the quality criteria ?.

How do you make quality software ?.

w

Chapter 1. Introduction to Software Engineering

1.9 Software quality criteria

Software Quality shows how good and reliable a software product is. Like any product,
the International Organization for Standardization (ISO) establishes a set of attributes to
produce high-quality software such as(Figure 1.5):

Software Product
Quality

Figure 1.5: ISO 25010 software quality attributes

1. Functional Suitability: The software meets client needs and requirements.
To achieve this attribute

e Check SRS document
e Check the software functions

e Get the client’s feedback

2. Usability: The software interface must be simple and easy to use.
To achieve this attribute

e Include UI/UX designer to your team.

e Use professional design tools.

3. Performance: The software has good response time, throughput and fluidity.
To achieve this attribute

e Simplify the software.
e Check algorithm complexity (loops, recursive functions...etc.).

e Set computer requirements.

W

Chapter 1. Introduction to Software Engineering

4. Reliability: The software must be fault tolerance.
To achieve this attribute

e Use software fault tolerance techniques such as: N-version programming, recov-
ery blocks, rollback recovery...etc.

5. Security: The software protects its data and controls accessibility.
To achieve this attribute

e Eliminate vulnerability from your code.

Protect software data using cryptography and access control.

Set user roles and permissions.

Treat security risks at the design phase.

6. Maintainability: ease of correcting or transforming the software.
To achieve this attribute

e Check the usability, extensibility, and modularity of the software.

e Anticipate future change.

7. Portability: ease of changing the environment (hardware or software ex: OS).
To achieve this attribute

e Make software independent of its execution environment.

e Use virtual machines.

8. Compatibility: The Software must be able to interact synergistically with other soft-
ware.
To achieve this attribute

e Use middleware and API (application programming interface).
e Use standard file format (XML, TXT...etc.).
e Use standard communication protocols (HTTP, HTTPS.. . etc.).

1.10 Exercices and solutions

1. For each software type (video game, mail server and anitvirus), rate their quality at-
tributes (high, medium, or low).

Chapter 1. Introduction to Software Engineering

Functional

Software Suitability Usability | Performance | Reliability | Security | Maintainability | Portability | Compatibility

Video game

Mail server

Anitvirus

2. What qualities does this software lack?

e The software doesn’t provide all the expected functionalities.
e Software learning is so difficult.
e Software results are sometimes erroneous.

o The software consumes a lot of CPU for seemingly simple requests.

Solutions
Software gﬁﬁ;ﬁﬁi}; Usability | Performance | Reliability | Security | Maintainability | Portability | Compatibility
Video game | Low High High Low Low High Low Low
Mail server | High medium low High High High Low low
Anitvirus | High High High High High High Low Low

1. What qualities does this software lack?
o The software doesn’t provide all the expected functionalities. Functional Suit-
ability
e Software learning is so difficult. Usability
e Software results are sometimes erroneous. Reliability

e The software consumes a lot of CPU for seemingly simple requests. Performance

Chapter 2 . The Software development life cycle

Chapter 2

The Software development life cycle

2.1 Whatis SDLC?

The Software development life cycle (SDLC) is a process composed of successive and orga-
nized phases to produce a high-quality software. It's composed of 7 phases such as:

1. Feasibility study

Requirements analysis and specification
Design

Programming

Validation and verification

Delivery

N o g o »W DN

Maintenance

SDLC phases are often described in terms of

e Phase input: The results of the previous phase.
e Phase output: The results of the current phase.

e Phase Description: The problem addressed by the phase. As a result, we must

ask the following question:

What is the problem to be addressed by this phase?.

Chapter 2 . The Software development life cycle

2.1.1 Feasibility study (Why?)

This phase concerns the overall definition of the problem. We ask ourselves why we should
develop the software in the first place. In this phase, we must find a response to the following
questions:

e Why develop the software?

Are there better alternatives?

How do you go about this development?

Is there a software market?

What resources are needed?

Do we have the budget, personnel, and necessary equipment?

2.1.2 Requirement analysis and specification (What?)

This phase concerns the software’s functionalities. In this phase, we try to answer the ques-
tion: What functionality must the software contain?; It has the following objectives:

e Understanding client requirements.

e Establish a clear description of what the software must do (detailed functionalities,
quality requirements, interface ...etc.).

e Clarify specifications (ambiguities, contradictions) by listing functional and non-functional
requirements.

Functional and non-functional requirements:

1. Functional requirements: Describe the important functionalities of the software. They
explain how the software must work. For example, in ATM machines, the functional
requirements are to Withdraw Money, Check Balance, Deposit Money etc.

2. Non-functional requirements: Describe the general properties and constraints of the
software. They are also known as software attributes. They explain how the software
should perform for example: Reliability, usability, security...etc.

Chapter 2 . The Software development life cycle

2.1.3 Design (How ?)

This phase develops a concrete solution to meet the software specification. In this phase, we
try to answer the question: How to translate client requirements and software specifications
into a real program?. It like a bridge between the specification and programming phases.
This phase is divided in two parts:

e Overall design: Define the main software components. For instance, to design a house
we start looking for its main parts like stairs and rooms without specifying the details
of each room.

e Detailed design: Specify the Details of each component. Back to the house example,
in the detailed design we go inside each room.

2.1.4 Programming

In this phase we translate our design into a code. It’s a coding phase, we start creating and
implementing our design into real software. Therefore, we must choose the development
environment, the programming language(s), development standards...etc.

2.1.5 Validation and verification

As its name implies, this phase is composed from two parts (Figure 2.1):

Validation

SRS
document

Customer
needs

Software

-~

Verification

Figure 2.1: Validation and verification

e Validation: ensuring that the customer’s needs are met (in terms of the client require-
ment).

e Verification: ensuring that the software meets its specification (using the SRS docu-

ment).

Chapter 2 . The Software development life cycle

2.1.6 Maintenance

The maintenance phase is necessary after the software delivery and the client feedback.
Three types of maintenance can occur:

e Corrective: identify and correct errors found after delivery.

e Adaptive: adapt the software to changes in the environment (data format, execution

environment, etc.).

o Perfective: enhance the software performance and functionalities; improve software

maintainability.

2.2 SDLC model

SDLC models are divided into three types: linear, iterative, and incremental models.

2.2.1 Linear models

Organized sequentially with a clear distinction between steps (Figure 2.2). Among linear

models, we found :

Step 1

Step 2

Step N

Figure 2.2: Linear models

Chapter 2 . The Software development life cycle

Waterfall Model

This model has the following characteristics (Figure 2.3):

Feasibility study

Specl'fl'ca'ﬁon

r

Overall design

Detailed design

» Programming

» Test

» Maintenance

Figure 2.3: Waterfall Model

The waterfall model is the most classic of all life cycles.

Linear lifecycle with no evaluation between project start and validation.

The project is divided into successive phases.

Each phase corresponds to a specific main activity producing a certain number of de-
liverables.

Each phase can only call into question the previous phase.

e For big and complex projects, like government project.

Chapter 2 . The Software development life cycle

1. Sequential and strict model.
2. Clear phases.
3. Highly documents.

e Real projects rarely follow a sequential development path.
e Establishing all requirements at the start of a project is difficult.
e Sensitivity to new requirements: redo all the steps.

o Well-suited when needs are clearly identified and stable.

Disadvantages

“V” Model

This model has the following characteristics (Figure 2.5):

Requirement - OO - Acceptance
Gathering Testing
System S - System
Analysis Testing
Software P > Integration

& Design Testing

S -

. Module o o Unit ,@Q
e, Design Testing b
%, - - S8
> " Y

d R ¢
Coding

Figure 2.4: “V” Model

Chapter 2 . The Software development life cycle

e Based on several tests. It’s a test-oriented life cycle:

e Each phase (specification, design, and coding) has a corresponding verification activity
(validation testing, integration testing, unit testing).

e Each upstream phase prepares the corresponding verification phase (verification is
taken into account at the very moment of creation).

e Ideal when needs are well known, and when analysis and design are clear.

Advantages

e Preparing the last phases (validation/verification) with the first (requirements
analysis) avoids stating a property that cannot be objectively verified after imple-
mentation.

Disadvantages

e Are we building the right software? The software is used very (too) late.
e You have to wait a long time to find out if you've built the right software.

e It’s hard to get users feedbacks when usable software isn't available only in the
last phase.

.

Prototyping Model
This model has the following characteristics (Figure 2.5):

SRS
document

Figure 2.5: Prototyping Model

Client Prototype S Lr Scftware

Requimmen+s

w

Chapter 2 . The Software development life cycle

e Rapid prototype development with customers to validate their needs.
e Writing the specification from the prototype, followed by a linear development process.
e There are two types of prototype:

1. Disposable prototyping: here, the prototype of the software is created for under-
standing client needs.

2. Evaluative prototyping: here, prototype is kept throughout the development cy-
cle. It is improved and completed to obtain the final software.

When we use it

e Concrete validation of requirements, less risk of specification errors.

Advantages

e The effort required to develop a prototype is more often than not offset by the
effort saved by not developing unnecessary functions.

Disadvantages
e Quick decisions are rarely good decisions.

e Does the evolving prototype produce the required product?.

2.2.2 Incremental models

Figure 2.6: Incremental additions

W

Chapter 2 . The Software development life cycle

-
Specification Specification Specification Specification
Design Design Design Design
Pregramming Programming Programming Programming
Validation and Validation and Validation and Validation and
verification verification verification verification
Delivery Delivery Delivery Delivery
y L J A v
Version 1 Version 1 Version N

Figure 2.7: Incremental software subset

Incremental model has the following characteristics: It a step-by-step software development.
For each step, we make:

1. Incremental additions until end of process (Figure 2.6).

2. A Minimal, functional software subset (Figure 2.7).

e When the client demands a quick release of the software

e When the requirement are superior

e Each development is less complex.

e Integration is progressive.

e Possible delivery after each increment.

w

Chapter 2 . The Software development life cycle

Disadvantages

e Possible loss of the original software core;
e Possible loss of the previous increments;

e Possible errors when integrating a new increment.

2.2.3 Iterative models

Repetitive process until the software is completed and the customer is satisfied (Figure 2.8).

Figure 2.8: Iterative models

W

Chapter 2 . The Software development life cycle

Cal

Cumulative
cost
¢
/-]
&
&

Alternate

Objective Evaluation

Identification

_ Review

-
-

-
-

Product

Next Phase X
' Development

Planning
Release
S

Figure 2.9: Spiral models

Spiral models

Among iterative models we found spiral model (Figure 2.9). Spiral Model has the following
phases:

1. Customer consultation
Risk analysis

Design
Implementation

Tests

AN T

Planning for the next cycle

Chapter 2 . The Software development life cycle

When we use it

e For critical software, like military or medical software.

Advantages

e Better risk management

Disadvantages
e It is not suitable for smaller projects.

o All the system architectue is dependent upon the risk analysis phase.

224 Agile model

The agile model combines incremental and iterative approaches. This model overcomes the
rapid development of the technological environment and the instability of client require-
ments. Classic models expect the client to provide a detailed, validated expression of its
requirements, which leads to a mismatch between the initial client requirements and the
final software. The origin of agile models is linked to:

e The instability of the technological environment;

e The fact that customers are often unable to define their needs exhaustively at the early
stage of a project. Thus, the term “agile” refers to the ability to adapt to contextual
changes and specification modifications during the development process. Objectives
of the agile model are:

o Accelerate the software development process by:

1. Developing a minimal version (incremental and prototype approach);

2. Integrating functionalities through an iterative process based on listening to the
client and testing throughout the development cycle.

e Client satisfaction must be at the heart of every company’s strategy.

e Include the client throughout the project realization process. (All agile methods apply
this principle).

e Chapter 2. The Software development life cycle

Agil models focus to:

- Get regular feedback so you can apply any necessary changes directly;

— Speed up software development.

2.2.5 Priorities for agile methods

People and interactions are more important than processes and tools;

Priority to code production over massive documentation;

Collaboration with clients is preferable to contractual negotiation (the client must be
able to provide continuous feedback on the software’s adaptation to his expectations);

e Response to change is more important than following a flexibility and adaptation plan.

