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3.1 Algèbre tensorielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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3.3.3 Formes différentielles de degré 2 . . . . . . . . . . . . . . . . . . 28
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Table des figures
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TpM Espace tangent de M en p.
{e1, · · · , en} La base canonique de Rn.
{e∗

1, · · · , e∗
n} La base dual canonique de Rn.

{ ∂
∂x1
, . . . , ∂

∂x1
} La base canonique orthonormal de TpM .

X, Y, Z,Xi, . . . Champs de vecteurs de M .
[X, Y ] Crochet de Lie des champs de vecteurs X et Y .
T ∗
pM Espace co-tangent de M en p.
TM Fibré tangent de M .
{dx1, . . . , dxn} La base canonique orthonormal de TM .
ω Une forme différentielle.
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Introduction

La géométrie différentielle est une branche des mathématiques qui combine les tech-
niques de la géométrie et de l’analyse pour étudier les propriétés des courbes, des sur-
faces et des structures plus générales dans des espaces dits ≪ différentiables ≫, comme
les variétés. Elle est apparue pour comprendre des objets géométriques complexes en
utilisant des outils de calcul différentiel, ce qui permet de les analyser localement comme
des objets euclidiens.

Notions de base
Variétés différentiables : Une variété est un espace qui, localement, ressemble à un es-
pace euclidien de dimension donnée. Par exemple, la surface d’une sphère est une variété
de dimension 2, car localement, elle ressemble à un plan. Les variétés permettent de
généraliser la notion de surface et de courbe dans des dimensions plus élevées.

Applications différentiables :
Ce sont des fonctions entre variétés qui possèdent des dérivées continues. Ces fonctions
permettent de comparer des variétés et d’étudier comment elles se transforment les
unes par rapport aux autres.

Vecteurs tangents et espaces tangents :
En tout point d’une variété, on peut définir un espace tangent, qui est une approxima-
tion locale de la variété autour de ce point. Les vecteurs tangents, qui appartiennent à
cet espace, représentent les directions possibles de déplacement sur la variété.

Formes différentielles et intégration :
Une forme différentielle est un outil mathématique permettant de généraliser la no-
tion de fonction, en intégrant sur des objets de dimension supérieure. Cela mène à des
résultats puissants comme le théorème de Stokes, qui relie l’intégration sur une région
à celle sur son bord, généralisant ainsi le théorème fondamental du calcul intégral.

Variétés et cartes locales
Au cœur de la géométrie différentielle se trouve le concept de variété, qui généralise
les courbes et surfaces en dimensions supérieures. Une variété de dimension n est un
espace qui, localement, ressemble à un espace euclidien de dimension n (comme une
surface plane ou un espace à trois dimensions). Par exemple, la surface d’une sphère
est une variété de dimension 2 qui peut être décrite localement comme un plan, même
si globalement elle a une courbure positive. Les cartes locales et les atlases sont utilisés
pour décrire ces variétés en découpant l’espace en petits morceaux, chacun ressemblant

v
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à un espace euclidien simple.

Courbes, surfaces et métriques
Les objets de base de la géométrie différentielle incluent les courbes et surfaces. Une
courbe est une variété de dimension 1, tandis qu’une surface est une variété de dimen-
sion 2. Pour analyser la ”forme” de ces objets, on introduit une métrique, qui mesure les
distances et angles à l’intérieur de la variété. Par exemple, dans une sphère, la métrique
détermine la façon dont on mesure les distances le long de sa surface incurvée. Cela
permet de définir des concepts comme la courbure, qui décrit l’étendue de l’incurvation
d’une surface ou d’une variété.

Applications de la géométrie différentielle
La géométrie différentielle est centrale en physique théorique, notamment en relativité
générale où l’espace-temps est modélisé comme une variété courbée. Elle est également
utilisée en mécanique, en théorie des systèmes dynamiques, et dans l’étude des surfaces
en géométrie.

En conclusion, la géométrie différentielle offre une vue riche et profonde des objets
géométriques à travers le prisme de la dérivation et de l’intégration. Elle constitue un
domaine fondamental pour les mathématiques appliquées et théoriques.

Ce cours est une initiation à la géométrie différentielle, dans lequel
je donne une introduction très simple et des donnés général, la plupart
du temps sans démonstration, car le cours est destiné au étudiants de
Licence Mathématiques et de Master non Géomètre

Dans notre cas, sont des spécialités L3 : Analyse et M2 : Analyse
Fonctionnelle à l’université de Ghardaia.

A.Chikh-Salah

A.Chikh-Salah 2025 Université de Ghardaia



Chapitre 1

Calcul différentiel

1.1 Introduction
L’idée du calcul différentiel est d’approcher au voisinage d’un point une fonction f

par une fonction plus simple (ou d’approcher localement le graphe de f par un espace
plus simple).

Une fois les notations assimilées, les méthodes et les résultats du calcul différentiel
sont naturels : ce sont les mêmes que pour l’étude des fonctions d’une variable réelle.

On est ainsi amené à étudier la restriction des fonctions le long d’une droite comme,
par exemple, pour démontrer les formules de Taylor. Aussi à généraliser les outils fami-
liers en dimension 1 comme les changements de variables, l’inégalité des accroissements
finis, ... etc.

Pour toute la suite E , F et G désignent des R-espaces vectoriels de dimension
finie, et ∥ . ∥E, ∥ . ∥F , ∥ . ∥G leurs normes respective.

Définition 1.1.1 (Application affine) Une application f de E dans F est dite ap-
plication affine s’il existe une application linéaire A de E dans F , et un vecteur b
de F tel que :

∀x ∈ E : f(x) = A(x) + b.

1.2 Différentielles
Intuitivement : Une applications f : E → F est différentiable en un point a de

E, si elle peut être approchée au voisinage de a par une application affine.
Graphiquement : le graphe de f ressemble localement à un espace affine (ou un

espace plat) Ta.

Définition 1.2.1 Soit f une application de E dans F et U un ouvert de E. Soit a ∈ U .
On dit que f est différentiable au point a Si :
• Il existe une application linéaire continue L ∈ L(E,F ).
• Il existe une application ϵ : U → F tel que lim

x→a
ϵ(x) = 0.

Tel que
∀x ∈ U, f(x) = f(a) + L(x− a) + ϵ(x).∥x− a∥E.

1



1.2. DIFFÉRENTIELLES 2

Définition équivalente :

Définition 1.2.2 Soit f une application de E dans F et U un ouvert de E. Soit a ∈ U .
On dit que f et différentiable au point a Si :

Il existe une application linéaire continue L ∈ L(E,F ), tel que

∀x ∈ U, lim
x→a

∥f(x)− f(a)− L(x− a)∥F
∥x− a∥E

= 0.

Ou encore, on posant x− a = h :

lim
h→0
h̸=0

∥f(a+ h)− f(a)− L(h)∥F
∥h∥E

= 0.

Proposition 1.2.1 Soit f : E → F avec les conditions des définitions présidentes :
1. L’application L si elle existe, alors elle est unique.
2. Si f est différentiable alors elle est continue.

Définition 1.2.3 Soit f : E → F avec les conditions des définitions présidente, Si f
est différentiable au point a, on dit que L est la différentielle de f en a, et on la
note dfa ou Dfa.

Définition 1.2.4 (La différentielle)
1. On dit que l’application f est différentiable sur U si elle différentiable en tout

point de U .
2. On appelle la différentielle de f , l’application :

df : U −→ L(E,F )
a 7−→ dfa

3. Si df est continue on dit que f est continument différentiable, et que f est
de classe C1 sur U .

Exemples :
1. Soit f : U → F une application constante, (i.e. : ∃c ∈ F, ∀x ∈ U : f(x) = c),

alors
∀a ∈ U, dfa = 0.

2. Si f ∈ L(E,F ) (i.e. f est une application linéaire), alors f est continument
différentiable en tout point a de E et

dfa = f.

3. Si f : E × E → F est bilinéaire (i.e. linéaire pour chaques variables), alors f est
continument différentiable et

∀(a1, a2), (h1, h2) ∈ E × E : df(a1,a2)(h1, h2) = f(a1, h2) + f(h1, a2).

A.Chikh-Salah 2025 Université de Ghardaia



1.2. DIFFÉRENTIELLES 3

1.2.1 Opérations sur la différentielle
Proposition 1.2.2 Soient f : U ⊂ E → F et g : V ⊂ E → F deux applications
différentiables et λ ∈ R alors :

1. f + g est différentiable sur U ∩ V et :

d(f + g) = df + dg,

i.e. ∀a ∈ U ∩ V, ∀h ∈ E : d(f + g)a(h) = dfa(h) + dga(h).

2. λf est différentiable sur U et

d(λf) = λdf i.e. ∀a ∈ U , ∀h ∈ E : d(λf)a(h) = λdfa(f).

Définition 1.2.5 (La différentielle d’applications composées)
Soient f : U ⊂ E → F et g : V ⊂ F → G deux applications différentiables, et
f(U) ⊂ V , alors g ◦ f est différentiable et

∀a ∈ U, d(g ◦ f)a = dgf(a) ◦ dfa.

i.e. ∀a, h ∈ U :
d(g ◦ f)a(h) = dgf(a) (dfa(h)) .

1.2.2 Cas des Réels
dans cette partie on prend E = Rp et F = Rq.

Et que {e1, . . . en} la base canonique Rn, avec ei = (0, . . . , 0, 1, 0, . . . , 0). (1 à la i-ème
composante) c.a.d :

ei = (x1, . . . , xn) =

xj = 0 si j ̸= i

xj = 1 si j = i
.

Pour tout x ∈ E et pour tout y ∈ F , on leurs composantes : x = (x1, . . . , xp) et
y = (y1, . . . , yq) respectivement.

Dérivées partielles
Soit f : U ⊂ Rp → Rq différentiable, On définit l’application gi par

gi : Ui ⊂ R −→ Rq

t 7−→ f(x1, . . . , xi−1, t, xi+1, . . . , xp)

avec les xj fixés. Cette application est dérivable en xi et

g′
i(xi) = dfx(ei)

elle est dite la dérivée directionnelle de f dans la direction de ei au point x. elle
est notée :

∂f

∂xi
(x) ou ∂xi

f(x) ou ∂if(x).

A.Chikh-Salah 2025 Université de Ghardaia



1.2. DIFFÉRENTIELLES 4

Elle est données par : pour tous i ∈ {1, . . . , p}

∂if : U −→ Rq

x 7−→ ∂if(x)

Plus général :

dfx(h) = dfx(
i=1∑
p

hiei) =
i=1∑
p

hidfx(ei) =
i=1∑
p

hi
∂f

∂xi
(x).

Proposition 1.2.3
1. Puisque F = Rq d’ou : f = (f1, . . . , fq) alors :

∂f

∂xi
(x) =

(
∂f1

∂xi
(x), . . . , ∂fq

∂xi
(x)
)
.

2. L’existence de toutes les dérivées partielles n’implique pas en général que f est
différentiable.

Matrice Jacobienne
Soit f : U ⊂ Rp → F = Rq différentiable au point x, et f = (f1, . . . , fq), on définit la
matrice Jacobienne de f dans la base canonique par :

Df(x) =


∂1f1(x) · · · ∂pf1(x)

... . . . ...
∂1fq(x) · · · ∂pfq(x)

 ∈Mp,q(R).

Pour un h = (h1, . . . , hp) ∈ U , on a : dfx(h) = Df(x).t(h1, . . . , hp).

dfx(h) = Df(x).t(h1, . . . , hp) =


∂1f1(x) · · · ∂pf1(x)

... . . . ...
∂1fq(x) · · · ∂pfq(x)



h1
...
hp

 .
Remarques : Si p = q,
• Le déterminant de Df(x) est dit le Jacobien de f , noté

Jac fx := det(Df(x)).

• dfx est un isomorphisme ⇐⇒ Jac fx ̸= 0.

Théorème 1.2.1 Soit une application f : U ⊂ Rp → Rq, tel que f = (f1, · · · , fq),
alors
f est continument différentiable si et seulement si toutes les dérivées partielles des fi
existent et sont continues sur U .

A.Chikh-Salah 2025 Université de Ghardaia



1.2. DIFFÉRENTIELLES 5

1.2.3 Différentielles secondes et supérieurs
Définition 1.2.6 soit f : U ⊂ E → F une application différentiable en a ∈ U , de
différentielle dfa.

On dit que f est deux fois différentiables en a, ou que f admet une différentielle
seconde en a, si l’application différentielle df est différentiable en a, notée d2fa et cette
deuxième différentielle est donnée par :

d2fa := d(df)a.

tel que d2fa ∈ L(E;L(E,F )) qui est équivalant aux applications bilinéaires de E × E
dans F et

d2fa(h, k) :=
(
d(df)a(h)

)
(k), h, k ∈ E.

Définition 1.2.7 La différentielle d’ordre k de f en a ∈ E est la différentielle de
dk−1f en a (par récurrence), notée dkfa

dkfa := d(dk−1f)a.

On dit que f est de classe Ck en a sur U ⊂ E si dkf existe en tous points de U est
continue.

Théorème 1.2.2 (Théorème de Schwartz) Si une application f : E → F est deux
fois différentiable en un point a ∈ E, et elle est continue, (c.a.d : de classe C2) alors
l’application d2fa : E × E → F est bilinéaire et symétrique.

Cas des Réels :
Si f : U ⊂ Rn → R est de classe C2 alors j, k = 1, . . . , n alors les deuxièmes dérivées
partielles sont données par :

∂2f
∂xj∂xk

= ∂
∂xj

(
∂f
∂xk

)
si j ̸= k

∂2f
∂x2

j
= ∂

∂xj

(
∂f
∂xj

)
si j = k

.

Corrolaire 1.2.1 Par le théorème 1.2.2, si une fonction f : Rp → R est de classe C2

en a ∈ Rp alors sa matrice hessienne en ce point est symétrique (la matrice jacobienne
de df en a)

∀i, j ∈ {1, 2, · · · , p} ∂2f

∂xi∂xj
(a) = ∂2f

∂xi∂xi
(a).

1.2.4 Homéomorphismes et difféomorphismes
Soient E et F deux espaces vectoriels, U ⊂ E et V ⊂ F des ouverts,

et f : U ⊂ E → V ⊂ F une application.

Définition 1.2.8 On dit que :
• f est un homéomorphisme si f est bijective et si f et f−1 sont continues.
• f est un difféomorphisme si f est bijective et f et f−1 sont de classe C1.

A.Chikh-Salah 2025 Université de Ghardaia
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• f est un difféomorphisme de classe Ck si f est bijective et f et f−1 sont de
classe Ck.
• f est difféomorphisme local en a ∈ U , s’il existe Ua ⊂ U ouvert contenant a

tels que la restriction de f à Ua, f|Ua : Ua → f(Ua) soit un difféomorphisme.
Proposition 1.2.4 .
• la composition de deux difféomorphismes de classe Ck est un difféomorphisme de

classe Ck.
• L’ensemble des difféomorphismes de classe Ck d’un ouvert U ∈ E sur lui-même

forme un groupe par rapport à l’opération de composition

1.3 Théorème des inversions locales

1.3.1 Applications lipschitziennes, contractions
soient E et f deux espaces vectoriels normés, et soit φ une application de E sur F .

Définition 1.3.1 φ est k-lipschitzienne si il existe une constante k strictement po-
sitive telle que

∀(x, y) ∈ E2, ∥φ(x)− φ(y)∥F ≤ k∥x− y∥E.
Définition 1.3.2 Soit φ : E → F

• On dit que φ est lipschitzienne s’il existe k ≥ 0 et φ est k-lipschitzienne.
• S’il existe de tels k alors le plus petit d’entre eux existe et est appelé la constante

de Lipschitz de φ.
• On note Lip(φ) cette constate et on a

Lip(φ) = sup
x ̸=y

(
∥φ(x)− φ(y)∥F
∥x− y∥E

)
.

• φ est dite contractante si φ est k-lipschitzienne et k ∈ [0, 1[.
• φ est dite localement lipschitzienne si pour tout point x de E, il existe un

voisinage V de x tel que la restriction de φ à V soit lipschitzienne (pour une
certaine constante k qui peut dépendre de V , donc de x).

Remarques :
• Toute fonction lipschitzienne est uniformément continue.
• Toute fonction localement lipschitzienne est continue.
• Sur un espace compact, toute fonction localement lipschitzienne est lipschit-

zienne.
Proposition 1.3.1 Une contraction ϕ d’un espace métrique complet possède un unique
point fixe.
Proposition 1.3.2 Soit ψ : O ⊂ Rn → Rn une contraction définit sur un ouvert O
avec sa constante de Lipschitz λ.

Alors l’application φ : x ∈ O 7→ x+ψ(x) est un homéomorphisme sur un ouvert de
Rn.

En plus l’homéomorphisme inverse est lipschitzien avec la constante de Lipschitz
inférieur à (1− λ)−1.
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1.3.2 Théorème d’inversion locale (cas des Réels)
Théorème 1.3.1 Soit f une fonction de classe Ck, k ≥ 1, définie sur une partie ou-
verte U de Rn et à valeurs dans Rn. Et a un point de U ; Si la différentielle dfa est un
isomorphisme linéaire(Inversible), Alors f est un difféomorphisme local de classe Ck,
e.i.

il existe un voisinage ouvert de a Va ∈ V(a) , avec a ∈ Va ⊂ U tel que :
f : Va → f(Va) est un difféomorphisme de Ck.

Comme application direct de ce théorème on a les cas particuliers :

Théorème 1.3.2 Soit f une application de classe C1 d’un ouvert U ⊂ Rn dans Rm,
(n ≤ m). On suppose que 0 ∈ U et que df0 est injective. Alors

il existe un ouvert V ⊂ Rm, avec 0 ∈ V ,
il existe un ouvert U ′ ⊂ U , tel que f(U ′) ⊂ V ,
il existe un difféomorphisme ϕ sur son image tels que :

ϕ(f(x1, · · · , xn)) = (x1, · · · , xn, 0, · · · , 0).

Théorème 1.3.3 Soit f une application de classe C1 d’un ouvert U ⊂ Rn dans Rm,
(n ≥ m). On suppose que 0 ∈ U et que df0 est surjective. Alors

il existe un ouvert W ⊂ Rn, avec 0 ∈ V ,
il existe un difféomorphisme ψ de W sur son image tels que ψ(W ) ⊂ U et :

f(ψ(x1, · · · , xn)) = (x1, · · · , xm).

1.3.3 Théorème d’inversion locale
Soient E, F deux espaces vectoriels, U ⊂ E une partie ouverte.

Théorème 1.3.4 Soit f : U ⊂ E → F une application de classe Ck (k ≥ 1), et a ∈ U ,
on suppose que Dfa soit inversible (isomorphisme linéaire), alors

f est un difféomorphisme local en a de classe Ck.

e.i. ∃Ua ⊂ U voisinage ouvert de a tels que : f|Ua : Ua → f(Ua) est un difféomorphisme
de classe Ck.

1.4 Théorème des fonctions implicites
Le but est d’étudier les ensembles de Rn (plus généralement dans des espaces vec-

toriels) défini par une équation de la forme

F (x1, · · · , xn) = 0.

