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Introduction

La géométrie différentielle est une branche des mathématiques qui combine les tech-
niques de la géométrie et de 'analyse pour étudier les propriétés des courbes, des sur-
faces et des structures plus générales dans des espaces dits < différentiables >, comme
les variétés. Elle est apparue pour comprendre des objets géométriques complexes en
utilisant des outils de calcul différentiel, ce qui permet de les analyser localement comme
des objets euclidiens.

Notions de base
Variétés différentiables : Une variété est un espace qui, localement, ressemble a un es-
pace euclidien de dimension donnée. Par exemple, la surface d’une sphere est une variété
de dimension 2, car localement, elle ressemble a un plan. Les variétés permettent de
généraliser la notion de surface et de courbe dans des dimensions plus élevées.

Applications différentiables :
Ce sont des fonctions entre variétés qui posseédent des dérivées continues. Ces fonctions
permettent de comparer des variétés et d’étudier comment elles se transforment les
unes par rapport aux autres.

Vecteurs tangents et espaces tangents :
En tout point d’une variété, on peut définir un espace tangent, qui est une approxima-
tion locale de la variété autour de ce point. Les vecteurs tangents, qui appartiennent a
cet espace, représentent les directions possibles de déplacement sur la variété.

Formes différentielles et intégration :
Une forme différentielle est un outil mathématique permettant de généraliser la no-
tion de fonction, en intégrant sur des objets de dimension supérieure. Cela mene a des
résultats puissants comme le théoreme de Stokes, qui relie 'intégration sur une région
a celle sur son bord, généralisant ainsi le théoreme fondamental du calcul intégral.

Variétés et cartes locales
Au cceur de la géométrie différentielle se trouve le concept de variété, qui généralise
les courbes et surfaces en dimensions supérieures. Une variété de dimension n est un
espace qui, localement, ressemble & un espace euclidien de dimension n (comme une
surface plane ou un espace a trois dimensions). Par exemple, la surface d’une sphére
est une variété de dimension 2 qui peut étre décrite localement comme un plan, méme
si globalement elle a une courbure positive. Les cartes locales et les atlases sont utilisés
pour décrire ces variétés en découpant I’espace en petits morceaux, chacun ressemblant
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a un espace euclidien simple.

Courbes, surfaces et métriques

Les objets de base de la géométrie différentielle incluent les courbes et surfaces. Une
courbe est une variété de dimension 1, tandis qu'une surface est une variété de dimen-
sion 2. Pour analyser la "forme” de ces objets, on introduit une métrique, qui mesure les
distances et angles a 'intérieur de la variété. Par exemple, dans une sphere, la métrique
détermine la facon dont on mesure les distances le long de sa surface incurvée. Cela
permet de définir des concepts comme la courbure, qui décrit I’étendue de 'incurvation
d’une surface ou d'une variété.

Applications de la géométrie différentielle
La géométrie différentielle est centrale en physique théorique, notamment en relativité
générale ou I'espace-temps est modélisé comme une variété courbée. Elle est également
utilisée en mécanique, en théorie des systemes dynamiques, et dans I’étude des surfaces
en géomeétrie.

En conclusion, la géométrie différentielle offre une vue riche et profonde des objets
géométriques a travers le prisme de la dérivation et de 'intégration. Elle constitue un
domaine fondamental pour les mathématiques appliquées et théoriques.

Ce cours est une initiation a la géométrie différentielle, dans lequel
je donne une introduction trés simple et des donnés général, la plupart
du temps sans démonstration, car le cours est destiné au étudiants de
Licence Mathématiques et de Master non Géométre

Dans notre cas, sont des spécialités L3 : Analyse et M2 : Analyse
Fonctionnelle a l'université de Ghardaia.

A.Chikh-Salah
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Chapitre 1

Calcul différentiel

1.1 Introduction

L’idée du calcul différentiel est d’approcher au voisinage d’un point une fonction f
par une fonction plus simple (ou d’approcher localement le graphe de f par un espace
plus simple).

Une fois les notations assimilées, les méthodes et les résultats du calcul différentiel
sont naturels : ce sont les mémes que pour ’étude des fonctions d’une variable réelle.

On est ainsi amené a étudier la restriction des fonctions le long d’une droite comme,
par exemple, pour démontrer les formules de Taylor. Aussi a généraliser les outils fami-
liers en dimension 1 comme les changements de variables, 'inégalité des accroissements
finis, ... etc.

Pour toute la suite E , F' et G désignent des R-espaces vectoriels de dimension
finie, et || . |lg, || - l|r, || - ¢ leurs normes respective.

Définition 1.1.1 (Application affine) Une application f de E dans F est dite ap-
plication affine s’il existe une application linéaire A de E dans F', et un vecteur b
de F' tel que :

Ve e FE: f(z) = A(z) + b.

1.2 Différentielles

Intuitivement : Une applications f : E — F est différentiable en un point a de
E, si elle peut étre approchée au voisinage de a par une application affine.

Graphiquement : le graphe de f ressemble localement & un espace affine (ou un
espace plat) Tj,.

Définition 1.2.1 Soit f une application de E dans F' et U un ouvert de E. Soita € U.
On dit que f est différentiable au point a Si :

e [l existe une application linéaire continue L € L(E, F).

o [l existe une application € : U — F tel que glcl_rg e(z) = 0.

Tel que
VeeU, f(x)=f(a)+ Lz —a)+e@).||r—ag.

1



1.2. DIFFERENTIELLES 2

Définition équivalente :

Définition 1.2.2 Soit f une application de E dans F' et U un ouvert de E. Soita € U.
On dit que f et différentiable au point a Si :
Il existe une application linéaire continue L € L(E, F), tel que

1/ () = fla) = L(z — a)||r

[z = allz

Ve e U, lim =0.
r—a

Ou encore, on posant x —a = h :

@t ) fa) = E)lle

b0 Ih]ls

=0.

Proposition 1.2.1 Soit f : E — F avec les conditions des définitions présidentes :
1. L’application L si elle existe, alors elle est unique.

2. Si f est différentiable alors elle est continue.

Définition 1.2.3 Soit f : E — F awvec les conditions des définitions présidente, Si f
est différentiable au point a, on dit que L est la différentielle de f en a, et on la
note df, ou Df,.

Définition 1.2.4 (La différentielle)

1. On dit que application f est différentiable sur U si elle différentiable en tout
point de U.

2. On appelle la différentielle de f, l’application :
df : U — L(E,F)
a — df,

3. Si df est continue on dit que f est continument différentiable, et que f est
de classe Ct sur U.

Exemples :

1. Soit f : U — F une application constante, (i.e. : 3¢ € F,Vx € U : f(x) = ¢),
alors

Va € U, df, = 0.

2. 51 f € L(E,F) (i.e. f est une application linéaire), alors f est continument
différentiable en tout point a de E et

dfa:f'

3. Si f: Ex E — F est bilinéaire (i.e. linéaire pour chaques variables), alors f est
continument différentiable et

V(a17a2), (hl, h2) EEXE: df(al,ag)(hla h2) = f(ah h2) + f(h17a2)'

A.Chikh-Salah 2025 Université de Ghardaia



1.2. DIFFERENTIELLES 3

1.2.1 Opérations sur la différentielle

Proposition 1.2.2 Soient f : U C E — F etg:V C E — F deux applications
différentiables et A € R alors :

1. f+ g est différentiable sur UNV et :
d(f +g) = df +dg,
ie. YaeUNV, YheE: d(f+ g)a(h) =dfs(h)+ dga(h).
2. \f est différentiable sur U et

dNf)=Mf ie. YacU,VheE: dAf)a(h) = Adfa(f).

Définition 1.2.5 (La différentielle d’applications composées)
Soient f U C E — Fetg:V CF — G deux applications différentiables, et
f(U) CV, alors go f est différentiable et

VaeU, d(gof)e=dgsa) o dfa
i.e. Va,h € U :
d(g o f)a(h) = dgya (dfa(h)) .

1.2.2 Cas des Réels

dans cette partie on prend £ = R? et F' = RY.
Et que {eq,...e,} la base canonique R"™, avec e; = (0,...,0,1,0,...,0). (1 & la i-éme
composante) c.a.d :

;=0 st j#1
ei:($1,...,xn): ) ] .
ry=1 si j=1
Pour tout x € E et pour tout y € F, on leurs composantes : © = (x1,...,1,) et
y = (y1,...,Y,) respectivement.

Dérivées partielles
Soit f: U C RP — R différentiable, On définit I'application g; par

gi: U, C R — R
t— f((lfl,...,Ii_l,t,l’“_l,...,]}p)

avec les z; fixés. Cette application est dérivable en z; et
9i(x:) = dfu(es)

elle est dite la dérivée directionnelle de f dans la direction de e; au point . elle
est notée :
of

8:{:@-

() ou O f(x) ou 0O;f(x).

A.Chikh-Salah 2025 Université de Ghardaia



1.2. DIFFERENTIELLES 4

Elle est données par : pour tous i € {1,...,p}

alf U — R
Plus général :
i=1 =1 i=1 af
p p p v

Proposition 1.2.3
1. Puisque F' =R d’ou : f = (f1,...,f,) alors :

of df 014
B (x) = <8$i (x),..., 31, (:1:)) )

2. L’existence de toutes les dérivées partielles n’implique pas en général que f est
différentiable.

Matrice Jacobienne
Soit f: U C R? — F = R différentiable au point z, et f = (f1,..., f;), on définit la
matrice Jacobienne de f dans la base canonique par :

Onfi(x) -+ Opfi(x)
Df(x) = : : € Mpy(R).

Ofg(z) - Opfy(x)
Pour un h = (hy,...,h,) € U, on a : df.(h) = Df(z). (h1,..., hy).
nfi(z) --- apfl(l’) hy
dfo(h) = Df(@)! (e, hp) = | 0 o :
Nfg(x) - Opfy(x) hyp
Remarques : Si p = g,

e Le déterminant de D f(x) est dit le Jacobien de f, noté
Jac fp = det(Df(x)).
e df, est un isomorphisme <= Jac f, # 0.

Théoréme 1.2.1 Soit une application f : U C RP — RY, tel que f = (f1,---, fy),
alors

f est continument différentiable si et seulement si toutes les dérivées partielles des f;
existent et sont continues sur U.

A.Chikh-Salah 2025 Université de Ghardaia



1.2. DIFFERENTIELLES 5

1.2.3 Différentielles secondes et supérieurs

Définition 1.2.6 soit f : U C E — F une application différentiable en a € U, de
différentielle df,.

On dit que f est deux fois différentiables en a, ou que f admet une différentielle
seconde en a, si l'application différentielle df est différentiable en a, notée d*f, et cette
deuxieme différentielle est donnée par :

d*f, :=d(df),.

tel que d*f, € L(E; L(E,F)) qui est équivalant auz applications bilinéaires de E X E
dans F' et

d fu(h, k) = (d(df)a(h))(K), B,k € E.

Définition 1.2.7 La différentielle d’ordre k de f en a € E est la différentielle de
d*=1f en a (par récurrence), notée d* f,

d* f, = d(d*1 ),

On dit que f est de classe C¥ en a sur U C E si d*f existe en tous points de U est
continue.

Théoréme 1.2.2 (Théoréme de Schwartz) Si une application f: E — F est deux
fois différentiable en un point a € E, et elle est continue, (c.a.d : de classe C?) alors
Uapplication d*f, : E x E — F est bilinéaire et symétrique.

Cas des Réels :
Si f:U CR"— R est de classe C? alors j,k = 1,...,n alors les deuxiémes dérivées
partielles sont données par :

Corrolaire 1.2.1 Par le théoréme 1.2.2, si une fonction f: RP — R est de classe C*
en a € RP alors sa matrice hessienne en ce point est symétrique (la matrice jacobienne
de df en a)
0% f 0% f
——(a) = 5——(a).
O0x;0x; 0x;0x;

\V/Z,j € {1727 7p}

1.2.4 Homéomorphismes et difféomorphismes

Soient E et F' deux espaces vectoriels, U C E et V C F' des ouverts,
et f: U CFE — V C F une application.
Définition 1.2.8 On dit que :
o f est un homéomorphisme si f est bijective et si f et f~! sont continues.

o [ est un difféomorphisme si f est bijective et f et f~1 sont de classe C!.

A.Chikh-Salah 2025 Université de Ghardaia



1.3. THEOREME DES INVERSIONS LOCALES 6

o [ est un difféomorphisme de classe C* si f est bijective et f et f~! sont de
classe C*.

o f est difféomorphisme local en a € U, s’il existe U, C U ouvert contenant a
tels que la restriction de f a Uy, fu, : Us = f(Ua) soit un difféomorphisme.
Proposition 1.2.4 .

e la composition de deux difféomorphismes de classe C* est un difféomorphisme de
classe C*.

o L’ensemble des difféomorphismes de classe C* d’un ouvert U € E sur lui-méme
forme un groupe par rapport a l’opération de composition

1.3 Théoréme des inversions locales

1.3.1 Applications lipschitziennes, contractions

soient E et f deux espaces vectoriels normés, et soit ¢ une application de F sur F'.

Définition 1.3.1 ¢ est k-lipschitzienne si il existe une constante k strictement po-
sitive telle que

V(z.y) € B, [lo(z) — oW)llr < kllz = yllp-
Définition 1.3.2 Soit ¢ : E — F
e On dit que v est lipschitzienne s’il existe k > 0 et @ est k-lipschitzienne.

o S’il existe de tels k alors le plus petit d’entre eux existe et est appelé la constante
de Lipschitz de .

On note Lip(yp) cette constate et on a

<||90($) - sﬁ(y)HF) |

I = yllz

Lip(p) = sup
THY

@ est dite contractante si ¢ est k-lipschitzienne et k € [0, 1].

@ est dite localement lipschitzienne si pour tout point x de E, il existe un
voisinage V' de x tel que la restriction de ¢ a V soit lipschitzienne (pour une
certaine constante k qui peut dépendre de V', donc de x).

Remarques :
e Toute fonction lipschitzienne est uniformément continue.
e Toute fonction localement lipschitzienne est continue.
e Sur un espace compact, toute fonction localement lipschitzienne est lipschit-
zienne.
Proposition 1.3.1 Une contraction ¢ d’un espace métrique complet possede un unique
point fize.

Proposition 1.3.2 Soit v : O C R™ — R" une contraction définit sur un ouvert O
avec sa constante de Lipschitz \.

Alors Uapplication ¢ : x € O +— x4+ () est un homéomorphisme sur un ouvert de
R™.

En plus I’homéomorphisme inverse est lipschitzien avec la constante de Lipschitz
inférieur a (1 — \)~1.

A.Chikh-Salah 2025 Université de Ghardaia



1.4. THEOREME DES FONCTIONS IMPLICITES 7

1.3.2 Théoréme d’inversion locale (cas des Réels)

Théoréme 1.3.1 Soit f une fonction de classe C*, k > 1, définie sur une partie ou-
verte U de R™ et a valeurs dans R™. Et a un point de U ; Si la différentielle df, est un
isomorphisme linéaire(Inversible), Alors f est un difféomorphisme local de classe CF,
e.1.

il existe un voisinage ouvert de a V, € V(a) , avec a € V, C U tel que :
f: Ve — f(Va) est un difféomorphisme de C*.

Comme application direct de ce théoréme on a les cas particuliers :

Théoréme 1.3.2 Soit f une application de classe C* d’un ouvert U C R™ dans R™,
(n < m). On suppose que 0 € U et que dfy est injective. Alors

il existe un ouvert V-.C R™, avec 0 € V,

il existe un ouvert U' C U, tel que f(U') CV,

il existe un difféomorphisme ¢ sur son image tels que :

¢(f(131, ’xn)):<x1’... T, 0,0+ 70)_

Théoréme 1.3.3 Soit f une application de classe C* d’un ouvert U C R™ dans R™,
(n>m). On suppose que 0 € U et que dfy est surjective. Alors

il existe un ouvert W C R", avec 0 € V,

il existe un difféomorphisme v de W sur son image tels que (W) C U et :

f(?/}(:)jl, T ’xn)) = (zla T 7ajm)'

1.3.3 Théoreme d’inversion locale
Soient F, I’ deux espaces vectoriels, U C E une partie ouverte.

Théoréme 1.3.4 Soit f : U C E — F une application de classe C* (k >1), eta € U,
on suppose que D f, soit inversible (isomorphisme linéaire), alors
f est un difféomorphisme local en a de classe C*.

e.i. AU, C U woisinage ouvert de a tels que : fiy, : Uy — f(Us) est un difféomorphisme
de classe C*.

1.4 Théoreme des fonctions implicites

Le but est d’étudier les ensembles de R™ (plus généralement dans des espaces vec-
toriels) défini par une équation de la forme

F(zy, - ,z,) =0.

On sait déja étudier quelques cas simples. Par exemple, on est capable de représenter
les ensembles de R? d’équations

filz,y) =22 +5y—4=0, folz,y) =y—xsin(z®)x —5x =0
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1.4. THEOREME DES FONCTIONS IMPLICITES 8

fs(w,y) = —tg(y)y =0

le plus simple pour étudier I’ensemble considéré est de réécrire f, fo sous la forme
y = ¢1(x) , y = ¢o(x) et f3 sous la forme x = ¢3(y). Les ensembles étudiés ne sont
alors rien de plus que les graphes des fonctions ¢; , ¢o et ¢3 respectivement. On en
déduit qu’on a affaire a des courbes, et peut obtenir toutes sortes d’informations utiles.

