
Academic year: 2025-2026

3rd Year License Computer Science (LMD)

People`s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research 
Faculty of Science and Technology
Department of Mathematics and Computer Science
University of Ghardaia

Course Handout
Software Engineering

Dr Ahmed Saidi





CONTENTS

Contents

Introduction 1

Brief History and Scope of the Subject 1

Pre-Requisites 1

Course Objectives 1

Course Outcomes 1

1 Introduction to Software Engineering 2
1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The evolving role of software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Positive impacts of software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Impacts of low-quality software . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 What makes software development difficult and complex? . . . . . . . . . . . 4
1.6 Software crisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Reasons for low software quality . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8 The challenges of software quality . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.9 Software quality criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.10 Exercices and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The Software development life cycle 10
2.1 What is SDLC ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Feasibility study (Why?) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Requirement analysis and specification (What?) . . . . . . . . . . . . . 11
2.1.3 Design (How ?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.5 Validation and verification . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.6 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3/124



CONTENTS

2.2 SDLC model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Incremental models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Iterative models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Agile model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 Priorities for agile methods . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Classic vs Agile models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Exercises and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Software Modeling 24
3.1 Use Case diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Use cases (UC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Textual description of use cases . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Exercices and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Types of sequence diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Elements of sequence diagrams . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Message types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.4 Case study (ATM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.5 Combined fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Exercices and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.2 Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Relationship between classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.1 Inheritance(Generalization/Specialization) . . . . . . . . . . . . . . . . 50
3.6.2 Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.3 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.4 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.5 When to use a composition rather than an aggregation ?. . . . . . . . . 59
3.6.6 Abstract class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.7 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.1 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.2 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7.3 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7.4 Exercise 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7.5 Exercise 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4/124



CONTENTS

3.7.6 Exercise 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.7 Exercise 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Object diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.9 Exercices and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.10 Object sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.10.1 Elements of an object sequence diagram . . . . . . . . . . . . . . . . . . 69
3.11 State-transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.11.1 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.11.2 Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.11.3 Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.11.4 Time event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.11.5 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.11.6 Using state-transition diagrams . . . . . . . . . . . . . . . . . . . . . . . 74
3.11.7 Composite states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.11.8 Orthogonal state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.11.9 Internal actions, activities and events . . . . . . . . . . . . . . . . . . . 77

3.12 Exercices and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.12.1 Exercice 1: Digital Pets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.12.2 Exercice 2:Chess game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.13 Activity diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.13.1 Start state and end state . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.13.2 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.13.3 Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.14 Exercices and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.14.1 Exercice 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.15 Component and deployment diagram . . . . . . . . . . . . . . . . . . . . . . . 89
3.15.1 Component diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.15.2 Deployment diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.16 Exercices and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.16.1 Exercice 1:-The Smarteam application- . . . . . . . . . . . . . . . . . . . 93
3.16.2 Exercice 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Exams with Answers 96

Bibliographie 124

5/124



Introduction

Introduction

Scope of the Subject
Software engineering is a discipline of computer science that applies scientific knowledge
to build cost-effective solutions for computing and information processing challenges. It fo-
cuses on developing software systems that benefit humanity. This course teaches the prin-
ciples of software engineering, including system requirements, engineering compromises,
design, coding, and testing techniques, team software development, and tool application.

Course Pre-Requisites
■ Familiarwith the fundamental concepts ofAlgorithms, information systems, and object

oriented programming (OOP).

Course Objectives
■ Learn object modelling with the universal language UML

■ Illustrate basic taxonomy and terminology of software engineering.

■ Plan and monitor the control aspects of the project.

Course Outcomes
■ Understand how software is built.

■ Be able to understand a customer needs and follow a software development process.

■ Develop software development skills.

1/124



Chapter 1 . Introduction to Software Engineering

Chapter 1
Introduction to Software Engineering

1.1 Terminology
• Model: representation of something or simplification of reality using a modeling lan-

guage. Modeling languages can be classified as Formal modeling languages like math,
Semi-formal modeling languages like graphs and diagrams, or informal modeling lan-
guages such as pseudo code or natural language (Figure 1.1).

Figure 1.1: Example of models

• Process: A series of successive steps.

• Engineering: A set of methods, techniques, and tools dedicated to the design, devel-
opment, and maintenance of industrial projects.

• Prototype: an early realization of a product, it’s simple to illustrate how a future prod-
uct looks (Figure 1.2).

2/124



Chapter 1 . Introduction to Software Engineering

Figure 1.2: Example of prototype

• Software engineering: apply engineering methods to the computer science field. Us-
ing the same approach, software engineering can be defined as a set of methods, tech-
niques, and tools dedicated to the design, development, and maintenance of software.

• Stakeholders: The people or groups affected by a software development project in-
side the organization. Stakeholders exist either inside or outside the organization. For
example, a customer or end user is a type of outside stakeholder, whereas a project
manager is a type of inside stakeholder.

• Software Requirement Specification (SRS) document: A document that describes
client requirements that need to be fulfilled for the successful development of the soft-
ware.

1.2 The evolving role of software
• The role of computer software has undergone significant change over the last 50 years.

• Dramatic improvements in hardware performance, profound changes in computing ar-
chitectures, vast increases in memory and storage capacity, and a wide variety of exotic
input and output options have led to the development of sophisticated and complex
computer-based systems.

• Popular books published during the 1970s and 1980s described the changing nature of
computers and software and their impact on our culture. Some of them stated that com-
puters and software caused a new industrial revolution which led to a transformation
from an industrial society to an information society.

3/124



Chapter 1 . Introduction to Software Engineering

1.3 Positive impacts of software
• It speeds up processing.

• It increases work efficiency.

• It quickly solves complex problems.

• It has incredible computing, storage, and processing power.

• It has introduced new leisure activities.

• It introduces a new social dimension.

1.4 Impacts of low-quality software
Several disasters of varying degrees of severity have been caused by software "errors":

• In 1962, a space rocket was thrown off course by a mathematical formula that had been
incorrectly transcribed into source code.

• In 1985, a machine was designed to treat the patients. Due to a bug in its software, at
least five patients died.

• In 1983, at the height of theColdWar, Soviet surveillance software detected fake ballistic
missiles being sent from the USA.

1.5 Whatmakes software development difficult and complex?
Before responding to this question, let’s know the difference between a normal product (ex:
a car) and software(Figure 1.3).

Figure 1.3: Product vs Software

4/124



Chapter 1 . Introduction to Software Engineering

Table 1.1: Product vs Software

Car Software
Concrete product Product not concrete
Product Manufactured Product developed
Components are easy to assemble and reuse Difficult to assemble or reuse
Maintenance by component replacement Maintenance by the developer itself
Development process based on machines Development process based on humans

Aswe can see, software is an abstract product developed entirely by humans. As humans,
we have always difficulty in matching between what we say and what we want(Figure 1.4).
This language barrier makes it difficult for developers to understand customer needs. Soft-
ware development difficulties can be summarized as follows:

Figure 1.4: Reasons for low software quality

• Software is invisible and not concrete.

• Software failure mainly by human mistakes.

• Difficult to measure software quality.

• Critical consequences caused by minute modifications.

• Continues updates and maintenance because of the rapidly evolving technology.

5/124



Chapter 1 . Introduction to Software Engineering

• Deployment and programming errors.
• Mainly human software failures.

1.6 Software crisis
During the 1960s and 1970s, a crisis happened in the software world, which identified many
of the problems of software development such as:

• Delivery times not respected.
• Budgets not respected.
• Does not meet user or customer needs.
• Difficult to use, maintain and upgrade.

1.7 Reasons for low software quality
• Software Complexity.
• Software is an invisible product.
• Difficult to measure software quality.
• Size of development teams.
• Lack of design methods.
• Lack of methods and tools for validation/verification phases.
• Neglect of the customer needs.
• Lack of customer involvement in the development process.

1.8 The challenges of software quality
• How to develop the right software that meets the customer’s needs ?
• What do we expect from software ?.
• What are the quality criteria ?.
• How do you make quality software ?.

6/124



Chapter 1 . Introduction to Software Engineering

1.9 Software quality criteria
Software Quality shows how good and reliable a software product is. Like any product,
the International Organization for Standardization (ISO) establishes a set of attributes to
produce high-quality software such as(Figure 1.5):

Figure 1.5: ISO 25010 software quality attributes

1. Functional Suitability: The software meets client needs and requirements.
To achieve this attribute

• Check SRS document
• Check the software functions
• Get the client’s feedback

2. Usability: The software interface must be simple and easy to use.
To achieve this attribute

• Include UI/UX designer to your team.
• Use professional design tools.

3. Performance: The software has good response time, throughput and fluidity.
To achieve this attribute

• Simplify the software.
• Check algorithm complexity (loops, recursive functions...etc.).
• Set computer requirements.

7/124



Chapter 1 . Introduction to Software Engineering

4. Reliability: The software must be fault tolerance.
To achieve this attribute

• Use software fault tolerance techniques such as: N-version programming, recov-
ery blocks, rollback recovery...etc.

5. Security: The software protects its data and controls accessibility.
To achieve this attribute

• Eliminate vulnerability from your code.
• Protect software data using cryptography and access control.
• Set user roles and permissions.
• Treat security risks at the design phase.

6. Maintainability: ease of correcting or transforming the software.
To achieve this attribute

• Check the usability, extensibility, and modularity of the software.
• Anticipate future change.

7. Portability: ease of changing the environment (hardware or software ex: OS).
To achieve this attribute

• Make software independent of its execution environment.
• Use virtual machines.

8. Compatibility: The Software must be able to interact synergistically with other soft-
ware.
To achieve this attribute

• Use middleware and API (application programming interface).
• Use standard file format (XML, TXT. . . etc.).
• Use standard communication protocols (HTTP, HTTPS. . . etc.).

1.10 Exercices and solutions
1. For each software type (video game, mail server and anitvirus), rate their quality at-

tributes (high, medium, or low).

8/124



Chapter 1 . Introduction to Software Engineering

Software Functional
Suitability Usability Performance Reliability Security Maintainability Portability Compatibility

Video game
Mail server
Anitvirus

2. What qualities does this software lack?

• The software doesn’t provide all the expected functionalities.
• Software learning is so difficult.
• Software results are sometimes erroneous.
• The software consumes a lot of CPU for seemingly simple requests.