On sait déjà étudier quelques cas simples. Par exemple, on est capable de représenter
les ensembles de R2 d’équations

f1(x, y) = 2x+ 5y − 4 = 0, f2(x, y) = y − x sin(x2)x− 5x = 0
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f3(x, y) = x− tg(y)y = 0

le plus simple pour étudier l’ensemble considéré est de réécrire f1, f2 sous la forme
y = ϕ1(x) , y = ϕ2(x) et f3 sous la forme x = ϕ3(y). Les ensembles étudiés ne sont
alors rien de plus que les graphes des fonctions ϕ1 , ϕ2 et ϕ3 respectivement. On en
déduit qu’on a affaire à des courbes, et peut obtenir toutes sortes d’informations utiles.

Par exemple, en calculant la dérivée des fonctions ϕi, on peut obtenir la tangente
à cette courbe en tout point. Plus généralement on trouve le théorème

Théorème 1.4.1 (Théorème des fonctions implicites, cas de R2) Soit U un ou-
vert de R2 et une application F : U ⊂ R2 → R de classe Ck avec k ≥ 1. Soit un point
(a, b) ∈ U tel que

F (a, b) = 0 et
∂F

∂y
(a, b) ̸= 0.

Alors il existe des voisinages Va de a dans R et Wb de b dans R tel que Va ×Xb ⊂ U ,
et il existe une application ϕ : Va → Wb de classe Ck tel que

∀(x, y) ∈ Va ×Wb, F (x, y) = 0 ⇐⇒ y = ϕ(x).

Théorème 1.4.2 (Cas général) Soient E, F deux espaces vectoriels de dimensions
respective n et m, W ⊂ E × F partie ouvert, et
f : W ⊂ E × F → F une application de classe C1, et (a, b) un point de W tel que :

1. f(a, b) = 0
2. La matrice jacobienne Dyf(a, b) est inversible

Alors :
• Il existe un voisinage ouvert Ua ⊂ E

• Il existe un voisinage ouvert Vb ⊂ F

• Tel que (a, b) ∈ Ua × Vb ⊂ W ⊂ E × F .
• Il existe une application g : Ua → Vb de classe C1

tel que
1. ∀(x, y) ∈ Ua × Vb : f(x, y) = 0 =⇒ y = g(x).
2. ∀x ∈ Ua : f(x, g(x)) = 0.
3. ∀(x, y) ∈ Ua × Vb la matrice jacobienne Dyf(x, y) est inversible
4. Pour tout u ∈ Ua la matrice jacobienne de g Dg(u) est donnée par :

Dg(u) = − [Dyf(u, g(u))]−1 .Dxf(u, g(u)).

Avec la notation :
Dyf(a, b) =

(
∂fi
∂yj

(a, b)
)

1≤i≤m
1≤j≤m
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1.5 Exercices
Exercice 01 :

Soient les fonctions suivantes définis de Rn dans Rp par :
• f1(x, y) = x2y2 − xy − 12.
• f2(x, y) = x2

x2−y .

• f3(x, y, z) = (x−2y
x−y ,

x−z
x−2z ).

• f4(x, y, z) = (xyz, xy, x
yz
, 1
x+y+z ).

• f5(x) = (x,
√
x2 − 2x+ 1,

√
x2 −

√
x+ 1).

1. Déterminer n et p pour chaque fonctions.
2. Calculer le domaine de définition pour chaque fonctions.
3. Calculer les dérivées partielles de chaque fonctions.
4. Donner leurs matrices Jacobiennes.
Exercice 02 :

Soit f une application de E dans F espaces vectoriels normés de dimension finie.
On sait de même que ”f différentiable en x0” =⇒ ”f admet des dérivées partielles en
x0” montrer que les réciproques sont fausses en général en s’inspirant de :
Soit la fonction f : R2 → R définit par

f(x, y) =


xy2

x2+y2 si (x, y) ̸= (0, 0)
0 si (x, y) = (0, 0)

meme question pour la fonction g : R2 → R définit par

g(x, y) =



x2 sin 1
x

+ y2 sin 1
y

si xy ̸= 0
x2 sin 1

x
si y = 0

y2 sin 1
y

si x = 0
0 si (x, y) = (0, 0)

Exercice 03 :
Soit g : R → R une application de classe C2 et f : R2 → R définit par

f(x, y) =


g(x)−g(y)
x−y si x ̸= y

g′(x) si x = y

montrer que f est de classe C1 en tout point de R2 et calculer sa différentielle.

Exercice 04 : Soient E,F deux espaces vectoriels réels, et f : E → F une appli-
cation linéaire continue, alors

1. f ∈ C1(E,F ) et on a :
∀a ∈ E : Dfa = f
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2. Déduire que l’application différentielle Df : E → L(E,F ) est constante.
3. Soit g : U ⊂ E → F la restriction de f à un ouvert non vide U , montrer que les

conditions suivantes sont équivalentes :
• g est continue en tout point de U
• g est différentiable en tout point de U
• g ∈ C1(E,F ).

4. Montrer que Si h : E → F une application affine continue h = f + c avec c
constante de F alors h ∈ C1(E,F ) et que

∀a ∈ E : Dah = f

Exercice 05 : Soient les fonctions f1, f2, f3 f4, f5 de l’exercice 1
• Calculer leurs Rangs.
• Sont-elles des immersions ?.
• Sont-elles des submersions ?.
• Sont-elles Injectives, Surjectives ?.

Exercice 06 : Les applications suivantes f : R2 → R3 sont-elles des immersions ?
Sont-elles injectives ? Si oui, leur image est-elle plongée ?

1. f1(u, v) = (cosu, sin u, v).
2. f2(u, v) = (u, v, uv).
3. f3(u, v) = (u cos v, v sin u, λv).
4. f4(u, v) = ((2 + cos v) cosu, (2 + cos v) sin u, sin v).

Définition : On dit que F : M → N est un plongement si F est une immersion
injective et un homéomorphisme de M dans F (M) pour la topologie induite.

Exercice 07 : Pour t ∈]−∞, 1[, on pose f(t) = (t2, t− t3).
L’application f : ] −∞, 1[→ R2 est-elle une immersion ? Est elle injective ?. dessiner
son image dans le plan.

Exercice 08 : Les applications suivantes fi : R3 → R sont-elles des submersions ?
Peut-on les restreindre à un voisinage de if

−1(0) de telle sorte que la restriction soit
une submersion ?

1. f1(x, y, z) = x2 + y2 + z2 − a2.
2. f2(x, y, z) = x2 + y2 − z2.
3. f3(x, y, z) = x2 + y2 − z.

Exercice 09 : Soit S la nappe paramétrée définie par

x(u, v) = u+ v, y(u, v) = uv, z(u, v) = u2 + v2. (u, v) ∈ R2

1. Verifier que S et incluse dans la surface d’équation x2 − 2y − z = 0. les deux
surfaces cöıncident-elles ?.
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2. Quelle sont les intersection de S avec les plan x = 0, y = 0, z = 0.
3. Dessiner S.
4. En quels points ce plan passe par l’origine ? .

Exercice 10 :
Soit la fonction f de R2 dans R2 :

f(x, y) = (x2 − y2, 2xy)

1. Est elle un difféomorphisme global ?
2. soit X = (1, 2) ∈ R2, donner un voisinage de X et un voisinage de f(X) dans les

quels f est difféomorphisme.
3. Donner deux ouverts maximal U et V de R2 pour que f soit un difféomorphisme

de U dans V .
Peut on faire la même chose pour les fonctions :

1. f : R2 → R3, (x, y) 7→ (x− y, x, y)
2. f : R3 → R3, (x, y, z) 7→ (x2 + xy2,−1

2xy
2 − 1

2x
2, z2 − 4z).

Exercice 11 :
Soit la fonction f : Rn → R , avec f est une fonction de u(x1, x2, ..., xn).
On rappelle la formule en une variable : f(u)′ = f ′(u).u′

1. Calculer f(u)′′ dans le cas d’une variable.
2. Calculer ∂

∂xi
f et ∂2

∂x2
i
f dans le cas de n-variables.

3. Montrer que

∆f = f ′′(u).∥u′∥2
2 + f ′(u).∆u, avec ∥u′∥2

2 =
n∑
i=1

( ∂u
∂xi

)2.

On prend maintenant n = 3 et u = x2+y2

z2 ,
4. Montrer que f est harmonique si et seulement si

2(u2 + u)f ′′(u) + (3u+ 2)f ′(u) = 0.

Rappel : une fonction f est harmonique si ∆f = 0.
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Chapitre 2

Sous-variétés de Rn

Approche : Après avoir considéré des fonctions définies sur des intervalles de R
(autrement dit des morceaux de droites) puis sur des morceaux de plans ou d’espaces
de dimensions quelconques, on souhaite maintenant s’intéresser à des fonctions définies
par exemple sur des courbes ou des surfaces. Par exemple sur des cercles, des sphères.
. .
Le but de ce chapitre est de commencer par définir et bien comprendre ce qu’on va
considérer comme courbes ou surfaces. Plus généralement on va introduire les sous-
variétés de dimension p dans Rn. Une courbe sera une sous-variété de dimension 1,
une surface est une sous-variété de dimension 2, etc. On notera tout de même que la
définition d’une sous-variété de dimension 1 ne correspondra pas à la notion de courbe
paramétrée.

Par exemple une sphère est une sous-variété de dimension 2 dans R3. La terre est
(grosso modo) une sphère, mais à notre échelle où on n’en voit qu’une toute petite
partie on a l’impression de marcher sur un plan (à tel point qu’on a longtemps pensé
que la terre était effectivement plate . . .).

Ainsi une sous-variété de dimension 1 est une partie deRn telle que si on ”zoom” sur
n’importe lequel de ses points, on finit par avoir l’impression qu’il s’agit d’un morceau
de droite pour la dimension 1, ou un plat pour les dimensions supérieurs. Avec cette
idée en tête, pouvez-vous dire lesquels parmis ces ensembles du plan seront considérés
comme des sous-variétés de dimension 1 ? Lorsque c’est le cas, pouvez-vous dessiner la
droite tangente en chaque point ?

Le but de ce chapitre est maintenant de donner des définitions rigoureuses pour
donner un sens précis à l’idée intuitive que l’on peut se faire d’une courbe ou d’une
surface.

J.Royer - Université Toulouse

12
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Rappel : Rappelons que, lorsqu’un espace topologique M est un sous ensemble de
l’espace euclidien Rn avec la topologie induite de Rn, M hérite la structure topologique
de Rn, i.e. un sous ensemble de M est ouvert s’il est l’intersection d’un ouvert de Rn

avec M . Un voisinage d’un point a de M pour la topologie induite sur M est alors
l’intersection de M avec un voisinage de a dans Rn.

2.1 Difféomorphismes, immersions, submersions
Soient U ⊂ Rn et V ⊂ Rm deux sous ensembles ouverts, avec n,m ∈ N∗, et

k ∈ N∗ ∪ {∞, ω}.

Définition 2.1.1 une fonction de régularité Cω est une fonction analytique réelle,
c’est-à-dire développable en série entière autour de chaque point.

Définition 2.1.2 (Difféomorphisme)
On dit que f : U → V , (avec n = m) est un difféomorphisme de classe Ck, ou
Ck-difféomorphisme, si
• f est une bijection de U dans V ,
• f et f−1 sont de classe Ck.

On dit que f est un Ck-difféomorphisme local en x ∈ U , si
• ∃Ux ∈ V(x), x ∈ Ux ⊂ U ,
• ∃Vy ∈ V(y), y ∈ Vy ⊂ V , tel que y = f(x),
• f : Ux → Vy soit un Ck-difféomorphisme.

Définition 2.1.3 (Submersion) Soient U ⊂ Rn un sous-ensemble ouvert,
a ∈ U et f : U → Rm une application de classe C1, on dit que f est une submersion
en a si dfa est surjective.

avec dfa est la différentielle de f en a, qui est égale à la matrice jacobienne de f
en a.

Remarque : Le théorème du rang et la surjection de dfa, assurent que n ≥ m.

Définition 2.1.4 (Immersion) Soient U ⊂ Rn un sous-ensemble ouvert, a ∈ U et
f : U → Rm une application de classe C1.
On dit que f est une immersion en a si dfa est injective.

Remarque : Le théorème du rang et l’injection de dfa assurent n ≤ m.

2.2 Définition des sous-variétés
Introduction : Il y a plusieurs moyens de décrire une courbe dans le plan, on peut

la décrire implicitement, par une équation.
Prenons l’exemple du cercle unitaire, il est donné par l’équation cartésienne
x2+y2−1 = 0, on peut aussi la décrire par un paramétrage, le cercle unité est l’ensemble
des points (cos t, sin t) pour t ∈ [0, 2π], on peut la décrire par un graphe de fonctions,
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au moins localement : par exemple, la partie supérieure du cercle unité est l’ensemble
des points (x, f(x)) où f(x) =

√
1− x2.

La même situation se produit lorsqu’on considère un sous-espace vectoriel F de
Rn, il peut être décrit par une équation (si c’est un hyperplan) ou plus généralement
par un ensemble d’équations, il peut aussi être décrit par un paramétrage, en écrivant
que ce sous-espace vectoriel est l’ensemble des combinaisons {λ1u1 + · · · + λpup}, où
(u1, · · · , up) est une famille génératrice de F .

Les sous-variétés de Rn sont la généralisation à Rn des courbes de l’espace ou des
courbes et surfaces de l’espace.

Comme dans les exemples précédents, elles vont pouvoir être décrites de différentes
façons.

(source : http : //www.bibmath.net/)

Définition 2.2.1 (Par un difféomorphisme ou redressement)
Soit M un sous-ensemble de Rn (n ∈ N∗), on dit que M est une sous-variété de Rn

de dimension p et de classe Ck, (p ≤ n, k > 0), si pour tout x ∈M on a :
1. il existe un voisinage Ux ∈ V(x) et Ux ⊂ Rn,
2. il existe un voisinage V0 ∈ V(0Rn) et V0 ⊂ Rn,
3. Il existe un Ck-difféomorphisme φ : Ux → V0 telle que φ(x) = 0 et

φ(Ux ∩M) = V0 ∩ (Rp × {0Rn−p}) . (2.1)

i.e. ∀a ∈ Ux ∩M : φ(a) = (y1, · · · , yp, 0, · · · , 0).

Figure 2.1 – Sous-variété de Rn de dimension p

Remarque 2.2.1 Cette définition (par redressement) signifie qu’une partie M de Rn

est une sous-variété de dimension p si on peut tordre (via un difféomorphisme) le
voisinage de chacun de ses points de sorte que M soit envoyé sur un morceau d’un
sous-espace affine (plat) de dimension p.

A.Chikh-Salah 2025 Université de Ghardaia
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Définition 2.2.2 (Par une submersion où fonction implicite local)
Soit M un sous-ensemble de Rn (n ∈ N∗), on dit que M est une sous-variété de Rn

de dimension p et de classe Ck, si pour tout x ∈M on a :
1. il existe un voisinage Ux ∈ V(x) avec Ux ⊂ Rn,
2. il existe un Ck-submersion ϕ : Ux → Rn−p en x, telle que

Ux ∩M = ϕ−1({0Rn−p}). (2.2)

Figure 2.2 – Sous-variété de Rn définit par la submersion ϕ.

Définition 2.2.3 (Par une immersion où paramétrage local)
Soit M un sous-ensemble de Rn (n ∈ N∗), on dit que M est une sous-variété de Rn

de dimension p et de classe Ck si, pour tout x ∈M :
1. il existe voisinage Ux ∈ V(x) avec Ux ⊂ Rn,
2. il existe voisinage V0 ∈ V(0Rp),
3. il existe un Ck-immersion injective ψ : V0 → Rn en 0Rp telle que ψ(0Rp) = x et

induisant un homéomorphisme

ψ(V0) = Ux ∩M. (2.3)

Une applications qui satisfait les conditions 3. (Immersion, Injective, Homéomorphisme)
est dite plongement.

Figure 2.3 – Sous-variété de Rn définit par l’immersion ψ.

A.Chikh-Salah 2025 Université de Ghardaia
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Définition 2.2.4 (Par un graphe local )
Soit M un sous-ensemble de Rn (n ∈ N∗), on dit que M est une sous-variété de
Rn de dimension p et de classe Ck si, pour tout x ∈ M et avec identification linéaire
Rn = Rp ×Rn−p, on a :

1. il existe un voisinage de x, Ux ∈ V(x), telle que Ux ⊂ Rn ,
2. il existe un ouvert V ⊂ Rp,
3. il existe une fonction de classe Ck f : V → Rn−p telle que Ux ∩M est le graphe

de f , i.e.
Ux ∩M = {(y, f(y)) | y ∈ V }. (2.4)

Figure 2.4 – Sous-variété de Rn définit par un graphe local.

Théorème 2.2.1

Les quatre définitions des sous-variétés, si-dessus, sont équivalentes.

Remarque 2.2.2

• Pour la définition 2.2.3, attention : si ϕ : U → Rn est une application dont
la différentielle est injective (immersion), ne suffira pas pour que ϕ(U) soit une
sous-variété.
• Par abus de langage un sous-ensemble de Rn tel que tout point a un voisinage

qui soit image d’une application de différentielle injective est appelé sous-variété
immergée. Mais ce n’est pas une sous-variété.
En particulier si j n’est pas injective, j(u0) = j(u1) = x0, on peut avoir la
situation suivante (exp :p = 1, n = 2)

On voit alors que M = ϕ(U) n’est pas une sous-variété, car une carte enver-
rait les deux vecteurs tangents à chaque branche de la courbe (qui sont linéairement
indépendants) sur des vecteurs de R, donc liés.

Définition 2.2.5 Soit M une sous-variété de Rn de dimension p, on dit
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Figure 2.5 – Contre-exemple de l’insuffisance de l’immersion.

• M est une sous-variété lisse si elle est de classe C∞.
• M est une sous-variété analytique réelle lorsqu’elle est Cω.
• M est une courbe si p = 1.
• M est une surface si p = 2.
• M est une hypersurface si p = n− 1.
• On note Mp pour dire que M est dimension p.

Proposition 2.2.1 Soit M une sous-variété de Rn de dimension p et de classe Ck,
alors pour tout l tel que 1 ≤ l ≤ k, M est aussi de classe Cl.

Exemples :
1. Rn est une sous-variété de Rn lisse de dimension n .
2. Tout ouvert non vide U de Rn est une sous-variété lisse de dimension n.

Pour le prouver on prend le difféomorphisme identité si 0 ∈ U si non on prend
une translation qui est un difféomorphisme de classe C∞, par la définition 2.2.1
on a que U est une sous-variété de dim n et de classe C∞.

3. Toute ligne droite dans Rn est une sous-variété lisse de dimensions 1.
4. Les cercles S(a,b) de centre (a, b) et de rayon r dans R2, sont des sous variétés de

dimension 1, car : S(a,b) les l’ensemble des points tels que

S(a,b) =
{
(x, y) ∈ R2 | (x− a)2 + (y − b)2 = r2

}
.