2.3 Classic vs Agile models

Classic Agile models

Strict models Incremental and iterative models

Very clearly defined steps Small, frequent deliveries

Extensive documentation Emphasis on code and less on documentation
Works well with large government projects | Suitable for small and medium-sized projects

2.4 Exercises and solutions

Compare between waterfall, spiral, and V models.

How to avoid low-quality software development?

What is the purpose of specification in a software life cycle?

Why do we follow a software lifecycle model?

Which lifecycle model is best suited to the development of critical or medical software?

w

Chapter 2 . The Software development life cycle

Solutions
SDLC Advantages Disadvantages
Waterfall Simple and sequential Difficult to update for new requirements
Spiral | Breakdown to simple tasks Integration problems
V model Based on tests Too heavy

How to avoid low-quality software development?

Through software engineering techniques and lifecycle models

What is the purpose of specification in a software life cycle?

Understanding the customer’s needs and drawing up specifications. Establish a clear
description of what the software needs to do

Why do we follow a software lifecycle model?

To develop quality software

Which lifecycle model is best suited to the development of critical or medical software?

Risk-oriented model (Spiral model)

Chapter 3 . Software Modeling

Chapter 3

Software Modeling

' Diagrams H Objectif

View ’

Use case
System Sequence
Deployment

Find user needs
Interaction scenarios between users and the software
Physical log organization

Outside
Outside
Outside

State transition

Evolution of an object’s state

Outside and inside

Activity Sequence of actions representing software behavior Outside and inside
Class Internal software structure Inside
Object Software’s internal state at a given moment Inside
Object Sequence || Interaction scenarios with users or within the software Inside

Physical software components

‘ Component

3.1 Use Case diagram

3.1.1 Actor

Inside ‘

What is it ?

e An actor is a role played by the user of the software system. In addition to natural
persons, actors can be :
— Peripherals handled by the system (printers...), robots, ...) ;

— Software already available to be integrated into the project;

— Computer systems external to the system but which interact with it, etc.

W

Chapter 3 . Software Modeling

UML representation

e The actors are necessarily outside the system.

e Actors are often specified in the form of stylized characters (Figure 3.1).

Actor

Figure 3.1: Actor

e They can also be represented by a rectangle with the "actor" stereotype,or by a
pictogram (e.g. a computer symbol) (Figure 3.2).

D « actor »
Acteur 3

Figure 3.2: Actor

Warning

e An actor is a role, not a physical person.

e The same individual can be represented by several actors if he or she has several
roles.

o If several people play the same role in the system, they will be represented by a
single actor.

e An actor is not necessarily "human".

W

Chapter 3 . Software Modeling

Primary or secondary actor

What is it ?

e A primary actor is the one for whom the use case produces an observable result.

==Primary>:

Actor —|:

Figure 3.3: Primary actor

e The primary actor initiates the exchanges required to carry out the use case (it is
he who triggers the use case).

e Secondary actors are often asked for additional information; they can only con-
sult or inform the system during the execution of the use case.

"o

“=5econdary>>
Actor

Figure 3.4: Secondary actor

e Wherever possible, place the primary actors on the left of the use cases and the
secondary actors on the right.

=<Secondary>>

Actor 5

Actor 745
A

Figure 3.5: Primary and secondary actors
|

Chapter 3 . Software Modeling

3.1.2 Use cases (UC)

What is it ?

e A use case is a specific way of using the system.

It describes what the future system will have to do, without specifying how it
will do it.

Generally modeled as an ellipse

The name can appear inside an ellipse or below it.

May be represented by a rectangle with an ellipse pictogram

Figure 3.6: Use case

Identify use cases

e There’s no mechanical, totally objective way of identifying use cases

We need to look at the situation from each actor’s point of view and determine :

How he uses the system,

In which cases it is used,

Which functions it needs to access.

For each actor, it is necessary to :
e Look for the different intentions with which he uses the system.
e Determine the services to be provided in the specifications.

e Expected system functions.

Chapter 3 . Software Modeling

Actor-use case relationship

angle containing all the use cases.

e A line between an actor and a use case means that communication has been es-
tablished.This is modeled as an association in UML.

e The observed system (subject) is modeled in the use case diagram as a large rect-

o

B

Actor 1 \

—_——_—————__(f

-

\ g
(

. e

Figure 3.7: Actor-use case relationship

W

Chapter 3 . Software Modeling

Actor-actor relationship

Only one possible relationship:

e Generalization/specialization

Figure 3.8: Generalization/specialization between actors

Website

1~

Visitor Visit our website

T <

Member

generalization
specialization

D

g =

&

a

(-9

"]

g

El

m

=

&

Figure 3.9: Example:Generalization/specialization between actors

W

Chapter 3 . Software Modeling

Use case-use case relationship

1. Generalization relationship

& - —
T el o -
/’/ A S \
F\ —_—e——]
A)
Actor \\x‘_ _/,/
/"f-____ T e
4 3 ™ T T
{) e C ey
g / N
— a3 N\ /
\"\-\-,_______ B i \‘1 //

Figure 3.10: Generalization specialization between usec ases

e Use cases B and C are special types of use case A.

e-commerce store

" PaywithCB

1 @@ Pey

Customer

Figure 3.11: Example of Generalization specialization between usec ases

A credit transfer is a special type of payment.

A credit transfer is a type of payment.

The arrow points to the general element.

This generalization and specialization relationship is present in most UML dia-
grams, and translates into the concept of inheritance in object-oriented languages.

Chapter 3 . Software Modeling

2. Inclusion relationship

7

use case.

Actor

e The include relationship allows functionality common to several use cases
to be described by one use case (e.g. authenticate).

e The include relationship avoids multiple descriptions of the same behavior.

e When a case is too complex (involving too many actions), we can break it
down into simpler cases.

e "include": the execution of one use case requires the execution of another

Figure 3.12: Inclusion relationship

e The execution of use case A requires the execution of use case B.

w

Chapter 3 . Software Modeling

3. Extension relationship

7

Actor

sions.

e Use case requires the execution of another use case.

Figure 3.13: Extension relationship

"extend": This relationship is mainly used to separate optional behavior
(variants) from mandatory behavior.

Use case A is completed by use case B.

Use case A describes the basic functionality, use case B specifies the exten-

Use case A can be run alone or with extensions.

7

e Staying legible

e No more than 6 or 8 use cases per diagram.
e If necessary, make several diagrams (if disjoint cases between actors).

e For more details, use a text description.

W

Chapter 3 . Software Modeling

3.1.3 Textual description of use cases
e Textual description of a use case

e Not standardized by UML, but strongly recommended

e Description fields (name, main actor, preconditions, etc.)

e Clear and informal

The form of a use case description sheet :

1. Section 1: Identification
2. Section 2: Description of scenarios
3. Section 3: End and post-conditioning

4. Section 4: complement

Example of a description of use cases (Withdraw money)

__-—l—"'-'_'-'-.-_ ¥
Withdraw money Use

/ ;
/Check alance Refill dispenser

Cardho-'lder

[\
_ B

Deposit cash Retrieve lost cards

Bank e O
customer /

Deposit cheque Retrieve cheques

operator

Figure 3.14: Use case Withdraw money

Chapter 3 . Software Modeling

1. Section 1: Identification Case nol

o Title:Withdrawing money

e Summary:This use case allows a cardholder who is not a bank customer to with-
draw money;, if his weekly credit allows it.

e Actors: Cardholder (primary).
e Creation date: 02/03/11 Update date: 05/05/11

2. Preconditions

e The ATM cash register is full (at least one bill left!).

e No card is already stuck in the reader.

e The connection to the authorization system is operational.

3. Section 2: Description of scenarios

(a) Nominal scenario

8. The ATM asks the Cardholder to enter the desired withdrawal amount.
9. The Cardholder enters the desired withdrawal amount.

10. The ATM checks the amount requested against the weekly balance.
11. The ATM asks the Cardholder if he wants a ticket.

12. The Cardholder requests a ticket.

13. The ATM returns the card to the Cardholder.

14. The Cardholder takes back his card.

15.The ATM issues tickets and a receipt.

16.The Cardholder takes the tickets.

(b) Alternative sequences

A2: amount requested greater than weekly balance
The A2 sequence starts at point 10 of the nominal scenario.

11.The ATM informs the Cardholder that the amount requested exceeds the
weekly balance.

The nominal scenario is repeated in point 8.
ticket refused

The A3 sequence starts at point 11 of the nominal scenario.
12.The Cardholder refuses the ticket.

Chapter 3 . Software Modeling

13.The ATM returns the card to the Cardholder.
14.The Cardholder takes back his card.

15.The ATM delivers the banknotes.

16.The Cardholder takes the tickets.

(d) Error sequences

(e) E5:

E4 : card not included

Sequence E4 starts at point 13 of the nominal scenario.

14. After 10 seconds, the ATM confiscates the card.

15. The Authorization System is informed; the use case ends in failure.

tickets not taken

Sequence E5 starts at point 15 of the nominal scenario.
16. After 10 seconds, the ATM takes back the banknotes.
17. The use case ends in failure.

4. Section 3: End and post-conditions

e The ATM cash register contains fewer banknotes than at the start of the use case
(the number of missing banknotes depends on the withdrawal amount).

e A withdrawal transaction has been recorded by the ATM with all relevant infor-
mation (amount, card number, date, etc.). Transaction details must be recorded
for both successful and unsuccessful transactions.

3.2 Exercices and solutions

In a school, you want to manage the reservation of classrooms and teaching equipment (lap-
top and/or video projector). Only teachers are authorized to make reservations (subject to
room and equipment availability). The room schedule can be consulted by anyone (teach-
ers, students). On the other hand, the timetable summary by teacher (calculated from the
room schedule) can only be consulted by teachers. Finally, for each course there is a teacher
in charge, who is the only person who can edit the timetable for the entire course.

e Draw the use case diagram

Chapter 3 . Software Modeling

Solutions

Room user

school

Q

L —

Teacher

t

* i

Teacher manager

P

/ consu It‘\\

teacher's)
summary

e,

Reserve
.——‘—'_'ﬁ__— o

<<Inglude>>

(/.:;;I\\
availability /

\‘-—_,._
_-_h_-__“———.

edit Training .
recap
P —

eser—v?“\

"
ED

LU o

4,—/

o e N
/K]iﬁesewe N

equipment
\-..___/

T

@"‘\J
laptop -

|

Figure 3.15: School Management System

W

Chapter 3 . Software Modeling

3.3 Sequence diagram

What is it ?

e Sequence diagrams describe HOW system elements interact with each other and
with the actors involved.

e Show interactions between objects from a temporal point of view

e Description of typical scenarios and exceptions

3.3.1 Types of sequence diagrams

~ a

e System sequence diagram (external view)

— Use case details

- Application: requirements specification
e Object sequence diagram (inside view)

— Procedures and functions

— Application: design

3.3.2 Elements of sequence diagrams

1. Participants:

e Actor(s)
e System(s)

2. Lifelines

e Time (vertical dotted line)
e Actors

e Activation bar
3. Messages

e Communication between lifelines

w

Chapter 3 . Software Modeling

7-: r: Customer Another System :

Cescripbion [
Actor
>
Descripbon I,
Lifeline r
Descnpbon [
Message

Figure 3.16: Elements of sequence diagrams

3.3.3 Message types

e Synchronous message: sender blocked while receiver processes message (call). Typi-
cally: method call (If object A invokes a method of object B,A remains blocked until B
has finished.

Figure 3.17: Synchronous message

e Asynchronous message: non-blocking. The message sent can be taken into account by
the receiver at any time or ignored.

—

Figure 3.18: Asynchronous message

Chapter 3 . Software Modeling

e Return message: Method call messages can be associated with a return message (dot-
ted line) indicating that control has been taken over by the object that sent the syn-
chronous message.

Figure 3.19: Return message

o Reflexive message: an object can send messages to itself call to another object method
recursive call

e Message found

- message of unknown origin

- outside the framework described by the Sequence Diagram
e Lost message

— message sent, but never received

Message found
Lost message

Figure 3.20: Lost message

These two types of messages are rarely used in the sequence diagram

w

Chapter 3 . Software Modeling

3.3.4 Case study (ATM)

Sequence diagram «withdraw money » Scenario valid code

1.
2.
3.