Solutions

Software Functional
Suitability Usability Performance Reliability Security Maintainability Portability Compatibility

Video game Low High High Low Low High Low Low
Mail server High medium low High High High Low low
Anitvirus High High High High High High Low Low

1. What qualities does this software lack?

• The software doesn’t provide all the expected functionalities. Functional Suit-
ability

• Software learning is so difficult. Usability
• Software results are sometimes erroneous. Reliability
• The software consumes a lot of CPU for seemingly simple requests. Performance

9/124



Chapter 2 . The Software development life cycle

Chapter 2
The Software development life cycle

2.1 What is SDLC ?
The Software development life cycle (SDLC) is a process composed of successive and orga-
nized phases to produce a high-quality software. It’s composed of 7 phases such as:

1. Feasibility study

2. Requirements analysis and specification

3. Design

4. Programming

5. Validation and verification

6. Delivery

7. Maintenance

SDLC phases are often described in terms of

• Phase input: The results of the previous phase.

• Phase output: The results of the current phase.

• Phase Description: The problem addressed by the phase. As a result, we must
ask the following question:

What is the problem to be addressed by this phase?.

10/124



Chapter 2 . The Software development life cycle

2.1.1 Feasibility study (Why?)
This phase concerns the overall definition of the problem. We ask ourselves why we should
develop the software in the first place. In this phase, wemust find a response to the following
questions:

• Why develop the software?

• Are there better alternatives?

• How do you go about this development?

• Is there a software market?

• What resources are needed?

• Do we have the budget, personnel, and necessary equipment?

2.1.2 Requirement analysis and specification (What?)
This phase concerns the software’s functionalities. In this phase, we try to answer the ques-
tion: What functionality must the software contain?; It has the following objectives:

• Understanding client requirements.

• Establish a clear description of what the software must do (detailed functionalities,
quality requirements, interface ...etc.).

• Clarify specifications (ambiguities, contradictions) by listing functional andnon-functional
requirements.

Functional and non-functional requirements:
1. Functional requirements: Describe the important functionalities of the software. They

explain how the software must work. For example, in ATM machines, the functional
requirements are to Withdraw Money, Check Balance, Deposit Money .... etc.

2. Non-functional requirements: Describe the general properties and constraints of the
software. They are also known as software attributes. They explain how the software
should perform for example: Reliability, usability, security. . . etc.

11/124



Chapter 2 . The Software development life cycle

2.1.3 Design (How ?)
This phase develops a concrete solution to meet the software specification. In this phase, we
try to answer the question: How to translate client requirements and software specifications
into a real program?. It like a bridge between the specification and programming phases.
This phase is divided in two parts:

• Overall design: Define the main software components. For instance, to design a house
we start looking for its main parts like stairs and rooms without specifying the details
of each room.

• Detailed design: Specify the Details of each component. Back to the house example,
in the detailed design we go inside each room.

2.1.4 Programming
In this phase we translate our design into a code. It’s a coding phase, we start creating and
implementing our design into real software. Therefore, we must choose the development
environment, the programming language(s), development standards...etc.

2.1.5 Validation and verification
As its name implies, this phase is composed from two parts (Figure 2.1):

Figure 2.1: Validation and verification

• Validation: ensuring that the customer’s needs are met (in terms of the client require-
ment).

• Verification: ensuring that the software meets its specification (using the SRS docu-
ment).

12/124



Chapter 2 . The Software development life cycle

2.1.6 Maintenance
The maintenance phase is necessary after the software delivery and the client feedback.
Three types of maintenance can occur:

• Corrective: identify and correct errors found after delivery.

• Adaptive: adapt the software to changes in the environment (data format, execution
environment, etc.).

• Perfective: enhance the software performance and functionalities; improve software
maintainability.

2.2 SDLC model
SDLC models are divided into three types: linear, iterative, and incremental models.

2.2.1 Linear models
Organized sequentially with a clear distinction between steps (Figure 2.2). Among linear
models, we found :

Figure 2.2: Linear models

13/124



Chapter 2 . The Software development life cycle

Waterfall Model
This model has the following characteristics (Figure 2.3):

Figure 2.3: Waterfall Model

• The waterfall model is the most classic of all life cycles.

• Linear lifecycle with no evaluation between project start and validation.

• The project is divided into successive phases.

• Each phase corresponds to a specific main activity producing a certain number of de-
liverables.

• Each phase can only call into question the previous phase.

When we use it
• For big and complex projects, like government project.

14/124



Chapter 2 . The Software development life cycle

Advantages

1. Sequential and strict model.

2. Clear phases.

3. Highly documents.

Disadvantages

• Real projects rarely follow a sequential development path.

• Establishing all requirements at the start of a project is difficult.

• Sensitivity to new requirements: redo all the steps.

• Well-suited when needs are clearly identified and stable.

“V” Model
This model has the following characteristics (Figure 2.5):

Figure 2.4: “V” Model

15/124



Chapter 2 . The Software development life cycle

• Based on several tests. It’s a test-oriented life cycle:

• Each phase (specification, design, and coding) has a corresponding verification activity
(validation testing, integration testing, unit testing).

• Each upstream phase prepares the corresponding verification phase (verification is
taken into account at the very moment of creation).

When we use it
• Ideal when needs are well known, and when analysis and design are clear.

Advantages

• Preparing the last phases (validation/verification) with the first (requirements
analysis) avoids stating a property that cannot be objectively verified after imple-
mentation.

Disadvantages

• Are we building the right software? The software is used very (too) late.

• You have to wait a long time to find out if you’ve built the right software.

• It’s hard to get users feedbacks when usable software isn’t available only in the
last phase.

Prototyping Model
This model has the following characteristics (Figure 2.5):

Figure 2.5: Prototyping Model

16/124



Chapter 2 . The Software development life cycle

• Rapid prototype development with customers to validate their needs.

• Writing the specification from the prototype, followed by a linear development process.

• There are two types of prototype:

1. Disposable prototyping: here, the prototype of the software is created for under-
standing client needs.

2. Evaluative prototyping: here, prototype is kept throughout the development cy-
cle. It is improved and completed to obtain the final software.

When we use it
• Concrete validation of requirements, less risk of specification errors.

Advantages

• The effort required to develop a prototype is more often than not offset by the
effort saved by not developing unnecessary functions.

Disadvantages

• Quick decisions are rarely good decisions.

• Does the evolving prototype produce the required product?.

2.2.2 Incremental models

Figure 2.6: Incremental additions

17/124



Chapter 2 . The Software development life cycle

Figure 2.7: Incremental software subset

Incremental model has the following characteristics: It a step-by-step software development.
For each step, we make:

1. Incremental additions until end of process (Figure 2.6).

2. A Minimal, functional software subset (Figure 2.7).

When we use it
• When the client demands a quick release of the software

• When the requirement are superior

Advantages

• Each development is less complex.

• Integration is progressive.

• Possible delivery after each increment.

18/124



Chapter 2 . The Software development life cycle

Disadvantages

• Possible loss of the original software core;

• Possible loss of the previous increments;

• Possible errors when integrating a new increment.

2.2.3 Iterative models
Repetitive process until the software is completed and the customer is satisfied (Figure 2.8).

Figure 2.8: Iterative models

19/124



Chapter 2 . The Software development life cycle

Figure 2.9: Spiral models

Spiral models
Among iterative models we found spiral model (Figure 2.9). Spiral Model has the following
phases:

1. Customer consultation

2. Risk analysis

3. Design

4. Implementation

5. Tests

6. Planning for the next cycle

20/124



Chapter 2 . The Software development life cycle

When we use it
• For critical software, like military or medical software.

Advantages

• Better risk management

Disadvantages

• It is not suitable for smaller projects.

• All the system architectue is dependent upon the risk analysis phase.

2.2.4 Agile model
The agile model combines incremental and iterative approaches. This model overcomes the
rapid development of the technological environment and the instability of client require-
ments. Classic models expect the client to provide a detailed, validated expression of its
requirements, which leads to a mismatch between the initial client requirements and the
final software. The origin of agile models is linked to:

• The instability of the technological environment;

• The fact that customers are often unable to define their needs exhaustively at the early
stage of a project. Thus, the term “agile” refers to the ability to adapt to contextual
changes and specification modifications during the development process. Objectives
of the agile model are:

• Accelerate the software development process by:

1. Developing a minimal version (incremental and prototype approach);
2. Integrating functionalities through an iterative process based on listening to the

client and testing throughout the development cycle.

• Client satisfaction must be at the heart of every company’s strategy.

• Include the client throughout the project realization process. (All agile methods apply
this principle).

21/124



• Chapter 2 . The Software development life cycle

Agil models focus to:

– Get regular feedback so you can apply any necessary changes directly;
– Speed up software development.

2.2.5 Priorities for agile methods
• People and interactions are more important than processes and tools;

• Priority to code production over massive documentation;

• Collaboration with clients is preferable to contractual negotiation (the client must be
able to provide continuous feedback on the software’s adaptation to his expectations);

• Response to change is more important than following a flexibility and adaptation plan.

2.3 Classic vs Agile models

Classic Agile models
Strict models Incremental and iterative models
Very clearly defined steps Small, frequent deliveries
Extensive documentation Emphasis on code and less on documentation
Works well with large government projects Suitable for small and medium-sized projects

2.4 Exercises and solutions
• Compare between waterfall, spiral, and V models.

• How to avoid low-quality software development?

• What is the purpose of specification in a software life cycle?

• Why do we follow a software lifecycle model?

• Which lifecycle model is best suited to the development of critical or medical software?

22/124



Chapter 2 . The Software development life cycle

Solutions

SDLC Advantages Disadvantages
Waterfall Simple and sequential Difficult to update for new requirements
Spiral Breakdown to simple tasks Integration problems

Vmodel Based on tests Too heavy

• How to avoid low-quality software development?

• Through software engineering techniques and lifecycle models

• What is the purpose of specification in a software life cycle?

