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بالعربية الملخص
ا৙৑ނႤၽل وّأگ٭ڎ ਍ಾިعّ ૭૖ྟص ً ༠؇ݬ۰ اৎ৊ڰ۳ިم، ۱ڍا ّޚިߌߵ ሌᇿإ ۰ஓ୴دا ۰༥؇༡ ۱ٷ؇ك ڣ؆ن اৎ৊ފ؇ڣ؇ت، ۋފ؇ب ሒᇭ اܳٺႤၽ݁ܭ ᆇᆅ৙৑٭۰ َޙݠاً
Ⴄၽّ݁ܭ لأڎ ቕረ ؜ٷڎ݁؇ ᄭႍၽ݁ލ أول ޖ۳ݠت وڢڎ اৎ৊أگّڎة. ا৙৑ނႤၽل ྘ܳލ݄ܭ اܳٺႤၽ݁ܭ ݁ڰ۳ިم ّިݿ٭ؕ আॻ༟ ا୒ୖٷڎݿ۰ గఒ༟؇ء ا؜ٺ݄ڎ .؇਍ಾ؇ۋ٭ ሒᇭ

ل۰. اৎ৊ފٺި ଫଃ༚ ا৙৑ݿޚں আॻ༟ ይዧٺޚٴ٭ݑ ؇ً ੆ݬ؇ࠍ وܳ٭଩ଊغ رஓ୷؇ن
มฆܳوا ܋ިݴ، ݿٺ ۱ଫଊஓ୾ٷ۰ ا৚৑ن ّأُݠف ݬ٭؞۰ ڢڎّم اᄳᄟي ܋ިݴ، ݿٺ ۏިرج ଫଃاܳފ أߓߵز۱ܾ و݆݁ اܳٺڰ؇ݪܹ٭۰، ا୒ୖٷڎݿ۰ గఒ༟؇ء ࣁ༠ࣖܭّ
ا৕৑ނ৖৑Ⴄၽت. ᆇᅹ٭ؕ ࠍ੆ܭ Ⴄ၍ڣ٭ً؇ لܝ݆ ቕረ ۱ڍا ܳـܝ݆ و༡ڎوده. اܳڰݯ؇ء আॻ༟ اܳٺႤၽ݁ܭ ඔ൹ً ఈః༟ڢ۰ আॻ༟ ا۱ଫଊܳٷ۰ ଫଊ༟ ᄭႍၽލగጻዧ ؇ًਃಮඹජً ఈః༡ ݁ټّܹب
اࠍ৖৑؇੆ت ఈఃৎ৊ء۰݁ ዻዧوذ اৎ৊ފٺأఈఃَ݄ت، আॻ༟ اܳٺႤၽ݁ܭ ڢިا༟ڎ ଫଃ؞٭ਐಸ ڢ؇م ۋ٭ت ෛ੼ٺܹڰً؇، ݁ފ؇راً ྘ོިًٴިن ๴ཏأܳ٭ܝ ቕረ؇اܳأ ෛڍ ّູ ا و୒ୖڍا،
أ؜گڎ أَިاع আॻ༟ اܳٺఈః݁Ⴄၽت ࠍ੆ފ؇ب ༥ڎࢴࣖة آڣ؇ق ًڰٺں ᆙᆊۜب ۬෠ຩ؇ਐ಻ ܳـܝ݆ ܋ٴଫଃاً، اܳٺ༲ڎي ۱ڍا Ⴄ၍ن ا௱௯௫ڎود. ঌॻ௱௯௫ا ଫّଃاܳٺ؞ ذات

ا୒ୖٷڎݿ٭۰. ا਍ಮႤၽܳ؇ت ݆݁
༡ڎث! اᄳᄟي ؇݁ ݁أً؇ َܝྥލژ ۱٭؇

દઊ؇اܳٺٴ اܳލأص، ݁ٺأڎدات আॻ༟ اܳٺႤၽ݁ܭ ො੼ܹ٭ً؇، ا௱௯௫ڎود ଫଃاܳٺ؞ ذات اܳލأص ݁ٺأڎدات اܳٺڰ؇ݪܹ٭۰، ا৙৑ނႤၽل : اिऻء׫ոؼמ١ اڤոஈ࿦࿮ت
ො੼ܹ٭ً؇. ا௱௯௫ڎود ଫଃاܳٺ؞ اܳޚިًިܳިۏ٭۰، اᄴᄟر༥؇ت ل۰ َޙݠ ،๴ངୖٷڎ୒ا

Abstract in English
Given the fundamental role of integration in measuring distances, there has always been a need

to develop this concept, especially due to the diversity and complexity of shapes in the real world.
Geometers have historically sought to extend integration to more complex geometric objects.

The first major obstacle arose when Riemann and Lebesgue integrals failed to apply on non-flat
surfaces. This prompted the intervention of differential geometers, most notably George Stokes, who
formulated the famous Stokes's theorema partial resolution connecting integration over a manifold
with its boundary.

However, this did not fully solve the issue. Therefore, Alexey V. Potepun approached the problem
differently by modifying the foundations of integration on manifolds, adapting it to the framework of
locally-finite variation. This was a major challenge, but it allowed for powerful new generalizations
of the integral.

Let us now explore what exactly happened.
Keywords : Differential Forms, Manifolds with Locally-Finite Variations, Integration on Manifolds,
Geometric Measure Theory, Topological Degree Theory, Locally-Finite Variation.

Résumé en Français
Étant donné l'importance du concept d'intégration dans le calcul des distances, il est toujours néces-

saire de développer cette notion, surtout à cause de la diversité et de la complexité des formes dans
la vie réelle. Les géomètres ont donc travaillé à généraliser l'intégrale aux objets géométriques plus
complexes.

Le premier problème est apparu lorsque les intégrales de Riemann et de Lebesgue ont montré leurs
limites sur des surfaces non planes. Cela a conduit à l’intervention des géomètres différentiels, no-
tamment George Stokes, qui a formulé le célèbre théorème de Stokes, apportant une solution partielle
au problème.

Cependant, ce n’était pas une solution complète. Ainsi, Alexey V. Potepun a emprunté une autre
voie en modifiant les règles d’intégration sur les variétés, en les adaptant au cadre de la variation
localement finie. Ce fut un défi majeur, mais ses travaux ont ouvert la voie à de nouvelles extensions
puissantes de l’intégrale.

Découvrons ensemble ce qui s’est passé !
Mots-clés : Formes différentielles, Variétés à variation localement finie, Intégration sur les variétés,
Théorie de la mesure géométrique, Degré topologique, Variation localement finie.
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Introduction

The classical theory of integration of differential forms is well-established for smooth manifolds,
where integration is defined using local parametrizations and partitions of unity. This theory can be
extended to piecewise-smooth manifolds and even to rectifiable curves in one dimension. However,
when moving beyond one dimension or relaxing smoothness conditions, traditional approaches such
as the use of currents or Lipschitz parametrizations may fail to provide a robust integration framework.

This work introduces a novel class of geometric objects: n-dimensional manifolds embedded in
Rm with locally-finite variations . These manifolds are not necessarily smooth or Lipschitz-regular,
but they support a vector-valued measure that encodes both orientation and geometry. This measure
allows for the definition of an integral of differential forms in a way that retains key properties of the
Lebesgue integral including countable additivity, measurability of forms, and convergence theorems.

A crucial feature of this approach is that it goes beyond the class of rectifiable manifolds. While
every one-dimensional manifold with locally-finite variation corresponds to a rectifiable curve (and
hence admits a natural parametrization), in higher dimensions there exist manifolds with locally-finite
variation that do not admit Lipschitz parametrizations . Thus, these objects lie outside the scope of
classical geometric measure theory and the theory of rectifiable currents.

The main result of the first part of the thesis establishes that every continuous differential form is
integrable over any compact subset of an orientable manifold with locally-finite variations , and that
the integral is finite. This confirms that such manifolds represent a broad and natural class for which
a well-behaved integration theory exists.

The author conjectures that manifolds with locally-finite variation form the most general class
of manifolds for which integration of differential forms can be consistently defined while preserving
essential analytical properties such as limit theorems and the integrability of continuous forms.

6



1
Preliminaries

The references for this chapter are [25, 45, 14, 42, 33, 50, 36, 41.]

1.0.1 σ-algebra
Definition 1.0.1 (Algebra). Let Ω be a non-empty set. An algebra (or field) of subsets of Ω is a
collection F ⊆ P(Ω) such that:

1. Ω ∈ F ,

2. If A ∈ F , then Ac ∈ F (closed under complementation),

3. If A,B ∈ F , then A ∪ B ∈ F (closed under finite unions).

Definition 1.0.2 (σ-Algebra). Let Ω be a non-empty set. A σ-algebra (or σ-field) of subsets of Ω is a
collection F ⊆ P(Ω) such that:

1. Ω ∈ F ,

2. If A ∈ F , then Ac ∈ F (closed under complementation),

3. If A1, A2, A3, · · · ∈ F , then
⋃∞
i=1Ai ∈ F (closed under countable unions).

Remark 1.0.1. Every σ-algebra is an algebra, but not every algebra is a σ-algebra. The main dis-
tinction lies in the closure property:

- An algebra is closed only under finite unions.
- A σ-algebra is closed under countable unions, making it suitable for defining measures and

probabilities on infinite sample spaces.

Theorem 1.0.1. Fubini's theorem
Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces, and let

f : X × Y → R

be a measurable function such that∫
X×Y

|f(x, y)| d(µ× ν)(x, y) <∞.

Then, the iterated integrals exist and satisfy∫
X×Y

f(x, y) d(µ× ν)(x, y) =

∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

f(x, y) dµ(x)

)
dν(y).

7
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Intuition: This theorem allows you to compute the integral over the product space X × Y by
iteratively integrating with respect to each variable. The main requirement is that the function f is
absolutely integrable with respect to the product measure µ× ν.

Definition 1.0.3. Equivalence Class: Let ∼ be an equivalence relation on a set A. For any element
a ∈ A, the equivalence class of a is defined as:

[a] = {x ∈ A | x ∼ a}

That is, the set of all elements in A that are related to a under ∼.
A relation R on a set A is reflexive if:

∀a ∈ A, a R a

That is, every element is related to itself.

A relation R on a set A is symmetric if:

∀a, b ∈ A, a R b =⇒ b R a

This means if a is related to b, then b is also related to a.

A relation R on a set A is transitive if:

∀a, b, c ∈ A, (a R b and b R c) =⇒ a R c

This means if a is related to b, and b is related to c, then a must be related to c.

Partition of unity:

In order to generalize the notion of integration to n-forms on an arbitrary manifoldM , we will need
the concept of a partition of unity.

Definition 1.0.4. Let G be open subset of Rn. The pre image of a point y ∈ Rn under the function
f : G→ Rn is the set of all points x ∈ G such that f(x) = y

f−1(y) = {x ∈ G | f(x) = y}

Definition 1.0.5. Let the subset E ⊂ G . We take the pre-image of y under f and then intesection it
with the subset E we get :

f−1(y) ∩ E = {x ∈ E | f(x) = y}

Definition 1.0.6. The diameter of a subset A ⊂ Rn is defined as

diam(A) = sup
x,y∈A

ρ(x, y) where ρ the metric distance in Rn

Definition 1.0.7. Summable function
A measurable function g : Ω → R where (Ω, A, µ) is a measure space is said to be summable if

the Lebesgue integral of the absolute value of g exists and is finite:∫
Ω

|g| dµ < +∞.

An alternative way of expressing this condition is to assert that g ∈ L1(Ω).

Remark 1.0.2. Note that some authors distinguish between integrable and summable: an integrable
function is one for which the above integral exists; a summable function is one for which the integral
exists and is finite. see([42])

8
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1.0.2 Continuity theorem (Paul Lévy)

Characteristic functions and weak convergence

Definition 1.0.8. The characteristic function of a random variable X is defined by:

ϕ(t) = E(eitX)

Understanding the expression E(eitXn) this let's break down what each part means:

• E : is the expected value (or average) of a random quantity. It tells us what value we would
expect to see ``on average'' if we observed the random variable many times.

• e : The base of the natural logarithm , used here in an exponential function.

• i : The imaginary unit, defined by i2 = −1. It appears in complex numbers.

• t: A real number parameter (can be any real value). It's the input to the characteristic function.

• Xn : A random variable, typically one element in a sequenceX1, X2, . . ..It might represent the
result of an experiment that changes each time.

• This is a complex exponential expression. Using Euler’s formula:

eitXn = cos(tXn) + i sin(tXn)

So, eitXn is a complex number that lies on the unit circle and depends on the value of tXn.

It uniquely determines the distribution of X . That is, two random variables with the same char-
acteristic function have the same distribution.

Proposition 1.0.1. Let X = (X1, X2, . . . , Xd) be a random vector in Rd. Then its characteristic
function is:

ϕ(t) = E(eit·X) = E
(
ei

∑d
k=1 tkXk

)
for t = (t1, . . . , td) ∈ Rd

This function also uniquely determines the joint distribution of X .

Proposition 1.0.2 (Cramér-Wold device). To determine the distribution of a random vector X , it
suffices to know the distributions of all linear combinations:

a1X1 + · · ·+ adXd for all a ∈ Rd.

Hence, the characteristic function ϕ(t) for all t ∈ Rd determines the distribution of X .

Theorem 1.0.2 (Continuity theorem (Paul Lévy)). Let (Xn) be a sequence of real-valued random
variables. Suppose:

E(eitXn) −→ ϕ(t) for all t ∈ R

Then the following are equivalent:

1. (Xn) is tight, i.e.,
lim
x→∞

sup
n
P (|Xn| > x) = 0.

The symbol P stands for the probability measure. It is shorthand for:

The probability that the random variable |Xn| exceeds the value x.

9
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Mathematically, this is written as:
P (|Xn| > x)

2. Weak convergence: Xn
d−→ X for some random variable X ∈ Rn.

3. ϕ is a characteristic function of some X ∈ Rn, i.e.,

ϕ(t) = E(eitX).

4. ϕ is a continuous function of t.

5. ϕ is continuous at t = 0.

If all the conditions (1)-(5) hold, then Xn
d−→ X for X as in (3).

For more details, see ([14, 41])

Whitneys approximation theorem
For any continuous function f defined on smooth manifoldM , there exists , for any ε > 0 such that

sup
x∈M

|f(x)− g(x)| < ε for all p ∈M.

This theorem guarantees that continous function can be approximated arbitrarily closely by differen-
tiable function

Topological reminder
As it is well known, the continuity of a map can be characterised by the concept of open sets. A map
ϕ is continuous if and only if the preimage ϕ−1(G) is open for each open subset G. A map ϕ on a
manifold maps to Rn. There, the usual notion of distance defines what the open subsets are. In this
section we will choose the open subsets of a manifold so that the maps are continuous.

Definition 1.0.9. A topological space [M,G] is a setM together with a collection G of open subsets
ofM such that:

(G1) M, ∅ ∈ G,

(G2) For {Gi} ⊂ G, we have
⋃
iGi ∈ G,

(G3) For G1, . . . , Gm ∈ G, we have G1 ∩ · · · ∩Gm ∈ G.

The collection G is called a topology, and its members are called open sets.

The concept of topology enables one to define the notion of convergence:

• A sequence of elements P1, P2, . . . in a topological spaceM converges to an element P ∈ M
if for each G ∈ G such that P ∈ G, there exists an indexm0 such that for every natural number
m > m0, Pm ∈ G.

The uniqueness of the limit is enforced by a so-called separation axiom:

10
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Definition 1.0.10. A topological space [M,G] is called a Hausdorff space if for every two distinct
P,Q ∈M , there exist open sets G,H ∈ G such that P ∈ G and Q ∈ H with G ∩H = ∅.

• For two different limiting values P andQ of the same sequence in a Hausdorff space, we could
choose disjoint open setsG andH with P ∈ G andQ ∈ H , and then for largem, all Pm would
have to lie in both G and H , a contradiction, since G ∩H = ∅.

• An atlas creates a topology on the base set M with the goal of making the maps homeomor-
phisms, that is, they must be continuous in both directions.

Definition 1.0.11. A subsetG of a setM equipped with an atlas is called open if for each chart (U,ϕ),
the subset

ϕ(U ∩G) = {ϕ(P ) : P ∈ U ∧ P ∈ G}
of Rn is open.

Definition 1.0.12. LetM,N be two topological spaces. A continuous map f : M → N is a homeo-
morphism if, in addition, it is invertible and its inverse f−1 : N →M is also continuous.

Definition 1.0.13. A map f from an open set U ⊂ Rn into an open set V ⊂ Rn is a diffeomorphism
if:

• f is bijective,

• f is differentiable on U ,

• f−1 is differentiable on V .

Remark 1.0.3. A map f is called a diffeomorphism of class Ck, k > 0, if f is differentiable of class
Ck, and there exists g : V ⊂ Rn → U ⊂ Rn, differentiable of class Ck, such that g ◦ f = IdRn and
f ◦ g = IdRn . We write g = f−1. In the case k = 0, we say that f is a homeomorphism.

Definition 1.0.14. An immersion of class Ck from an open set U ⊂ Rn to Rn is a map f : U → Rn,
such that for all p ∈ U , its differential at p, Dfp, is injective.

A submersion of class Ck from an open set U ⊂ Rn to Rn is a map f : U → Rn of class Ck, such
that for all p ∈ U , its differential at p, Dfp, is surjective.

Theorem 1.0.3 ( Local inversion theorem). Let f be a map from an open set U of Rn into an open
set V of Rn of class Ck, k ≥ 1, and let a ∈ U such that dfa is invertible. Then there exists a
neighborhood Ua of a in U and a neighborhood Vf(a) of f(a) in V such that the restriction of f to Ua
is a Ck-diffeomorphism from Ua to Vf(a).

Definition 1.0.15 (Local chart). A topological spaceM that is Hausdorff and separable is a topolog-
ical manifold of dimension n if for every p ∈ M , there exists an open neighborhood U of p, an open
set V ⊂ Rn, and a map ϕ : U → V that is a homeomorphism. The pair (U,ϕ) is called a local chart
ofM at the point p. For every p ∈ U , the coordinates of ϕ(p) in Rn are the coordinates of p in the
chart (U,ϕ).

Definition 1.0.16 (Atlas). Let M be a topological manifold and A = {(Uα, ϕα)}α∈I be a family of
local charts ofM . We say that A is an atlas ofM ifM =

⋃
α∈I Uα.

Definition 1.0.17 ( Change of chart maps). Let now A = {(Uα, ϕα)}α∈I be an atlas of M , and
(Uα, ϕα), (Uβ, ϕβ) two charts such that Uα ∩ Uβ 6= ∅. The maps

Φαβ = ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

are called transition maps or change of chart maps.

11
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Figure 1.1: The chart transition homeomorphism

Definition 1.0.18. LetM be a topological manifold and A = {(Uα, ϕα)}α∈I an atlas ofM . We say
that A is of class Ck, 1 ≤ k ≤ ∞, if for all α and β in I , the change of chart maps

Φαβ = ϕβ ◦ ϕ−1
α

are diffeomorphisms of class Ck from ϕα(Uα ∩ Uβ) onto ϕβ(Uα ∩ Uβ).

Definition 1.0.19. LetM be a topological manifold and let A1, A2 be two atlases of class Ck onM .
We say that A1, A2 are Ck-compatible if A1 ∪ A2 is still an atlas of class Ck onM .

Remark 1.0.4. The relation of Ck-compatibility is an equivalence relation on the set of class Ck

atlases onM . The union of all atlases in the same equivalence class is called a saturated (or complete)
Ck-atlas. Every class Ck atlas onM is therefore contained in a unique saturated Ck-atlas.

Definition 1.0.20 (Differentiable maps between manifolds). Let M and N be two manifolds of di-
mensions m and n respectively, and let f : M → N be a map. We say that f is of class Ck on M ,
with k > 1, if for every point p ∈ M , every chart (U,ϕ) ofM at the point p, and every chart (V, ψ)
of N at the point f(p) such that f(U) ⊂ V , the map

ψ ◦ f ◦ ϕ−1 : ϕ(U) → ψ(V )

is of class Ck.
The map f is a submersion if ψ ◦ f ◦ ϕ−1 is a submersion from ϕ(M) into ψ(N). Since the chart

transition maps are of class Ck, the map f is of class Ck onM if and only if, for every point p ∈M ,
there exists a chart (U,ϕ) ofM at p, and a chart (V, ψ) of N at f(p) such that f(U) ⊂ V , and

ψ ◦ f ◦ ϕ−1 : ϕ(U) → ψ(V )

is of class Ck.
In particular, if N = R, endowed with its natural structure as a Ck-manifold, then f :M → R is

of class Ck.

12



2
Multilinear forms

The references for this chapter are [25, 31, 12, 18, 5.]

2.1 Symmetric group Sn
Definition 2.1.1 (Symmetric group Sn). Let n ∈ N∗, we denote by Sn the set of bijections from the
set An = {1, . . . , n} to itself. Sn is a finite set with cardinality card(Sn) = n!. The elements of Sn
are called permutations. An element σ ∈ Sn is represented by the matrix

σ =

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
Sn equipped with the composition of functions ◦ is a non-commutative group.
If σ, µ ∈ Sn, we denote σµ := σ ◦ µ.

Definition 2.1.2 (Support of a permutation). Let σ ∈ Sn, we call the support of σ the set, denoted
supp(σ), of elements of An that are not fixed by σ, i.e.

supp(σ) = {i ∈ An, σ(i) 6= i}

Two permutations from An are not equal if their supports are disjoint.

Definition 2.1.3 (p-cycle). A cycle of length p is a permutation σ ∈ Sn defined by a subset
{i1, . . . , ip} ⊂ An such that{

σ(i1) = i2, . . . , σ(ip−1) = ip, σ(ip) = σ(i1)

σ(j) = j, ∀j /∈ {i1, . . . , ip}.

The cycle σ is represented by the matrix row (i1, . . . , ip). Two cycles (i1, . . . , ip) and (j1, . . . , jq) are
said to be disjoint if {i1, . . . , ip} ∩ {j1, . . . , jq} = ∅.

Definition 2.1.4 (Transposition). A transposition is a cycle τ of length 2 defined by (i, j), i.e.
τ(i) = j, τ(j) = i, and τ(k) = k, ∀k /∈ {i, j}.

Remark 2.1.1. If σ is a cycle of length p and τ is a transposition, then:

1. σp = σ ◦ · · · ◦ σ (p times) = Id.

2. σ−1 = σp−1.

13
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3. τ−1 = τ .

Lemma 2.1.1. Every cycle σ = (i1, . . . , ip) can be decomposed into transpositions.

Definition 2.1.5 (Signature of a permutation). The signature of a permutation σ ∈ Sn is defined by
the formula

sign(σ) =
∏

1≤i<j≤n

σ(i)− σ(j)

i− j

We denote ε(σ) = sign(σ).

Remark 2.1.2. sign(σ) = ±1.

Theorem 2.1.1. The signature of a p-cycle from {1, . . . , n} is (−1)p−1.

Lemma 2.1.2. Let σ and µ be two permutations, then

sign(σµ) = sign(σ ◦ µ) = sign(σ)sign(µ).

Remark 2.1.3. 1. If τ is a transposition, then sign(τ) = −1.

2. If σ is a permutation, then sign(σ) = (−1)k, where k is the number of transpositions that
decompose σ (i.e., σ = τ1 . . . τk).

3. ε(Id) = 1.

4. ε(σ−1) = ε(σ).

Example 2.1.1. Let σ ∈ S7 defined by

σ =

(
1 2 3 4 5 6 7
2 4 3 5 1 7 6

)
supp(σ) = {1, 2, 4, 5, 6, 7}

To calculate ε(σ), we have the decomposition into a product of transpositions:

σ = (1, 2, 4, 5)(6, 7) = (1, 2)(2, 4)(4, 5)(6, 7)

so
ε(σ) = (−1)4−1(−1)2−1 = (−1)4 = 1

Now calculate σ−1

σ−1 =

(
1 2 3 4 5 6 7
5 1 3 2 4 7 6

)

2.2 Linear k-forms
Definition 2.2.1. Let E be a vector space over K with dimension n. A map ω : E → F is said to be
linear if

∀x, y ∈ E, ∀λ, µ ∈ K, ω(λx+ µy) = λω(x) + µω(y).

We denote the set of linear maps from E to F by L(E,F ).

Remark 2.2.1. If F = K, we say that ω is a linear form, denoted by

E∗ = L(E,K).

14
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Definition 2.2.2. (k-Linear forms) Let E be a vector space over K and k ≥ 1 a natural number. A
map ω is called a k-linear form or simply a k-form on E if it is a map

ω :
︷ ︸︸ ︷
E × . . .× E = Ek → K

defined by (x1, x2, . . . , xk) 7→ ω (x1, x2, . . . , xk)

for all (x1, x2, . . . , xk) ∈ Ek. It satisfies the following condition:

∀(x1, x2, . . . , xk) ∈ Ek, ∀λ, µ ∈ K,

ω(x1, . . . , xi−1, λx+ µy, xi+1, . . . , xk) = λω(x1, . . . , xi−1, x, xi+1, . . . , xk)

+ µω(x1, . . . , xi−1, y, xi+1, . . . , xk),

i.e., ω is linear in each variable.

Example 2.2.1. 1. The dot product of two vectors in R3:

ω(x, y) = x1y1 + x2y2 + x3y3

2. ω(x, y, z) = f(x)f(y)f(z) where f ∈ L(E,K).

Proposition 2.2.1. The k-linear forms on E form a vector subspace of the vector space F(Ek,K) of
maps from Ek to K.
We denote Lk(E,K) or Lk(E) as the K-vector space of k-linear forms on E.
Definition 2.2.3. (Symmetric k-linear form)

A map ω ∈ Lk(E,K) is called symmetric if ω(x1, . . . , xk) is invariant under the exchange of two
vectors, i.e.,

∀(x1, x2, . . . , xi, . . . , xj, . . . , xk) ∈ Ek,

ω(x1, . . . , xi, . . . , xj, . . . , xk) = ω(x1, . . . , xj, . . . , xi, . . . , xk).

The set of symmetric k-linear forms is denoted by Sk(E,K).

Definition 2.2.4. (Antisymmetric k-linear form) Amapω ∈ Lk(E) is called antisymmetric ifω(x1, . . . , xk)
changes sign under the exchange of two vectors, i.e.,

∀(x1, x2, . . . , xi, . . . , xj, . . . , xk) ∈ Ek,

ω(x1, . . . , xi, . . . , xj, . . . , xk) = −ω(x1, . . . , xj, . . . , xi, . . . , xk).
Proposition 2.2.2. (Alternating k-Linear Form)

We say that ω is an alternating k-linear form if ω is zero on any set of vectors where at least two
vectors are equal:

∃i 6= j ∈ {1, . . . , n}, xi = xj ⇒ ω(x1, . . . , xi, xj, . . . , xk) = 0.

Definition 2.2.5. (Alternating k-Linear Form with Permutation)
A k-linear form ω ∈ Lk(E) is said to be alternating if for any x1, . . . , xk ∈ E and any permutation

σ ∈ Sk,
ω(xσ(1), . . . , xσ(k)) = ε(σ)ω(x1, . . . , xk),

where ε(σ) is the signature of the permutation σ.
The set of alternating k-linear forms is a vector subspace of Lk(E,K), denoted by Ak(E,K).

Proposition 2.2.3. Let ω ∈ Ak(E,K). If there is a vector xi such that xi is a linear combination of
other vectors x1, . . . , xk, then

ω(x1, . . . , xk) = 0.
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2.3 Pulback application
Definition 2.3.1. Let E and F be two vector spaces over R. Let u : E → F be a smooth map C∞

and ω a k-linear form on F .
We define the reciprocal image of ω, denoted u∗(ω), by:

u∗(ω) : Ek → R,
(x1, . . . , xk) 7→ u∗(ω)(x1, . . . , xk) = ω(u(x1), . . . , u(xk))

Remark 2.3.1. •
u∗ : Lk(F ) → Lk(E),

ω 7→ u∗(ω)

where ω 7→ u∗(ω) is a linear map, i.e.:

u∗(αω + βω′) = αu∗(ω) + βu∗(ω′)

where α, β ∈ R and ω, ω′ ∈ Lk(F ).

• Let E,F,G be vector spaces over R. If u : E → F and v : F → G are two smooth maps, then

(v ◦ u)∗ = u∗ ◦ v∗

and
(v ◦ u)∗ : Lk(G) → Lk(E),

ω 7→ u∗(v∗(ω))

Definition 2.3.2. (Antisymmetrization) Let ω be a k-linear form. The map A(ω) defined by

A(ω)(x1, . . . , xk) =
1

k!