The customer enters his bank card
The machine checks the validity of the card and requests the code from the customer

If the code is correct, it sends a direct debit authorization request to the bank group.The
latter returns the authorized balance to be debited.

. The distributor proposes several amounts to be debited
. The customer enters the amount to be withdrawn

. After checking the amount against the authorized balance, the dispenser asks the cus-

tomer if he or she would like a ticket.

Following the customer’s response, the card is ejected and recovered by the customer.

. Tickets are then issued, along with the ticket

. The customer finally collects the tickets.

/] A

Chapter 3

. Software Modeling

:Ichecking

; Checking

Ask authorization

Bank Group :

Balance authorized

T

Checking

g8 Insert Card s
Ly
Reguests Code
o
Insert code
P
Proposes Amount
ot
Insert Amount
Ly
Ask Ticket
o
ok

Card Ejected

Card Recovred

Ticket Ejected

Ticket Recovred

Figure 3.21: -ATM- Case Study

W

Chapter 3 . Software Modeling

3.3.5 Combined fragments

e A combined fragment breaks down a complex interaction into sufficiently simple frag-
ments to be understood

e Sequence fragment
e Interaction framework
e UML notation

— Rectangle that groups sub-sections of the sequence diagram

— Fragment operator in top left corner

| Operator

Sequence diagram

Figure 3.22: Fragment Operator

Fragment operators

e Operator "Opt": Fragment covered if a condition is verified

Sales System : Bank System :

B

[Preduct available]

Register purchase

P
L

Make Transaction

Figure 3.23: Opt Operator

A A

Chapter 3 . Software Modeling

e Operator "Alt": Equivalent to the control structure "if .. then ..else

Salez System :

[-ﬁ' Login]

Register purchase

[Else]

Go to Login Page

Figure 3.24: Alt Operator

e Operator "Loop": Fragment repeats as long as condition is met Loop (initial value,
maximum, condition).

Loop [number of times][condition].

5 r:user % r:login

.

[1,3 connexion== False]

Connexion=Saisir identifient et mot de passe

Figure 3.25: Loop Operator

A A

Chapter 3 . Software Modeling

e Operator "par': operations within the fragment run in parallel

Welcomepage : Loggingpage :

ﬂ

Show()

Save()

T
T

Figure 3.26: Loop Operator

e Operator "Ref": Reference to another sequence diagram. It’s useful for including sev-
eral scenarios in the same sequence diagram. Ex:Valid scenario code / Invalid scenario
code.

AL

Sales System :

Ordering

P
L

Login Page

’i

Payment

Figure 3.27: Ref Operator

A A

Chapter 3 . Software Modeling

Insert Card HE

Checking
Ask Code

k

[Valid Code] | ‘
&
Valid Code
[Else]
=
’7 Invalid Code

Figure 3.28: Example Ref Operator

3.4 Exercices and solutions

e When an e-mail is sent by the sender, the sender doesn’t want to wait for the recipient
to receive it, and there’s no intermediary.

e A mail server acts as an intermediary between the sender and receiver of an e-mail. The
server is always on. Can synchronous messages be used to send and retrieve e-mails?

A A

Chapter 3 . Software Modeling

Solutions

e When an e-mail is sent by the sender, the sender doesn’t want to wait for the recipient
to receive it, and there’s no intermediary.

| Sender: Receiver:

Send(message)

e A mail server acts as an intermediary between the sender and receiver of an e-mail. The
server is always on. Can synchronous messages be used to send and retrieve e-mails?

Sender: Server: Receiver :

Upload (message)

Get (message)

A

Send (message)

[|

Chapter 3 . Software Modeling

3.5 Class diagram
e Representation of the system as a set of interacting objects
e Representation of the system'’s internal structure and logic

e Inspired by real-world objects

e Abstraction and decomposition of the system into objects

3.5.1 Class

What is it ?

e Objects with the same type (Figure 3.29)
e Characteristics: Attributes (information, properties, etc.)
e Behavior: Operations (methods, messages, etc.)

e Each object is an instance of a class.

3.5.2 Object
Compared to a class, an object has:
e An identity

- Two different objects have different identities

— The object can be designated (referred to)
e A state (attributes)

— Set of properties/characteristics defined by values
— To personalize/differentiate from other objects

- May change over time
e Behavior (methods)

— Set of processes that an object can perform (or be made to perform)

A A

Chapter 3 . Software Modeling

Bicycle Objects

Abstraction
e

.
n

Polygen Objects

AYy e
[

—_—
.
n

Class Bicyele

Attributes
frame size

wheel size

number of gears
Methedes
drive
repair

Class Pelygone
Attributes
vertex peolygon
line celer
filling coler
Methodes
design
delete
move

Figure 3.29: Object and class

Object= Identity + State + Behavior

Class representation

e 3-compartment rectangle
e Noun (singular, capital)
o Attributes

e Operations

A A

Chapter 3 . Software Modeling

More or less detail as required (Figure 3.30)

Class Class

+ Attnbute - string
+ Attrbute1 - string
+ Attnbute2 : string

+ Operation()
+ Operation1()
+ Operation2()

Figure 3.30: Class representation

Object representation (Figure 3.31)

Class name

Object ID

= Client 1 : Client

First_name : string = amine
Last_name : string = ahmed
Age :integer =20

Attribute value

Figure 3.31: Object representation

A A

Chapter 3 . Software Modeling

3.6 Relationship between classes

3.6.1 Inheritance(Generalization/Specialization)

e Inheritance is a specialization generalization relationship (Figure 3.32).

—>

Figure 3.32: Inheritance Symbol

e Specialized elements inherit the structure and behavior of more general elements (at-
tributes and operations).

e Principle of substitution: all properties of the parent class must be valid for the child

classes.
Class B |-=—___ 3
] Super Class
'~ T R B

Figure 3.33: Example of Inheritance

e AisaB"or"Aisakind of B" principle: all instances of the subclass are also instances of
the superclass. For example, any operation that accepts an object of class Animal must
accept any object of class Cat (the reverse is not always true).

I\
B

Figure 3.34: Reflexive ezlatioship

e No-reflexive, no-symmetrical relationship! (Figure 3.34)

Chapter 3 . Software Modeling

Multiple inheritance

e A class can have several parent classes.This is known as multiple inheritance.

Class

A

Class B

e Incompatible with java

e The C++ language is one of the object languages that enable its effective imple-

mentation.

Class

C

How to avoid Multiple Inheritance?

7

o First solution: delegate

Class A

Class B

Class A

Class B

N/ = NS

Class C

e Second solution: inherit the most important class and delegate the others

Class A

Class B

N/ =

Class C

Class C

Class A Class B
Class C [&——

W

Chapter 3 . Software Modeling

3.6.2 Association

What is it ?

e Bidirectional semantic connection between classes (Figure 3.35)

e Representation of associations :

X.y Association name » Xy
Class 1 Class: 2

role 1 role 2

Figure 3.35: Association

e Name: verbal form, with a reading direction Roles: nominal form, describes one
end of the association

e Multiplicity: 1, 0..1, 0..%, 1..3%, n.m

e Multiplicity

1 One

0..1 Zero or one

N N (integer number)

M..N From M to N (integer numbers)
. From zero to many

| P From zero to many

T From one to many

W

Chapter 3 . Software Modeling

e Association navigability (Figure 3.36)

7~

Client

has

account

Client

unidirectional /

has

account

™

/

bidirectional

Figure 3.36: Association navigability

e Association Naming associations (Figure 3.37)

7

Person

has

car

Figure 3.37: Association Naming associations

e We can add a reading direction (Figure 3.38)

7

Person

has

car

Figure 3.38: Association a reading direction

W

Chapter 3 . Software Modeling

e Association end name: Role

7~

Person

+ employer

— Each end of the association can be named

Work for

+ employee

Company

airplane

+ passengers

+ Filot

person

\.

e Multiple associations

7

objects.

Person

own

— Multiplicity specifies the number of instances of a class that can be linked to
a single instance of an associated class. It constrains the number of linked

car

— Example: a person can own several cars (between zero and any number); a
car is owned by a single person.

W

Chapter 3 . Software Modeling

e Association n-aire

7

Class A I

— In general, associations are binary

— N-ary: at least three classes involved

— Use only when no other solution is possible!

Class C

O ClassB
Association name
e Reflective association
- Linking objects of the same class
husband friend
Personne Personne
0.1 '} R
wife [0.1 friend | g *

Figure 3.39: Reflective association

W

Chapter 3 . Software Modeling

e Allocated association

7

— Includes an association class

+

Student

&

Class

bV 4

Course

Student

Professor

Class ’

Course

— Information (attributes, methods) specific to the association.

Professor |

3.6.3 Aggregation

What is it ?

posed of".

e An aggregation is a special case of a non- symmetrical association expressing a
content relationship of an element in a set.

e Aggregations don't need to be named: implicitly they mean "contains", "is com-

e Aggregation is represented by the addition of an empty diamond on the side of
the aggregate (the set) (Figure 3.40).

W

Chapter 3 . Software Modeling

UML representation

Example:

aggregate

Part

Figure 3.40: Aggregation

Wheel

3.6.4 Composition

What is it ?

e A composition is a stronger aggregation implying that:

e An element can only belong to a single composite aggregate (non-shared aggre-
gation);

e The destruction of the composite aggregate (the whole) leads to the destruction
of all its elements (the parts) (Figure 3.41)

W

Chapter 3 . Software Modeling

UML representation

Composite

Part

Example:

Figure 3.41: Composition

W

Chapter 3 . Software Modeling

3.6.5 When to use a composition rather than an aggregation ?.

Aggregation vs. composition

e To decide whether to use a composition rather than an aggregation, you need to
ask yourself the following questions:

e Does the destruction of the composite object (the whole) necessarily imply the
destruction of the component objects (the parts)? This is the case if the compo-
nents have no autonomy vis-a-vis the composites.

e When we copy the composite, do we also have to copy the components, or can
we "reuse” them, in which case a component can be part of several composites?

o If the answer to these two questions is "yes", a composition must be used.

3.6.6 Abstract class

What is it ?

e A method is said to be abstract when we know its header (signature), but not
how it can be implemented. It’s up to child classes to define abstract methods.

e A classis said to be abstract when it defines at least one abstract method, or when
a parent class contains an abstract method not yet implemented.

« Abstract »
Class

Figure 3.42: Abstract class

W

Chapter 3 . Software Modeling

3.6.7 Interfaces

What is it ?

e Not a class

e Abstract method list

e No attribute except "final static" constant

e Defines a service and cannot be used to create objects

e Implemented by at least one concrete class.

¢ An interface specifies a set of operations (behavior). It’s a contract
e Linked classes agree to respect the contract

e They must implement interface operations.

Interface relationship

e Interface implementation
e Definitions of all abstract methods
e A class can implement several interfaces

e An interface can be implemented by several classes

simple
«interface» | A\) 7~7"77 presentation
Class Interface 1
+Operationl()
+Operation2()

=
S

detailed
presentation

Figure 3.43: Interface relationship

Chapter 3 . Software Modeling

UML representation

e Two types of interface relationships:
o "Realize" stereotype

e "Use" stereotype

............ by 2

LLuUse > >

lllll'llllll'—
<<relize>>

Figure 3.44: Two types of interface relationship

Class diagram Methodology

relationships

e Add attributes for each class

e Find the class of the domain studied (Find Nouns)
e Find the association between classes (the verbs that link the nouns)
e Refine the diagram by eliminating redundant, irrelevant classes and associations.

e Once the classes are well established, look for the inheritance and aggregation

e Check that you can create use cases by traversing the class diagram

3.7 Exercices

Propose a corresponding class model.

3.7.1 Exercise 1

e Students and teachers are two different kinds of people.

W

Chapter 3 . Software Modeling

Solution

3.7.2 Exercise 2

Propose a corresponding class model.

e A PhD student is a student who teaches. Complete the previous class model.

Solution

3.7.3 Exercise 3

Doctoral candidates and students must register at the beginning of the year and modify their
registration if necessary. We know everyone’s first and last names. We need to be able to
calculate the salaries of doctoral students as well as teachers. Add these elements to the
previous model

Chapter 3 . Software Modeling

Solution

SPudets

[FIsTes]

AT

Pocl ol ,

3.7.4 Exercise 4

Propose a corresponding class model.