• Understanding the customer’s needs anddrawingup specifications. Establish a clear
description of what the software needs to do

• Why do we follow a software lifecycle model?

• To develop quality software

• Which lifecycle model is best suited to the development of critical or medical software?

• Risk-oriented model (Spiral model)

23/124



Chapter 3 . Software Modeling

Chapter 3
Software Modeling

Diagrams Objectif View

Use case Find user needs Outside

System Sequence Interaction scenarios between users and the software Outside

Deployment Physical log organization Outside

State transition Evolution of an object's state Outside and inside

Activity Sequence of actions representing software behavior Outside and inside

Class Internal software structure Inside

Object Software's internal state at a given moment Inside

Object Sequence Interaction scenarios with users or within the software Inside

Component Physical software components Inside

3.1 Use Case diagram
3.1.1 Actor

What is it ?
• An actor is a role played by the user of the software system. In addition to natural

persons, actors can be :

– Peripherals handled by the system (printers...), robots, ... ) ;
– Software already available to be integrated into the project;
– Computer systems external to the system but which interact with it, etc.

24/124



Chapter 3 . Software Modeling

UML representation

• The actors are necessarily outside the system.

• Actors are often specified in the form of stylized characters (Figure 3.1).

Figure 3.1: Actor

• They can also be represented by a rectangle with the "actor" stereotype,or by a
pictogram (e.g. a computer symbol)(Figure 3.2).

Figure 3.2: Actor

Warning

• An actor is a role, not a physical person.

• The same individual can be represented by several actors if he or she has several
roles.

• If several people play the same role in the system, they will be represented by a
single actor.

• An actor is not necessarily "human".

25/124



Chapter 3 . Software Modeling

Primary or secondary actor

What is it ?
• A primary actor is the one for whom the use case produces an observable result.

Figure 3.3: Primary actor

• The primary actor initiates the exchanges required to carry out the use case (it is
he who triggers the use case).

• Secondary actors are often asked for additional information; they can only con-
sult or inform the system during the execution of the use case.

Figure 3.4: Secondary actor

• Wherever possible, place the primary actors on the left of the use cases and the
secondary actors on the right.

Figure 3.5: Primary and secondary actors

26/124



Chapter 3 . Software Modeling

3.1.2 Use cases (UC)
What is it ?

• A use case is a specific way of using the system.

• It describes what the future system will have to do, without specifying how it
will do it.

• Generally modeled as an ellipse

• The name can appear inside an ellipse or below it.

• May be represented by a rectangle with an ellipse pictogram

Figure 3.6: Use case

Identify use cases
• There’s no mechanical, totally objective way of identifying use cases

• We need to look at the situation from each actor’s point of view and determine :

• How he uses the system,

• In which cases it is used,

• Which functions it needs to access.

For each actor, it is necessary to :

• Look for the different intentions with which he uses the system.

• Determine the services to be provided in the specifications.

• Expected system functions.

27/124



Chapter 3 . Software Modeling

Actor-use case relationship

• A line between an actor and a use case means that communication has been es-
tablished.This is modeled as an association in UML.

• The observed system (subject) is modeled in the use case diagram as a large rect-
angle containing all the use cases.

Figure 3.7: Actor-use case relationship

28/124



Chapter 3 . Software Modeling

Actor-actor relationship
Only one possible relationship:

• Generalization/specialization

Figure 3.8: Generalization/specialization between actors

Figure 3.9: Example:Generalization/specialization between actors

29/124



Chapter 3 . Software Modeling

Use case-use case relationship
1. Generalization relationship

Figure 3.10: Generalization specialization between usec ases

• Use cases B and C are special types of use case A.

Figure 3.11: Example of Generalization specialization between usec ases

• A credit transfer is a special type of payment.
• A credit transfer is a type of payment.
• The arrow points to the general element.
• This generalization and specialization relationship is present in most UML dia-

grams, and translates into the concept of inheritance in object-oriented languages.

30/124



Chapter 3 . Software Modeling

2. Inclusion relationship

• The include relationship allows functionality common to several use cases
to be described by one use case (e.g. authenticate).

• The include relationship avoids multiple descriptions of the same behavior.

• When a case is too complex (involving too many actions), we can break it
down into simpler cases.

• "include": the execution of one use case requires the execution of another
use case.

Figure 3.12: Inclusion relationship

• The execution of use case A requires the execution of use case B.

31/124



Chapter 3 . Software Modeling

3. Extension relationship

• Use case requires the execution of another use case.

Figure 3.13: Extension relationship

• "extend": This relationship is mainly used to separate optional behavior
(variants) from mandatory behavior.

• Use case A is completed by use case B.

• Use case A describes the basic functionality, use case B specifies the exten-
sions.

• Use case A can be run alone or with extensions.

Warning

• Staying legible

• No more than 6 or 8 use cases per diagram.

• If necessary, make several diagrams (if disjoint cases between actors).

• For more details, use a text description.

32/124



Chapter 3 . Software Modeling

3.1.3 Textual description of use cases
What is it ?

• Textual description of a use case

• Not standardized by UML, but strongly recommended

• Description fields (name, main actor, preconditions, etc.)

• Clear and informal

The form of a use case description sheet :

1. Section 1: Identification

2. Section 2: Description of scenarios

3. Section 3: End and post-conditioning

4. Section 4: complement

Example of a description of use cases (Withdraw money)

Figure 3.14: Use case Withdraw money

33/124



Chapter 3 . Software Modeling

1. Section 1: Identification Case n◦1

• Title:Withdrawing money
• Summary:This use case allows a cardholder who is not a bank customer to with-

draw money, if his weekly credit allows it.
• Actors: Cardholder (primary).
• Creation date: 02/03/11 Update date: 05/05/11

2. Preconditions

• The ATM cash register is full (at least one bill left!).
• No card is already stuck in the reader.
• The connection to the authorization system is operational.

3. Section 2: Description of scenarios

(a) Nominal scenario
• 8. The ATM asks the Cardholder to enter the desired withdrawal amount.
• 9. The Cardholder enters the desired withdrawal amount.
• 10. The ATM checks the amount requested against the weekly balance.
• 11. The ATM asks the Cardholder if he wants a ticket.
• 12. The Cardholder requests a ticket.
• 13. The ATM returns the card to the Cardholder.
• 14. The Cardholder takes back his card.
• 15.The ATM issues tickets and a receipt.
• 16.The Cardholder takes the tickets.

(b) Alternative sequences
• A2: amount requested greater than weekly balance
• The A2 sequence starts at point 10 of the nominal scenario.
• 11.The ATM informs the Cardholder that the amount requested exceeds the

weekly balance.
• The nominal scenario is repeated in point 8.

(c) A3: ticket refused
• The A3 sequence starts at point 11 of the nominal scenario.
• 12.The Cardholder refuses the ticket.

34/124



Chapter 3 . Software Modeling

• 13.The ATM returns the card to the Cardholder.
• 14.The Cardholder takes back his card.
• 15.The ATM delivers the banknotes.
• 16.The Cardholder takes the tickets.

(d) Error sequences
• E4 : card not included
• Sequence E4 starts at point 13 of the nominal scenario.
• 14. After 10 seconds, the ATM confiscates the card.
• 15. The Authorization System is informed; the use case ends in failure.

(e) E5 : tickets not taken
• Sequence E5 starts at point 15 of the nominal scenario.
• 16. After 10 seconds, the ATM takes back the banknotes.
• 17. The use case ends in failure.

4. Section 3: End and post-conditions

• The ATM cash register contains fewer banknotes than at the start of the use case
(the number of missing banknotes depends on the withdrawal amount).

• A withdrawal transaction has been recorded by the ATM with all relevant infor-
mation (amount, card number, date, etc.). Transaction details must be recorded
for both successful and unsuccessful transactions.

3.2 Exercices and solutions
In a school, you want to manage the reservation of classrooms and teaching equipment (lap-
top and/or video projector). Only teachers are authorized to make reservations (subject to
room and equipment availability). The room schedule can be consulted by anyone (teach-
ers, students). On the other hand, the timetable summary by teacher (calculated from the
room schedule) can only be consulted by teachers. Finally, for each course there is a teacher
in charge, who is the only person who can edit the timetable for the entire course.

• Draw the use case diagram

35/124



Chapter 3 . Software Modeling

Solutions

Figure 3.15: School Management System

36/124



Chapter 3 . Software Modeling

3.3 Sequence diagram
What is it ?

• Sequence diagrams describeHOW system elements interact with each other and
with the actors involved.

• Show interactions between objects from a temporal point of view

• Description of typical scenarios and exceptions

3.3.1 Types of sequence diagrams

• System sequence diagram (external view)

– Use case details
– Application: requirements specification

• Object sequence diagram (inside view)

– Procedures and functions
– Application: design

3.3.2 Elements of sequence diagrams
1. Participants :

• Actor(s)
• System(s)

2. Lifelines

• Time (vertical dotted line)
• Actors
• Activation bar

3. Messages

• Communication between lifelines

37/124



Chapter 3 . Software Modeling

Figure 3.16: Elements of sequence diagrams

3.3.3 Message types
• Synchronous message: sender blocked while receiver processes message (call). Typi-

cally: method call (If object A invokes a method of object B,A remains blocked until B
has finished.

Figure 3.17: Synchronous message

• Asynchronous message: non-blocking. The message sent can be taken into account by
the receiver at any time or ignored.

Figure 3.18: Asynchronous message

38/124



Chapter 3 . Software Modeling

• Return message: Method call messages can be associated with a return message (dot-
ted line) indicating that control has been taken over by the object that sent the syn-
chronous message.

Figure 3.19: Return message

• Reflexive message: an object can send messages to itself call to another object method
recursive call

• Message found

– message of unknown origin
– outside the framework described by the Sequence Diagram

• Lost message

– message sent, but never received

Figure 3.20: Lost message

These two types of messages are rarely used in the sequence diagram

39/124



Chapter 3 . Software Modeling

3.3.4 Case study (ATM)
Sequence diagram «withdraw money » Scenario valid code

1. The customer enters his bank card

2. The machine checks the validity of the card and requests the code from the customer

3. If the code is correct, it sends a direct debit authorization request to the bank group.The
latter returns the authorized balance to be debited.