∑
σ∈Sk

ε(σ)ω(xσ(µ(1)), . . . , xσ(µ(k)))

The map

A : Lk(E) → Ak(E)

ω 7→ A(ω)

is called the antisymmetrization of ω.

2.4 Tensor product
Definition 2.4.1. Let E be a vector space over R, ω a k-linear form on E, and ω′ a p-linear form on
E. We define the tensor product ω ⊗ ω′ by:

ω ⊗ ω′ : Ek × Ep → R, (x1, . . . , xk, xk+1, . . . , xk+p) 7→ ω(x1, . . . , xk)ω
′(xk+1, . . . , xk+p)

Proposition 2.4.1. • If ω ∈ Lk(E), ω′ ∈ Lp(E), then ω ⊗ ω′ ∈ Lk+p(E).

• The tensor product is not commutative, i.e. ω ⊗ ω′ 6= ω′ ⊗ ω.

• In general, if ω1 ∈ Lk1(E), . . . , ωm ∈ Lkm(E), we define the tensor product as

ω1 ⊗ · · · ⊗ ωm : (x11, . . . , x
k1
1 , . . . , x

1
m, . . . , x

km
m ) 7→ ω1(x

1
1, . . . , x

k1
1 ) . . . ωm(x

1
m, . . . , x

km
m )

with xij ∈ E.
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Definition 2.4.2. (Dual space)
Let E be a vector space over R. The set of 1-linear forms is called the dual space of E, denoted

E∗ or E ′, i.e.:
E∗ = L1(E) = L(E;R)

Proposition 2.4.2. If E is of dimension n, then E∗ is a vector space of dimension n.

Definition 2.4.3. (Dual basis) LetE be a finite-dimensional vector space of dimensionn. If (e1, . . . , en)
is a basis of E, we define a dual basis (e∗1, . . . , e∗n) on E∗ by the formula:

e∗i (ej) = δij =

{
1 if i = j

0 if i 6= j

Proposition 2.4.3. Let E be a finite-dimensional vector space of dimension n.
If (e1, . . . , en) is a basis of E, then {e∗i ⊗ e∗j}1≤i,j≤n is a basis of the vector space of bilinear forms
L2(E).
From this proposition, we deduce that

dim(L2(E)) = (dimE)2 = n2

Proposition 2.4.4. Let E be a finite-dimensional vector space of dimension n. If (e1, . . . , en) is a
basis of E, then

{e∗i1 ⊗ · · · ⊗ e∗ik}1≤i1,i2,...,ik≤n
is a basis of the vector space of k-linear forms. From proposition 2.4.3, we deduce:

• dim(Lk(E)) = (dimE)k = nk

• If ω ∈ Lk(E), then

ω =
n∑

i1,...,ik=1

ωi1...ike
∗
i1
⊗ · · · ⊗ e∗ik =

n∑
i1,...,ik=1

ω(ei1 , . . . , eik)e
∗
i1
⊗ · · · ⊗ e∗ik

2.5 Exterior product
Definition 2.5.1. Let ω ∈ Ap(E) and ω′ ∈ Aq(E). The exterior product of ω and ω′, denoted ω ∧ω′,
is a (p + q)-linear alternating form defined by

ω ∧ ω′ =
(p+ q)!

p!q!
A(ω ⊗ ω′)

ω ∧ ω′(x1, . . . , xp, xp+1, . . . , xp+q) =
1

p!q!

∑
σ∈Sp+q

ε(σ)ω((xσ(1), . . . , xσ(p)))ω
′((xσ(p+1), . . . , xσ(p+q)))

Proposition 2.5.1. Let ω1, ω2 ∈ Ap(E), ω′
1, ω

′
2 ∈ Aq(E), and λ ∈ R, then we have:

1. (ω1 + ω2) ∧ ω′
1 = ω1 ∧ ω′

1 + ω2 ∧ ω′
1

2. (λω1) ∧ ω′
1 = ω1 ∧ (λω′

1) = λω1 ∧ ω′
1

Proposition 2.5.2. If ω ∈ A1(E) and ω′ ∈ A1(E) are two linear forms, then ω∧ω′ ∈ A2(E) and we
have:

ω ∧ ω′ = −ω′ ∧ ω

17



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

Proof 2.5.1. We have S2 = {id, (1, 2)}, thus:

ω ∧ ω′((x1, x2)) = ω(x1)ω
′(x2)− ω(x2)ω

′(x1) = −ω′ ∧ ω((x1, x2))

Remark 2.5.1. We have:
ω ∧ ω′(x1, x2) = det

(
ω(x1) ω′(x1)
ω(x2) ω′(x2)

)
Proposition 2.5.3. Let ω, ω′, ω′′ ∈ A1(E), then:

(ω ∧ ω′) ∧ ω′′ = ω ∧ (ω′ ∧ ω′′)

We denote:
ω ∧ ω′ ∧ ω′′ = ω ∧ (ω′ ∧ ω′′)

Definition 2.5.2. Let ω1, . . . , ωp ∈ A1(E). We define the exterior product ω1 ∧ · · · ∧ ωp by:

(ω1 ∧ · · · ∧ ωp)(x1, . . . , xp) =
∑
σ∈Sp

ε(σ)ω1(xσ(1)) ∧ · · · ∧ ωp(xσ(p))

= det

∣∣∣∣∣∣∣
ω1(x1) . . . ω1(xp)
... . . . ...

ωp(x1) . . . ωp(xp)

∣∣∣∣∣∣∣
Remark 2.5.2. Let (e1, . . . , en) be a basis of the vector space E, and (e∗1, . . . , e

∗
n) the dual basis of

E∗.
Let ω1, . . . , ωp ∈ Ap(E). We have:

1. By the properties of the determinant, if i, j ∈ {1, . . . , n} such that i 6= j and ωi = ωj , then:

ω1 ∧ · · · ∧ ωp = 0

2. If p > n, then the system {e∗i1 ∧ · · · ∧ e∗ip} is linearly dependent, hence:

e∗i1 ∧ · · · ∧ e∗ip = 0

Thus, Ap(E) = 0.

Proposition 2.5.4. Let E be a finite-dimensional vector space and (e1, . . . , en) a basis of E. If
(e∗1, . . . , e

∗
n) denotes the dual basis of E∗, then:

B = {e∗i1 ∧ · · · ∧ e∗ip}1≤i1<···<ip≤n

is a basis of the vector space Ap(E).

Proposition 2.5.5. Let ω1, . . . , ωp, ω
′
1, . . . , ω

′
q ∈ L1(E), then:

(ω1 ∧ · · · ∧ ωp) ∧ (ω′
1 ∧ · · · ∧ ω′

q) = (−1)pq(ω′
1 ∧ · · · ∧ ω′

q) ∧ (ω1 ∧ · · · ∧ ωp)

Proposition 2.5.6. If ω is a p-linear form onE, and ω′ is a q-linear form onE, then ω∧ω′ ∈ Ap+q(E)
and we have:

ω ∧ ω′ = (−1)pqω′ ∧ ω
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2.6 Interior product
Definition 2.6.1. Let x ∈ E. The inner product ix is a map defined by:

ix : Lp(E) → Lp−1(E)

ω 7→ ix(ω)

such that ix(ω) is a (p− 1)-linear alternating form given by:

ix(ω) : Ap → Ap−1,

ω 7→ ix(ω)(x1, . . . , xp−1) := ω(x, x1, . . . , xp−1)

Proposition 2.6.1. Let x ∈ E, λ ∈ R, and ω, ω′ ∈ Ap(E), then:

1. ix(ω + ω′) = ix(ω) + ix(ω
′)

2. ix(λω) = λix(ω)

Proposition 2.6.2. If x ∈ E, ω, ω′ ∈ Ap(E), then:

(ω ∧ ω′)ix = ix(ω) ∧ ω′ + (−1)pω ∧ ix(ω′)
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3
Differential forms

The references for this chapter are [55, 25, 2, 5, 31, 48.]

3.1 Differential forms on Rn

Definition 3.1.1. Let U be an open subset of Rn. A differential form of degree p on U (or simply a
p-differential form) is any map

ω : U → Ap(Rn)

x 7→ ωx

• If {e1, . . . , en} denotes the canonical basis of Rn and ω is a p-differential form on U ⊂ Rn,
then we have

ω =
∑

1≤i1<···<ip≤n

ωi1...ipe
∗
i1
∧ · · · ∧ e∗ip

• where ωi1...ip : U → R are differentiable functions onU , and {e∗1, . . . , e∗n} denotes the canonical
dual basis of Rn.

• For all x ∈ U ,after Proprety 2.5.4 we have:

ωx := ω(x) =
∑

1≤i1<···<ip≤n

ωi1...ip(x)e
∗
i1
∧ · · · ∧ e∗ip

Definition 3.1.2. Let ω =
∑

1≤i1<···<ip≤n ωi1...ip e
∗
i1
∧ · · · ∧ e∗ip be a p-differential form on R

n.

1. ω is said to be continuous if the functions ωi1...ip : U → R are continuous for
1 ≤ i1 < · · · < ip ≤ n.

2. ω is said to be differentiable of class Ck if the functions ωi1...ip : U → R are differentiable of
class Ck for 1 ≤ i1 < · · · < ip ≤ n.

Proposition 3.1.1. Let U ⊆ Rn be an open set, ω1 =
∑

1≤i1<···<ip≤n ω
1
i1...ip

e∗i1 ∧ · · · ∧ e∗ip ,
ω2 =

∑
1≤i1<···<ip≤n ω

2
i1...ip

e∗i1 ∧ · · · ∧ e∗ip two p-differential forms of class C
k on U ,

and
ω =

∑
1≤j1<···<jq≤n ωj1...jqe

∗
j1
∧ · · · ∧ e∗jq a q-differential form on U , then:
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1. ω1 + ω2 =
∑

1≤i1<···<ip≤n(ω
1
i1...ip

+ ω2
i1...ip

)e∗i1 ∧ · · · ∧ e∗ip is a p-differential form of class C
k on

U .

2. ω1 ∧ ω is a (p+ q)-differential form of class Ck on U , where

ω1 ∧ ω =
∑

1≤i1<···<ip≤n

∑
1≤j1<···<jq≤n

ω1
i1...ip

ωj1...jqe
∗
i1
∧ · · · ∧ e∗ip ∧ e

∗
j1
∧ · · · ∧ e∗jq

Definition 3.1.3. Let U be an open set of Rn. If we denote by Ωk
p(U) the set of p-differential forms of

class Ck on U ,
Ck(U) denotes the ring of real functions of class Ck on U .
C0(U) denotes the ring of continuous real functions on U .

3.2 Characterization of differential forms
Let i ∈ {1, . . . , n} and Pi the i-th projection defined by

Pi : Rn → R,
x = (x1, . . . , xn) 7→ xi

Then dPi is a 1-differential form of class C∞ denoted dxi,

dxi : Rn → A1(Rn),

x 7→ dPi|x = e∗i

If ω is a 1-differential form on an open set U ⊆ Rn, then ω is written as

ω =
n∑
i=1

ωidxi

For x ∈ U , we have

ω(x) =
n∑
i=1

ωi(x)dxi

Example 3.2.1. 1. If n = 2, then every 1-differential form ω on an open setU ⊆ R2 can be written
in the form

ω = ω1dx+ ω2dy

where ω1, ω2 are functions on U .

2. ω = ydx+ xdy is a 1-differential form on R2.
In general, if ω is a p-differential form, then ω is written in the form:

ω =
∑

1≤i1<···<ip≤n

ωi1...ipdxi1 ∧ · · · ∧ dxip

Remark 3.2.1. For the following, we write dxi1 . . . dxip instead of dxi1∧· · ·∧dxip . Thus, the formula
is written

ω =
∑

1≤i1<···<ip≤n

ωi1...ipdxi1 . . . dxip
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Theorem 3.2.1. If j ∈ {i1, . . . , ip}, then

dxi1 . . . dxj . . . dxip = 0

Example 3.2.2. If U is an open set of R2, then:

1. Ωk
0(U) = Ck(U)

2. Ωk
1(U) = {fdx+ gdy; f, g ∈ Ck(U)}

3. Ωk
2(U) = {fdxdy; f ∈ Ck(U)}

4. Ωk
p(U) = {0} if p ≥ 3

Definition 3.2.1. Let U be an open set of Rn. The n-differential form

ω = fdx1 ∧ · · · ∧ dxn
where f is a non-vanishing differentiable real function, is called the volume form on U .

3.3 Exterior derivative

Definition 3.3.1. Let U be an open set of Rn and ω a p-differential form of class Ck on U (1 ≤ k).
The exterior derivative of ω is the (p+ 1)-differential form.

• dω defined by:

d : Ωk
p(U) → Ωk

p+1(U); ω 7→ dω

dω =
∑

1≤i1<···<ip≤n

dωi1...ip dxi1 . . . dxip

Remark 3.3.1.

dω =
∑

1≤i1<···<ip≤n

n∑
j=1

∂ωi1...ip
∂xj

dxjdxi1 . . . dxip

d(dxi1 . . . dxip) = 0

Example 3.3.1. Let U be an open set in R3, we have:

1. df = ∂f
∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz

2. d(fdx+ gdy + hdz) = ∂g
∂x
dxdy + ∂h

∂x
dxdz + ∂f

∂y
dydx+ ∂h

∂y
dydz + ∂f

∂z
dzdx+ ∂g

∂z
dzdy

=

(
∂g

∂x
− ∂f

∂y

)
dxdy +

(
∂h

∂x
− ∂f

∂z

)
dxdz +

(
∂h

∂y
− ∂g

∂z

)
dydz

3. d(fdxdy + gdxdz + hdydz) =
(
∂f
∂z

− ∂g
∂y

+ ∂h
∂x

)
dxdydz

4. If ω ∈ Ωk
p(U) (p ≥ 3), then dω = 0
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Proposition 3.3.1. Let U be an open set in Rn, and let ω1 ∈ Ωk
p(U) and ω2 ∈ Ωk

q(U), then:

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)pω1 ∧ dω2

Lemma 3.3.1. Let U be an open set in Rn and f ∈ Ck(U) (k ≥ 2), then:

d(df) = 0

Lemma 3.3.2. Let U be an open set in Rn and f ∈ Ck(U) (k ≥ 2), then:

d
(
d(fdxi1 . . . dxip)

)
= 0

Theorem 3.3.1. Let U be an open set in Rn and ω ∈ Ωk
p(U) (k ≥ 2), then:

d(dω) = 0

Definition 3.3.2. Let U be an open set in Rn. A p-differential form ω ∈ Ωk
p(U) (k ≥ 2) is said to be

closed if
dω = 0

.

Proposition 3.3.2. Let U be an open set in Rn. A 1-form ω is closed if and only if

∂ωi
∂xi

=
∂ωj
∂xj

∀i, j

3.4 Exact differential forms

Definition 3.4.1. Let U be an open set in Rn, ω ∈ Ωk−1
p+1(U) (k ≥ 1), and ω ∈ Ωk

p(U) (k ≥ 2). ω is
said to be a exact if

dω = ω.

Proposition 3.4.1. Every exact differential form is a closed differential form.

Example 3.4.1. 1. Let the 1-differential form on R2 \ {0}

ω =
xdx+ ydy

x2 + y2

We have:

dω =
−2yx

(x2 + y2)2
dydx+

−2xy

(x2 + y2)2
dxdy = 0

ω = d
(

ln
√
x2 + y2

)
Thus, ω is an exact 1-differential form on R2 \ {0}.
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2. Let the 1-differential form on R2 \ {0}

ω =
ydx− xdy

x2 + y2

We have:

dω =
x2 − y2

(x2 + y2)2
dydx− y2 − x2

(x2 + y2)2
dxdy = 0

ω is closed, locally exact, but it is not exact.

3.5 Interior derivative of a differential form

Definition 3.5.1. Let U be an open subset of Rn, X ∈ χ(U), and ω ∈ Ωk
1(U). We define the function

ω(X) on U by:

∀p ∈ U : ω(X)(x) = ωx(Xx)

or ωx ∈ L1(Rn). If

X =
∑
i

X i ∂

∂xi
, ω =

∑
i

ωidxi

then

ω(X) =
∑
i

X iωi

The function ω(X) is called the interior derivative of ω by X , denoted as:

iX(ω)

Lemma 3.5.1. If ω ∈ Ωk
1(U), then

ω : χ(U) → Ck(U) = Ωk
0(U),

X 7→ ω(X)

is a Ck(U)-linear application, i.e., for all X,Y ∈ χ(U) and f ∈ Ck(U), we have:

1. ω(X + Y ) = ω(X) + ω(Y ).

2. ω(fX) = fω(X).

Definition 3.5.2. Let U be an open subset of Rn and X ∈ χ(U). The interior derivative iX is an
application defined by:

iX : Ωk
q(U) −→ Ωk

q−1(U)

ω 7−→ iX(ω)

such that iX(ω) is a (q − 1)-linear form given by:

iXω(X1, . . . , Xq−1) = ω(X,X1, . . . , Xq−1)

ω(X,X1, . . . , Xq−1)(x) = ωx(X(x), X1(x), . . . , Xq−1(x)), ∀x ∈ U
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Proposition 3.5.1. Let X ∈ χ(U), ω ∈ Ωk
p(U), and α ∈ Ωk

q(U). Then:

iX(ω ∧ α) = iXω ∧ α + (−1)pω ∧ iXα

Remark 3.5.1. Let U be an open subset of Rn and X =
∑n

i X
i ∂
∂xi

a vector field of class Ck on U .
If ω = dx1 ∧ · · · ∧ dxn is a volume form on U , then:

iX(ω) =
n∑
i

X idx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

where d̂xi means that dxi is omitted.

3.6 Pullback of a differential form

Definition 3.6.1. Let U be an open subset of Rn, V an open subset of Rm, and ϕ : U → V a Ck+1

map (k ≥ 1). We define the pullback of a differential q-form:

ϕ∗ : Ωk
q(V ) → Ωk

q(U),

ω 7→ ϕ∗(ω)

which is defined by:

ϕ∗(ω)x(z1, . . . , zq) = (dxϕ)
∗(ωφ(x))(z1, . . . , zq) = ωφ(x)(dxϕ(z1), . . . , dxϕ(zq))

for x ∈ U and z1, . . . , zq ∈ Rn(see Definition 2.3.1).

Proposition 3.6.1. Let U be an open subset of Rn, V an open subset of Rm, andW an open subset of
Rr. Let ϕ : U → V and ψ : V → W be two Ck+1 maps (k ≥ 1). Then:

1. (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

2. ϕ∗(ω1 + ω2) = ϕ∗(ω1) + ϕ∗(ω2).

3. ϕ∗(λω) = λϕ∗(ω) for λ ∈ R.

4. ϕ∗(ω ∧ α) = ϕ∗(ω) ∧ ϕ∗(α).

5. ϕ∗(f) = f ◦ ϕ for f ∈ Ck(V ).

6. If k > n, then ϕ∗(ω) = 0.
Let f ∈ Ck(V ), ω, ω1, ω2 ∈ Ωk

p(V ), and λ ∈ R, α ∈ Ωk
q(V ).

Proposition 3.6.2. Let U be an open subset of Rp, V an open subset of Rn, and ϕ : U → V a Ck

function (p ≤ n). If ω ∈ Ωp(V ), then:

ϕ∗(dω) = dϕ∗(ω)

Corollary 3.6.1. Let U be an open subset of Rn, V an open subset of Rm, and ϕ : U → V a Ck

function (n ≤ m). If ω ∈ Ωk
n(V ), then:

ϕ∗(ω) = f ◦ ϕ (dϕ1 ∧ · · · ∧ dϕn)
= f(ϕ(x)) (dϕ1(x) ∧ · · · ∧ dϕn(x))
= ϕ∗(f(x)) (dϕ1 ∧ · · · ∧ dϕn)

where f : U → R is a Ck−1 function and x ∈ U .
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Corollary 3.6.2. Let (U,ϕ) be a local chart ofM , and let ϕ1, . . . , ϕn be a C∞ function on U . Then:

dϕ1 ∧ · · · ∧ dϕn = det
[
∂ϕi
∂xj

]
dx1 ∧ · · · ∧ dxn

Corollary 3.6.3. Let U be an open subset of Rn, V an open subset of Rm, and ϕ : U → V a Ck

function (p ≤ min(n,m)). Let ω ∈ Ωk
p(V ), then:

1. If ω is closed, then ϕ∗(ω) is closed.

2. If ω is exact (i.e., ω = dα), then ϕ∗(ω) = dϕ∗(α).

3.7 Differential forms on a differentiable manifold
LetM be a differentiable manifold of dimension n, we define the application:

Π : ∧qTM →M

(p, ωp) 7→ p

as the canonical projection which associates ωp ∈ ∧q(T ∗
pM) with Π(ωp) = p ∈M .

Definition 3.7.1. (q-Differential form)
A q-differential form of class C∞ onM is a application:

ω :M → ∧qT ∗M := Aq(TpM)

p 7→ ωp

of class C∞ that satisfies Π ◦ ω = IdM .

Remark 3.7.1. 1. If (U,ϕ) is a local chart of M , then a q-differential form is expressed in this
chart as:

ωp =
∑

1≤i1<···<iq≤n

fi1...iqdxi1 ∧ · · · ∧ dxiq

where {dxi1 ∧ · · · ∧ dxiq}1≤i1<···<iq≤n forms the basis of ∧qT ∗
pM .

2. A 1-differential form of class Ck onM is a application:

ω :M → T ∗M

which associates to each point p ∈M :

ωp =
n∑
i=1

fi(p)dxi

where {dxi|p}i=1,...,n forms the basis of T ∗
pM , the dual space of the tangent space of M , and

fi ∈ C∞(M).
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Theorem 3.7.1. LetM be a differentiable manifold. For any q ∈ N, there exists an exterior differen-
tiation operator:

d : Ωq(M) → Ωq+1(M)

such that:

1. For q = 0, d : C∞ → Ω1 is the usual differential of functions.

2. For all ω ∈ Ωq(M):

dω(X0, . . . , Xq) =
n∑
i=1

(−1)iXi · ω(X0, . . . , X̂i, . . . , Xq)

+
∑
i<j

(−1)i+jω([Xi, Xj], . . . , X̂i, . . . , X̂j, . . . , Xq)

where X̂i means omitting Xi.

3. For ω ∈ Ωq(M), we have d(dω) = 0.

4. For ω1 ∈ Ωq(M) and ω2 ∈ Ωq′(M):

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)qω1 ∧ dω2

ee
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4
Manifolds and tensor fields

The references for this chapter are [55], [7], [25] .

Let M be a topological space. We assume that M satisfies the Hausdorff separation axian which
states that any two different points in M can be separated by disjoint open sets. An open chart on M
is a pair (U, φ) where U is an open subset of M and φ is a homeomorphism of U onto an open subset
of Rn, where Rn is an n-dimensional Euclidean space.

4.1 Definition of manifolds
Definition 4.1.1. Let M be a Hausdorff space. A differentiable structure on M of dimension n is
a collection of open charts (Ui, φi)i∈Λ on M where φi(Ui) is an open subset of Rn, such that the
following conditions are satisfied:

1. M =
⋃
i∈Λ Ui.

2. For each pair i, j ∈ Λ, the mapping φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Uj ∩ Ui) is a differentiable

mapping.

3. The collection (Ui, φi)i∈Λ is a maximal family of open charts for which conditions 1 and 2 hold.

4.2 Local coordinate system
Definition 4.2.1. A differentiable manifold (or C∞-manifold, or simply a manifold) of dimension n is
a Hausdorff space with a differentiable structure of dimension n.

• If M is a manifold, a local coordinate system (or local chart) on M is by definition a pair
(φi, Ui).

• If p is a point in Ui and φi(p) = (x1(p), ..., xn(p)), then Ui is called a coordinate neighborhood
of p, and the numbers xj(p) are called local coordinates of p.
The mapping φi : q 7→ (x1(q), ..., xn(q)), q ∈ Ui is often denoted by {x1, . . . , xn}.

• We notice that the condition 3 is not essential in the definition of a manifold.

• In fact, if only 1 and 2 are satisfied, the structure is still well-defined.
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4.3 Differentiable curve
Definition 4.3.1. By a differentiable curve in a manifold M , it shall mean a differentiable mapping
of a interval [a, b] of R intoM .
We shall now define a tangent vector (or singly a vector) at a point p ofM .

4.3.1 First definition: Tangent to a curve

Consider now a differentiable manifold M and a point p of M of class Ck. We are interested in
differentiable curves inM that pass through p:

c : [−ε, ε] →M

t 7→ c(t), c(0) = p

Definition 4.3.2. Two curves c1 and c2 are tangent at point p if c1(0) = c2(0) = p and there exists a
local chart (U,ϕ) such that p ∈ U and

d

dt
(ϕ ◦ c1)(0) =

d

dt
(ϕ ◦ c2)(0)

This defines an equivalence relation (i.e., a relation that is transitive, symmetric, and reflexive) on
the set of curves passing through p: c1 ∼ c2 if they are tangent at p.

4.3.2 Second definition: Derivation
Definition 4.3.3. A tangent vector toM at p is an equivalence class of curves tangent at p.

The tangent space toM at p, denoted TpM , is the set of tangent vectors toM at p.

Definition 4.3.4. Let U ⊂M be an open subset such that p ∈ U . We define the set :

C∞(p) = {f : U → R, f ∈ C∞ | f = g ⇔ ∃Vp ∈ V(p) such that f(x) = g(x), ∀x ∈ Vp ⊂ U}

That is, we consider the set of real-valued C∞ functions defined on open subsets ofM containing
a neighborhood of p, and we identify functions that are equal on some neighborhood of p. The set is
denoted by C∞(p).

Definition 4.3.5. Let C∞(p) be the algebra of differentiable functions defined in a neighborhood of p.
Let c(t) (a ≤ t ≤ b) be a curve such that c(t0) =: p.
The vector tangent to the curve c(t) at p is a mapping: Dp : C∞(p) → R defined by

Dp = (df(c(t))/dt)t0

In other words, Dpf is the derivative of C∞(p) in the direction of the curve c(t) at t = t0. The vector
X satisfies the following conditions:

1. Dp is a linear mapping of C∞(p) into R;

2. Dp(fg) = (Dpf)g(p) + f(p)(Dpg) for f, g ∈ C∞(p).

3. If f is constant, then Dp(f) = 0.
The set of all derivations at p is called the tangent space ofM at p, denoted TpM . By definition,
a tangent vector toM at p is an element of TpM .
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The set of mappingsDp of C∞(p) intoR satisfying the preceding two conditions forms a real vector
space.
Let x1, . . . , xn be local conditions in a coordinate neighborhood U of p .
For each i, (∂/∂xi)p is a mapping of C∞(p) into R which satisfies 1 and 2. Given any curve c(t) with
p = c (t0), let xi = ci(t), i = 1, . . . , n, be its equations in terms of the local coordinates x1, . . . , xn,
Then

(df(c(t))/dt)t0 =
∑
i

(
∂f/∂xi

)
p

(
dci(t)/dt

)
t0

which proves that every vector at p is a linear combination of (∂/∂x1)pi , . . . , (∂/∂x
n)p. Con-

versely, given a linear combination
∑
ξi (∂/∂xi)P , consider the curve defined by

xi = xi(p) + ξit, i = 1, . . . , n

4.4 The vector tangent

Definition 4.4.1. Then the vector tangent to this curve at t = 0 is Σξi (∂/∂xi)p.
If we assume Σξi (∂/∂xi)P = 0, then 0 = Σξi (∂xj/∂xi)p = ξj for j = 1, . . . , n.
Therefore, (∂/∂x1)p , . . . , (∂/∂xn)p are linearly independent and hence these form a basis of the set
of vectors at p.

4.5 Tangent and cotangent spaces
Definition 4.5.1. The set of tangent voctors at p denoted by Tp(M), is called the tangent space of M
at p.
The n-tuple of numbers ξ1, . . . , ξn are components of the vectors

∑
ξi (∂/∂xi)p with respect the local

coordinates x1, . . . , xn.
We notice that oe a C∞ differentiable manifold it the tangent space Tp(M) coincides with the

space of Dp : C∞(p) −→ R satisfying the conditions 1 and 2 above.