S(a,b) est l’image réciproque de l’ensemble {0} par la fonction f de classe C∞

définit par
f(x, y) = (x− a)2 + (y − b)2 − r2,

qui a la propriété : pour tout (x, y) ∈ S(a,b) on a :

Jac f(x,y) =
[
2(x− a) , 2(y − b)

]
̸= (0, 0),

d’où Jac f(x,y) est de rang 1, alors f est une submersion,
par la définition 2.2.2, S(a,b) est une sous-variété de dim 1 et de classe C∞.

5. On général toute sphère Sn de Rn+1 est une hypersurface lisse.
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6. un hyperplan affine de Rn est une sous-variété de Rn de dimension n− 1.
Car : Un hyperplan est donné par l’équation sous la forme f(x) = L(x) + b avec
L est une forme linéaire non nul dans Jac L = L qui est de classe C∞, et b est
une constante de Rn, alors f est une submersion.
Par la définition 2.2.2 on a que hyperplan est une sous-variété de dim n− 1 et de
classe C∞.

Remarque 2.2.3 Il n y a pas unicité de l’équation définissant un ensemble.

Proposition 2.2.2 Soit M une sous-variété de Rn et a ∈ M alors, la dimension en
a est définie de manière unique.
Si M est connexe cette dimension ne dépend pas du choix du point a.

Prouve : Si on avait deux difféomorphismes φ1, φ2 tels que

φ1(Ua ∩M) = φ1(Ua) ∩Rp × {0} et φ2(Ua ∩M) = φ2(Ua) ∩Rq × {0}

alors ψ = φ2 ◦φ−1
1 : Rp×{0} →: Rq×{0} serait un difféomorphisme local au voisinage

de 0.
On déduit que dψ0 : Rp × {0} →: Rq × {0} ;
Or dψ0 est une application linéaire bijective, donc p = q.

Maintenant si φ : Ua → Vb, avec b = φ(a), est un difféomorphisme, alors pour tout
x ∈ Ua, par la translation on a bien : ψ(y) = φ(y) − φ(x) est difféomorphisme d’un
voisinage Ux du point x. On en déduit que la dimension dans le point a est égale à la
dimension en x, alors Dp = {x ∈M | Dimx = p} est un ouvert.
Or son complémentaire M −Dp = ⋃

j ̸=pDj est une réunion d’ouvert.
On déduit que si Dp est non vide et M connexe, alors M = Dp.

2.3 Application entre les sous-variétés
Définition 2.3.1 Soient Mp une sous-variété de de dimension p de Rn et N q une
sous-variété de dimension q de Rm, soit f une application de M dans N ,

on dit que f est de classe Ck si pour tout a ∈ M , tout paramétrage local γ de M
définit au voisinage V de 0Rp dans Rp, et tout paramétrage local ν de N définit au
voisinage W de 0Rq dans Rq tel que f(γ(V )) ⊂ ν(W ) alors :

ν−1 ◦ f ◦ γ : V → W

est de casse Ck.
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Figure 2.6 – Application entre des sous-variétés

2.4 Espaces tangentes
Soit Mp uns sous-variété de Rn de dimension p de classe C1

Définition 2.4.1 (Courbe)
Toute application continue d’un intervalle de R dans M est dite courbe sur M .

Figure 2.7 – Courbe sur une sous-variété de R3

Définition 2.4.2 Soit Mp une sous-variété de Rn de dimension p de classe C1, et
a ∈M . Un vecteur v de Rn est tangent à M en a si :
• Il existe ε > 0 de R,
• Il existe une courbe γ : ]− ε, ε[→M de classe C1, telle que

γ(0) = a et γ̇(0) = v.

v est dit vecteur tangent de M en a.

Définition 2.4.3 l’ensemble de tous les vecteurs tangent à M en a est dite l’espace
tangent à M en a, il est noté TaM .
On dit aussi le plan tangent.
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2.4. ESPACES TANGENTES 20

Figure 2.8 – Vecteur tangent sur une sous-variété R3

Figure 2.9 – Espace tangent (ou plan tangent) sur une sous-variété R3

Théorème 2.4.1 Soit Mp uns sous-variété de Rn de dimension p de classe C1, et
a ∈M . alors l’espace tangent TaM est un sous-espace vectoriel de Rn de dimension p.

Prouve : la prouve de se théorème sera faite dans le cas plus général des Variétés
différentielles.

Proposition 2.4.1 Soit Mp uns sous-variété de Rn de dimension p de classe C1, et
a ∈M .

1. Si Ua ⊂ Rn est un voisinage ouvert de a, et V0 ⊂ Rn est un voisinage ouvert de
0 et ϕ : Ua → V0 un C1 difféomorphisme tel que ϕ(Ua ∩M) = V0 ∩ (Rp × {0})
alors :

TaM = (Dϕa)−1(Rp × {0}).

2. Si Ua ⊂ Rn est un voisinage ouvert de a, et φ : Ua → Rn−p une submersion de
classe C1 en a, telle que Ua ∩M = φ−1(φ(a)), alors

TaM = ker(Daφx).

3. Si V0 ⊂ Rp, et si Ua ⊂ Rn, et ψ : V0 → Ua un plongement local de M en a de
classe C1 avec ψ(0) = a, alors :

TaM = Im (Dψ0).

Proposition 2.4.2 Soient Mp une sous-variété de Rn et x ∈M un point quelconque,
alors l’espace tangent TxM est l’ensemble des vecteurs vitesse en t = 0 des courbes C∞

tracés sur M passant par x à l’instant t = 0.
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Prouve : Soit φ un difféomorphisme (carte) en x, et γ une courbe tracée sur M telle
que γ(0) = x.
Alors pour t assez proche de 0, φ(γ(t)) est bien définie, tracée sur Rp ⊂ Rn et passe
par 0 en t = 0. Danc la tangente en 0 de φ(γ(t)) est dans Rp i.e. dφ(c(0))γ′(0) est dans
Rp, ce qui par définition équivaut à γ′(0) ∈ TxM .

Inversement, Soit ν ∈ TxM alors dφ(x)ν est dans Rp ?
soit une courbe paramétrée de Rp γ : t 7→ γ(t), tangente à dφ(x)ν en t = 0.
alors quitte à restreindre la courbe γ à un voisinage de 0, on peut supposer contenue
dans V = φ(Ux). alors c(t) = φ−1(γ(t)) est une courbe tracée sur M , et le calcul
précédent montre qu’elle est tangente à ν en t = 0.

Exemple :
Soit la sphère S2 = {x ∈ R3 | ∥x∥2 = 1}. c’est une sous-variété de dimension 2

définit par la submersion F (x) = ∥x∥ − 1 et S2 = F−1({0}).
On a que sa différentielle : dFx(h) = 2 < x, h >, alors l’espace tangent en x ∈ S2 à la
sphère, TxS2 est le plan orthogonal à x.

2.5 Exercices

Exercice 01 :

1. Déterminer le paramètre α ∈ R pour lequel l’ensemble suivant soit une sous-
variété

{(x, y, z) ∈ R3, x2 + y2 + z2 = xyz + α}

2. De même déterminer les paramètres (p, q) ∈ R2 pour lesquels l’ensemble suivant
soit une sous-variété

{(x, y) ∈ R2, y2 = x3 − 3px+ q}

donner la dimension de ces sous-variétés

Exercice 02 :
Les applications suivantes fi : R3 → R ? définirent elles des sous-variétés ? (calcul de
submersion est fait en exo 04 de la série 1 )

1. f1(x, y, z) = x2 + y2 + z2 − a2.
2. f2(x, y, z) = x2 + y2 − z2.
3. f3(x, y, z) = x2 + y2 − z.

Exercice 03 :
Montrer que l’ensemble

{(u2, v2, w2,
√

2 uv,
√

2 vw,
√

2 uw) ∈ R6; (u, v, w) ∈ R3, u2 + v2 + w2 = 1}

est une sous-variété de R6. Et qu’elle est incluse dans la sphère unitaire.
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Exercice 04 :
Soit S la nappe paramétrée définie par

x(u, v) = u+ v, y(u, v) = uv, z(u, v) = u2 + v2. (u, v) ∈ R2

1. les deux ensembles sont ils des sous-variétés ? l’intersection et elle une sous-
variétés ?

Exercice 05 :
Soit X un espace vectoriel de dimension n, soit Y un espace vectoriel de dimension
m ≥ n, soit U un ouvert de X. Soit f : U → Y un plongement. On note M = f(U).
Soit a ∈M , a = f(α) pour un α ∈ U .

1. Soit x ∈ X, x ̸= 0. Montrer qu’il existe ϵ > 0 tel que l’application g définie sur
]− ϵ, ϵ[ par g(t) =?α + tx prend ses valeurs dans U .

2. On note γ = f ◦ g :] − ϵ, ϵ[→ Y . Montrer que γ(t) ∈ M pour tout t ∈] − ϵ, ϵ[.
Déterminer γ(0) et γ′(0) en fonction de f, α, a et x.

3. En déduire que df(α)(x) ∈ TaM .
4. Montrer qu’on a TaM = de(α)X = {df(α)(x), x ∈ X}.

Exercice 06 :
Soient les ensembles suivants :

A = {(x, y, z) ∈ R3, x2 + y2 + z2 = xyz + αx+ βy + γ}
B = {(x, y, z) ∈ R3, x2 + z3 = ay − b}

avec α, β, γ, a, b ∈ R.
1. A,B sont ils des sous-variétés ?
2. pour quelles paramètres α, β, γ, a, b le seront-ils ? donner leurs dimensions.
3. Calculer C = A ∩B pour ces paramètres.
4. C est il une sous-variété ? si oui, quel est sa dimension ?.

Exercice 07 :
Les sous-ensembles Vi de R2 ou R3 qui suivent, sont-ils des sous-variétés ?

Si oui, qu’elles sont leurs dimensions.
1. V1 = {(x, y) ∈ R2, y = |x|}.
2. V2 = {(x, y) ∈ R2, x2 − x = y2}.
3. V3 = {(x, y) ∈ R2, x2 = y3}.
4. V4 = {(x, y, z) ∈ R3, x2 + y2 + xy = z2}.

Exercice 08 : Étudier selon les paramètres α, β, γ de R si l’ensemble A est une
sous-variété, donner sa dimension

A = {(x, y, z) ∈ R3, x2 + y2 + z2 = xyz + αx+ βy + γ}
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2.5. EXERCICES 23

Exercice 09 :
Soit V le sous-ensemble défini par :

V =
{
(x, y, z, t) ∈ R4 / t3 + x3 + y3 + z3 = t+ x2 − y2 + z2 = x− y + z − 2 = 0

}
1. Donner la fonction f qui définit V
2. f est-elle une submersion ?
3. Peut-on réduire R4 pour que V soit une sous-variété ?
4. Si oui, donner la dimension de V .
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Chapitre 3

Les formes différentielles

Les formes différentielles sont des objets mathématiques qui permettent de décrire
de manière précise la variation d’une grandeur dans l’espace. Elles sont particulièrement
utiles en géométrie différentielle et en physique théorique, où elles sont utilisées pour
décrire les champs de forces, les propriétés des courbes et des surfaces, ainsi que la
dynamique des systèmes physiques.

Les formes différentielles sont utilisées pour décrire un grand nombre de phéno-
mènes physiques, tels que les champs électromagnétiques, les champs gravitationnels,
les courants électriques, les ondes sonores, etc. En physique, les formes différentielles
sont utilisées pour décrire les propriétés des champs de forces à travers des équations
différentielles appelées équations de Maxwell. Les formes différentielles sont également
utilisées pour décrire les propriétés géométriques des surfaces et des courbes en géométrie
différentielle.

En mathématiques, les formes différentielles sont largement utilisées pour résou-
dre des problèmes d’optimisation, de calcul vectoriel, d’intégration, de théorie des
nombres, etc. Les formes différentielles permettent également de généraliser de nom-
breux concepts mathématiques familiers, tels que le gradient, la divergence, la rotation,
la dérivée, etc.

(ChatGPT)
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3.1 Algèbre tensorielle.
Soit E un espace vectoriel de dimension n

3.1.1 Formes multilinéaires
Définition 3.1.1 Une application L est dite une forme k-linéaire ou une
k-forme linéaire sur E avec

L : Ek −→ R

(v1, . . . , vk) 7−→ L(v1, . . . , vk)

Si elle est linéaire pour chaque variables.
c’est à dire : ∀i ∈ {1, . . . , k}, ∀α, β ∈ R on a :

L(v1, . . . , αvi + βwi, . . . , vk) = αL(v1, . . . , vi, . . . , vk) + βL(v1, . . . , wi, . . . , vk).

L’ensemble des formes k-linéaires est notée : ⊗k E∗ ou Lk(E).

Remarque 3.1.1 Pour un k = 1 on a une application linéaire, c’est le duale de E.

Proposition 3.1.1 (& Définition) Soient L ∈⊗k E∗ and T ∈⊗lE∗.
Le produit tensoriel de T et L est la forme (k + l)-linéaire notée L⊗ T ∈ ⊗k+lE∗

définit par :

L⊗ T (v1, . . . , vk, vk+1, . . . , vk+l) := L(v1, . . . , vk)T (vk+1, . . . , vk+l).

Remarque 3.1.2 Le produit tensoriel est associatif mais non commutatif.

Soit {e1, . . . , en} une base de E alors on définit la base duale dans E∗ par : {e∗
1, . . . , e

∗
n}

avec e∗
i (ej) = δij

Proposition 3.1.2
• ⊗k E∗ est un R-espace vectoriel.
• La famille {e∗

i1 ⊗ . . .⊗ e
∗
ik
, 1 ≤ ij ≤ n} est libre et c’est une base de ⊗k E∗.

• dim⊗k E∗ = nk.

3.1.2 Formes multilinéaires alternées
Définition 3.1.2 Soit T ∈⊗k E∗ une k-forme linéaire,
T est dite alternée ou anti-symétrique si elle change de signe lorsqu’on échange
deux vecteurs, e.i. :

T (v1, . . . , vi, . . . , vj, . . . , vk) = −T (v1, . . . , vj, . . . , vi, . . . , vk).

L’ensemble des k-formes linéaires alternées est noté : ∧k(E) ou ∧k E∗.
On pose par convention : les 0-formes sans des constantes e.i.

0∧
E∗ = L0(E) =

0⊗
E∗ = R.
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3.1. ALGÈBRE TENSORIELLE. 26

Théorème 3.1.1 Soit E un R-espace vectoriel de dimension n, alors :∧k(E) est un sous-espace vectoriel de ⊗k E∗ de dimension Ck
n = n!

k!(n−k)! .

Rappel : On désigne par Gn (ou autre notation ∑
n), le groupe de permutation de

{1, . . . , k}, c’est-à-dire le groupe des bijections de cet ensemble.
Toutes permutation σ ∈ Gn admet une unique signature εσ = ±1.

Proposition 3.1.3 Soit L ∈⊗k E∗ une k-forme linéaire de l’espace E. les conditions
suivantes sont équivalentes :

1. la k-forme L est alternée.
2. Pour toutes permutation σ ∈ Gn et pour tout v1, . . . , vk ∈ E on a :

L(vσ(1), . . . , vσ(k)) = εσ.L(v1, . . . , vk).

3. Pour tout v1, . . . , vk ∈ E :
. S’il existe i ̸= j tel que vi = vj alors L(v1, . . . , vk) = 0.

4. Si v1, . . . , vk ∈ E sont linéairement dépendants alors L(v1, . . . , vk) = 0.

Prouve : En exercice.

Corrolaire 3.1.1 Si k > dim(E) alors ∧k E∗ = {0},
e.i. toutes les k-formes alternées sur E sont identiquement nulle.

Proposition 3.1.4 (& Définition) Soit L ∈⊗k E∗, on lui associe l’antisymetrisé
qui est la k-forme alternée Alt(L) ∈ ∧k E∗ définit par :

Alt(L)(v1, . . . , vk) = 1
k!

∑
σ∈Gk

εσL(vσ(1), . . . , vσ(k)).

Définition 3.1.3 (Produit extérieur) On définit le produit extérieur de
L ∈ ∧k E∗ et de T ∈ ∧lE∗, noté L ∧ T par :

L ∧ T = (k + l)!
k!l! Alt(L⊗ T ),

c’est à dire :

L ∧ T (v1, . . . , vk+l) = 1
k!l!

∑
σ∈Gk+l

εσ.L(vσ(1), . . . , vσ(k)).T (vσ(k+1), . . . , vσ(k+l)).

Proposition 3.1.5 Soient L,L1, L2 ∈
∧k E∗ , T ∈ ∧lE∗ et H ∈ ∧sE∗ alors :

• L ∧ T est une (k + l)-forme alternée.
• Le produit extérieur est associatif L ∧ (T ∧H) = (L ∧ T ) ∧H.
• L ∧ T = (−1)klT ∧ L.
• (L1 + L2) ∧ T = L1 ∧ T + L2 ∧ T .

Théorème 3.1.2 Soit {e1, . . . , en} une base de E , et {e∗
1, . . . , e

∗
n} la base dual associe

telle que e∗
i (ej) = δij alors :

La famille {e∗
i1 ∧ . . . ∧ e

∗
ik
, 1 ≤ i1 < . . . < ik ≤ n} forme une base de ∧k E∗.
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3.2 Formes différentielles
Définition 3.2.1 soit un espace vectoriel de dimension fini n, et U un ouvert de E,
Une forme différentielle de degré k, ou une k-forme différentielle, est une
application lisse de U dans ∧k E∗ :

α : U ⊂ E −→ ∧k E∗

x 7−→ αx

l’ensemble des k-formes différentielles sur U est noté Ωk(U).

Proposition 3.2.1 L’ensemble des k-formes différentielles Ωk(U) est un R-espace
vectoriel de dimension non-fini en général. On a

∀α, β ∈ Ωk(U), ∀λ, µ ∈ R, λ.α+ µ.β ∈ Ωk(U)

avec (λ.α + µ.β)(x) = λ.α(x) + µ.β(x), ∀x ∈ U.

Remarque 3.2.1 soit Ωk(U) l’ensemble des k-formes sur U et α ∈ Ωk(U)
• Si k = 0 alors Ω0(U) est l’ensemble des fonctions lisses de U dans R,

Ω0(U) = {f : U → R lisse}.

• Si k = 1 alors Ω1(U) est l’ensemble des différentielles des fonctions lisses,

Ω1(U) = {df / f : U → R lisse}.

• Si {e1, . . . , en} une base de E, alors pour tout x ∈ U , il existe des fonctions
αi1,...,ik ∈ C∞(U) telle que :

αx =
∑

1≤i1<...<ik≤n
αi1,...,ik(x) e∗

i1 ∧ . . . ∧ e
∗
ik
.

• Comme e∗
i sont des une-formes alors elles sont la différentielle de l’application

ième coordonée x 7→ xi alors on note :

αx =
∑

1≤i1<...<ik≤n
αi1,...,ik(x) dxi1 ∧ . . . ∧ dxik .

• Dans le cas des une-formes c’est la différentielle d’une fonction f alors :

α = df =
n∑
i=1

∂f

∂xi
dxi.