4. The distributor proposes several amounts to be debited

5. The customer enters the amount to be withdrawn

6. After checking the amount against the authorized balance, the dispenser asks the cus-
tomer if he or she would like a ticket.

7. Following the customer’s response, the card is ejected and recovered by the customer.

8. Tickets are then issued, along with the ticket

9. The customer finally collects the tickets.

40/124



Chapter 3 . Software Modeling

Figure 3.21: -ATM- Case Study

41/124



Chapter 3 . Software Modeling

3.3.5 Combined fragments
• A combined fragment breaks down a complex interaction into sufficiently simple frag-

ments to be understood
• Sequence fragment
• Interaction framework
• UML notation

– Rectangle that groups sub-sections of the sequence diagram
– Fragment operator in top left corner

Figure 3.22: Fragment Operator

Fragment operators
• Operator "Opt": Fragment covered if a condition is verified

Figure 3.23: Opt Operator

42/124



Chapter 3 . Software Modeling

• Operator "Alt": Equivalent to the control structure "if .. then ..else

Figure 3.24: Alt Operator

• Operator "Loop": Fragment repeats as long as condition is met Loop (initial value,
maximum, condition).

Figure 3.25: Loop Operator

43/124



Chapter 3 . Software Modeling

• Operator "par": operations within the fragment run in parallel

Figure 3.26: Loop Operator

• Operator "Ref": Reference to another sequence diagram. It’s useful for including sev-
eral scenarios in the same sequence diagram. Ex:Valid scenario code / Invalid scenario
code.

Figure 3.27: Ref Operator

44/124



Chapter 3 . Software Modeling

Figure 3.28: Example Ref Operator

3.4 Exercices and solutions
• When an e-mail is sent by the sender, the sender doesn’t want to wait for the recipient

to receive it, and there’s no intermediary.

• Amail server acts as an intermediary between the sender and receiver of an e-mail. The
server is always on. Can synchronous messages be used to send and retrieve e-mails?

45/124



Chapter 3 . Software Modeling

Solutions
• When an e-mail is sent by the sender, the sender doesn’t want to wait for the recipient

to receive it, and there’s no intermediary.

• Amail server acts as an intermediary between the sender and receiver of an e-mail. The
server is always on. Can synchronous messages be used to send and retrieve e-mails?

46/124



Chapter 3 . Software Modeling

3.5 Class diagram
What is it ?

• Representation of the system as a set of interacting objects

• Representation of the system’s internal structure and logic

• Inspired by real-world objects

• Abstraction and decomposition of the system into objects

3.5.1 Class
What is it ?

• Objects with the same type (Figure 3.29)

• Characteristics: Attributes (information, properties, etc.)

• Behavior: Operations (methods, messages, etc.)

• Each object is an instance of a class.

3.5.2 Object
Compared to a class, an object has:

• An identity

– Two different objects have different identities
– The object can be designated (referred to)

• A state (attributes)

– Set of properties/characteristics defined by values
– To personalize/differentiate from other objects
– May change over time

• Behavior (methods)

– Set of processes that an object can perform (or be made to perform)

47/124



Chapter 3 . Software Modeling

Figure 3.29: Object and class

Object= Identity + State + Behavior

Class representation
• 3-compartment rectangle

• Noun (singular, capital)

• Attributes

• Operations

48/124



Chapter 3 . Software Modeling

More or less detail as required (Figure 3.30)

Figure 3.30: Class representation

Object representation (Figure 3.31)

Figure 3.31: Object representation

49/124



Chapter 3 . Software Modeling

3.6 Relationship between classes
3.6.1 Inheritance(Generalization/Specialization)

• Inheritance is a specialization generalization relationship (Figure 3.32).

Figure 3.32: Inheritance Symbol

• Specialized elements inherit the structure and behavior of more general elements (at-
tributes and operations).

• Principle of substitution: all properties of the parent class must be valid for the child
classes.

Figure 3.33: Example of Inheritance

• A is a B" or "A is a kind of B" principle: all instances of the subclass are also instances of
the superclass. For example, any operation that accepts an object of class Animal must
accept any object of class Cat (the reverse is not always true).

Figure 3.34: Reflexive ezlatioship

• No-reflexive, no-symmetrical relationship! (Figure 3.34)

50/124



Chapter 3 . Software Modeling

Multiple inheritance

• A class can have several parent classes.This is known as multiple inheritance.

• Incompatible with java

• The C++ language is one of the object languages that enable its effective imple-
mentation.

How to avoid Multiple Inheritance?

• First solution: delegate

• Second solution: inherit the most important class and delegate the others

51/124



Chapter 3 . Software Modeling

3.6.2 Association
What is it ?

• Bidirectional semantic connection between classes (Figure 3.35)

• Representation of associations :

Figure 3.35: Association

• Name: verbal form, with a reading direction Roles: nominal form, describes one
end of the association

• Multiplicity: 1, 0..1, 0..❋, 1..❋, n..m

• Multiplicity

52/124



Chapter 3 . Software Modeling

• Association navigability (Figure 3.36)

Figure 3.36: Association navigability

• Association Naming associations (Figure 3.37)

Figure 3.37: Association Naming associations

• We can add a reading direction (Figure 3.38)

Figure 3.38: Association a reading direction

53/124



Chapter 3 . Software Modeling

• Association end name: Role

– Each end of the association can be named

• Multiple associations

– Multiplicity specifies the number of instances of a class that can be linked to
a single instance of an associated class. It constrains the number of linked
objects.

– Example: a person can own several cars (between zero and any number); a
car is owned by a single person.

54/124



Chapter 3 . Software Modeling

• Association n-aire

– In general, associations are binary

– N-ary: at least three classes involved

– Use only when no other solution is possible!

• Reflective association

– Linking objects of the same class

Figure 3.39: Reflective association

55/124



Chapter 3 . Software Modeling

• Allocated association

– Includes an association class

– Information (attributes, methods) specific to the association.

3.6.3 Aggregation
What is it ?

• An aggregation is a special case of a non- symmetrical association expressing a
content relationship of an element in a set.

• Aggregations don’t need to be named: implicitly they mean "contains", "is com-
posed of".

• Aggregation is represented by the addition of an empty diamond on the side of
the aggregate (the set) (Figure 3.40).

56/124



Chapter 3 . Software Modeling

UML representation

Figure 3.40: Aggregation

Example:

3.6.4 Composition
What is it ?

• A composition is a stronger aggregation implying that:

• An element can only belong to a single composite aggregate (non-shared aggre-
gation);

• The destruction of the composite aggregate (the whole) leads to the destruction
of all its elements (the parts) (Figure 3.41)

57/124



Chapter 3 . Software Modeling

UML representation

Figure 3.41: Composition

Example:

58/124



Chapter 3 . Software Modeling

3.6.5 When to use a composition rather than an aggregation ?.
Aggregation vs. composition

• To decide whether to use a composition rather than an aggregation, you need to
ask yourself the following questions:

• Does the destruction of the composite object (the whole) necessarily imply the
destruction of the component objects (the parts)? This is the case if the compo-
nents have no autonomy vis-à-vis the composites.

• When we copy the composite, do we also have to copy the components, or can
we "reuse" them, in which case a component can be part of several composites?

• If the answer to these two questions is "yes", a composition must be used.

3.6.6 Abstract class
What is it ?

• A method is said to be abstract when we know its header (signature), but not
how it can be implemented. It’s up to child classes to define abstract methods.

• A class is said to be abstract when it defines at least one abstract method, or when
a parent class contains an abstract method not yet implemented.

Figure 3.42: Abstract class

59/124



Chapter 3 . Software Modeling

3.6.7 Interfaces
What is it ?

• Not a class

• Abstract method list

• No attribute except "final static" constant

• Defines a service and cannot be used to create objects

• Implemented by at least one concrete class.

• An interface specifies a set of operations (behavior). It’s a contract

• Linked classes agree to respect the contract

• They must implement interface operations.

Interface relationship
• Interface implementation

• Definitions of all abstract methods

• A class can implement several interfaces

• An interface can be implemented by several classes

Figure 3.43: Interface relationship

60/124



Chapter 3 . Software Modeling

UML representation

• Two types of interface relationships:

• "Realize" stereotype

• "Use" stereotype

Figure 3.44: Two types of interface relationship

Class diagram Methodology

• Find the class of the domain studied (Find Nouns)

• Find the association between classes (the verbs that link the nouns )

• Refine the diagram by eliminating redundant, irrelevant classes and associations.

• Once the classes are well established, look for the inheritance and aggregation
relationships

• Add attributes for each class

• Check that you can create use cases by traversing the class diagram

3.7 Exercices
Propose a corresponding class model.

3.7.1 Exercise 1
• Students and teachers are two different kinds of people.

61/124



Chapter 3 . Software Modeling

Solution

3.7.2 Exercise 2
Propose a corresponding class model.

• A PhD student is a student who teaches. Complete the previous class model.

Solution

3.7.3 Exercise 3
Doctoral candidates and students must register at the beginning of the year andmodify their
registration if necessary. We know everyone’s first and last names. We need to be able to
calculate the salaries of doctoral students as well as teachers. Add these elements to the
previous model

62/124



Chapter 3 . Software Modeling

Solution

3.7.4 Exercise 4
Propose a corresponding class model.

1. Every writer has written at least one work
2. People can be associated with universities as students as well as professors.
3. A rectangle has two vertices which are points.A rectangle is constructed from the co-

ordinates of two points.You can also calculate its area and perimeter, and translate it.

Solution

63/124



Chapter 3 . Software Modeling

3.7.5 Exercise 5
Propose a corresponding class model.

1. Cinemas are made up of several screens.
2. Films are shown in theaters.
3. The corresponding screenings take place at a specific time each.

3.7.6 Exercise 6
Propose a corresponding class model.

• A playlist is made up of a set of songs.
• A song can belong to several playlists
• Delete list does not delete songs

3.7.7 Exercise 7
Propose a corresponding class model.

• A track only belongs to one album
• Deleting an album deletes all its tracks

Solution

64/124



Chapter 3 . Software Modeling

3.8 Object diagram
What is it ?

• It represents objects (i.e. class instances) and their links (i.e. relationship in-
stances)

• It Used to illustrate the class model

• It Used to take a snapshot of the system at a given moment.