Par exemple, en calculant la dérivée des fonctions ¢;, on peut obtenir la tangente
a cette courbe en tout point. Plus généralement on trouve le théoréme

Théoréme 1.4.1 (Théoréme des fonctions implicites, cas de R?) Soit U un ou-
vert de R? et une application F : U C R?> = R de classe C* avec k > 1. Soit un point
(a,b) € U tel que

OF
F(a,b) =0 et 8—y(a,b)7ﬁ0.

Alors il existe des voisinages V, de a dans R et Wy, de b dans R tel que V, x X, C U,
et il existe une application ¢ : V, — W, de classe C* tel que

V(v,y) € Vax Wy, F(z,y) =0 < y=¢().

Théoréme 1.4.2 (Cas général) Soient E, F deux espaces vectoriels de dimensions
respective n et m, W C E X F partie ouvert, et
f:W CE X F — F une application de classe C', et (a,b) un point de W tel que :

1. f(a,b) =0

2. La matrice jacobienne D, f(a,b) est inversible
Alors :

e [l existe un voisinage ouvert U, C E

o [l existe un voisinage ouvert V, C F

o Tel que (a,b) e U, xV, CW C E x F.

o [l existe une application g : U, — Vi de classe C*
tel que

1.V(z,y) €U x Vo flz,y) =0 = y=g(z).

2.VreU,: f(z,g(x))=0.

3. V(z,y) € Uy X Vp la matrice jacobienne D, f(x,y) est inversible

4. Pour tout u € U, la matrice jacobienne de g Dg(u) est donnée par :
Dg(u) = = [Dyf(u, g(u)]"" Dy f (u, g(u)).

Awvec la notation :
Dyf(a,b) = (i,
IR\ 0y ) 1<ism

1<j<m
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1.5 Exercices

Exercice 01 :
Soient les fonctions suivantes définis de R™ dans R? par :

o fi(z,y) =2%y* —ay —12.

2

i f2<x7y) ~ 2y

L f3(x7y72> = (2;;7—257 xx:;z)'

i f4($,y,2> = (xyz,xy, ﬁa $+11/+Z)'
o f5(x) = (z,vVa?—2x+1,\/2?2 -z +1).

1. Déterminer n et p pour chaque fonctions.

2. Calculer le domaine de définition pour chaque fonctions.
3. Calculer les dérivées partielles de chaque fonctions.
4

. Donner leurs matrices Jacobiennes.

Exercice 02 :
Soit f une application de F dans F' espaces vectoriels normés de dimension finie.
On sait de méme que ”f différentiable en y” = 7 f admet des dérivées partielles en
xo” montrer que les réciproques sont fausses en général en s’inspirant de :
Soit la fonction f : R? — R définit par

5 s (wy) £ (0,0)
0 si (z,y) = (0,0)

f(fc,y)z{

meme question pour la fonction ¢ : R? — R définit par

2.1 201 .
x7sin o + g sin sixy # 0

2? sin = siy=0
gz, y) =9 , . 1§ o
y~sin siz=0
0 si () = (0,0)

Exercice 03 :
Soit g : R — R une application de classe C? et f : R?> — R définit par

g9(x)—g(y) si 7&
— y
flz,y) = { Y .
g () siz=y

montrer que f est de classe C! en tout point de R? et calculer sa différentielle.

Exercice 04 : Soient F, F' deux espaces vectoriels réels, et f : £ — F une appli-
cation linéaire continue, alors

1. feCHE,F)etona:
Vac€E : Df, = f
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2. Déduire que l'application différentielle Df : E — L(E, F’) est constante.

3. Soit g : U C F — F la restriction de f a un ouvert non vide U, montrer que les
conditions suivantes sont équivalentes :

e g est continue en tout point de U
e ¢ est différentiable en tout point de U
e gcCYE,F).

4. Montrer que Si h : E — F une application affine continue h = f + ¢ avec ¢
constante de F alors h € C'(E, F) et que

Va€ E : Dh=f

Exercice 05 : Soient les fonctions f1, fo, f3 f1, f5 de I'exercice 1

Calculer leurs Rangs.

Sont-elles des immersions 7.

Sont-elles des submersions 7.

Sont-elles Injectives, Surjectives 7.

Exercice 06 : Les applications suivantes f : R?> — R? sont-elles des immersions ?
Sont-elles injectives 7 Si oui, leur image est-elle plongée ?

1. fi(u,v) = (cosu,sinu,v).

2. fo(u,v) = (u,v,uv).
3. f3(u,v) = (ucosw,vsinu, \v).
4. fi(u,v) = ((2 4+ cosv) cosu, (2 + cosv) sin u, sinv).

Définition : On dit que F' : M — N est un plongement si F' est une immersion
injective et un homéomorphisme de M dans F'(M) pour la topologie induite.

Exercice 07 : Pour t €] — oo, 1[, on pose f(t) = (t*,¢ — t3).
L’application f : | — 0o, 1[— R? est-elle une immersion ? Est elle injective ?. dessiner
son image dans le plan.

Exercice 08 : Les applications suivantes f; : R®> — R sont-elles des submersions ?
Peut-on les restreindre a un voisinage de ;f~*(0) de telle sorte que la restriction soit
une submersion ?

L. fl(x,y,z):x2+y2—|—22—a2.
2. fg(x,y,z):x2+y2—22.
3. fg(x,y,z):x2+y2—z.

Exercice 09 : Soit S la nappe paramétrée définie par

r(u,v) =u+v, ylu,v)=u, z(u,v)=1u’+v° (u,v) € R?

1. Verifier que S et incluse dans la surface d’équation 22 — 2y — z = 0. les deux
surfaces coincident-elles 7.
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2. Quelle sont les intersection de S avec les plan x =0, y =0, z = 0.
3. Dessiner S.

4. En quels points ce plan passe par l'origine ? .

Exercice 10 :
Soit la fonction f de R? dans R? :

flz,y) = (2 — y?, 2ay)

1. Est elle un difféomorphisme global ?

2. soit X = (1,2) € R?, donner un voisinage de X et un voisinage de f(X) dans les
quels f est difféomorphisme.

3. Donner deux ouverts maximal U et V de R? pour que f soit un difféomorphisme
de U dans V.

Peut on faire la méme chose pour les fonctions :
L fiR? =R (2.9) = (v —y,2,y)
2. f:RP—=R3  (v,y,2) — (2% + 292, —%ny — %xQ, 22 —42).

Exercice 11 :
Soit la fonction f: R™ — R , avec f est une fonction de u(xy, z, ..., x,).
On rappelle la formule en une variable : f(u) = f'(u).u’

1. Calculer f(u)” dans le cas d'une variable.
2. Calculer % f et 3‘9—; f dans le cas de n-variables.
3. Montrer que

n
Af = () I+ /(u)Du, - avee [f]lf =3 (5)°
i=1
On prend maintenant n = 3 et u = %,

4. Montrer que f est harmonique si et seulement si
2(u® +u) f"(u) + (3u+2) f'(u) = 0.

Rappel : une fonction f est harmonique si Af = 0.
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Chapitre 2

Sous-variétés de R"

Approche : Apres avoir considéré des fonctions définies sur des intervalles de R
(autrement dit des morceaux de droites) puis sur des morceaux de plans ou d’espaces
de dimensions quelconques, on souhaite maintenant s’intéresser a des fonctions définies
par exemple sur des courbes ou des surfaces. Par exemple sur des cercles, des spheéres.

Le but de ce chapitre est de commencer par définir et bien comprendre ce qu'on va
considérer comme courbes ou surfaces. Plus généralement on va introduire les sous-
variétés de dimension p dans R". Une courbe sera une sous-variété de dimension 1,
une surface est une sous-variété de dimension 2, etc. On notera tout de méme que la
définition d’une sous-variété de dimension 1 ne correspondra pas a la notion de courbe
paramétrée.

Par exemple une sphére est une sous-variété de dimension 2 dans R3. La terre est
(grosso modo) une sphere, mais a notre échelle ot on n’en voit qu'une toute petite
partie on a I'impression de marcher sur un plan (& tel point qu’on a longtemps pensé
que la terre était effectivement plate . . .).

Ainsi une sous-variété de dimension 1 est une partie de R telle que si on "zoom” sur
n’importe lequel de ses points, on finit par avoir I'impression qu’il s’agit d’'un morceau
de droite pour la dimension 1, ou un plat pour les dimensions supérieurs. Avec cette
idée en téte, pouvez-vous dire lesquels parmis ces ensembles du plan seront considérés
comme des sous-variétés de dimension 17 Lorsque c’est le cas, pouvez-vous dessiner la
droite tangente en chaque point ?

Le but de ce chapitre est maintenant de donner des définitions rigoureuses pour
donner un sens précis a l’idée intuitive que I'on peut se faire d’'une courbe ou d’une
surface.

J.Royer - Université Toulouse
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Rappel : Rappelons que, lorsqu’un espace topologique M est un sous ensemble de
I’espace euclidien R™ avec la topologie induite de R™, M hérite la structure topologique
de R", i.e. un sous ensemble de M est ouvert s’il est l'intersection d'un ouvert de R"
avec M. Un voisinage d’un point a de M pour la topologie induite sur M est alors
Iintersection de M avec un voisinage de a dans R".

2.1 Difféomorphismes, immersions, submersions

Soient U C R™ et V C R™ deux sous ensembles ouverts, avec n,m € N*, et
k€ N* U {oo,w}.

Définition 2.1.1 une fonction de régularité C* est une fonction analytique réelle,
c’est-a-dire développable en série entiére autour de chaque point.

Définition 2.1.2 (Difféomorphisme)
On dit que f : U — V, (avec n = m) est un difféomorphisme de classe C*, ou
Ck-difféomorphisme, si

o f est une bijection de U dans V,
o [ et f~! sont de classe C*.
On dit que f est un C*-difféomorphisme local en x € U, si
e U, €V(z), €U, CU,
e 3V, €V(y), yEV, CV, tel quey = f(x),
o f:U, —V, soit un C*-difféomorphisme.

Définition 2.1.3 (Submersion) Soient U C R" un sous-ensemble ouvert,
acUetf:U—R™ une application de classe C*, on dit que f est une submersion
en a si df, est surjective.

avec df, est la différentielle de f en a, qui est égale a la matrice jacobienne de f
en a.

Remarque : Le théoreme du rang et la surjection de df,, assurent que n > m.

Définition 2.1.4 (Immersion) Soient U C R"™ un sous-ensemble ouvert, a € U et
f:U — R™ une application de classe C*.
On dit que f est une immersion en a si df, est injective.

Remarque : Le théoreme du rang et l'injection de df, assurent n < m.

2.2 Définition des sous-variétés

Introduction : Il y a plusieurs moyens de décrire une courbe dans le plan, on peut
la décrire implicitement, par une équation.
Prenons I'exemple du cercle unitaire, il est donné par I’équation cartésienne
22 +y?—1 = 0, on peut aussi la décrire par un paramétrage, le cercle unité est ’ensemble
des points (cost,sint) pour ¢t € [0,27], on peut la décrire par un graphe de fonctions,
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au moins localement : par exemple, la partie supérieure du cercle unité est I’ensemble
des points (z, f(z)) ou f(z) = v1 — 22

La méme situation se produit lorsqu’on considere un sous-espace vectoriel F' de
R", il peut étre décrit par une équation (si c’est un hyperplan) ou plus généralement
par un ensemble d’équations, il peut aussi étre décrit par un paramétrage, en écrivant
que ce sous-espace vectoriel est I’ensemble des combinaisons {Aju; + -+ + Ayu,}, ol
(u,- - ,up) est une famille génératrice de F.

Les sous-variétés de R”™ sont la généralisation a R™ des courbes de I'espace ou des
courbes et surfaces de I'espace.

Comme dans les exemples précédents, elles vont pouvoir étre décrites de différentes
facons.

(source : http : //www.bibmath.net/)

Définition 2.2.1 (Par un difféomorphisme ou redressement)
Soit M un sous-ensemble de R™ (n € N*), on dit que M est une sous-variété de R"
de dimension p et de classe C*, (p <n, k >0), si pour tout z € M on a :

1. il existe un voisinage U, € V(z) et U, C R",
2. il existe un voisinage Vo € V(0rn) et Vo C R",
3. 11 existe un C*-difféomorphisme o : U, — Vj telle que () = 0 et

(U, M) =VyN (RP X {Ogn-»})-. (2.1)

7.€. VGEUmmM3§0<a):<yla"' 7yp707'“ 7())

FIGURE 2.1 — Sous-variété de R™ de dimension p

Remarque 2.2.1 Cette définition (par redressement) signifie qu’une partie M de R™
est une sous-variété de dimension p si on peut tordre (via un difféomorphisme) le
voisinage de chacun de ses points de sorte que M soit envoyé sur un morceau d’un
sous-espace affine (plat) de dimension p.
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Définition 2.2.2 (Par une submersion ou fonction implicite local)
Soit M un sous-ensemble de R™ (n € N*), on dit que M est une sous-variété de R"
de dimension p et de classe C*, si pour tout x € M on a :

1. il existe un voisinage U, € V(x) avec U, C R",

2. il existe un C*-submersion ¢ : U, — R™ P en x, telle que

Us N M = ¢ ({Ogn-s}). (2:2)

FIGURE 2.2 — Sous-variété de R"™ définit par la submersion ¢.

Définition 2.2.3 (Par une immersion ou paramétrage local)

Soit M un sous-ensemble de R™ (n € N*), on dit que M est une sous-variété de R"
de dimension p et de classe C* si, pour tout x € M :

1. il existe voisinage U, € V(x) avec U, C R",
2. il existe voisinage Vo € V(Or»),

3. il existe un C*-immersion injective 1 : Vo — R™ en Ogy telle que ¥(0rps) = x et
induisant un homéomorphisme

W(Ve) = U, N M. (2.3)

Une applications qui satisfait les conditions 3. (Immersion, Injective, Homéomorphisme)
est dite plongement.

FIGURE 2.3 — Sous-variété de R™ définit par 'immersion .
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Définition 2.2.4 (Par un graphe local )
Soit M un sous-ensemble de R™ (n € N*), on dit que M est une sous-variété de
R" de dimension p et de classe C* si, pour tout x € M et avec identification linéaire
R*=RPxR"P, ona:

1. il existe un voisinage de x, U, € V(x), telle que U, C R" ,

2. il existe un ouvert V C RP,

3. il existe une fonction de classe C* f : V — R" P telle que U, N M est le graphe

de f, i.e.
UsNM={(y. f(y)) lyeV} (2.4)

R?»—P

FIGURE 2.4 — Sous-variété de R™ définit par un graphe local.

Théoréme 2.2.1

Les quatre définitions des sous-variétés, si-dessus, sont équivalentes.

Remarque 2.2.2

o Pour la définition 2.2.3, attention : si ¢ : U — R™ est une application dont
la différentielle est injective (immersion), ne suffira pas pour que ¢(U) soit une
sous-variété.

e Par abus de langage un sous-ensemble de R™ tel que tout point a un voisinage
qui soit image d’une application de différentielle injective est appelé sous-variété
immergée. Mais ce n’est pas une sous-variété.

En particulier si j n'est pas injective, j(ug) = j(u1) = xg, on peut avoir la
situation suivante (exp ;p=1,n=2)

On woit alors que M = ¢(U) n'est pas une sous-variété, car une carte enver-
rait les deux vecteurs tangents a chaque branche de la courbe (qui sont linéairement
indépendants) sur des vecteurs de R, donc liés.

Définition 2.2.5 Soit M une sous-variété de R" de dimension p, on dit
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F1GURE 2.5 — Contre-exemple de I'insuffisance de I'immersion.

M est une sous-variété lisse si elle est de classe C*°.

M est une sous-variété analytique réelle lorsqu’elle est C¥.
M est une courbe sip=1.

M est une surface si p = 2.

M est une hypersurface sip=n — 1.

On note MP pour dire que M est dimension p.

Proposition 2.2.1 Soit M une sous-variété de R™ de dimension p et de classe C*,
alors pour tout | tel que 1 <1<k, M est aussi de classe C'.

Exemples :

1.
2.

R™ est une sous-variété de IR™ lisse de dimension n .

Tout ouvert non vide U de R™ est une sous-variété lisse de dimension n.

Pour le prouver on prend le difféfomorphisme identité si 0 € U si non on prend
une translation qui est un difféomorphisme de classe C*>°, par la définition 2.2.1
on a que U est une sous-variété de dim n et de classe C*.

3. Toute ligne droite dans R™ est une sous-variété lisse de dimensions 1.

4. Les cercles S, ) de centre (a,b) et de rayon r dans R?, sont des sous variétés de

dimension 1, car : S, ) les 'ensemble des points tels que

Sy = {(z,y) € R? | (= a)* + (y — b)* = r?}.

S(ap) est I'image réciproque de I'ensemble {0} par la fonction f de classe C*
définit par
fla,y) = (z —a)* +(y = b)* =17,

qui a la propriété : pour tout (z,y) € S(,p) on a :

Jac fiay = [2x = a) . 20y = b)] # (0,0),

d’ou Jac f(;,) est de rang 1, alors f est une submersion,
par la définition 2.2.2, S, ) est une sous-variété de dim 1 et de classe C*°.

On général toute sphere S* de R™*! est une hypersurface lisse.
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6. un hyperplan affine de R™ est une sous-variété de R"™ de dimension n — 1.
Car : Un hyperplan est donné par I’équation sous la forme f(z) = L(z) + b avec
L est une forme linéaire non nul dans Jac L = L qui est de classe C*™, et b est
une constante de R", alors f est une submersion.
Par la définition 2.2.2 on a que hyperplan est une sous-variété de dim n — 1 et de
classe C*.