1. Every writer has written at least one work
2. People can be associated with universities as students as well as professors.

3. A rectangle has two vertices which are points.A rectangle is constructed from the co-
ordinates of two points.You can also calculate its area and perimeter, and translate it.

Solution

\,,,,;TZ/_4 s Mwm

R

O of YO‘\'\N r_
i o \’\;’;
& E ’\

Chapter 3 . Software Modeling

3.7.5 Exercise 5

Propose a corresponding class model.

1. Cinemas are made up of several screens.
2. Films are shown in theaters.

3. The corresponding screenings take place at a specific time each.

3.7.6 Exercise 6

Propose a corresponding class model.

e A playlist is made up of a set of songs.
e A song can belong to several playlists

o Delete list does not delete songs

3.7.7 Exercise 7

Propose a corresponding class model.

e A track only belongs to one album

e Deleting an album deletes all its tracks

Solution

W

Chapter 3 . Software Modeling

3.8 Object diagram

o It represents objects (i.e. class instances) and their links (i.e. relationship in-
stances)

e It Used to illustrate the class model
e It Used to take a snapshot of the system at a given moment.

e The class diagram models the rules, but the object diagram models facts.

UML representation

o ID to differentiate the object of the same class

e No operating compartment

e Can be partially defined (attribute not filled in)

‘Class

attributel ="value"
attribute2="value"

Id:Class

attributel ="value"
attribute2="value"

Figure 3.45: Object representation

W

Chapter 3 . Software Modeling

Link between objects (instance of relationship)

Link between objects

e Compliance with association rules

Role class 1

e Number of possible links between objects depends on the multiplicity of the cor-
responding class associations

e Link between objects(relationship instance)

Role class 2

association name —»
Class 1 Class 2
Multiplicity 1 Multiplicity 2
¢1:Class 1 c2:Class. 2
Class 1 e Class 2
e 2
3 .Class 2
c1:Class 1 & Class 2
Class 2
Company E1:Company
+Name:String name= < <Naftal>>
0,1
Work for Work for Work for
Work for
2”w

’ Person | ’ p1:Person

” p2: Person | ’ p3: Person |

W

Chapter 3 . Software Modeling

Example of reflexive association:

3.9 Exercices and solutions

e Give the object diagram corresponding to the following Situation:

e "The Delta company is made up of two IT teams. Mohamed and Ryad are two program-
mers working in Team 1. Walid is a designer assigned to team 2, and is responsible for
communicating with the customer, Mr AMMAR.

Solutions

Chapter 3 . Software Modeling

3.10 Object sequence diagram
e Represent communications with and within the software
e Temporal representation of interactions between objects .
e Chronology of messages exchanged between objects and with actors.

e In design phase: Describe the realization of use cases on the system described by
the class diagram.

o Internal view of system operation
e Instance-level description (state of the system at a given time)
e Description of specific scenarios

e Representation of message exchanges between system objects chronologically

W

Chapter 3 . Software Modeling

3.10.1 Elements of an object sequence diagram

X

'/ instance of actor

instance of class

)

J

Jean : Actor Object1:Class1 ‘ | Object2:Class2 |
/,—;.., operation1() "
Call of - operation2(args) I
operation | ' e
return2 H W
/: === - s : ,"l
= N . execution
lifeline ;\ : l
return value
Example:
driver Car Engine
Start() On()
D1:driver C1:Car E1:Engine
) 1 1
| Start() J !
Oon() I
>
Timeline D
Message : !
|
| 1 |
: : Lifeline :

W

Chapter 3 . Software Modeling

Message types

7~

e Object creation
== Ccreate() :l-:l-._‘

Figure 3.46: Object creation message

e Object deletion

destroy() _;x

Figure 3.47: Object deletion message

e Synchronous message: Sender blocked waiting for return

>

Figure 3.48: Synchronous message

e Asynchronous message: Sender not blocked, continues execution

—

Figure 3.49: Asynchronous message

W

Chapter 3 . Software Modeling

3.11 State-transition diagram

What is it ?

Model the internal behavior of an object using a deterministic finite-state automa-

ton

Corresponds to a single class or object

Used to model object lifecycles

Representation of changes in the state of an object, in response to events (inter-

actions with other objects or actors)

Objective: Describe the dynamic behavior of an entity (software, component, ob-
ject, etc.). The Behavior described by states and transitions between states

Describe the changes in state of an object or component, in response to interac-

tions with other objects and components or actors

Grouping a set of scenarios

sd Check Witness Report _J sd Caplure Wilness Report _J sd Authentication(Nal maxPwMisses) J
scenariol scenario2 shenariol
Videg Central
Dot Survelllance i.i cccms
risl CCCMS System Coordinator Central
coord ' - i i CCCMS
| | Coordinator
ref H ' 1 Authentication () ' ' \
T Authenlication () ' l i LoginResult 1 loop {maxPwMisses) J '
i LoginResult !) 2 H | T H
]] []
: t ' i CrealsWR) T ToginUID, Pasawd) :
i GelWRs () ! ! : T e
H oW H I ! LognfesUlt ;
R < ! = 1
1ReqVideoSurveiliancd (] ! | sd Creale Crisis_/J Break :
| / I
! qVideoSurveillancd () nFasull = success) !
é‘
| CancelVSReq _1 : i :
T
| owVideoSurveilance () Central } v
- CancelVSReq 1< —] ™ ccems l H
1 I !
| CreateCrisisFromWR [: Coondinator 1 l i
T oy H ref ,l : . 1
AssociateWrWithCrisis 1 T Authentication () : 1) b kUsaf (UID)
' IgnoreWR () H H] LoginResult E | -
. : i : = | ?
H ! H : CreateCrisis () ! :
|

Figure 3.50: Multiple scenarios

W

Chapter 3 . Software Modeling

Several scenarios in different diagrams.The sequence diagram does not allow you to see
all these scenarios in a single sequence diagram even with the use of "Ref" fragments it
becomes very complicated. The solution, then, is to use the state diagram, which shows
all the different scenarios in a single diagram without it becomes very complicated.

3.11.1 Status
What is it ?

e State: abstraction of a moment in the life of an entity during which it satisfies a
set of conditions.

o Initial state: System initialization, execution of object constructor

Figure 3.51: Initial state

e End state: End of system life, destruction of object

®

Figure 3.52: End state

o Intermediate states: stages in the life of a system or object

Intermidate state

Figure 3.53: Intermediate states

W

Chapter 3 . Software Modeling

3.11.2 Transition

What is it ?

e A transition represents the instantaneous passage from one state to another

A transition is triggered by an event:

The arrival of an event conditions the transition

o A Transition represente the change of state, Ex: case of a lamp

When the event occurs, if the condition is verified, then action is performed.

Transition

A
4 A

\ event [condition] / action

State1l State2

—r

Figure 3.54: Transition

3.11.3 Event

What is it ?

e Event: instantaneous fact coming from outside the system and occurring at a
given time.

e Event types:
e Signal: reception of an asynchronous message
e Operation call (synchronous): linked to use cases, class diagram operation, etc.

e Satisfaction of a Boolean condition: when(cond), continuously evaluated until

true
W

Chapter 3 . Software Modeling

3.11.4 Time event

e Relative date: when(date = date)

e Absolute date: after(duration)

3.11.5 Action
What is it ?

e Action: System reaction to an event
e Characteristics: atomic, instantaneous, non-interruptible
e Examples of actions (syntax left free) :

— Assignment
- Sending a signal
— Operation call

— Object creation or destruction

3.11.6 Using state-transition diagrams

What is it ?
e In the analysis phase :

— Description of system dynamics as seen from outside
— Summary of use case scenarios

— Events = actor action
e In the design phase:

— Description of the dynamics of a particular object

- Events = operation calls

W

Chapter 3 . Software Modeling

3.11.7 Composite states

What is it ?

e Composite state: state grouping together a set of states
e Objectives :

— Prioritize states
— Structuring complex behaviors

- Factoring in actions

hanging-up busy
J
[hang up }—>[dial-up
*a] hanging-up
_ ringing
hanging-up
hanging-up [talking

pick up

transition to
composite sta‘re\

hang up | >

hanging up/

Starting point +— | talking |

Figure 3.55: Composite states

W

Chapter 3 . Software Modeling

3.11.8 Orthogonal state

What is it ?

e Composite state in which several state are active simultaneously (competi-
tion/parallelism).

e Global active status = one active status per region

/_ Statel

[RegionA]

StateAl X StateA2

Initial I : [RegionB] Final

StateB1 ¥ StateB2

i
L)

i
(

Figure 3.56: Orthogonal state

W

Chapter 3 . Software Modeling

3.11.9 Internal actions, activities and events

What is it ?

o Activity

e Status reset by external events

d State

Entry[cond event]/action in
event[condl]/actionl

event[cond2]/action2

L Exit[cond event]/action out

e Additional characteristics of a state

e Internal events: on entry, on exit, during state

Entry event with in condition action

V' internal events during state

Exit event with eut cendition / action

Figure 3.57: Internal events

3.12 Exercices and solutions

3.12.1 Exercice 1: Digital Pets

You need to create a program to manage digital pets.What happens to the animal when it
receives different stimuli is determined by its current state. You decide to model the digital

pet with a state diagram. The animal’s behavior in the digital program is as follows:

e When the animal is turn on, it starts with the happy state.

e If the animal is happy and receives a punishment, it becomes sad.

e If the animal is sad and receives compliments, it becomes happy.

e If the animal is sad and still receives punishment, it will be heartbroken. Identify the

states and transitions of the digital animal and draw a state-transition diagram.

Chapter 3 . Software Modeling

Solution

?\A.V“B \'\"“";“

punishesely
F\mvﬂp"o keh

ot

va/b"r%

3.12.2 Exercice 2:Chess game

A chess game can be in three states:
e The white tour
e The blacks’ turn.
e Game over.
e The events to be taken into consideration are :
e A move of pieces by the black player
e A move of pieces by the white player

e Checkmate ensures victory for one of these players (black or white, as the case may
be), which means the end of the game.

e When one of these players quits, the game is over. Draw the state diagram for a chess
game.

Chapter 3 . Software Modeling

Solution

3.13 Activity diagram

What is it ?

e Variant of state-transition diagrams
e Represent the internal behavior of a method or use case, execution of an operation

e Specify the processing of an operation (describe the logic for executing an oper-
atio operation) (modelling the flow of control streams and data)

e Used to model the dynamics of a task or process.

W

Chapter 3

. Software Modeling

3.13.1 Start state and end state

e states: start state and end state

Veérification
Commande

Rejet
Commande

W
é’ /" Informer Erreur
= au Client

Figure 3.58: Start / End states

W

Chapter 3 . Software Modeling

3.13.2 Activities

o Activitiy : An activity is something that happens in the process (in the workflow).

— An action, an event, ...

- By a person, a computer, ...

y

< Veénfication
(Commande

i
H\‘ -
/'f \\h\\

Enregistreme Rejet
Commande Commande
W L
@J ¢ Informer Erreur

oo au Client

Figure 3.59: Activities

W

Chapter 3 . Software Modeling

3.13.3 Transition

e Transition represents the passage from one activity to another.

< Recevair)
Commapde Vidéo

W
< Neviictifitys)

=i

Nl/'E
s

Figure 3.60: Transition

W

Chapter 3 . Software Modeling

Sequential transitions

e Transition (sequentially organized)
Recevoir
Commande Yidéo
h
< MewActivityS >
(MewActivitys)
p 4

()

Figure 3.61: Sequential transitions

W

Chapter 3 . Software Modeling

Alternative transitions

e Alternative transitions (packaged by a guard) represented by: IF / Else

< Vénfication
K Commande

[Oui],~ Non]
Enregistrement Rejet
Commande Commande

!

¢ Informer Erreur)

'l\ au Client

Figure 3.62: Alternative transitions

W

Chapter 3 . Software Modeling

Transitions Synchronization

e Transitions Synchronization (case 1): An incoming transition and several outgo-
ing transitions in this case both activities are performed at the same time.

(NewActivity1)

< NewActivity2) < NewActivity3)

Figure 3.63: Parallel transition

e Transitions Synchronization (case 2):several incoming Transitions and an outgo-
ing transition named joint.