• The class diagram models the rules, but the object diagram models facts.

UML representation

• ID to differentiate the object of the same class

• No operating compartment

• Can be partially defined (attribute not filled in)

Figure 3.45: Object representation

65/124



Chapter 3 . Software Modeling

Link between objects (instance of relationship)

Link between objects

• Compliance with association rules

• Number of possible links between objects depends on the multiplicity of the cor-
responding class associations

• Link between objects(relationship instance)

66/124



Chapter 3 . Software Modeling

Example of reflexive association:

3.9 Exercices and solutions
• Give the object diagram corresponding to the following Situation:

• "TheDelta company ismade up of two IT teams. Mohamed andRyad are two program-
mers working in Team 1. Walid is a designer assigned to team 2, and is responsible for
communicating with the customer, Mr AMMAR.

Solutions

67/124



Chapter 3 . Software Modeling

3.10 Object sequence diagram
What is it ?

• Represent communications with and within the software

• Temporal representation of interactions between objects .

• Chronology of messages exchanged between objects and with actors.

• In design phase: Describe the realization of use cases on the system described by
the class diagram.

• Internal view of system operation

• Instance-level description (state of the system at a given time)

• Description of specific scenarios

• Representation of message exchanges between system objects chronologically

68/124



Chapter 3 . Software Modeling

3.10.1 Elements of an object sequence diagram

Example:

69/124



Chapter 3 . Software Modeling

Message types

• Object creation

Figure 3.46: Object creation message

• Object deletion

Figure 3.47: Object deletion message

• Synchronous message: Sender blocked waiting for return

Figure 3.48: Synchronous message

• Asynchronous message: Sender not blocked, continues execution

Figure 3.49: Asynchronous message

70/124



Chapter 3 . Software Modeling

3.11 State-transition diagram
What is it ?

• Model the internal behavior of an object using a deterministic finite-state automa-
ton

• Corresponds to a single class or object

• Used to model object lifecycles

• Representation of changes in the state of an object, in response to events (inter-
actions with other objects or actors)

• Objective: Describe the dynamic behavior of an entity (software, component, ob-
ject, etc.). The Behavior described by states and transitions between states

• Describe the changes in state of an object or component, in response to interac-
tions with other objects and components or actors

• Grouping a set of scenarios

Figure 3.50: Multiple scenarios

71/124



Chapter 3 . Software Modeling

Why we use it

Several scenarios in different diagrams.The sequence diagramdoes not allowyou to see
all these scenarios in a single sequence diagram even with the use of "Ref" fragments it
becomes very complicated. The solution, then, is to use the state diagram, which shows
all the different scenarios in a single diagram without it becomes very complicated.

3.11.1 Status
What is it ?

• State: abstraction of a moment in the life of an entity during which it satisfies a
set of conditions.

• Initial state: System initialization, execution of object constructor

Figure 3.51: Initial state

• End state: End of system life, destruction of object

Figure 3.52: End state

• Intermediate states: stages in the life of a system or object

Figure 3.53: Intermediate states

72/124



Chapter 3 . Software Modeling

3.11.2 Transition
What is it ?

• A transition represents the instantaneous passage from one state to another

• A transition is triggered by an event:

• The arrival of an event conditions the transition

• A Transition represente the change of state, Ex: case of a lamp

• When the event occurs, if the condition is verified, then action is performed.

Figure 3.54: Transition

3.11.3 Event
What is it ?

• Event: instantaneous fact coming from outside the system and occurring at a
given time.

• Event types :

• Signal: reception of an asynchronous message

• Operation call (synchronous): linked to use cases, class diagram operation, etc.

• Satisfaction of a Boolean condition: when( cond), continuously evaluated until
true

73/124



Chapter 3 . Software Modeling

3.11.4 Time event
What is it ?

• Relative date: when( date = date)

• Absolute date: after( duration)

3.11.5 Action
What is it ?

• Action: System reaction to an event

• Characteristics: atomic, instantaneous, non-interruptible

• Examples of actions (syntax left free) :

– Assignment
– Sending a signal
– Operation call
– Object creation or destruction

3.11.6 Using state-transition diagrams
What is it ?

• In the analysis phase :

– Description of system dynamics as seen from outside
– Summary of use case scenarios
– Events = actor action

• In the design phase :

– Description of the dynamics of a particular object
– Events = operation calls

74/124



Chapter 3 . Software Modeling

3.11.7 Composite states
What is it ?

• Composite state: state grouping together a set of states

• Objectives :

– Prioritize states
– Structuring complex behaviors
– Factoring in actions

Figure 3.55: Composite states

75/124



Chapter 3 . Software Modeling

3.11.8 Orthogonal state
What is it ?

• Composite state in which several state are active simultaneously (competi-
tion/parallelism).

• Global active status = one active status per region

Figure 3.56: Orthogonal state

76/124



Chapter 3 . Software Modeling

3.11.9 Internal actions, activities and events
What is it ?

• Additional characteristics of a state

• Internal events: on entry, on exit, during state

• Activity

• Status reset by external events

Figure 3.57: Internal events

3.12 Exercices and solutions
3.12.1 Exercice 1: Digital Pets
You need to create a program to manage digital pets.What happens to the animal when it
receives different stimuli is determined by its current state. You decide to model the digital
pet with a state diagram. The animal’s behavior in the digital program is as follows:

• When the animal is turn on, it starts with the happy state.

• If the animal is happy and receives a punishment, it becomes sad.

• If the animal is sad and receives compliments, it becomes happy.

• If the animal is sad and still receives punishment, it will be heartbroken. Identify the
states and transitions of the digital animal and draw a state-transition diagram.

77/124



Chapter 3 . Software Modeling

Solution

3.12.2 Exercice 2:Chess game
A chess game can be in three states:

• The white tour

• The blacks’ turn.

• Game over.

• The events to be taken into consideration are :

• A move of pieces by the black player

• A move of pieces by the white player

• Checkmate ensures victory for one of these players (black or white, as the case may
be), which means the end of the game.

• When one of these players quits, the game is over. Draw the state diagram for a chess
game.

78/124



Chapter 3 . Software Modeling

Solution

3.13 Activity diagram
What is it ?

• Variant of state-transition diagrams

• Represent the internal behavior of amethod or use case, execution of an operation

• Specify the processing of an operation (describe the logic for executing an oper-
atio operation) (modelling the flow of control streams and data)

• Used to model the dynamics of a task or process.

79/124



Chapter 3 . Software Modeling

3.13.1 Start state and end state
• states: start state and end state

Figure 3.58: Start / End states

80/124



Chapter 3 . Software Modeling

3.13.2 Activities
• Activitiy : An activity is something that happens in the process (in theworkflow).

– An action, an event, ...
– By a person, a computer, ...

Figure 3.59: Activities

81/124



Chapter 3 . Software Modeling

3.13.3 Transition
• Transition represents the passage from one activity to another.

Figure 3.60: Transition

82/124



Chapter 3 . Software Modeling

Sequential transitions

• Transition (sequentially organized)

Figure 3.61: Sequential transitions

83/124



Chapter 3 . Software Modeling

Alternative transitions

• Alternative transitions (packaged by a guard) represented by: IF / Else

Figure 3.62: Alternative transitions

84/124



Chapter 3 . Software Modeling

Transitions Synchronization

• Transitions Synchronization (case 1): An incoming transition and several outgo-
ing transitions in this case both activities are performed at the same time.

Figure 3.63: Parallel transition

• Transitions Synchronization (case 2):several incoming Transitions and an outgo-
ing transition named joint.

Figure 3.64: Joint transition

85/124



Chapter 3 . Software Modeling

Swimlane

• Swimlane: identifies the actor responsible for the activity.

Figure 3.65: Swimlane

86/124



Chapter 3 . Software Modeling

Warning

• Transitions Synchronization makes no sense in the following two cases:

• One transition in and one transition Out

• Several transitions in and Several outgoing transitions Out

87/124



Chapter 3 . Software Modeling

3.14 Exercices and solutions
3.14.1 Exercice 1
The process involves the following actors:

• Customer: who orders a product and pays the invoice
• Cashier: who collects the customer’s money
• Sales: who processes and invoices the customer’s order
• Warehouse: responsible for picking and shipping the order.

Construct an activity diagram (using activity swimlane) to model the process of ordering a
product.

Solution

88/124



Chapter 3 . Software Modeling

3.15 Component and deployment diagram
3.15.1 Component diagram

What is it ?
• The component diagram is used to represent a system’s software components

and the links between them.

• A component is a self-contained, replaceable and reusable piece of software that
provides or receives a specific service: source files (.java, .cpp, .h, .es ... ) libraries
(dll, jar ... ), executables ...

• Components provide services via interfaces. A component can be replaced by
any other compatible component, i.e. one with the same interfaces.

• A component can evolve independently of the applications or other components
that use it, as long as the interfaces are respected.

Example: parallel with computer components.

A computer is a set ofmodular components that provide and receive services (mother-
board, graphics card, hard disk, keyboard, screen, etc.). Each of these components can
be replaced by another (not necessarily identical) component, provided it has compat-
ible interfaces.

Warning

In UML, components are not hardware elements, but software elements which will
be installed on hardware elements (as we’ll see when we come to the deployment di-
agram).

89/124



Chapter 3 . Software Modeling

Component

• Component name : Used to distinguish a component from other components. It
can be a simple name or a compound name indicating the package to which the
component belongs.

• Stereotypes: Specifies a component that designates :

– "executable": a program that can run on a node;
– "Library: a static or dynamic library;
– "table": a database table;
– "file": a file containing source code or data;
– "document": a document.

Figure 3.66: Component

Interfaces

• There are two types of interface:

• Required interfaces: These are interfaces that provide a service to the compo-
nent, and which it needs to function. They are linked to the component by a
dotted arrow bearing the «use» stereotype.

• Provided interfaces: These are interfaces through which the component itself
provides a service. are connected to the component by a dotted arrow on which
appears the stereotype «realize» .