Remarque 2.2.3 Il n y a pas unicité de ’équation définissant un ensemble.

Proposition 2.2.2 Soit M une sous-variété de R™ et a € M alors, la dimension en
a est définie de maniére unique.
Si M est connexe cette dimension ne dépend pas du choix du point a.

Prouve : Si on avait deux difféomorphismes ¢, @2 tels que
©1(Ua N M) =1 (Us) NRP x {0} et pa(Us N M) = a(U,) NR? x {0}

alors 1) = ppo0pr! 1 R? x {0} —: RY x {0} serait un difféomorphisme local au voisinage
de 0.
On déduit que diyg : R? x {0} —: R? x {0} ;
Or di)y est une application linéaire bijective, donc p = q.

Maintenant si ¢ : U, — V4, avec b = p(a), est un difféomorphisme, alors pour tout
x € U,, par la translation on a bien : ¥(y) = ¢(y) — ¢(x) est difféomorphisme d'un
voisinage U, du point x. On en déduit que la dimension dans le point a est égale a la
dimension en x, alors D, = {x € M | Dim, = p} est un ouvert.
Or son complémentaire M — D, = J;, D; est une réunion d’ouvert.
On déduit que si D), est non vide et M connexe, alors M = D,.

2.3 Application entre les sous-variétés

Définition 2.3.1 Soient MP? une sous-variété de de dimension p de R" et N? une
sous-variété de dimension q de R™, soit f une application de M dans N,

on dit que f est de classe C* si pour tout a € M, tout paramétrage local vy de M
définit au voisinage V' de Orp dans RP, et tout paramétrage local v de N définit au
voisinage W de Oga dans RY tel que f(y(V)) C v(W) alors :

viofoy: VoW

est de casse CF.
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Y Rl’ e — ) Rl’

FIGURE 2.6 — Application entre des sous-variétés

2.4 Espaces tangentes

Soit MP uns sous-variété de R™ de dimension p de classe C*

Définition 2.4.1 (Courbe)
Toute application continue d’un intervalle de R dans M est dite courbe sur M.

FIGURE 2.7 — Courbe sur une sous-variété de R?

Définition 2.4.2 Soit MP une sous-variété de R™ de dimension p de classe C, et
a € M. Un vecteur v de R" est tangent a M en a si :

o [l existee >0 de R,

e [l existe une courbe v :| —e,e[— M de classe Ct, telle que
v(0)=a et #(0)=nw.
v est dit vecteur tangent de M en a.
Définition 2.4.3 [’ensemble de tous les vecteurs tangent a M en a est dite I’espace

tangent a M en a, il est noté T, M.
On dit aussi le plan tangent.
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S
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0

FIGURE 2.8 — Vecteur tangent sur une sous-variété R3

FIGURE 2.9 — Espace tangent (ou plan tangent) sur une sous-variété R3

Théoréme 2.4.1 Soit MP uns sous-variété de R™ de dimension p de classe C, et
a € M. alors l’espace tangent T, M est un sous-espace vectoriel de R™ de dimension p.

Prouve : la prouve de se théoreme sera faite dans le cas plus général des Variétés
différentielles.

Proposition 2.4.1 Soit MP uns sous-variété de R™ de dimension p de classe C', et
a€ M.

1. Si U, C R"™ est un voisinage ouvert de a, et Vo C R™ est un voisinage ouvert de
0eto:U, — Vo un Cl difféomorphisme tel que ¢(U, N M) = Vo N (RP x {0})
alors :

T,M = (D¢a) " (R” x {0}).

2. Si U, C R"™ est un voisinage ouvert de a, et ¢ : U, — R"P une submersion de
classe C' en a, telle que U, N M = o (p(a)), alors

ToM = ker(D,py).

3. 51tV CRP, et siU, CR"™, ety : Vy— U, un plongement local de M en a de
classe C* avec ¥(0) = a, alors :

T,M = Im (D).

Proposition 2.4.2 Soient M? une sous-variété de R™ et x € M un point quelconque,
alors ’espace tangent T, M est [’ensemble des vecteurs vitesse ent = 0 des courbes C*>
tracés sur M passant par x a ['instant t = 0.
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Prouve : Soit ¢ un difféomorphisme (carte) en x, et v une courbe tracée sur M telle
que 7(0) =
Alors pour ¢ assez proche de 0, p(7(t)) est bien définie, tracée sur R? C R” et passe
par 0 en ¢t = 0. Danc la tangente en 0 de ¢(7y ( )) est dans R” i.e. dp(c(0))7/(0) est dans
R?, ce qui par définition équivaut a +'(0) € T.

Inversement, Soit v € T,,M alors dy(z)v est dans RP?
soit une courbe paramétrée de R? 7 : t — 7(t), tangente a dp(z)v en t = 0.
alors quitte a restreindre la courbe v a un voisinage de 0, on peut supposer contenue
dans V = @(U,). alors c(t) = ¢ (y(t)) est une courbe tracée sur M, et le calcul
précédent montre qu’elle est tangente a v en t = 0.

Exemple :

Soit la sphere S? = {x € R3 | ||z||*> = 1}. c’est une sous-variété de dimension 2
définit par la submersion F(z) = ||z|| — 1 et S* = F~1({0}).
On a que sa différentielle : dF,(h) = 2 < z,h >, alors 'espace tangent en x € S? A la
sphere, T,.5? est le plan orthogonal & .

2.5 Exercices

Exercice 01 :

1. Déterminer le parametre o € R pour lequel I'ensemble suivant soit une sous-
variété
{(z,y,2) € R?, 2* +y* + 2* = vyz + a}
2. De méme déterminer les parameétres (p,q) € R? pour lesquels I'ensemble suivant
soit une sous-variété

{(z,y) e R?, y* = 2° — 3px + ¢}
donner la dimension de ces sous-variétés

Exercice 02 :
Les applications suivantes f; : R?* — R ? définirent elles des sous-variétés? (calcul de
submersion est fait en exo 04 de la série 1)

L. fl(x,y,z):x2—l—y2+22—a2
2. f2<xuy72> = 1'2 +y2 - ’22
3. fg(l',y72>:l'2+y2—z

Exercice 03 :
Montrer que I'ensemble

{(u?, 0%, 0, V2 uv, V2 vw, V2 uw) € R®; (u,v,w) € R®, u*+ v* + w? =1}

est une sous-variété de RS. Et qu’elle est incluse dans la sphére unitaire.
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Exercice 04 :
Soit S la nappe paramétrée définie par

r(u,v) =u+v, ylu,v)=uw, z(u,v)=u’>+v (u,v) € R?

1. les deux ensembles sont ils des sous-variétés? l'intersection et elle une sous-
variétés ?

Exercice 05 :
Soit X un espace vectoriel de dimension n, soit ¥ un espace vectoriel de dimension
m > n, soit U un ouvert de X. Soit f : U — Y un plongement. On note M = f(U).
Soit a € M, a = f(«) pour un o € U.

1. Soit x € X, x # 0. Montrer qu’il existe € > 0 tel que I'application g définie sur
| — €, €[ par g(t) =7a + tx prend ses valeurs dans U.

2. On note vy = fog:] —¢€€e[— Y . Montrer que y(t) € M pour tout t €] — €,€.
Déterminer (0) et 7/(0) en fonction de f, «, a et .

3. En déduire que df (a)(x) € T, M.
4. Montrer qu’on a T,M = de(a)X = {df (a)(z), v € X}.

Exercice 06 :
Soient les ensembles suivants :

A={(z,y,2) eR’, &* + 9>+ 2° = ayz + ax + By + 7}
B = {(r,y,2) € R®, 2* + 2* = ay — b}

avec a, 3,7,a,b € R.
1. A, B sont ils des sous-variétés?
2. pour quelles parametres a, 3,7, a, b le seront-ils 7 donner leurs dimensions.
3. Calculer C'= AN B pour ces parametres.

4. C' est il une sous-variété ? si oui, quel est sa dimension ?.

Exercice 07 :
Les sous-ensembles V; de R? ou R? qui suivent, sont-ils des sous-variétés ?
Si oui, qu’elles sont leurs dimensions.

L Vi={(z,y) e R* y = |z[}.

2. Vo ={(z,y) € R? 2> —x =y}

3. Vs ={(x,y) € R? 2? = ¢3}.

4. Vi ={(z,y,2) € R3 2? + y? + ay = 2*}.

Exercice 08 : Etudier selon les parameétres «a, 3,7 de R si 'ensemble A est une
sous-variété, donner sa dimension

A={(z,y,2) eR®, 2 +y* + 2> = ayz + ax + By + 7}
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Exercice 09 :
Soit V' le sous-ensemble défini par :

V:{(x,y,z,t)E]R4/t3+x3+y3+z3:t+x2—y2+z2:a:—y—l—z—2:0}

1. Donner la fonction f qui définit V
2. f est-elle une submersion ?
3. Peut-on réduire R* pour que V soit une sous-variété ?

4. Si oui, donner la dimension de V.
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Chapitre 3

Les formes différentielles

Les formes différentielles sont des objets mathématiques qui permettent de décrire
de maniere précise la variation d’une grandeur dans ’espace. Elles sont particulierement
utiles en géométrie différentielle et en physique théorique, ou elles sont utilisées pour
décrire les champs de forces, les propriétés des courbes et des surfaces, ainsi que la
dynamique des systemes physiques.

Les formes différentielles sont utilisées pour décrire un grand nombre de phéno-
menes physiques, tels que les champs électromagnétiques, les champs gravitationnels,
les courants électriques, les ondes sonores, etc. En physique, les formes différentielles
sont utilisées pour décrire les propriétés des champs de forces a travers des équations
différentielles appelées équations de Maxwell. Les formes différentielles sont également
utilisées pour décrire les propriétés géométriques des surfaces et des courbes en géométrie
différentielle.

En mathématiques, les formes différentielles sont largement utilisées pour résou-
dre des probléemes d’optimisation, de calcul vectoriel, d’intégration, de théorie des
nombres, etc. Les formes différentielles permettent également de généraliser de nom-
breux concepts mathématiques familiers, tels que le gradient, la divergence, la rotation,
la dérivée, etc.

(ChatGPT)
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3.1 Algebre tensorielle.

Soit E un espace vectoriel de dimension n

3.1.1 Formes multilinéaires

Définition 3.1.1 Une application L est dite une forme k-linéaire ou une
k-forme linéaire sur E avec

L: EF — R
(v1,...,05) — L(v,...,0)

Si elle est linéaire pour chaque variables.
c’est a dire : Vi e {l,...,k}, Vo, 5 €R on a:

L(vy,...,ov; + Pwi, ... v5) = al(vy, ..., 0. .., 05) + BL(v1, .o w;y .o k).
L’ensemble des formes k-linéaires est notée : @" E* ou L*(E).
Remarque 3.1.1 Pour un k =1 on a une application linéaire, c’est le duale de E.

Proposition 3.1.1 (& Définition) Soient L € Q" E* and T € Q' E*.
Le produit tensoriel de T et L est la forme (k + 1)-linéaire notée L @ T € Q" E*
définit par :

L® T(Uh vy Uk Vg1, - - - 7Uk+l> = L(Ula s 7Uk)T(Uk+17 cee 7Uk;+l).
Remarque 3.1.2 Le produit tensoriel est associatif mais non commutatif.

Soit {e1, ..., e,} une base de E alors on définit la base duale dans E* par : {e}, ..., ek}
avec e;(ej) = 0;;

Proposition 3.1.2
o ®FE* est un R-espace vectoriel.
o La famille {e}, ® ...®¢}, 1 <i; <n} est libre et c’est une base de @" E*.
o dim@®" E* = nk.

3.1.2 Formes multilinéaires alternées

Définition 3.1.2 Soit T € @" E* une k-forme linéaire,
T est dite alternée ou anti-symétrique si elle change de signe lorsqu’on échange
deuz vecteurs, e.i. :

T(v1, .oV Uy 0) = —=T(01, o Uy e Vg e, ).

L’ensemble des k-formes linéaires alternées est noté : N*(E) ou \¥ E*.
On pose par convention : les 0-formes sans des constantes e.i.
0 0

NE* =LE)=QE =R.
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Théoreme 3.1.1 Soit E un R-espace vectoriel de dimension n, alors :

NF(E) est un sous-espace vectoriel de @ E* de dimension C* =
n = El(n—Fk)!

Rappel : On désigne par G, (ou autre notation },), le groupe de permutation de
{1,...,k}, c’est-a-dire le groupe des bijections de cet ensemble.
Toutes permutation o € G,, admet une unique signature ¢, = +1.

Proposition 3.1.3 Soit L € Q" E* une k-forme linéaire de Uespace E. les conditions
sutvantes sont équivalentes :

1. la k-forme L est alternée.

2. Pour toutes permutation o € G, et pour tout vi,...,vx € E on a :
L(Vo(1); - - - Vo(k)) = Eo-L(v1, ..., ).
3. Pour tout vy,...,v, € B :

S’il existe i # j tel que v; = v; alors L(vq,...,v;) = 0.

4. Sivy, ..., v € E sont linéairement dépendants alors L(vy,...,v;) = 0.

Prouve : En exercice.

Corrolaire 3.1.1 Si k > dim(FE) alors \* E* = {0},

e.i. toutes les k-formes alternées sur E sont identiquement nulle.

Proposition 3.1.4 (& Définition) Soit L € @" E*, on lui associe I'antisymetrisé
qui est la k-forme alternée Alt(L) € \* E* définit par :

1
= E &TUL(UU(l), . ,Ug(k)).
g<{o™

Alt(L) (v, ..., vx)

Définition 3.1.3 (Produit extérieur) On définit le produit extérieur de
LeNE* etdeT e NE*, noté LAT par :

(k +1)!

LAT ==

Alt(L®T),
c’est a dire :

LAT(vy,. .., vpq) = /;l‘ Z €o-L(Vs(1), - s Vo(k)) T (Vo(ks1)s - - - Vor(kti))-
U 0€Gkt
Proposition 3.1.5 Soient L, Ly, Ly € N*E* , T € NNE* et H € \° E* alors :
o LAT est une (k+1)-forme alternée.
e Le produit extérieur est associatif LA (T NH) = (LAT)ANH.
o LAT =(-1)MTAL.
o (L1 +L)ANT =L AT+ Ly AT

Théoréme 3.1.2 Soit {ey,...,e,} une base de E | et {e},...,e:} la base dual associe
telle que ef(e;) = 0;; alors :

La famille {ej N...Nej, 1 <14y <...<ip <n} forme une base de NF E*.

(%]
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3.2 Formes différentielles

Définition 3.2.1 soit un espace vectoriel de dimension finin, et U un ouvert de F,
Une forme différentielle de degré k, ou une k-forme différentielle, est une
application lisse de U dans \* E* :

a: UCE — NE*
x —

Uensemble des k-formes différentielles sur U est noté QF(U).

Proposition 3.2.1 L’ensemble des k-formes différentielles Q*(U) est un R-espace
vectoriel de dimension non-fini en général. On a

Ya, 8 € Q5U), YA\, p € R, A\a+pup.B € Q)
avec (A.a+ p.f)(x) = Aa(z) + p.p(x), Vrel.

Remarque 3.2.1 soit Q*(U) l’ensemble des k-formes sur U et o € QF(U)
o Si k=0 alors Q°(U) est I’ensemble des fonctions lisses de U dans R,

QU) ={f:U — R lisse}.
o Sik =1 alors QY(U) est I’ensemble des différentielles des fonctions lisses,

QY U)={df /| f: U — R lisse}.

o Si{ey,...,en} une base de E, alors pour tout x € U, il existe des fonctions
iy, € C2(U) telle que :
= > iy, () €5, A Neg

1<iy <...<ip<n

o Comme e} sont des une-formes alors elles sont la différentielle de l'application
ime coordonée x — x* alors on note :

o Yoy, () dt AL A da™

-----
1<iy <...<ip<n

e Dans le cas des une-formes c’est la différentielle d’une fonction f alors :
- d - 7d ¢
a=df ; 5 x
e On note l'ensemble de toutes les formes différentielles sur U par Q(U)
QU) =P *U)
k=1

Définition 3.2.2 (Produit extérieur des formes) Soient deuzx formes
a € QFU) et B € Q(U) alors en définit le produit extérieur de o et B noté a A 3
par :

a A f(x) = alz) A [(z), Vo e U.

Remarque 3.2.2 les propriétés de distributivité, anticommutativité et associativité
pour le produit extérieur de formes différentielles sont conséquences des propriétés ana-
logues pour le produit de formes alternées.
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3.3 Formes différentielles Réelles

Pour cette section on consideére I'espace vectoriel £ = R"™ et U C R"™ un domaine
borné.

3.3.1 Formes différentielles de degré 0

Définition 3.3.1 Une forme différentielle de degré O sur U est une fonction continue
f:U—R. (En général en prend des fonctions de classe C*). e.i.

AU =CHU,R).

3.3.2 Formes différentielles de degré 1

Définition 3.3.2 Une forme différentielle de degré 1 sur U est la différentielle d’une
fonction de classe C?, f : U — R. c.a.d :

a€eNU: 3feCHUR)/a=>_ fidx,
=1
ou fj € C%(U,R). (En général en prend les fonctions f; de classe C*).