< NewActivity2) < NewActivity3 >

(NewActivityd >

Figure 3.64: Joint transition

W

Chapter 3 . Software Modeling

Swimlane

e Swimlane: identifies the actor responsible for the activity.

Customer Order Cledk Accounting Shipping
Place Crder Take Order
Give Credit Take Credit p Orcl
Card Mo. Card No. -
Process Credit Pach
Card Info I
N
Deliver ltems
W
Record Motify Shipping
Shipping SUcoess
W
L |ssue Invoice
Confimed

Figure 3.65: Swimlane

W

Chapter 3 . Software Modeling

Warning

e Transitions Synchronization makes no sense in the following two cases:
e One transition in and one transition Out

e Several transitions in and Several outgoing transitions Out

Phapesiort by

e i L pd 7.

e
Cowramgrvlle "ol

W

Chapter 3 . Software Modeling

3.14 Exercices and solutions

3.14.1 Exercicel

The process involves the following actors:

Customer: who orders a product and pays the invoice

Cashier: who collects the customer’s money

Sales: who processes and invoices the customer’s order

Warehouse: responsible for picking and shipping the order.

Construct an activity diagram (using activity swimlane) to model the process of ordering a
product.

Solution
p 4 A\CS \XlWV' Q‘O i
Cas\e” (ud otV
r T
OAAL“"\. F ‘*A e ‘c,k\‘
il g™ SN DO
N
z '\‘“\/0 Vet QL\A.?V\‘VK
i:?:ce s Ll ovdev

Chapter 3 . Software Modeling

3.15 Component and deployment diagram

3.15.1 Component diagram

What is it ?

e The component diagram is used to represent a system’s software components
and the links between them.

e A component is a self-contained, replaceable and reusable piece of software that
provides or receives a specific service: source files (.java, .cpp, -h, .es ...) libraries
(dll, jar ...), executables ...

e Components provide services via interfaces. A component can be replaced by
any other compatible component, i.e. one with the same interfaces.

e A component can evolve independently of the applications or other components
that use it, as long as the interfaces are respected.

Example: parallel with computer components.

A computer is a set of modular components that provide and receive services (mother-
board, graphics card, hard disk, keyboard, screen, etc.). Each of these components can
be replaced by another (not necessarily identical) component, provided it has compat-
ible interfaces.

In UML, components are not hardware elements, but software elements which will
be installed on hardware elements (as we’ll see when we come to the deployment di-
agram).

Chapter 3 . Software Modeling

Component

e Component name : Used to distinguish a component from other components. It
can be a simple name or a compound name indicating the package to which the
component belongs.

e Stereotypes: Specifies a component that designates :

"executable': a program that can run on a node;
- "Library: a static or dynamic library;

— "table": a database table;

- "file": a file containing source code or data;

— "document'": a document.

@ <<component>>
component hame component hame component name

Figure 3.66: Component

Interfaces

7~

e There are two types of interface:

e Required interfaces: These are interfaces that provide a service to the compo-
nent, and which it needs to function. They are linked to the component by a
dotted arrow bearing the «use» stereotype.

e Provided interfaces: These are interfaces through which the component itself
provides a service. are connected to the component by a dotted arrow on which
appears the stereotype «realize» .

O /

Chapter 3 . Software Modeling

UML representation

e In a separate component folder, where the various services are listed (more de-
tails).

e Another way to represent the component diagram (simplify)

<<interface>> <<interface>>
Interface name provided << reckize >> @ <<used> Interface name required
serviceProvided1() - <<Compogant>> |----eeeeuno » servicerequired| ()
serviceProvided2() Servicerequired2()
Interface provided E Interface required

<<Component>>

Public port

e Integrated into the component representation:

I:::l Component name

<<provided interface>>

Interface name provided|
Interface name provided2

<<required interface>>

Interface name provided|
Interface name provided2

W

Chapter 3 .

Software Modeling

Example:

]
]
'
'
: c<yses=>
'

A4
<<interface>>

+ Protocole : string = "HTTP*
+ Port:int = 21

Navigateur]| <<use>> ’

Navigateur ﬂ MR Socket de réception
II .

+ Protocole : string = “HTTP"

Socket d'émission <<realze»>

<<interface>>

+ Port : int = 20

SGBD ﬂl

Ou

<<realge>> Serveur Web G

<<use>> e

\
Socket de réception

<<realze>>

\
Socket d'émissi

Q []

L] L]

| <<realize>> ! <<realze>>

i v

- <<interface=>
........ Seveurweb G| <<use>> | Socket MysaL

1 - Protocole : String = *“TCP*
-Port: int = 3306

3.15.2 Deployment diagram

What is it ?

hardware.

<<yuse=> o <<realge=>
©
Socket MySQL

e The physical layout of the hardware resources that make up the system and
shows the distribution of the components (software elements) that run on this

e Communication paths between different hardware resources.

SGBD g|

1. Material resources are represented by nodes

<<Device>>

PC

W

Chapter 3 . Software Modeling

2.

Communication d by a straight line linking the nodes

uUsSB

<<Device>>

<<Device>>

PC

Imprimante

3.16 Exercices and solutions

3.16.1 Exercice 1:-The Smarteam application-

The Smarteam application The application architecture consists of the following resources:

Web client:This represents the web browsers used to connect the various employees to
the application.

UNIX I WINDOWS server: This is the server on which the application is deployed.
This server hosts the two servers:

Apache web server

Tomcat application server

The two servers are merged into Apache-Tomcat version x. x.

The UNIX or WINDOWS must be accessible to users on a LAN or WAN network.
As Tomcat-compatible JVM JDK x.x must be installed first.

DBMS: MySQL x.x database management system for data storage data

SMTP server: forwards e-mails generated by the application to the appropriate when
creating their profiles.

O 4

Chapter 3 . Software Modeling

Solution

Diagramme de déplopment
de Smarteam

Tomcat Serveur
Navigateur Clent HTTPMTTPS Serveur Appicaton SMTPPOP3 mnoo?:
E =

3.16.2 Exercice 2

e The image.java component depends on the ImageObserver interface of the compo-
nent.java component.

Draw the component diagram. Consider an application made up of the following files:
e Source code register.cpp
e An executable program register.exe

e Dynamic libraries personne.dll and cours.dll. Dynamic link libraries are used when
running an application

Give the corresponding component diagram.

O 4

Chapter 3 . Software Modeling

Solutions

3 z?;ﬁ‘f;if"“"i"‘ﬁ“‘*‘m

‘ZM(J{.%‘; ﬁ/a«éla'lqb'p]

W

Chapter 4 . Exams with Answers

Chapter 4

Exams with Answers

O /

Université de Ghardaia
Faculté des Sciences et Technologies
Département des Mathématiques et de I’Informatique
37 Année Licence
Module: Génie logiciel
Année Universitaire 2021-2022

[Examen Final Durée : 01 h 30]

Question du cours : Répondez brievement a chaque question (09 points)

Quelle est I’abréviation du mot UML ? (01 point)

Comment éviter le développement d’un logiciel a faible qualité ? (01 point)

Quelle est I’objectif de la specification dans un cycle de vie du logiciel ? (01 point)

Pourquoi nous suivons un modele de cycle de vie du logiciel ? (01 point)

Quelle est le modeéle de cycle de vie le plus adapté au développement du logiciel critique ou
médical ? (01 point)

6. Compléter le tableaux suivant : Donnez un seule avantage et un seule inconvénient pour chaque
cycle de vie (02 point)

ok wd e

Cycle de vie Avantages Inconvénient
Cascade

Modeéle en V
Prototypage
Modeéle incrémentaux

7. Compléter les phrases suivantes : (02 points)

1. Spécialisation et Généralisation sont deux principes liés a(0,5 point)

2. Un diagramme état de transition c’est un type des diagrammes ...(0,5 point)

3. Quand la classe A partage les mémes attributs avec la classe B on doit utiliser ...(0,5 point)
4

Quand la classe A est une composant de la classe B on doit utiliser ...(0,5 point)

Exercice n° 01 : (06 points)

Une banque a plusieurs agences réparties sur le territoire nationale. Une banque est caractérisée
par le nom de son directeur général, son capital global, son propre nom et de I'adresse de son
siege social. Le directeur général est identifié par son nom, son prénom et son revenu. Une
agence a un numero d'agence et une adresse. Chaque agence emploie plusieurs employés, qui se
caractérisent par leurs nom, prénom et la date d'embauche. Les employés peuvent demander leur
mutation d'une agence a une autre, mais un employé ne peut travailler que dans une seule agence.
Les employés d'une agence ne font que gérer des clients. Un client ne peut avoir des comptes que
dans une seule agence de la banque. L’agence crée des comptes pour différents clients. Les
clients ont un nom, un prénom et une adresse. Les comptes ont un numéro et un taux d'intérét.

Questions : -Dessiner le diagramme de classe.

Page 1/ 2

Exercice n° 02 : (06 points)

Dans un école de formation, les inscriptions se déroulent de la fagon suivante : Au début de
chaque semestre, un catalogue des cours proposés est fourni par la scolarité aux étudiants.

Ce catalogue ne peut étre créé avant que tous les cours ne soient affectés a des enseignants. Pour
cela, chaque enseignant doit indiquer les cours qu'il prévoit d'enseigner.

Les étudiants doivent remplir des fiches d'enregistrement qui indiquent leurs choix de cours.
Chaque étudiant doit suivre cing cours choisis dans le catalogue. 1l devra indiquer aussi trois
cours supplémentaires. En effet, il se peut que, parmi les cours choisis, I'un des cours doit étre
dispensé a au moins 5 étudiants et au plus 30 étudiants. Par exemple, si un cours est choisi par
moins de 5 étudiants, il est supprime. Si un cours est choisi par plus de 30 étudiants, il est marque
comme trop plein. Ces activités et les fiches d’inscription sont gérées par la scolarité.

Une fois la période d’inscription terminée, un programme est exécuté pour affecter les étudiants
aux cours. Apres que tous les étudiants aient été correctement affectés aux différents cours.
L'information est transmise au systeme de facturation qui facturera I'étudiant pour son semestre.

Questions : - Dessiner le diagramme de cas d'utilisation.

Bonne Chance

Page 2/ 2

Université de Ghardaia
Faculté des Sciences et Technologies
Département des Mathématiques et de I’Informatique
3¢ Année Licence
Module: Génie logiciel
Année Universitaire 2021-2022

[Examen Final (Cotrigé type) Durée : 01 h 30]

Question de cours : Répondez brievement a chaque question (09 points)

1. Quelle est I’abréviation du mot UML ? (01 point)
Unified modeling Language / language de modélisation unifié
2. Comment éviter le developpement d’un logiciel a faible qualité ? (01 point)
A travers les techniques d’ingénierie du logiciel et les modéles du cycle de vie.
3. Quelle est I’objectif de la spécification dans un cycle de vie du logiciel ? (01 point)
Comprendre les besoins du client et la réalisation de cahier de charge.
Etablir une description claire de ce que doit faire le logiciel
4. Pourquoi nous suivons un modele de cycle de vie du logiciel ? (01 point)
Pour développer un logiciel de qualité.

5. Quelle est le modeéle de cycle de vie le plus adapté au développement du logiciel critique ou

médical ? (01 point)

Modeéle orienté risque (modele en Spiral)

6. Compléter le tableaux suivant : Donnez une seule avantage et une seule inconvénient pour chaque

cycle de vie (02 point)

Cycle de vie Avantages Inconvénient

Difficile de mettre a jour pour des

Cascade impl : ielle (0,25 .
Simple et sequentielle (0,25) nouvelle exigences (0,25)
Modele en V Basé sur les tests (0,25) Tres lourd (0,25)
Simplifier les besoins du client a Difficile de validé ce prototype
Prototypage
travers un prototype (0,25) (0,25)
Modele incrémentaux Decoupage ver(sodzess)taches simples Probléemes d’intégration (0,25)

7. Compléter les phrases suivantes : (02 points)
- Spécialisation et Généralisation sont deux principes liés a I’héritage (0,5 point)

- Un diagramme état de transition c’est un type des diagrammes Comportementaux (0,5 point)

- Quand la classe A partage les mémes attributs avec la classe B on doit utiliser I’héritage
(0,5 point)

- Quand la classe A est une composent de la classe B on doit utiliser composition ou agrégation
(0,5 point)

Page 1/ 2

Exercice n° 01 : Diagramme de classe (05 points)

Une banque a plusieurs agences réparties sur le territoire nationale. Une banque est caractérisée par
le nom de son directeur général, son capital global, son propre nom et de I'adresse de son siege
social. Le directeur général est identifié par son nom, son prénom et son revenu. Une agence a un
numéro d'agence et une adresse. Chaque agence emploie plusieurs employés, qui se caractérisent
par leurs nom, prénom et date d'embauche. Les employés peuvent demander leur mutation d'une
agence a une autre, mais un employé ne peut travailler que dans une seule agence. Les employés
d'une agence ne font que gérer des clients. Un client ne peut avoir des comptes que dans une seule
agence de la banque. Les clients ont un nom, un prénom et une adresse. Les comptes ont un
numéro et un taux d'intérét.