90/124



Chapter 3 . Software Modeling

UML representation

• In a separate component folder, where the various services are listed (more de-
tails).

• Another way to represent the component diagram (simplify)

• Integrated into the component representation:

91/124



Chapter 3 . Software Modeling

Example:

3.15.2 Deployment diagram
What is it ?

• The physical layout of the hardware resources that make up the system and
shows the distribution of the components (software elements) that run on this
hardware.

• Communication paths between different hardware resources.

1. Material resources are represented by nodes

92/124



Chapter 3 . Software Modeling

2. Communication d by a straight line linking the nodes

3.16 Exercices and solutions
3.16.1 Exercice 1:-The Smarteam application-
The Smarteam application The application architecture consists of the following resources:

• Web client:This represents the web browsers used to connect the various employees to
the application.

• UNIX I WINDOWS server: This is the server on which the application is deployed.
This server hosts the two servers:

• Apache web server

• Tomcat application server

• The two servers are merged into Apache-Tomcat version x. x.

• The UNIX or WINDOWS must be accessible to users on a LAN or WAN network.

• As Tomcat-compatible JVM JDK x.x must be installed first.

• DBMS:MySQL x.x database management system for data storage data

• SMTP server: forwards e-mails generated by the application to the appropriate when
creating their profiles.

93/124



Chapter 3 . Software Modeling

Solution

3.16.2 Exercice 2
• The image.java component depends on the lmageObserver interface of the compo-

nent.java component.

Draw the component diagram. Consider an application made up of the following files:

• Source code register.cpp

• An executable program register.exe

• Dynamic libraries personne.dll and cours.dll. Dynamic link libraries are used when
running an application

Give the corresponding component diagram.

94/124



Chapter 3 . Software Modeling

Solutions

95/124



Chapter 4 . Exams with Answers

Chapter 4
Exams with Answers

96/124



Page 1/ 2 
 

Université de Ghardaïa 
Faculté des Sciences et Technologies 

Département des Mathématiques et de l’Informatique 
3ème Année Licence  

Module: Génie logiciel  
Année Universitaire 2021-2022 

 

 
 

Question du cours : Répondez brièvement à chaque question ( 09 points) 

1. Quelle est  l’abréviation du mot UML ? ( 01 point) 
2. Comment éviter le développement d’un logiciel a faible qualité ? ( 01 point)   
3. Quelle est l’objectif de la spécification dans un cycle de vie du logiciel ? ( 01 point) 
4. Pourquoi  nous suivons un modèle de cycle de vie du logiciel ? (01 point) 
5. Quelle est le modèle de cycle de vie le plus adapté au développement du logiciel critique ou 

médical ? ( 01 point)   
6. Compléter le tableaux suivant : Donnez un seule avantage et un seule inconvénient pour chaque 

cycle de vie ( 02 point) 

Cycle de vie Avantages Inconvénient 
Cascade   

Modèle en V   
Prototypage   

Modèle incrémentaux   
 

7. Compléter les phrases suivantes : ( 02 points) 
 
1. Spécialisation et Généralisation sont deux principes liés à ….(0,5 point) 

2. Un diagramme état de transition  c’est un type des diagrammes …(0,5 point) 

3. Quand la classe A partage les mêmes attributs avec la classe B on doit utiliser …(0,5 point) 

4. Quand la classe A est une composant de la classe B on doit utiliser …(0,5 point) 

Exercice n° 01 :  ( 06 points) 

Une banque a plusieurs agences réparties sur le territoire nationale. Une banque est caractérisée 
par le nom de son directeur général, son capital global, son propre nom et de l'adresse de son 
siège social. Le directeur général est identifié par son nom, son prénom et son revenu. Une 
agence a un numéro d'agence et une adresse. Chaque agence emploie plusieurs employés, qui se 
caractérisent par leurs nom, prénom et la date d'embauche. Les employés peuvent demander leur 
mutation d'une agence à une autre, mais un employé ne peut travailler que dans une seule agence. 
Les employés d'une agence ne font que gérer des clients. Un client ne peut avoir des comptes que 
dans une seule agence de la banque. L’agence crée des comptes pour différents clients. Les 
clients ont un nom, un prénom et une adresse. Les comptes ont un numéro et un taux d'intérêt. 

Questions : -Dessiner le diagramme de classe. 

Examen Final                                                          Durée : 01 h 30 



Page 2/ 2 
 

 

 

Exercice n° 02 : ( 06 points) 

Dans un école de formation, les inscriptions se déroulent de la façon suivante : Au début de 
chaque semestre, un catalogue des cours proposés est fourni par la scolarité aux étudiants. 

Ce catalogue ne peut être créé avant que tous les cours ne soient affectés à des enseignants. Pour 
cela, chaque enseignant doit indiquer les cours qu'il prévoit d'enseigner.  

Les étudiants doivent remplir des fiches d'enregistrement qui indiquent leurs choix de cours. 
Chaque étudiant doit suivre cinq cours choisis dans le catalogue. Il devra indiquer aussi trois 
cours supplémentaires. En effet, il se peut que, parmi les cours choisis, l'un des cours doit être 
dispensé à au moins 5 étudiants et au plus 30 étudiants. Par exemple, si un cours est choisi par 
moins de 5 étudiants, il est supprimé. Si un cours est choisi par plus de 30 étudiants, il est marqué 
comme trop plein. Ces activités et les fiches d’inscription sont gérées par la scolarité.  

Une fois la période d’inscription terminée, un programme est exécuté pour affecter les étudiants 
aux cours. Après que tous les étudiants aient été correctement affectés aux différents cours. 
L'information est transmise au système de facturation qui facturera l'étudiant pour son semestre. 

 

Questions : - Dessiner le diagramme de cas d'utilisation. 

 

 

 

 

 

Bonne Chance 



Page 1/ 2 

Université de Ghardaïa 
Faculté des Sciences et Technologies 

Département des Mathématiques et de l’Informatique 
3ème Année Licence  

Module: Génie logiciel  
Année Universitaire 2021-2022 

Question de cours : Répondez brièvement à chaque question ( 09 points) 

1. Quelle est  l’abréviation du mot UML ? ( 01 point)
Unified modeling Language / language de modélisation unifié 

2. Comment éviter le développement d’un logiciel a faible qualité ? ( 01 point)
A travers les techniques d’ingénierie du logiciel et les modèles du cycle de vie. 

3. Quelle est l’objectif de la spécification dans un cycle de vie du logiciel ? ( 01 point)
Comprendre les besoins du client et la réalisation de cahier de charge. 

       Établir une description claire de ce que doit faire le logiciel 
4. Pourquoi  nous suivons un modèle de cycle de vie du logiciel ? (01 point)

Pour développer un logiciel de qualité. 
5. Quelle est le modèle de cycle de vie le plus adapté au développement du logiciel critique ou

médical ? ( 01 point)
Modèle orienté risque (modèle en Spiral) 

6. Compléter le tableaux suivant : Donnez une seule avantage et une seule inconvénient pour chaque
cycle de vie ( 02 point)

Cycle de vie Avantages Inconvénient 

Cascade Simple et séquentielle (0,25) Difficile de mettre à jour pour des 
nouvelle exigences (0,25) 

Modèle en V Basé sur les tests (0,25) Très lourd (0,25) 

Prototypage Simplifier les besoins du client à 
travers un prototype (0,25) 

Difficile de validé ce prototype 
(0,25) 

Modèle incrémentaux Découpage vers des taches simples 
(0,25) Problèmes d’intégration (0,25) 

7. Compléter les phrases suivantes : ( 02 points)

-  Spécialisation et Généralisation sont deux principes liés à l’héritage (0,5 point) 

-  Un diagramme état de transition  c’est un type des diagrammes Comportementaux (0,5 point) 

-  Quand la classe A partage les mêmes attributs avec la classe B on doit utiliser l’héritage 

(0,5 point) 

-  Quand la classe A est une composent de la classe B on doit utiliser composition ou agrégation 
(0,5 point) 

 Examen Final (Corrigé type)  Durée : 01 h 30



Page 2/ 2 
 

 

 

 

Exercice n° 01 : Diagramme de classe  ( 05 points) 

Une banque a plusieurs agences réparties sur le territoire nationale. Une banque est caractérisée par 
le nom de son directeur général, son capital global, son propre nom et de l'adresse de son siège 
social. Le directeur général est identifié par son nom, son prénom et son revenu. Une agence a un 
numéro d'agence et une adresse. Chaque agence emploie plusieurs employés, qui se caractérisent 
par leurs nom, prénom et date d'embauche. Les employés peuvent demander leur mutation d'une 
agence à une autre, mais un employé ne peut travailler que dans une seule agence. Les employés 
d'une agence ne font que gérer des clients. Un client ne peut avoir des comptes que dans une seule 
agence de la banque. Les clients ont un nom, un prénom et une adresse. Les comptes ont un 
numéro et un taux d'intérêt. 

Questions : -Dessiner le diagramme de classe. 

Solution : 

 

 

 



Page 3/ 2 
 

 

Exercice n° 02 : Diagramme de cas d’utilisation ( 06 points) 

Dans un école de formation, les inscriptions se déroulent de la façon suivante : Au début de chaque 
semestre, un catalogue des cours proposés est fourni par la scolarité aux étudiants. 

Ce catalogue ne peut être créé avant que tous les cours ne soient affectés à des enseignants. Pour 
cela, chaque enseignant doit indiquer les cours qu'il prévoit d'enseigner.  

Les étudiants doivent remplir des fiches d'enregistrement qui indiquent leurs choix de cours. 
Chaque étudiant doit suivre cinq cours choisis dans le catalogue. Il devra indiquer aussi trois cours 
supplémentaires. En effet, il se peut que, parmi les cours choisis, l'un des cours doit être dispensé à 
au moins 5 étudiants et au plus 30 étudiants. Par exemple, si un cours est choisi par moins de 5 
étudiants, il est supprimé. Si un cours est choisi par plus de 30 étudiants, il est marqué comme trop 
plein. Ces activités et les fiches d’inscription sont gérées par la scolarité.  