• On note l’ensemble de toutes les formes différentielles sur U par Ω(U)

Ω(U) :=
n⊕
k=1

Ωk(U)

Définition 3.2.2 (Produit extérieur des formes) Soient deux formes
α ∈ Ωk(U) et β ∈ Ωs(U) alors en définit le produit extérieur de α et β noté α ∧ β
par :

α ∧ β(x) := α(x) ∧ β(x), ∀x ∈ U.

Remarque 3.2.2 les propriétés de distributivité, anticommutativité et associativité
pour le produit extérieur de formes différentielles sont conséquences des propriétés ana-
logues pour le produit de formes alternées.
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3.3 Formes différentielles Réelles
Pour cette section on considère l’espace vectoriel E = Rn et U ⊂ Rn un domaine

borné.

3.3.1 Formes différentielles de degré 0
Définition 3.3.1 Une forme différentielle de degré 0 sur U est une fonction continue
f : U → R. (En général en prend des fonctions de classe C1). e.i.

∧0U = C1(U,R).

3.3.2 Formes différentielles de degré 1
Définition 3.3.2 Une forme différentielle de degré 1 sur U est la différentielle d’une
fonction de classe C2, f : U → R. c.a.d :

α ∈ ∧1U : ∃f ∈ C2(U,R) / α =
n∑
j=1

fjdxj,

où fj ∈ C0(U,R). (En général en prend les fonctions fj de classe C1).

Example 3.3.1
• Soit U ⊂ R2 ouvert, pour une fonction f ∈ C1(U,R), la différentielle totalle de
f est une 1-forme différentielle,

df = ∂f

∂x
dx+ ∂f

∂y
dy.

• Cas d’une fonction à trois variables U ⊂ R3 :

df = ∂f

∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz.

3.3.3 Formes différentielles de degré 2
Soit U ⊂ Rn un domaine borné

Définition 3.3.3 Une forme différentielle de degré 2 sur U est la deuxième différentielle
d’une fonction de classe C2, f : U → R. c.a.d :

α ∈ ∧2U : ∃f ∈ C2(U,R) / α =
n∑
i=1

n∑
j=1

fijdxi ∧ dxj,

où fij ∈ C0(U,R). (En général en prend les fonctions fij de classe C∞).

Example 3.3.2

• α = x2 − y
z

dx+ yx dy − z dz est une 1-forme différentielle de R3.
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• α = 2
z
dx ∧ dy est une 2-forme différentielle de R3.

Remarque 3.3.1
• Toutes les 2-formes de R2 sont sous la forme :

α = f dx ∧ dy, avec f ∈ C∞(R2,R).

• On général on note dans le cas des réels dxi.dxj au-lieu de dxi ∧ dxj.

Example 3.3.3
• Soit U ⊂ R2 ouvert, pour une fonction f ∈ C2(U,R), la deuxième différentielle

totalle de f est une 2-forme différentielle,

d2f = ∂2f

∂x∂y
dx.dy.

• Cas d’une fonction à trois variables U ⊂ R3 :

d2f = ∂2f

∂x∂y
dx.dy + ∂2f

∂y∂z
dy.dz + ∂2f

∂x∂z
dx.dz.

3.4 Image réciproque - Pullback
Définition 3.4.1 Soient U ⊂ E et V ⊂ F deux ouverts d’espaces vectoriels, et soit
une application lisse f : U → V ,
l’Image réciproque (ou Pullback) de f est l’application notée f ∗ définit par :

f ∗ : Ωk(V ) −→ Ωk(U)
ω 7−→ f ∗ω := f ∗(ω)

telle que :

(f ∗ω)x(v1, . . . , vk) := ωf(x)
(
dfx(v1), . . . , dfx(vk)

)
, ∀v1, . . . , vk ∈ U.

Proposition 3.4.1 Soit une application lisse f : U → V ,
1. Pour tout ω, θ ∈ Ωk(V ), on a

f ∗(ω + θ) = f ∗ω + f ∗θ.

2. Pour tout ω ∈ Ωk(V ) et θ ∈ Ωl(V ), on a

f ∗(ω ∧ θ) = (f ∗ω) ∧ (f ∗θ)

3. Soit une autre application lisse g : V → W et α ∈ Ωk(W ), on a

g ◦ f : U → V → W

(g ◦ f)∗ : Ωk(W )→ Ωk(V )→ Ωk(U)

avec
(g ◦ f)∗α = (f ∗ ◦ g∗)α = f ∗(g∗α).
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3.4.1 La différentielle extérieur
Soit E un espace vectoriel de dimension n, et U ⊂ E un ouvert. On rappel que

l’ensemble de toutes les formes différentielles est noté : Ω(U) = ⊕n
k=0 Ωk(U).

Théorème 3.4.1 (& Définition) Il existe une unique application linéaire, dite la
différentielle extérieur, notée

d : Ω(U) −→ Ω(U)
ω 7−→ dω := d(ω)

qui a les propriétés suivantes :
1. ∀ω ∈ Ωk(U) alors dω ∈ Ωk+1(U).
2. ∀f ∈ Ω0(U) alors df est la différentielle de fonction.
3. ∀ω ∈ Ωk(U) et ∀θ ∈ Ωl(U) alors

d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ dθ.

4. On a que d ◦ d = 0.

Exemple : Dans un ouvert U ∈ R3 les une-formes sur U sont sous la forme

ω = f1dx+ f2dy + f3dz

La différentielle extérieur de ω est :

dω =
(
∂f2

∂x
− ∂f1

∂y

)
dx ∧ dy +

(
∂f3

∂y
− ∂f2

∂z

)
dy ∧ dz +

(
∂f1

∂z
− ∂f3

∂x

)
dz ∧ dx.

Définition 3.4.2 Soit ω ∈ Ω(U) on dit que :
• ω est fermée si dω = 0.
• ω est exacte s’il existe une forme θ ∈ Ω(U) telle que ω = dθ.

Proposition 3.4.2 Par le faite que d ◦ d = 0, alors

toute forme exacte est fermée.

Mais la réciproque est fausse en général.

Contre-exemple : Sur R2/{0} la forme ω = ydx− xdy
x2 + y2 est une forme fermée, mais

elle n’est pas exacte.

Proposition 3.4.3 Soit f : U → V lisse, alors

d ◦ f ∗ = f ∗ ◦ d.

c.a.d : ∀ω ∈ Ωk(V ) : d(f ∗ω) = f ∗(dω).
Ce qui nous donne :

L’image réciproque d’une forme fermée (resp. exacte) est une forme fermée (resp.
exacte).
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3.4.2 Lemme de Poincaré
Définition 3.4.3 Un ouvert U ∈ Rn est dit étoilé s’il existe un point a ∈ U tel que
pour tout x ∈ U le segment [a, x] ⊂ U .

Rappel : [a, x] est un segment : [a, x] := {t.a+ (1− t)x / t ∈ [0, 1]}.

Théorème 3.4.2 (Lemme de Poincaré) Si U ⊂ Rn est un ouvert étoilé alors toute
forme fermée sur U est exacte.

Corrolaire 3.4.1 Soit U ⊂ Rn ouvert. Si U est difféomorphe à Rn alors :
pour toute ω ∈ Ωk(U) tel que dω = 0 alors ω est exacte.
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Chapitre 4

Intégration des formes
différentielles

4.1 Intégration des 1-formes
Soit U un ouvert de Rn.

Définition 4.1.1
• Une courbe sur est l’image d’un intervalle de R par une application continue
γ : [a, b]→ U .
• Une courbe γ : [a, b] → U est dite de classe C1 par moreaux s’il existe
t1, · · · , tk ∈ R tel que : a = t1 < t2 < · · · < tk = b et γ dans classe C1 dans
les intervalles [ti, ti+1] pour tous i = 1, · · · , k − 1.

Définition 4.1.2 Soit α ∈ Ω1(U) une 1-forme sur U , et γ une courbe de classe C1 par
moreaux sur U ,
alors on définit l’intégrale de α le long de la courbe γ par :

∫
γ
α :=

k−1∑
i=1

∫ ti+1

ti
αγ(t).γı′(t) dt,

avec γi est la restriction de γ à l’intervalle [i, i+ 1].

Proposition 4.1.1 avec les mêmes condition que la définition précédente on a :
1. Avec un changement de paramétrage croissant de classe C1 sur γ l’intergale ne

change pas, et∫ ti+1

ti
αγ(t).γı′(t) dt =

∫ φ−1(ti+1)

φ−1(ti)
αγ◦φ(t).γ

′(φ(t))φ′(t)dt.

Et si le paramétrage est décroissant alors la transformée est en son opposé.
2. Si α est exacte, et soit deux courbes γ1 et γ2 paramétrées de classe C1 et de mêmes

extrémités, c.a.d. mêmes points de dépare a, b et mêmes images γ1(a) = γ2(a) et
γ1(b) = γ2(b) alors ∫

γ1
α =

∫
γ2
α
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3. Si α est exacte, c.a.d. qu’il existe une fonction f : U → R lisse telle que α = df ,
et α = df , alors l’intégrale le long de la courbe γ devient :∫

γ
α =

∫
γ
df =

∫ b

a

df

dt
dt,

où encore :∫
γ
α =

∫
γ
df =

∫ b

a
f ′ (γ(t)) γ′(t)dt =

∫ b

a
(f ◦ γ)′ (t)dt = f(γ(b))− f (γ(a)) .

4. Dans le cas ou γ est une courbe fermée, c.a.d. γ(a) = γ(b) :∫
γ
df = 0.

Proposition 4.1.2 Soit U un ouvert de Rn par arcs et soit α une 1-forme sur U ,
alors
la forme α est exacte si et seulement si pour tout lacet (courbe fermée) γ de classe C1

par morceaux on a
∫
γ α = 0.

Proposition 4.1.3 Si U ⊂ R2 ouvert, et avec une forme fermée
df = f1 dx+ f2 dy, alors l’intégral le long d’une courbe γ : [a, b]→ U de classe C1 est
donnée par :

∫
γ
df =

∫
γ
f1 dx+ f2 dy =

∫ b

a

(
f1(x(t), y(t))dx

dt
+ f2(x(t), y(t))dy

dt

)
dt.

Lemme 4.1.1 Avec lers même conditions de la proposition précédente :
• L’intégral le long de −γ est∫

−γ
f1dx+ f2dy = −

∫
γ
f1dx+ f2dy.

• Si deux courbes γ1 et γ2 sont équivalentes alors∫
γ1
f1dx+ f2dy =

∫
γ2
f1dx+ f2dy.

Proposition 4.1.4 Si U ⊂ R3 ouvert, et avec une forme fermée
df = f1dx + f2dy + f3dz, alors l’intégral le long d’une courbe γ : [a, b] → U de classe
C1 est donnée par :∫

γ
df =

∫
γ
f1dx+ f2dy + f3dz

=
∫ b

a

(
f1(x(t), y(t), z(t))dx

dt
+ f2(x(t), y(t), z(t))dy

dt
+ f3(x(t), y(t), z(t))dz

dt

)
dt.
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4.2 Théorème de Stocks

4.2.1 Sous-variétés de Rn orientées
Une sous-variété orientée de Rn est un objet mathématique qui ressemble locale-

ment à un espace euclidien de dimension plus petite et qui est muni d’une orientation
cohérente. Ce type de sous-variété est essentiel pour définir des intégrales de formes
différentielles et appliquer le théorème de Stokes dans Rn.

L’orientation est essentielle pour définir l’intégration sur les sous-variétés. Dans le
théorème de Stokes, on doit intégrer sur une sous-variété M et sa frontière ∂M , qui
doivent toutes deux être orientées de manière cohérente. Cette orientation détermine
le signe de l’intégrale et permet d’interpréter des résultats comme l’égalité entre une
intégrale sur un domaine et une intégrale sur sa frontière.

En résumé : - Une sous-variété de Rn est une partie de Rn qui est ”lisse” et
ressemble localement à un espace euclidien de dimension inférieure. - Une sous-variété
orientée est une sous-variété où un choix d’orientation cohérent a été fixé, ce qui est
crucial pour les intégrales et les théorèmes comme celui de Stokes.

Définition 4.2.1 (Orientation d’une sous-variété) Une sous-variété est orien-
table s’il est possible de choisir une orientation qui est cohérente partout sur la sous-
variété.

Une orientation consiste à choisir un ”sens” pour chaque point de la sous-variété
de manière continue.

Pour une sous-variété de dimension k, l’orientation est généralement donnée en
choisissant un ordre pour une base des vecteurs tangents (une base pour chaque point
de la sous-variété) qui se conserve de manière cohérente à travers toute la sous-variété.

Définition 4.2.2 (Sous-variété orientée de Rn) Une sous-variété orientée de
dimension k dans Rn est une sous-variété M ⊂ Rn de dimension k munie d’une orien-
tation.

Une orientation sur M consiste à choisir, pour chaque point p ∈ M , une base
orientée {e1, . . . , ek} de l’espace tangent TpM , de façon cohérente sur M , c’est-à-dire
qu’il est possible de couvrir M par des cartes locales (U, ϕ) telles que les bases cano-
niques

{
∂
∂x1
, . . . , ∂

∂xk

}
de Rk soient compatibles entre elles d’un voisinage à l’autre.

Formellement :
cela signifie que l’orientation sur M est définie par une classe d’équivalence de bases
de TpM qui reste continue sur M .

Cas des courbes et des surfaces :

• Pour une courbe dans Rn (une sous-variété de dimension 1), une orientation
correspond à choisir un sens de parcours (par exemple, de gauche à droite).
• Pour une surface dans R3 (une sous-variété de dimension 2), une orientation

correspond à choisir un sens pour le vecteur normal (par exemple, vers l’extérieur
ou vers l’intérieur).
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Exemple de sous-variété orientée :
1. Considérons le cercle unité S1 ⊂ R2, qui est une sous-variété de dimension 1 (une

courbe) dans R2. On peut choisir d’orienter S1 en fixant un sens de parcours, par
exemple dans le sens antihoraire. Ce choix d’orientation nous permet d’intégrer
des formes 1-différentielles sur le cercle de manière cohérente, en sachant quel
”sens” est pris en compte pour les intégrales.

2. Pour une surface comme la sphère unité S2 ⊂ R3, qui est une sous-variété de
dimension 2 dans R3, l’orientation est souvent donnée par le choix de la direction
du vecteur normal : par exemple, une orientation ”vers l’extérieur” signifie que
les vecteurs normaux pointent vers l’extérieur de la sphère.

4.2.2 Théorème de Stokes dans Rn

Pour comprendre en profondeur le théorème de Stokes dans le cadre de Rn, explo-
rons étape par étape ce qu’il signifie en termes de formes différentielles et d’intégrales.
Théorème 4.2.1 (Le théorème de Stokes dans Rn) Soit U ⊂ Rn un domaine orienté
de dimension k avec une frontière orientée ∂U de dimension k−1. Si ω est une (k−1)-
forme définie sur U , le théorème de Stokes affirme que :∫

U
dω =

∫
∂U
ω.

Cette formule dit que l’intégrale de la différentielle dω de ω sur le domaine U est égale
à l’intégrale de ω sur la frontière ∂U de U .

Interprétation
Le théorème de Stokes relie l’intégration sur un domaine U à l’intégration sur sa

frontière ∂U . Intuitivement, cela signifie que l’intégrale ”globale” d’un changement
(d’une dérivée extérieure) sur un domaine est déterminée par les valeurs sur les bords
de ce domaine.

4.2.3 Cas particuliers dans l’analyse vectorielle
Dans R3, le théorème de Stokes prend des formes connues en analyse vectorielle.

Théorème 4.2.2 (Le Théorème de Stokes pour le rotationnel) Si S est une sur-
face orientée dans R3 et que F⃗ est un champ de vecteurs, alors on peut écrire :∫

S
(∇× F⃗ ) · dS⃗ =

∮
∂S
F⃗ · dr⃗,

où dS⃗ est l’élément de surface orienté sur S et dr⃗ est l’élément de ligne le long de la
courbe ∂S, la frontière de S. Ici, ∇× F⃗ est analogue à dω pour une 1-forme associée
au champ F⃗ .
Théorème 4.2.3 (Le théorème de la divergence ou théorème de Gauss) Si V ⊂
R3 est un volume avec une surface fermée S = ∂V , alors pour un champ vectoriel F⃗ ,
on a : ∫

V
(∇ · F⃗ ) dV =

∮
S
F⃗ · dS⃗.

Ici, ∇ · F⃗ correspond à dω pour une 2-forme associée au champ F⃗ .

A.Chikh-Salah 2025 Université de Ghardaia
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4.3 Applications du théorème de Stockes
Le théorème de Stokes est fondamental dans de nombreux domaines :
• Électromagnétisme

Les lois de Maxwell utilisent le théorème de Stokes pour relier les intégrales de
surface et les intégrales de ligne
• Théorie des champs

En physique, il permet de lier le comportement de champs vectoriels sur des
surfaces aux valeurs de ces champs sur les frontières de ces surfaces.
• Calcul des variations et géométrie différentielle

Le théorème de Stokes généralise des théorèmes intégrals à des espaces de dimen-
sions plus élevées et permet d’étudier des propriétés géométriques et topologiques
de variétés.

En résumé, le théorème de Stokes dans Rn établit un lien entre la géométrie d’un
domaine et sa frontière, en permettant le passage d’une intégrale sur le domaine à
une intégrale sur sa frontière, tout en généralisant des concepts classiques d’analyse
vectorielle dans un cadre abstrait et puissant.
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Chapitre 5

Variétés différentielles

Il s’agit d’un cours d’introduction aux variétés différentiables. Ce sont des analogues
de dimensions supérieures de surfaces comme celle-ci :

Figure 5.1 – La Bouteille de Klein

C’est les images à avoir, mais nous ne devons pas penser à une variété comme
toujours inclut dans un espace euclidien fixe comme celui-ci, mais plutôt comme un
objet abstrait. L’une des forces motrices historiques de la théorie était la relativité
générale, où la variété est un espace-temps à quatre dimensions, des trous de ver et
tout :

Figure 5.2 – L’espace temps de la relativité général

L’espace-temps ne fait pas partie d’un plus grand espace euclidien, il existe simple-
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ment, mais nous devons apprendre à faire une analyse sur celui-ci, ce qui est le sujet
de ce cours.

Un autre apport au sujet vient de la mécanique - la dynamique des systèmes
mécaniques complexes implique des espaces avec de nombreux degrés de liberté.

La première idée que nous rencontrerons est en réalité la propriété de définition
d’une variété - de pouvoir décrire localement des points par n nombres réels, coor-
données locales. Il faudra ensuite définir des objets analytiques (champs vectoriels,
formes différentielles par exemple) qui sont indépendants du choix des coordonnées.
Cela a un double avantage : d’une part, cela nous permet de discuter de ces objets sur
des variétés topologiquement non triviales comme les sphères, et d’autre part, il fournit
également le langage pour exprimer les équations de la physique mathématique sous
une forme sans coordonnées, l’un des principes fondamentaux de la relativité.