Questions : -Dessiner le diagramme de classe.

Solution :
0.5 | Banque | O 25 | Directeur général 05
+ Nﬂm_DG S-tl'lng gérer * ML':III'I'I E-tl'll'lg ¥
+ Capitale : string _ < + Prénom : string
+ Nom_banque : string 1 1| + Revenu : double
+ Adresse : string
' 1
05
0.25 0,25 | Employé
O 25 . f,'l emploier + Nom : string
: Agence ' = + Prénom : string
Créer i 11 1.*| + Date dembauche : date
umero : integer 05 + Mutati
1| +Adresse : string 0,5 utation()
.
0 5 1. n' 5
- : O 25 Client 0,25
Compte ! ;
| . = avair + Nom : stang gerer
+ Numéro : integer

0 - + Prénom : string
+ Taux dintéret - double ‘ 7+ 1| +Adresse : sting | 1.

Page 2/ 2

Exercice n° 02 : Diagramme de cas d’utilisation (06 points)

Dans un école de formation, les inscriptions se déroulent de la fagon suivante : Au début de chaque
semestre, un catalogue des cours proposes est fourni par la scolarité aux étudiants.

Ce catalogue ne peut étre créé avant que tous les cours ne soient affectés a des enseignants. Pour
cela, chaque enseignant doit indiquer les cours qu'il prévoit d'enseigner.

Les étudiants doivent remplir des fiches d'enregistrement qui indiquent leurs choix de cours.
Chaque étudiant doit suivre cing cours choisis dans le catalogue. Il devra indiquer aussi trois cours
supplémentaires. En effet, il se peut que, parmi les cours choisis, 1'un des cours doit étre dispensé a
au moins 5 étudiants et au plus 30 étudiants. Par exemple, si un cours est choisi par moins de 5
étudiants, il est supprimé. Si un cours est choisi par plus de 30 étudiants, il est marqué comme trop
plein. Ces activités et les fiches d’inscription sont gérées par la scolarité.

Une fois la période d’inscription terminée, un programme est exécuté pour affecter les étudiants
aux cours. Apres que tous les étudiants aient été correctement affectés aux différents cours.
L'information est transmise au systéme de facturation qui facturera I'étudiant pour son semestre.

Questions : - Dessiner le diagramme de cas d'utilisation.

0,25

#" Indiquerles coursa

___________———_’_._H_ - S
___ enseigner 0 25

B EIncludesz '

— 075
enseignant o . . :
/ 0 25 /7 Affecterles coursades ™ ¥
0,5 = e ensignants _
e e L Iy, S S
Créer un cataloge selficiuges 7\
— _ System==
. rogramme
0,25 03 7
' i Dispensé les cours - I.f"' Affecter les étudients ""\1
Lo S [g aux cours J
Scolarité 2 — % — -
cExtendss b, SeEtEnd
05 > .
/0,25 0,25 °
e ——— e z|ncludess
Cours supprimer j, & Cours trop plein h)
T — B - 0,25
‘___--"---___ 2 . ___-_'--._.\.
0.2° el
e ——sonsemesie — 0,75
) Ve gérés les fiches . \)
- | d'inscription] N T !
. A / /~ Choisir cing cours \ _
e 7 cenowsey ' DriNCipaux 0,25
etudiant — o B —
05 " Remplire les fichesde . .~ o . “<Systems>
' { - o] . -_____.-.. i
_ son choix de cours ,,e)'" el Indiquer trois cours N Sys defacturatmn
—— cnopgzss T Supplementaire
0,25 0,25

Page 3/2

Université de Ghardaia
Faculté des Sciences et Technologies
Département des Mathématiques et de I’Informatique
3¢ Année Licence
Module: Génie logiciel
Année Universitaire 2022-2023

[Examen Final (les téléphones portables sont interdits) Durée : 01 h 30 }

Exercice (Etude de cas)

Nous souhaitons modéliser le systeme de gestion des revues nationales. Chaque revue est décrite par
un code unique, un titre, une adresse, un site web et un type, pouvant étre scientifique, politique ou

sportive.

Chaque revue est dirigée par un rédacteur en chef, qui est un journaliste, et emploie un certain nombre

de journalistes ainsi que d’autres fonctionnaires (administrateur du systéme, comptable, infographe....).

Chaque fonctionnaire est identifié par un numéro et décrit par son nom, prénom, date de naissance,

adresse, téléphone et email. Nous distinguons deux types de journalistes : permanent et correspondant.
Un rédacteur est un journaliste permanent. Un journaliste permanent est attaché a une seule revue.

Un journaliste écrit des articles. Un article est publié dans un seul numéro d’une revue donnée. Un
numeéro d’une revue est composé d’un certain nombre d’articles. Il est identifié par un numéro unique

et est décrit par le mois et I’année de publication.

Un article est caractérisé par un code unique, un titre, un domaine, un théme, et un contenu.

Seuls les journalistes permanents peuvent faire des interviews avec différentes catégories de
personnalités. Chaque interview faite par un journaliste donné avec une personnalité donnée, ne
pourra apparaitre que dans un seul numéro de revue. Une personnalité sera décrite par un numéro

unique, son nom, prénom, fonction, domaine d’intérét, adresse et email.

En plus a cette description, I’analyse des besoins a fait ressortir un ensemble de fonctionnalités, dont

les suivantes :

Le rédacteur en chef a la responsabilité de gérer le recrutement de son personnel, de choisir les articles
gui seront publiés et d’en sélectionner les numéros de revue correspondants. Il peut refuser la
publication d’un article donné pour un certain motif. Ceci dit, dans le cas ou la revue recoit de
nombreuses appréciations de la part de ses lecteurs concernant un article donné, le rédacteur en
chef peut décider de publier une extension a cet article. Ce dernier sera identifié par un nouveau

numéro mais tout en gardant le lien vers [I’article d’origine.

Chaque journaliste peut consulter tous les articles publiés, proposer un article au rédacteur en chef,

porter des mises a jours sur I’article avant sa publication.

Page 1/ 2

Le systéme donne la possibilité aux lecteurs de commander en ligne un numéro de revue donné sous

le format papier. Deux types de lecteurs sont distingués : abonné ou non (lecteur occasionnel) :

- Une réduction de 10% est faite au profit des abonnés. L’abonné s’identifie par son numéro de
carte d’abonnement et sélectionne le(s) numéro(s) commandé(s). Puis, il procéde au payement en
ligne en faisant entrer son numéro de carte bancaire. Une fois avoir Vvérifié le solde de
I’abonné, ce dernier pourra récupérer sa commande qui lui sera livrée par un agent de livraison.

- Par contre, si le lecteur n’est pas abonné a la revue, alors il devra entrer aussi dans le systéme son
nom et prénom ainsi que son adresse et son email et procéder aux mémes étapes décrites ci-dessus

(payement en ligne...).

Une fois la commande est arrivée a destination, le lecteur procéde a la vérification. Dans le cas ou
ce dernier (abonné ou non) trouve des problemes dans sa livraison (exemple : erreur de numéro de

revue) alors il pourra signaler et demander une autre livraison.

De plus, les lecteurs non abonnés ont la possibilité de télécharger les versions numériques
correspondantes aux numéros de revues qu’ils ont payées, alors que les abonnés peuvent télécharger
toutes les versions publiées sur le site.

La sécurité des données est un aspect important, pour cela afin de garder une tracabilité et des
accés personnalisés au systéme, tous les employés doivent s’authentifier avant d’effectuer toute
opération.

Questions:

1) Tracer le diagramme de cas d’utilisation. (10 points)

2) Tracer le diagramme de classe. (10 points)

Page 2/ 2

Université de Ghardaia
Faculté des Sciences et Technologies
Département des Mathématiques et de I’Informatique

37 Année Licence
Module: Génie logiciel
Année Universitaire 2022-2023

[Examen Final (Corrigé type)

Durée : 01 h 30 }

Diagramme de cas d’utilisation:

Systéme de gestion des revues 0.5
1 !ﬁ Geérer recrutement ™
S] 05— — — "
B
] —
F— _— N B e _L\
VAN \\ Choisir article .
: 05— N
R'EdaCtE ren Eth -H""H-\.., e T "_\\ << ncludes=
= anl - . & e
Selectionner numero de e X
0.5 revue) ‘| noludess ", +
0.5 —_ —— . e e
S T) 0.5
— e Hnelydess ., - AN
_ H_J\ Consulter article e e A f"ff; Secondary>>
-] = —— i i . " L~ _ i A“--.__‘ . -
g Db T —— sinclies._ 27 Authentification Sys info revue %
——] [—_— o I—— ' -)
P \ [Proposer article Y B 0.75
Journaliste 05— e - i
\ _-shcludess /_--" !
0-5 ""'_-AAA‘I-IH—E_'ET_I"E a jour a:rt;[:E T ~Seinclude> { <<includes
{)] - '
S = i 0.5
0.5 e —_ T
e (" Payer
o |« Signalerun probléme et — |)
—— Iy T II “‘\—-.______
0.5 L Y =<Extend=>
FAY x"xha I E—————— =7 2=includess 0.5 ! FAY
Lecteur H‘“‘w Commander numérode ™, e b <<Secondarys>
0.5 Te— rewe ¢~ Telecharger numérode Sys banquaire
- 5 — rewe — 0.75

Page 1/ 2

Diagramme de classe:

Revue 0.25 emploi 0.75 Fonctionnaire 4 0.25 |aAdministrateur
0.5 | + Code :integer 1 + | + Num : integer gUEiama
+ Titre - string + Mom : string 0.25
+ Adresse : string 1 attaché 0.25 | + Prénom : string
+ Siteweb : string + Date naissance - stning -
+ Adesse : stnng
il a 0.25 + Email : string 1 0.25 Infographe
. + Login()
sclentitue | o
0.25 0.25 ﬁ “;2:
1 ournalis
Rédacte hef ! 0-25 025
i 1 +Cree Correspondant |
_ Pen@ i Cansrl?lté{} = Correspondant
0.75 | + Selectionner() 1.* + Proposer()
+ Refuser() 0.75
0.25 pEaEiEr() 1,
0-25 0.25 0-25 ecrit Article
Personalité 1| * Code : integer
+ Num : integer L Numéro de revue + Titre : string
+ Mom : sining - e itr » - |t Domaine : stnng
0.75 | +Prénom : string Interview apparafre : :la';n; ; g:r?;r 0.75 + Théme : string
agction - string : 0.25 1| + Année : integer) R ; Sliing
+ Domaine : string - + Supprimer()
+ Adresse : string + Modifie
+ Email : strning 0.75 0
0.75

Page 2/ 2

Université de Ghardaia
Faculté des Sciences et Technologies
Département des Mathématiques et de I’Informatique
3 Année Licence
Module: Génie logiciel
Année Universitaire 2022-2023

Examen TD

Durée : 01 h 30]

Exercice n° 01 : (06 points)

L'analyse d'un systéeme, qui permet d'écouter de la musique en streaming sur internet, a permis
d'obtenir le tableau des exigences suivant:

N° Exigence Type (F, NF)
1 | Le systéeme doit permettre de jouer de la musique.

2 | Le systeme doit permettre de chercher une musique.

3 | Le systeme doit permettre de démarrer la musique dans les 2 secondes suivant un clic.
4 | Le systeme doit permettre de créer une playlist.

5 | Le systeme doit permettre de baisser et augmenter le volume

6 | Le systeme doit avoir une belle IHM, ergonomique et pratique a utiliser.