4.6 Tangent bundle
Definition 4.6.1. LetM be a manifold of dimension n. The tangent bundle ofM , denoted TM , is the
union of the tangent spaces TpM for all p ∈M :

TM =
⋃
p∈M

TpM

4.7 Vector field
Definition 4.7.1. A vector field X on a manifold M is anassignment of a vector Xp to each point p of
M . If f is a differentiable function onM , then Xf is a function onM defined by

(Xf)(p) = Xpf.
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A vector field X is said to be differentlable if Xf is differentiable for every differentiable function f .
In terms of local coordinates x1, . . . , xn, X may be expressed by

X =
∑

ξi
(
∂/∂xi

)
where ξi are functions defined in the coordinate neighborhood, called components of X with respect
to x1, ..., xn. X is differentiable if and only if its components ξi are differentiable.

Definition 4.7.2. LetM be a differentiable manifold. A vector field of class Ck onM is a mapping

X :M → TM

p 7→ (p,Xp)

• of class Ck that assigns to each point p ofM a tangent vector Xp toM at point p.
Where :

Xp =
n∑
k=1

fk(p)
∂

∂xk

• where p = (x1, . . . , xn), and
{

∂
∂xk

}
k=1,...,n

is the basis of TpM , with functions
fk ∈ Ck(M) and fk :M → R.

• The set of vector fields of class C∞ onM is denoted by X (M).

Definition 4.7.3. The canonical projection on TM is the projection

Π : TM →M

(p,Xp) 7→ p

such that X ◦ Π = IdM .

Remark 4.7.1. A vector fieldX is of class Ck in a local chart (Ω, ϕ) if and only if the functions fk of
X in (U,ϕ) are of class Ck on U .

4.8 Lie bracket
Definition 4.8.1. If X and Y are vector fields, define the bracket [X,Y ] as a mapping from the ring
of functions onM into itself by

[X,Y ]f = X(Y f)− Y (Xf)

Let X =
∑
ξi (∂/∂xi) and Y = ηj (∂/∂xj). Then

[X,Y ]f =
∑
i,j

(
ξj
(
∂ηi/∂xj

)
− ηj

(
∂ξi/∂xj

) (
∂f/∂xi

))
.

This means that [X,Y ] is a vector field with carponents
∑

j (ξ
j (∂ηi/∂xj)− ηj (∂ξi/∂xj))

i = 1, . . . , n. With respect to this bracket operation,
X(M) is a Lie algebra over R. For any vector rields X,Y and Z , we have the Jacobi identity:

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0
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We may also regard X(M) as a module over the algebra F(M) of differentiable functions onM as
follows. If is is function and X is a vectior field on M , then fX is a vector field on M defined by
(fX) = f(p)X; for p ∈M . We also have

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

Lemma 4.8.1. LetX and Y be differentiable vector fields on a differentiable manifoldM . Then there
exists a unique vector field Z such that, for all f ∈ D(M),

Zf = (XY − Y X)f,

where D(M) is the set of all differentiable functions onM .
The vector field Z given by this lemma is called the bracket of X and Y , noted

[X,Y ] = XY − Y X.

Proposition 4.8.1. If X , Y , and Z are differentiable vector fields on M , a and b are real numbers,
and f , g are differentiable functions, then:

(a) [X,Y ] = −[Y,X] (anti-commutativity),

(b) [aX + bY, Z] = a[X,Z] + b[Y, Z] (linearity),

(c) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (Jacobi identity),

(d) [fX, gY ] = fg[X,Y ] + fX(g)Y − gY (f)X .

Differential mapping

LetMn and Nk be differentiable manifolds of dimensions n and k, respectively. Let F : M → N be
a differentiable map.

Definition 4.8.2 (Pullback). Let g : N → R. The pullback of g by F is the function:

F ∗ : C∞(F (p)) → C∞(p), g 7→ F ∗g := g ◦ F

Definition 4.8.3 (Differential). The differential of F at p ∈M is the linear map:

dFp : TpM → TF (p)N, Xp 7→ dFp(Xp)

such that:

dFp(Xp) · g := Xp · (F ∗g), ∀g ∈ C∞(F (p))

Theorem 4.8.1. (Composition theorem) If F : M → N and G : N → W are differentiable maps,
then G ◦ F is differentiable at p ∈M , and:

d(G ◦ F )p = dGF (p) ◦ dFp

Corollary 4.8.1. If F : M → N is a diffeomorphism, then dFp is an isomorphism at every point
p ∈M . The converse is only true locally.
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Theorem 4.8.2. (Local diffeomorphism) A map F : M → N is a local diffeomorphism at p ∈ M if
there exist neighborhoods U ⊂M , V ⊂ N such that:

F |U : U → V

is a diffeomorphism.

Theorem 4.8.3. (Local inversion theorem) Let F :M → N be differentiable at p ∈M , and suppose:

dFp : TpM → TF (p)N

is an isomorphism. Then F is a local diffeomorphism at p, and:

d(F |U)−1 = (dFp)
−1

This provides a key result for defining local coordinates. A chart ϕ : M → Rn defines local
coordinates at p if and only if dϕp is an isomorphism.

4.9 Cotangent space
Definition 4.9.1. LetM be a manifold of dimension n, p a point inM , and (U,ϕ) a chart ofM at p
with associated coordinates (x1, . . . , xn).
We denote by T ∗

pM the dual space of TpM , and for each i = 1, . . . , n, we denote by dxi|p the differ-
ential 1-form at p in T ∗

pM , which is defined by:

dxi|p
(

∂

∂xj

)
p

= δij

where δij = 1 if i = j, and 0 otherwise. The family {dxi|p}i=1,...,n forms a basis of T ∗
pM .

Remark 4.9.1. From now on, we omit the letter p and simply denote the family {dxi|p}i=1,...,n as
{dxi}i=1,...,n.

Definition 4.9.2. The cotangent bundle of M , denoted T ∗M , is defined as the disjoint union of the
cotangent spaces T ∗

pM for all p ∈M :

T ∗M =
⋃
p∈M

T ∗
pM

Theorem 4.9.1. LetM be a differentiable manifold of dimension n. The cotangent bundle T ∗M has
a natural structure as a differentiable manifold of dimension 2n.

Definition 4.9.3. A 1-form (or covector) at p ∈M is a linear form on TpM , i.e., a linear map:

ωp : TpM → R
Xp 7→ ωp(Xp)

We denote ωp(Xp) = 〈ωp, Xp〉, where the bracket denotes the duality pairing.

- The cotangent space toM at p, denoted T ∗
pM , is the vector space of 1-forms at p.

- It is the dual vector space of TpM , i.e., T ∗
pM = (TpM)∗.

Example 4.9.1. 1. The tangent bundle of Rn admits a global trivialization: TRn ≈ Rn×Rn, via
the canonical identification TpRn ≈ Rn.
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2. The tangent bundle of the circle S1 admits a global trivialization since it is diffeomorphic to a
cylinder: TS1 ≈ S1 ×R. However, the tangent bundle TS2 does not admit a global trivializa-
tion.

Remark 4.9.2. Using differentials of charts, we will extend local coordinate calculations to the tan-
gent space. We start with the case of Rn.

Case of the tangent space TxRn

We have the property that TxRn is canonically isomorphic to Rn, and we can identify it with the set of
partial derivatives at x, i.e.,

Let x ∈ Rn, the partial derivatives at x are given by the derivations on Rn:

∂

∂xi

∣∣∣∣
x

: g 7→ ∂g

∂xi
(x).

Among all directional derivatives at x, these partial derivatives form a basis, which is also a basis
of the tangent space TxRn, called the canonical basis or the natural basis. Thus, any tangent vector
vx ∈ TxRn can be written as:

vx = v1
∂

∂x1

∣∣∣∣
x

+ · · ·+ vn
∂

∂xn

∣∣∣∣
x

.

Remark 4.9.3. This vector is also the equivalence class of curves c(t) passing through x such that

ċ = (v1, . . . , vn).

Hence, we have the canonical identification TxRn ' Rn, given by:

vx 7→ (v1, . . . , vn).

Case of the tangent space TpM
In the case of abstract differentiable manifolds, everything is related to local charts and the fact that
chart maps are diffeomorphisms in the domain of the chart.

Let p ∈M and (U,ϕ) be a chart ofM such that p ∈ U (i.e., U is a neighborhood of p). Then:

ϕ : U → ϕ(U) ⊂ Rn

is a diffeomorphism, hence:
dϕp : TpM → Tφ(p)Rn

is invertible, and
(dϕp)

−1 = d(ϕ−1)φ(p) : Tφ(p)Rn → TpM

is an isomorphism.
Furthermore, if we let x = ϕ(p) ∈ Rn, then:

∂

∂x1

∣∣∣∣
x

, . . . ,
∂

∂xn

∣∣∣∣
x

is the canonical basis of TxRn. We compute the image of this basis under the isomorphism (dϕp)
−1,

which we denote using the same notation:

∂

∂xi

∣∣∣∣
p

:= d(ϕ−1)φ(p)

(
∂

∂xi

∣∣∣∣
x

)
, i = 1, . . . , n.
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With these tangent vectors, we construct a basis of TpM called the natural basis associated with
the local coordinates ϕ: (

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

)
.

Remark 4.9.4. If g ∈ C∞(M), then for each i = 1, . . . , n, we have:

∂

∂xi

∣∣∣∣
p

· g = d(ϕ−1)φ(p)

(
∂

∂xi

∣∣∣∣
x

)
· g = ∂

∂xi

∣∣∣∣
x

· (g ◦ ϕ−1) =
∂(g ◦ ϕ−1)

∂xi
(x).
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5
Integration

The references for this chapter are [55, 25, 52, 7].

On a manifold one integrates not functions as in calculus on Rn but differential forms. There are
actually two theories of integration on manifolds, one in which the integration is over a submanifold
and the other in which the integration is over what is called a singular chain. Singular chains allow
one to integrate over an object such as a closed rectangle in R2:

[a, b]×[c, d] := {(x, y) ∈ R2|a ≤ x ≤ b, c ≤ y ≤ d}

which is not a submanifold of R2 because of its corners For integration over a manifold to be well
defined, the manifold needs to be oriented. We begin the chapter with a discussion of orientations
on a manifold. We then enlarge the category of manifolds to include manifolds with boundary. Our
treatment of integration culminates in Stokes’s theorem for an n-dimensional manifold. Stokes’s the-
orem for a surface with boundary in R3 was first published as a question in the Smith’s Prize Exam
that Stokes set at the University of Cambridge in 1854. It is not known whether any student solved the
problem. According to the same theorem had appeared four years earlier in a letter of Lord Kelvin to
Stokes, which only goes to confirm that the attribution of credit in mathematics is fraught with pitfalls.
Stokes’s theorem for a general manifold resulted from the work of many mathematicians, including
Vito Volterra (1889), Henri Poincare (1899), Edouard Goursat (1917), and Elie Cartan (1899 and
1922). First there were many special cases, then a general statement in terms of coordinates, and
finally a general statement in terms of differential forms. Cartan was the master of differential forms
with excellence, and it was in his work that the differential form version of Stokes’s theorem found its
clearest expression.

5.1 Orientations on a manifolds
While the definition of an orientation on a manifold as a continuous pointwise orientation is geomet-
rically intuitive, in practice it is easier to manipulate the nowherevanishing top forms that specify a
pointwise orientation. In this section we show that the continuity condition on pointwise orientations
translates to a C∞ condition on nowhere-vanishing top forms.

If f is a real-valued function on a setM , we use the notation f > 0 to mean that f is everywhere
positive onM .

Lemma 5.1.1. A pointwise orientation [(X1, . . . , Xn)] on a manifoldM is continuous if and only if
each point p ∈M has a coordinate neighborhood (U, x1, . . . , xn) on which the function
(dx1 ∧ · · · ∧ dxn) (X1, . . . , Xn) is everywhere positive.
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Theorem 5.1.1. A manifold M of dimension n is orientable if and only if there exists a C∞ nowhere-
vanishing n-form on M.

Proposition 5.1.1. Let U and V be open subsets of Rn, both with the standard orientation inherited
from Rn.

Definition 5.1.1. A diffeomorphism F : U −→ V is orientation-preserving if and only if the Ja-
cobian determinant det[∂F i/∂xj] is everywhere positive on U.

5.2 Oriented atlas
Using the characterization of an orientation-preserving diffeomorphism by the sign of its Jacobian
determinant, we can describe orientability of manifolds in terms of atlases.

Definition 5.2.1. An atlas onM is said to be oriented if for any two overlapping charts (U, x1, ..., xn)
and (V, y1, ..., yn) of the atlas, the Jacobian determinant det[∂F i/∂xj] is everywhere positive non-null
on U ∩ V .

Theorem 5.2.1. A manifoldM is orientable if and only if it has an oriented atlas.

Definition 5.2.2. Two oriented atlases {(Ui, φi)} and {(Vj, ψj)} on a manifold M are said to be equiv-
alent if the transition functions

φi ◦ ψ−1
j : ψj(Ui ∩ Vj) −→ φi(Ui ∩ Vj)

have positive Jacobian determinant for all i, j

make Stokes’s theorem sign-free.

5.3 Manifolds with boundary
Example of a manifold with boundary is the closed upper half-space

Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0},

with the subspace topology inherited from Rn.
The points (x1, . . . , xn) ∈ Hn with xn > 0 are called the interior points of Hn, and the points
with xn = 0 are called the boundary points of Hn. These two sets are denoted by (Hn)◦ and ∂Hn,
respectively.

Figure 5.1: Upper half-space

In the literature, the upper half-space often means the open set

{(x1, . . . , xn) ∈ Rn | xn > 0}.
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We require thatHn include the boundary in order for it to serve as a model for manifolds with bound-
ary.

IfM is a manifold with boundary, then its boundary ∂M turns out to be a manifold of dimension
one less without boundary.

Moreover, an orientation on M induces an orientation on ∂M . The choice of the induced ori-
entation on the boundary is a matter of convention, guided by the desire to make Stokes’s theorem
sign-free.

Proposition 5.3.1. Let U and V be open subsets of the upper half-space Hn and F : U −→ V
a diffeomorphism. Then f maps interior points to interior points and boundary points to boundary
points.

Manifolds with boundary
In the upper half-spaceHn one may distinguish two kinds of open subsets, depending on whether the
set is disjoint from the boundary or intersects the boundary(Figure 5.2) . Charts on a manifold are
homeomorphic to only the first kind of open sets. A manifold with boundary generalizes the definition

Figure 5.2: Two types of open subsets of Hn

of a manifold by allowing both kinds of open sets. We say that a topological spaceM is locallyHn if
every point p ∈M has a neighborhood U homeomorphic to an open subset of Hn.

Definition 5.3.1. A topological n-manifold with boundary is a second countable, Hausdorff topolog-
ical space that is locally Hn. Let M be a topological n-manifold with boundary.
For n ⩾ 2, a chart on M is defined to be a pair (U, φ) consisting of an open set U in M and a
homeomorphism

ϕ : U → ϕ(U) ⊂ Hn

of U with an open subset φ(U) of Hn.

5.4 The boundary of a manifold with boundary
LetM be a manifold of dimension n with boundary ∂M . If (U,ϕ) is a chart onM , we denote by

ϕ′ = ϕ|U∩∂M

the restriction of the coordinate map ϕ to the boundary. Since ϕ maps boundary points to boundary
points,

ϕ′ : U ∩ ∂M → ∂Hn = Rn−1.

Moreover, if (U,ϕ) and (V, ψ) are two charts onM , then

ψ′ ◦ (ϕ′)−1 : ϕ′(U ∩ V ∩ ∂M) → ψ′(U ∩ V ∩ ∂M)

is C∞. Thus, an atlas {(Uα, ϕα)} forM induces an atlas

{(Uα ∩ ∂M,ϕα|Uα∩∂M )}

for ∂M , making ∂M into a manifold of dimension n− 1 without boundary.
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5.5 Tangent vectors, differential forms, and orientations
LetM be a smooth manifold with boundary and let p ∈ ∂M . consider two smooth functions:

f : U → R, g : V → R

defined on neighborhoods U and V of p inM . We say that f and g are equivalent if there exists an
open neighborhoodW ⊆ U ∩ V of p such that:

f |W = g|W .

Example 5.5.1. Let H2 = {(x, y) ∈ R2 | y ≥ 0} denote the upper half-plane, and let
p = (x, 0) ∈ ∂H2. Then both:

∂

∂x

∣∣∣
p
,

∂

∂y

∣∣∣
p

are point derivations on C∞
p (H2), and thus elements of Tp(H2).

The tangent space Tp(H2) is a 2-dimensional real vector space, visualized as being centered at
the point p.
Since ∂

∂y

∣∣
p
is a tangent vector at the boundary, its negative − ∂

∂y

∣∣
p
is also a valid tangent vector at p,

even though there is no smooth curve within H2 passing through p with initial velocity − ∂
∂y

∣∣
p
.

Figure 5.3: A tangent vector at the boundary.

Definition 5.5.1. The cotangent space T ∗
pM at p ∈M is defined as the dual vector space:

T ∗
pM := Hom(TpM,R),

consisting of all linear functionals from TpM to R.

Differential k-forms onM are defined as sections of the bundleΛk(T ∗M), the k-th exterior power
of the cotangent bundle. A differential k-form ω is said to be smooth if it is a smooth section of this
vector bundle.

Example 5.5.2. On the upper half-plane H2, the differential form:

dx ∧ dy

is a smooth 2-form.

Definition 5.5.2. An orientation on an n-manifoldM with boundary is a continuous pointwise choice
of orientation of the tangent space TpM at each point p ∈ M . This means choosing a nowhere-
vanishing section of the top exterior power Λn(T ∗M), up to positive scalar multiplication.

Such orientations extend naturally to the boundary and play a crucial role in the formulation of
Stokes's Theorem.
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5.6 Outward-pointing vector fields
LetM be a smooth manifold with boundary, and let p ∈ ∂M . To understand how orientation behaves
at the boundary particularly in the context of Stokes’s Theoremwe need to distinguish between inward-
pointing and outward-pointing tangent vectors at boundary points.

A tangent vector Xp ∈ Tp(M) is called inward-pointing if:
• it is not tangent to the boundary, i.e., Xp /∈ Tp(∂M), and

• there exists a smooth curve c : [0, ε[→M such that:

c(0) = p, c((0, ε[) ⊂M◦, c′(0) = Xp,

meaning that the curve lies in the interior ofM for all t > 0, and its initial velocity at t = 0 is
Xp.

Conversely, a vectorXp is called outward-pointing if−Xp is inward-pointing. That is, an outward-
pointing vector points away from the interior ofM and toward the "outside" of the boundary.
Example 5.6.1. In the upper half-plane H2 = {(x, y) ∈ R2 | y ≥ 0}, the point p = (x, 0) lies on the
boundary (the x-axis). Then:

• ∂
∂y

∣∣
p
is inward-pointing,

• − ∂
∂y

∣∣
p
is outward-pointing.

More generally, given a local coordinate system (U, (x1, . . . , xn)) around a point p ∈ ∂M , a
tangent vector Xp ∈ TpM can be expressed as:

Xp =
n∑
i=1

ai(p)
∂

∂xi

∣∣∣
p
.

In this setup, we can identify whether a vector is outward-pointing based on the sign of the component
in the direction normal to the boundary. If the coordinate xn increases in the inward direction (as is
conventional), then a vector is outward-pointing at p if and only if:

an(p) < 0.

Definition 5.6.1. A vector field along the boundary ∂M is a smooth assignment:

X : ∂M → TM,

such thatXp ∈ TpM for each p ∈ ∂M . Unlike a vector field on ∂M , this one is valued in the ambient
manifold’s tangent bundle , that is, it allows components normal to the boundary.
Definition 5.6.2. A vector field X along ∂M is said to be smooth at p ∈ ∂M if there is a coordinate
chart around p such that all coefficients ai of the expression

Xq =
n∑
i=1

ai(q)
∂

∂xi

∣∣∣
q

are smooth functions of q ∈ ∂M . The field is called smooth if it is smooth at every point of the
boundary.
Proposition 5.6.1. Every smoothmanifoldM with boundary admits a smooth outward-pointing vector
field along ∂M .

Such vector fields are crucial in defining a consistent boundary orientation and play a key role in
expressing and proving Stokes’s Theorem without sign ambiguity. Intuitively, they provide a "direc-
tion" for the boundary to face outward, helping to relate integrals over the boundary to those over the
interior.
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Integration on manifolds

The references for this chapter are [25, 52.]

Theorem 6.0.1. (Lebesgue’s theorem)
A bounded function f : A→ R on a bounded subset A ⊂ Rn is Riemann integrable if and only if the
set Disc(f̃) of discontinuities of the extended function f̃ has measure zero.

Proposition 6.0.1. If a continuous function f : U → R defined on an open subset U of Rn has
compact support, then f is Riemann integrable on U .

6.1 The integral of an n-form on Rn

Once a set of coordinates x1, . . . , xn has been fixed on Rn, n-forms on Rn can be identified with
functions on Rn, since every n-form on Rn can be written as

ω = f dx1 ∧ · · · ∧ dxn

for a unique function f(x) on Rn. In this way, the theory of Riemann integration of functions on Rn

carries over to n-forms on Rn.

Definition 6.1.1. Let ω = f(x) dx1 ∧ · · · ∧ dxn be a smooth n-form on an open subset U ⊂ Rn,
with standard coordinates x1, . . . , xn. Its integral over a subset A ⊂ U is defined to be the Riemann
integral of f(x): ∫

A

ω =

∫
A

f(x) dx1 · · · dxn,

if the Riemann integral exists.
If the n-form is written in the order dx1∧ · · · ∧ dxn, to integrate, for example, τ = f(x) dx2∧dx1

over A ⊂ R2, we would write∫
A

τ = −
∫
A

f(x) dx1 ∧ dx2 = −
∫
A

f(x) dx1 dx2.

6.2 Transformation of n-forms under change of variables

Let T : V ⊂ Rn → U ⊂ Rn be a diffeomorphism. Let x1, . . . , xn be the standard coordinates on U ,
and y1, . . . , yn the standard coordinates on V . Then T i := xi ◦ T is the i-th component of T . Denote
by J(T ) the Jacobian matrix

[
∂T i

∂yj

]
.
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dT 1 ∧ · · · ∧ dT n = det(J(T )) dy1 ∧ · · · ∧ dyn.

Hence: ∫
V

T ∗ω =

∫
V

(T ∗f)T ∗(dx1 ∧ · · · ∧ dxn)

=

∫
V

(f ◦ T ) dT 1 ∧ · · · ∧ dT n (because T ∗d = dT ∗)

=

∫
V

(f ◦ T ) det(JT ) dy1 ∧ · · · ∧ dyn

=

∫
V

(f ◦ T ) det(JT ) dy1 · · · dyn.

(6.1)

On the other hand, the change-of-variables formula from advanced calculus gives:∫
U

ω =

∫
U

f dx1 · · · dxn =

∫
V

(f ◦ T )| det(J(T ))| dy1 · · · dyn.

Therefore, the relationship between the integrals is:∫
V

T ∗ω = ±
∫
U

ω,

depending on the sign of the Jacobian determinant det(J(T )).
A diffeomorphism T is orientation-preserving if and only if det(J(T )) is positive everywhere on V .

Definition 6.2.1. The support of a differential form ω onM is the closure of the set of points x ∈ M
for which ωx 6= 0 in ∧q(T ∗

xM).
We denote by Ωc(M) the subalgebra of Ω(M) consisting of differential forms with compact sup-

port.

supp(ω) = {x ∈M | ωx 6= 0}

6.3 Integral of a differential form over a manifold
Integration of an n-form over Rn is not so different from integration of a function. The integration
over a manifold has several distinguishing features:

• The manifold must be oriented (in fact, Rn has a standard orientation).

• On a manifold of dimension n, one can integrate only n-forms, not functions.

• The n-forms must have compact support.

LetM be an oriented manifold of dimension n, with an oriented atlas {(Uα, ϕα)} giving the ori-
entation ofM . Denote by Ωk

c (M) the vector space of smooth k-forms with compact support onM .
If ω ∈ Ωn

c (U) is an n-form with compact support on U , then because ϕ : U → ϕ(U) is a
diffeomorphism, (ϕ−1)∗ω is an n-form with compact support on the open subset ϕ(U) ⊂ Rn. We
define the integral of ω on U to be ∫

U

ω :=

∫
φ(U)

(ϕ−1)∗ω.
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If (U, ψ) is another chart in the oriented atlas with the same U ,
then ϕ ◦ ψ−1 : ψ(U) → ϕ(U) is an orientation-preserving diffeomorphism. Thus,∫

φ(U)

(ϕ−1)∗ω =

∫
ψ(U)

(ψ−1)∗ω,

proving that the integral on a chart U is well-defined, independent of the choice of coordinates.
Finally, the integral of ω overM is defined by using a partition of unity {ρα} subordinate to the

open cover {Uα}. The integral is: ∫
M

ω =
∑
α

∫
Uα

ραω.

Proposition 6.3.1. Let ω be an n-form with compact support on an oriented manifoldM of dimension
n. If −M denotes the same manifold but with the opposite orientation, then:∫

−M
ω = −

∫
M

ω.

Thus, reversing the orientation ofM reverses the sign of an integral overM .

Definition 6.3.1. A parametrized set in an oriented n-manifoldM is a subset A together with a C∞

map F : D → M from a compact domain of integration D ⊂ Rn toM such that A = F (D) and F
restricts to an orientation-preserving diffeomorphism from int(D) to F (int(D)). Note that by smooth
invariance of domain for manifolds (Remark 22.5), F (int(D)) is an open subset ofM . The C∞ map
F : D → A is called a parametrization of A.

If A is a parametrized set inM with parametrization F : D → A and ω is a C∞ n-form onM ,
not necessarily with compact support, then we define∫

A

ω to be
∫
D

F ∗ω.

It can be shown that the definition of
∫
A
ω is independent of the parametrization and that in caseA is a

manifold, it agrees with the earlier definition of integration over a manifold. Subdividing an oriented
manifold into a union of parametrized sets can be an effective method of calculating an integral over
the manifold. We will not delve into this theory of integration .

6.4 Poincaré's lemma
Definition 6.4.1. A set U ⊂ Rn is said to be star-shaped at x0 ∈ U if:

∀x ∈ U, ∀t ∈ [0, 1] : (1− t)x0 + tx ∈ U.

Lemma 6.4.1. Let U ⊂ Rn be an open star-shaped set at 0, and let X be a vector field defined by:

Xx =
n∑
i=1

X i ∂

∂xi

If we consider the application:

ξ : Ωp+1(U) −→ Ωp(U)

ω 7−→
∫ 1

0

tp iX(ω)(tx) dt

Then ξ is a linear map such that:

dξ(ω) + ξ(dω) = ω.
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Proof 6.4.1. It is sufficient to prove the lemma for ω = fdxi1 ∧ · · · ∧ dxip+1 . We have:

ξ(ω) =

p+1∑
j=1

(−1)j−1

(∫ 1

0

tpf(tx)xijdt

)
dxi1 ∧ · · · ∧ d̂xij ∧ · · · ∧ dxip+1 .

By differentiating under the integral sign:

d

(∫ 1

0

tpf(tx)xijdt

)
=

(∫ 1

0

tpf(tx)xijdt

)
dxij +

n∑
i=1

(∫ 1

0

tp+1 ∂f

∂xi
(tx)xijdt

)
dxi.

We deduce:

dξ(ω) =

p+1∑
j=1

(−1)j−1

[(∫ 1

0

tpf(tx)dt

)
xij +

n∑
i=1

(∫ 1

0

tpf(tx)xijdt

)
dxi

]
∧ dxi1 ∧ · · · ∧ d̂xij ∧ · · · ∧ dxip+1 .

=(p+ 1)

(∫ 1

0

tpf(tx)dt

)
dxi1 ∧ · · · ∧ dxip+1

+

p+1∑
j=1

(−1)j−1

n∑
i=1

(∫ 1

0

tpf(tx)xijdt

)
dxi ∧ dxi1 ∧ · · · ∧ d̂xij ∧ · · · ∧ dxip+1 .

On the other hand, we have:

dω =
n∑
i=1

∂f

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxip+1 .

iX(dx
i∧dxi1∧· · ·∧dxip+1) = xidxi1∧· · ·∧dxip+1+

p+1∑
j=1

(−1)jxijdxi∧dxi1∧· · ·∧ d̂xij ∧· · ·∧dxip+1 .