L’exemple le plus élémentaire des techniques analytiques sur une variété est la
théorie des formes différentielles et la dérivée extérieure. Cela généralise le grad, div et
curl du calcul tridimensionnel ordinaire. Elle fournit une généralisation très naturelle
des théorèmes de Green et de Stokes en trois dimensions et donne également naissance
à la cohomologie de De Rham qui est une manière analytique d’approcher la topologie
algébrique de la variété. Cela a été important dans une vaste gamme de domaines allant
de la géométrie algébrique à la physique théorique.

Une utilisation plus raffinée de l’analyse nécessite des données supplémentaires sur la
variété, avec des définitions un peux avancés, on peut décrire certaines caractéristiques
de base des métriques riemanniennes. Celles-ci généralisent la première forme fonda-
mentale d’une surface et, sous leur forme lorentzienne, fournissent la substance de la
relativité générale. Une histoire plus complète demande un cours beaucoup plus long,
mais on donne juste les éléments de base des variétés.

Nigel Hitchin

5.1 Variétés topologiques
Soit M un espace topologique i.e. : ensemble de points muni d’une topologie. tel

que :
1. M est à base dénombrable : M a une base dénombrable d’ouverts, où il admet

un sous-ensemble dénombrable dense.
2. M est espace séparé (en anglais : Hosdorff space) : pour tout deux points distincts

ont des voisinages distincts, e.i.

∀x, y ∈M | x ̸= y : ∃U ∈ V(x), ∃V ∈ V(y) | U ∩ V = ∅.

Remarque 5.1.1 Pour la suite on considère tous les ensembles comme des
espaces topologique, dénombrables et séparés

5.2 Cartes locale et atlas
Définition 5.2.1 Soit M un espace topologique, une carte, ou carte locale ou ap-
plication de coordonnée locale est le pair (U,φ) tel que
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1. U est un sous-ensemble ouvert de M ,
2. l’application φ : U → Ω est un homéomorphisme dans un ouvert Ω ⊂ Rn, pour

un certain n ∈ N∗.

Définition 5.2.2 Dans Rn on appelle les fonctions projection : πi : Rn → R les
fonctions C∞ définis par

πi(x1, . . . , xn) = xi, 1 ≤ i ≤ n.

Définition 5.2.3 Soit M un espace topologique
• Soit p ∈M , on dit de (U,φ) est une carte de p si et seulement si p ∈ U .
• Si (U,φ) est une carte, alors les fonction xi = πi ◦ φ sont dites coordonnées

locales.
• Pour tout p ∈ U le n-uplet (x1(p), . . . , xn(p)) est l’ensemble des coordonnés

de p par rapport à la carte (U,φ).
• Par l’inverse, (Ω, φ−1) est dite la paramétrisation local.

Définition 5.2.4 Soit M un espace topologique, et soient (Ui, φi) et (Uj, φj) deux
cartes locales avec Ui ∩ Uj ̸= ∅.
On appelle applications de transition où (applications de changement de
cartes) les applications, φji et φij de Rn dans Rn, définis par

φji = φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

φij = φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

Il est claire que φji = (φij)−1, (sont isomorphes).
Dans ce cas on dit que (Ui, φi) et (Uj, φj) sont des cartes compatibles.

Figure 5.3 – Application de changement de cartes
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Définition 5.2.5 Soit M un espace topologique, et n ∈ N∗, k ∈ N∗ ∪ {∞}. On appel
n-atlas de classe Ck où un Ck n-atlas, (où tout simplement un atlas) l’ensemble
des cartes sur M noté A = {(Ui, φi)} tel que :

1. Les Ui recouvrent M i.e.
M =

⋃
i

Ui

2. φ(Ui) ⊆ Rn pour tout i, i.e. n est une constante pour toutes les cartes.
3. Dans le cas ou Ui∩Uj ̸= ∅ les applications de changement de carte φji et φij sont

des Ck-difféomorphismes.
Si k =∞ on dit que c’est un atlas lisse (en. : Smooth).

Remarque 5.2.1
1. Nous devons nous assurer que nous avons suffisamment de cartes pour mener à

bien notre programme de généralisation du calcul sur Rn aux variétés.
2. Pour cela, nous devons pouvoir ajouter de nouvelles cartes chaque fois que cela

est nécessaire, à condition qu’elles soient compatibles avec les cartes précédentes
dans l’atlas existant.

Définition 5.2.6 Soient M un espace topologique, A et A′ deux atlas sur M .
On dit qu’ils sont des atlas compatibles si est seulement si toute carte de l’un est

compatible avec toutes les cartes de l’autre atlas.

Remarque 5.2.2
• Deux atlas sont compatibles équivalant a dire que leurs union est aussi un atlas.
• La compatibilité des Ck n-atlas induit une relation d’équivalence sur M .
• Alors, soit A un atlas sur M , la collection Ã, de toutes les cartes compatibles

avec A est un atlas maximal dans la classe d’équivalence des cartes compatibles
avec A.

Définition 5.2.7 (Variété topologique) Tout espace topologique séparé M muni
d’un n-atlas A, n ∈ N∗, tel que A = {(Ui, φi)} ou φi sont des homéomorphismes
(ou tout simplement A est un n-atlas de classe C0 ), est dite une variété topolo-
gique. Noté (M,A).
n est dite la dimension de la variété M .

5.3 Variétés différentielles abstraites
Définition 5.3.1 Soit M un espace topologique séparé dénombrable, n ∈ N∗, pour un
certain k ∈ N∗ ∪ {∞}.
Le couple (M,A) est dite variété différentielle de dimension n et de classe Ck si :

M admet un n-atlas A de classe Ck, avec k > 0.

Si k =∞ on dit que c’est un variété lisse (en. : Smooth manifold).

Remarque 5.3.1
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Figure 5.4 – Nodal cubic, n’est pas une variété

1. Il aurait peut-être été préférable d’utiliser la terminologie ”variété abstraite”
plutôt que ”variété” pour souligner le fait que l’espace M n’est pas a priori un
sous-espace de RN , pour un certains N .

2. On général on dit une variété différentielle pour parler d’une variété de classe
C∞.

3. On note Mn pour dire que M est une variété de dimension n.
4. Toute variété différentielle de classe Ck est une variété topologique.

Exemples :
1. L’ensemble Rn est une variété différentielle de dimension n, pour cela il suffit de

prendre l’atlas : A = {(Rn, Id)} avec Id est le difféomorphisme C∞ identité.
2. Tout ouvert U de Rn est une variété différentielle de dimension n et de classe
C∞, on peut prendre l’atlas d’une seul carte : A = {(U, Id)}.

3. L’ensemble M = {(x, y) ∈ R2 | y2 = x2 − x3} appelé nodal cubic n’est pas une
variété, on peut aussi le définir comme une courbe paramétrée
M = {(x, y) ∈ R2 | x = 1 − t2, y = t(1 − t2), ∀t ∈ R}. Le problème ce pose à
l’origine, qui est de dimension 2 alors que le reste est de dimension 1.

4. L’ensemble M = {(x, y) ∈ R2 | y2 = x3} appelé Parabole semi-cubique (en :
Cuspidal cubic) est une variété topologique mais elle n’est pas différentiable, on
aussi le définir comme une courbe paramétrée
{(x, y) ∈ R2 | (x = t2, y = t3), ∀t ∈ R}. Le problème ce pose à l’origine, qui est
continu mais non différentiable .

Proposition 5.3.1 Si un espace topologique M est une variété topologique parce qu’il
a un atlas composé d’une seule carte, alors il est automatiquement une variété lisse !

Corrolaire 5.3.1 En particulier si f : U → Rm une fonction continue d’un sous-
ensemble ouvert U ⊂ Rn dans Rm, alors le graphe Γf définit par :

Γf = {(x, f(x)) ∈ Rn+m | x ∈ U}

est une variété lisse.
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Figure 5.5 – Cuspidal Cubic , est une variété topologique non différentiable

Prouve :
Ceci est vrais car : on prenant l’atlas composé par la seul carte (U,φ) avec φ est la
projection lisse définit par

φ : Γf → U
(x, f(x)) 7→ x

avec φ−1(U) = Γf qui est une immersion C∞.

Example 5.3.1 La sphère unitaire Sn
Avec la projection stéréographique par le pôle nord et le pôle sud, définissent deux cartes
sur Sn est une variété lisse.
Soient N = (0, . . . , 0, 1) et S = (0, . . . , 0,−1) le pôle nord et le pôle sud respectivement.
on définit les projections stéréographiques des pôles nord et sud par : (voir la Figure 5.6)

σN : Sn → Rn

(x1, . . . , xn+1) 7→ 1
1+xn+1

(x1, . . . , xn) (5.1)

σS : Sn → Rn

(x1, . . . , xn+1) 7→ 1
1−xn+1

(x1, . . . , xn) (5.2)

les inverses de ces projections sont donnés par :

σ−1
N = 1

(∑n
i=1 x

2
i ) + 1

(
2x1, . . . , 2xn, (

n∑
i=1

x2
i )− 1

)

σ−1
S = 1

(∑n
i=1 x

2
i ) + 1

(
2x1, . . . , 2xn, (

n∑
i=1

x2
i ) + 1

)

Donc, si on pose UN = Sn−{N} et US = Sn−{S} on aura bien {(UN , σN), (US, σNS)}
un atlas lisse de la sphère.
Comme exemple : pour tout p ∈ UN ⊂ S2 son image est p′ = σN(p) ∈ R2 qui est
l’intersection de la ligne droite (N, p) avec R2.

Pour les isomorphismes de changement des cartes :UN ∩ US = S2 − {N,S} sont
donnés par :

σN ◦ σ−1
S σN ◦ σ−1

S = σS ◦ σ−1
N
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Figure 5.6 – projection stéréographique par le pôle nord, de S2 dans R2

définit par :
(x1, . . . , xn) 7→ 1∑n

i=1 x
2
i

(x1, . . . , xn).

Théorème 5.3.1 (produits de variétés)
Soient M1 et M2 deux variétés différentielles de classe Ck et de dimensions respective
n1 et n2, alors M1 × M2 est une variété différentielle de classe Ck et de dimension
n1 + n2.

Prouve : On sait bien que M1 ×M2 est un espace topologique, topologie définit pas
la topologie produit (les ouverts de M1 × M2 sont les unions quelconques des sous-
ensembles U × V pour tous U ouvert de M1 et V ouvert de M2).

Pour toutes cartes quelconques (Ui, φi) de M1 et (Vj, ψj) de M2, on définit la carte
(Ui × Vj, φi × ψj) de M1 ×M2 avec :

φi × ψj : Ui × Vj → Rn+m

(p, q) 7→ (φi(p), ψj(q))
.

Définition 5.3.2 (Application entre variétés) Soient M1 et M2 deux variétés de
classe Ck de dimensions respective n1 et n2, on dit que f : M1 →M2 est une applica-
tion de classe Ck entre variétés (ou bien Ck-application ), si
pour tout p ∈M1 il existe une carte (Up, φ) de M1 et une carte (Vq, ψ) de M2 tel que :

1. f(p) = q

2. f(Up) ⊂ Vq

3. et l’application de Rn1 → Rn2 :

ψ ◦ f ◦ φ−1 : φ(Up)→ ψ(Vq)

est une fonction de classe Ck.
On dit que f est lisse (ou de classe C∞) si ψ ◦ f ◦ φ−1 est de classe C∞.
On note fφψ la fonction ψ ◦ f ◦ φ−1 .
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Figure 5.7 – Application entre variétés

Remarque 5.3.2
1. Cette notion de différentiabilité ne dépend pas du choit des cartes de M1 et M2.
2. f : M → N est difféomorphisme si f est bijective et f et f−1 sont différentiable,

alors on a nécessairement dim M1 = dim M2.

Définition 5.3.3 ( Rang d’une application)
1. Rappel : Soit h : Rn → Rm une application différentiable en x ∈ Rn. Le Rang

de h en x est défini comme le rang de l’application linéaire dhx (e.i. dim Im dhx).
On le note Rgxh.
Où dhx est la différentielle de h on x.

2. Soit f : Mn → Nm une application différentielle entre deux variétés, et p un
point de M , on appel Rang de l’application f en p le rang de la fonction

ψ ◦ f ◦ φ−1 : Rn → Rm,

avec (Up, φ) une carte de M contenant p et (Vf(p), ψ) une carte de N contenant
f(p), noté

Rgpf := Rgφ(p) (ψ ◦ f ◦ φ−1).

Proposition 5.3.2 Soit f : M → N une application différentiable entre variétés et
p ∈M , f(p) = q ∈ N . Alors le Rang de f ne dépend pas du choix des cartes (Up, φ) et
(Vq, ψ).

Prouve : Soient (Up, φ) et (U ′
p, φ

′) deux cartes de M contenant p et soient (Vq, ψ) et
(V ′

q , ψ
′) deux cartes de N contenant q = f(p). avec l’intersection des domaines on a :

ψ′ ◦ f ◦ φ′−1 = (ψ′ ◦ ψ−1) ◦ (ψ ◦ f ◦ φ−1) ◦ (φ ◦ φ′−1)
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Or on a que la différentielle de ψ′ ◦ ψ−1 et de φ ◦ φ′−1 sont des isomorphismes, alors

Rgφ′(p)(ψ′ ◦ f ◦ φ′−1) = Rgφ(p)(ψ ◦ f ◦ φ−1)

Remarque 5.3.3 Pour f : Mn → Nm on a bien fφψ : Rn → Rm, alors si on pose
fφψ = (f 1, . . . , fm) alors le Rang de dans un point p ∈ M est le Rang de la matrice
jacobienne :

Jac fφ(p) =


∂f1

∂x1 · · · ∂f1

∂xn

: . . . :
∂fm

∂x1 · · · ∂fm

∂xn


|φ(p)

(5.3)

Définition 5.3.4 Soit f : M → N une application différentiable entre variétés.
1. On dit que f est une immersion si Rgpf = dim M pour tout p ∈ M , e.i. Dfp

est injectif.
Ce qui nous oblige a avoir dim M ≤ dim N .

2. On dit que f est une submersion si Rgpf = dim N pour tout p ∈M , e.i. Dfp
est surjective.
Ce qui nous oblige a avoir dim M ≥ dim N .

3. On dit que f est un plongement si f est immersion injective et un
homéomorphisme de M dans f(M) pour la topologie induite de celle de N .

Lemme 5.3.1 Une application entre variétés f : M → N est un difféomorphisme si
et seulement si f est bijective et en tout point p ∈M on a

Rgp f = dim M = dim N.

Remarque 5.3.4
1. Une immersion n’est pas forcement injective.
2. Une application injective n’est pas forcement une immersion.
3. Une immersion injective est déjà une bijection continue de M dans f(M).

Pour qu’elle soit un homéomorphisme, il suffit que f−1 soit continue sur f(M).

Définition 5.3.5 (Sous-variété) Soit M une variété différentielle abstraite de di-
mension n et de classe Ck, et soit N un sous-ensemble non-vide de M . On dit que N
est une sous-variété de M de dimension n′ est de classe Ck ( n′ ≤ n ), si
Pour tout point p ∈ N , il existe une carte (Up, φ) de M contenant p telle que

φ(Up ∩N) = φ(Up) ∩ (Rn′ × {0
Rn−n′}).

Théorème 5.3.2 Soit M une variété différentielle abstraite de dimension n et de
classe Ck, et soit N un sous-Variété de M de dimension n′ alors N est une variété
différentielle abstraite de dimension n′ et de classe Ck.
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Prouve : il suffit de définir l’atlas de N par celui de M .
Soit p ∈ N et (Up, φ) une carte de M contenant p.
En premier la topologie de N est la topologie induite par celle de M .
On définit la carte différentielle (Vp, ψ) contenant p sur N par :

Vp = Up ∩N, ψ = φ|Vp .

Théorème 5.3.3 Soit f : U ⊂ Mn → Nk une application différentiable entre deux
variétés différentielles, et U un ouvert de M , alors

1. Si f est un plongement sur U , alors W = f(U) est une sous-variété différentielle
de N de dimension n.

2. Si f est une submersion et y ∈ f(M), alors H = f−1(y) est une sous-variété
différentielle de M de dimension n− k.

Prouve :

le lien : D :\ Documents\ OneDrive\ Cours enseignement\ Géométrie differentielle\
cours - Géométrie differentielle AOT13.pdf page 8

Remarque 5.3.5 (Variétés aux sous-variétés de Rn)
Soit M une variété différentielle et f : M → Rn un plongement.
L’ensemble f(M) est alors une sous-variété de Rn. Les variétés M et f(M) sont alors
difféomorphes, c’est-à-dire indistinguables du point de vue de la géométrie différentielle.

Inversement :
Est-il possible de plonger toute variété dans un espace RN ?
De façon équivalente, est-il possible de considérer n’importe quelle variété comme une
sous-variété d’un RN ?

La réponse est oui, et on peut de plus préciser N .

Théorème 5.3.4 (Plongement de Whitney) Toute variété de dimension n admet
un plongement sur une sous-variété fermée de R2n+1.

5.4 Espaces tangentes
Jusqu’à présent, nous avons parlés d’applications lisses entre variétés mais pas de

leurs différentielles !
Pour définir cette dernière, il nous faut d’abord définir l’espace tangent en un point p
a une variété M . Nous allons nous inspirer de ce qui a été fait pour les sous-variétés
de Rn, en utilisant les courbes passant par p. [11, 17].

Pour toute la suite de cette section, M est une variété lisse de dimen-
sion n.
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5.4.1 Vecteur tangent et espace tangent
Définition 5.4.1 (Courbe sur une variété) Soit p ∈ M un point quelconque. On
appelle courbe passent par p, toute application différentiable c entre variétés, et il
existe ]− ε, ε[⊂ R un intervalle ouvert centré en 0 telle que :

c : ]− ε, ε[ → M
t 7→ c(t) , avec c(0) = p. (5.4)

Définition 5.4.2 deux courbes c1, c2 sont tangentes au point p si
• c1(p) = c2(p)
• Il existe une carte locale (U,φ) de p telle que :

d

dt
(φ ◦ c1)(0) = d

dt
(φ ◦ c2)(0).

Remarque 5.4.1
1. Cette définition est indépendante de la carte choisie.

En effet si (V, ψ) est une autre carte autour de p, on a

d

dt
(ψ ◦ c1)(0) = d

dt

[
(ψ ◦ φ−1) ◦ (φ ◦ c1)

]
(0)

= D(ψ ◦ φ−1) ◦ d
dt

(φ ◦ c1)(0)

= D(ψ ◦ φ−1) ◦ d
dt

(φ ◦ c2)(0)

= d

dt
(ψ ◦ c2)(0).

2. On définit ainsi une relation d’équivalence sur l’ensemble des courbes passant par
p par : deux courbes c1 et c2 sont équivalentes si elles sont tangentes en p, e.i.

c1 ∼ c2 ⇐⇒ c1(p) = c2(p) et d

dt
(φ ◦ c1)(0) = d

dt
(φ ◦ c2)(0).

Définition 5.4.3 (Vecteur tangent & Espace tangent)
Un vecteur tangent à M en p est une classe d’équivalence de courbes tangentes

en p.
L’espace tangent à M en p, noté TpM , est l’ensemble de tous les vecteurs tangents

à M en p.