7 | Le systeme ne doit pas permettre d'utiliser plus de 50% de la bande passante

8 | Le systeme doit permettre une consommation raisonnable du temps de CPU.

9 | Le systeme doit permettre la lecture de la music depuis URL.

10 | Le systéme doit gérer la plupart des formats connus et utilisés sur I’internet.

11 | Le systeme doit permettre d'activer I'égaliseur de son.

12 | Le systeme doit permettre de répéter une musique.

On vous demande d'aider les développeurs de ce systeme a trier les exigences selon leur nature

(F : fonctionnelles ou NF : non-fonctionnelles).

Page 1/ 2

Exercice n°® 02 :(04 points) Soit les diagrammes de séquence objet (a,b,c et d) liés au
diagramme de classe suivant :

mi}

no 1 I 0.1 1 jao

| pil

mi(]

(c)

=
m

(a) qi)

€

chject

pll

mij

mi(}

(b) (d) '

- Est-ce que ces diagrammes sont corrects ?

Exercice n° 03 : (10 points)

Un systéme va étre développé pour controler N ascenseurs dans un batiment de M étages. Notre
probléme concerne la logique nécessaire au déplacement des ascenseurs entre les étages en

accord avec les contraintes suivantes:

chaque ascenseur posséde un ensemble de M boutons, un pour chaque étage. Un bouton s’allume
lorsqu’il est appuyé et provoque le déplacement de I’ascenseur vers I’étage correspondant.
chaque étage, a I’exception du premier et du dernier, possede deux boutons, un pour demander la
montée et un pour demander la descente. Ces boutons s’allument lorsqu’ils sont appuyés. Ils
s’éteignent quand I’ascenseur arrive a I’étage, et celui-ci se déplace ensuite dans la direction
demandée.

guand un ascenseur n’est pas requis, il reste a I’étage ou il se trouve et ferme ses portes.
Questions :

Décrire a I’aide d’un diagramme de séquence le scénario suivant:

e requéte d’ascenseur depuis I’étage

Page 2/ 2

Université de Ghardaia
Faculté des Sciences et Technologies
Département des Mathématiques et de I’Informatique
3 Année Licence
Module: Génie logiciel
Année Universitaire 2022-2023

[Examen TD Correction

Durée : 01 h 30]

Exercice n° 01 : (06 points) 0,5 x 12

Exigence Type (F, NF)
1 | Le systeme doit permettre de jouer de la musique. F
2 | Le systeme doit permettre de chercher une musique. NF
3 Lg systéme doit permettre de demarrer la musique dans les 2 secondes suivant un NF
clic.

4 | Le systéme doit permettre de créer une playlist. F
5 | Le systeme doit permettre de baisser et augmenter le volume F
6 | Le systeme doit avoir une belle IHM, ergonomique et pratique a utiliser. NF
7 | Le systeme ne doit pas permettre d'utiliser plus de 50% de la bande passante NF
8 | Le systéme doit permettre une consommation raisonnable du temps de CPU. NF
9 | Le systeme doit permettre la lecture de la music depuis URL. F
10 | Le systéme doit gérer la plupart des formats connus et utilisés sur I’internet. F
11 | Le systéeme doit permettre d'activer I'égaliseur de son. NF
12 | Le systéeme doit permettre de répéter une musique. F

Exercice n° 02 :(04 points) (01x 4)

(@), (b) et (d) sont incorrects, (c) est correct.

Page 1/2

Exercice n° 03 : (10 points)

j; r:Passager

1

| j: r1: Button étage|

| ‘—;t r2 : Controlleur ascenseur|

+ 02 points : (concernant les regles du diagramme de séquence, type des

Appuyé 1 Metire 3 jour i 0,25 1 0,5
0,5 0,5
Allurmer !
Déplacer 0,5 i
0,5 >
étage afteint 0,5
Immobilser
éteindre
0,25
0,5
Ouvrir
0,5
Fermer

- r4:Porte

messages, la barre d’activation,...etc)

Page 2/ 2

0,5

Université de Ghardaia
Faculté des Sciences et Technologies
Département des Mathématiques et de I'Informatique
F™¢ Année Licence
Module: Génie logiciel
Année Universitaire 2022-2023

[Examen Final (les téléphones portables sont interdits) Durée : 01 h 30 }

Exercice (Etude de cas)

La société de transport collectif 'DZBus' a fait appel a une entreprise de développement pour
informatiser la gestion de son activité. Le systeme a développer est une application web appelée
"LogiLigneBus". La société a exigé que le futur site soit compatible avec le plus grand nombre

de navigateurs web sur le marché.

La sociéteé 'DZbus' posséde un parc de bus et emploie un responsable d'exploitation. Ce dernier
devra a travers le systéeme affecter des chauffeurs a différents bus et différentes lignes. Chaque
ligne est une suite d'arréts, pour chaque arrét, le responsable d'exploitation fixe les heures de
passages du bus. Les chauffeurs peuvent consulter et éventuellement imprimer leur activité de la
journée. L'activité d'un chauffeur est constituée d'un ensemble de créneaux et de lignes

correspondantes affectées.

Les chauffeurs peuvent demander un changement de ligne, pour cela, le chauffeur se connecte au
systeme via son compte et choisit I'opération « émettre une demande de changement ». Le
systeme lui retourne une fiche a remplir. Le chauffeur renseigne la ligne actuelle et choisit entre
deux types de lignes : ligne interwilaya ou inttawilaya . Si le type choisi est interwilaya le
chauffeur doit choisir la wilaya désirée et doit accompagner sa demande d'une autorisation
délivrée par la wilaya. Si la ligne est intrawilaya une liste de lignes est ensuite retournée. Le
chauffeur sélectionne la ligne désirée. Le systeme enregistre sa demande et affiche un message de

confirmation.

Dans tous les cas, la demande de changement reste en attente jusqu'a ce quelle soit traitée par le
responsable d'exploitation qui peut soit accepter ou refuser. Dans le cas de refus, il doit

impérativement justifier le refus.

1. Dessiner le diagramme de cas d’utilisation. . (10 points)

Page 1/ 2

2. Etablir le diagramme de classes du domaine en considérant la description du systeme et les

informations additionnelles suivantes : . (10 points)

e La société utilise des bus. lls sont identifiés par un numéro unique et on conserve leur
capacité en nombre de passagers.

e Les chauffeurs sont identifiés par un numéro unique. Les informations les concernant sont
leur nom, prénom, téléphone et adresse

e Les chauffeurs peuvent potentiellement conduire tous les bus, mais un
Chauffeur n'est affecté qu'a un seul bus par jour.

e Les différentes lignes de bus portent un numéro et sont constituées par une séquence

d'arréts. Chaque arrét est défini par un numéro unique et ses coordonnées géographiques.

Page 2/ 2

[Examen rattrapage -correction

Affecter des chauffeursx) 0.5
_o-/ N""\\

y

- o5 - —_ e
A Traiter des demﬂndeh Mo e
I\ . T, T
; ! s - - e
Responsable i ! . R “"\..____ff\nclude» e
d'exploitation o | ", e -
_-’/ i _\ """"—-__‘_____ sneldesr e, . e,
i <dExtends®, R -
0,5 «slncludes> E .

-
/
+%Extend>>

o @‘“ﬁ s
- = SEl 0.5
attente *\) -j)

Accepter 7 .,
@ 0.5 f‘

5 ’ = ki B _‘—-—1\
| cdincludess __;/"______ Authentification P
fr<<\ﬂclud2>> Justifier s -
05 C Dos i
— T S - <lncludes>
Créerunedemandedex\\ ------ S
//
= 0.5
%,
|

!
<<Inc|ude>>// /

| wngluders
=sinclude>s hS

£ i

¢

y Choisir
i “Ewendsr

_\ _

/J ! 'y interwilaya

' ’ N PRI \\ " <<\nclude>;\"'\-\
| Enregistrer Iaw Afficher 3 Choisir la ligne /\ g
A !)
A demande o conﬁnnai:on}/ e 9-__‘

Chauffeur - - "
0.5

0.5 0.5
0.5

T
Envoyer
autorisation

.,
n,
<sExtends> N

.

0.5

e Selectionnerx\)
elneludes> laligne -

Choisir
intrawilaya

+ Mom : string

Utilise

1

+ N* Ligne ; integer

1.7

Arrets

+ N® Amrets : integer
+ X integer
+Y :integer

Page 2/ 2

1
Conduit 1
Bus Chauffeur
+ N° Bus : integer) " | + N° Chaffeur : integer
« | * Capacité : integer + Mom : string
- bus Affecter 1 + Prénom : sting
T + Téléphone : integer
0.1 i 0.1 4 Adresse : string
3 Affectation
+ Jour : date
. + N* Chafleur : integer 2
+ N* Ligne : integer
Ligne + N* Arrels : integer

Université de Ghardaia 3éme Année Licence
Faculté des Sciences et Technologies Module: Génie logiciel
Département des Mathématiques et de ’'Informatique Année Universitaire 2023-2024

[Examen Final (les téléphones portables sont interdits) Durée : 01 h 30 }

Questions de cours : (02pts)

1. Quelle est la différence principale entre le diagramme de séquence systéeme et le
diagramme de séquence objets ?
2. Donnez deux diagrammes UML utilisés en phase de spécification ?

Exercice 1: (10 pts)

Considérons le systeme d’un distributeur automatique de boissons (café, jus, thé,..etc). La
machine délivre a I’utilisateur la boisson qu’il a sélectionné si ce dernier a introduit une somme
d’argent suffisante (en espéce ou carte bancaire). Dans le cas du liquide, La machine rend
éventuellement la monnaie suivant le stock de piece dont elle dispose. Dans le cas du paiement
avec une carte bancaire, la machine connecte le systeme d’information de la banque. Lorsque le
stock de boisson n’est pas suffisant, la machine informe I’entreprise chargée de sa maintenance
par le biais d’une connexion électronique. Un opérateur de maintenance est alors envoyé par
I’entreprise pour le renouveler et récupérer I’argent liquide. Le client achete une boisson de la
facon suivante : il entre son choix en sélectionnant une boisson dans un menu, introduit de
I’argent dans le lecteur de billets ou le monnayeur électronique multi-pieces., le distributeur
délivre a I'utilisateur la boisson choisie. Le distributeur est trés sophistiqué et est relié a un

systéme bancaire et accepte ainsi un paiement par carte bancaire.
Question 1 : Dessinez le diagramme de cas d’utilisation.

Question 2 : Mohammed qui est un opérateur de maintenance du distributeur de boissons se sert
aussi de la machine pour acheter un café. Pour modéliser cette activité de Mohammed, doit-on
modifier le diagramme précédent (corresponde la question 1) ?. Si la réponse est oui, donc

rajoutez cette modification au diagramme.

Question 3 : La machine est dotée d’un bouton d’annulation permettant d'annuler I’achat de la
boisson. Dans ce cas la somme d’argent est retournée au client. Rajouter ce cas d’utilisation a
votre diagramme.

Exercice 2: (08 pts)

Une académie souhaite gérer les cours présentés dans plusieurs écoles. Pour cela, on dispose des
renseignements suivants :

Page 1/ 2

« Chaque école posséde d’un site Internet.

» Chaque école est structurée en départements, qui regroupent chacun des enseignants
specifiques.

« Un enseignant se définit par son nom, prénom, tél, mail, date de prise de fonction et son indice.
 Chaque enseignant n’enseigne qu’une seule matiere.
* Les étudiants suivent quant a eux plusieurs matiéres et recoivent une note pour chacune d’elle.

* Pour chaque étudiant, on veut gérer son nom, prénom, tél, mail, ainsi que son année d’entrée au
college.

» Une matiere peut étre enseignée par plusieurs enseignants mais a toujours lieu dans la méme
salle de cours (chacune ayant un nombre de places détermine).

* On désire pouvoir calculer la moyenne par matiere ainsi que par département.

» On veut également calculer la moyenne générale d’un éléve et pouvoir afficher les matiéres
dans lesquelles il n’a pas été noté.

« Enfin, on doit pouvoir imprimer la fiche signalétique (nom, prénom, tél, mail) d’un enseignant
ou d’un éléve.