Thus:

ξ(dω) =
n∑
i=1

ξ

(
∂f

∂xi
(tx) dxi1 ∧ · · · ∧ dxip+1

)
=

n∑
i=1

∫ 1

0

tp+1 ∂f

∂xi
(tx) iX(dx

i1 ∧ · · · ∧ dxip+1) dt

=
n∑
i=1

∫ 1

0

tp+1 ∂f

∂xi
(tx)

(
xidxi1 ∧ · · · ∧ dxip+1 +

p+1∑
j=1

(−1)jxijdxi ∧ dxi1 ∧ · · · ∧ d̂xij ∧ · · · ∧ dxip+1

)
dt.

Summing the previous equations, we obtain:

dξ(ω) + ξ(dω) =

∫ 1

0

(
(p+ 1)tpf(tx) +

n∑
i=1

tp+1 ∂f

∂xi
(tx) xi

)
dt ∧ dxi1 ∧ · · · ∧ dxip+1

=

[∫ 1

0

(
tp+1f(tx)

)′
dt

]
dxi1 ∧ · · · ∧ dxip+1

=
[
tp+1f(tx)

]1
0
dxi1 ∧ · · · ∧ dxip+1

= f(x) dxi1 ∧ · · · ∧ dxip+1 = ω
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Lemma 6.4.2. (Poincaré)
Let U ⊂ Rn be an open star-shaped set. If ω is a closed p-differential form, then ω is an exact

p-differential form.

Proof 6.4.2. We can assume that U is star-shaped at 0. Since:

dξ(ω) + ξ(dω) = ω.

As ω is closed, i.e., dω = 0, we deduce:

dξ(ω) = ω.

6.5 Stokes’s theorem
Definition 6.5.1. LetM be an oriented manifold of dimension n with boundary. We give its boundary
∂M the boundary orientation and let i : ∂M ↪→ M be the inclusion map. If ω is an (n− 1)-form on
M , it is customary to write

∫
∂M

ω instead of
∫
∂M

i∗ω.

Definition 6.5.2. (Stokes's theorem) For any smooth (n − 1)-form ω with compact support on the
oriented n-dimensional manifoldM , ∫

M

dω =

∫
∂M

ω.

Proof 6.5.1. Choose an atlas {(Uα, ϕα)} forM in which each Uα is diffeomorphic to eitherRn orHn

via an orientation-preserving diffeomorphism. This is possible since any open disk is diffeomorphic
to Rn and any half-disk containing its boundary diameter is diffeomorphic to Hn .
Let {ρα} be a C∞ partition of unity subordinate to {Uα}.
As we showed in the preceding section, the (n− 1)-form ραω has compact support in Uα.

Suppose Stokes’s theorem holds for Rn and for Hn.
Then it holds for all the charts Uα in our atlas, which are diffeomorphic to Rn or Hn. Also, note that

(∂M) ∩ Uα = ∂Uα.

Therefore, ∫
∂M

ω =

∫
∂M

∑
α

ραω =
∑
α

∫
∂M

ραω (since
∑
α

ρα = 1).

The sum
∑

α ραω is finite. This becomes∑
α

∫
∂Uα

ραω (since supp ραω is contained in Uα).

Now apply Stokes's theorem to each Uα:

∑
α

∫
Uα

d(ραω) =

∫
M

d

(∑
α

ραω

)
.

Thus, we have shown that ∫
∂M

ω =

∫
M

dω.

It suffices to prove Stokes’s theorem for Rn and for Hn.
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6.5.1 Proof of Stokes’s theorem for the upper half-plane H2

Let x, y be the coordinates on H2. The standard orientation on H2 is given by dx ∧ dy, and the
boundary orientation on ∂H2 is given by i ∂

∂y
(dx ∧ dy) = dx .

The form ω is a linear combination

ω = f(x, y)dx+ g(x, y)dy

forC∞ functions f, g with compact support inH2. Since the supports of f and g are compact, we may
choose a real number a > 0 large enough that the supports of f and g are contained in the interior of
the square [−a, a] × [0, a]. We will use the notation fx, fy to denote the partial derivatives of f with
respect to x and y, respectively. Then

dω =

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy = (gx − fy)dx ∧ dy.

Now calculate ∫
H2

dω =

∫
H2

gx dx dy −
∫
H2

fy dx dy.

We can express this as∫ ∞

0

∫ ∞

−∞
gx dx dy −

∫ ∞

−∞

∫ ∞

0

fy dy dx =

∫ a

0

∫ a

−a
gx dx dy −

∫ a

−a

∫ a

0

fy dy dx. (6.2)

In this expression, ∫ a

−a
gx(x, y) dx = g(x, y)

∣∣∣x=a
x=−a

= 0

because supp g lies in the interior of [−a, a]× [0, a]. Similarly,∫ a

0

fy(x, y) dy = f(x, 0)
∣∣∣y=a
y=0

= −f(x, 0),

so this expression becomes ∫
H2

dω =

∫ a

−a
f(x, 0) dx.

On the other hand, ∂H2 is the x-axis, and dy = 0 on ∂H2. It follows from (6.2) that ω = f(x, 0)dx
when restricted to ∂H2, and ∫

∂H2

ω =

∫ a

−a
f(x, 0) dx.

This completes the proof of Stokes’s theorem for the upper half-plane.

6.5.2 Stokes's Theorem on Rn

By Fubini's theorem:∫
Rn

dω =

∫
Rn

(−1)α−1 ∂fα
∂xα

dx1 . . . dxn

= (−1)α−1

∫
Rn−1

(∫ ∞

−∞

∂f

∂xα
dxα

)
dx1 . . . dxα−1dxα+1 . . . dxn

= (−1)α−1

∫
Rn−1

(∫ a

−a

∂f

∂xα
dxα

)
dx1 . . . dxα−1dxα+1 . . . dxn.
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But,

∫ a

−a

∂f

∂xα
dxα = f(x1, . . . , xα−1, a, . . . , xn)− f(x1, . . . , xα−1,−a, . . . , xn) = 0− 0 = 0.

Therefore, ∫
Rn

dω = 0.

On the other hand, we have: ∫
∂Rn

ω =

∫
∅
ω = 0,

since the boundary of Rn is empty. This verifies Stokes' theorem for Rn.

6.5.3 Stokes's Theorem on Hn

The case when α 6= n:

∫
Hn

dω = (−1)α−1

∫
Hn

∂f

∂xα
dx1 . . . dxn

= (−1)α−1

∫
Hn−1

(∫ ∞

−∞

∂f

∂xα
dxα

)
dx1 . . . dxα−1dxα+1 . . . dxn

= (−1)α−1

∫
Hn−1

(∫ a

−a

∂f

∂xα
dxα

)
dx1 . . . dxα−1dxα+1 . . . dxn

= 0.

For the same reason as in the case of Rn, by definition of ∂Hn, the 1-form dxn is identically zero.
Since α 6= n:

ω = f dx1 ∧ · · · ∧ dxα ∧ · · · ∧ dxn ≡ 0 on ∂Hn.

Thus, ∫
∂Hn

ω = 0.

The case i = n:∫
Hn

dω = (−1)n−1

∫
Hn

∂f

∂xn
dx1 . . . dxn = (−1)n−1

∫
Rn−1

(∫ ∞

0

∂f

∂xn
dxn

)
dx1 . . . dxn−1.

On the other hand, we have:

∫ ∞

0

∂f

∂xn
dxn =

∫ a

0

∂f

∂xn
dxn = f(x1, . . . , xn−1, a)− f(x1, . . . , xn−1, 0) = −f(x1, . . . , xn−1, 0).

∫
Hn

dω = (−1)n
∫

Rn−1

f(x1, . . . , xn−1, 0)dx1 . . . dxn−1 =

∫
∂Hn

ω.

Since (−1)nRn−1 is precisely ∂Hn with its oriented boundary.
Thus, Stokes' theorem also holds in this case.
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Example 6.5.1. Let D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and ω = xdx+ ydy.
We have:

1. D is a compact submanifold with boundary ∂D = S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.

2. If ϕ : t ∈ [0, 2π] → (cos t, sin t) ∈ R2 is a parameterization of the submanifold S1, then:

ϕ∗(ω) = 0 and
∫

S1

ω =

∫
φ

ω =

∫
[0,2π]

ϕ∗(ω) = 0.

3. We have dω = 0. By applying Stokes' formula, we obtain:∫
S1

ω =

∫
∂D

ω =

∫
D

dω = 0.

Example 6.5.2. On R2, we define: ω = dxdy, η = 1
2
(xdy − ydx), D1 = [0, 1]× [0, 1];

D2 = {(x, y) ∈ R2 | x2 + y2 ≤ R2}
The parameterizations are given by:

φ1 : [0, R]× [0, 2π] −→ R2

(r, θ) 7−→ (r cos θ, r sin θ)

φ2 : [0, 2π] −→ R2

θ 7−→ (R cos θ, R sin θ)
We have:

1. ∫
D1

ω =

∫ 1

0

∫ 1

0

dxdy = 1.

2.
ϕ∗
1(ω) = (cos θ dr − r sin θ dθ)(sin θ dr + r cos θ dθ)

= r cos2 θ dr dθ − r sin2 θ dθ dr

= r(cos2 θ + sin2 θ) dr dθ

= r dr dθ.∫
D2

ω =

∫
φ1

ω =

∫
[0,R]×[0,2π]

ϕ∗
1(ω) =

∫ 2π

0

(∫ R

0

rdr

)
dθ = πR2.

3. Since ω = dη, and ϕ∗
2(η) =

1
2
R2dθ, Stokes' theorem gives:∫

D2

ω =

∫
D2

dη =

∫
∂D2

θ =

∫
φ2

θ =

∫ 2π

0

ϕ∗
2(η) =

∫ 2π

0

1

2
R2dθ = πR2.
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7
Variation of a mapping

The references for this chapter are [43, 1, 37, 34, 30, 53, 12, 45, 41, 19, 51, 46, 44, 19, 29, 55.]

Definition 7.0.1. (n-dimensional interval) A set of the form

T =
n∏
i=1

[ai, bi)

Which is a cartesion product of n intervals in Rn

* In one dimension (n=1) , an interval is simply T = [a, b) which is a segment on the real line .

* In two dimensions (n=2) the set T = [a1, b1)× [a2, b2) is a rectangle in R2,half-closed.

* In three dimensions (n=3) the set T = [a1, b1)× [a2, b2)× [a3, b3) is paralleleped in R3.

* In general , fore any n , it is a parallelepiped inRn thus , I used the erm� n-dimensional interval.

to mean a paralleleped with half-open sides in Rn also call this a half-closed box.

Definition 7.0.2. (cell)

A parallelepiped (n-dimensional interval) of the form

T =
n∏
i=1

[ai, bi)

Where ai, bi ∈ R
and ai < bi This means that T is an open-closed set (half-closed in each coordinite) called cell.

Decomposition of a cell into compact sets
Let G be an open set in Rn, and let f : G → Rn be a continuous mapping. A cell P ⊂ G is a
parallelepiped of the form:

P =
n∏
i=1

[ai, bi) (7.1)
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where each interval [ai, bi) is half-closed.
where the Kj are compact parallelepipeds , can be represented in the in the form

P =
∞⋃
j=1

Kj.

The set P can be written as a contable union of compact parallelepipeds {Kj}∞j=1 such that each is
compact (ie: closed bounded)
and the sets f(Kj) are compact. Hence, the set

f(P ) =
∞⋃
j=1

f(Kj). (7.2)

is Lebesgue measurable.
** We will prove:

Any half-closed parallelepiped

P =
n∏
i=1

[ai, bi) ⊂ Rn

can be expressed as a countable increasing union of compact parallelepipeds:

P =
∞⋃
j=1

Kj,

withKj ⊂ Kj+1, and each Kj compact in Rn.

Key concepts used

• A half-closed cell (or half-closed parallelepiped) in Rn has the form:

P =
n∏
i=1

[ai, bi).

• A set is compact in Rn if and only if it is closed and bounded (Heine-Borel theorem).

• If f is continuous on a compact set, then the image is also compact:

IfK ⊂ Rn is compact and f : K → Rn is continuous, then f(K) is compact.

Strategy

We construct an increasing sequence (Kj) of compact subsets inside P such that their union equals
P . We define:

Kj =
n∏
i=1

[ai, bi − 1
j
]

for j large enough so that bi − 1
j
> ai for all i. This ensures:

• EachKj is compact (closed and bounded),

• Kj ⊂ Kj+1 ⊂ P ,

•
⋃∞
j=1Kj = P .

Proof 7.0.1. Let P =
∏n

i=1[ai, bi) ⊂ Rn be a half-open parallelepiped.
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Step 1: Define the compact sets

Choose an integer N such that for all j ≥ N , bi − 1
j
> ai for all i. Define:

Kj =
n∏
i=1

[ai, bi − 1
j
].

EachKj is a closed and bounded parallelepiped, hence compact in Rn.

Step 2: Show inclusion Kj ⊂ Kj+1 ⊂ P

Since 1
j+1

< 1
j
, we have:

bi − 1
j+1

> bi − 1
j

⇒ [ai, bi − 1
j
] ⊂ [ai, bi − 1

j+1
],

so Kj ⊂ Kj+1. Also, since bi − 1
j
< bi, clearlyKj ⊂ P . Thus,

K1 ⊂ K2 ⊂ · · · ⊂ P.

Step 3: Union covers P

Let x = (x1, . . . , xn) ∈ P . Then xi ∈ [ai, bi), so xi < bi. For each i, there exists ji such that:

xi ≤ bi − 1
ji
.

Let j = max(j1, . . . , jn). Then for all i,

xi ≤ bi − 1
j

⇒ x ∈ Kj.

Hence,

P ⊂
∞⋃
j=1

Kj.

The reverse inclusion is immediate: Kj ⊂ P for all j, so

∞⋃
j=1

Kj ⊂ P.

Therefore,

P =
∞⋃
j=1

Kj.

Step 4: Compactness of f(Kj)

Suppose f : G → Rn is continuous, with P ⊂ G. Then since each Kj ⊂ G is compact and f is
continuous,

f(Kj) is compact in Rn.
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Conclusion

Any half-open parallelepiped P =
∏n

i=1[ai, bi) in Rn can be written as a countable union of compact
sets:

P =
∞⋃
j=1

Kj,

where each Kj is a compact parallelepiped contained in P . Moreover, if f : G → Rn is continuous
and P ⊂ G, then:

f(P ) =
∞⋃
j=1

f(Kj),

with each f(Kj) compact.

7.0.1 Compact subdivision Kj

EchKj is compact , meaning it must be closed and bounded.
A natural way to construt kj is to take fully closed parallelepipeds inside P

Kj =
n∏
i=1

[ci, di],

Where ci, di ∈ [ai, bi) and ci < di
SinceKj is closed and bounded , it is compact .

7.0.2 Exhaustion by compact sets
A common way to construct such a sequence is

Kj =
n∏
i=1

[ai, bi −
1

Jl
], 1/Jl ∈ Q. (7.3)

Where bi−1/Jl ensures that each kj is strictly inside P but gets closer to including all of it as Jl → +∞

* Each kj is compact because it is closed and bounded parallelepiped

* The set sequence satifies k1 ⊆ k2 ⊆ .... and
⋃∞
Jl=k

Kj = P .

(This is called an increasing exhaustion of P by compact set)

Why bi − 1/j:

Take any point x = (x1, . . . , xn) ∈ P . Then for each coordinate:

xi ∈ [ai, bi) ⇒ xi < bi ⇒ ∃j large enough so that xi ≤ bi −
1

j

So eventually, x ∈ Kj for some finite j, which means:

x ∈
∞⋃
j=1

Kj ⇒ P ⊆
∞⋃
j=1

Kj

Also clearly Kj ⊆ P for all j, so:
∞⋃
j=1

Kj = P
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7.0.3 Decompositin of P
The key idea is that we can approximate P using a contable of compact parallelepipeds kj .
One standard way is to take a nested sequence of compact sets that exhaust P .
for exemple :
define :

Kj =
n∏
i=1

[ai, bi −
1

Jl
], 1/Jl ∈ Q. (7.4)

Which are fully closed parallelepipeds and satisfy :

P =
∞⋃
j=1

Kj. (7.5)

7.0.4 Lebesgue measurability of f(P )
* P is an n-dimensional Paralleleped in Rn.

* {Kj}∞j=1 is a nested squence of compact Parallelepiped That exahaust P. meaning

P =
∞⋃
j=1

Kj. (7.6)

* f : G → Rn is continous function since f is continuous image of a compact set under f is
compact meaning

f(Kj) is compact for each j.

Theorem 7.0.1. Every compact set F ⊆ Rd is Lebesgue measurable

* Since Compact set are Lebesgue measurable , their contanle union

f(P ) =
∞⋃
j=1

f(Kj). (7.7)

Theorem 7.0.2 (Contable unions of the measurable sets are measurable ). Let {En|n ∈ N} be a
contable collection of mesurable setsandlet E =

⋃∞
n=1En

The lebesgue σ-algebra L(Rn) is closed under unions meaning if E1, E2.... are Lebesgue measurable
set
Then

E =
∞⋃
n=1

En

is also lebesgue mesurable
** Since each f(Kj) is compact and hence mesurable. Their contanble union :

f(P ) =
∞⋃
j=1

f(Kj). (7.8)

remains lebesgue mesurable.
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7.1 Variation of the mapping
The variation function V (h) of a function f(x) at x = a is defined by

V (h) = f(a+ h)− f(a).

This is a measure of how much the function change when x change frome a to a+h or, in other words
when x start frome a and change by a variable amount h.

Figure 7.1: Variation of the Mapping f

Variation of the mapping f on a cell P
The variation of a function f over a set P measures how much f stretches or distorts the volume of P
defined as:

Vf (P ) = sup
{

m∑
k=1

λn (f (Pk)) | {Pk}mk=1 is a decomposition of the set P into cells

}
,

where the supremum is taken over all possible decompositions of P into finitely many disjoint
subcells Pk, and λn(f(Pk)) denotes the Lebesgue measure of the set f(Pk).

7.1.1 Decomposing P into smaller cells
A finite decomposition of P is a paratition :

P =
m⋃
j=1

Pk. Pi ∩ Pj = ∅ for i 6= j

Each Pk is smaller parallelepiped (a cell) contained in P .
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7.1.2 Measuring the image of each partition
For each Pk , we compute the Lebesgue measure of its image under f ie λn(f(Pk)) hich represents the
volume in Rn. ( λn is the Lebesgue measure, that is, the volume in Rn )
Summing these over all k we get :

m∑
k=1

λn (f (Pk)) [This gives a total measure]

f(Pk) is the image of the cell Pk under f , and λn(f(Pk)) is the volume of this image in Rn. The
supremum is taken over all possible partitions of P .

7.2 The Banach indicatrix
Definition 7.2.1. Let f(x) be a continuous function defined on the interval [a, b],
where a ≤ x ≤ b. An integer-valued function N(y, f), defined for −∞ < y < ∞, is equal to the
number of roots of the equation f(x) = y.
If, for a given value of y, this equation has an infinite number of roots, then

N(y, f) = +∞,

and if it has no roots, then
N(y, f) = 0.

The functionN(y, f)was defined by Banach [1] (see also [37]). He proved that the indicatrixN(y, f)
of any continuous function f(x) in the interval [a, b] is a function of Baire class no higher than 2, and

V b
a (f) =

∫ +∞

−∞
Nf ([a, b], y) dy, (7.9)

where V b
a (f) is the variation of f(x) on [a, b]. Thus, equation (7.9) can be considered as the defi-

nition of the variation of a continuous function f(x).
The Banach indicatrix is also defined (preserving equation (7.9)) for functions with discontinuities of
the first kind [34].
The concept of a Banach indicatrix was employed to define the variation of functions in several vari-
ables [30], [53].

Definition 7.2.2. For a set E ⊂ G and a point y ∈ Rn, denote

Nf (E, y) =

{
card(f−1(y) ∩ E) if the set f−1(y) ∩ E is finite,
+∞ if the set f−1(y) ∩ E is infinite.

The function Nf (E) defined on Rn is called the Banach indicatrix see [[38], Chapter VII, §5]

* If the set f−1(y)∩E infinite the card f−1(y)∩E is just the number of the points in E that map
to y under f .

* If the set set f−1(y) ∩ E infinite , then the function Nf (E, y) is defined to be +∞ indicating
that there are infinitely many points in E that map to y ( f(x) = y has an infinite numbre of
roots).

Theorem 7.2.1. Let P ⊂ G be a cell (a Parallelepiped in Rn) and f be continous mapping and then
Banach indicatrix Nf (P ) is Lebesgue measurable in Rn, and satisfaies the integral fourmule∫

Rn

Nf (P ) dλn = Vf (P ). (7.10)
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Proof 7.2.1. Partition of the Cell P :

A cell P ∈ G is Parallelepiped into disjoint cells Pk forming a decomposition τ = {Pk}mk=1 ,such that:

P =
m⋃
j=1

Pk. Pi ∩ Pk = ∅ for i 6= j

Indicator function Xf (P )(y) : This is the characteristic function of f(P ) defined by

Xf (P )(y) =

{
1 if y ∈ f(P )

0 otherwise.

*The functionXf (P ) is indicator function of the lebesguemeasurable set f(P ). Since f(P ) is lebesgue
measurable its indicator function Xf (P ) is also measurable .

Decomposition into disjoint cells:

Let τ = {Pk}mk=1 be a decomposition of P into pairwaise disjoint cell Pk.
Define:

Nτ (y) =
m∑
k=1

χf(Pk)(y).

Nτ (y) is measurable:

Thus,Nτ (y) counts how many of the sets f(Pk) (the images of the sub-cells under f ) contain the point
y.

Since each χf(Pk)(y) is measurable,because f(Pk) is lebesgue measurable A finite sum of meau-
rable function is also measurable so sum Nτ (y) is measurable.

Now consider the integral of Nτ (y) over Rn:∫
Rn

Nτ (y) dλn =

∫
Rn

m∑
k=1

χf(Pk)(y) dλn.

Using the linearity of the integral, this becomes:∫
Rn

Nτ (y) dλn =
m∑
k=1

∫
Rn

χf(Pk)(y) dλn.

The integral of χf(Pk)(y) is simply the n-dimensional Lebesgue measure of f(Pk), denoted λn(f(Pk)).
In particular, it follows directly from the definition of the Lebesgue integral:∫

Rn

χE(y) dλn(y) = λn(E)

for any measurable set E ⊂ λn.
So, for measurable f(Pk) ⊂ λn, you get∫

Rn

χf(Pk)(y) dλn(y) = λn(f(Pk)).
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∫
Rn

Xf (y) dλn = λn(f(Pk)).

P =
⋃m
j=1 Pk. Pk are disjoint . Summing over all paratitions Pk we obtain:∫

Rn

Nτ (y) dλn =
m∑
k=1

λn(f(Pk)).

Remark: The integral of χf(Pk)(y) over Rn gives the measure (volume) of f(Pk) .
The function Nτ is measurable, and∫

Rn

Nτ dλn =
m∑
k=1

∫
Rn

χf(Pk) dλn =
m∑
k=1

λn(f(Pk)), (7.11)

Decompositions:

Indeed any cell Pk ∈ τ can be represented as

Pk =

mk⋃
i=1

Pki,

If τ ′ = Pki is a refinement of τ = Pk. This means that each cell Pk ∈ τ can be written as a disjoint
union Then:

Pk =

mk⋃
i=1

Pki,

• Since f(Pk) is also a union of its refined images so

f(Pk) =

mk⋃
i=1

f(Pki),

where the union is disjoint. Consequently, the indicator function satisfies:

χf(Pk)(y) ≤
mk∑
i=1

χf(Pki)(y).

Summing over all k, we find:

Nτ (y) =
m∑
k=1

χf(Pk)(y) ≤
m∑
k=1

mk∑
i=1

χf(Pki)(y) = Nτ ′(y).

so
Nτ (y) ≤ Nτ ′(y)

Thus, refining the decomposition increases Nτ (y).

Decomposition τs:

This represents a specific way of dividing the cell P into smaller subregions. The subscript s indicates
the level of subdivision, where s is a parameter that controls how fine the decomposition is.
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Division into 2sn equal parts:

The decomposition divides P into 2sn smaller regions. Here:

• 2s: Each side of the cell P is divided into 2s equal segments.
This means the number of divisions along each dimension grows exponentially with s.

• n: This could represents the additional factors, such as the number of calls in a higher-dimensional
setting or a multiplier related to the geometry of P . of dimensions of P , meaning the total num-
ber of subregions is 2sn.

Dividing any side of P into 2s equal parts:

This implies that each side (or edge) of the cell P is split into 2s segments of equal length.

Define τs as the decomposition of P into 2sn equal parts by dividing each side of P into 2s equal
intervals. The sequence of decompositions {τs}∞s=1 is nested (each τs+1 refines τs), so:

Nτs(y) ≤ Nτs+1(y) for all y ∈ Rn.

By monotonicity, the limit

lim
s→∞

Nτs(y) (finite or equal to +∞).

exists.

Relation between Nf (P, y) and the preimage:

We claim that Nf (P, y) = lims→∞Nτs(y). For any fixed paratition τ = {Pk}mk=1, the equality
P =

⋃m
k=1 Pk implies:

f−1(y) ∩ P =
m⋃
k=1

(f−1(y) ∩ Pk),

Since the set (f−1(y) ∩ Pk) are disjoint we sum over ther cardinalities Therefore:

Nf (P, y) =
m∑
k=1

card(f−1(y) ∩ Pk).

because

card(f−1(y) ∩ P ) =
m∑
k=1

card(f−1(y) ∩ Pk).

Cas 01: If f−1(y) ∩ Pk = ∅

Then y /∈ f(Pk), so χf(Pk)(y) = 0 . Which implies :

card(f−1(y) ∩ Pk) = 0 = χf(Pk)(y)

Cas 02: If f−1(y) ∩ Pk 6= ∅

Then y ∈ f(Pk), so χf(Pk)(y) = 1. Since card(f−1(y) ∩ Pk) ≥ 1 we get :

card(f−1(y) ∩ Pk) ≥ χf(Pk)(y),
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Summing over all k, we obtain:

card(f−1(y) ∩ P ) ≥
m∑
k=1

χf(Pk)(y) = Nτ (y).

Nf (P, y) ≥ Nτ (y).

Since Nτ (y) increases with finer partition, we conclude:

Nf (P, y) ≥ lim
s→∞

Nτs(y). (7.12)

If Nf (P, y) ≥ q ∈ N, then the set P contains at least q different roots of the equation f(x) = y.
Nf (P, y) ≥ q ∈ N means that there are q distinct points x1, x2, . . . , xq ∈ P such that:

f(xi) = y, for i = 1, 2, . . . , q,

and these points are pairwise distinct.

Pairwise distinctness:

Since the roots x1, x2, . . . , xq are distinct, their pairwise distances (measured using a metric ρ on Rn)
are strictly positive:

ρ0 = min
1≤i<j≤q

ρ(xi, xj) > 0.

This minimum distance ρ0 ensures that no two roots can be arbitrarily close to each other.

Behavior of the decomposition τs

The decomposition τs divides the cell P into smaller subregions (cells) Ps,i, where:

• Each side of P is divided into 2s equal parts.

• The total number of subregions is 2sn for an n-dimensional cell P .

• The diameter of each subregion Ps,i decreases as s→ ∞:

diam(Ps,i) =
diam(P )

2s
.

As s→ ∞, the diameter of each subregion approaches zero:

lim
s→∞

diam(Ps,i) = 0.

For sufficiently large s, the diameter of each subregion Ps,i becomes smaller than the minimum
distance ρ0 between any two roots:

diam(Ps,i) < ρ0.

This implies that no single subregion Ps,i can contain more than one of the roots x1, x2, . . . , xq.
Consequently:

• Each root xi must lie in its own unique subregion Ps,i.

• At most q subregions can contain any of the roots x1, x2, . . . , xq.
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Fix roots x1, . . . , xq ∈ P . Since these roots are distinct, define

ρ0 = min
1≤i<j≤q

ρ(xi, xj) > 0

where ρ is a metric in Rn. If Psi are the cells of the decomposition τs, then

diamPsi =
1

2s
diamP → 0 as s→ ∞.

Thus, there exists s such that diamPsi < ρ0.
In this case, each cell Psi contains not more than one point of the set {x1, . . . , xq}, hence the existe
not more than q cells Psi satisfy y ∈ f(Psi), for each subregion Ps,i, the indicator function χf(Ps,i)(y)
is defined as:

χf(Ps,i)(y) =

{
1, if y ∈ f(Ps,i),

0, otherwise.