Example 3.3.1

o Soit U C R? ouvert, pour une fonction f € CY(U,R), la différentielle totalle de
f est une 1-forme différentielle,

f of .
d, de + =
If = + 8y
e Cas d’une fonction a trois variables U C R3 :
f of of .
df = — dov + — dy + =—
i = Ty YT o

3.3.3 Formes différentielles de degré 2
Soit U C R™ un domaine borné
Définition 3.3.3 Une forme différentielle de degré 2 sur U est la deuzieme différentielle
d’une fonction de classe C*, f: U — R. c.a.d :
aeNU: 3feCHUR)/a=> Y fidy;Adzj,
i=1j=1

ot fi; € C°(U,R). (En général en prend les fonctions f;; de classe C*).

Example 3.3.2

1'2—

e o= Y iz +yx dy — z dz est une 1-forme différentielle de R®.
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2
o a =~ dx Ady est une 2-forme différentielle de R3.
z

Remarque 3.3.1

o Toutes les 2-formes de R? sont sous la forme :
a=fdrANdy, avecf€C®R*R).
e On général on note dans le cas des réels dx;.dx; au-lieuw de dz; N dx;.

Example 3.3.3
o Soit U C R? ouvert, pour une fonction f € C*(U,R), la deuziéme différentielle
totalle de f est une 2-forme différentielle,

o0 f
0xdy

&f = dx.dy.

e Cas d’une fonction a trois variables U C R3 :

o0 f 0 f
0x0dy 0yoz

9% f

920> dr.dz.

d*f = dx.dy + dy.dz +

3.4 Image réciproque - Pullback

Définition 3.4.1 Soient U C E et V C F deux ouverts d’espaces vectoriels, et soit
une application lisse f : U — V,
I'I'mage réciproque (ou Pullback) de f est l'application notée f* définit par :

QN — QNU)
w o o ffwi= M (w)

telle que :
(ffw)z(v1, ... 0) = Wi (dfm(vl), e ,dfx(vk)), Yy, ..., v, € UL

Proposition 3.4.1 Soit une application lisse f:U — V,
1. Pour tout w,0 € Q*(V), on a

[flw+0)= frw+t f0.
2. Pour tout w € Q*(V) et § € QY(V), on a
frwnd) = (ffw) A (f0)
3. Soit une autre application lisse g : V — W et a € QF(W), on a
gof:U—=V—->W
(go ) - Q" W) — QXV) — Q4(U)

avec

(gofYa=(fTog)a= f(ga)
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3.4.1 La différentielle extérieur

Soit E un espace vectoriel de dimension n, et U C E un ouvert. On rappel que
'ensemble de toutes les formes différentielles est noté : Q(U) = @y_, (V).

Théoréme 3.4.1 (& Définition) [l existe une unique application linéaire, dite la
différentielle extérieur, notée

d: QU) — QU)

qui a les propriétés suivantes :
1. Yw € QF(U) alors dw € Q*H(U).
2. Vf € QY%U) alors df est la différentielle de fonction.
3. Yw € QF(U) et VO € QYU) alors

dw A 0) = dw A b+ (—1)"w A db.
4. On a que dod = 0.
Exzemple : Dans un ouvert U € R? les une-formes sur U sont sous la forme
w = fidx + fody + f3dz

La différentielle extérieur de w est :

_(9h 0 of _0f, oh 0k
dw_(@x 8y>dw/\dy+<ay 82>dy/\dz+<8z &B)dz/\dx.

Définition 3.4.2 Soit w € Q(U) on dit que :
o w est fermée si dw = 0.

e w est exacte s’il existe une forme 6 € Q(U) telle que w = df.
Proposition 3.4.2 Par le faite que dod =0, alors
toute forme exacte est fermée.

Majis la réciproque est fausse en général.

Contre-exemple : Sur R?/{0} la forme w = est une forme fermée, mais

elle n’est pas exacte.

Proposition 3.4.3 Soit f : U — V lisse, alors
do f*= f"od.
c.a.d : Vw € QF(V) 1 d(f*w) = f*(dw).

Ce qui nous donne :
L’image réciproque d’une forme fermée (resp. exacte) est une forme fermée (resp.
exacte).
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3.4.2 Lemme de Poincaré

Définition 3.4.3 Un ouvert U € R"™ est dit étoilé s’il existe un point a € U tel que
pour tout x € U le segment [a,z] C U.

Rappel : [a,z] est un segment : [a,z] == {t.a+ (1 —t)x / t € [0,1]}.

Théoréme 3.4.2 (Lemme de Poincaré) SiU C R™ est un ouvert étoilé alors toute
forme fermée sur U est exacte.

Corrolaire 3.4.1 Soit U C R"™ ouvert. Si U est difféomorphe a R" alors :
pour toute w € QF(U) tel que dw = 0 alors w est exacte.
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Chapitre 4

Intégration des formes
différentielles

4.1 Intégration des 1-formes

Soit U un ouvert de R™.

Définition 4.1.1

e Une courbe sur est l'image d’un intervalle de R par une application continue

v a,b] = U.

e Une courbe v : [a,b] — U est dite de classe C' par moreauzx s’il existe
ti,--,tr €ER tel que -a =1, <ty < --- <t = b ety dans classe C' dans
les intervalles [t;,t;11] pour tous i =1,--- [k — 1.

Définition 4.1.2 Soit o € QY(U) une 1-forme sur U, et v une courbe de classe C* par
moreaux sur U,
alors on définit ’intégrale de o le long de la courbe ~ par :

k=1 iy ,
/a = Z/t Q)Y (t) dt,
v i=1 7t

avec y; est la restriction de v a Uintervalle [i,i + 1].

Proposition 4.1.1 avec les mémes condition que la définition précédente on a :

1. Avec un changement de paramétrage croissant de classe C' sur v lintergale ne
change pas, et

tit1 , @~ (tit1) , ,

| @ dt= | e (20 (1)
i ® i

Et si le paramétrage est décroissant alors la transformée est en son opposé.

2. Si« est exacte, et soit deux courbes v, et v, paramétrées de classe Ct et de mémes
extrémités, c.a.d. mémes points de dépare a,b et mémes images v1(a) = v2(a) et

(D) = v2(b) alors
foe= e
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3. Si « est exacte, c.a.d. qu’il existe une fonction f : U — R lisse telle que o = df,
et a = df, alors l'intégrale le long de la courbe v devient :

fio=far= ] g

ou encore :

b b
Lazlﬁzlfw®MﬁW:LQN%WWZﬂWW—ﬂﬂw-

4. Dans le cas ou vy est une courbe fermée, c.a.d. y(a) = v(b) :

/#:0

Proposition 4.1.2 Soit U un ouvert de R™ par arcs et soit a une I1-forme sur U,
alors

la forme a est exacte si et seulement si pour tout lacet (courbe fermée) v de classe C*
par morceauz on a [ a = 0.

Proposition 4.1.3 Si U C R? ouvert, et avec une forme fermée

df = f1 dx + fo dy, alors Uintégral le long d’une courbe 7 : [a,b] — U de classe C* est
donnée par :

[ = [ oo oty = [ (R0 + Rioo) %) e

Lemme 4.1.1 Avec lers méme conditions de la proposition précédente :

o L’intégral le long de —v est

/—v Jidz + fody = —Lfldﬂi + fady.
e Si deux courbes 1 et vy sont équivalentes alors

| et pody = [ fude+ fody

Proposition 4.1.4 Si U C R? ouvert, et avec une forme fermée

df = fidx + fody + f3dz, alors Uintégral le long d’une courbe v : [a,b] — U de classe
Cl est donnée par :

L#:/ﬁw+ﬁ@+ﬁw

= [ (305002005 + Aol 0,500 + a0 t0) 20 ) .
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4.2 Théoreme de Stocks

4.2.1 Sous-variétés de R" orientées

Une sous-variété orientée de R™ est un objet mathématique qui ressemble locale-
ment a un espace euclidien de dimension plus petite et qui est muni d’une orientation
cohérente. Ce type de sous-variété est essentiel pour définir des intégrales de formes
différentielles et appliquer le théoreme de Stokes dans R"™.

L’orientation est essentielle pour définir I'intégration sur les sous-variétés. Dans le
théoreme de Stokes, on doit intégrer sur une sous-variété M et sa frontiere OM, qui
doivent toutes deux étre orientées de maniere cohérente. Cette orientation détermine
le signe de l'intégrale et permet d’'interpréter des résultats comme 1’égalité entre une
intégrale sur un domaine et une intégrale sur sa frontiere.

En résumé : - Une sous-variété de R™ est une partie de R™ qui est "lisse” et
ressemble localement a un espace euclidien de dimension inférieure. - Une sous-variété
orientée est une sous-variété ot un choix d’orientation cohérent a été fixé, ce qui est
crucial pour les intégrales et les théoremes comme celui de Stokes.

Définition 4.2.1 (Orientation d’une sous-variété) Une sous-variété est orien-
table s’il est possible de choisir une orientation qui est cohérente partout sur la sous-
variété.

Une orientation consiste a choisir un "sens” pour chaque point de la sous-variété
de maniére continue.

Pour une sous-variété de dimension k, l'orientation est généralement donnée en
choisissant un ordre pour une base des vecteurs tangents (une base pour chaque point
de la sous-variété) qui se conserve de maniére cohérente a travers toute la sous-variété.

Définition 4.2.2 (Sous-variété orientée de R") Une sous-variété orientée de
dimension k dans R" est une sous-variété M C R"™ de dimension k munie d’une orien-
tation.

Une ortentation sur M consiste da choisir, pour chaque point p € M, une base

orientée {e1,...,ex} de l'espace tangent T,,M, de fagcon cohérente sur M, c’est-a-dire
qu’il est possible de couvrir M par des cartes locales (U, ¢) telles que les bases cano-
niques {6%1’ cee %} de R* soient compatibles entre elles d’un voisinage d ['autre.

Formellement :
cela signifie que 'orientation sur M est définie par une classe d’équivalence de bases
de T,M qui reste continue sur M.

Cas des courbes et des surfaces :

e Pour une courbe dans R" (une sous-variété de dimension 1), une orientation
correspond a choisir un sens de parcours (par exemple, de gauche a droite).

e Pour une surface dans R?® (une sous-variété de dimension 2), une orientation
correspond a choisir un sens pour le vecteur normal (par exemple, vers 'extérieur
ou vers l'intérieur).
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Exemple de sous-variété orientée :

1. Considérons le cercle unité S C R?, qui est une sous-variété de dimension 1 (une
courbe) dans R?. On peut choisir d’orienter S! en fixant un sens de parcours, par
exemple dans le sens antihoraire. Ce choix d’orientation nous permet d’intégrer
des formes 1-différentielles sur le cercle de maniere cohérente, en sachant quel
"sens” est pris en compte pour les intégrales.

2. Pour une surface comme la sphére unité S? C R?, qui est une sous-variété de
dimension 2 dans R3, 'orientation est souvent donnée par le choix de la direction
du vecteur normal : par exemple, une orientation "vers I'extérieur” signifie que
les vecteurs normaux pointent vers l'extérieur de la sphere.

4.2.2 Théoréme de Stokes dans R"

Pour comprendre en profondeur le théoreme de Stokes dans le cadre de R", explo-
rons étape par étape ce qu’il signifie en termes de formes différentielles et d’intégrales.

Théoréme 4.2.1 (Le théoréme de Stokes dans R™) Soit U C R" un domaine orienté
de dimension k avec une frontiére orientée OU de dimension k—1. Siw est une (k—1)-
forme définie sur U, le théoréme de Stokes affirme que :

/wa:/an.

Cette formule dit que l’intégrale de la différentielle dw de w sur le domaine U est égale
a lintégrale de w sur la frontiére OU de U.

Interprétation

Le théoreme de Stokes relie I'intégration sur un domaine U a l'intégration sur sa
frontiere QU. Intuitivement, cela signifie que l'intégrale "globale” d’un changement
(d’'une dérivée extérieure) sur un domaine est déterminée par les valeurs sur les bords
de ce domaine.

4.2.3 Cas particuliers dans ’analyse vectorielle

Dans R3, le théoréme de Stokes prend des formes connues en analyse vectorielle.

Théoréme 4.2.2 (Le Théoréme de Stokes pour le rotationnel) SiS est une sur-
face orientée dans R3 et que F est un champ de vecteurs, alors on peut écrire :

/(VXﬁ)-dﬁz Fdr,
S oS

ot dS est U'élément de surface orienté sur S et dr est I’élément de ligne le long de la
courbe 0S, la frontiére de S. Ici, V X F est analogue a dw pour une 1-forme associée
au champ F.

Théoréme 4.2.3 (Le théoréme de la divergence ou théoréme de Gauss) SiV C
R3 est un volume avec une surface fermée S = OV, alors pour un champ vectoriel F,

on a . . . .
/V(V-F)dvszF.ds.

Ici, V - F correspond a dw pour une 2-forme associée au champ F.
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4.3 Applications du théoreme de Stockes

Le théoréme de Stokes est fondamental dans de nombreux domaines :

e Electromagnétisme
Les lois de Maxwell utilisent le théoreme de Stokes pour relier les intégrales de
surface et les intégrales de ligne

e Théorie des champs
En physique, il permet de lier le comportement de champs vectoriels sur des
surfaces aux valeurs de ces champs sur les frontieres de ces surfaces.

e Calcul des variations et géométrie différentielle
Le théoreme de Stokes généralise des théoremes intégrals a des espaces de dimen-
sions plus élevées et permet d’étudier des propriétés géométriques et topologiques
de variétés.

En résumé, le théoreme de Stokes dans R™ établit un lien entre la géométrie d'un
domaine et sa frontiére, en permettant le passage d’une intégrale sur le domaine a
une intégrale sur sa frontiere, tout en généralisant des concepts classiques d’analyse
vectorielle dans un cadre abstrait et puissant.
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Chapitre 5

Variétés différentielles

Il s’agit d'un cours d’introduction aux variétés différentiables. Ce sont des analogues
de dimensions supérieures de surfaces comme celle-ci :

FIGURE 5.1 — La Bouteille de Klein

C’est les images a avoir, mais nous ne devons pas penser a une variété comme
toujours inclut dans un espace euclidien fixe comme celui-ci, mais plutét comme un
objet abstrait. L'une des forces motrices historiques de la théorie était la relativité
générale, ou la variété est un espace-temps a quatre dimensions, des trous de ver et
tout :

FIGURE 5.2 — L’espace temps de la relativité général

L’espace-temps ne fait pas partie d'un plus grand espace euclidien, il existe simple-
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ment, mais nous devons apprendre a faire une analyse sur celui-ci, ce qui est le sujet
de ce cours.

Un autre apport au sujet vient de la mécanique - la dynamique des systemes
mécaniques complexes implique des espaces avec de nombreux degrés de liberté.

La premiere idée que nous rencontrerons est en réalité la propriété de définition
d’une variété - de pouvoir décrire localement des points par n nombres réels, coor-
données locales. 1l faudra ensuite définir des objets analytiques (champs vectoriels,
formes différentielles par exemple) qui sont indépendants du choix des coordonnées.
Cela a un double avantage : d’une part, cela nous permet de discuter de ces objets sur
des variétés topologiquement non triviales comme les spheres, et d’autre part, il fournit
également le langage pour exprimer les équations de la physique mathématique sous
une forme sans coordonnées, I'un des principes fondamentaux de la relativité.

L’exemple le plus élémentaire des techniques analytiques sur une variété est la
théorie des formes différentielles et la dérivée extérieure. Cela généralise le grad, div et
curl du calcul tridimensionnel ordinaire. Elle fournit une généralisation tres naturelle
des théoremes de Green et de Stokes en trois dimensions et donne également naissance
a la cohomologie de De Rham qui est une maniere analytique d’approcher la topologie
algébrique de la variété. Cela a été important dans une vaste gamme de domaines allant
de la géométrie algébrique a la physique théorique.

Une utilisation plus raffinée de I’analyse nécessite des données supplémentaires sur la
variété, avec des définitions un peux avancés, on peut décrire certaines caractéristiques
de base des métriques riemanniennes. Celles-ci généralisent la premiere forme fonda-
mentale d’une surface et, sous leur forme lorentzienne, fournissent la substance de la
relativité générale. Une histoire plus complete demande un cours beaucoup plus long,
mais on donne juste les éléments de base des variétés.

Nigel Hitchin

5.1 Variétés topologiques

Soit M un espace topologique i.e. : ensemble de points muni d'une topologie. tel
que :

1. M est a base dénombrable : M a une base dénombrable d’ouverts, ou il admet
un sous-ensemble dénombrable dense.

2. M est espace séparé (en anglais : Hosdorff space) : pour tout deux points distincts
ont des voisinages distincts, e.i.

Ve,ye M |z#y: 3FUeV(z), VeV | UNV =a.

Remarque 5.1.1 Pour la suite on considére tous les ensembles comme des
espaces topologique, dénombrables et séparés

5.2 Cartes locale et atlas

Définition 5.2.1 Soit M un espace topologique, une carte, ou carte locale ou ap-
plication de coordonnée locale est le pair (U, ) tel que
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1. U est un sous-ensemble ouvert de M,

2. Vapplication @ : U — Q est un homéomorphisme dans un ouvert Q0 C R", pour
un certain n € N*,

Définition 5.2.2 Dans R"™ on appelle les fonctions projection : m; : R® — R les
fonctions C* définis par

mi(Ty, .. o) =2, 1<i<mn.

Définition 5.2.3 Soit M un espace topologique
e Soit p € M, on dit de (U, p) est une carte de p si et seulement sip € U.

o Si (U,p) est une carte, alors les fonction x; = m; o ¢ sont dites coordonnées
locales.

e Pour tout p € U le n-uplet (x1(p),...,z,(p)) est ’ensemble des coordonnés
de p par rapport a la carte (U, ).

o Par linverse, (Q, o™ !) est dite la paramétrisation local.