Remarque 5.4.2 On peut montrer que TpM est un espace vectoriel en utilisant une
carte. La structure vectorielle n’apparait cependant pas clairement. De plus la définition
de TpM fait intervenir un espace très gros, l’ensemble des courbes passant par p, qui
n’est pas aisé à manipuler. Nous allons voir maintenant qu’on peut donner une autre
définition équivalente des vecteurs tangents qui résoudra ces difficultés.
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5.4.2 Dérivations
Pour cette section M une variété différentielle de dimension n lisse et p un point

quelconque de M .

Définition 5.4.4 Soit U ⊂M ouvert tel que p ∈ U

C∞(p) = {f : U → R, C∞ / f = g ⇐⇒ ∃Vp ∈ V(p) : f(x) = g(x), ∀x ∈ Vp ⊂ U}

c.a.d : Considérons l’ensemble des fonctions à valeurs réelles, de classe C∞, définies
sur un ouvert de M contenant un voisinage de p, dans lequel on identifie les fonctions
qui sont égales sur un voisinage de p (on obtient ainsi des germes de fonction). On
note C∞(p) cet ensemble.

Remarque 5.4.3 L’ensemble C∞(p) est une algèbre, c’est-à-dire un espace vectoriel
muni d’une opération interne (la multiplication).

Sur cet ensemble de fonctions on définit des opérateurs.

Définition 5.4.5 (Dérivation) L’application (ou l’opérateur) Dp : C∞(p) → R est
une dérivation si : pour toutes fonctions f, g ∈ C∞(p) et pour tous α, β ∈ R on a

1. Dp est linéaire :
Dp(αf + βg) = αDp(f) + βDp(g).

2. Dp satisfait la condition de Leibniz :

Dp(fg) = Dp(f).g(p) + f(p).Dp(g).

On note D(p) l’ensemble des dérivations en p.

Proposition 5.4.1
• L’ensemble D(p) est un espace vectoriel pour les opérations :
∀Dp, D

′
p ∈ D(p) et ∀α ∈ R

⋆ (Dp +D′
p)(f) = Dp(f) +D′

p(f)
⋆ Dp(αf) = αDp(f)

• ∀Dp ∈ D(p) et ∀Cte ∈ C∞(p) fonction constante : Dp(Cte) = 0.

Lemme 5.4.1 (Lemme d’Hadamard) Soit (U,φ) une carte locale de M centrée en
p avec φ = (x1, · · · , xn) (les coordonnées locales de φ).
Pour toute fonction f ∈ C∞(p), il existe χ1, · · · , χn ∈ C∞(p) telles que :

f = f(p) +
n∑
i=1

xiχi.

Autrement dit : pour tout q ∈ U :

f(q) = f(p) +
n∑
i=1

xi(q)χ(q)i.

La carte locale est centrée en p veut dire : φ(p) = 0.
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On utilisera ce lemme pour caractériser les éléments de D(p). Soit (U,φ) une carte
locale centrer en p, alors une dérivation Dp ∈ D(p) s’écrit :

Dp.f = Dp. (f(p)) +
n∑
i=1

(χi(p)Dp.xi + xi(p)Dp.χi)

=
n∑
i=1

χi(p)Dp.xi.

Ainsi : la donnée de la dérivation Dp est équivalente à la donnée des réels
Dp.xi, i = 1, . . . , n.

Lemme 5.4.2 On a que :

dimD(p) = n = dimM. (5.5)

Ce lemme montre que sur Rn, toute dérivation est une dérivée directionnelle, car
à tout v vecteur de Rn est associée une dérivation en x

g 7→ lim
t→0

g(x+ tv)− g(x)
t

,

qui est la dérivée directionnelle en x dans la direction de v. L’ensemble des dérivées
directionnelles en x est ainsi un sous-espace vectoriel de D(x) de dimension n, alors il
est égal D(x).

Proposition 5.4.2 Soient g ∈ C∞(p) et un vecteur tangent en p Xp ∈ TpM , Alors la
dérivée d

dt
(g◦c)(0) est la même pour toutes les courbes c(s) passant par p et appartenant

à la même classe d’équivalence de Xp.
La valeur de cette dérivée est notée : Xp · g.

Prouve :
Soit (U,φ) une carte locale de p, alors on obtient :

d

dt
(g ◦ c)(0) = D(g ◦ φ−1) ◦ d

dt
(φ ◦ c)(0).

or on a que d
dt

(φ ◦ c)(0) ne dépend que de la classe de Xp, ce prouve la proposition. .□

Proposition 5.4.3 L’application g 7→ Xp · g est une dérivation.

Prouve :
Dans la carte (U,φ) de p, et choisir un représentant c(t) de la classe Xp alors on a :

Xp · g = d

dt

(
(g ◦ φ−1) ◦ (φ ◦ c)

)
(0).

□

Remarque 5.4.4 Cette dérivation est en fait une généralisation des dérivées direc-
tionnelles. En effet on a vu que dans Rn un vecteur tangent vx est associé canonique-
ment à une direction v = ċ(0). La dérivation g 7→ Xp · g est alors clairement égale à la
dérivée directionnelle.
On appellera parfois l’application g 7→ Xp·g dérivée directionnelle de g dans la direction
Xp.
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Théorème 5.4.1 L’ensemble des vecteurs tangent TpM s’identifie à l’espace vectoriel
D(p) de dimension n des dérivations en p.

Cette identification permet de définir une structure vectorielle sur l’espace tangent
TpM (appelé également, en conséquence, espace vectoriel tangent). Notons que cette
structure vectorielle cöıncide avec celle que l’on peut obtenir à partir de la lecture dans
une carte.

Pour la suite nous identifions systématiquement TpM et D(p).

5.4.3 Différentielle d’une application
Soient deux variétés différentielles Mn et Nk de dimensions respective n et k. Et

F : M → N une application différentiable.

Définition 5.4.6 (Image réciproque) Soit g : N → R une fonction, avec F on peut
correspondre une fonction sur M , pour tout p ∈M :

F ∗ : C∞ (F (p)) → C∞(p)
g 7→ F ∗g := g ◦ F

L’application F ∗g est dite l’image réciproque de g par F .

Définition 5.4.7 (La différentielle) On appelle la différentielle de F en point
p ∈M l’application Linéaire dFp définie par :

dFp : TpM → TF (p)N
Xp 7→ dFp(Xp)

telle que :
dFp(Xp) · g := Xp · (F ∗g), ∀g ∈ C∞(F (p)).

La définition de la différentielle ne fait appel qu’à des propriétés locales de la variété
et de l’application. Comme localement une variété est difféomorphe à un ouvert de Rn,
toute les propriétés des applications différentiables dans les espaces vectoriels normés
sont vraies localement pour les applications différentiables sur les variétés (c’est le
principe de base pour obtenir des résultats locaux dans les variétés). Citons les plus
importantes de ces propriétés.

Théorème 5.4.2 (Théorème de composition)
Soient F : M → N et G : N → W deux applications différentiables entre variétés. Soit
p ∈M et F (p) ∈ N . Alors G ◦ F est différentiable en p et

d(G ◦ F )p = dGF (p) ◦ dFp.

Corrolaire 5.4.1 Si F : M → N est un difféomorphisme, alors, pour tout point
p ∈M , dFp est un isomorphisme.

La réciproque n’est vrais que localement.
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5.4. ESPACES TANGENTES 51

5.4.4 Théorème des inversion locale (cas des variétés)
Le cas général de ce théorème est détaillé dans la Section 1.3, ici on va donné ce

théorème dans le cas des variétés pour définir l’espace tangent sur la variété.
Définition 5.4.8 Une application F : M → N entre variétés est un difféomorphisme
local en un point p de M , s’il existe un voisinage U ∈ V(p) dans M et un voisinage
V ∈ V(F (p)) dans N tels que l’application F |U : U → V est difféomorphisme.

Théorème 5.4.3 (Théorème des inversions locales) Soit F : M → N une ap-
plication entre variétés différentielles différentiable en p ∈ M telle que l’application
différentielle :

dFp : TpM → TF (p)N est un isomorphisme.
Alors F est un difféomorphisme local en p. Et on a la différentielle de F|U est donné
par :

d
(
F |−1

U

)
= (dFp)−1 .

Ce théorème a une conséquence importante pour la détermination de coordonnées
locales. En effet, un système de coordonnées locales n’est rien d’autre qu’un difféomorphisme
local de M dans Rn. Ainsi une application différentiable φ : M → Rn (de la carte lo-
cale) définit des coordonnées locales en p si et seulement si dφp est un isomorphisme.

5.4.5 Coordonnées sur l’espace tangent
() Dans cette section on va construire des coordonnées (où-bien une base) sur notre

espace tangent, en utilisant les différentielles des cartes locales à l’espace tangent dans
ses points.

Pour mieux comprendre les choses on donne le cas de Rn après on passe au cas
général.

a. Cas de l’espace TxR
n : On a la propriétés que TxRn est canoniquement iso-

morphe à Rn et on peut l’identifié à l’ensemble des dérivées partielles en x, c.a.d :
Soit un point xRn, les dérivées partielles en x sont données les dérivations sur Rn

∂

∂xi
|x : g 7→ ∂g

∂xi
(x).

Dans l’ensemble des dérivées directionnelles en x ces dérivées partielles forment une
base, et c’est aussi une base de l’espace tangent TxRn. dite la base canonique ou la
base naturelle. ainsi tout vecteur tangent vx ∈ TxRn s’écrit

vx = v1 ∂

∂x1

∣∣∣∣∣
x

+ · · ·+ v1 ∂

∂xn

∣∣∣∣∣
x

.

Remarque 5.4.5 Ce vecteur est aussi la classe d’équivalence des courbes c(t) passant
par x telles que

ċ = (v1, . . . , vn).
D’où on a l’identification canonique TxRn ≃ Rn qui est donné par

vx 7→ (v1, . . . , vn).
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b. Cas de l’espace TpM : Dans le cas des variétés différentielles abstraites, le
tout est lié aux cartes locales et le faite que les applications de ces cartes sont des
difféomorphismes dans le domaine de la carte.

Soient un point p ∈M et (U,φ) une carte de M tel que p ∈ U (c.a.d U est domaine
de p), on a que :

φ : U → φ(U) est un difféomorphisme.

d’ou
dφp : TpM → Tφ(p)R

n est inversible .

Et que
(dφp)−1 = d

(
φ−1

)
φ(p)

: Tφ(p) → TpM est un isomorphisme .

D’autre part si on pose x = φ(p) ∈ Rn, alors
(

∂
∂x1

∣∣∣
x
, . . . , ∂

∂xn

∣∣∣
x

)
est la base canonique

de TxRn. Et on calcule l’image de cette base par l’isomorphisme (dφp)−1, qu’on note
de la même notation :

∂

∂xi

∣∣∣∣∣
p

= d
(
φ−1

)
φ(p)

(
∂

∂xi

∣∣∣∣∣
x

)
, i = 1, . . . , n.

Avec ces vecteurs tangents , on construit une base de TpM dite la base naturelle
associées aux coordonnées localees φ : ∂

∂x1

∣∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣∣
p



Remarque 5.4.6 Si g ∈ C∞(p) on a pour tout i = 1, . . . , n :

∂

∂xi

∣∣∣∣∣
p

· g = d
(
φ−1

)
φ(p)

(
∂

∂xi

∣∣∣∣∣
x

)
· g = ∂

∂xi

∣∣∣∣∣
x

·
(
g ◦ φ−1

)
= ∂ (g ◦ φ−1)

∂xi
(x).

Proposition 5.4.4 Dans la base naturelle associée aux coordonnées locales φ,
(

∂
∂x1

∣∣∣
p
, . . . , ∂

∂xn

∣∣∣
p

)
,

un vecteur tangent Xp ∈ TpM s’écrit

Xp = X1 ∂

∂x1

∣∣∣∣∣
p

+ · · ·+Xn ∂

∂xn

∣∣∣∣∣
p

avec X i = Xp · xi.

Prouve. on a que

Xp · xi =
n∑
j=1

Xj ∂x
i

∂xj
,

or on a que
∂xi

∂xj
= δij =

1 si i ̸= j

0 si i = j

d’ou le résultat. □
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5.5 Fibrés tangentes
Toute l’étude de l’espace tangent, dans la section présidente, se fait localement par

rapport à une carte locale ou tour d’un point. Dans cette section on donne une notion
où une définition d’un espace qui englobe tout les espaces tangents sur toute la variété.

Pour commencer on voit d’bord le cas d’un même point dans deux cartes différentes
d’intersection non vide.

Soit p un point de M qui est dans deux cartes (U,φ) et (V, ψ) d’intersection non vide
et de coordonnées locales respectives x1, . . . , xn et y1, . . . , yn et leurs bases tangentes
de TpM respective

(
∂
∂x1 , . . . ,

∂
∂xn

)
et
(

∂
∂y1 , . . . ,

∂
∂yn

)
.

Au moyen de l’application de changement de cartes Pour les points d’intersection U∩V ,
on peut écrire Les coordonnées yj en fonction des coordonnées xi :

yj(x1, . . . , xn) = (ψ ◦ φ−1)j(x1, . . . , xn).

un vecteur tangent v ∈ TpM s’écrit dans les deux bases par :

v =
n∑
i=1

vi
∂

∂xi
=

n∑
j=1

ṽj
∂

∂yj
.

On calculant v(yk), on déduit :

ṽj =
n∑
i=1

vi
∂(ψ ◦ φ−1)k

∂xi
(5.6)

et que
∂

∂xi
=

n∑
j=1

∂(ψ ◦ φ−1)j
∂xi

∂

∂yj
. (5.7)

Définition 5.5.1 ( Fibré tangent) Le fibré tangent d’une variété Mn est la struc-
ture différentielle de dimension 2n sur l’ensemble TM définit par :

TM = {(p,Xp), p ∈M, Xp ∈ TpM} .

Le fibré tangent est l’union des espace tangents

TM =
⋃
p∈M
{p} × TpM où encore TM =

⋃
p∈M

TpM

Remarque 5.5.1 L’union dans la définition du fibré tangent, est une union disjointe,
c.a.d : on ne peut pas additionner des éléments Xp ∈ TpM et Yq ∈ TqM si TpM ̸= TqM .

Définition 5.5.2 (Projection canonique) On appelle projection canonique sur TM
l’application (projection)

π : TM → M
(p,Xp) 7→ p
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Théorème 5.5.1 Le fibré tangente a une structure de variété différentielle de dimen-
sion 2n.

Remarque 5.5.2 La projection canonique π est une application différentiable, et aussi
c’est une submersion surjective.

Définition 5.5.3 (L’application différentielle) Soient M , N deux variétés différentielle
et F : M → N une application différentiable.
L’application différentielle de F , notée dF est définie par :

dF : TM → TN
(p,Xp) 7→ (F (p), dFp(Xp))

Proposition 5.5.1 Soient M , N deux variétés différentielle et F : M → N une
application différentiable, et dF l’application différentielle de F , on a :
Si F est difféomorphisme alors dF l’ai aussi et (dF )−1 = d(F−1).

5.6 Exercices
Exercice 01 :

Les applications suivantes f : R2 → R3 sont-elles des immersions ? Sont-elles injec-
tives ? Si oui, leur image est-elle plongée ?

1. f(u, v) = (cosu, sin u, v).
2. f(u, v) = (u, v, uv).
3. f(u, v) = (u cos v, v sin u, λv).
4. f(u, v) = ((2 + cos v) cosu, (2 + cos v) sin u, sin v).

Définition : On dit que F : M → N est un plongement si F est une immersion
injective et un homéomorphisme de M dans F (M) pour la topologie induite.

Exercice 02 :
Les applications suivantes f : R3 → R sont-elles des submersions ? Peut-on les res-
treindre à un voisinage de f−1(0) de telle sorte que la restriction soit une submersion ?

1. f(x, y, z) = x2 + y2 + z2 − a2.
2. f(x, y, z) = x2 + y2 − z2.
3. f(x, y, z) = x2 + y2 − z.

Exercice 03 :
Pour t ∈]−∞, 1[, on pose f(t) = (t2, t− t3).
L’application f : ] −∞, 1[→ R2 est-elle une immersion ? Est elle injective ?. dessiner
son image dans le plan.

Exercice 04 :
Montrer que l’ensemble

{(u2, v2, w2,
√

2 uv,
√

2 vw,
√

2 uw) ∈ R6; (u, v, w) ∈ R3, u2 + v2 + w2 = 1}
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est une sous-variété de R6. Et qu’elle est incluse dans la sphère unitaire.

Exercice 05 :
Soit S la nappe paramétrée définie par

x(u, v) = u+ v, y(u, v) = uv, z(u, v) = u2 + v2. (u, v) ∈ R2

1. Verifier que S et incluse dans la surface d’équation x2 − 2y − z = 0. les deux
surfaces cöıncident-elles ?.

2. Quelle sont les intersection de S avec les plan x = 0, y = 0, z = 0.
3. Dessiner S.
4. En quels points ce plan passe par l’origine ? .

Exercice 06 :
Soit l’application j définie par :

J : R2 −→ R3

(t, θ) 7−→ (t cos θ, t sin θ, θ)

1. Montrer que j est un plongement. on note V son image
Soit π la projection définie par :

π : R3 −→ R2

(x, y, z) 7−→ (x, y)

2. Donner la restriction de π à V , qu’on note π|V .
3. π|V est elle une submersion ?, est elle une immersion ?.

Exercice 07 :
Soit l’application f définie par :

f : R3 −→ R3

(x, y, z) 7−→ (2xz, 2yz, 1− 2z2)

On note f|S2 la restriction de f à la sphère unitaire de dimension 2.
1. Montrer que l’image de f|S2 est dans S2.
2. Montrer que f|S2 est surjective de S2 dans S2.

Exercice 08 :
Soit une application f de Rn dans Rp, montrer que :

1. Peut-on avoir f comme immersion et submersion simultanément ?
2. pour n = p, et f est une submersion, est-ce que c’est une immersion dans ce cas ?
3. Si f est injective est-elle toujours une immersion ?
4. Si pour tous a ∈ Rn , dfa est de rang maximal, est ce que f est une immersion ?

est elle injective ?
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Exercice 09 :
Dans l’espace Rn, on considère le sous-ensemble E qui est ouvert dans Rp avec 0 <
p < n.
E est-il une sous-variété de Rn ?. Si oui, de quelle dimension ?.

Exercice 10 :
Soit le cercle unitaire S1 de R2. Et on considère les deux sous ensembles U et V définis
par :

U1 = {(cosα, sinα), α ∈ I1 =]0, π[ } , U2 = {(cosα, sinα), α ∈ I2 =]− π, 0[ }
U3 =

{
(cosα, sinα), α ∈ I3 =]− π

2 ,
π
2 [
}
, U4 =

{
(cosα, sinα), α ∈ I4 =]π2 ,

3
2π[

}
.