The value Nτs(y) is the sum of these indicator function over all subregions :

Nτs(y) =
2sn∑
i=1

χf(Psi)(y).

As s→ ∞, the decomposition τs becomes arbitrarily fine, and the subregions Ps,i shrink to individual
points. In this limit:

• Each root xi contributes one subregion Ps,i such that y ∈ f(Ps,i).

• Therefore, the count Nτs(y) converges to the number of roots q.

Thus,
lim
s→∞

Nτs(y) ≥ q. (7.13)

We have shown that if Nf (P, y) = q, then:

lim
s→∞

Nτs(y) ≥ q. (7.14)

If Nf (P, y) = q ∈ N, then

lim
s→∞

Nτs(y) ≤ q,

which implies Nf (P, y) ≥ lims→∞Nτs(y).
If Nf (P, y) = +∞, then for any q, the inequality Nf (P, y) ≥ q holds.
In this case,

lim
s→∞

Nτs(y) ≥ q for any q,

which means lims→∞Nτs(y) = +∞. Thus, we conclude:

Nf (P, y) ≥ lim
s→∞

Nτs(y).

From inequality (7.12), we deduce:

Nf (P, y) = lim
s→∞

Nτs(y).
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Conclusion:

In both cases, we have:
Nf (P, y) = lim

s→∞
Nτs(y).

This confirms that Nf (P ) is measurable. By Lévy's theorem and inequality (7.11), we obtain:∫
Rn

Nf (P )dλn = lim
s→∞

∫
Rn

Nτsdλn. (7.15)

Since

lim
s→∞

2sn∑
i=1

λn(f(Ps,i)) ≤ sup
{Pk}mk=1

m∑
k=1

λn(f(Pk)), (7.16)

where {Pk}mk=1 is a decomposition of the cell P , we conclude:

Vf (P ) = sup
τ

m∑
k=1

λn(f(Pk)) ≤
∫
Rn

Nf (P )dλn. (7.17)

Inequalities and limits:

On the other hand, since Nf (P, y) ≥ Nτ (y) for any decomposition τ , it follows that:

m∑
k=1

λn(f(Pk)) =

∫
Rn

Nτdλn ≤
∫
Rn

Nf (P )dλn. (7.18)

Thus,

Vf (P ) = sup
τ

m∑
k=1

λn(f(Pk)) ≤
∫
Rn

Nf (P )dλn. (7.19)

For any decomposition τ , the inequality

Nf (P, y) ≥ Nτ (y) (7.20)

holds. Integrating both sides with respect to y over Rn, we get:∫
Rn

Nf (P, y) dλn(y) ≥
∫
Rn

Nτ (y) dλn(y). (7.21)

For the specific decomposition τs, we have:∫
Rn

Nτs(y) dλn(y) =
2sn∑
i=1

λn(f(Ps,i)). (7.22)

Taking the limit as s→ ∞, we obtain:

lim
s→∞

∫
Rn

Nτs(y) dλn(y) =

∫
Rn

Nf (P, y) dλn(y). (7.23)

Thus: ∫
Rn

Nf (P, y) dλn(y) = Vf (P ). (7.24)
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Supremum over all decompositions:

For any decomposition τ = {Pk}mk=1, we have:
m∑
k=1

λn(f(Pk)) =

∫
Rn

Nτ (y) dλn(y). (7.25)

Since Nf (P, y) ≥ Nτ (y), it follows that:
m∑
k=1

λn(f(Pk)) ≤
∫
Rn

Nf (P, y) dλn(y). (7.26)

Taking the supremum over all decompositions τ , we conclude:

Vf (P ) = sup
τ

m∑
k=1

λn(f(Pk)) ≤
∫
Rn

Nf (P, y) dλn(y). (7.27)

On the other hand, since Nf (P, y) = lims→∞Nτs(y), and∫
Rn

Nτs(y) dλn(y) → Vf (P ), (7.28)

we also have: ∫
Rn

Nf (P, y) dλn(y) ≤ Vf (P ). (7.29)

Combining these inequalities, we conclude:

Vf (P ) =

∫
Rn

Nf (P, y) dλn(y). (7.30)

Definition 7.2.3. A continuous mapping f : G→ Rn is called a mapping with locally-finite variation
if the variation Vf (P ) is finite for any cell P such that P ⊂ G.

The variation Vf (P ) measures how much the image of P under f "spreads out" in Rn.
It quantifies the "size" of the image of P under f , taking into account the multiplicity of preim-
ages.Formally, Vf (P ) is defined as:

Vf (P ) = sup
τ

m∑
k=1

λn(f(Pk)), (7.31)

where:

• τ = {Pk}mk=1 is a decomposition of P into disjoint subregions Pk,

• λn is the n-dimensional Lebesgue measure,

• The supremum is taken over all possible decompositions τ of P .

Closure condition:

P ⊂ G
The condition P ⊂ G ensures that not only the interior of P but also its boundary lies entirely

within the domain G of the mapping f .
This is stricter than requiring P ⊂ G, as it guarantees that f is well-defined and continuous on the
entire boundary of P .
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Examples

(a) Mapping with locally-finite variation
Let f : [0, 1] → R2 be defined as:

f(x) = (x, x2).

For any subinterval [a, b] ⊂ [0, 1], the image of [a, b] under f is a curve in R2 with finite length.
Thus, Vf ([a, b]) is finite for all [a, b] ⊂ [0, 1], and f has locally-finite variation.

(b) Mapping without locally-finite variation
Let f : (0, 1) → R be defined as:

f(x) = sin
(
1

x

)
for x > 0.

Near x = 0, f(x) oscillates infinitely often, causing the variation Vf ([a, b]) to become infinite for any
interval [a, b] containing points arbitrarily close to 0.
Therefore, f does not have locally-finite variation.

Corollary 7.2.1. If f : G → Rn is a mapping with locally-finite variation and P is a cell such that
P ⊂ G, then the set

f−1(y) ∩ P is finite for almost every point y ∈ Rn

(with respect to the Lebesgue measure).
Moreover, the function Nf (P ) is summable, hence this function is finite almost everywhere.

Proof 7.2.2. Step 1: Finite variation implies finiteness of f−1(y) ∩ P almost everywhere:

Since f has locally-finite variation, the variation Vf (P ) is finite for any cell P such that P ⊂ G. By
definition of Vf (P ), the total "size" of the image of P under f is finite:

Vf (P ) = sup
τ

m∑
k=1

λn(f(Pk)) <∞, (7.32)

where τ = {Pk}mk=1 is a decomposition of P into disjoint subregions.
If f−1(y) ∩ P were infinite for some y ∈ Rn, then the contribution of y to the variation Vf (P )

would also be infinite, contradicting the finiteness of Vf (P ). Thus, f−1(y) ∩ P must be finite for
almost every y ∈ Rn (with respect to the Lebesgue measure).

Step 2: Summability of Nf (P, y):

The functionNf (P, y) counts the number of points in f−1(y)∩P . Since f−1(y)∩P is finite for almost
every y, Nf (P, y) is finite almost everywhere. Moreover, the integral of Nf (P, y) over Rn is equal to
the variation Vf (P ): ∫

Rn

Nf (P, y)dλn(y) = Vf (P ). (7.33)

Since Vf (P ) <∞ by assumption, it follows that Nf (P, y) is summable (i.e., integrable).
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Step 3: Conclusion

The summability ofNf (P, y) implies thatNf (P, y) is finite almost everywhere. Thus, the set f−1(y)∩P
is finite for almost every y ∈ Rn.

Remak:Intuition behind the result

Why is f−1(y) ∩ P finite almost everywhere?

The condition of locally-finite variation ensures that the image of P under f does not spread out
infinitely in Rn, preventing f−1(y) ∩ P from being infinite for too many values of y.

Intuitively, if f−1(y)∩P were infinite for many y, the total "size" of the image of P would become
infinite, contradicting the finiteness of Vf (P ).

Why is Nf (P, y) summable?

The summability of Nf (P, y) reflects the fact that the total number of preimages of all points y ∈ Rn

is controlled by the finite variation Vf (P ).
This ensures that Nf (P, y) does not grow too large over any significant subset of Rn.
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8
Topological degree of a mapping with
locally-finite variation

The references for this chapter are [43, 35, 27, 47, 9 , 2.]

Compact manifold K ⊂ Rn

K is an n-dimensional compact manifold with a piecewise-smooth boundary ∂K. The boundary ∂K
is a union of finitely many smooth manifolds whose dimensions do not exceed n−1. A simple example
of such a manifold is a compact parallelepiped (e.g., a closed rectangle or cube).

Definition 8.0.1. The boundary ∂K is a union of a finite family of smooth manifolds whose dimensions
do not exceed n− 1:

∂K =
m⋃
i=1

Mi, where eachMi is a smooth manifold with dimMi ≤ n− 1.

Mapping g : K → Rn

g is a C1-mapping (continuously differentiable) from K to Rn. The point y ∈ Rn is chosen such that
y /∈ g(∂K), meaning y does not lie in the image of the boundary ofK under g.

Definition of piecewise-smooth boundary
A piecewise-smooth boundary of the setK ⊂ Rn means that the boundary ∂K is composed of a finite
union of smooth (n − 1)-dimensional manifolds .That is ∂K consists of several smooth pieces that
may meet at their boundarics but are otherwise smooth within their individual regions.
Formally ,∂K is piecewise-smooth if :

1. There exists a finite number of smooth (n − 1)-dimensional manifolds M1,M2, . . . ,Mm such
that :

∂K =
m⋃
i=1

Mi,

2. EachMi is a smooth (n− 1)-dimensional submanifold of Rn meaning it has continous partial
derivatives up to a certain order
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3. The manifoldsMi may intersect along lower-dimensional subsets (such as edges or corners in
the cas of a polyhedron)

Degree of a smooth map between manifolds
LetM and N be oriented n-dimensional manifolds without boundary, and let

S :M → N

be a smooth map. IfM is compact and N is connected, then the degree of S is defined as follows:

Let x ∈M be a regular point of S, so that the differential

dSx : TxM → TS(x)N

is a linear isomorphism between oriented vector spaces.

Define the sign of dSx to be +1 or −1 according as dSx preserves or reverses orientation.

For any regular value y ∈ N , define:

deg(S; y) =
∑

x∈S−1(y)

sign(dSx).

this integer deg(S; y) is a locally constant function of y. It is defined on a dense open subset ofN see
([35]).

Definition of the topological degree

Let g : K → Rn be a C1 mapping, and let y /∈ g(∂K).The topological degree of the mapping g at the
point y is defined as the index of the cycle g|∂K (see [[47], Chapter VI,§8] and see [43])with respect
to y, i.e., the integral:

deg g(K, y) = 1

µ(Sn−1)

∫
g(∂K)

ωy,

where:

• µ(Sn−1) is the surface area of the unit sphere in Rn.

• ωy is the (n− 1)-form:

ωy =
n∑
i=1

(−1)i−1 xi − yi
|x− yn|

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

where |x− y| = (
∑n

i=1(xi − yi)
2)

1/2 and d̂xi indicates omission of dxi.

Interpretation of ωy:
• The differential form ωy represents a normalized volume form on the sphere centered at y. It
captures orientation and density of g(∂K) around y.

• The wedge product dx1 ∧ · · · ∧ dxi−1 ∧ dxi−1 · · · ∧ dxn, represent the exterior product of all
variables except xi.
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Integral over g(∂K)

The integral
∫
g(∂K)

ωy computes the index of the cycle g|∂K with respect to y.
This index reflects how g(∂K) wraps around y in Rn.

Normalization

• Dividing by µ(Sn−1) ensures that the topological degree is an integer.

• If f is continous mapping of a set G ⊂ Rn into Rn f : G → Rn Assume , K ⊂ G is compact
subset, and y /∈ f(∂K),meaning y deoes not lie in the image of the boundary ofK under f .

Approximation by C1-mappings
• Since f is continuous but not necessarily differentiable we approximate f by a sequence of
C1-mappings gk such that gk → f uniformly onK.

• For each gk ,the topological degree deg gk(K, y) is well-defined using the formula above.

The topological degree is stable under small perturbations of the mapping. Therefore, the degree
deg f(K, y) can be defined as the limit:

deg f(K, y) = lim
k→∞

deg gk(K, y).

Compactness and distance condition

(a) Since ∂K is compact and f is continuous, the image f(∂K) is also compact in Rn.

(b) Positive distance to y:
The condition y /∈ f(∂K) implies that there exists a positive minimum distance between y and
f(∂K):

ρ(y, f(∂K)) = inf{ρ(y, z) | z ∈ f(∂K)} > 0.

This ensures that y is sufficiently far from f(∂K), so the integral defining the degree is well-
defined.

8.1 Definitions: paths and homotopy of paths
Let us assume the closed unit interval I := [0, 1] and a topological space X are given.

1. Path : A continuous function p : I → X from a point x0 ∈ X to a point x1 ∈ X is called a
path if it satisfies:

p(0) = x0, p(1) = x1.

2. Homotopy of paths : Let f ≡ h0 and g ≡ h1 be two paths inX from x0 to x1. A family of paths
{ht : I → X}t∈[0,1] is called a homotopy of paths (relative to endpoints) if:

(i) For all t ∈ [0, 1], the paths satisfy the endpoint conditions:

ht(0) = x0, ht(1) = x1.
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(ii) The map H : I × I → X , defined by

H(s, t) := ht(s),

is continuous.

Depending on the context, either the function H or the family {ht}t∈[0,1] itself is referred to as a
homotopy.

8.1.1 The meaning of homotopy
As mentioned before, the idea that two paths are homotopic can be understood to mean that by slightly
altering one path, it can be turned into the other. However, in topology, exploring such ‘practical
sameness’ is to see the ’true difference’ see([27]).

8.2 Definition of C0-homotopy

(a) General definition

Let X and Y be topological spaces, and let f, g : X → Y be two continuous mappings.
A C0-homotopy between f and g is a continuous mapping:

H : X × [0, 1] → Y,

such that:
H(x, 0) = f(x), H(x, 1) = g(x) for all x ∈ X,

and for each fixed t ∈ [0, 1], the map Ht(x) = H(x, t) is continuous.
In simpler terms, H provides a continuous "path" of mappings from f to g.

(b) Homotopy in Rn \ {y}

If f, g : ∂K → Rn \ {y}, then f |∂K and g|∂K are said to be C0-homotopic in Rn \ {y} if there exists
a C0-homotopy:

H : ∂K × [0, 1] → Rn \ {y}
such that:

H(x, 0) = f(x), H(x, 1) = g(x) for all x ∈ ∂K,

and
H(x, t) 6= y for all x ∈ ∂K and t ∈ [0, 1].

This ensures that the homotopy avoids the point y throughout the deformation see([35]).
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8.2.1 Properties of C0-homotopy
• Continuity: The homotopy H is continuous as a function of both x ∈ ∂K and t ∈ [0, 1].

• Avoidance of y: Since H(x, t) 6= y for all x ∈ ∂K and t ∈ [0, 1], the homotopy stays entirely
within Rn \ {y}.

• Equivalence Relation: C0-homotopy defines an equivalence relation on the set of continuous
mappings from ∂K to Rn \ {y}:

– Reflexivity: f |∂K is C0-homotopic to itself.
– Symmetry: If f |∂K is C0-homotopic to g|∂K , then g|∂K is C0-homotopic to f |∂K .
– Transitivity: If f |∂K is C0-homotopic to g|∂K , and g|∂K is C0-homotopic to h|∂K , then
f |∂K is C0-homotopic to h|∂K .

Lemma 8.2.1. Let f : G→ Rn be a continuous mapping and suppose y /∈ f(∂K).
Then there exists a mapping g : K → Rn of class C1 such that:

‖f − g‖ = max
x∈K

|f(x)− g(x)| < ρ(y, f(∂K)),

and the restriction g|∂K is C0-homotopic to the restriction f |∂K in Rn \ {y} for any such mapping
y.
Moreover,

deg f(K, y) = deg g(K, y) = 1

µ(Sn−1)

∫
g(∂K)

ωy.

Proof

Step 1: Approximation by C1-mappings:

By Theorem 52 in [47], any continuous mapping f : K → Rn can be approximated by a C1-mapping
g : K → Rn such that:

‖f − g‖ = max
x∈K

|f(x)− g(x)| < ρ(y, f(∂K)).

This ensures that g(x) 6= y for all x ∈ ∂K, because:

|g(x)− y| ≥ |f(x)− y| − |f(x)− g(x)| > 0 for all x ∈ ∂K.

Distance condition:

The condition ‖f − g‖ < ρ(y, f(∂K)) guarantees g(x) 6= y for all x ∈ ∂K. Hence, g(∂K) avoids y,
making the integral formula valid.

Step 2: Homotopy between restrictions:

By item 2 of Theorem 51 in [47], the restriction g|∂K is C0-homotopic to f |∂K in Rn \ {y}. That is,
there exists a continuous family of mappings Ht : ∂K → Rn \ {y}, t ∈ [0, 1], such that:

H0 = f |∂K , H1 = g|∂K , and Ht(x) 6= y for all x ∈ ∂K, t ∈ [0, 1].
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Homotopy avoiding y:

Since ‖f − g‖ < ρ(y, f(∂K)), we have for all x ∈ ∂K and t ∈ [0, 1]:

|Ht(x)− y| ≥ |f(x)− y| − |f(x)− g(x)| > 0,

ensuring Ht(x) 6= y throughout the homotopy.

Step 3: Invariance of the degree under homotopy:

By Theorem 62 in [47], the topological degree is invariant under C0-homotopies that avoid y. There-
fore:

deg f(K, y) = deg g(K, y).

Homotopy invariance:

The degree is invariant under C0-homotopies avoiding y.

Step 4: Integral formula for the degree:

For the C1-mapping g, the degree deg g(K, y) can be computed via the integral formula:

deg g(K, y) = 1

µ(Sn−1)

∫
g(∂K)

ωy,

Smooth Approximation:

The smooth approximation g is constructed using standard techniques such as convolution or parti-
tions of unity. These ensure that g is C1 and remains uniformly close to f where ωy is the differential
form defined previously. Since deg f(K, y) = deg g(K, y), we conclude:

deg f(K, y) = 1

µ(Sn−1)

∫
g(∂K)

ωy.

8.3 Topological degree on a cell
Let P =

∏n
i=1[ai, bi), and for ε > 0, define the shifted cell

Kε(P ) =
n∏
i=1

[ai − ε, bi − ε].

Kε(P ) is used to construct neighborhoods of P that remain withinG, ensuring that the approximation
g can be extended smoothly to the boundary of P .

Definition 8.3.1. If there exists εy > 0 such that the degree deg f(Kε(P ), y) is defined for all
0 < ε < εy, and the finite limit

lim
ε→0+

deg f(Kε(P ), y) exists for any y /∈ f(∂Kε)

Then this limit is called the topological degree of the mapping f on the cell P at the point y, and is
denoted by deg f(P, y).

Theorem 8.3.1. Assume that f : G→ Rn is a mapping with locally-finite variation, and let
P =

∏n
i=1[ai, bi) be such that P ⊂ G. Then the degree deg f(P, y) exists for almost all y ∈ Rn, and

the function deg f(P, y) is Lebesgue measurable.
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Proof 8.3.1. Step (1): Points not on the boundary ∂Kε(P )

We first show that for any x ∈ Rn, there exists εx > 0 such that x /∈ ∂Kε(P ) for all ε ∈ (0, εx).

Case (a): x ∈ P .

Let x = (x1, . . . , xn) ∈ P . Then :

ai ≤ xi < bi for all i = 1, . . . , n.

Define:
εx = min

1≤i≤n
{bi − xi} > 0.

Then for all ε < εx, we have
ai ≤ xi < bi (i = 1, ..., n)

xi < bi − ε and xi > ai − ε for all i = 1, . . . , n and 0 < ε < εx.

Hence, x /∈ ∂Kε(P ).

Case (b): x /∈ P .

If x /∈ P .Then there exists an index i0 such that either xi0 ≥ bi0 or xi0 < ai0 .
In the first case (xi0 ≥ bi0):

xi0 > bi0 − ε for all ε > 0

So x /∈ ∂Kε(P ) for all ε > 0.
In the second case xi0 < ai0 :
define

εx = ai0 − xi0 > 0

For ε < εx, we have
xi0 < ai0 − ε.

So x /∈ ∂Kε(P )

Conclusion of Step (1):

For any finite set T ⊂ Rn, there exists εT > 0 such that define:

T ∩ ∂Kε(P ) = ∅ for all ε ∈ (0, εT ).

This follows by setting :
εT := min{εx | x ∈ T} 6= 0.
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Step (2): Avoidance of y in f(∂Kε(P ))

We now claim that for almost every y ∈ Rn, there exists ε(y) > 0 such that:

y /∈ f(∂Kε(P )) for all ε ∈ (0, ε(y)).

Since P ⊂ G and P is compact,the distance frome P to Rn \Gis positive :

inf{ρ(x, z) | x ∈ P, z ∈ Rn \G} > 0.

Hence, there exists ε0 > 0 such that

P0 :=
n∏
i=1

[ai − ε0, bi + ε0) ⊂ P0 ⊂ G.

By the corollary 7.2.1 to Theorem 7.2.1, the set T = f−1(y) ∩ P0 is finite for almost all y ∈ Rn.
For the finite set T , by Step (1), there exists εT > 0 such that:

f−1(y) ∩ P0 ∩ ∂Kε(P ) = ∅ for all ε ∈ (0, εT ).

Since ∂Kε(P ) ⊂ P0 for ε ∈ (0, ε0),it follows that :

f−1(y) ∩ P0 ∩ ∂Kε(P ) = ∅ for all ε ∈ (0,min{ε0, εT}).

Where for almost all y, there exists ε(y) := min{ε0, εT} .
In this case x ∈ f−1(y) for x ∈ f(∂Kε(P ) ie f(x) 6= y thus y /∈ f(∂Kε(P )) for all ε ∈ (0, ε(y)).
Then deg f(P, y) existe

Step (3): Existence of the limit

To establish the existence of the limite :

lim
ε→0+

deg f(Kε(P ), y)

exists for almost all y.
We use the mappings ϕε : Rn → Rn define as(Translation diffeo C∞):

ϕε(x1, . . . , xn) = (x1 − ε, . . . , xn − ε),

ϕε shifts the coordinates of x by −ε , effectively shrinking the domain P toKε(P ) .

For small ε > 0 , ϕε ensures that Kε(P ) ∩ P0 and ∂Kε(P ) ∩ P0.

Then
Kε(P ) = ϕε(P ).

Boundary transformation under ϕε:

The boundary of the shifted parallelepipedKε(P ) is given by:

∂Kε(P ) = ϕε(∂P ),

• where ϕε(x1, . . . , xn) = (x1 − ε, . . . , xn − ε).

• This means that ∂Kε(P ) is a translated of ∂P , shifled inward by ε
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Finite preimage condition :

Assume that the set f−1 ∩ P0 is finite for some y ∈ Rn .
Where:

P0 =
n∏
i=1

[ai − ε0, bi + ε0] ⊂ G

• Since ∂Kε(P ) ⊂ P0 ⊂ G for ∀ε, 0 < ε < ε(y), the mappings ϕε|∂P are homotopic on G.

• Consequently, the compositions f◦ϕε|∂P areC0-homotopic onRn\{y}, because y /∈ f(∂Kε(P )).

Homotopy between f ◦ ϕε1 |∂P and f ◦ ϕε2 |∂P :

• If 0 < ε1 < ε2 < ε(y), then the mappings f ◦ ϕε1 |∂P and f ◦ ϕε2 |∂P are C0-homotopic.

• This implies that the topological degree is invariant under this homotopy.

Approximation by C1-mappings:

Construction of g1 and g2:

• Let g1 : Kε1(P ) → Rn and g2 : Kε2(P ) → Rn be C1-mappings approximating f such that:

‖f − g1‖ = max
x∈Kε1 (P )

|f(x)− g1(x)| < ρ(y, f(∂Kε1(P ))),

and
‖f − g2‖ = max

x∈Kε2 (P )
|f(x)− g2(x)| < ρ(y, f(∂Kε2(P ))).

Homotopy between restrictions:

• By Lemma 8.2.1, the restrictions g1|∂Kε1 (P ) and f |∂Kε1 (P ) are C0-homotopic in Rn \ {y}, simi-
larly for g2|∂Kε2 (P ) and f |∂Kε2 (P ) are C0-homotopic in Rn \ {y}.

Transitivity of homotopy:

• Since f ◦ϕε1 |∂P is C0-homotopic to g1 ◦ϕε1 |∂P , and f ◦ϕε2 |∂P is C0-homotopic to g2 ◦ϕε2 |∂P .

• By transitivity ,g1 ◦ ϕε1 |∂P is C0-homotopic to g2 ◦ ϕε2 |∂P .

C1-Homotopy:

• By Theorem 53 in [47], the mappings g1 ◦ϕε1 |∂P and g2 ◦ϕε2 |∂P are C1-homotopic inRn \{y}.

Integral invariance under homotopy:

Equality of integrals:

If ωy is a closed differential form inRn \{y}, then the integrals of ωy over homotopic cycles are equal
specifically: ∫

g1◦φε1 (∂P )

ωy =

∫
g2◦φε2 (∂P )

ωy.
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Change of variables:

• Since the determinant of the Jacobi matrix of a mapping det(Dϕε) = 1 at the faces of the
parallelepiped P , we can change variables in the integrals to show:∫

g1(∂Kε1 (P ))

ωy =

∫
g1◦φε1 (∂P )

ωy,

and ∫
g2(∂Kε2 (P ))

ωy =

∫
g2◦φε2 (∂P )

ωy.

Combinig these results , we have :∫
g1(∂Kε1 (P ))

ωy =

∫
g2(∂Kε2 (P ))

ωy.

Constancy of the degree function

• From Lemma 8.2.1 the degrees of f ,g1 and g2 are related as follows:

deg f(Kε1(P ), y) = deg g1(Kε1(P ), y),

and
deg f(Kε2(P ), y) = deg g2(Kε2(P ), y).

• Using the integral formula for the degree:

deg g1(Kε1(P ), y) =
1

µ(Sn−1)

∫
g1(∂Kε1 (P ))

ωy,

deg g2(Kε2(P ), y) =
1

µ(Sn−1)

∫
g2(∂Kε2 (P ))

ωy.

• Since the integrals are equal,it follows that :

deg f(Kε1(P ), y) = deg f(Kε2(P ), y).

Thus, the function deg f(Kε(P ), y) is constant for 0 < ε < ε(y).

Existence of the limit

• The constancy of deg f(Kε(P ), y) for 0 < ε < ε(y) implies that the limit:

lim
ε→0+

deg f(Kε(P ), y)

exists and is finite.

• By the corollary 7.2.1 to theorem 7.2.1 ,the set f−1(y) ∩ P0 is finite for almost all y ∈ Rn.

• Therefore ,the above limit exists for almost all y ∈ Rn.
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Step (4): Measurability of deg f(P, y)

Compact parallelepipedK ⊂ G:

• IfK is a compact parallelepiped such thatK ⊂ G, then deg f(K, y) is defined for
y ∈ Rn \ f(∂K). The function:

d(K, y) =

{
deg f(K, y), if y ∈ Rn \ f(∂K),

0, if y ∈ f(∂K),

• is Lebesgue measurable. This follows because d(K, y) is constant on connected open compo-
nents of Rn \ f(∂K), and f(∂K) is compact (hence measurable).

Sequence of shrunken parallelepipeds K1/m(P ):

• Form > 1/ε0:
K1/m(P ) ⊂ P0 ⊂ G

(see the proof of the step(02))

• Thus , the function d(K1/m(P ), y) is defined and measurable for y ∈ Rn.

Limit of the degree function

• If 1/m < ε(y):
d(K1/m(P ), y) = deg f(K1/m(P ), y).

• Taking the limit asm→ ∞ (or equivalently ε→ 0+):

lim
m→∞

d
(
K 1

m
(P ), y

)
= lim

ε→0+
deg f(Kε(P ), y)

= deg f(P, y)

This limit exists for almost all y ∈ Rn, and the function deg f(P, y) is measurable as the point-
wise limit of measurable functions.

Lemma 8.3.1. Let f : G → Rn be a mapping with locally-finite variation. If P is a cell such that
P ⊂ G and

P =
m⋃
k=1

Pk,

where the Pk are disjoint cells, then:

deg f(P, y) =
m∑
k=1

deg f(Pk, y)

for almost all y ∈ Rn.
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Proof 8.3.2. Step (1): Additivity for cells sharing a common face:

Let P and Q be two cells such that:

• P and Q share a common (n− 1)-dimensional face.