Définition 5.2.4 Soit M un espace topologique, et soient (U, ;) et (Uj, ;) deuz
cartes locales avec U; N U; # &.

On appelle applications de transition oiu (applications de changement de
cartes) les applications, cpg et g0§- de R"™ dans R"™, définis par

ol =007 1 (U, NT;) = ¢;(U; N T;)
0 = piop;t i (U;NU;) = @i(U; N U;)

I est claire que ] = (i)™, (sont isomorphes).
Dans ce cas on dit que (U;, ;) et (U, p;) sont des cartes compatibles.

FIGURE 5.3 — Application de changement de cartes
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Définition 5.2.5 Soit M un espace topologique, et n € N*, k € N* U {oco}. On appel
n-atlas de classe C* ou un CF n-atlas, (ou tout simplement un atlas) ’ensemble
des cartes sur M noté A= {(Ui, )} tel que :

1. Les U; recouvrent M 1.e.

M=JU,

2. o(U;) CR"™ pour tout i, i.e. n est une constante pour toutes les cartes.

3. Dans le cas ou U;NU; # @ les applications de changement de carte gog et gpé sont
des CF-difféomorphismes.

Si k = 0o on dit que c’est un atlas lisse (en. : Smooth).

Remarque 5.2.1

1. Nous devons nous assurer que nous avons suffisamment de cartes pour mener a
bien notre programme de généralisation du calcul sur R"™ aux variétés.

2. Pour cela, nous devons pouvoir ajouter de nouvelles cartes chaque fois que cela
est nécessaire, a condition qu’elles soient compatibles avec les cartes précédentes
dans latlas existant.

Définition 5.2.6 Soient M un espace topologique, A et A" deux atlas sur M.
On dit qu’ils sont des atlas compatibles si est seulement si toute carte de ['un est
compatible avec toutes les cartes de l'autre atlas.

Remarque 5.2.2
e Deuzx atlas sont compatibles équivalant a dire que leurs union est aussi un atlas.
o La compatibilité des C* n-atlas induit une relation d’équivalence sur M.

o Alors, soit A un atlas sur M, la collection A, de toutes les cartes compatibles
avec A est un atlas maximal dans la classe d’équivalence des cartes compatibles
avec A.

Définition 5.2.7 (Variété topologique) Tout espace topologique séparé M muni
d’un n-atlas A, n € N*, tel que A = {(U;, i)} ou ¢; sont des homéomorphismes
(ou tout simplement A est un n-atlas de classe C° ), est dite une variété topolo-
gique. Noté (M, A).

n est dite la dimension de la variété M.

5.3 Variétés différentielles abstraites

Définition 5.3.1 Soit M un espace topologique séparé dénombrable, n € N*, pour un

certain k € N* U {oco}.

Le couple (M, A) est dite variété différentielle de dimension n et de classe C* si :
M admet un n-atlas A de classe C*, avec k > 0.

Si k = 00 on dit que c’est un variété lisse (en. : Smooth manifold).

Remarque 5.3.1
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y=t(1-#)
1.0

05

¥=1-

-05

FI1GURE 5.4 — Nodal cubic, n’est pas une variété

1. 1l aurait peut-étre été préférable d’utiliser la terminologie "variété abstraite”
plutot que "wvartété” pour souligner le fait que ’espace M n’est pas a priori un
sous-espace de RY, pour un certains N.

2. On général on dit une variété différentielle pour parler d’une variété de classe
C.
3. On note M"™ pour dire que M est une variété de dimension n.

4. Toute variété différentielle de classe C* est une variété topologique.

Exemples :

1. L’ensemble R"™ est une variété différentielle de dimension n, pour cela il suffit de
prendre 'atlas : A = {(R", Id)} avec Id est le difféomorphisme C* identité.

2. Tout ouvert U de R"™ est une variété différentielle de dimension n et de classe
C®, on peut prendre I'atlas d’une seul carte : A = {(U, Id)}.

3. L’ensemble M = {(z,y) € R? | y* = 22 — 2®} appelé nodal cubic n’est pas une
variété, on peut aussi le définir comme une courbe paramétrée
M={(z,y) eR* |z =1—-1t* y=1t(1—1t?), Vt € R}. Le probléme ce pose a
I'origine, qui est de dimension 2 alors que le reste est de dimension 1.

4. L’ensemble M = {(z,y) € R? | y*> = 23} appelé¢ Parabole semi-cubique (en :
Cuspidal cubic) est une variété topologique mais elle n’est pas différentiable, on
aussi le définir comme une courbe paramétrée
{(z,y) € R? | (x =%, y=13), Vt € R}. Le probleme ce pose a l'origine, qui est
continu mais non différentiable .

Proposition 5.3.1 S7 un espace topologique M est une variété topologique parce qu’il
a un atlas composé d’une seule carte, alors il est automatiquement une variété lisse!

Corrolaire 5.3.1 En particulier si f : U — R™ wune fonction continue d’un sous-
ensemble ouvert U C R™ dans R™, alors le graphe I'y définit par :

Ty ={(z,f(z)) e R"™™ | x € U}

est une variété lisse.
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y=t{1-£)

F1GURE 5.5 — Cuspidal Cubic , est une variété topologique non différentiable

Prouve :
Ceci est vrais car : on prenant I’atlas composé par la seul carte (U, ) avec ¢ est la
projection lisse définit par
Q: r f — U
(z, f(x)) = @

avec ¢~ H(U) =T’y qui est une immersion C*.

Example 5.3.1 La sphére unitaire S™

Avec la projection stéréographique par le pole nord et le pole sud, définissent deux cartes
sur S™ est une variété lisse.

Soient N = (0,...,0,1) et S = (0,...,0,—1) le pdle nord et le péle sud respectivement.
on définit les projections stéréographiques des pdles nord et sud par : (voir la Figure 5.6)

ON : N — R"
5.1
(X1, Tpy1) > ﬁ(ml,...,xn) (5.1)

0g : S — R"
.2
(ZL‘h...,I'TH_l) — 17:v1n+1(x1""’xn) (5 )

les inverses de ces projections sont donnés par :

1 n
—1 2
oy = ————— | 2241, ..., 22,, ;) —1
v <;-;1m%>+1< 1 (=) )
1 n
= (22,....22, 24+ 1
75 T ?:1x3>+1<”“’ 2 (L)

Donc, si on pose Uy =S"—{N} et Us = S"—{S} on aura bien {(Un,on), (Us,onS)}
un atlas lisse de la sphere.
Comme exemple : pour tout p € Uy C S* son image est p' = on(p) € R? qui est
Uintersection de la ligne droite (N,p) avec R?.

Pour les isomorphismes de changement des cartes :Uy NUs = S? — {N, S} sont
donnés par :

ON © aglaN o 051 =050 0;,1
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1
N(0,0,1)
P
N
/] I O
y-/ '
///
.-/,‘

SE0,0,-1)
FIGURE 5.6 — projection stéréographique par le pole nord, de S? dans R?

définit par :

(T1, .., 20) = (21, ..., @),

Théoréme 5.3.1 (produits de variétés)

Soient M, et My deuz variétés différentielles de classe C* et de dimensions respective
ny et ng, alors My x My est une variété différentielle de classe C* et de dimension
ni + no.

Prouve : On sait bien que M; x My est un espace topologique, topologie définit pas
la topologie produit (les ouverts de M; x My sont les unions quelconques des sous-
ensembles U x V' pour tous U ouvert de M; et V ouvert de Ms).

Pour toutes cartes quelconques (U;, ;) de M et (V}, ;) de My, on définit la carte
(Ui x Vj, @i x ;) de My x My avec :

©w; X wj . Ul X V; — Rn—l—m
(p,q) = (pi(p), ¥i(q)

Définition 5.3.2 (Application entre variétés) Soient M, et My deux variétés de
classe C* de dimensions respective n, et ny, on dit que f : My, — M, est une applica-
tion de classe C* entre variétés (ou bien C*-application ), si

pour tout p € M, il existe une carte (U, ) de My et une carte (V,, ) de M tel que :

1. fp)=4q
2. [(Up) C Vg
3. et Uapplication de R™ — R™ :

o fop T p(U,) = (Vy)

est une fonction de classe C*.

On dit que [ est lisse (ou de classe C*) sivpo fo ! est de classe C*.
On note f#¥ la fonction o fop™! .
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FIGURE 5.7 — Application entre variétés

Remarque 5.3.2
1. Cette notion de différentiabilité ne dépend pas du choit des cartes de My et Ms.

2. f: M — N est difféfomorphisme si f est bijective et f et f=! sont différentiable,
alors on a nécessairement dim M, = dim M.

Définition 5.3.3 ( Rang d’une application)

1. Rappel : Soit h : R™ — R™ une application différentiable en x € R". Le Rang
de h en x est défini comme le rang de lapplication linéaire dh, (e.i. dim Im dh, ).
On le note Rg.h.

Ou dh, est la différentielle de h on x.

2. Soit f : M™ — N™ une application différentielle entre deux variétés, et p un

point de M, on appel Rang de 'application f en p le rang de la fonction

pofop:R" = R™,

avec (Up, p) une carte de M contenant p et (Vi) ) une carte de N contenant

f(p), noté
Rgpf = Ry (Yo fop™).

Proposition 5.3.2 Soit f : M — N une application différentiable entre variétés et
pe M, f(p) =q € N. Alors le Rang de f ne dépend pas du choiz des cartes (U, ) et

(Va, ).

Prouve : Soient (U, ¢) et (U, ') deux cartes de M contenant p et soient (Vg, 1) et
(V,,4') deux cartes de N contenant ¢ = f(p). avec I'intersection des domaines on a :

Pofo = oy o (o fop o(poy )
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Or on a que la différentielle de ¢’ o 1~ ! et de v o ¢'~! sont des isomorphismes, alors

Ry (p) (wl ofo 90,_1) = Rgy(p) (Yofo 90_1)

Remarque 5.3.3 Pour f : M™ — N™ on a bien f*¥ : R® — R™, alors si on pose
e = (fY,..., f™) alors le Rang de dans un point p € M est le Rang de la matrice
jacobienne :

oft ... oft
oxl Az
Jac fomy = 1|+ . (5.3)
orm .. o™
Ozl 9z™ /" |ip(p)

Définition 5.3.4 Soit f : M — N une application différentiable entre variétés.

1. On dit que f est une tmmersion si Rg,f = dim M pour tout p € M, e.i. Df,
est injectif.
Ce qui nous oblige a avoir dim M < dim N.

2. On dit que [ est une submersion si Rg,f = dim N pour toutp € M, e.i. Df,
est surjective.
Ce qui nous oblige a avoir dim M > dim N.

3. On dit que [ est un plongement si f est immersion injective et un
homéomorphisme de M dans f(M) pour la topologie induite de celle de N.

Lemme 5.3.1 Une application entre variétés f : M — N est un difféeomorphisme si
et seulement si f est bijective et en tout point p € M on a

Rgy, [ =dim M = dim N.

Remarque 5.3.4
1. Une immersion n’est pas forcement injective.
2. Une application injective n’est pas forcement une immersion.

3. Une immersion injective est déja une bijection continue de M dans f(M).
Pour qu’elle soit un homéomorphisme, il suffit que f~! soit continue sur f(M).

Définition 5.3.5 (Sous-variété) Soit M une variété différentielle abstraite de di-
mension n et de classe C*, et soit N un sous-ensemble non-vide de M. On dit que N
est une sous-variété de M de dimension n' est de classe C* (n' <n ), si

Pour tout point p € N, il eziste une carte (U, ¢) de M contenant p telle que

p(Up N N) = ¢(Up) N (Rnl X {Ogn-n})-

Théoréme 5.3.2 Soit M une variété différentielle abstraite de dimension n et de
classe C*, et soit N un sous-Variété de M de dimension n' alors N est une variété
différentielle abstraite de dimension n' et de classe C*.
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Prouve : il suffit de définir 'atlas de N par celui de M.

Soit p € N et (U,, ¢) une carte de M contenant p.

En premier la topologie de N est la topologie induite par celle de M.
On définit la carte différentielle (V,, 1) contenant p sur N par :

‘/P:UpﬂNa 1/}:§0|Vp'

Théoréme 5.3.3 Soit f : U C M™ — N* une application différentiable entre deuz
variétés différentielles, et U un ouvert de M, alors

1. Si f est un plongement sur U, alors W = f(U) est une sous-variété différentielle
de N de dimension n.

2. Si [ est une submersion et y € f(M), alors H = f~(y) est une sous-variété
différentielle de M de dimension n — k.

Prouve :

le lien : D :\ Documents\ OneDrive\ Cours enseignement\ Géométrie differentielle\
cours - Géométrie differentielle AOT13.pdf page 8

Remarque 5.3.5 (Variétés aux sous-variétés de R")

Soit M une variété différentielle et f: M — R™ un plongement.

L’ensemble f(M) est alors une sous-variété de R™. Les variétés M et f(M) sont alors
difféomorphes, c’est-a-dire indistinguables du point de vue de la géométrie différentielle.

Inversement :
Est-il possible de plonger toute variété dans un espace RV ?
De fagon équivalente, est-il possible de considérer n’importe quelle variété comme une
sous-variété d'un R ?
La réponse est oui, et on peut de plus préciser N.

Théoréme 5.3.4 (Plongement de Whitney) Toute variété de dimension n admet
un plongement sur une sous-variété fermée de R*" 1.

5.4 Espaces tangentes

Jusqu’a présent, nous avons parlés d’applications lisses entre variétés mais pas de
leurs différentielles!
Pour définir cette derniere, il nous faut d’abord définir I’espace tangent en un point p
a une variété M. Nous allons nous inspirer de ce qui a été fait pour les sous-variétés
de R™, en utilisant les courbes passant par p. [11, 17].

Pour toute la suite de cette section, M est une variété lisse de dimen-
siton n.
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5.4.1 Vecteur tangent et espace tangent

Définition 5.4.1 (Courbe sur une variété) Soit p € M un point quelconque. On
appelle courbe passent par p, toute application différentiable ¢ entre variétés, et il

existe | — e,e[C R un intervalle ouvert centré en 0 telle que :
c: |—egel - M B
; o e(t) avec  ¢(0) = p. (5.4)

Définition 5.4.2 deux courbes ci, co sont tangentes au point p si

e ci(p) = ca(p)
e [l existe une carte locale (U, ) de p telle que :

d d

g(SO 0c1)(0) = a(@ 0¢2)(0).

Remarque 5.4.1

1. Cette définition est indépendante de la carte choisie.
En effet si (V, 1) est une autre carte autour de p, on a

dwoe)(0)= & [Wor™o(poe)] 0
(o g™ o & (poa)0)

D
-1 d
= Do) o Z(p o))

d
— S0 e)(0),

2. On définit ainsi une relation d’équivalence sur ’ensemble des courbes passant par
p par : deuzx courbes ¢y et co sont équivalentes si elles sont tangentes en p, e.i.

a~e = ab)=ab) @ Heoa)0)= w(poe)0)

Définition 5.4.3 (Vecteur tangent & Espace tangent)

Un vecteur tangent a M en p est une classe d’équivalence de courbes tangentes
en p.

L’espace tangent a M en p, noté T,,M, est ['ensemble de tous les vecteurs tangents
a M en p.

Remarque 5.4.2 On peut montrer que T,M est un espace vectoriel en utilisant une
carte. La structure vectorielle n’apparait cependant pas clairement. De plus la définition
de T,M fait intervenir un espace trés gros, l’ensemble des courbes passant par p, qui
n’est pas aisé a manipuler. Nous allons voir maintenant qu’on peut donner une autre
définition équivalente des vecteurs tangents qui résoudra ces difficultés.
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5.4.2 Dérivations

Pour cette section M une variété différentielle de dimension n lisse et p un point
quelconque de M.

Définition 5.4.4 Soit U C M ouvert tel que p € U
C¥p)={f:U—-R,C* /) f=9g < TV, eV(): f(z)=9(x), YV eV,CU}

c.a.d : Considérons l’ensemble des fonctions a valeurs réelles, de classe C*°, définies
sur un ouvert de M contenant un voisinage de p, dans lequel on identifie les fonctions
qui sont égales sur un voisinage de p (on obtient ainsi des germes de fonction). On
note C*(p) cet ensemble.

Remarque 5.4.3 L’ensemble C*®(p) est une algébre, c’est-a-dire un espace vectoriel
muni d’une opération interne (la multiplication).

Sur cet ensemble de fonctions on définit des opérateurs.

Définition 5.4.5 (Dérivation) L’application (ou lopérateur) D, : C*(p) — R est
une dérivation si : pour toutes fonctions f,g € C*(p) et pour tous o, 5 € R on a

1. D, est linéaire :
Dy(af + Bg) = aD,(f) + 8D,(g)-

2. D, satisfait la condition de Leibniz :

Dy(fg9) = Dy(f)-9(p) + f(p)-Dp(9)-
On note D(p) ’ensemble des dérivations en p.

Proposition 5.4.1

e L’ensemble D(p) est un espace vectoriel pour les opérations :
VD,, D, € D(p) et Va € R

* (Dyp + Dy)(f) = Dy(f) + Dy (f)
* Dy(af) =aD,(f)
e VD, € D(p) et VC' € C®(p) fonction constante : D,(C*) = 0.