Une fois la période d’inscription terminée, un programme est exécuté pour affecter les étudiants 
aux cours. Après que tous les étudiants aient été correctement affectés aux différents cours. 
L'information est transmise au système de facturation qui facturera l'étudiant pour son semestre. 

Questions : - Dessiner le diagramme de cas d'utilisation. 



Page 1/ 2 
 

Université de Ghardaïa 
Faculté des Sciences et Technologies 

Département des Mathématiques et de l’Informatique 
3ème Année Licence  

Module: Génie logiciel  
Année Universitaire 2022-2023 

 

 
 

Exercice ( Etude de cas ) 

Nous souhaitons modéliser le système de gestion des revues nationales. Chaque revue est décrite par 

un code unique, un titre, une adresse, un site web et un type, pouvant être scientifique, politique ou 

sportive. 

Chaque revue est dirigée par un rédacteur en chef, qui est un journaliste, et emploie un certain nombre 

de journalistes ainsi que d’autres fonctionnaires (administrateur du système, comptable, infographe….). 

Chaque fonctionnaire est identifié par un numéro et décrit par son nom, prénom, date de naissance, 

adresse, téléphone et email. Nous distinguons deux types de journalistes : permanent et correspondant. 

Un rédacteur est un journaliste permanent.  Un journaliste permanent est attaché à une seule revue.  

Un journaliste écrit des articles. Un article est publié dans un seul numéro d’une revue donnée. Un 

numéro d’une revue est composé d’un certain nombre d’articles. Il est identifié par un numéro unique 

et est décrit par le mois et l’année de publication. 

Un article est caractérisé par un code unique, un titre, un domaine, un thème, et un contenu. 

Seuls les journalistes permanents peuvent faire des interviews avec différentes catégories de 

personnalités. Chaque interview faite par un journaliste donné avec une personnalité donnée, ne 

pourra apparaitre que dans un seul numéro de revue. Une personnalité sera décrite par un numéro 

unique, son nom, prénom, fonction, domaine d’intérêt, adresse et email. 

En plus à cette description, l’analyse des besoins a fait ressortir un ensemble de fonctionnalités, dont 

les suivantes : 

Le rédacteur en chef a la responsabilité de gérer le recrutement de son personnel, de choisir les articles 

qui seront publiés et d’en sélectionner les numéros de revue correspondants. Il peut refuser la 

publication d’un article donné pour un certain motif. Ceci dit, dans le cas où la revue reçoit de 

nombreuses appréciations de la part de ses lecteurs concernant un article donné, le rédacteur en 

chef peut décider de publier une extension à cet article. Ce dernier sera identifié par un nouveau 

numéro mais tout en gardant le lien vers l’article d’origine. 

Chaque journaliste peut consulter tous les articles publiés, proposer un article au rédacteur en chef, 

porter des mises à jours sur l’article avant sa publication. 

 

 

Examen Final (les téléphones portables sont interdits)   Durée : 01 h 30 



Page 2/ 2 
 

 

 

Le système donne la possibilité aux lecteurs de commander en ligne un numéro de revue donné sous 

le format papier. Deux types de lecteurs sont distingués : abonné ou non (lecteur occasionnel) : 

 

- Une réduction de 10% est faite au profit des abonnés. L’abonné s’identifie par son numéro de 

carte d’abonnement et sélectionne le(s) numéro(s) commandé(s). Puis, il procède au payement en 

ligne en faisant entrer son numéro de carte bancaire. Une fois avoir vérifié le solde de 

l’abonné, ce dernier pourra récupérer sa commande qui lui sera livrée par un agent de livraison. 

- Par contre, si le lecteur n’est pas abonné à la revue, alors il devra entrer aussi dans le système son 

nom et prénom ainsi que son adresse et son email et procéder aux mêmes étapes décrites ci-dessus 

(payement en ligne…). 

 

Une fois la commande est arrivée à destination, le lecteur procède à la vérification. Dans le cas où 

ce dernier (abonné ou non) trouve des problèmes dans sa livraison (exemple : erreur de numéro de 

revue) alors il pourra signaler et demander une autre livraison. 

De plus, les lecteurs non abonnés ont la possibilité de télécharger les versions numériques 

correspondantes aux numéros de revues qu’ils ont payées, alors que les abonnés peuvent télécharger 

toutes les versions publiées sur le site. 

La sécurité des données est un aspect important, pour cela afin de garder une traçabilité et des 

accès personnalisés au système, tous les employés doivent s’authentifier avant d’effectuer toute 

opération. 

Questions: 

 

1) Tracer le diagramme de cas d’utilisation.  (10 points) 

2) Tracer le diagramme de classe. (10 points) 

  



Page 1/ 2 
 

Université de Ghardaïa 
Faculté des Sciences et Technologies 

Département des Mathématiques et de l’Informatique 
3ème Année Licence  

Module: Génie logiciel  
Année Universitaire 2022-2023 

 

 
 

Diagramme de cas d’utilisation:  

 
 

 

 

 

 

 

 

 

 

 

Examen Final (Corrigé type)                                          Durée : 01 h 30  



Page 2/ 2 
 

 

 

Diagramme de classe: 

 



Page 1/ 2 
 

Université de Ghardaïa 
Faculté des Sciences et Technologies 

Département des Mathématiques et de l’Informatique 
3ème Année Licence  

Module: Génie logiciel  
Année Universitaire 2022-2023 

 

 
 

Exercice n° 01 :  ( 06 points) 

L'analyse d'un système, qui permet d'écouter de la musique en streaming sur internet, a permis 
d'obtenir le tableau des exigences suivant: 

N° Exigence Type (F, NF) 

1 Le système doit permettre de jouer de la musique.  

2 Le système doit permettre de chercher une musique.  

3 Le système doit permettre de démarrer la musique dans les 2 secondes suivant un clic.  

4 Le système doit permettre de créer une playlist.  

5 Le système doit permettre de baisser et augmenter le volume  

6 Le système doit avoir une belle IHM, ergonomique et pratique à utiliser.  

7 Le système ne doit pas permettre d'utiliser plus de 50% de la bande passante  

8 Le système doit permettre une consommation raisonnable du temps de CPU.  

9 Le système doit permettre la lecture de la music depuis URL.   

10 Le système doit gérer la plupart des formats connus et utilisés sur l’internet.  

11 Le système doit permettre d'activer l'égaliseur de son.  

12 Le système doit permettre de répéter une musique.  

 

On vous demande d'aider les développeurs de ce système à trier les exigences selon leur nature 

(F : fonctionnelles ou NF : non-fonctionnelles). 

 

 

 

 

 

 

 

 

Examen TD                                                             Durée : 01 h 30 



Page 2/ 2 
 

 

Exercice n° 02 :( 04 points) Soit les diagrammes de séquence objet (a,b,c et d) liés au 
diagramme de classe suivant : 

 
- Est-ce que ces diagrammes sont corrects ? 

Exercice n° 03 : ( 10 points) 

Un système va être développé pour contrôler N ascenseurs dans un bâtiment de M étages. Notre 

problème concerne la logique nécessaire au déplacement des ascenseurs entre les étages en 

accord avec les contraintes suivantes: 

a. chaque ascenseur possède un ensemble de M boutons, un pour chaque étage. Un bouton s’allume 

lorsqu’il est appuyé et provoque le déplacement de l’ascenseur vers l’étage correspondant. 

b. chaque étage, à l’exception du premier et du dernier, possède deux boutons, un pour demander la 

montée et un pour demander  la descente. Ces boutons s’allument lorsqu’ils sont appuyés. Ils 

s’éteignent quand l’ascenseur arrive à l’étage, et celui-ci se déplace ensuite dans la direction 

demandée. 

c. quand un ascenseur n’est pas requis, il reste à l’étage où il se trouve et ferme ses portes. 

Questions :  

Décrire à l’aide d’un diagramme de séquence le scénario suivant: 

• requête d’ascenseur depuis l’étage 



Page 1/ 2 
 

Université de Ghardaïa 
Faculté des Sciences et Technologies 

Département des Mathématiques et de l’Informatique 
3ème Année Licence  

Module: Génie logiciel  
Année Universitaire 2022-2023 

 

 
 

Exercice n° 01 :  ( 06 points) 0,5 x 12 

 

# Exigence Type (F, NF) 

1 Le système doit permettre de jouer de la musique. F 

2 Le système doit permettre de chercher une musique. NF 

3 Le système doit permettre de démarrer la musique dans les 2 secondes suivant un 
clic. NF 

4 Le système doit permettre de créer une playlist. F 

5 Le système doit permettre de baisser et augmenter le volume F 

6 Le système doit avoir une belle IHM, ergonomique et pratique à utiliser. NF 

7 Le système ne doit pas permettre d'utiliser plus de 50% de la bande passante NF 

8 Le système doit permettre une consommation raisonnable du temps de CPU. NF 

9 Le système doit permettre la lecture de la music depuis URL.  F 

10 Le système doit gérer la plupart des formats connus et utilisés sur l’internet. F 

11 Le système doit permettre d'activer l'égaliseur de son. NF 

12 Le système doit permettre de répéter une musique. F 

 

Exercice n° 02 :( 04 points) (01x 4) 

 

(a), (b) et (d) sont incorrects, (c) est correct. 

 

 

 

 

 

Examen TD  Correction                                          Durée : 01 h 30 



Page 2/ 2 
 

 
Exercice n° 03 : ( 10 points) 

 

+ 02 points : (concernant les règles du diagramme de séquence, type des 
messages, la barre d’activation,…etc)   



Page 1/ 2 
 

Université de Ghardaïa 
Faculté des Sciences et Technologies 

Département des Mathématiques et de l’Informatique 
3ème Année Licence  

Module: Génie logiciel  
Année Universitaire 2022-2023 

 

 
 

Exercice ( Etude de cas ) 

La société de transport collectif 'DZBus' a fait appel à une entreprise de développement pour 

informatiser la gestion de son activité. Le système à développer est une application web appelée 

"LogiLigneBus". La société a exigé que le futur site soit  compatible avec le plus grand nombre 

de navigateurs web sur le marché. 