• P ∪Q ⊂ G, where G is the domain of f .

Claim:
For almost all y ∈ Rn:

deg f(P ∪Q, y) = deg f(P, y) + deg f(Q, y).

Finite preimage set:

• Since P ∪ Q ⊂ G, there exists ε0 > 0 such that P ∪Q0 ⊂ G, where P ∪Q0 is a slightly
expanded version of P ∪Q.

• By the Theorem 8.3.1, the set f−1(y) ∩ (P ∪Q)0 is finite for almost all y ∈ Rn.

• Consequently, the sets f−1(y) ∩ P0 and f−1(y) ∩Q0 are also finite.

Existence of small ε:

• For sufficiently small ε > 0, the degrees deg f(P, y) and deg f(Q, y) can be expressed as:
There exist ε1 and ε2 such that:

0 < ε < ε1 ⇒ deg f(P, y) = deg f(Kε(P ), y),

and
0 < ε < ε2 ⇒ deg f(Q, y) = deg f(Kε(Q), y),

whereKε(P ) and Kε(Q) are shrunken versions of P and Q, respectively.

• If 0 < ε < min{ε1, ε2}, then :

deg f(P, y) + deg f(Q, y) = deg f(Kϵ(P ), y) + deg f(Kϵ(Q), y)

Approximation by C1-mappings:

• Let g : Kε(P ∪Q) → Rn be a C1-mapping approximating f such that:

‖f − g‖ < ρ (y, f(∂Kε(P )) ∪ f(∂Kε(Q))) .

Additivity of the degree for g:

• By Lemma 8.2.1, the degree satisfies:

deg f(Kε(P ), y) = deg g(Kε(P ), y),

deg f(Kε(Q), y) = deg g(Kε(Q), y).

• The mappings g|∂Kε(P ) and g|∂Kε(Q) contribute to the boundary integral in a way that respects
the shared face Dε between P and Q.
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Orientation of shared faces:

• The boundaries ∂Kε(P ) and ∂Kε(Q) intersect along a common face Dε.

• The orientation of Dε induced fromKε(P ) is opposite to the orientation induced fromKε(Q).
This ensures that contributions from Dε cancel out in the integral formula for the degree.

Integral formula:

• Using the integral formula for the degree:

deg g(Kε(P ), y) =
1

µ(Sn−1)

∫
g(∂Kε(P ))

ωy,

deg g(Kε(Q), y) =
1

µ(Sn−1)

∫
g(∂Kε(Q))

ωy.

Adding these contributions:

deg g(Kε(P ), y) + deg g(Kε(Q), y) =
1

µ(Sn−1)

∫
g(∂Kε(P∪Q))

ωy.

• Since P and Q have a common (n− 1)-dimensional face, the sets ∂Kε(P ) and ∂Kε(Q) have a
common face Dε, and the orientation of Dε induced from Kε(P ) is opposite to the orientation
induced fromKε(Q).

• In this case,
g|∂Kε(P∪Q) = g|∂Kε(P ) + g|∂Kε(Q)

(the sum of cycles), and

g (∂Kε(P ))ωy + g (∂Kε(Q))ωy = g (∂Kε(P ∪Q))ωy.

• Thus, if 0 < ε < min {ε1, ε2}, then :

deg f(P, y) + deg f(Q, y) = 1

µ(Sn−1)
g (∂Kε(P ∪Q))ωy

deg f(P, y) + deg f(Q, y) = deg g (Kε(P ∪Q), y) ,
= deg f(P ∪Q, y).

Step (2): Decomposition of intervals:

Partitioning each interval [ai, bi):

• We start by decomposing each interval [ai, bi) into smaller disjoint subintervals:

[ai, bi) =

ki−1⋃
ji=0

[a
(ji)
i , a

(ji+1)
i ), (8.1)

where:
a
(0)
i = ai, ai(ki) = bi, a

(ji)
i < a

(ji+1)
i for all ji.

This partition ensures that:

• The intervals [a(ji)i , a
(ji+1)
i ) are disjoint.

• Any point xi ∈ [ai, bi) belongs to exactly one subinterval.
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Notation for subcells:

Using the partition points, we define subcells of P as follows:

• Form < n, let:

Pj1j2...jm =
m∏
i=1

[a
(ji)
i , a

(ji+1)
i )×

n∏
i=m+1

[ai, bi).

• Form = n, let:

Pj1j2...jn =
n∏
i=1

[a
(ji)
i , a

(ji+1)
i ).

These subcells form a decomposition of P into smaller disjoint cells.

Recursive decomposition of P :

The cell P can be expressed as:

P =

k1−1⋃
j1=0

k2−1⋃
j2=0

· · ·
km−1⋃
jm=0

Pj1j2...jm , m = 1, . . . , n (8.2)

where:

• The union is over all indices j1, j2, . . . , jm,

• The subcells Pj1j2...jm are disjoint.

For example:

• Whenm = 1, P is decomposed into subcells along the first coordinate:

P =

k1−1⋃
j1=0

Pj1 ,

where Pj1 = [a
(j1)
1 , a

(j1+1)
1 )×

∏n
i=2[ai, bi).

• Whenm = n, P is fully decomposed into subcells:

P =

k1−1⋃
j1=0

k2−1⋃
j2=0

· · ·
kn−1⋃
jn=0

Pj1j2...jn .

Shared faces between neighboring cells:

• From equality (8.1), neighboring subcells in the decomposition share common (n−1)-dimensional
faces. For example:

• If Pj1j2...jm and Pj′1j′2...j′m differ only in one index (e.g., j1 6= j′1 but j2 = j′2, . . . , jm = j′m), then
their boundaries intersect along an (n− 1)-dimensional face.
This structure ensures that the degree is additive across neighboring subcells, as shown in Step
(1).
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Induction hypothesis:

• Assume that for any cell P decomposed into subcells up to dimension m = n − 1, the degree
satisfies:

deg f(P, y) =
k1−1∑
j1=0

k2−1∑
j2=0

· · ·
km−1∑
jm=0

deg f(Pj1j2...jm , y) (8.3)

for almost all y ∈ Rn.

Base case (m = 1):

• Whenm = 1, the cell P is decomposed along the first coordinate:

P =

k1−1⋃
j1=0

Pj1 ,

where:

Pj1 = [a
(j1)
1 , a

(j1+1)
1 )×

n∏
i=2

[ai, bi).

• By step (1), the degree satisfies:

deg f(P, y) =
k1−1∑
j1=0

deg f(Pj1 , y),

for almost all y ∈ Rn.

Base case (m = 1):

• Assume the hypothesis holds form = n− 1. We now prove it form = n.

Decompose P :

• Using equality (8.2), write:

P =

k1−1⋃
j1=0

k2−1⋃
j2=0

· · ·
kn−1⋃
jn=0

Pj1j2...jn .

Decompose intermediate cells:

• Each intermediate cell Pj1j2...jm can be further decomposed along the (m+ 1)-th coordinate:

Pj1j2...jm =

km+1−1⋃
jm+1=0

Pj1j2...jmjm+1 .

• By Step (1), the degree satisfies:

deg f(Pj1j2...jm , y) =
km+1−1∑
jm+1=0

deg f(Pj1j2...jmjm+1 , y),

for almost all y ∈ Rn.
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• Summing over all indices j1, j2, . . . , jm, we obtain:

deg f(P, y) =
k1−1∑
j1=0

k2−1∑
j2=0

· · ·
km−1∑
jm=0

deg f(Pj1j2...jm , y).

• Replacing Pj1j2...jm with its decomposition along the (m+ 1)-th coordinate, we get:

deg f(P, y) =
k1−1∑
j1=0

k2−1∑
j2=0

· · ·
kn−1∑
jn=0

deg f(Pj1j2...jn , y),

for almost all y ∈ Rn.

Step (3) : General decomposition into disjoint cells

• Let P =
∏n

i=1[ai, bi) and Pk =
∏n

i=1[c
(k)
i , d

(k)
i ] (k = 1, . . . ,m) such that:

P =
m⋃
k=1

Pk,

and the Pk are disjoint.

Refinement of partitions:

• In this case, [c(k)i , d
(k)
i ) ⊂ [ai, bi). For each coordinate i, order all of the numbers c(k)i and di(k)

(k = 1, 2, . . . ,m) in the form of an increasing sequence:

ai = a
(0)
i < a

(1)
i < · · · < a

(ki)
i = bi. (8.4)

• This refinement partitions P into subcells Pj1j2...jn , where:

Pj1j2...jn =
n∏
i=1

[a
(ji)
i , a

(ji+1)
i ].

Family of subcells:

• Denote by Tk the family of subcells Pj1j2...jn that belong to Pk (k = 1, . . . ,m).

• Since the Pk are disjoint, each subcell Pj1j2...jn belongs to exactly one family Tk.

Applying formula :

• Using formula (8.3) withm = n, we have:

deg f(P, y) =
k1−1∑
j1=0

k2−1∑
j2=0

· · ·
kn−1∑
jn=0

deg f(Pj1j2...jn , y).

for almost all y ∈ Rn.
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• Since each Pj1j2...jn belongs to exactly one Pk , we can group terms according to families Tk:

deg f(P, y) =
k1−1∑
j1=0

k2−1∑
j2=0

· · ·
kn−1∑
jn=0

deg f(Pj1j2...jn , y)

=
m∑
k=1

∑
Pj1j2...jn

∈Tk

deg f(Pj1j2...jn , y)

=
m∑
k=1

deg f(Pk, y)

for almost all y ∈ Rn.

Compact manifold with boundary:

LetK be a compact n-dimensional manifold with boundary such thatK 6= ∅ andK ⊂ G. The interior
IntK = K \ ∂K is a boundaryless manifold.

8.3.1 Definition : Degree of a mapping over a compact set
Let f :M ′n →Mn be a continuous map between oriented n-manifolds, and letK ⊂M be a compact
connected subset (K 6= ∅) such that f−1(K) is compact.
Then the induced map on homology:

f∗ : Hn(M
′,M ′ \ f−1(K)) → Hn(M,M \K)

sends the fundamental class of−1(K) to an integral multiple of oK . That is, there exists an integer
called the degree of f overK, denoted degK f , such that:

f∗(of−1(K)) = (degK f) · oK .

Special cases

• If K = ∅:
The degree degK f is not defined. By convention, we can agree that:

deg∅ f = Z (the set of all integers).

• If K = {y} is a single point andM,M ′ are open subsets of Sn:
The definition of degK f reduces to the classical degree of a map at a point (see Section IV.5).

– If f−1(K) = ∅ (e.g., if y /∈ im(f)), then:

degK f = 0.

– If f is the inclusion map of an open subsetM ′ ⊂M , with orientations agreeing, then:

degK f = 1 for everyK ⊂M ′.

– More generally, if f is a homeomorphism fromM ′ onto an open subset ofM , then:

degK f = ±1 for every K ⊂ im(f).
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8.3.2 Generalization to larger compact sets
It is sometimes convenient to replace f−1(K) with a larger compact set C ⊃ f−1(K), provided C
satisfies certain conditions:

• Compact support: Let C ⊂M ′ be a compact set such that f−1(K) ⊂ Int(C). Then the degree
degK f can be computed using C instead of f−1(K), because:

Hn(M
′,M ′ \ C) ∼= Hn(M

′,M ′ \ f−1(K)).

• Homotopy invariance: If f is homotopic to another map g with g−1(K) compact, then:
degK f = degK g.

• Additivity over disjoint sets: If K1, K2 ⊂ M are disjoint compact sets, and f−1(K1 ∪ K2) is
compact, then:

degK1∪K2
f = degK1

f + degK2
f.

8.3.3 Proposition (Additivity)
Let f : M ′ → M be a continuous map between oriented n-manifolds and K ⊂ M a compact set as
in Definition 4.2. Suppose that M ′ is a finite union of open sets M ′

λ (λ = 1, 2, . . . , r), such that the
sets

K ′
λ = f−1(K) ∩M ′

λ

are mutually disjoint. Then:

degK f =
r∑

λ=1

degK fλ,

where fλ = f |M ′
λ
is the restriction of f toM ′

λ.

Key observations

1. EachK ′
λ is compact, since f−1(K) is a topological sum of theK ′

λ.

2. The additivity reflects that the global degree is the sum of the degrees over disjoint parts of the
preimage.

Proof 8.3.3. Step 1: Decomposition of homology groups
Consider the maps:

r⊕
λ=1

Hn(M
′
λ,M

′
λ −K ′

λ)
(i∗λ)−−→ Hn(M

′,M ′ − f−1(K))
i∗∞−→ Hn(M

′,M ′ −Q),

where i∗λ are the inclusion-induced maps, and Q ∈ f−1(K) is an arbitrary point.

Step 2: Behavior of fundamental classes
Applying i∗∞ ◦ i∗λ to the fundamental classes oK′

λ
gives:

iQ∗
(
iλ∗(oK′

λ
)
)
=

{
oQ if Q ∈ K ′

λ,

0 otherwise.

This implies:
i∗N({oK′

λ
}) = of−1(K),

where of−1(K) is the fundamental class of the preimage.
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Step 3: Global contribution and degree
Now consider:

(degK f) oK = f∗
(
of−1(K)

)
= f∗

{
iλ∗(oK′

λ
)
}

=
r∑

λ=1

fλ∗
(
oK′

λ

)
=

(
r∑

λ=1

degK fλ
)
oK .

By comparing both sides:

degK f =
r∑

λ=1

degK fλ.

Interpretation of degp f
Number of points in f−1(p) counted with multiplicities

degp f =
∑

x∈f−1(p)

k(x),

where k(x) is the local degree at x, determined by the orientation:

k(x) =

{
+1 if x is positively oriented,
−1 if x is negatively oriented.

Detailed explanation of the proof

Step 1: Direct sum of homology

Hn(M
′,M ′ − f−1(K)) ∼=

r⊕
λ=1

Hn(M
′
λ,M

′
λ −K ′

λ).

Step 2: Pushforward of fundamental classes

of−1(K) =
∑
λ

iλ∗(oK′
λ
),

f∗
(
of−1(K)

)
=
∑
λ

fλ∗ (oK′
λ
).

Step 3: Additivity of contributions

fλ∗ (oK′
λ
) = (degK fλ)oK .
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Step 4: Conclude

f∗(of−1(K)) = (degK f)oK =

(∑
λ

degK fλ
)
oK .

Examples

Example 1: Map between spheres

Let f : Sn → Sn, and K = {p}. If f−1(p) = {x1, . . . , xq}, then:

degp f =

q∑
i=1

k(xi).

Example 2: Disjoint subsets

IfK = K1 ∪K2 and K1 ∩K2 = ∅, then:

degK f = degK1
f + degK2

f.

Remark 8.3.1. 1. Homotopy invariance: If f ' g and both have compact preimages of K, then
degK f = degK g.

2. Locally-finite variation: If f : G → Rn has locally finite variation, then f−1(y) ∩ P is finite
for almost every y.

3. Non-oriented manifolds: The mod 2 degree:

degK f mod 2 =
∣∣f−1(K)

∣∣ mod 2.

Summary

degK f =
r∑

λ=1

degK fλ,

with fλ = f |M ′
λ
.

This expresses the degree as a sum of local contributions from disjoint subsets of the preimage.

Isolated preimage point:

A point x ∈ G is said to be isolated in the set f−1(f(x)) if there exists a neighborhood V (x) such
that:

f−1(f(x)) ∩ V (x) = {x}.

8.3.4 Multiplicity k(x)
Themultiplicity k(x) of a pointx is defined as the degree deg f(K, f(x)) for any compactn-dimensional
manifoldK with x ∈ IntK and K ⊂ V (x), where V (x) is a sufficiently small neighborhood of x.
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8.3.5 Additivity of degree
The degree satisfies the additivity property:

deg f(K1 ∪K2, y) = deg f(K1, y) + deg f(K2, y),

providedK1 and K2 are disjoint compact manifolds with boundary and y /∈ f(∂K1 ∪ ∂K2).

Lemma 8.3.2. If x ∈ G is an isolated point of the set f−1(f(x)), then there exists a neighborhood
V (x) of x such that for any n-dimensional compact C0-manifold K with boundary satisfying x ∈
IntK and K ⊂ V (x), the degree deg f(K, f(x)) is defined and does not depend onK.

Proof 8.3.4. Compact parallelepipedK0:

• Construct a compact parallelepiped K0 ⊂ G such that x ∈ IntK0 and K0 contains no other
points of f−1(f(x)) except x.

• This ensures that if x′ ∈ K0 and x′ 6= x, then f(x′) 6= f(x).

Claim V (x) = IntK0:

• Let K be any compact n-dimensional manifold with boundary such that K ⊂ IntK0 and x ∈
IntK.

• Decompose IntK0 as:
IntK0 = IntK ∪ (IntK0 \ {x}),

where both sets on the right-hand side are open.

Degree over IntK0 \ {x}:

• Since f(x) /∈ f(IntK0 \ {x}) (by construction of K0), the degree:

deg f(IntK0 \ {x}, f(x)) = 0.

Additivity of degree:

• By the additivity property:

deg f(K0, f(x)) = deg f(IntK, f(x)) + deg f(IntK0 \ {x}, f(x)).

• Substituting deg f(IntK0 \ {x}, f(x)) = 0, we get:

deg f(K0, f(x)) = deg f(IntK, f(x)).

Conclusion:

• The degree deg f(K, f(x)) is independent of the choice of K, as long as K ⊂ IntK0 and
x ∈ IntK.

• Define k(x) = deg f(K0, f(x)), which serves as the multiplicity of x.

Lemma 8.3.3. Let P be a cell (e.g., a parallelepiped). Assume that the degree deg f(P, f(x)) is
defined and the set f−1(f(x)) ∩ P consists of a single point x.
Then x is an isolated point of f−1(f(x)) ∩ P , and:

deg f(P, f(x)) = k(x).
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Proof 8.3.5. Definition of deg f(P, f(x)):

• By assumption, the degree deg f(P, f(x)) is defined, meaning there exists εf(x) > 0 such that:

f(x) /∈ f(∂Kε(P )) for all 0 < ε < εf(x).

• Isolation of x:

Suppose x′ 6= x and x′ ∈ f−1(f(x)).
Then f(x′) = f(x).

• For sufficiently small ε > 0, x′ /∈ Kε(P ) because x′ /∈ P or x′ lies outsideKε(P ).

Contradiction argument for x′ /∈ IntKε(P )

Assume x′ 6= x and x′ ∈ f−1(f(x)). To show that x′ /∈ IntKε(P ), we proceed as follows:

Assumption:

Suppose x′ ∈ IntKε0(P ) for some ε0 such that 0 < ε0 < εf(x).
This implies:

ai − ε0 < x′i < bi − ε0, for all i = 1, …, n .

Contradiction with x′ /∈ P :

• By the assumptions of Lemma 8.3.3, we have x′ /∈ P , thus, at least one of the inequalities
ai ≤ x′i < bi does not hold.

• Since x′i < bi − ε0 < bi for all i, it must be that x′i < ai for some index i0. Specifically,

ai0 > x′i0 .

Define ε1:

• Define
ε1 = max

1≤i≤n
{ai − x′i} > 0.

• By construction, ε1 > 0, and the following chain of implications holds:

ai − ε0 < x′i for all i ⇒ ε0 > ai − x′i for all i ⇒ ε0 > ε1.

Verification of x′ ∈ ∂Kε1(P ):
• For ε1, consider the shrunken parallelepiped

Kε1(P ) =
n∏
i=1

[ai − ε1, bi − ε1].

• By definition of ε1, we have:

ai − ε1 ≤ x′i < bi − ε1 for all i,

with equality holding for some index i0:

ai0 − ε1 = x′i0 .

This implies x′ ∈ ∂Kε1(P ).
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Contradiction with x′ /∈ ∂Kε1(P ):
• Since 0 < ε1 < ε0 < εf(x), it follows that f(x′) 6= f(x) for x′ ∈ ∂Kε1(P ).

• Therefore, x′ /∈ ∂Kε1(P ), leading to a contradiction.

x′ /∈ IntKε(P ) for any ε > 0.

Localization of x in Kε(P ):
Behavior of x:

• Since x ∈ P , for sufficiently small ε > 0, we have:

ai − ε < xi < bi − ε for all i = 1, . . . , n.

• This implies x ∈ IntKε(P ) for 0 < ε < εf(x).

Exclusion of other points:

• Any point x′ 6= x satisfying f(x′) = f(x) lies outside Kε(P ) for sufficiently small ε > 0.

• Specifically,
x′ /∈ ∂Kε(P ) ∪ IntKε(P ) = Kε(P ).

Isolation of x:

• For 0 < ε < εf(x), the set f−1(f(x)) ∩Kε(P ) consists only of x.

• Thus, x is isolated in set f−1(f(x)) and single point of the mentionel set inside the parallepiped
Kε(P ).

Obviously, any set IntKε(P ) with 0 < ε < εf(x) has the desired properties of the neighborhood V (x)
in Lemma 8.3.2 .
In addition,

deg f(P, f(x)) = deg f(Kε(P ), f(x)) = k(x).

Corollary 8.3.1. If x is an isolated point of the set f−1(f(x)), then there exists a neighborhood V (x)
of the point x such that if P ⊂ V (x) is a cell and x ∈ P , then:

deg f(P, f(x)) = k(x).

Obviously, it is enough to take the neighborhood V (x) given by Lemma 8.3.2; in this case, the set
f−1(f(x)) ∩ P consists of the single point x.
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9
Measures of oriented parts of the image of a
set

The references for this chapter are [43, 15, 24, 55, 13, 25, 50, 27, 2, 49].

Definition 9.0.1. Let x be an isolated point of the set f−1(f(x)). The mapping f is called positively
(negatively) oriented at the point x if k(x) > 0 (k(x) < 0, respectively).

• For y ∈ Rn, denote:

f−1
+ (y) =

{
x ∈ f−1(y) | k(x) > 0

}
and f−1

− (y) =
{
x ∈ f−1(y) | k(x) < 0

}
.

• For a set E ⊂ G, denote

N+
f (E, y) =

{
card(f−1

+ (y) ∩ E) if the set f−1
+ (y) ∩ E is finite,

+∞ if the set f−1
+ (y) ∩ E is infinite;

and

N−
f (E, y) =

{
card(f−1

− (y) ∩ E) if the set f−1
− (y) ∩ E is finite,

+∞ if the set f−1
− (y) ∩ E is infinite.

• Since the sets f−1
+ (y) and f−1

− (y) are disjoint and f−1
+ (y) ∪ f−1

− (y) ⊂ f−1(y), the inequality

N+
f (E, y) +N−

f (E, y) ≤ Nf (E, y) holds.

Theorem 9.0.1. Let f : G → Rn be a mapping with locally-finite variation. If P is a cell such that
P ⊂ G, then the functions N+

f (P, y) and N
−
f (P, y) are summable in Rn with respect to the Lebesgue

measure.

Proof 9.0.1. Let τ = {Pk}mk=1 be a decomposition of P into disjoint cells.

• Define:

N+
τ (y) =

m∑
k=1

χf+(Pk)(y).

• Where χf+(Pk)(y) is the indicator function of the set :

f+(Pk) = {y ∈ Rn : deg f(Pk, y) > 0}.

• By Theorem 8.3.1, the function deg f(P ) is measurable; hence, the set above is measurable as
well. (here χf+(Pk) is the indicator function of the set f+(Pk)).
Then obviously the function N+

τ is measurable.
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Step (1): Monotonicity under refinement

Claim:

If a decomposition τ ′ refines τ , then:

N+
τ ′ (y) ≥ N+

τ (y) for almost all y ∈ Rn.

Refinement property:

• If τ ′ refines τ , then any cell Pk ∈ τ can be written as:

Pk =

mk⋃
i=1

Pk,i,

where Pk,i ∈ τ ′ are disjoint subcells of Pk.

Additivity of degree:

• By additivity of the degree :

deg f(Pk, y) =
mk∑
i=1

deg f(Pk,i, y) for almost all y ∈ Rn.

(in particular, for almost all y ∈ f+(Pk))

• If deg f(Pk, y) > 0, then at least one of the terms (for the latter points y), there exists an index
i, 1 ≤ i ≤ mk, such that deg f(Pk,i, y) > 0.
This implies:

y ∈ f+(Pk) ⇒ y ∈
mk⋃
i=1

f+(Pk,i).

Indicator function inequality:

• The above implication leads to:

χf+(Pk)(y) ≤
mk∑
i=1

χf+(Pk,i)(y).

• Summing over all k, we get:

N+
τ (y) =

m∑
k=1

χf+(Pk)(y) ≤
m∑
k=1

mk∑
i=1

χf+(Pk,i)(y) = N+
τ ′ (y).

for almost all y ∈ Rn

Conclusion:

The sequence {N+
τs(y)}

∞
s=1 increases monotonically for almost all y ∈ Rn.
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Step (2): Indicator function and counting function

Claim:

For almost all y ∈ Rn:
χf+(Pk)(y) ≤ N+

f (P, y).

(a) Indicator function χf+(P )(y):

• The function χf+(P )(y) is defined as:

χf+(P )(y) =

{
1, if y ∈ f+(P ),

0, otherwise.

• Here, f+(P ) = {y ∈ Rn : deg f(P, y) > 0}.

(b) Counting function N+
f (P, y):

• The function N+
f (P, y) counts the number of positively oriented preimages of y in P :

N+
f (P, y) =

{
card(f−1

+ (y) ∩ P ), if f−1
+ (y) ∩ P is finite,

+∞, if f−1
+ (y) ∩ P is infinite.

• Here, f−1
+ (y) = {x ∈ f−1(y) : k(x) > 0}.

We aim to prove that:

χf+(P )(y) ≤ N+
f (P, y) for almost all y ∈ Rn.

---

Existence of a cell P0:

• From Theorem 8.3.1 in (Step (2)), there exists a cell P0 =
∏n

i=1[ai − ε0, bi + ε0) such that:

1. P0 ⊂ G⇒ P0 ⊂ P0 ⊂ G

2. The set f−1(y) ∩ P0 is finite for almost all y ∈ Rn.

Fix a point y ∈ Rn satisfying this property and such that χf+(P )(y) = 1. This implies:

y ∈ f+(P ), i.e., deg f(P, y) > 0.

Isolation of preimages:

• Since f−1(y) ∩ P0 is finite, any point x ∈ f−1(y) ∩ P is isolated. By isolating these points, we
can decompose P into a finite union of disjoint cells {Pk}mk=1 such that:

1. Each cell Pk contains at most one point of f−1(y) ∩ P .
2. If x ∈ f−1(y) ∩ Pk, then k(x) = deg f(Pk, y) (by Lemma 8.3.3).
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Additivity of degree:

• Using the additivity property of the degree :

deg f(P, y) =
m∑
k=1

deg f(Pk, y).

• Since deg f(P, y) > 0, at least one term deg f(Pk, y) > 0. For such a Pk, we have:

y ∈ f+(Pk).

Contribution to f−1
+ (y) ∩ P :

• For each Pk containing a positively oriented preimage x ∈ f−1
+ (y) ∩ P , we know:

deg f(Pk, y) = k(x) > 0.

• Thus, x ∈ f−1
+ (y) ∩ Pk, and the counting function satisfies:

N+
f (P, y) = card(f−1

+ (y) ∩ P ).

Inequality for χf+(P )(y):

• If χf+(P )(y) = 1, then y ∈ f+(P ), meaning deg f(P, y) > 0.
From the decomposition P =

⋃m
k=1 Pk, it follows that:

deg f(P, y) =
m∑
k=1

deg f(Pk, y),

and at least one term deg f(Pk, y) > 0. Consequently:

N+
f (P, y) = card(f−1

+ (y) ∩ P ) ≥ 1 = χf+(P )(y).

• If χf+(P )(y) = 0, then y /∈ f+(P ), meaning deg f(P, y) ≤ 0.
In this case:

N+
f (P, y) ≥ 0 = χf+(P )(y).

Conclusion: For almost all y ∈ Rn:

χf+(P )(y) ≤ N+
f (P, y).

Step (3): Lower bound on the limit

Claim:

lim
s→∞

N+
τs(y) ≤ N+

f (P, y) for almost all y ∈ Rn.

Decomposition τs:

• Divide P into 2sn smaller cells {Ps,i}2
sn

i=1 with diam(Ps,i) = 2−s diam(P ).
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Monotonicity:

• From Step (1), the sequence {N+
τs(y)}

∞
s=1 increases monotonically:

N+
τs(y) ≤ N+

τs+1
(y).