Lemme 5.4.1 (Lemme d’Hadamard) Soit (U, p) une carte locale de M centrée en
p avec p = (1, ,x,) (les coordonnées locales de ¢ ).
Pour toute fonction f € C(p), il existe x1,- -+, Xn € C¥(p) telles que :

f= 1)+ Y w
1=1

Autrement dit : pour tout q € U :

La carte locale est centrée en p veut dire : p(p) = 0.
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On utilisera ce lemme pour caractériser les éléments de D(p). Soit (U, ) une carte
locale centrer en p, alors une dérivation D, € D(p) s’écrit :

n

Dy.f = Dy. (f(p) + D (Xs(p) Dy + 25(p) Dp.X:)

i=1
= Z; Xi(p)Dp.x;.
Ainsi : la donnée de la dérivation D, est équivalente a la donnée des réels
Dyx;, i=1,...,n.
Lemme 5.4.2 On a que :
dimD(p) = n = dim M. (5.5)

Ce lemme montre que sur R", toute dérivation est une dérivée directionnelle, car
a tout v vecteur de R" est associée une dérivation en z

tv) —
o tiy 22 10) — 9)
t—0 t

Y

qui est la dérivée directionnelle en x dans la direction de v. L’ensemble des dérivées
directionnelles en x est ainsi un sous-espace vectoriel de D(z) de dimension n, alors il
est égal D(z).

Proposition 5.4.2 Soient g € C*(p) et un vecteur tangent en p X, € T,M, Alors la

d
dérivée %(goc) (0) est la méme pour toutes les courbes c(s) passant par p et appartenant

a la méme classe d’équivalence de X,,.
La valeur de cette dérivée est notée : X, - g.

Prouve :

Soit (U, ¢) une carte locale de p, alors on obtient :
2(5000) = Dlgog™) o L(wo0)
dt goc =Lgoy dt poc .

or on a que %((p o¢)(0) ne dépend que de la classe de X, ce prouve la proposition. .[J
Proposition 5.4.3 L’application g — X, - g est une dérivation.

Prouve :
Dans la carte (U, ) de p, et choisir un représentant c(t) de la classe X, alors on a :

X, 9= (9op™) 0 (p00)) (0).

O

Remarque 5.4.4 Cette dérivation est en fait une généralisation des dérivées direc-
tionnelles. En effet on a vu que dans R™ un vecteur tangent vx est associé canonique-
ment & une direction v = ¢(0). La dérivation g — X, - g est alors clairement égale a la
dérivée directionnelle.

On appellera parfois Uapplication g — X,-g dérivée directionnelle de g dans la direction

X

p-
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Théoréme 5.4.1 L’ensemble des vecteurs tangent T,M s’identifie a ['espace vectoriel
D(p) de dimension n des dérivations en p.

Cette identification permet de définir une structure vectorielle sur I'espace tangent
T,M (appelé également, en conséquence, espace vectoriel tangent). Notons que cette
structure vectorielle coincide avec celle que ’on peut obtenir a partir de la lecture dans
une carte.

Pour la suite nous identifions systématiquement 7,M et D(p).

5.4.3 Différentielle d’une application

Soient deux variétés différentielles M™ et N* de dimensions respective n et k. Et
F . M — N une application différentiable.

Définition 5.4.6 (Image réciproque) Soit g : N — R une fonction, avec F' on peut
correspondre une fonction sur M, pour tout p € M :

Fro ¢ (F(p) — C*(p)
g = F*gi=goF

L’application F*g est dite I’tmage réciproque de g par F.

Définition 5.4.7 (La différentielle) On appelle la différentielle de F en point
p € M Uapplication Linéaire dF, définie par :

deZ TpM — Tp(p)N

X, = dF,(X,)

telle que :
dFy(Xy) -9 =X, - (F7g), Vg €C™(F(p)).

La définition de la différentielle ne fait appel qu’a des propriétés locales de la variété
et de 'application. Comme localement une variété est difféomorphe a un ouvert de R",
toute les propriétés des applications différentiables dans les espaces vectoriels normés
sont vraies localement pour les applications différentiables sur les variétés (c’est le
principe de base pour obtenir des résultats locaux dans les variétés). Citons les plus
importantes de ces propriétés.

Théoréme 5.4.2 (Théoréme de composition)
Soient F: M — N et G : N — W deux applications différentiables entre variétés. Soit
p€ M et F(p) € N. Alors Go F est différentiable en p et

d(G o F)p = dGF(p) o de.

Corrolaire 5.4.1 Si F : M — N est un diffécomorphisme, alors, pour tout point
p € M , dF, est un isomorphisme.
La réciproque n’est vrais que localement.

A.Chikh-Salah 2025 Université de Ghardaia



5.4. ESPACES TANGENTES 51

5.4.4 Théoréme des inversion locale (cas des variétés)

Le cas général de ce théoreme est détaillé dans la Section 1.3, ici on va donné ce
théoreme dans le cas des variétés pour définir ’espace tangent sur la variété.

Définition 5.4.8 Une application F': M — N entre variétés est un difféomorphisme
local en un point p de M, s’il existe un voisinage U € V(p) dans M et un voisinage
V € V(F(p)) dans N tels que l'application F|y : U — V' est difféomorphisme.

Théoréme 5.4.3 (Théoréme des inversions locales) Soit F' : M — N une ap-
plication entre variétés différentielles différentiable en p € M telle que ['application
différentielle :

dF, : T,M — TppN  est un isomorphisme.

Alors F' est un difféomorphisme local en p. Et on a la différentielle de Fiy est donné
par :
1 -1
d<F|U ) = (dF,) .

Ce théoreme a une conséquence importante pour la détermination de coordonnées
locales. En effet, un systeme de coordonnées locales n’est rien d’autre qu'un difféomorphisme
local de M dans R"™. Ainsi une application différentiable ¢ : M — R™ (de la carte lo-
cale) définit des coordonnées locales en p si et seulement si dy, est un isomorphisme.

5.4.5 Coordonnées sur I’espace tangent

0 Dans cette section on va construire des coordonnées (ou-bien une base) sur notre
espace tangent, en utilisant les différentielles des cartes locales a 1’espace tangent dans
ses points.

Pour mieux comprendre les choses on donne le cas de R™ apres on passe au cas
général.

a. Cas de l’espace T,R" : On a la propriétés que T, R" est canoniquement iso-
morphe a R" et on peut l'identifié¢ a I’ensemble des dérivées partielles en x, c.a.d :
Soit un point xR", les dérivées partielles en x sont données les dérivations sur R"

RIS A7)
Dans 'ensemble des dérivées directionnelles en x ces dérivées partielles forment une
base, et c’est aussi une base de l'espace tangent T,R". dite la base canonique ou la
base naturelle. ainsi tout vecteur tangent v, € T,R"™ s’écrit

1

oz

et

xz

vy = 0!

dat

x

Remarque 5.4.5 Ce vecteur est aussi la classe d’équivalence des courbes c(t) passant
par x telles que

= (v, 0"
D’ot on a lidentification canonique T,IR™ ~ R"™ qui est donné par

ve > (v 0").

A.Chikh-Salah 2025 Université de Ghardaia



5.4. ESPACES TANGENTES 52

b. Cas de I’espace T,M : Dans le cas des variétés différentielles abstraites, le
tout est lié aux cartes locales et le faite que les applications de ces cartes sont des
difféomorphismes dans le domaine de la carte.

Soient un point p € M et (U, ¢) une carte de M tel que p € U (c.a.d U est domaine
de p), on a que :

¢:U — @(U) est un difféomorphisme.
d’ou
dey : TyM — T, R"™ est inversible .

Et que

(dgpp)_l =d ((p‘l)w(p) : Typy — TpM est un isomorphisme .

0

Sty Hpn
x ox

D’autre part si on pose x = ¢(p) € R", alors (% ) est la base canonique

de TR". Et on calcule 'image de cette base par 'isomorphisme (dgpp)_l, qu’on note

de la méme notation :
0
=d(p! : =1,...,n.
» (gp >so(p) (Eh’ x> ! SRRl

0
ox?

Avec ces vecteurs tangents , on construit une base de T,M dite la base naturelle

associées aux coordonnées localees ¢ :

p)

9
ox!

Remarque 5.4.6 Si g € C®(p) on a pour touti=1,...,n :

0

,...,%
p

0 0 0 d(gop™)
| cg=d(p! . g=— - ) =227 (g).
ox’ , g <90 )so(p) <8:1:’ x) 9= oz N (g o ) ox’ (z)
Proposition 5.4.4 Dans la base naturelle associée aux coordonnées locales v, <88x1 . azin ),
p p

un vecteur tangent X, € T,M s’écrit

0 . 0 i i
Xp:Xlﬁ + +X % avec X:pr
P P
Prouve. on a que A
X o i X] 8:[:"5
p r = — 81‘]’
J_
or on a que
ox’ 1 si i#
- =0 = ‘
O 0 si i=j
d’ou le résultat. O
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5.5 Fibrés tangentes

Toute 1’étude de 'espace tangent, dans la section présidente, se fait localement par
rapport a une carte locale ou tour d'un point. Dans cette section on donne une notion
ou une définition d’un espace qui englobe tout les espaces tangents sur toute la variété.

Pour commencer on voit d’bord le cas d’'un méme point dans deux cartes différentes
d’intersection non vide.

Soit p un point de M qui est dans deux cartes (U, ¢) et (V1)) d’intersection non vide

et de coordonnées locales respectives x!, ..., 2" et y',..., y" et leurs bases tangentes
. 0 0 o )
de T, M respective (%7 e W) et (a—yl, cee ay">‘

Au moyen de 'application de changement de cartes Pour les points d’intersection UNV,
on peut écrire Les coordonnées 37 en fonction des coordonnées ' :

Y (xt ... ") = (Yo go_l)j(xl, o).

un vecteur tangent v € T,,M s’écrit dans les deux bases par :

", 0 - 0
v o= V' = o —
; Ox? ; Y
On calculant v(y*), on déduit :
B L
Jo_ i
0 ;U o (5.6)
et que
0 B Ao ) 0
oxt 2 ort Oyl (5.7)

Définition 5.5.1 ( Fibré tangent) Le fibré tangent d’une variété M™ est la struc-
ture différentielle de dimension 2n sur 'ensemble T'M définit par :

TM = {(vap)7 p € M7 Xp S TPM}
Le fibré tangent est ['union des espace tangents

T™ = |J {p} x T,M ot encore TM = ] T,M

peEM peEM

Remarque 5.5.1 L’union dans la définition du fibré tangent, est une union disjointe,
c.a.d : on ne peut pas additionner des éléments X, € T,M etY, € T,M siT,M # T,M.

Définition 5.5.2 (Projection canonique) On appelle projection canonique sur T M
Uapplication (projection)
m: TM — M
(p. Xp) = p
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Théoreme 5.5.1 Le fibré tangente a une structure de variété différentielle de dimen-
ston 2n.

Remarque 5.5.2 La projection canonique 7 est une application différentiable, et aussi
c’est une submersion surjective.

Définition 5.5.3 (L’application différentielle) Soient M, N deux variétés différentielle
et F: M — N une application différentiable.
L’application différentielle de I, notée dF' est définie par :

dFF: TM — TN
(p, Xp) = (F(p), dF,(Xp))

Proposition 5.5.1 Soient M, N deux variétés différentielle et F : M — N wune
application différentiable, et dF [’application différentielle de F', on a :
Si F est difféomorphisme alors dF lai aussi et (dF)™' = d(F™).

5.6 Exercices

Exercice 01 :
Les applications suivantes f : R? — R? sont-elles des immersions? Sont-elles injec-
tives 7 Si oui, leur image est-elle plongée 7

1. f(u,v) = (cosu,sinu,v).

2. flu,v) = (u,v,uv).
3. f(u,v) = (ucosv,vsinu, \v).
4. f(u,v) = ((2 + cosv) cosu, (2 + cosv) sin u, sinv).

Définition : On dit que F' : M — N est un plongement si F' est une immersion
injective et un homéomorphisme de M dans F'(M) pour la topologie induite.

Exercice 02 :
Les applications suivantes f : R?* — R sont-elles des submersions? Peut-on les res-
treindre & un voisinage de f~1(0) de telle sorte que la restriction soit une submersion ?
1. f(x,y,2) = 2® + 9y + 2% — a®.
2. f(z,y,2) = 2% +y*— 2%
3. flr,y,2) =2 +y* — 2.

Exercice 03 :
Pour t €] — oo, 1[, on pose f(t) = (t*,t — t3).
L’application f : | — 0o, 1[— R? est-elle une immersion ? Est elle injective ?. dessiner
son image dans le plan.

Exercice 04 :
Montrer que I'ensemble

{(u?, 0%, w?, V2 uv, V2 vw, V2 uw) € R®; (u,v,w) € R®, u?+ v? 4+ w? =1}
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est une sous-variété de R®. Et qu’elle est incluse dans la sphére unitaire.

Exercice 05 :
Soit S la nappe paramétrée définie par

r(u,v) =u+v, ylu,v)=u, z(u,v)=1u’+0° (u,v) € R?
1. Verifier que S et incluse dans la surface d’équation 22 — 2y — z = 0. les deux
surfaces coincident-elles ?.
2. Quelle sont les intersection de S avec les plan x =0, y =0, z = 0.

3. Dessiner S.

4. En quels points ce plan passe par l'origine ? .

Exercice 06 :
Soit I’application j définie par :
J: R* — R?
(t,0) —— (tcosf, tsind,0)

1. Montrer que j est un plongement. on note V' son image
Soit 7 la projection définie par :

T R? — R?
(z,9,2) — (2,y)

2. Donner la restriction de 7 a V', qu’on note 7y .
3. mv est elle une submersion ?, est elle une immersion ?.

Exercice 07 :
Soit I'application f définie par :
f: R3 — R3
(r,9,2) — (2z2,2yz,1 — 22?)
On note fs2 la restriction de f a la sphere unitaire de dimension 2.

1. Montrer que l'image de fis2 est dans S?.
2. Montrer que fis2 est surjective de S* dans S?.

Exercice 08 :
Soit une application f de R™ dans RP, montrer que :

1. Peut-on avoir f comme immersion et submersion simultanément ?

2. pour n = p, et f est une submersion, est-ce que c¢’est une immersion dans ce cas?
3. Si f est injective est-elle toujours une immersion ?
4

. Si pour tous a € R" , df, est de rang maximal, est ce que f est une immersion ?
est elle injective ?
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Exercice 09 :
Dans 'espace R", on considere le sous-ensemble E qui est ouvert dans R? avec 0 <
p<n.
E est-il une sous-variété de R™ 7. Si oui, de quelle dimension 7.

Exercice 10 :
Soit le cercle unitaire S' de R2. Et on considére les deux sous ensembles U et V définis
par :

Uy = {(cosa,sina), o € I} =]0,7[ }, Uy ={(cosa,sina), a € Iy =] — 7,0 }
, [

Us = {(cosa,sina), a€ly=]—7 g[}, Uy = {(cosa,sina), o€l =]%, 3 }

1. Dessiner les ensembles Uy, Uy, Us et Uy.
2. Montrer que Uy, Us, Us et Uy sont des ouverts de S', sont ils des ouverts de R2 ?.

3. Trouver deux applications ¢; (1 < < 4) pour que A = {(Uj, ¢i) },;4 Soit un
atlas k-différentiable de S, k & déterminé. Rappel : ¢; : U; — R.

4. Peut-on dire que (S*, A) est une variété lisse ?.
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Annexe A

Rappels Algébriques et
Topologiques

A.1 Rappels d’algebre des structures

A.1.1 Lois de composition

Définition A.1.1 Loi de composition interne : On appelle loi de composition
interne sur un ensemble non vide G toute application ¢ sur G x G et a valeurs dans
G.

Si ¢ est une loi de composition de composition interne sur G, on notera souvent :
x, %, o, 1, ..etc.

V(a,b) € G, axb= ¢(a,b).

On notera (G, %) l'ensemble non vide G muni de la loi de composition interne x.

Example A.1.1 L’addition et la multiplication usuelles sont des lois de composition
interne sur N ; 7 ; Q; R et C.

Définition A.1.2 Soit G un ensemble non vide, on appel ’ensemble de toutes les
parties de G, l'ensemble de tous les sous-ensembles de G, noté P(G)

P(G) = {A; A C GY.

Définition A.1.3 Soit G un ensemble non vide muni de la loi de composition interne
*, on dit que :

1. La loi + est associative si :
Va,b,c € G, (axb)xc=ax(bxc).
2. La loi x est commutative si :

Va,be G, axb=bxa.

3. G admet un élément neutre “e” pour la loi x si :

Vae G, axe=exa=a.
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4. Si G admet un élément neutre e, on dit qu’un élément a de G admet un symétrie
(ou un symétrique ou a est inversible ) si :

dd eG,axd =d*a=ce.
5. Un élément a € G est dit régulier ou simplifiable si :

axb=axc = b=c,

bxa=cxa = b=rc.

Vb,cEG,{

Théoreme A.1.1 Soit (G,*) un ensemble non vide muni d’une loi de composition
interne. 81 G admet un élément neutre

1. Alors cet élément neutre est unique.

2. St un élément a € G admet un inverse, alors cet inverse est unique.

Définition A.1.4 (Loi de composition externe ) Soit E et X deux ensembles. On
appelle lot de composition externe sur E toute application e de X X E dans E :

o: X xXE —F
(a,x) —> aex.

Dans ce cadre général, les éléments de X sont appelés opérateurs et on dit que "E
est muni d’une loi de composition externe a opérateurs dans X 7.