1. Dessiner les ensembles U1, U2, U3 et U4.
2. Montrer que U1, U2, U3 et U4 sont des ouverts de S1, sont ils des ouverts de R2 ?.
3. Trouver deux applications φi (1 ≤ i ≤ 4) pour que A = {(Ui, φi)}1≤i≤4 soit un

atlas k-différentiable de S1, k à déterminé. Rappel : φi : Ui → R.
4. Peut-on dire que (S1,A) est une variété lisse ?.
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Annexe A

Rappels Algébriques et
Topologiques

A.1 Rappels d’algèbre des structures

A.1.1 Lois de composition
Définition A.1.1 Loi de composition interne : On appelle loi de composition
interne sur un ensemble non vide G toute application ϕ sur G × G et à valeurs dans
G.
Si ϕ est une loi de composition de composition interne sur G, on notera souvent :
∗, ⋆, •, ⊥, ...etc.

∀(a, b) ∈ G , a ⋆ b = ϕ(a, b).
On notera (G, ⋆) l’ensemble non vide G muni de la loi de composition interne ⋆.

Example A.1.1 L’addition et la multiplication usuelles sont des lois de composition
interne sur N ; Z ; Q ; R et C.

Définition A.1.2 Soit G un ensemble non vide, on appel l’ensemble de toutes les
parties de G, l’ensemble de tous les sous-ensembles de G, noté P(G)

P(G) := {A;A ⊂ G}.

Définition A.1.3 Soit G un ensemble non vide muni de la loi de composition interne
⋆, on dit que :

1. La loi ⋆ est associative si :

∀a, b, c ∈ G , (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c).

2. La loi ⋆ est commutative si :

∀a, b ∈ G , a ⋆ b = b ⋆ a.

3. G admet un élément neutre ”e” pour la loi ⋆ si :

∀a ∈ G , a ⋆ e = e ⋆ a = a.
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4. Si G admet un élément neutre e, on dit qu’un élément a de G admet un symétrie
(ou un symétrique ou a est inversible ) si :

∃ a′ ∈ G , a ⋆ a′ = a′ ⋆ a = e.

5. Un élément a ∈ G est dit régulier ou simplifiable si :

∀b, c ∈ G,

a ⋆ b = a ⋆ c =⇒ b = c,

b ⋆ a = c ⋆ a =⇒ b = c.

Théorème A.1.1 Soit (G, ⋆) un ensemble non vide muni d’une loi de composition
interne. Si G admet un élément neutre

1. Alors cet élément neutre est unique.
2. Si un élément a ∈ G admet un inverse, alors cet inverse est unique.

Définition A.1.4 (Loi de composition externe ) Soit E et X deux ensembles. On
appelle loi de composition externe sur E toute application • de X × E dans E :

• : X × E −→ E

(a, x) 7−→ a • x.

Dans ce cadre général, les éléments de X sont appelés opérateurs et on dit que ”E
est muni d’une loi de composition externe à opérateurs dans X”.

Définition A.1.5 (Partie stable. ) Soit E un ensemble muni d’une loi de composi-
tion externe • à opérateurs dans X. Soit F une partie de E,

On dit que F est stable par la loi • si :

∀α ∈ X, ∀x ∈ F, α • x ∈ F.

Si F une partie stable par la loi •, alors la restriction de • à F est une loi de
composition externe sur F , on l’appelle loi induite par • dans F

Définition A.1.6 (Distributivité. ) Soit E un ensemble muni :
- D’une loi de composition interne ∗ ;
- D’une loi de composition externe • à opérateurs dans X.

- On dit que la loi • est distributive à gauche par rapport à la loi ∗ si :

∀α ∈ X, ∀x, y ∈ E, α • (x ∗ y) = (α • x) ∗ (α • y).

- On dit que la loi • est distributive à droite par rapport à la loi ∗ si :

∀α ∈ X, ∀x, y ∈ E, (x ∗ y) • α = (x • α) ∗ (y • α).

- On dit que la loi • est distributive par rapport à la loi ∗ si elle est distributive
à gauche et à droite.
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A.1.2 Structure de groupe
Définition A.1.7 On appelle groupe tout ensemble non-vide G muni d’une loi de
composition interne ⋆ , ou G admet une structure de groupe, s’il vérifiant les 3
propriétés suivantes (appelées axiomes de la structure de groupe) :

1. La loi ⋆ est associative dans G.
2. G admet un élément neutre pour la loi ⋆.
3. Tout élément de G admet un inverse dans G pour la loi ⋆.

On note (G, ⋆) pour le groupe.

Définition A.1.8 Soit (G, ⋆) un groupe, on dit que c’est un groupe commutatif,
ou un groupe abélien, si tout les éléments de G commute pour la loi ⋆. c.a.d

∀a, b ∈ G, a ⋆ b = b ⋆ a.

Remarque A.1.1 (Remarques et conventions des notations).
Afin d’éviter la lourdeur de la notation, on convient généralement de noter la loi de
composition interne d’un groupe quelconque G,

soit comme une multiplication par un point ”.”,
soit comme une addition par un +.

Dans le premier cas, le symétrique d’un élément est appelé son inverse noté a−1 .
Dans le second cas, son opposé noté −a.
Usuellement, on réserve la notation additive au cas des groupes abéliens.
C’est pourquoi, dans toute la suite de ce polycopié, on adoptera pour les groupes quel-
conques, conformément à l’usage courant, la notation multiplicative.

Théorème A.1.2 Soit (G, ⋆) un groupe alors on a :
1. Tout élément de G est simplifiable.
2. Pour tout a ∈ G : (a−1)−1 = a, avec a−1 est le symétrie de a.
3. Pour tous éléments a, b ∈ G : (a ⋆ b)−1 = b−1 ⋆ a−1.
4. Plus général : ∀a1, a2, ...an ∈ G : (a1 ⋆ a2 ⋆ ... ⋆ an)−1 = a−1

n ⋆ a−1
n−1 ⋆ ... ⋆ a

−1
1 .

A.1.3 Sous-groupes
Définition A.1.9 Soit (G, ⋆) un groupe. Un sous-groupe de G est un sous-ensemble
H ⊂ G tel que :
• H est non vide.
• pour tous a, b ∈ H : a ⋆ b−1 ∈ H.

Théorème A.1.3 Soit (G, ⋆) un groupe, H un sous-groupe de G si et seulement si :
• H contient l’élément neutre e de G.
• H est stable pour la loi ⋆, c’est à dire que

∀a, b ∈ G : a ⋆ b ∈ H.
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• H est stable par le passage à l’inverse, c’est à dire que :

∀a ∈ H : a−1 ∈ H.

Proposition A.1.1 Soit (G, ⋆) un groupe,
• Tout sous-groupe H de G à une structure de groupe par la loi Star.
• Tout sous-groupe K du sous-groupe H est un sous-groupe de G.

Théorème A.1.4 Soit (G, ⋆) un groupe, Soit (Hi)i∈I une famille de sous-groupes de
G

• L’intersection H = ∩i∈IHi est sous-groupe de G.
• la réunion H = ∪i∈IHi n’est pas nécessairement un sous-groupe de G.

Définition A.1.10 Soit X un sous-ensemble d’un groupe (G, ⋆),
le sous-groupe engendré par X est l’intersection de tous sous-groupes de G qui
contiennent X.

On note ⟨X⟩ le sous groupe de G engendré par X, et c’est le plus petit des sous-
groupes contiennent X.

Théorème A.1.5 Soient (G, ⋆) un groupe et X, Y deux parties de G,
1. On a X ⊂ ⟨X⟩,
2. X = ⟨X⟩ si et seulement si X est un sous-groupe de G.
3. Si X ⊂ Y , alors ⟨X⟩ ⊂ ⟨Y ⟩.

Définition A.1.11 Soit (G, ⋆) un groupe, on dit que G est monogène s’il existe
x ∈ G tel que G = ⟨x⟩.
Si de plus G est fini, on dit alors qu’il est cyclique.

A.1.4 Morphismes de groupes
On désigne par (G, ⋆) et (H, ◦) deux groupes et on note respectivement e et e′ les

éléments neutres de G et H.

Définition A.1.12 Soit φ une application de G dans H, On dit que φ est un mor-
phisme de groupe de G dans H si :

∀a, b ∈ G, φ(a ⋆ b) = φ(a) ◦ φ(b).

• On dit que φ in un isomorphisme si φ in bijective. On note G ⋍ H.
• On dit que φ in un endomorphisme si G = H.
• On dit que φ in un automorphisme si φ in bijective et G = H.

Théorème A.1.6 Soit φ un morphisme de G dans H alors :
• φ(e) = e′.
• φ(a−1) = φ(a)−1.
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Théorème A.1.7 Soient G,H,K trois groupes, et les morphismes :

φ : G→ H, ψ : H → K

alors ψ ◦ φ : G→ K est aussi un morphisme de groupe.

Définition A.1.13 soit φ un morphisme de groupe de G dans H.
1. Le noyau de φ est l’ensemble :

ker(φ) = {x ∈ G, φ(x) = e′}.

2. L’image de φ est l’ensemble :

Im(φ) = {φ(x), x ∈ G}.

Théorème A.1.8 Soit φ un morphisme de groupe de G dans H, alors :
1. ker(φ) est un sous-groupe de G.
2. φ est injective si et seulement si, ker(φ) = {e}.
3. Im(φ) est un sous-groupe de H.
4. φ est surjective si et seulement si, Im(φ) = H.
5. Pour tout sous-groupe G′ de G, φ(G′) est un sous groupe de H.
6. Pour tout sous-groupe H ′ de H, φ−1(H ′) est un sous groupe de G

A.1.5 Structure d’anneau
Définition A.1.14 On appelle anneau, tout ensemble A muni de deux lois de com-
position internes ⋆ et • , noté (A, ⋆, •) telle que :

1. (A, ⋆) est un groupe abélien (on note 0A l’élément neutre pour cette loi),
2. la loi • est associative,
3. la loi • est distributive par rapport à ⋆, c.a.d :

− ∀x, y, z ∈ A : x • (y ⋆ z) = (x • y) ⋆ (x • z),
− ∀x, y, z ∈ A : (y ⋆ z) • x = (y • x) ⋆ (z • x).

Si de plus A est commutative pour la loi •, on dit que (A, ⋆, •) est un anneau
commutatif ou abélien.

Si A admet un élément neutre pour la loi • , on dit que (A, ⋆, •) est un anneau
unitaire ou unifère, on note 1A l’élément neutre pour cette loi.

Remarque A.1.2 .
• Si il n’y a pas de confusion, on utilise souvent les signes + et . les deux lois de

l’anneau.
• Et on note 0 pour l’élément neutre de la loi + et 1 pour l’autre.
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• On note −x pour l’inverse de x pour la loi + et x−1 pour l’autre.
• On note A⋆ = A/{0}.
• Pour tout x ∈ A⋆ et n ∈ N, on note

n.x = nx = x+ x+ · · ·+ x︸ ︷︷ ︸
n fois

et xn = x.x. · · · .x︸ ︷︷ ︸
n fois

Proposition A.1.2 Soit (A,+, •) un anneau, pour tous x, y, z ∈ A, on a les règles
suivantes :

1. 0A • x = x • 0A = 0A.
2. x • (−y) = (−x) • y = −(x • y).
3. x • (y − z) = (x • y)− (x • z).
4. (y − z) • x = (y • x)− (z • x).

A.1.6 Corps
Définition A.1.15 On dit qu’anneau (K,+, •) est un corps si tout élément non nul
de K est inversible.

Si de plus • est commutatif on dit que K est un corps commutatif.

Proposition A.1.3 Tout corps est un anneau intègre.

Définition A.1.16 On appelle sous-corps d’un corps (K,+, •), tout sous-ensemble
K de K tel que K muni de la restrictions des deux lois + et • est lui même un corps.

A.2 Rappels d’algèbre linéaire
Dans cette section K est corps commutatif, en général c’est R ou C, et E un

ensemble non vide.

A.2.1 Espaces vectoriels
Définition A.2.1 On muni E d’une loi interne noté ” + ” et d’une loi externe sur K
noté ”.”,

on dit que E est un espace vectoriel sur K, ou encore un K-espace vectoriel
si : Pour tous λ, µ ∈ K, u, v ∈ E

1. (E, +) est un groupe commutatif.
2. 1.u = u.
3. (λ+ µ).u = λ.u+ µu. (Distributivité par rapport à l’addition des scalaires)
4. λ.(u+ v) = λ.u+ λ.v. (Distributivité par rapport à l’addition des vecteurs)
5. λ(µ.u) = (λµ).u.

On note le K-espace vectoriel : (E, + , . ). Ou un K-ev.
On appel les éléments de E des vecteurs et les éléments de K des scalaires.
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Proposition A.2.1 Soit E un K-espace vectoriel, et soient u ∈ E et λ ∈ K, on a :
1. 0.u = 0E.
2. λ.0E = 0E.
3. (−1).u = −u.
4. λ.u = 0E ⇐⇒ λ = 0 ou u = 0E.

Définition A.2.2 (Sous espace vectoriel) Soient (E, + , . ) un K-espace vecto-
riel, et A un sous ensemble de E.
A est un sous espace vectoriel de E si
• 0E ∈ A.
• u+ v ∈ A, ∀u, v ∈ A.
• λ.u ∈ A, ∀λ ∈ K, ∀u ∈ A.

Proposition A.2.2 Soit A un sous ensemble de E alors
• A est un sous-ev de E ⇐⇒ ∀λ, µ ∈ K, ∀u, v ∈ A : λ.u+ µ.v ∈ A.
• A est sous-e.v de E alors (A, + , . ) est un K-espace vectoriel.

Proposition A.2.3 Soient A et B des sous espaces vectoriels de E alors :
1. A ∩B est un sous espace vectoriel.
2. Toute intersection fini de sous espaces vectoriels est un sous espace vectoriel.
3. La somme A+B définit par A+B = {u+v / u ∈ A, v ∈ B}, est un sous espace

vectoriel.
4. A+B est le plus petit sous-espace vectoriel contenant à la fois A et B.

Définition A.2.3 Soient A et B des sous-espaces vectoriels de E, On dit que A et B
sont en somme directe dans E si :
• E = A+B.
• A ∩B = {0E}.

On note alors E = A⊕B.
On dit aussi que A et B sont des sous-espaces vectoriels supplémentaires dans
E.

Proposition A.2.4 Soient A et B des sous-espaces vectoriels de E, alors

A⊕B = E ⇐⇒ ∀x ∈ E, ∃! a ∈ A, ∃! b ∈ B : x = a+ b.

Définition A.2.4 Soient u1, ..., un des vecteur de E, on appel combinaison linéaire
de ces vecteurs par les coefficients λ1, ..., λn ∈ K, le vecteur

u = λ1u1 + ...+ λnun.

Définition A.2.5 Soit B = {u1, ..., un} une famille d’éléments de E
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A.2. RAPPELS D’ALGÈBRE LINÉAIRE 64

1. B est dite famille génératrice de E si tout élément de E est une combinaison
des éléments de B, c.a.d.

∀u ∈ E,∃λ1, ..., λn ∈ K : u = λ1u1 + ...+ λnun.

2. B est dite une famille libre ou linéairement indépendante si
λ1u1 + ...+ λnun = 0 ⇒ λ1 = ... = λn = 0.

3. La famille B est dite une base de E si B est simultanément libre et génératrice.
4. Si B est une base de E et de cardinale fini, on appel dimension de E le nombre

d’élément de B, noté
DimE := CardB.

5. Une famille d’éléments de E qui n’est pas libre est dite liée ou linéairement
dépendante.

Théorème A.2.1 Soit E un K-espace vectoriel, alors
1. une famille A d’éléments de E est liée si est seulement si au moins un des vecteurs

de A est combinaison linéaire des autres vecteurs de A.
2. Si E admet une base de dimension fini, alors toutes les bases de E ont le même

nombre d’éléments. c.a.d.
La dimension d’un espace vectoriel est une constante.

3. Si B est une basse de E alors pour tous u élément de E, u s’écrit d’une ma-
gnanière unique comme combinaison d’éléments de B.

4. Si E admet une famille finie de générateurs A alors il admet toujours une base
finie B ⊂ A.

Théorème A.2.2 (& définition : Sous-espace engendré) Soit {u1, ..., un} un en-
semble fini de vecteurs d’un K-espace vectoriel E. Alors :
• L’ensemble des combinaisons linéaires des vecteurs {u1, ..., un} est un sous-espace

vectoriel de E.
• C’est le plus petit sous-espace vectoriel de E (au sens de l’inclusion) contenant

les vecteurs u1, ..., un.
Ce sous-espace vectoriel est appelé sous-espace engendré par u1, ..., un et est noté
V ect(u1, ..., un), et on a aussi :

u ∈ V ect(u1, ..., un) ⇐⇒ ∃λ1, ..., λn ∈ K tels que u = λ1u1 + ...+ λnun.

Théorème A.2.3 Soient E un K-espace vectoriel de dimension fini, et A un sous-
espace vectoriel de E, alors on a

1. DimA ≤ DimE.
2. DimA = DimE ⇐⇒ A = E.
3. Si A = {0} alors DimA = 0.

Théorème A.2.4 Soient E un K-espace vectoriel de dimension fini, A, B et D des
sous espace vectoriel de E, alors

Dim (A+B) = DimA+DimB −Dim (A ∩B).
Si D = A⊕B alors :

DimD = DimA+DimB.
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A.2.2 Applications linéaires
Pour cette section, E et F sont des K-espaces vectoriels.

Définition A.2.6 Une application de E dans F est dite une application linéaire
si pour tous u, v ∈ E et λ ∈ K

1. f(u+ v) = f(u) + f(v).
2. f(λu) = λf(u).

- L’ensemble des applications linéaires de E dans F est noté L(E,F ).
- L’application nulle, notée 0L(E,F ) : E → F , u 7→ 0L(E,F )(u) = 0.
- L’application identité, notée IdE : E → E, u 7→ IdE(u) = u.

Proposition A.2.5

f ∈ L(E,F ) ⇐⇒ ∀λ, µ ∈ K, ∀u, v ∈ E : f(λu+ µv) = λf(u) + µf(v)

Proposition A.2.6 Soit f ∈ L(E,F ), alors
• f(0E) = 0F .
• f(−u) = −f(u), ∀u ∈ E.

Définition A.2.7 Soient f ∈ L(E,F ), et A un sous ensemble de E, on appelle image
directe de A le sous ensemble de F définit par :

f(A) := {f(u), u ∈ A}.

f(E) s’appelle l’image de l’application linéaire f et est noté Imf .

Définition A.2.8 Soit f ∈ L(E,F ), on appel noyau de f l’ensemble noté

Ker f := {u ∈ E, f(u) = 0F}.

Proposition A.2.7 Soit f ∈ L(E,F ), et A un sous ensemble de E
• Si A est un sous espace vectoriel de E, alors f(A) est sous espace vectoriel de F .
• Imf est sous espace vectoriel de F .
• Ker f est un sous espace vectoriel de E.
• f est injective ⇐⇒ Ker f = {0E} ⇐⇒ DimKer f = 0.
• f est surjective ⇐⇒ Imf = F ⇐⇒ DimImf = DimF .
• DimE = DimKer f +DimImf .