Limit exists:

• Since N+
τs(y) is monotonic non-decreasing and bounded above by N

+
f (P, y), the limit

lim
s→∞

N+
τs(y)

exists (finite or infinite).

Inequality:

• For any decomposition of the set P into disjoint cells τ = {Pk}mk=1, we have :

card(f−1
+ (y) ∩ P ) =

m∑
k=1

card(f−1
+ (y) ∩ Pk), i.e., N+

f (P, y) =
m∑
k=1

N+
f (Pk, y).

• By Step (2), the inequality χf+(Pk)(y) ≤ Nf+(Pk, y) holds for all Pk and almost all y ∈
Rn.Hence:

N+
τ (y) =

m∑
k=1

χf+(Pk)(y) ≤
m∑
k=1

Nf+(Pk, y) = N+
f (P, y)

for almost all y ∈ Rn.

• Taking the limit as s→ ∞, it follows that :

lim
s→∞

N+
τs(y) ≤ N+

f (P, y).

Step (4): Upper bound on the limit

Claim:

lim
s→∞

N+
τs(y) ≥ N+

f (P, y) for almost all y ∈ Rn.

Finite case (N+
f (P, y) = q (q value is finite)):

• Suppose N+
f (P, y) = q,meaning f−1

+ (y) ∩ P = {x1, . . . , xq} .

• By a corollary 8.3.1 to Lemma 8.3.3 , there exist neighborhoods {Vm(xm)}qm=1 around each xm
such that:

deg f(Pm, y) = k(xm) > 0

for any cell Pm ⊂ Vm(xm) with xm ∈ Pm.
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Neighborhoods:

• By the definition of the value k(xm), the neighborhoods Vm(xm) may be chosen pairwise dis-
joint.

• Assume that balls B(xm; rm) are contained in Vm(xm).
(Choose r0 = min1≤m≤q{rm}, where B(xm; rm) ⊂ Vm(xm).)

• For sufficiently large s, the diameter of each subcell Ps,i < r0.

(Ps,im =
1

2s
diamP → 0 as s→ ∞.)

• Hence, there exists an integer s0 such that the diameter of Ps,i is less than r0 for all s > s0. In
this case, if xm ∈ Ps,im , then Ps,im ⊂ B(xm; rm) ⊂ Vm(xm), and deg f(Ps,i, y) = k(xm) > 0.

• Thus, y ∈ f+(Ps, im) ,and the indicator function satisfies:

χf+(Ps,im )(y) = 1.

• Each xm is in some Ps,im ⊂ B(xm; rm) ⊂ Vm(xm), and:

deg f(Ps,im , y) = k(xm) > 0 ⇒ y ∈ f+(Ps,im) ⇒ χf+(Ps,im)(y) = 1.

Counting cells:

• Since the neighborhoods Vm(xm) are pairwise disjoint, the corresponding subcells Ps,im are
distinct.

• The number of such subcells equals q = N+
f (P, y).

Inequality:

• For sufficiently large s:

N+
τs(y) =

2sn∑
i=1

χf+(Ψ)(y) for s > s0, i.e., lim
s→∞

N+
τs(y) = N+

f (P, y)

Then
N+
τs(y) ≥ N+

f (P, y).

• Taking the limit as s→ ∞, it follows that:

lim
s→∞

N+
τs(y) ≥ N+

f (P, y).

Infinite case (N+
f (P, y) = +∞):

• If N+
f (P, y) = +∞, then Nf (P, y) = +∞ as well, which occurs on a set of measure zero

corollary 7.2.1 to Theorem 7.2.1.
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Conclusion:

For almost all y ∈ Rn:
lim
s→∞

N+
τs(y) ≥ N+

f (P, y).

• From Steps (3) and (4), we have:

lim
s→∞

N+
τs(y) = N+

f (P, y) for almost all y ∈ Rn.

• Similarly, for the negatively oriented case:

lim
s→∞

N−
τs(y) = N−

f (P, y) for almost all y ∈ Rn.

• Since N+
τs(y) is measurable for each s (as a sum of indicator functions), and

N+
f (P, y) = lims→∞N+

τs(y).

• It follows that N+
f (P, y) is measurable.

Summability of N+
f (P, y):

• The summability of N+
f (P, y) follows from its relationship to Nf (P, y):

N+
f (P, y) +N−

f (P, y) ≤ Nf (P, y).

• Since Nf (P, y) is summable (by assumption of locally-finite variation), the functionsN+
f (P, y)

and N−
f (P, y) are also summable.

Lemma 9.0.1. Let f : G→ Rn be a continuous mapping. Then the following statements hold:

1. If E =
⋃
k Ek ⊂ G (union of an at most countable family of pairwise disjoint sets), then :

Nf (E) =
∑
k

Nf (Ek).

2. If E1 ⊂ E2, then Nf (E1) ≤ Nf (E2).
3. If E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ Ek+1 ⊂ . . . and E =

⋃∞
k=1Ek, then :

Nf (E, y) = lim
k→∞

Nf (Ek, y) for any y ∈ Rn;

4. If E1 ⊃ E2 ⊃ · · · ⊃ Ek ⊃ Ek+1 ⊃ . . . , E =
⋂∞
k=1Ek, and Nf (E1, y) <∞, then

Nf (E, y) = lim
k→∞

Nf (Ek, y).

• If, in addition, f is a mapping with locally-finite variation, then similar statements are valid for
the functions N+

f (E) and N
−
f (E).
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Proof 9.0.2. [1]: Countable additivity of Nf (E, y):

• statement (1), Let E =
⋃
k Ek ⊂ G where {Ek}∞k=1 is an at most countable family of pairwise

disjoint sets, then:

• For any y ∈ Rn the equality

f−1(y) ∩ E = ∪(f−1(y) ∩ Ek) holds.

• Since the sets ets f−1(y) ∩ Ek are disjoint, and their cardinalities add up:

card
(
f−1(y) ∩ E

)
=
∑
k

card
(
f−1(y) ∩ Ek

)
• Thus:

Nf (E, y) =
∑
k

Nf (Ek, y).

• Similarly, the same argument applies to N+
f (E, y) and N

−
f (E, y):

N+
f (E, y) =

∑
k

N+
f (Ek, y), N−

f (E, y) =
∑
k

N−
f (Ek, y).

[2]: Monotonicity of Nf (E, y):

• statement (2), if E1 ⊂ E2, then:

f−1(y) ∩ E1 ⊂ f−1(y) ∩ E2

• This implies:
Nf (E1, y) ≤ Nf (E2, y).

• The same applies to N+
f (E, y) and N

−
f (E, y):

N+
f (E1, y) ≤ N+

f (E2, y), N−
f (E1, y) ≤ N−

f (E2, y).

[3]: Limit properties of Nf (E, y):

• The statements (3) :

• Let E1 ⊂ E2 ⊂ · · · and E =
⋃∞
k=1Ek, then:

f−1(y) ∩ E = ∪∞
k=1(f

−1(y) ∩ Ek)

• By the monotone continuity of Nf (E, y) ,we have :

Nf (E, y) = lim
k→∞

Nf (Ek, y).
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[4]: Limit properties of Nf (E, y):

• The statements (4) :

• If E1 ⊃ E2 ⊃ · · · and E =
⋂∞
k=1Ek with Nf (E1, y) <∞, then:

f−1(y) ∩ E = ∪∞
k=1(f

−1(y) ∩ Ek)

• By the monotone continuity of Nf (E, y) ,we have :

Nf (E, y) = lim
k→∞

Nf (Ek, y).

• The same properties hold for N+
f (E, y) and N

−
f (E, y).

Extension to N+
f (E, y) and N

−
f (E, y):

The same arguments apply to N+
f (E, y) and N

−
f (E, y), since these functions also satisfy countable

additivity and monotone continuity.

9.0.1 Measures on the semiring of cells:

(a) Definitions of ν+f , ν
−
f , and Vf :

Let f be mapping with locally-finite variation and let P a cell such that P ⊂ G, define:

ν+f (P ) =

∫
Rn

N+
f (P, y) dλn(y) , ν−f (P ) =

∫
Rn

N−
f (P, y) dλn(y),

Vf (P ) = ν+f (P ) + ν−f (P ) =

∫
Rn

Nf (P, y) dλn(y).

(these values are the measures of the positively and negatively oriented parts of the image of the cell
P , counted with multiplicities).

(b) Countable additivity

From Lemma 9.0.1, statements (1)--(4), the functions N+
f (E, y), N

−
f (E, y), and Nf (E, y) are count-

ably additive on the semiring of cells. Therefore,

ν+f

(⋃
k

Pk

)
=
∑
k

ν+f (Pk), ν−f

(⋃
k

Pk

)
=
∑
k

ν−f (Pk), Vf

(⋃
k

Pk

)
=
∑
k

Vf (Pk),

where {Pk}∞k=1 is a disjoint family of cells.

(c) Lebesgue integral properties

The countable additivity of ν+f , ν
−
f , and Vf follows from the properties of the Lebesgue integral:∫

Rn

∑
k

N+
f (Pk, y) dλn(y) =

∑
k

∫
Rn

N+
f (Pk, y) dλn(y).
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9.0.2 Extension to σ-algebras via caratheodory process:
Theorem 9.0.2 (Caratheodory extension theorem). LetA be an algebra of subsets of a setX , and let
µ0 : A → [0,∞] be a countably additive pre-measure. Then there exists a measure µ on the σ-algebra
σ(A) generated by A such that:

1. µ extends µ0, i.e., µ|A = µ0;

2. the extension is unique if µ0 is σ-finite.

(a): Caratheodory extension theorem:

The measures ν+f , ν
−
f , and Vf are initially defined on the semiring of cells {P | P ⊂ G}. To extend

these measures to more general subsets of G, we use the Carathéodory extension theorem, which
states:

1. Any countably additive measure defined on a semiring can be uniquely extended to a σ-algebra.

2. The extended measure satisfies the same countable additivity and monotone continuity proper-
ties.

(b): Outer measure

We denote the corresponding σ-algebras by A+
f , A

−
f , and Af ,, respectively, and preserve the notation

ν+f , ν
−
f , and Vf for the extended measures (we note that the σ-algebra Af , and the measure Vf are

defined for a continuous mapping f ).
Define the outer measure V ∗

f (E) for any subset E ⊂ G as:

V ∗
f (E) = inf{Vf (Q) | Q is open and E ⊂ Q ⊂ G}.

A set E ⊂ G is measurable with respect to Vf if and only if:

V ∗
f (E) + V ∗

f (G \ E) = Vf (G).

(c): Extended measures

Using the Carathéodory process, we extend ν+f , ν
−
f , and Vf to σ-algebras A

+
f , A

−
f , and Af , respec-

tively. These extensions preserve the notation ν+f , ν
−
f , and Vf .

9.0.3 Regularity of the measures

(a) Regularity of Vf :

The measure Vf is regular, meaning:
- For any subset E ⊂ G, the outer measure V ∗

f (E) can be approximated by open sets:

V ∗
f (E) = inf{Vf (Q) | Q is open and E ⊂ Q ⊂ G}.

- A set E ⊂ G is measurable if and only if there exist Gδ-subsets K,H ⊂ G such that:

E ⊂ K, K \ E ⊂ H, Vf (H) = 0.

In this case:
Vf (E) = Vf (K).
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(b) Regularity of ν+f and ν−f :

The same regularity properties hold for ν+f and ν
−
f , since they are defined similarly using N

+
f (E, y)

and N−
f (E, y).

9.0.4 Locally-finite variation :
• The assumption that f has locally-finite variation ensures thatNf (P, y),N+

f (P, y), andN
−
f (P, y)

are finite for almost all y ∈ Rn when P ⊂ G is a cell.

• This finiteness allows us to integrate these functions over Rn, defining the measures ν+f , ν
−
f ,

and Vf .

9.0.5 Countable additivity :
Themeasures ν+f , ν

−
f , andVf are countably additive because the counting functionsN

+
f (E, y),N

−
f (E, y),

and Nf (E, y) are countably additive.

9.0.6 Monotone continuity:
The measures ν+f , ν

−
f , and Vf satisfy monotone continuity:

• For increasing sequences E1 ⊂ E2 ⊂ · · · , Vf (E) = limk→∞ Vf (Ek),

• For decreasing sequences E1 ⊃ E2 ⊃ · · · with Vf (E1) <∞, Vf (E) = limk→∞ Vf (Ek).

Lemma 9.0.2. Let f : G → Rn be a mapping with locally-finite variation. Then the following
statements hold:

1. the measures Vf , ν+f , and ν
−
f are σ-finite;

2. ifK ⊂ G is a Borel set, then K is measurable with respect to the measures Vf , ν+f , and ν
−
f ;

3. the measure Vf is regular, i.e., for any subset E ⊂ G, the outer measure of E is given by the
formula

V ∗
f (E) = inf {Vf (Q) | Q is open and E ⊂ Q ⊂ G} ,

and a set E ⊂ G is measurable with respect to the measure Vf if and only if there exist Gδ-subsets
K,H ⊂ G such that E ⊂ K, K \ E ⊂ H , and Vf (H) = 0 (obviously, Vf (E) = Vf (K) in this case).
The measures ν+f and ν

−
f are regular in the same sense.

Proof 9.0.3. Step (1): Decomposition of open sets

Let Q ⊂ G be an open set. By standard results in topology (see [Chapter V] [54]), there exists a
decomposition:

Q =
∞⋃
k=1

Pk,

where:

• The Pk are disjoint cells,

• The closures Pk ⊂ Q.
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Since f has locally-finite variation, the values Vf (Pk), ν+f (Pk), and ν
−
f (Pk) are finite for each k. Thus:

Vf (Q) =
∞∑
k=1

Vf (Pk), ν+f (Q) =
∞∑
k=1

ν+f (Pk), ν−f (Q) =
∞∑
k=1

ν−f (Pk).

This shows that open sets are measurable with respect to Vf , ν+f , and ν
−
f .

Step (2): σ-Finiteness of Vf , ν+f , and ν
−
f

• SinceG is an open set, it can be written as a countable union of disjoint cells {Pk}∞k=1 such that
Pk ⊂ G.

• For each cell Pk, the measures Vf (Pk), ν+f (Pk), and ν
−
f (Pk) are finite (by the definition of

locally-finite variation and Theorem 9.0.1).

• Thus:

Vf (G) =
∞∑
k=1

Vf (Pk), ν+f (G) =
∞∑
k=1

ν+f (Pk), ν−f (G) =
∞∑
k=1

ν−f (Pk).

This implies that Vf , ν+f , and ν
−
f are σ-finite.

• Since open sets are measurable, Borel sets are measurable as well (in particular, compact sets,
Gδ-sets, and Fσ-sets are measurable).

Step (3): Regularity of Vf

• Assume that P =
∏n

i=1[ai, bi) is a cell such that P ⊂ G. In the proof of Theorem 8.3.1, it was
shown that there exists ε0 > 0 such that:

P0 =
n∏
i=1

[ai − ε0, bi + ε0) ⊂ G.

• Define a sequence of open parallelepipeds:

∆k =
n∏
i=1

[
ai −

ε0
2k
, bi

)
.

Then:

∆1 ⊃ ∆2 ⊃ · · · ⊃ ∆k ⊃ · · · , P =
∞⋂
k=1

∆k, ∆k ⊂ P then Vf (∆k) ≤ Vf (P0) <∞ for all k.

• By the monotone continuity of Vf , we have:

Vf (P ) = lim
k→∞

Vf (∆k).

For any P ⊂ G and any ε0 > 0, there exists an open parallelepiped ∆ such that:

∆ ⊂ P ⊂ G and Vf (∆) < Vf (P ) + ε.

• For any subset E ⊂ G, the outer measure V ∗
f (E) is given by:

V ∗
f (E) = inf{Vf (Q) | Q is open and E ⊂ Q ⊂ G}.
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• A set E ⊂ G is measurable with respect to Vf if and only if there exist Gδ-sets K and H such
that:

E ⊂ K, K \ E ⊂ H, Vf (H) = 0.

• In this case:
Vf (E) = Vf (K).

• The same regularity criterion applies to the measures ν+f and ν
−
f .

Application of caratheodory process

The measures Vf , ν+f , and ν
−
f are initially defined on the semiring of cells {P | P ⊂ G}. These

measures satisfy countable additivity and monotone continuity on the semiring.

Extension to σ-algebras

Using the Carathéodory extension process, these measures can be uniquely extended to σ-algebras
Af , A+

f , and A
−
f , which include all Borel subsets of G. The extended measures preserve the notation

Vf , ν+f , and ν
−
f .

Measurability of borel sets

Since open sets are measurable with respect to Vf , ν+f , and ν
−
f , all Borel subsets of G are also mea-

surable. In particular, compact sets, Gδ-sets, and Fσ-sets are measurable.

Measurability of sets in Af

Existence of Gδ-sets

For any E ∈ Af , there exist Gδ-sets K and H such that:

E ⊂ K, K \ E ⊂ H, and Vf (H) = 0.

Since all sets considered are subsets of G, we haveK ⊂ G and H ⊂ G.

Measurability of E

Assume E ⊂ K ⊂ G, K \ E ⊂ H , and Vf (H) = 0, whereK and H are Gδ-sets.
Since the continuation of a measure by Carathéodory gives a complete measure, the set K \ E is
measurable.
Hence, the set E = K \ (K \ E) is measurable.

Regularity of ν+f and ν−f

The same arguments apply to ν+f and ν
−
f , since they are defined similarly usingN

+
f (E, y) andN

−
f (E, y).

Measurability of E

A set E ⊂ G is measurable if there exist Gδ-sets K and H such that:

E ⊂ K, K \ E ⊂ H, Vf (H) = 0.

In this case:
Vf (E) = Vf (K).

The same regularity holds for ν+f and ν
−
f .
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Approximation by open sets

For any subset E ⊂ G, approximate E from above by open sets Q ⊃ E such that Q ⊂ G. The outer
measure V ∗

f (E) satisfies:

V ∗
f (E) = inf{Vf (Q) | Q is open and E ⊂ Q ⊂ G}.

Approximation by compact sets

Similarly, approximate E from below by compact setsK ⊂ E. For any ε > 0, there exists a compact
setK ⊂ E such that:

Vf (E) ≤ Vf (K) + ε.

Theorem 9.0.3. Let f : G → Rn be a mapping with locally-finite variation. Then the following
statements hold:

(I) If a set E is measurable with respect to the measure Vf , then the function Nf (E) is Lebesgue
measurable and

Vf (E) =

∫
Rn

Nf (E) dλn,

and similar statements are valid for the measures ν+f and ν
−
f .

(II) Af ⊂ A+
f ∩ A−

f .

(III) The inequality
ν+f (E) + ν−f (E) ≥ Vf (E)

holds for any E ∈ Af .

(IV) If E is a compact set such that E ⊂ G, then the values Vf (E), ν+f (E), and ν
−
f (E) are finite.

(V) Let G′ be an open subset of Rn such that G′ ⊂ G and let f1 = f |G′ . Then

E ∈ A+
f1

⇔ E ⊂ G′ and E ∈ A+
f ,

and the equality ν+f1(E) = ν+f (E) holds for such sets E. Similar statements are valid for sets
E ∈ A−

f1
and E ∈ Af1 .

Proof 9.0.4. Part (I): Integral representation

Step (I.1):Integration representation

If E is an open set in G, it can be written as a disjoint union of "cells" Pk (e.g., rectangles or other
simple measurable sets).
By Lemma 9.0.1, the counting function Nf (E) satisfies:

Nf (E) =
∞∑
k=1

Nf (Pk).

By the definition of Vf , each term Vf (Pk) can be expressed as:

Vf (Pk) =

∫
Rn

Nf (Pk) dλn.
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Since Nf (Pk) is Lebesgue measurable by Theorem 7.2.1, Nf (E) is also measurable.
Using the additivity of Vf over disjoint sets, Summing over k, we get:

Vf (E) =
∞∑
k=1

Vf (Pk) =
∞∑
k=1

∫
Rn

Nf (Pk) dλn =

∫
Rn

Nf (E) dλn.

For the measure Vf , ν+f , and ν
−
f , the proof is similar (in this cas , we refer to Theorem 9.0.1)

Step (I.2): Gδ-Sets.

• IfE is aGδ-set (a countable intersection of open sets) with Vf (E) <∞, it can be approximated
by a decreasing sequence of open sets Gk such that E =

⋂∞
k=1Gk, where the sets Gk are open.

• By Lemma 9.0.2, there exists an open set G′ ⊂ G such that:

E ⊂ G′ and Vf (G
′) < Vf (E) + 1 <∞.

• Consider the open sets define:

Qk =
k⋂
p=1

Gp ∩G′ Clearly.

Then:
G ⊃ G′ ⊃ Q1 ⊃ Q2 ⊃ · · · ⊃ Qk ⊃ · · · , and

⋂
k

Qk = E.

• Since Vf (Q1) ≤ Vf (G
′) <∞, the monotonicity of Vf implies:

Vf (E) = lim
k→∞

Vf (Qk).

• Since Vf (Q1) =
∫
Rn Nf (Q1) dλn <∞, it follows that Nf (Q1, y) <∞ for almost all y ∈ Rn.

• By Lemma 9.0.1, step (2) and (4), the equalities

Nf (E, y) = lim
k→∞

Nf (Qk, y) and 0 ≤ Nf (E, y) ≤ Nf (Q1, y)

hold for almost all y ∈ Rn.

• The function Nf (E) is measurable (for almost all y ∈ Rn, this function is the limit of the
sequence Nf (Qk) of measurable functions).

• By the Lebesgue theorem on majorized convergence,∫
Rn

Nf (E) dλn = lim
k→∞

∫
Rn

Nf (Qk) dλn = lim
k→∞

Vf (Qk).

• By the monotone continuity of the measure considered,

lim
k→∞

Vf (Qk) = Vf (E).
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Step (I.3): Zero measure sets.

• If Vf (E) = 0,By Lemma 9.0.2 in (Step (4)), there exists a Gδ-setK ⊃ E such that Vf (K) = 0.

• Since Nf (K, y) ≥ 0 and
∫
Rn Nf (K) dλn = 0, it follows that Nf (K, y) = 0 almost everywhere

in Rn.

• By Lemma 9.0.2, 0 ≤ Nf (E, y) ≤ Nf (K, y); hence, Nf (E, y) = 0 for almost all y ∈ Rn.

• In addition, the function Nf (E) is measurable and∫
Rn

Nf (E) dλn = 0 = Vf (E).

Step (I.4): Integral representation.

• Assume Vf (E) < ∞. By Lemma 9.0.2, there exists a Gδ-set K such that E ⊂ K and Vf (K \
E) = 0.

• SinceK = E ∪ (K \ E) and E ∩ (K \ E) = ∅, Lemma 9.0.1 implies:

Nf (K, y) = Nf (E, y) +Nf (K \ E, y).

• From (I.2) and (I.3), we haveNf (K) andNf (K \E) are measurable functions. Hence,Nf (E)
is also measurable.

• Since Vf (K \ E) = 0, it follows from (I.3) that Nf (K \ E, y) = 0 almost everywhere. Thus,
Nf (K, y) = Nf (E, y) almost everywhere.

• Therefore: ∫
Rn

Nf (E) dλn =

∫
Rn

Nf (K) dλn = Vf (K) = Vf (E).

• This completes the integral representation for sets E with Vf (E) <∞.

• For the measures ν+f and ν
−
f , the same reasoning applies, as they are derived from Vf via the

Hahn decomposition.

Part (II): Inclusion Af ⊂ A+
f ∩ A−

f

• If E ∈ Af , then by Lemma 9.0.2, E = K \ E1, whereK is a Gδ-set and Vf (E1) = 0.

• By Lemma 9.0.2, there exists a Gδ-set H such that E1 ⊂ H and Vf (H) = 0.

• Since Vf (H) =
∫
Rn Nf (H) dλn = 0, it follows that Nf (H, y) = 0 almost everywhere.

• The remark following the definition of N+
f and N

−
f implies:

N+
f (H) +N−

f (H) ≤ Nf (H).

Hence, N+
f (H) and N−

f (H) vanish almost everywhere.

• Consequently:

ν+f (H) =

∫
Rn

N+
f (H) dλn = 0, ν−f (H) =

∫
Rn

N−
f (H) dλn = 0.
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• Since E1 ⊂ H , the standard continuation argument shows that E1 ∈ A+
f ∩ A−

f . Therefore:

E = K \ E1 ∈ A+
f ∩ A−

f .

• Thus, Af ⊂ A+
f ∩ A−

f .

Part (III): Variation inequality

• If E ∈ Af , then E ∈ A+
f ∩ A−

f . By Lemma 9.0.1, we have:

Nf (E) = N+
f (E) +N−

f (E).

• From (I), the functions Nf (E), N
+
f (E), and N

−
f (E) are measurable.

• Therefore:
ν+f (E) + ν−f (E) =

∫
Rn

N+
f (E) dλn +

∫
Rn

N−
f (E) dλn.

• Using the inequality N+
f (E) +N−

f (E) ≤ Nf (E), we conclude:

ν+f (E) + ν−f (E) ≤
∫
Rn

Nf (E) dλn = Vf (E).

• This establishes the variation inequality.

Part (IV): Finiteness for compact sets

• Let E be a compact subset of G. Then the distance from E to Rn \G is positive:

d0 = inf{ρ(x, z) | x ∈ E, z ∈ Rn \G} > 0.

• For each x ∈ E, let∆x be the open cube of diameter d0 centered at x, and let∆′
x be the corre-

sponding closed cube.(let ∆′
x be the cell with the same faces).

• Clearly, if x ∈ E, then ∆′
x ⊂ G, i.e. :

E ⊂
⋃
x∈E

∆x ⊂
⋃
x∈E

∆′
x ⊂ G.

• Select a finite covering {∆xk}
p
k=1 from the covering {∆x}x∈E . .

• Since f is a mapping with locally-finite variation:

Vf (∆
′
xk
) <∞ for k = 1, . . . , p.

• By additivity of Vf :

Vf (E) ≤
p∑

k=1

Vf (∆
′
xk
) <∞.

By (III), ν+f (E) and ν
−
f (E) are also finite.
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Part (V): Restriction to subsets

Let G′ ⊂ G be an open subset, and let f1 = f |G′ . For any set E ⊂ G′:

• The multiplicity of a point x under f1 is defined locally, so:

kf1(x) = kf (x) for all x ∈ G′.

• This implies:

f−1+
1 (y) = {x ∈ f−1

1 (y) | kf1(x) > 0} = {x ∈ f−1(y) ∩G′ | kf (x) > 0} = f−1(y) ∩G′.

and
card(f−1+

1 (y) ∩ E) = card(f−1+(y) ∩ E) ⇒ N+
f1
(E, y) = N+

f (E, y).

• For any E ⊂ G′, the counting functions satisfy:

N+
f1
(E, y) = N+

f (E, y).

Step (V.1):

• If E ∈ A+
f1
, then E ⊂ dom f1 = G′.

• By Lemma 9.0.2 in (step (3)), there exist Gδ-sets K and H such that

K,H ⊂ G′, E ⊂ K, K \ E ⊂ H, and ν+f1(H) = 0.

• In this case,

ν+f (H) =

∫
Rn

N+
f (H) dλn =

∫
Rn

N+
f1
(H) dλn = ν+f1(H) = 0,

and Lemma 9.0.2 implies that E ∈ A+
f .

Step (V.2):

• Assume E ∈ A+
f and E ⊂ G′. By Lemma 9.0.2, there exist Gδ-sets K and H such that:

K,H ⊂ G, E ⊂ K, K \ E ⊂ H, and ν+f (H) = 0.

• DefineK1 = K ∩G′ and H1 = H ∩G′. Clearly,K1 and H1 are Gδ-sets.

• Since E ⊂ G′, it follows that:

E ⊂ K1, K1 \ E ⊂ H1, and ν+f (H1) = 0.

• By the same reasoning as in (V.1), we conclude that ν+f1(H1) = 0.

• By Lemma 9.0.2, this implies E ∈ A+
f1
.

• For such sets E, the equality of measures holds:

ν+f (E) =

∫
Rn

N+
f (E) dλn =

∫
Rn

N+
f1
(E) dλn = ν+f1(E).

• The proof for A−
f is similar in the proof for Af , we apply the obvious equality:

f−1
1 (y) ∩ E = f−1(y) ∩ E for E ⊂ G′.