Définition A.1.5 (Partie stable. ) Soit E un ensemble muni d’une loi de composi-
tion externe e a opérateurs dans X. Soit F' une partie de F,

On dit que F est stable par la loi e si :
Vaoe X, VxeF, aex € F.

Si F une partie stable par la loi e, alors la restriction de o a F est une loi de
composition externe sur F, on l'appelle lot induite par e dans F

Définition A.1.6 (Distributivité. ) Soit E un ensemble muni :
- D’une loi de composition interne * ;
- D’une loi de composition externe e a opérateurs dans X.
- On dit que la loi e est distributive a gauche par rapport a la loi x si :

Vae X, Ve,y e E, ae(z*xy)=(aex)*(aey).
- On dit que la loi e est distributive a droite par rapport a la loi * si :
Va€ X, Vo,y € E, (zxy)ea=(rea)x(yea).

- On dit que la loi e est distributive par rapport a la loi x si elle est distributive
a gauche et a droite.
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A.1.2 Structure de groupe

Définition A.1.7 On appelle groupe tout ensemble non-vide G muni d’une loi de
composition interne * , ou G admet une structure de groupe, s’il vérifiant les 3
propriétés suivantes (appelées axiomes de la structure de groupe) :

1. La loi  est associative dans G.
2. G admet un élément neutre pour la loi *.
3. Tout élément de G admet un inverse dans G pour la loi x.

On note (G, *) pour le groupe.

Définition A.1.8 Soit (G, ) un groupe, on dit que c’est un groupe commutatif,
ou un groupe abélien, si tout les éléments de G commute pour la loi *. c.a.d

Va,b € G, axb=bxa.

Remarque A.1.1 (Remarques et conventions des notations).
Afin d’éviter la lourdeur de la notation, on convient généralement de noter la loi de
composition interne d’un groupe quelconque G,

soit comme une multiplication par un point "7,

soit comme une addition par un +.
Dans le premier cas, le symétrique d’un élément est appelé son inverse noté a~
Dans le second cas, son opposé noté —a.
Usuellement, on réserve la notation additive au cas des groupes abéliens.
C’est pourquoi, dans toute la suite de ce polycopié, on adoptera pour les groupes quel-
conques, conformément da l'usage courant, la notation multiplicative.

1

Théoréme A.1.2 Soit (G,*) un groupe alors on a :
1. Tout élément de G est simplifiable.
2. Pour touta € G : (a™')™ =a, aveca™' est le symétrie de a.
3. Pour tous éléments a, b € G : (axb)™' =b"txat.

4. Plus général : Vay,as,...a, € G : (ag *xag*...xa,) ' =a,’ *xa,t x . xart

A.1.3 Sous-groupes

Définition A.1.9 Soit (G,*) un groupe. Un sous-groupe de G est un sous-ensemble
H C G tel que :
e [ est non vide.

e pour tousa,b€ H: axb~ '€ H.

Théoréme A.1.3 Soit (G,*) un groupe, H un sous-groupe de G si et seulement si :
o H contient l’élément neutre e de G.

e H est stable pour la loi x, c’est a dire que

Va,b e G: axbe H.
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e H est stable par le passage a l'inverse, c’est a dire que :

YVaec H: a ' € H.

Proposition A.1.1 Soit (G,*) un groupe,
e Tout sous-groupe H de G da une structure de groupe par la loi Star.

o Tout sous-groupe K du sous-groupe H est un sous-groupe de G.

Théoréme A.1.4 Soit (G,*) un groupe, Soit (H;);cr une famille de sous-groupes de
G

o [’intersection H = N;crH; est sous-groupe de G.

o la réunion H = U;crH; n'est pas nécessairement un sous-groupe de G.

Définition A.1.10 Soit X un sous-ensemble d’un groupe (G,*),
le sous-groupe engendré par X est lintersection de tous sous-groupes de G qui
contiennent X.

On note (X) le sous groupe de G engendré par X, et c’est le plus petit des sous-
groupes contiennent X .

Théoréme A.1.5 Soient (G,*) un groupe et X,Y deux parties de G,
1. Ona X C (X),
2. X =(X) si et seulement si X est un sous-groupe de G.
3. 851X CY, alors (X) C (V).

Définition A.1.11 Soit (G,*) un groupe, on dit que G est monogéne s’il eriste
z € G tel que G = (x).
Si de plus G est fini, on dit alors qu’il est cyclique.

A.1.4 Morphismes de groupes

On désigne par (G, *) et (H,o) deux groupes et on note respectivement e et e’ les
éléments neutres de G et H.

Définition A.1.12 Soit ¢ une application de G dans H, On dit que ¢ est un mor-
phisme de groupe de G dans H si :

Va,b € G, p(axb) = ¢(a) o p(b).

e On dit que ¢ in un isomorphisme si ¢ in bijective. On note G = H.
e On dit que ¢ in un endomorphisme si G = H.

e On dit que v in un automorphisme si ¢ in bijective et G = H.

Théoréme A.1.6 Soit ¢ un morphisme de G dans H alors :

!/

o pe)=¢.
e pla) = pla)

-1
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Théoreme A.1.7 Soient G, H, K trois groupes, et les morphismes :
p:G— H, v:H—K
alors o : G — K est aussi un morphisme de groupe.

Définition A.1.13 soit @ un morphisme de groupe de G dans H.

1. Le noyau de p est [’ensemble :

ker(¢) = {x € G, ¢(z) =¢€'}.

2. L’itmage de p est [’ensemble :

Im(p) = {¢(x), € G}.

Théoréme A.1.8 Soit p un morphisme de groupe de G dans H, alors :

~

ker(p) est un sous-groupe de G.
@ est injective si et seulement si, ker(p) = {e}.
Im(yp) est un sous-groupe de H.
@ est surjective si et seulement si, Im(p) = H.

Pour tout sous-groupe G' de G, p(G") est un sous groupe de H.

S O Lo

Pour tout sous-groupe H' de H, o~ (H') est un sous groupe de G

A.1.5 Structure d’anneau
Définition A.1.14 On appelle anneau, tout ensemble A muni de deuz lois de com-
position internes * et ® |, noté (A, x,e) telle que :
1. (A, x) est un groupe abélien (on note 04 l'élément neutre pour cette loi),
2. la loi e est associative,
3. la loi e est distributive par rapport a *, c.a.d :
— Vr,y,z€A: zo(yxz)=(roy)*(rez),
— Va,y,z€A: (yxz)ex = (yex)*(zex).

Si de plus A est commutative pour la loi e, on dit que (A,*,®) est un anneau
commutatif ou abélien.

Si A admet un élément neutre pour la loi ® , on dit que (A, x,®) est un anneau
unitaire ou unifére, on note 14 l’élément neutre pour cette loi.

Remarque A.1.2 .

e Siil ny a pas de confusion, on utilise souvent les signes + et . les deux lois de
l'anneau.

e FEt on note 0 pour l’'élément neutre de la loi + et 1 pour l'autre.
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e On note —x pour linverse de x pour la loi + et =1 pour l'autre.
e On note A* = A/{0}.

e Pour tout x € A* et n € N, on note

nr=nr=r+zc+---+x et "=zxx. .z
—_—
n fois n fois

Proposition A.1.2 Soit (A, +,e) un anneau, pour tous x,y,z € A, on a les régles
sutvantes :

1. 0yex =200y  =04.

2. xe(—y)=(—x)ey=—(reoy).
3. ze(y—z)=(rey)— (rez).
4. (y—z)ex=(yox)—(zox).

A.1.6 Corps

Définition A.1.15 On dit qu’anneau (K, +, o) est un corps si tout élément non nul
de K est inversible.
Si de plus e est commutatif on dit que K est un corps commutatif.

Proposition A.1.3 Tout corps est un anneau integre.

Définition A.1.16 On appelle sous-corps d’un corps (K, +,e), tout sous-ensemble
K de K tel que K muni de la restrictions des deux lois + et ® est lui méme un corps.

A.2 Rappels d’algebre linéaire

Dans cette section K est corps commutatif, en général c’est R ou C, et £ un
ensemble non vide.

A.2.1 Espaces vectoriels

b

Définition A.2.1 On muni E d’une loi interne noté ” +7 et d’une lot externe sur K

Z M N

note ”.”,
on dit que E est un espace vectoriel sur K, ou encore un KK-espace vectoriel
si : Pour tous \,p € K, u,v € £

(E, +) est un groupe commutatif.

lu = .

. (A p)ou = Au+ pu. (Distributivité par rapport a l'addition des scalaires)
A(u+v) = Au+ Aov. (Distributivité par rapport a l'addition des vecteurs)

cA(pew) = (M),

Gt te =

On note le K-espace vectoriel : (E, + , . ). Ou un K-ev.
On appel les éléments de FE des vecteurs et les éléments de K des scalaires.
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Proposition A.2.1 Soit E un K-espace vectoriel, et soient u € E et A € K, on a :
1. 0.u = 0g.
2. \0g =0g.
3. (—1)u = —u.
4. Au=0 <= A=0ouu=_0g.

Définition A.2.2 (Sous espace vectoriel) Soient (E, + , . ) un K-espace vecto-
riel, et A un sous ensemble de E.
A est un sous espace vectoriel de E si

e Op € A.
e ut+tveA VuoveA
e uec A, VieK VueA

Proposition A.2.2 Soit A un sous ensemble de E alors
o A est un sous-ev de B <— Y\, u €K, Yu,v € A: \u+ pv € A.

o A est sous-e.v de E alors (A, + , . ) est un K-espace vectoriel.

Proposition A.2.3 Soient A et B des sous espaces vectoriels de E alors :
1. AN B est un sous espace vectoriel.
2. Toute intersection fini de sous espaces vectoriels est un sous espace vectoriel.

3. La somme A+ B définit par A+ B ={u+v /u€ A, v € B}, est un sous espace
vectoriel.

4. A+ B est le plus petit sous-espace vectoriel contenant a la fois A et B.

Définition A.2.3 Soient A et B des sous-espaces vectoriels de E, On dit que A et B
sont en somme directe dans E si :

e F=A+B.

On note alors E =A® B.
On dit aussi que A et B sont des sous-espaces vectoriels supplémentaires dans
E.

Proposition A.2.4 Soient A et B des sous-espaces vectoriels de E, alors
A®B=F <« VexekFk FJacA IbeB: z=a+b.

Définition A.2.4 Soient uq, ..., u, des vecteur de E/, on appel combinaison linéaire
de ces vecteurs par les coefficients \q, ..., \, € K, le vecteur

U= Mup + ... + \uy,.

Définition A.2.5 Soit B = {uy, ..., u,} une famille d’éléments de E
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1. B est dite famille génératrice de E si tout élément de E est une combinaison
des éléments de B, c.a.d.

Yue E,d\,... N, €K : u= Mup + ... + \yu,.
2. B est dite une famille libre ou linéairement indépendante si

3. La famille B est dite une base de E si B est simultanément libre et génératrice.

4. Si B est une base de E et de cardinale fini, on appel dimension de E le nombre
d’élément de B, noté
Dim E = Card B.

5. Une famille d’éléments de E qui n’est pas libre est dite liée ou linéairement
dépendante.
Théoréme A.2.1 Soit E un K-espace vectoriel, alors

1. une famille A d’éléments de E est liée si est seulement si au moins un des vecteurs
de A est combinaison linéaire des autres vecteurs de A.

2. Si E admet une base de dimension fini, alors toutes les bases de E ont le méme
nombre d’éléments. c.a.d.
La dimension d’un espace vectoriel est une constante.

3. St B est une basse de E alors pour tous u élément de E, u s’écrit d’une ma-
gnaniere unique comme combinaison d’éléments de B.

4. Si E admet une famille finie de générateurs A alors il admet toujours une base
finie B C A.

Théoréme A.2.2 (& définition : Sous-espace engendré) Soit {uy,...,u,} un en-
semble fini de vecteurs d’un K-espace vectoriel E. Alors :

e L’ensemble des combinaisons linéaires des vecteurs {uy, ..., u,} est un sous-espace
vectoriel de E.

o (est le plus petit sous-espace vectoriel de E (au sens de l'inclusion) contenant
les vecteurs uy, ..., Uy,.

Ce sous-espace vectoriel est appelé sous-espace engendré par uq,...,u, et est noté
Vect(uy, ..., uy), et on a aussi :

u € Vect(uy,...,u,) <= I, ..., N\, € K tels que u = Ajug + ... + Ay,

Théoreme A.2.3 Soient E un K-espace vectoriel de dimension fini, et A un sous-
espace vectoriel de E, alors on a

1. DimA<DimkE.

2. DimA=DimFE <— A=F.

3. 8t A= {0} alors Dim A = 0.
Théoréme A.2.4 Soient E un K-espace vectoriel de dimension fini, A, B et D des
sous espace vectoriel de E, alors

Dim (A4 B) = Dim A+ Dim B — Dim (AN B).

S1D=A®B alors :
Dim D = Dim A+ Dim B.
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A.2.2 Applications linéaires

Pour cette section, E et F' sont des K-espaces vectoriels.

Définition A.2.6 Une application de E dans F' est dite une application linéaire
st pour tous u,v € F et A € K

1. flu+v) = f(u) + f(v).

2. f(ou) = Af(u).
- L’ensemble des applications linéaires de E dans F' est noté L(E, F).
- L’application nulle, notée Oppry: E — F, uw— Oz p(u) =0.
- L’application identité, notée Idg : E — E, uw Idg(u) = u.

Proposition A.2.5
feL(EF) < V\uekK, Yu,v e E: f(Au+ uv) = Af(u) + pf(v)

Proposition A.2.6 Soit f € L(E,F), alors
L4 f(OE) = OF
e f(—u)=—f(u), Yu€eE.

Définition A.2.7 Soient f € L(E,F), et A un sous ensemble de E, on appelle image
directe de A le sous ensemble de F définit par :

F(A) == {f(u), uc A}.

f(E) s’appelle l'image de 'application linéaire f et est noté Im f.

Définition A.2.8 Soit f € L(E,F), on appel noyau de f 'ensemble noté
Kerf:={ue€E, f(u)=0p}.

Proposition A.2.7 Soit f € L(E,F), et A un sous ensemble de E
o Si A est un sous espace vectoriel de E, alors f(A) est sous espace vectoriel de F.
o Im [ est sous espace vectoriel de F.
o Ker f est un sous espace vectoriel de E.
o [ est injective < Ker f={0g} <= Dim Ker f =0.
o f est surjective <= Imf=F <= DimImf = DimkF.
e DimFE = DimKer f+ DimImf.

Proposition A.2.8 L’ensemble L(E, F) muni de :

e [a loi interne 7 +7

somme des fonctions définit par (f + g)(z) := f(x) + g(x),

+9g
e la loi externe ”.” multiplication par un scalaire définit par (\.f)(z) = A.f(z),

est un K-espace vectoriel.
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A.2.3 DMatrices

Dans ce chapitre, IK désigne un corps. On peut penser a Q, R ou C.

Définition A.2.9 Une matrice A est un tableau rectangulaire d’éléments de K.

— Elle est dite de taille n x p si le tableau possede n lignes et p colonnes.

— Les nombres du tableau sont appelés les coefficients de A.

— Le coefficient situé a la i-eme ligne et a la j-éme colonne est noté a;;.

— Deux matrices sont égales lorsqu’elles ont la méme taille et que les coefficients
correspondants sont égaux.

- L’ensemble des matrices a n lignes et p colonnes a coefficients dans I est noté
M,,(K).

La matrice A est représenté sous la forme suivante :

@11 Q12 - QAlp

Q21 Q22 -+ Qgp
A= o ] ou A := (a)i<i<n
: : : : 1<j<p

Ap1 Qp2 - App

Définition A.2.10 (Matrices particuliers) Soit A une matrice n X p,

aix - Qin
1. A est une matrice carrée sin =p, c.a.d : A = (a;j)1<ij<n =

Ap1 - Ann
Dans ce cas {ay1, ass, ..., apny } sont dite la diagonale de A.

2. Une matrice qui n'a qu’une seule ligne (n = 1) est appelée matrice ligne ou
vecteur ligne. On la note A = (ay, ..., a1p).
3. une matrice qui n'a qu’une seule colonne (p = 1) est appelée matrice colonne
ai
ou vecteur colonne. On la note A = (a;j)1<i<n =
Gn1
4. La matrice dont tous les coefficients sont des zéros est appelée la matrice nulle.
Notée 0, ou 0.

5. La matrice identité est une matrice carrée dont tous les coefficients sont des
zéros sauf des 1 dans la diagonale, ou que

10 --- 00
01 --- 00
1 Sii—i
a;j = 6;5, avec 6;; = Z.Z ‘],7 notée : Id, := | : S
0 Sil#j. 00 --- 10
00 --- 01

6. La matrice triangulaire supérieur est matrice carrée dont tous les coeffi-
cients en-dessous de la diagonale sont des zéros,
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ou encore que a;; = 0 pour tout i > j.

a1; Aaiz2 - a1n—1 Q1n
0 axp --- a2 n—1 Q2n,
Notée : A =
0 0 e p—1n—-1 An—-1n
0 o --- 0 Ann

7. La matrice triangulaire inférieur est matrice carrée dont tous les coeffi-
cients en-dessus de la diagonale sont des zéros,
ou encore que a;; = 0 pour tout i < j.