Proposition A.2.8 L’ensemble L(E,F ) muni de :
• la loi interne ” + ” somme des fonctions définit par (f + g)(x) := f(x) + g(x),
• la loi externe ”.” multiplication par un scalaire définit par (λ.f)(x) := λ.f(x),

est un K-espace vectoriel.
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A.2. RAPPELS D’ALGÈBRE LINÉAIRE 66

A.2.3 Matrices
Dans ce chapitre, K désigne un corps. On peut penser à Q, R ou C.

Définition A.2.9 Une matrice A est un tableau rectangulaire d’éléments de K.
– Elle est dite de taille n× p si le tableau possède n lignes et p colonnes.
– Les nombres du tableau sont appelés les coefficients de A.
– Le coefficient situé à la i-ème ligne et à la j-ème colonne est noté aij.
– Deux matrices sont égales lorsqu’elles ont la même taille et que les coefficients
correspondants sont égaux.
– L’ensemble des matrices à n lignes et p colonnes à coefficients dans K est noté
Mnp(K).

La matrice A est représenté sous la forme suivante :

A :=


a11 a12 · · · a1p
a21 a22 · · · a2p
... ... . . . ...
an1 an2 · · · anp

 ou A := (aij)1≤i≤n
1≤j≤p

Définition A.2.10 (Matrices particuliers) Soit A une matrice n× p,

1. A est une matrice carrée si n = p, c.a.d : A = (aij)1≤i,j≤n =


a11 · · · a1n
... . . . ...
an1 · · · ann

.

Dans ce cas {a11, a22, ..., ann} sont dite la diagonale de A.
2. Une matrice qui n’a qu’une seule ligne (n = 1) est appelée matrice ligne ou

vecteur ligne. On la note A = (a11, ..., a1p).
3. une matrice qui n’a qu’une seule colonne (p = 1) est appelée matrice colonne

ou vecteur colonne. On la note A = (aij)1≤i≤n =


a11
...
an1

.

4. La matrice dont tous les coefficients sont des zéros est appelée la matrice nulle.
Notée 0np ou 0.

5. La matrice identité est une matrice carrée dont tous les coefficients sont des
zéros sauf des 1 dans la diagonale, ou que

aij = δij, avec δij =

1 Si i = j,

0 Si 1 ̸= j.
notée : Idn :=



1 0 · · · 0 0
0 1 · · · 0 0
... ... . . . ... ...
0 0 · · · 1 0
0 0 · · · 0 1


6. La matrice triangulaire supérieur est matrice carrée dont tous les coeffi-

cients en-dessous de la diagonale sont des zéros,
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ou encore que aij = 0 pour tout i > j.

Notée : A =



a11 a12 · · · a1,n−1 a1n
0 a22 · · · a2,n−1 a2n
... ... . . . ... ...
0 0 · · · an−1,n−1 an−1,n
0 0 · · · 0 ann


7. La matrice triangulaire inférieur est matrice carrée dont tous les coeffi-

cients en-dessus de la diagonale sont des zéros,
ou encore que aij = 0 pour tout i < j.

Définition A.2.11 (Somme de matrices)
1. La somme de deux matrices A et B ayant la même taille n × p est une

matrice de même taille. Leur somme C = A+B définie par

A = (aij)1≤i≤n
1≤j≤p

, B = (bij)1≤i≤n
1≤j≤p

alors C = (cij)1≤i≤n
1≤j≤p

avec cij = aij + bij.

2. Le produit d’une matrice par un scalaire :λ ∈ K et A ∈ Mnp(K) est une
matrice de même taille, définit par : λA := (λaij)1≤i≤n

1≤j≤p
.

3. La Matrice opposée de A est la matrice notée −A := (−1)A.
4. La différence de matrices A et B est A−B := A+ (−1)B.

Proposition A.2.9 (Mnp(K), + , . ) est un K-espace vectoriel de dimension n.p.

Définition A.2.12 (Produit de matrices) Soient deux matrices
A = (aij)1≤i≤n

1≤j≤p
∈ Mnp(K) et B = (bjk)1≤j≤p

1≤k≤q
∈ Mpq(K), le produit de A et B noté

A.B ou AB, est la matrice C = (cik)1≤i≤n
1≤k≤q

∈Mnq(K) définit par :

cik =
p∑

m=1
aim.bmk = ai1.b1k + ai2.b2k + ...+ aip.bpk.

Remarque A.2.1
1. Le produit AB de deux matrices A et B est défini si et seulement si le nombre

de colonnes de A est égal au nombre de lignes de B.
2. Le produit de matrices n’est pas commutatif en général AB ̸= BA.
3. AB = 0 ⇏ A = 0 ou B = 0.

On peut avoir A ̸= 0 et B ̸= 0 mais AB = 0.
4. AB = AC ⇏ B = C.

Proposition A.2.10 Soient A,B et C trois matrices convenables alors :
1. A(B.C) = (A.B)C = ABC.
2. A(B + C) = AB + AC et (A+B)C = AC +BC.
3. A.0M = 0M et 0M .A = 0M .
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4. Si A ∈Mnp(K) alors A.Idp = A et Idn.A = A.

Définition A.2.13 (Matrice inverse) Soit A ∈ Mn(K), On dit que A est inver-
sible ou elle admet une matrice inverse, s’il existe une matrice B ∈ Mn(K) telle
que :

AB = BA = Idn

On note la matrice inverse de A : A−1.
et on note GLn(K) l’ensemble des matrices inversibles.

Proposition A.2.11
1. La matrice inverse n’existe que pour les matrice carrée.
2. La matrice inverse si elle existe, elle est unique.
3. ∀A ∈ GLn(K) : (A−1)−1 = A.
4. ∀A,B ∈ GLn(K) : (AB)−1 = B−1A−1.
5. ∀A,B ∈Mn(K), ∀C ∈ GLn(K) : AC = BC ⇒ A = B.
6. Id−1

n = Idn.

Méthode de Gauss pour inverser les matrices

La méthode pour inverser une matrice A ∈ GLn(K) consiste à faire des opérations
élémentaires sur les lignes de la matrice A jusqu’à la transformer en la matrice identité
Idn.
On fait simultanément les mêmes opérations élémentaires en partant de la matrice Idn,
on aboutit alors à une matrice qui est B = A−1.

a11 a12 · · · a1p | 1 0 · · · 0
a21 a22 · · · a2p | 0 1 · · · 0
... ... . . . ... | ... ... . . . ...
an1 an2 · · · anp | 0 0 · · · 1

⇝


1 0 · · · 0 | b11 b12 · · · b1p
0 1 · · · 0 | b21 b22 · · · b2p
... ... . . . ... | ... ... . . . ...
0 0 · · · 1 | bn1 bn2 · · · bnp


Les opérations élémentaires sur les lignes sont :
• Li ←− λLi avec λ ∈ K∗

• Li ←− Li + λLj

• Li ←→ Lj

A.2.3.1 Système linéaire et matrice

Proposition A.2.12 Tous système linéaire S de n-équations et p-variables est une
equation matriciel sous la forme AX = B.
avec A ∈Mnp(K).

S =



a11x1 + a12x2 + · · ·+ a1pxp = b1

a21x1 + a22x2 + · · ·+ a2pxp = b2
...
an1x1 + an2x2 + · · ·+ anpxp = bn

⇐⇒


a11 a12 · · · a1p
a21 a22 · · · a2p
... ... . . . ...
an1 an2 · · · anp



x1
x2
...
xp

 =


b1
b2
...
bp


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Théorème A.2.5 Un système d’équations linéaires n’a soit aucune solution, soit une
seule solution, soit une infinité de solutions.

Proposition A.2.13 Si la matrice A est inversible, alors le système AX = B admet
une unique Solution et c’est :

X = A−1B

A.3 Rappels de topologie
Soit E un ensemble quelconque.

Définition A.3.1
On appelle partie de E un sous-ensemble de E.
l’ensemble de toutes les parties de E est dite l’ensemble des parties de E est noté
P(E).

Définition A.3.2 (Topologie, Ouvert) Une topologie sur un ensemble E est une
partie T de P(E) qui vérifie les propriétés suivantes :
• ∅ ∈ T , E ∈ T .
• L’intersection de deux éléments de T est un élément de T , c.a.d

∀A,B ∈ T , A ∩B ∈ T .

• La réunion (finie ou infinie) d’une famille d’éléments de T est un élément de T ,
c.a.d

∀A1, A2, ... ∈ T ,
⋃
i

Ai ∈ T .

Un espace topologique est un couple (E, T ) où E est un ensemble et T une to-
pologie sur E.

Les éléments de T sont appelés les ouverts, ou les parties ouvertes, de E.

Proposition A.3.1 (& définition) Tout ensemble E, admet au moins deux topolo-
gies :
• la topologie dite topologie discrète Td = P(E).

(E, T ) est dit espace topologique discret.
• la topologie dite topologie grossière Tg = {∅, E}.

(E, T ) est dit espace topologique grossie.

Example A.3.1
1. Sur R, l’ensemble formé de ∅,R et des intervalles de la forme ]a, b[, n’est pas

une topologie, car la troisième propriété n’est pas vérifiée.
2. En revanche, l’ensemble formé de ∅,R et des réunions quelconques d’intervalles

de la forme ]a, b[ est bien une topologie sur R. Sauf mention contraire, R sera
toujours muni de cette topologie Tu appelée topologie usuelle.
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Définition A.3.3 Soit E un ensemble et O1, O2 deux topologies sur E.
On dit que O1 est plus fine que O2 ou O2 est plus grosse que O1 si O1 ⊂ O2.

Lemme A.3.1 Soit (O)i∈I une famille de topologies sur E,
alors ⋂i∈I Oi est une topologie sur E.

Définition A.3.4 Soit A un sous-ensemble de E,
l’intersection de toutes les topologies de E contenant A est une topologie sur E conte-
nant A, on l’appelle la topologie engendrée par A, et on la note OA.

Définition A.3.5 (Fermé) , Un fermé (ou une partie fermée) de l’espace topolo-
gique (E, T ) est une partie de E dont le complémentaire dans E est un ouvert.

Example A.3.2
1. Pour la topologie grossière, les fermés sont ∅ et E.
2. Pour la topologie discrète, toute partie de E sont à la fois ouverte et fermée.
3. Sur (R, Tu), les fermés sont ∅,R et des réunions quelconques d’intervalles de la

forme [a, b]. En particulier, les singletons sont fermés.

Théorème A.3.1 Une topologie peut aussi être définie par l’intermédiaire de ses fermés.
Pour qu’une partie F ⊂ P(E) soit l’ensemble des fermés d’une topologie, il faut et

il suffit qu’elle vérifie les conditions suivantes :
• ∅ ∈ F , E ∈ F .
• L’intersection (finie ou infinie) d’une famille d’éléments de F est un élément de
F , c.a.d

∀A1, A2, ... ∈ F ,
⋂
i

Ai ∈ F .

• La réunion de deux éléments de F est un élément de F , c.a.d

∀A,B ∈ F , A ∪B ∈ F .

Définition A.3.6 (Topologie induite) Soit (E, T ) un espace topologique et A une
partie de E, On vérifie immédiatement que l’ensemble :

TA = {O ∩ A | O ∈ T }

est une topologie sur A. On l’appelle topologie induite sur A par T .

Lorsque aucune précision n’est donnée, on considère toujours qu’une partie d’un
espace topologique (E, T ) est munie de la topologie induite par T .

Définition A.3.7 (Espace métrique, distance) Soit E un espace topologique non
vide,
une distance sur E est une application d de E × E dans R+ qui vérifie,
pour tous x, y, z ∈ E :

1. d(x, y) = d(y, x).
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2. d(x, y) = 0 si et seulement si x = y.
3. d(x, z) ≤ d(x, y) + d(y, z).

Si d est une distance sur E, le couple (E, d) est appelé espace métrique.

Définition A.3.8 (Boules et sphère) Soient (E, d) un espace métrique, a ∈ E et
r ∈ R+.
• La boule ouverte de centre a et de rayon r est l’ensemble noté B(a, r) définit

par :
B(a, r) = {x ∈ E | d(x, a) < r}.

• La boule fermée de centre a et de rayon r est l’ensemble noté Bf (a, r) ou
B̄(a, r) définit par :

B̄(a, r) = {x ∈ E | d(x, a) ≤ r}.

• La sphère de centre a et de rayon r est l’ensemble

S(a, r) = {x ∈ E | d(x, a) = r}.

Définition A.3.9 (Intérieur, adhérence, frontière d’une partie) Soient (E, T )
un espace topologique et A est une partie de E.
• Pour toute partie A de E, on note le complémentaire de A dans E :

CE(A) = {x ∈ E, x ̸∈ A}

• L’intérieur de A est le plus grand ouvert (pour l’inclusion) contenu dans A, on
le note Å.
• L’adhérence de A est le plus petit fermé (pour l’intersection) contenant A, on

le note A. Un point x est dite adhérent à A lorsque x ∈ A.
• La frontière de A est le complémentaire de l’intérieur de A dans l’adhérence

de A, noté Fr A :
Fr A = A\Å = CA(Å).

Un point x est dite frontière à A lorsque x ∈ Fr A.

Proposition A.3.2 Soient (E, T ) un espace topologique et A est une partie de E, On
a :
• A ouvert de E ⇐⇒ Å = A.
• A fermé de E ⇐⇒ A = A.

• CE(A) =
⌢̊
CE(A).

• CE(Å) = CE(A).
• Fr A = Fr (CE(A)).

Proposition A.3.3 Soient A une partie de E et x ∈ A.
• x ∈ Å ⇐⇒ ∃ O ⊂ E ouvert , x ∈ O ⊂ A.
• x ∈ A ⇐⇒ ∀ O ⊂ E ouvert , x ∈ O,⇒ O ∩ A ̸= ∅.
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A.3. RAPPELS DE TOPOLOGIE 72

• x ∈ Fr A ⇐⇒ ∀ O ⊂ E ouvert , x ∈ O,⇒ O ∩ A ̸= ∅ and O ∩ CE(A) ̸= ∅.

Corrolaire A.3.1 Soient (E, d) un espace métrique et A une partie de E.
• x ∈ Å ⇐⇒ ∃ r > 0, ;B(x, r) ⊂ A.
• x ∈ A ⇐⇒ ∀ r > 0, ;B(x, r) ∩ A ̸= ∅.

Définition A.3.10 (Voisinage.) Soient (E, T ) un espace topologique et A, B deux
partie de E.
On dit que B est un voisinage de A lorsqu’il existe un ouvert O de E tel que

A ⊂ O ⊂ B.

On note V(A) l’ensemble des voisinage de A.

Si A = {x}, on dit que B est un voisinage de x, on note V(x) l’ensemble des
des voisinage de x.

Définition A.3.11 (Système fondamental de voisinages. ) Soient (E, T ) un es-
pace topologique et A une partie de E. Un système fondamentale de voisinages
de A est un sous-ensemble U ⊂ V(A) tel que

∀V ∈ V(A), ∃U ∈ U ⊂ V(A) : U ⊂ V.

Théorème A.3.2 Soit (E, τ) un espace topologique. O est un ouvert de E si et seule-
ment si O est un voisinage de chacun de ses points.

Définition A.3.12 Soient (E, τ) un espace topologique, et A ⊂ E, x ∈ E :
• On dit que x est adhérent à A si et seulement si pour tout V ∈ V(x), on
V ∩ A ̸= ∅.
• On dit que x est un point isolé de A si et seulement s’il existe V ∈ V(x), on
V ∩ A ̸= {x}.
• On dit que x est un point d’accumulation de A si et seulement si pour tout
V ∈ V(x), l’ensemble V/{x} ∩ A est infini.

Définition A.3.13 (Densité. ) Soient (E, τ) un espace topologique, et A, B des par-
ties de E, tel que A ⊂ B ⊂ E.

On dit que A est dense dans B lorsque B ⊂ A, ou, ce qui est équivalent, lorsque
tout ouvert de E contenant un point de B rencontre A.

On dit qu’une partie D ⊂ E est dense dans E si et seulement si D = E.

Définition A.3.14 (Espace séparés)
Un espace topologique (E, T ) est dit espace séparé ou espace de Hausdorff lorsque,
pour tous points distincts x et y de E, il existe des voisinages distincts Vx et Vy de x
et y respectivement. c.a.d :

∀x, y ∈ E, x ̸= y =⇒ ∃Vx ∈ V(x),∃Vy ∈ V(y) : Vx ∩ Vy = ∅.
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Exemples :
1. Un espace discret est toujours séparé, un espace grossier à au moins deux éléments

n’est jamais séparé.
2. Soit E = {0, 1, 2}, la topologie {∅, {0}, E} est non séparée puisque le seul ouvert

contenant 1 est E et que 0 ∈ E.
3. Tout espace métrique est séparé.

Proposition A.3.4 soit (E, τ) est un espace topologique séparé alors pour tout l ∈ E,⋂
V ∈V(l)

V = {l}.

Proposition A.3.5 Soit (E, τ) un espace topologique séparé, et A une partie de E,
alors la topologie induite sur A par la topologie de E est séparée.

Proposition A.3.6 ( & définition : Topologie produit)
soient (E1, τ1) et (E2, τ2) deux espace topologiques,

On appel ouvert élémentaire de E1×E2 toute sous-ensemble O ⊂ E1×E2 de la
forme O = O1 ×O2 ou O1 ∈ τ1 et O2 ∈ τ2.

La famille formée de l’ensemble vide et des réunions quelconques d’ouverts élémentaires
définit une topologie sur E1 × E2 appelée topologie produit.

Proposition A.3.7 Si E1 et E2 sont séparés alors E1 × E2 est aussi séparé.
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Bibliographie

[1] M. Audin. On the topology of Lagrangian submanifolds examples and counter-
example. Portugaliae Mathematica, 62(4) :375–419, 2005.

[2] C. Baikoussis and D.E. Blair. Integral surface of Sasakian space forms. Journal
of Geometry, 43 :30–40, 1992.

[3] M. Belkhalfa and A. Chikh Salah. Surface in the nearly Sasakian 5-sphere. Bull.
math. Soc. Sci. Math. Roumanie, 59(4) :317–330, 2016.

[4] M. Berger and B. Gostiaux. Differential geometry, Manifolds, Curves, and Sur-
faces. Springer-Verlag, 1988.

[5] D.E. Blair. Contact manifolds in Riemannian geometry, volume 509. Lecture
notes in nathematics, Springer-Verlag, 1976.

[6] D.E. Blair. Riemannian geometry of contact and symplectic manifolds, volume
203. Progress in Mathematics, Springer Burkhäuser, 2010.
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Grenoble, 1996.

[18] D. Laugwitz. Differential and Riemannian geometry. Translated by Fritz Stein-
hardt. Academic Press, New York-London, 1965.

[19] H. Liu, M. Magid, Ch. Scharlach, and U. Simon. Recent developments in affine
differential geometry. In Geometry and topology of submanifolds, VIII (Brussels,
1995/Nordfjordeid, 1995), pages 1–15. World Sci. Publ., River Edge, NJ, 1996.

[20] K. Yano and M. Kon. Structures on manifolds. World Scientific, 1984.

A.Chikh-Salah 2025 Université de Ghardaia
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