Question : Elaborez le diagramme de classe (visibilités des attributs et les types des données
n’sont pas obligatoires).

Page 2/ 2

Université de Ghardaia
Faculté des Sciences et Technologies
Département des Mathématiques et de ’Informatique

3éme Année Licence
Module: Génie logiciel
Année Universitaire 2023-2024

[Examen Final (Correction)

Durée : 01 h 30 30

Questions de cours : (02pts)

1. Diagramme de séquence systeme (vue externe) / séquence objets (vue interne). (01pt)
2. Diagramme de cas d’utilisation, de séquence ou d’activité. (01 pt)

Exercice 1: (10 pts)

Question 1:
Distributeur de boisson
0.75 0,75
y — 0,5 -__F'—-“ '
A d © Acheterune Ny .- ajrer—-r_ ' Ad
—] ""*____ boisson __ edinclude>s !
Client i 0.5 /ﬂf info Bancaire
> | 0,5 ’
0,5 @ 0, ! yd 0,75
’:nn;;ierr;t:ﬂha}, (i Payer en) .;"""(aneravec CEI'T;--_-H"':.
- . liqude _~ “~__ bancaire _~
0,75 0,75 0,75
0 Rempirkestock) 0,75
Opérateur de maintenance [
0,75 (" Viderlacaisse) 0,75

Question 2 : Non, aucune modification n’est nécessaire. 0,75

Exercice 2: (08 pts)

Page 1/ 2

Ecole
+ Code : integer

+ Add_site : sting [
+ Nom : string

Salle

+ N°Salle : integer
+ Nom_Salle : string
+ Capacité : foat

1

Se déroule dans

Enseigner

i 1

Matiére

+ N° Cours : integer

Département Personne
+ Code : integer + N° personne : integer
n + Nom : string + Nom : string
- , + Prenom : string
fleer My () + Tel : integer
A + Mail : string
+ Aficher_Fiche_Signalétique()
g R o
Enseinnﬁnt
+ Date_Prise_Fonction : date
+ Indice : integer
1.*
Etudiant
Suivre + Année_Entrée : integer
- | + Calculer_Moy_Etud()
+ Afiicher_Mat_Sans_Notes()
i Note
+ Note_controle : foat

+ Libellé_Cours : string

+ Calculer_Moy_C()

Page 2/ 2

Université de Ghardaia
Faculté des Sciences et Technologies Module: Génie logiciel
Département des Mathématiques et de Examen TD
yi’lzﬁnqmggue Durée : 01 h 30
e ee Liceace . ol o e * - .
Année Universitaire 2023-2024 | ol pL] JUidl) Ldilgll Jlaxia @ ghas

Exercice n° 01 :(08 points)

Le dessin ci-dessous représente des figures (triangles, carrés
ou cercles) emboités. Les triangles contiennent une ou
plusieurs figures. Les carrés ne contiennent rien. Les cercles
contiennent exactement une figure. Les figures possédent

des « cotés ». On dira que les cercles ont un seul coté, les

triangles trois cotés et les carrés quatre cotés.

Travail a faire :

1- Modéliser un diagramme de classes correspondant a la figure. Le diagramme comprendra les

classes "Figure", "Cercle", "Carr¢", "Triangle" et "Coté" et des associat;ons a déterminer.

s

2- Placer les ordres de multiplicité (de cardinalités) sur ce diagramme.

Exercice n® 02 : (12 points)

La société de transport collectif 'DZBus' a fait appel & une entreprise de développement pour
informatiser la gestion de son activité. Le systéme a développer est une application web appelée
"LogiLigneBus". La société a exigé que le futur site soit compatible avec le plus grand nombre
de navigateurs web sur le marché.

La société 'DZbus' posséde un parc de bus et emploie un responsable d'exploitation. Ce dernier
devra 4 travers le systéme affecter des chauffeurs a différents bus et différentes lignes. Chaque
ligne est une suite d'arréts, pour chaque arrét, le responsable ,""exploitation fixe les heures de
passages du bus. Les chauffeurs peuvent consulter et éventuellement imprimer leur activité de la
journée. L'activité d'un chauffeur est constituée d'un ensemble de créneaux et de lignes
correspondantes affectées.

Les chauffeurs peuvent demander un changement de ligne, pour celé, le chauffeur se connecte au
systéme via son compte et choisit I'opération « émettre une demande de changement ». Le
systéme lui retourne une fiche a remplir. Le chauffeur renseigne la ligne actuelle et choisit entre
deux types de lignes : ligne interwilaya ou intrawilaya. Si lz type choisi est interwilaya le
chauffeur doit choisir la wilaya désirée et doit accompagne. sa demande d'une autorisation
délivrée par la wilaya. Si la ligne est intrawilaya une liste d= ignes est ensuite retournée. Le
chauffeur sélectionne la ligne désirée. Le systéme enregistre sa demande et affiche un message de
confirmation. ' @

Dans tous les cas, la demande de changement reste en attente jusqu'a ce qu’elle soit traitéc par le
responsable ~ d'exploitation qui peut soit accepter ou refuser. Dans le cas de refus, il doit

impérativement justifier le refus.

- Tracer le diagramme de cas d'utilisation.

Page 1/2

Université de Ghandaiz
Faculté des Scieaces et Technologies Mecdule: Génie logiciel
Département des .M:th.émna'qucs etde Examen TP
yn{:j;’;ﬁ‘v:"gj?z;m ¥ o Durée : 01 h 30
née Lic i Cati . b . ’
Aanée Unfversitaire 2023-2024 Slaiay) sl JULH Cilgd) et £ siaa

Exercice n° 01 : (10 points)
ité en utilisant les couloirs d’activités pour décrire la connexion d'un

Construire un diagramme d'activ
eurs: le client, le démon SSH (i.e. le serveur logi'éiel) et la

client & un serveur SSH. On consideére trois act

machine serveur. Une fois la connexion établie entre le client et le serveur, le démon demande un mot de

nexion ne soit rompue (déconnecté).

passe au client, ce dernier dispose de trois tentatives avant que la con

euses sont cnregistrées dans un fichier sur le sereur. Une fois l'identification faite,

Les tentatives infructu
peut alors saisir des commandes qui sont interprétées

un terminal est ouvert et l'utilisateur par le démon et

exécutées sur le serveur. La commande exit déconnecte le client du serveur,
Exercice n° 02 : (10 points)

Soit & représenter le diagramme d’état-transition d’un objet personnel en suivant les

événements de gestion depuis le recrutement jusqu’a la mise en retraite, Aprés le recrutement,

¢ considérée en activité dés sa prise de fonctions dans I’entreprise.

les événements : congé de maladie ct prise de congé annuel.

une personne es Au cours de sa

carriére, nous retiendrons seulement
En fin de carriére, nous retiendrons deux situations : la démission gt la retraite.

Page2/2

Univetsité de Ghardaia

PInformatique
3me Année Licence

Faculté des Sciences et Technologies
Département des Mathématiques et de

Année Univetsitaite 2023-2024

Module: Génie logiciel
Examen TD
Durée : 01 h 30

Cladiay) s JU Ciilgd) Jlaniud £ giaa

Exercice n° 01 :(08 points)

contient 1 Figure
asx [ors T
0.25
0.5
0.5
Cercle Carre
— 075 — — 075 —]
0.25
0.25
0.25 | 4
0.25
Cote

Page 1/ 2

0.25

3 o025

contient

0.25

Tnangle
0.75 —

0.25

Exercice n° 02 : (12 points)

h-""x.,._.

: 0.75 e
e —
Traiter des demandes 5 —— I

Responsable 0.75 e
dexploitation e

o

0.75 T e |

Créer une demande de
changement

ir I3 igne &
. 0.5
0.5 et 0.5

Page 2/ 2

Exercice n° 01 : (10 points)

Cliens Démon Serveur
0.25
’ 0.25
;: 0.75
o . " ra LE T,
| Connecter | { Connecier |
0.25 a: < 0.25 — ~
'y 0.75
i " Demander -\H
". _mul de passe ¥
0.25 siwr 0.25
b matde passe)/ v
O Verifier
h_ mot ﬂfpiﬂ_/
0.25
0.5 Virwelike] 2
“ ¥ 0.25
0.75 o vete! (Earegrer
+ B] v] Nep Ignlfllu _/I
L {J’J.I'Il'i'l'lﬂmiﬂli\l {/Ulnrirtrminl;\I .
0.25 i'. 2 0.25 ' Py [rentcmive < 3
T 0.75 y 0.5
- 7 | | termasive = 3]
Hfinlsirwmmndc\l 3 /
0.25 — |"/-in|:rrplitrr_\ =
__mmmandu_/ i L4
0.25 7 Exée ~
’/ I_ m:nn:lr:e 0'25
/ I .
.'I Joletsenia i, i é
! 0.5
7 . 0.75
[f Déconnecter | (— Déconnecter |
0.25 I 0'25 l) ™ waexion
¥ x 0.75 |
() 0.25

Page 3/2

Exercice n° 02 : (10 points)

‘___{‘,, e il Et J»--— — ———3']-

0.5

- r—

0.75

% 0.5
0.5
0-5 1"'

g .l.-—-u-.'

!F [
0.75 'L ::‘.;_l.w 'Ll!', .4

0.5

,L.ms onval
0.5

Filll.s? EIE 1!?'\1:'

0.5 (lede

.

!

|
i—— ““'M

I_,J_'-1I

=

0.5

o
L en e
0.75

Page 4/ 2

shiwre | 075

wise emle! qite
0.5
Phse.l'lqi. iu’“'-g_l!:f .ﬂ‘i"'&ﬂ'-'l

o 'I__‘J_ 3
”EJ(_ deeise

0.5

i e
En .:gu-!.li_ kil aii, .".31".‘,

0.75

A5y

BIBLIOGRAPHY

Bibliography

[1] Scott Ambler. The Elements of UML(TM) 2.0 Style. Cambridge University Press, 2002.
[2] RAJIBMALL. Fundamentals of software engineering. PHI, 2014.

[3] Robert C. Martin. UML for Java Programmers. Eyrolles, 2003.

[4] Pascal Roques. UML 2 en action: De I'analyse des besoins a la conception. Eyrolles, 2011.
[5] Doug Rosenberg. Use case driven object modeling with UML. Springer, 1999.

6]

Ian sommerville. Software Engineering. Pearson, 2016.

W

	Introduction
	Brief History and Scope of the Subject
	Pre-Requisites
	Course Objectives
	Course Outcomes
	Introduction to Software Engineering
	Terminology
	The evolving role of software
	Positive impacts of software
	Impacts of low-quality software
	What makes software development difficult and complex?
	Software crisis
	Reasons for low software quality
	The challenges of software quality
	Software quality criteria
	Exercices and solutions

	The Software development life cycle
	What is SDLC ?
	Feasibility study (Why?)
	Requirement analysis and specification (What?)
	Design (How ?)
	Programming
	Validation and verification
	Maintenance

	SDLC model
	Linear models
	Incremental models
	Iterative models
	Agile model
	Priorities for agile methods

	Classic vs Agile models
	Exercises and solutions

	Software Modeling
	Use Case diagram
	Actor
	Use cases (UC)
	Textual description of use cases

	Exercices and solutions
	Sequence diagram
	Types of sequence diagrams
	Elements of sequence diagrams
	Message types
	Case study (ATM)
	Combined fragments

	Exercices and solutions
	Class diagram
	Class
	Object

	Relationship between classes
	Inheritance(Generalization/Specialization)
	Association
	Aggregation
	Composition
	When to use a composition rather than an aggregation ?.
	Abstract class
	Interfaces

	Exercices
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7

	Object diagram
	Exercices and solutions
	Object sequence diagram
	Elements of an object sequence diagram

	State-transition diagram
	Status
	Transition
	Event
	Time event
	Action
	Using state-transition diagrams
	Composite states
	Orthogonal state
	Internal actions, activities and events

	Exercices and solutions
	Exercice 1: Digital Pets
	Exercice 2:Chess game

	Activity diagram
	Start state and end state
	Activities
	Transition

	Exercices and solutions
	Exercice 1

	Component and deployment diagram
	Component diagram
	Deployment diagram

	Exercices and solutions
	Exercice 1:-The Smarteam application-
	Exercice 2

	Exams with Answers
	Bibliographie