Définition A.2.11 (Somme de matrices)

1. La somme de deux matrices A et B ayant la méme taille n X p est une
matrice de méme taille. Leur somme C' = A+ B définie par

A= (aij)lgi.gn, B = (bij)1§i5n alors C' = (Cij)1§i§n avec ¢;; = a;; + bij.
1<j<p 1<j<p 1<j<p

2. Le produit d’une matrice par un scalaire :\ € K et A € M,,(K) est une

matrice de méme taille, définit par : NA := (Aa;j)1<i<n.
1<i<p

3. La Matrice opposée de A est la matrice notée —A := (—1)A.
4. La différence de matrices A et B est A— B:= A+ (—1)B.

Proposition A.2.9 (M,,(K), +, . ) est un K-espace vectoriel de dimension n.p.

Définition A.2.12 (Produit de matrices) Soient deux matrices
A = (aij)i<i<n € M,y (K) et B = (bjr)1<j<p € Mp(K), le produit de A et B noté
1<5<p 1<k<

<< <k<q
A.B ou AB, est la matrice C' = (¢ii)1<i<n € Mpy(K) définit par :
1

<k<q
p
Cik. — Z aim.bmk = aﬂ.blk + aig.bgk —+ ...+ aip-bpk:-
m=1

Remarque A.2.1

1. Le produit AB de deux matrices A et B est défini si et seulement si le nombre
de colonnes de A est égal au nombre de lignes de B.

2. Le produit de matrices n’est pas commutatif en général AB # BA.

3. AB=0 # A=0o0uB=0.
On peut avoir A # 0 et B # 0 mais AB = 0.

4. AB=AC % B=C.

Proposition A.2.10 Soient A, B et C trois matrices convenables alors :
1. A(B.C)=(A.B)C = ABC.
2. ABB+C)=AB+ AC et (A+ B)C = AC + BC.
3. A0y = 0ps et Opr. A = 0y
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4. St Ae M,,(K) alors Ald, = A et Id,.A=A.

Définition A.2.13 (Matrice inverse) Soit A € M,(K), On dit que A est inver-
sible ou elle admet une matrice inverse, s’il existe une matrice B € M,(K) telle
que :

AB=BA=1d,

On note la matrice inverse de A : AL
et on note GL,(IK) l’ensemble des matrices inversibles.

Proposition A.2.11

1. La matrice inverse n’existe que pour les matrice carrée.

2. La matrice inverse si elle existe, elle est unique.

3. VAeGL,(K): (A H)t=A.

4. VA, BeGL,(K): (AB)™' = B71A™!

5. VA, B € M,(K), VC € GL,(K): AC =BC = A= B.
6. Id,' =1d,.

Méthode de Gauss pour inverser les matrices

La méthode pour inverser une matrice A € G L, (IK) consiste a faire des opérations
élémentaires sur les lignes de la matrice A jusqu’a la transformer en la matrice identité
1d,.

On fait simultanément les mémes opérations élémentaires en partant de la matrice Id,,,
on aboutit alors & une matrice qui est B = A1,

a1 a2 -+ Al ‘ 10 --- 0 10 0 ’ bll b12 blp
Q21 Qg2 -+ Agp ‘ o1 --- 0 0 1 0 ’ le b22 bgp
Ap1 Ap2 - Qpp ‘ 0O 0 --- 1 00 --- 1 ’ bnl bng bnp

Les opérations élémentaires sur les lignes sont :
o [, +— A\L; avec A € K*
o L;<+— L+ AL,
o Li+— L;

A.2.3.1 Systeme linéaire et matrice

Proposition A.2.12 Tous systéme linéaire S de n-équations et p-variables est une
equation matriciel sous la forme AX = B.
avec A € M,,(K).

111 + A19T9 + -+ - + A1pTp = bl aiir Qi - i T bl

211 + A22%2 + -+ + Agpxy = by 21 Q2 -+ Qgp To by
e P —

Ap121 + ApoTo R anpxp — bn Anp1 Ap2 - anp ‘rp bp
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Théoreme A.2.5 Un systéme d’équations linéaires n’a soit aucune solution, soit une
seule solution, soit une infinité de solutions.

Proposition A.2.13 Si la matrice A est inversible, alors le systéeme AX = B admet
une unique Solution et c’est :

X=A"'B

A.3 Rappels de topologie

Soit F un ensemble quelconque.

Définition A.3.1
On appelle partie de E un sous-ensemble de E.

I’ensemble de toutes les parties de E est dite ’ensemble des parties de E est noté
P(E).

Définition A.3.2 (Topologie, Ouvert) Une topologie sur un ensemble E est une
partie T de P(E) qui vérifie les propriétés suivantes :

e ecT, FEeT.

e L’intersection de deux éléments de T est un élément de T, c.a.d

VA, BeT, ANBeT.

e La réunion (finie ou infinie) d’une famille d’éléments de T est un élément de T,
c.a.d

VA1, As, .. €T, |JAi € T.

Un espace topologique est un couple (E,T) ot E est un ensemble et T une to-
pologie sur E.

Les éléments de T sont appelés les ouverts, ou les parties ouvertes, de E.

Proposition A.3.1 (& définition) Tout ensemble E, admet au moins deuzx topolo-
gies :
e la topologie dite topologie discréte T, = P(E).
(E,T) est dit espace topologique discret.
e la topologie dite topologie grossiére T, = {2, E}.
(E,T) est dit espace topologique grossie.

Example A.3.1
1. Sur R, l’ensemble formé de @, R et des intervalles de la forme ]a,b[, n’est pas
une topologie, car la troisiéme propriété n’est pas vérifice.

2. En revanche, l’ensemble formé de &, R et des réunions quelconques d’intervalles
de la forme la,b| est bien une topologie sur R. Sauf mention contraire, R sera
toujours muni de cette topologie T, appelée topologie usuelle.
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Définition A.3.3 Soit E un ensemble et O, Oy deux topologies sur E.
On dit que Oy est plus fine que Oy ou Oy est plus grosse que Oy si O C Os.

Lemme A.3.1 Soit (O);c; une famille de topologies sur F,
alors N;cr O; est une topologie sur E.

Définition A.3.4 Soit A un sous-ensemble de F,
lintersection de toutes les topologies de E contenant A est une topologie sur E conte-
nant A, on Uappelle la topologie engendrée par A, et on la note O 4.

Définition A.3.5 (Fermé) , Un fermé (ou une partie fermée) de l’espace topolo-
gique (E,T) est une partie de E dont le complémentaire dans E est un ouvert.

Example A.3.2
1. Pour la topologie grossiére, les fermés sont & et E.
2. Pour la topologie discreéte, toute partie de E sont a la fois ouverte et fermée.

3. Sur (R, Ty,), les fermés sont &, R et des réunions quelconques d’intervalles de la
forme [a,b]. En particulier, les singletons sont fermés.

Théoréme A.3.1 Une topologie peut aussi étre définie par 'intermédiaire de ses fermés.
Pour qu’une partie F C P(E) soit l’ensemble des fermés d’une topologie, il faut et
il suffit qu’elle vérifie les conditions suivantes :

e OcF, EcF.

e L’intersection (finie ou infinie) d’une famille d’éléments de F est un élément de
F, ca.d
VA, As, ... € F, (A € F.

e La réunion de deux éléments de F est un élément de F, c.a.d

VA,B€F, AUB€ F.

Définition A.3.6 (Topologie induite) Soit (E,T) un espace topologique et A une
partie de E, On vérifie immédiatement que [’ensemble :

To={ONA|OeT}
est une topologie sur A. On l'appelle topologie induite sur A par T .

Lorsque aucune précision n’est donnée, on considere toujours qu’une partie d’un
espace topologique (E,T) est munie de la topologie induite par T .

Définition A.3.7 (Espace métrique, distance) Soit E un espace topologique non
vide,

une distance sur E est une application d de £ x E dans R™ qui vérifie,

pour tous x,y,z € E :

1. d(z,y) = d(y,x).
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2. d(x,y) =0 si et seulement si x = y.
3. d(z,2) < d(z,y) +d(y, 2).

Si d est une distance sur E, le couple (E,d) est appelé espace métrique.

Définition A.3.8 (Boules et sphére) Soient (E,d) un espace métrique, a € E et
reR".

e La boule ouverte de centre a et de rayon r est l’ensemble noté B(a,r) définit
par :

B(a,r) ={z € E | d(z,a) <r}.

e La boule fermée de centre a et de rayon r est l’ensemble noté By(a,r) ou

B(a,r) définit par :

B(a,r) ={x € E|d(z,a) <r}.
e La sphére de centre a et de rayon r est [’ensemble
S(a,r)={zx € E|d(z,a) =r1}.

Définition A.3.9 (Intérieur, adhérence, frontiére d’une partie) Soient (E,T)
un espace topologique et A est une partie de E.

e Pour toute partie A de E, on note le complémentaire de A dans E :

e L’intérieur de A est le plus grand ouvert (pour linclusion) contenu dans A, on
le note A.

e L’adhérence de A est le plus petit fermé (pour l’intersgction) contenant A, on

le note A. Un point x est dite adhérent a A lorsque x € A.

e La frontiére de A est le complémentaire de ['intérieur de A dans [’adhérence
de A, noté Fr A : ) .
Fr A= A\A=Cz(A).

Un point x est dite frontiere a A lorsque x € Fr A.

Proposition A.3.2 Soient (E,T) un espace topologique et A est une partie de E, On
a:

o A ouvert de E — A = A.
o Aferméde E < A= A.

e Co(A) = Cu(A).

o Cp(A) =Cg(A).
o FrA=Fr(Cg(A)).

Proposition A.3.3 Soient A une partie de E et x € A.
ezcAd <« 3JOCE ouvert,z €0 C A.
ercA < VOCE owert,z€0,= ONA#I.
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e rcfrA < VYOCEowert,r€O,= ONA#0 and ONCg(A) # 0.

Corrolaire A.3.1 Soient (E,d) un espace métrique et A une partie de E.
ereA <« Ir>0,;:Bxr)CA.
ezcA < Vr>0;B(z,r)NA#D.

Définition A.3.10 (Voisinage.) Soient (E,7T) un espace topologique et A, B deux
partie de E.
On dit que B est un voisinage de A lorsqu’il existe un ouvert O de E tel que

ACOCB.

On note V(A) l'ensemble des voisinage de A.

Si A = {x}, on dit que B est un voisinage de x, on note V(x) l’ensemble des
des voisinage de .

Définition A.3.11 (Systéme fondamental de voisinages. ) Soient (E,T) un es-
pace topologique et A une partie de E. Un systéme fondamentale de voisinages
de A est un sous-ensemble U C V(A) tel que

VW eV(A),UeUCVA) :UcCV.

Théoréme A.3.2 Soit (E,T) un espace topologique. O est un ouwvert de E si et seule-
ment si O est un voisinage de chacun de ses points.

Définition A.3.12 Soient (FE,T) un espace topologique, et AC E, x € E :

e On dit que = est adhérent a A si et seulement si pour tout V. € V(x), on

VNA#Q.

o On dit que x est un point isolé de A si et seulement s’il existe V- € V(x), on
VNA#{z}.

e On dit que x est un point d’accumulation de A si et seulement si pour tout

V e V(x), l'ensemble V/{z} N A est infini.

Définition A.3.13 (Densité. ) Soient (E,T) un espace topologique, et A, B des par-
ties de I, tel que AC B C F.

On dit que A est dense dans B lorsque B C A, ou, ce qui est équivalent, lorsque
tout ouvert de E contenant un point de B rencontre A.

On dit qu’une partie D C E est dense dans E si et seulement si D = E.

Définition A.3.14 (Espace séparés)

Un espace topologique (E,T) est dit espace séparé ou espace de Hausdorff lorsque,
pour tous points distincts x et y de E, il existe des voisinages distincts V, et 'V, de x
et y respectivement. c.a.d :

Ve,ye E, x4y = 3V, eV(x),3V, eV(y) : V.nV,=0.
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Exemples :
1. Un espace discret est toujours séparé, un espace grossier a au moins deux éléments
n’est jamais séparé.
2. Soit E = {0, 1,2}, la topologie {(), {0}, E} est non séparée puisque le seul ouvert
contenant 1 est F et que 0 € E.

3. Tout espace métrique est séparé.

Proposition A.3.4 soit (E,T) est un espace topologique séparé alors pour toutl € F,

N v={

Vev(l)

Proposition A.3.5 Soit (E,T) un espace topologique séparé, et A une partie de F,
alors la topologie induite sur A par la topologie de E est séparée.

Proposition A.3.6 ( & définition : Topologie produit)
soient (B, 1) et (Ey, 1) deux espace topologiques,

On appel ouvert élémentaire de Fy X Fy toute sous-ensemble O C Ey X Fy de la
forme O = 01 X Oy ou O € 11 et Oy € T5.

La famille formée de l’ensemble vide et des réunions quelconques d’ouverts élémentaires
définit une topologie sur Ey X Eo appelée topologie produit.

Proposition A.3.7 Si E; et Ey sont séparés alors E1 X Fy est aussi séparé.

A.Chikh-Salah 2025 Université de Ghardaia



Bibliographie

1]

[10]

[11]

[12]
[13]

M. Audin. On the topology of Lagrangian submanifolds examples and counter-
example. Portugaliae Mathematica, 62(4) :375-419, 2005.

C. Baikoussis and D.E. Blair. Integral surface of Sasakian space forms. Journal
of Geometry, 43 :30-40, 1992.

M. Belkhalfa and A. Chikh Salah. Surface in the nearly Sasakian 5-sphere. Bull.
math. Soc. Sci. Math. Roumanie, 59(4) :317-330, 2016.

M. Berger and B. Gostiaux. Differential geometry, Manifolds, Curves, and Sur-
faces. Springer-Verlag, 1988.

D.E. Blair. Contact manifolds in Riemannian geometry, volume 509. Lecture
notes in nathematics, Springer-Verlag, 1976.

D.E. Blair. Riemannian geometry of contact and symplectic manifolds, volume
203. Progress in Mathematics, Springer Burkhauser, 2010.

A. Chikh Salah and L. Vrancken. Four-dimensional locally strongly convex homo-
geneous affine hypersurfaces. Journal of geometry, pages 1-29, 2016.

F. Dillen and L. Vrancken. Totally real submanifolds in S®(1) satisfying Chen’s
equality. Transactions of the American mathematical society, 348(4) :1633-1646,
1996.

M.P. Do Carmo. Differential geometry of curves and surfaces. Burkhéuser Bosten.
Basel. Berlin, 1992.

W. Ebeling, K. Hulek, and K. Smoczyk. Complex and differential geometry. Sprin-
ger, 2011.

J. Frédéric. Géométrie différentielle et application au controle géométrique, cours
AOT13.

S. Gallot, D. Hulin, and J. Lafontaine. Riemannian geometry. Springer, 1980.

R.E. Greene, K.T. Kim, and S.G. Krantz. The geometry of complex domains.
Burkhéauser, 2011.

H.W. Guggenheimer. Differential geometry. Dover publications, Inc., New York,
1977. Corrected reprint of the 1963 edition, Dover books on advanced mathema-
tics.

74



BIBLIOGRAPHIE 75

[15] D. Hubrechts. Complex geometry, an introduction. Universitext, 2005.

[16] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Interscience
Publishers, 1969.

[17] J. Lafontaine. Introduction aux variétés différentielles. Presses Universitaires de
Grenoble, 1996.

[18] D. Laugwitz. Differential and Riemannian geometry. Translated by Fritz Stein-
hardt. Academic Press, New York-London, 1965.

[19] H. Liu, M. Magid, Ch. Scharlach, and U. Simon. Recent developments in affine
differential geometry. In Geometry and topology of submanifolds, VIII (Brussels,
1995/Nordfjordeid, 1995), pages 1-15. World Sci. Publ., River Edge, NJ, 1996.

[20] K. Yano and M. Kon. Structures on manifolds. World Scientific, 1984.

A.Chikh-Salah 2025 Université de Ghardaia



	Table des notations 
	Introduction
	Calcul différentiel
	Introduction
	Différentielles
	Opérations sur la différentielle
	Cas des Réels
	Différentielles secondes et supérieurs
	Homéomorphismes et difféomorphismes

	Théorème des inversions locales
	Applications lipschitziennes, contractions
	Théorème d'inversion locale (cas des Réels)
	Théorème d'inversion locale

	Théorème des fonctions implicites
	Exercices

	Sous-variétés de Rn
	Difféomorphismes, immersions, submersions
	Définition des sous-variétés
	Application entre les sous-variétés
	Espaces tangentes
	Exercices

	Les formes différentielles
	Algèbre tensorielle.
	Formes multilinéaires
	Formes multilinéaires alternées

	Formes différentielles
	Formes différentielles Réelles
	Formes différentielles de degré 0
	Formes différentielles de degré 1
	Formes différentielles de degré 2

	Image réciproque - Pullback 
	La différentielle extérieur
	Lemme de Poincaré


	Intégration des formes différentielles
	Intégration des 1-formes
	Théorème de Stocks
	Sous-variétés de Rn orientées
	Théorème de Stokes dans  Rn 
	Cas particuliers dans l’analyse vectorielle

	Applications du théorème de Stockes

	Variétés différentielles
	Variétés topologiques
	Cartes locale et atlas
	Variétés différentielles abstraites
	Espaces tangentes
	Vecteur tangent et espace tangent 
	Dérivations
	Différentielle d'une application
	Théorème des inversion locale (cas des variétés)
	Coordonnées sur l'espace tangent

	Fibrés tangentes
	Exercices

	Rappels Algébriques et Topologiques
	Rappels d'algèbre des structures
	Lois de composition 
	Structure de groupe
	Sous-groupes
	Morphismes de groupes
	Structure d'anneau
	Corps

	Rappels d'algèbre linéaire
	Espaces vectoriels
	Applications linéaires
	Matrices

	Rappels de topologie