La société 'DZbus' possède un parc de bus et emploie un responsable d'exploitation. Ce dernier 

devra à travers le système affecter des chauffeurs à différents bus et différentes lignes. Chaque 

ligne est une suite d'arrêts, pour chaque arrêt, le responsable d'exploitation fixe les heures de 

passages du bus. Les chauffeurs peuvent consulter et éventuellement imprimer leur activité de la 

journée. L'activité d'un chauffeur est constituée d'un ensemble de créneaux et de lignes 

correspondantes affectées. 

Les chauffeurs peuvent demander un changement de ligne, pour cela, le chauffeur se connecte au 

système via son compte et choisit l'opération « émettre une demande de changement ». Le 

système lui retourne une fiche à remplir. Le chauffeur renseigne la ligne actuelle et choisit entre 

deux types de lignes : ligne interwilaya ou inttawilaya . Si le type choisi est interwilaya le 

chauffeur doit choisir la wilaya désirée et doit accompagner sa demande d'une autorisation 

délivrée par la wilaya. Si la ligne est intrawilaya une liste de lignes est ensuite retournée. Le 

chauffeur sélectionne la ligne désirée. Le système enregistre sa demande et affiche un message de 

confirmation. 

Dans tous les cas, la demande de changement reste en attente jusqu'à ce quelle soit traitée par le 

responsable  d'exploitation qui peut soit accepter ou refuser. Dans le cas de refus, il doit 

impérativement justifier le refus. 

1.  Dessiner le diagramme de cas d’utilisation. .  (10 points) 

 

 

 

Examen Final (les téléphones portables sont interdits)   Durée : 01 h 30 



Page 2/ 2 
 

 

2. Etablir le diagramme de classes du domaine en considérant la description du système et les 

informations additionnelles suivantes : .  (10 points) 

• La société utilise des bus. Ils sont identifiés par un numéro unique et on conserve leur 

capacité en nombre de passagers. 

• Les chauffeurs sont identifiés par un numéro unique. Les informations les concernant sont 

leur nom, prénom, téléphone et adresse 

• Les  chauffeurs   peuvent   potentiellement   conduire   tous  les  bus,   mais  un 

Chauffeur n'est affecté qu'à un seul bus par jour. 

• Les différentes lignes de bus portent un numéro et sont constituées par une séquence 

d'arrêts. Chaque arrêt est défini par un numéro unique et ses coordonnées  géographiques. 

 

 



 
 

Page 1/ 2 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Examen rattrapage -correction 



 
 

Page 2/ 2 
 

 

 



Page 1/ 2 
 

Université de Ghardaïa                                                                                                                    3ème Année Licence  
Faculté des Sciences et Technologies                                                                                      Module: Génie logiciel  
Département des Mathématiques et de l’Informatique                                             Année Universitaire 2023-2024 
 
 

 
 

Questions de cours : (02pts) 

1. Quelle est la différence principale entre le diagramme de séquence système et le 
diagramme de séquence objets ? 

2. Donnez deux diagrammes UML utilisés en phase de spécification ? 

Exercice 1: (10 pts) 

Considérons le système d’un distributeur automatique de boissons (café, jus, thé,..etc). La 

machine délivre à l’utilisateur la boisson qu’il a sélectionné si ce dernier a introduit une somme 

d’argent suffisante (en espèce ou carte bancaire). Dans le cas du liquide, La machine rend 

éventuellement la monnaie suivant le stock de pièce dont elle dispose. Dans le cas du paiement 

avec une carte bancaire, la machine connecte le système d’information de la banque. Lorsque le 

stock de boisson n’est pas suffisant, la machine informe l’entreprise chargée de sa maintenance 

par le biais d’une connexion électronique. Un opérateur de maintenance est alors envoyé par 

l’entreprise pour le renouveler et récupérer l’argent liquide. Le client achète une boisson de la 

façon suivante : il entre son choix en sélectionnant une boisson dans un menu, introduit de 

l’argent dans le lecteur de billets ou le monnayeur électronique multi-pièces., le distributeur 

délivre à l’utilisateur la boisson choisie. Le distributeur est très sophistiqué et est relié à un 

système bancaire et accepte ainsi un paiement par carte bancaire. 

Question 1 : Dessinez le diagramme de cas d’utilisation. 

Question 2 : Mohammed qui est un opérateur de maintenance du distributeur de boissons se sert 

aussi de la machine pour acheter un café. Pour modéliser cette activité de Mohammed, doit-on 

modifier le diagramme précédent (corresponde la question 1) ?. Si la réponse est oui, donc 

rajoutez cette modification au diagramme. 

Question 3 : La machine est dotée d’un bouton d’annulation permettant d'annuler l’achat de la 

boisson. Dans ce cas la somme d’argent est retournée au client. Rajouter ce cas d’utilisation à 

votre diagramme. 

Exercice 2: (08 pts) 

Une académie souhaite gérer les cours présentés dans plusieurs écoles. Pour cela, on dispose des 
renseignements suivants : 

 

Examen Final (les téléphones portables sont interdits)   Durée : 01 h 30 



Page 2/ 2 
 

 

• Chaque école possède d’un site Internet. 

• Chaque école est structurée en départements, qui regroupent chacun des enseignants 
spécifiques. 

• Un enseignant se définit par son nom, prénom, tél, mail, date de prise de fonction et son indice. 

• Chaque enseignant n’enseigne qu’une seule matière. 

• Les étudiants suivent quant à eux plusieurs matières et reçoivent une note pour chacune d’elle. 

• Pour chaque étudiant, on veut gérer son nom, prénom, tél, mail, ainsi que son année d’entrée au 
collège. 

• Une matière peut être enseignée par plusieurs enseignants mais a toujours lieu dans la même 
salle de cours (chacune ayant un nombre de places déterminé). 

• On désire pouvoir calculer la moyenne par matière ainsi que par département. 

• On veut également calculer la moyenne générale d’un élève et pouvoir afficher les matières 
dans lesquelles il n’a pas été noté. 

• Enfin, on doit pouvoir imprimer la fiche signalétique (nom, prénom, tél, mail) d’un enseignant 
ou d’un élève. 

Question : Elaborez le diagramme de classe (visibilités des attributs et les types des données 
n’sont pas obligatoires). 

 

 

 



Page 1/ 2 
 

Université de Ghardaïa                                                                                                                    3ème Année Licence  
Faculté des Sciences et Technologies                                                                                      Module: Génie logiciel  
Département des Mathématiques et de l’Informatique                                             Année Universitaire 2023-2024 
 
 

 
 

Questions de cours : (02pts) 

1. Diagramme de séquence système (vue externe) / séquence objets (vue interne). (01pt) 
2. Diagramme de cas d’utilisation, de séquence ou d’activité. (01 pt) 

Exercice 1: (10 pts) 

Question 1 :  

 

Question 2 : Non, aucune modification n’est nécessaire. 0,75 

Exercice 2: (08 pts) 

 

 

 

 

 

Examen Final (Correction)                                           Durée : 01 h 30 30 



Page 2/ 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 







Page 1/ 2 
 

 

 

 

Exercice n° 01 :( 08 points)  

 
 

 

Université de Ghardaïa 
Faculté des Sciences et Technologies 

Département des Mathématiques et de 
l’Informatique 

3ème Année Licence  
Année Universitaire 2023-2024 

 
Module: Génie logiciel 

Examen TD 
Durée : 01 h 30 

 ممنوع إستعمال الھاتف النقال أثناء الإمتحان



Page 2/ 2 
 

Exercice n° 02 :  ( 12 points) 

 
 



Page 3/ 2 
 

Exercice n° 01 : ( 10 points) 

 



Page 4/ 2 
 

Exercice n° 02 : ( 10 points) 

 

 

 

 

 

 بالتوفیق 



BIBLIOGRAPHY

Bibliography

[1] Scott Ambler. The Elements of UML(TM) 2.0 Style. Cambridge University Press, 2002.
[2] RAJIB MALL. Fundamentals of software engineering. PHI, 2014.
[3] Robert C. Martin. UML for Java Programmers. Eyrolles, 2003.
[4] Pascal Roques. UML 2 en action: De l’analyse des besoins à la conception. Eyrolles, 2011.
[5] Doug Rosenberg. Use case driven object modeling with UML. Springer, 1999.
[6] Ian sommerville. Software Engineering. Pearson, 2016.

124/124


	Introduction
	Brief History and Scope of the Subject
	Pre-Requisites
	Course Objectives
	Course Outcomes
	Introduction to Software Engineering
	Terminology
	The evolving role of software
	Positive impacts of software
	Impacts of low-quality software
	What makes software development difficult and complex?
	Software crisis
	Reasons for low software quality
	The challenges of software quality
	Software quality criteria
	Exercices and solutions

	The Software development life cycle
	What is SDLC ?
	Feasibility study (Why?)
	Requirement analysis and specification (What?)
	Design (How ?)
	Programming
	Validation and verification
	Maintenance

	SDLC model
	Linear models
	Incremental models
	Iterative models
	Agile model
	Priorities for agile methods

	Classic vs Agile models
	Exercises and solutions

	Software Modeling
	Use Case diagram
	Actor
	Use cases (UC)
	Textual description of use cases

	Exercices and solutions
	Sequence diagram
	Types of sequence diagrams
	Elements of sequence diagrams
	Message types
	Case study (ATM)
	Combined fragments

	Exercices and solutions
	Class diagram
	Class
	Object

	Relationship between classes
	Inheritance(Generalization/Specialization)
	Association
	Aggregation
	Composition
	When to use a composition rather than an aggregation ?.
	Abstract class
	Interfaces

	Exercices
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7

	Object diagram
	Exercices and solutions
	Object sequence diagram
	Elements of an object sequence diagram

	State-transition diagram
	Status
	Transition
	Event
	Time event
	Action
	Using state-transition diagrams
	Composite states
	Orthogonal state
	Internal actions, activities and events

	Exercices and solutions
	Exercice 1: Digital Pets
	Exercice 2:Chess game

	Activity diagram
	Start state and end state
	Activities
	Transition

	Exercices and solutions
	Exercice 1

	Component and deployment diagram
	Component diagram
	Deployment diagram

	Exercices and solutions
	Exercice 1:-The Smarteam application-
	Exercice 2


	Exams with Answers
	Bibliographie