This completes the proof of Theorem 9.0.3.
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9.0.7 Definition Of orientation-preserving homeomorphism
On any topological n-manifoldM , define an orientation ofM to be a function µ defined onM such
that for each input x ∈ M , the output µ(x) is one of the two generators of the infinite cyclic group
Hn(M,M \ {x}), and the following property holds:

• for each embedded open n-ball B ⊂M , there exists a generator µB of the infinite cyclic group
Hn(M,M \B) such that for each x ∈ B, the inclusion-induced homomorphism

Hn(M,M \B) −→ Hn(M,M \ {x})

maps µB to µ(x).

• Now one proves:

Theorem 9.0.4 (and definition). For every topological manifoldM , exactly one of two possi-
bilities holds:

1. eitherM has exactly two orientations, in which case we say thatM is orientable;
2. orM has no orientations, in which case we say thatM is nonorientable.

• This theorem is one of the preliminary steps to the proof of Poincaré Duality; see for example
As explained in [2], orientation on a topological manifold involves choices of local generators
of relative homology groups.

• In fact, proving that the relative homology groups Hn(M,M \ B) and Hn(M,M \ {x}) are
infinite cyclic is also one of the preliminary steps.

• LetM be a connected topological manifold.IfM is nonorientable, then it makes no sense to ask
whether a homeomorphism f ofM preserves orientation, and the whole concept of “preserving
orientation” is undefined forM .

• If on the other hand M is orientable, then to say that a homeomorphism f : M → M is
orientation-preservingmeans that for either of the two orientations µ ofM , and for any x ∈M ,
the induced isomorphism

f∗ : Hn(M,M \ {x}) −→ Hn(M,M \ {f(x)})

takes µ(x) to µ(f(x)).

9.0.8 Definition Of reverse orientation homeomorphism
• Let φ be the homomorphism and F an arbitrary lift. Then define

β(x) = F (x)− x.

• Note that this is continuous because φ is a homomorphism, and continuous itself (and so F , its
lift, is too).

• See then that a fixed point of φ means

φ(x) = x⇒ F (x) = x+ k ⇒ β(x) ∈ Z.
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• So it suffices to show that β is valued at least at two different integers.

• Then see, using that
F (x+ k) = F (x) + k

(easily proven as an exercise, by induction, making use of the fact that φ preserves orientation),
that

β(1) = F (1)− 1 = F (0) + 1− 1 = F (0) = β(0) + 2.

• This means that β, a continuous function, increases by 2 between the inputs 0 and 1.

• This means it must take on two integer values in between, by the Intermediate Value Theorem
(graph β against x if you're not convinced).

• And therefore, these two distinct values correspond to two distinct fixed points of our original
function φ, as required.

Theorem 9.0.5. Let G1 and G2 be connected open subsets of Rn and let ϕ be a homeomorphism of
G1 onto G2. If f is a continuous mapping of G2 into Rn, then the following statements hold:

1. f is a mapping with locally-finite variation⇔ f ◦ ϕ is a mapping with locally-finite variation;

2. E ∈ Af◦φ ⇔ ϕ(E) ∈ Af ; in this case,

Vf◦φ(E) = Vf (ϕ(E));

3. if ϕ preserves orientation, then

E ∈ A+
f◦φ ⇔ ϕ(E) ∈ A+

f and E ∈ A−
f◦φ ⇔ ϕ(E) ∈ A−

f ;

in this case,
ν+f◦φ(E) = ν+f (ϕ(E)) and ν−f◦φ(E) = ν−f (ϕ(E));

4. if ϕ reverses orientation, then

E ∈ A+
f◦φ ⇔ ϕ(E) ∈ A−

f and E ∈ A−
f◦φ ⇔ ϕ(E) ∈ A+

f ;

in this case,
ν+f◦φ(E) = ν−f (ϕ(E)) and ν−f◦φ(E) = ν+f (ϕ(E)).

Proof 9.0.5. Part (1): Locally finite variation

Step(1.1):

First, we prove that Nf◦φ(E) = Nf (ϕ(E)) for any E ⊂ G1.

• Since ϕ is a bijection, the following implications hold:

ϕ
(
(f ◦ ϕ)−1(y) ∩ E

)
= f−1(y) ∩ ϕ(E).

• Taking the cardinality of both sides, we get:

card
(
(f ◦ ϕ)−1(y) ∩ E

)
= card

(
f−1(y) ∩ ϕ(E)

)
.

• By definition of the counting function N , this implies:

Nf◦φ(E, y) = Nf (ϕ(E), y).
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Step(1.2):

Let f be a mapping with locally finite variation, and let P ⊂ G1 be a cell. Then:

• P is a Gδ-set, and since ϕ is a homeomorphism, ϕ(P ) is also a Gδ-set in G2.

• By Lemma 9.0.2, ϕ(P ) the set is Vf -measurable.

• Since the set ϕ(P ) is compact, Vf (ϕ(P )) <∞ .

• Using (1.1) and Theorem 9.0.3, we have:

Vf◦φ(P ) =

∫
Rn

Nf◦φ(P ) dλn =

∫
Rn

Nf (ϕ(P )) dλn = Vf (ϕ(P )) <∞.

Vf (ϕ(P )) <∞

• Thus, f ◦ ϕ is a mapping with locally finite variation.

• The converse statement follows similarly because ϕ−1 is also a homeomorphism.

Part (2): Measurable sets and total variation

If E ∈ Af◦φ, then by Lemma 9.0.2, there exist Gδ-sets K,H ⊂ G1 such that:

E = K \ E1, E1 ⊂ H, Vf◦φ(H) = 0.

• Since ϕ is a bijection, we have:

ϕ(E) = ϕ(K) \ ϕ(E1), ϕ(E1) ⊂ ϕ(H) ⊂ G2, ϕ(K) ⊂ G2.

• Sinceϕ is a homeomorphism,ϕ(K) andϕ(H) areGδ-sets; hence, these sets areVf -measurable.

• Theorem 9.0.3and step (1.1) and step (1.2) imply that

Vf (ϕ(H)) =

∫
Rn

Nf (ϕ(H)) dλn =

∫
Rn

Nf◦φ(H) dλn = Vf◦φ(H) = 0.

• Since ϕ(E1) ⊂ ϕ(H) and the measure Vf is complete, we have ϕ(E1) ∈ Af and ϕ(E) ∈ Af

(noting that ϕ(E) = ϕ(K) \ ϕ(E1)).

• We apply Theorem 9.0.3 and step (1.1) and step(1.2) once more to show that

Vf (ϕ(E)) =
∫
Rn

Nf (ϕ(E)) dλn =

∫
Rn

Nf◦φ(E) dλn = Vf◦φ(E).

• Since ϕ−1 is a homeomorphism and ϕ(E) ∈ Af = Af ◦ ϕ ◦ ϕ−1, it follows that

E = ϕ−1(ϕ(E)) ∈ Af◦φ;

thus, statement (2) is proved.
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Part (3): Multiplicity of points

• We claim that the multiplicity of a point x ∈ G1 under the mapping f ◦ ϕ is defined if and only
if the multiplicity of the point ϕ(x) under the mapping f is defined, and:

kf◦φ(x) = deg(ϕ) · kf (ϕ(x)).

• Assume that themultiplicity kf (ϕ(x)) is defined. By Lemma 8.3.2, there exists a neighborhoodV
of ϕ(x) such that for any compact n-dimensional manifoldK with boundary satisfyingK ⊂ V ,
ϕ(x) ∈ Int(K), and the degree deg(f(K), f(ϕ(x))) equals kf (ϕ(x))(i.e., the degree does not
depend onK).

• Since ϕ is a homeomorphism, ϕ−1(V ) = V1 is a neighborhood of x.

• IfK1 is a compact n-dimensional manifold with boundary such thatK1 ⊂ V1 and x ∈ Int(K1),
then K = ϕ(K1) is also a compact n-dimensional manifold with boundary, K ⊂ ϕ(V1) = V ,
and:

ϕ(x) ∈ ϕ(Int(K1)) = Int(ϕ(K1)) = Int(K).

• Using the remark preceding Lemma 8.3.2, we have:

degf◦φ (K1, (f ◦ ϕ)(x)) = degf◦φ (IntK1, (f ◦ ϕ)(x))

and
degf (ϕ(K1), f(ϕ(x))) = degf (Intϕ(K1), f(ϕ(x))) .

• From [Chapter VIII, §4, Corollary 4.6] [13], we have:

deg(f ◦ ϕ(Int(K1)), (f ◦ ϕ)(x)) = deg(ϕ) · deg(f(Int(K)), f(ϕ(x))).

• Since degf◦φ (IntK1, (f ◦ ϕ)(x)) = degϕ · degf (Intϕ(K1), f(ϕ(x))) .

And the above-mentioned properties of the setK = ϕ(K1) imply that the value

degf (K, f(ϕ(x))) = kf (ϕ(x))

does not depend on K, we conclude that the value

degf◦φ (K1, (f ◦ ϕ)(x)) = degϕ · kf (ϕ(x))

does not depend on K1 ⊂ V1, i.e., the multiplicity

kf◦φ(x) = degϕ · kf (ϕ(x))

is defined.

• Similarly, if the multiplicity kf◦φ(x) is defined, then the multiplicity kf (ϕ(x)) is defined as well
(since ϕ−1 is a homeomorphism).
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Part (4): Positive and negative variations

Assume ϕ preserves orientation, i.e., deg(ϕ) = 1,and Nf (ϕ(x)) = Nf◦φ(x). Then:

• For any y ∈ Rn and E ⊂ G1, the following equivalences hold:

x ∈ (f ◦ ϕ)−1
+ (y) ∩ E ⇐⇒


x ∈ E,

x ∈ (f ◦ ϕ)−1(y),

kf◦φ(x) > 0,

• which implies:

⇐⇒


ϕ(x) ∈ ϕ(E)
f(ϕ(x)) = y
kf (ϕ(x)) > 0

⇐⇒ ϕ(x) ∈ f−1
+ (y) ∩ ϕ(E),

• Thus:
f−1
+ (y) ∩ ϕ(E) = ϕ((f ◦ ϕ)−1

+ (y) ∩ E).

• Taking the cardinality of both sides, we get:

card(f−1
+ (y) ∩ ϕ(E)) = card((f ◦ ϕ)−1

+ (y) ∩ E),

• which implies:
N+
f (ϕ(E), y) = N+

f◦φ(E, y).

• A similar reasoning applies to the negative variation, proving:

N−
f (ϕ(E), y) = N−

f◦φ(E, y).

• If ϕ is a homeomorphism that reverses orientation, i.e., deg(ϕ) = −1.
Then, for any measurable function f , the signed multiplicity function satisfies

kf (ϕ(x)) = −kf◦φ(x).

• In particular, for any y ∈ Rn, we have the following identities:

f−1
+ (y) ∩ ϕ(E) = ϕ

(
(f ◦ ϕ)−1

− (y) ∩ E
)
,

f−1
− (y) ∩ ϕ(E) = ϕ

(
(f ◦ ϕ)−1

+ (y) ∩ E
)
.

• That is, the preimages of positive and negative multiplicities are interchanged under ϕ.

• Consequently, the multiplicities satisfy:

N+
f (ϕ(E), y) = N−

f◦φ(E, y) , N−
f (ϕ(E), y) = N+

f◦φ(E, y).
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Part (5): Positive and negative variations under homeomorphisms

• Assume E ∈ A+
f◦φ. By Lemma 9.0.2, there exist Gδ-sets K,H ⊂ G1 such that:

E ⊂ K, K \ E ⊂ H, ν+f◦φ(H) = 0.

• Since ϕ is a homeomorphism, ϕ(K) and ϕ(H) are Gδ-sets in G2. Thus, these sets are measur-
able with respect to the measures ν+f and ν

−
f .

• If ϕ preserves orientation, then by Part (4) and Theorem 9.0.3, we have:

ν+f (ϕ(H)) =

∫
Rn

N+
f (ϕ(H)) dλn =

∫
Rn

N+
f◦φ(H) dλn = ν+f◦φ(H) = 0.

• If ϕ reverses orientation, then:

ν−f (ϕ(H)) =

∫
Rn

N−
f (ϕ(H)) dλn =

∫
Rn

N+
f◦φ(H) dλn = ν+f◦φ(H) = 0.

• SinceK \ E ⊂ H ,and ϕ is a bijection we have :

ϕ(K \ E) = ϕ(K) \ ϕ(E) ⊂ ϕ(H).

• The completeness of the measure ν+f implies that if ϕ preserves orientation, then:

ϕ(K) \ ϕ(E) ∈ A+
f ⇒ ϕ(E) = ϕ(K) \ (ϕ(K) \ ϕ(E)) ∈ A+

f .

• Similarly, if ϕ reverses orientation, the completeness of ν−f implies:

ϕ(K) \ ϕ(E) ∈ A−
f ⇒ ϕ(E) ∈ A−

f .

• Using step (4) and Theorem 9.0.3, we compute the measures:

• If ϕ preserves orientation, then:

ν+f (ϕ(E)) =

∫
Rn

N+
f (ϕ(E)) dλn =

∫
Rn

N+
f◦φ(E) dλn = ν+f◦φ(E).

• If ϕ reverses orientation, then:

ν−f (ϕ(E)) =

∫
Rn

N−
f (ϕ(E)) dλn =

∫
Rn

N+
f◦φ(E) dλn = ν+f◦φ(E).

• IfE ∈ A−
f◦φ, the proof is analogous. In this case, the roles of ν

+
f and ν

−
f are swapped depending

on whether ϕ preserves or reverses orientation.

• Finally, since ϕ−1 is also a homeomorphism, the implications:

ϕ(E) ∈ A+
f ⇒ E ∈ A+

f◦φ, ϕ(E) ∈ A−
f ⇒ E ∈ A−

f◦φ

hold. This completes the proof.
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10
Manifolds with locally-finite variations

The references for this chapter are [43]

Definition 10.0.1. Let G be an open subset of Rn and let f1, . . . , fm be the coordinate functions of a
continuous mapping f : G→ Rm (m ≥ n).

• For α = {i1, . . . , in}, where 1 ≤ i1 < i2 < . . . < in ≤ m, we denote by fα the mapping with
coordinate functions fi1 , . . . , fin:

fα :


xi1 = fi1(t1, . . . , tn),

. . . .........................

xin = fin(t1, . . . , tn),

(t1, . . . , tn) ∈ G.

• We say that f is a mapping with locally-finite variations if any of the mappings fα : G→ Rn is
a mapping with locally-finite variation.

Definition 10.0.2. LetM ⊂ Rm be an n-dimensional manifold whose topology is induced from Rm.
We say thatM is a manifold with locally-finite variations embedded into Rm if, for any point x ∈M ,
there exists a neighborhood U of x in M and a homeomorphism f of Rn onto U with locally-finite
variations (local parametrization of the neighborhood U ).

Remark 10.0.1. If a local parametrization of a neighborhood U is a mapping with locally-finite
variations, then any parametrization of this neighborhood is a mapping with locally-finite variations
as well.

• Indeed, if f : Rn → U and g : Rn → U are homeomorphisms, then ϕ = f−1 ◦ g is a
homeomorphism of the space Rn onto itself.

• In this case, g = f ◦ ϕ, and the formula gα = fα ◦ ϕ is valid for any α = {i1, . . . , in}; by
Theorem 9.0.5 the mappings gα and fα are (or are not) mappings with locally-finite variations
simultaneously.

• It is well known that if U ⊂ Rm and there exists a homeomorphism f : Rn → U , then it is
possible to fix an orientation on U .

• For example, one may proceed as follows: let g be one more homeomorphism ofRn onto U and
let g = f ◦ ϕ.

• If degϕ = 1, we include g into class I; if degϕ = −1, we include g into class II. The orientation
on U is fixed by a choice of one of the above classes as the class of ``positive'' orientations.
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• LetM be a manifold. Consider neighborhoodsU, V ⊂M such thatU∩V 6= ∅; let f : Rn → U
and g : Rn → V be positive parametrizations of the oriented neighborhoods U and V . In
this case, ϕ = f−1 ◦ g is a homeomorphism of the open set G1 = g−1(U ∩ V ) ⊂ Rn onto
G2 = f−1(U ∩ V ) ⊂ Rn.
The neighborhoods U and V are oriented consistently if degϕ = 1; the manifold M is ori-
entable if it is possible to choose a consistent orientation for all of its parametrized neighbor-
hoods.

Definition 10.0.3. Let M be an oriented n-dimensional manifold with locally-finite variations em-
bedded into Rm (m ≥ n).
Let α = {i1, . . . , in}, where i1, . . . , in ∈ N and 1 ≤ i1 < . . . < in ≤ m.
A subset E ⊂M is called small α+-measurable if there exists a neighborhood U of a point ofM and
a positive parametrization f : Rn → U of U such that E ⊂ U and f−1(E) ∈ A+

fα
.

For such a set E, we set:

µ+
α (E) = ν+fα(f

−1(E)) by definition.

Lemma 10.0.1. The property of a subset E to be a small α+-measurable set and the value µ+
α (E) do

not depend both on the neighborhood U ⊃ E and the positive parametrization f .

Proof 10.0.1. If E = ∅, the statement is obvious.

• Assume that E 6= ∅, E ⊂ U ∩ V , f is a positive parametrization of the neighborhood U , and g
is a positive parametrization of the neighborhood V .

• In this case, ϕ = f−1 ◦ g is a homeomorphism of the set G1 = g−1(U ∩ V ) onto the set
G2 = f−1(U ∩ V ) and degϕ = 1.

• Denote fα = fα|G2 and gα = gα|G1; in this case, gα = fα ◦ ϕ.

• If E1 = g−1(E) ∈ A+
gα , then the inclusion E1 ⊂ G1 and Theorem 9.0.3, Part (V), imply that

E1 ∈ A+
gα = A+

fα◦φ.
Obviously, E2 = f−1(E) = ϕ(E1); since degϕ = 1, we deduce from Theorem 9.0.5, step (3),
that ϕ(E1) = E2 ∈ A+

fα
. Theorem 9.0.3 implies now that E2 ∈ A+

fα
.

• Similarly, E2 ∈ A+
fα

⇒ E1 ∈ A+
gα .

• In this case, the following equalities hold:

ν+gα(g
−1(E)) = ν+gα(E1) (Theorem 9.0.3),

ν+gα(E1) = ν+fα◦φ(E1) = ν+fα(ϕ(E1)) (Theorem 10.0.1),

ν+fα(ϕ(E1)) = ν+fα(E2) = ν+fα(f
−1(E)) (Theorem 9.0.3).

• Hence,
ν+gα(g

−1(E)) = ν+fα(f
−1(E)).

Definition 10.0.4. A subset E ⊂ M is called α+-measurable if, for any parametrized neighborhood
U ⊂M , the set E ∩ U is a small α+-measurable set.

Lemma 10.0.2. The set of α+-measurable subsets of an oriented n-dimensional manifoldM ⊂ Rm

with locally-finite variations forms a σ-algebra that contains all of Borel subsets ofM .
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Proof 10.0.2. Step 1: Small α+-measurable sets form a σ-algebra

• Let f : Rn → U be a positive parametrization of a neighborhood U ⊂ M . By definition of a
small α+-measurable set :

E ⊂ U and E is a small α+-measurable set ⇐⇒ f−1(E) ∈ A+
fα

• where A+
fα
is the σ-algebra of sets measurable with respect to the positive variation measure

ν+fα .

• Since A+
fα
is a σ-algebra, we can apply operations (e.g., complements, countable unions, inter-

sections) on preimages under f−1 to deduce that the collection of small α+-measurable subsets
of U also forms a σ-algebra.

• Thus, the family of small α+-measurable subsets of U is closed under complementation, count-
able unions, and countable intersections.

Step 2: Complementation inM

• Let E ⊂ M be an α+-measurable set. For any parametrizable neighborhood U ⊂ M , the
intersection E ∩ U is a small α+-measurable set.

• By step (1), the complement of E ∩ U in U , denoted (M \ E) ∩ U = U \ (E ∩ U), is also a
small α+-measurable set.

• Since U is arbitrary, the setM \ E is α+-measurable.
This shows that the family of α+-measurable subsets ofM is closed under complementation.

Step 3: Countable unions

• Let {Ek} be an at most countable family of α+-measurable subsets ofM , and let E =
⋃
k Ek.

• For any parametrizable neighborhoodU ⊂M , the intersectionEk∩U is a smallα+-measurable
set for each k.

• By item (1), the union E ∩ U =
⋃
k(Ek ∩ U) is a small α+-measurable set.

• Since U is arbitrary, the set E =
⋃
k Ek is α+-measurable.

• This shows that the family of α+-measurable subsets ofM is closed under countable unions.

Step 4: Open sets are α+-measurable

• AssumeG ⊂M is an open set. For any parametrizable neighborhood U ⊂M , the intersection
G ∩ U is open in U .

• Since f : Rn → U is a positive parametrization, the preimage f−1(G ∩ U) is open in Rn.

• From the proof of Lemma 9.0.2, open subsets of the domain of definition of
fα : Rn → Rn are ν+fα-measurable. Hence:

f−1(G ∩ U) ∈ A+
fα
.

• Therefore, G ∩ U is a small α+-measurable set.
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• Since U is arbitrary, the set G is α+-measurable.

• By step (2) and (3), any Borel set (which can be expressed as a countable union, intersection,
or complement of open sets) is also α+-measurable.

Conclusion

The proof demonstrates that the set of α+-measurable subsets ofM satisfies the following properties:

• It is closed under complementation.

• It is closed under countable unions.

• It contains all open subsets ofM , and hence all Borel subsets ofM .

Thus, the collection of α+-measurable subsets of M forms a σ-algebra that contains all Borel
subsets ofM . Lemma 10.0.2 is fully proven.

Representation of α+-measurable sets

Denote by A+
α the σ-algebra of all α+-measurable subsets of M . Since the topology of M has a

countable basis of parametrizable neighborhoods, any set E ∈ A+
α can be represented as a union of

an at most countable family of small α+-measurable sets:

E =
⋃
k

Ek, Ek ⊂ Uk,

whereUk are parametrizable neighborhoods. If necessary, we can assume that the setsEk are pairwise
disjoint by considering their differences:

E ′
1 = E1, E ′

2 = E2 \ E1, E ′
3 = E3 \ (E1 ∪ E2), . . .

This ensures that the resulting family {E ′
k} consists of pairwise disjoint, small α+-measurable

sets.

Definition 10.0.5. For E =
⊔
k Ek (a disjoint union of an at most countable family of small α+-

measurable subsets), we set
µ+
α (E) =

∑
k

µ+
α (Ek).

Lemma 10.0.3. The function µ+
α is well-defined on the σ-algebra A+

α and is a σ-finite complete mea-
sure. If K ⊂M is a compact set, then µ+

α (K) <∞.

Proof 10.0.3. Step 1: Correctness of the definition

• By definition, for any measurable set E ⊂ U = f(Rn), where f is a positive parametrization
of U :

µ+
α (E) = ν+f,α(f

−1(E)).

• Since ν+f,α is a measure (as established in earlier results), it follows that µ+
α satisfies the prop-

erties of a measure on subsets of U .

• By Lemma 10.0.1, the value µ+
α (E) does not depend on the choice of the parametrization f .

This ensures that µ+
α is well-defined.
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• Assume E =
⋃
k Ek =

⋃
pE

′
p, where Ek ⊂ Uk and E ′

p ⊂ U ′
p are disjoint unions of small

α+-measurable sets.

• DefineEkp = Ek∩E ′
p. These setsEkp are pairwise disjoint, small, α+-measurable sets. Hence,

the implication
Ek =

⊔
p

Ekp =⇒ µ+
α (Ek) =

∑
p

µ+
α (Ekp)

holds (we refer to the countable additivity of the measure µ+
α on subsets of Uk).

• Similarly:
µ+
α (E

′
p) =

∑
k

µ+
α (Ekp),

and: ∑
k

µ+
α (Ek) =

∑
k

∑
p

µ+
α (Ekp) =

∑
p

∑
k

µ+
α (Ekp) =

∑
p

µ+
α (E

′
p).

• Thus, the value µ+
α (E) does not depend on the representation of E as a disjoint union of small

α+-measurable sets. This establishes the correctness of the definition of µ+
α (by properties of

sums of nonnegative families, we can take sums of subfamilies and change the order of summa-
tion).

Step 2: Countable additivity

• Let E =
⋃
k Ek be a disjoint at most countable family, where each Ek ∈ A+

α .

• Each Ek can be expressed as a disjoint union of small α+-measurable sets:

Ek =
⋃
p

Ekp.

Then:
E =

⋃
k

Ek =
⋃
k

⋃
p

Ekp,

• where all the sets Ekp are disjoint. By definition:

µ+
α (E) =

∑
k,p

µ+
α (Ekp).

• Using the property of sums of nonnegative families:

µ+
α (E) =

∑
k,p

µ+
α (Ekp) =

∑
k

(∑
p

µ+
α (Ekp)

)
=
∑
k

µ+
α (Ek).

• Thus, µ+
α is countably additive.

Step 3: Completeness and σ-finiteness

• The completeness and σ-finiteness of µ+
α on subsets of a parametrizable neighborhood U follow

from the corresponding properties of ν+f,α (see Lemma 9.0.2).

• For any E ∈ A+
α , E can be represented as a union of an at most countable family of disjoint,

small α+-measurable sets:
E =

⋃
k

Ek.

• Since µ+
α is countably additive and each µ+

α (Ek) is finite, µ+
α is σ-finite on A+

α .
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Step 4: Finiteness on compact sets

• LetK ⊂M be a compact set.
For each x ∈ K, there exists a neighborhoodUx = f(Rn) such that f is a positive parametriza-
tion of Ux. Let Px ⊂ Rn be a cell such that f−1(x) ∈ Int(Px).

• Define:
Gx = f(Int(Px)).

• Since f is a homeomorphism, Gx is open and Gx ⊂ Ux. By definition:

µ+
α (Gx) = ν+f,α(f

−1(Gx)) = ν+f,α(Int(Px)) ≤ ν+f,α(Px) <∞,

because the closure Px is compact and fα has locally finite variation (Theorem 9.0.3).

• For any x ∈ K, we have x ∈ Gx, i.e.,

K ⊂
⋃
x∈K

Gx.

• SinceK ⊂
⋃
x∈K Gx, we can extract a finite subcover:

K ⊂
p⋃

k=1

Gxk .

• Thus, this implies:

µ+
α (K) ≤

p∑
k=1

µ+
α (Gxk) <∞.

• This proves that µ+
α (K) <∞ for any compact setK ⊂M .

Conclusion

The proof demonstrates that µ+
α is well-defined, countably additive, σ-finite, and complete on A+

α .
Additionally, µ+

α (K) <∞ for any compact set K ⊂M .

Extension to µ−α and µα
In a similar way, one definesµ−

α and shows that it satisfies analogous properties. The orientedmeasure
µα(E) is defined for sets E ∈ A+

α ∩ A−
α with finite values of µ+

α (E) and µ−
α (E) as:

µα(E) = µ+
α (E)− µ−

α (E).

(the oriented measure of the α-projection of the set E). The collection RM of all such sets forms a
δ-ring of subsets ofM .
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10.0.1 The σ-algebra A−
α

Similar toA+
α , the collection of subsets ofM that are measurable with respect to the negative variation

ν−f,α forms a σ-algebra denoted A−
α .

This σ-algebra contains all Borel subsets ofM , as shown in Lemma 9.0.1.

1. By analogy withA+
α , the σ-algebraA−

α consists of subsets ofM that are measurable with respect
to the negative variation ν−f,α. Closure under standard operations follows as in Lemma 10.0.2.

2. Since ν−f,α is defined via positive parametrizations and open sets are measurable, all Borel sub-
sets ofM belong to A−

α .

The measure µ−α
On A−

α , a complete σ-finite measure µ−
α is defined. For any compact set K ⊂ M , we have µ−

α (K) <
∞.

1. The measure is defined by:
µ−
α (E) = ν−f,α(f

−1(E)),

where f is a positive parametrization of a neighborhood E ⊂ U .

2. For any compact K ⊂ M , it can be covered by finitely many such Uk with µ−
α (Uk) < ∞, so

µ−
α (K) <∞.

Oriented measure µα
1. For E ∈ A+

α ∩ A−
α with finite µ+

α (E) and µ−
α (E), the oriented measure is defined as:

µα(E) = µ+
α (E)− µ−

α (E).

This reflects the net contribution under the projection associated with α.

2. µα is well-defined and inherits additivity and finiteness from µ±
α .

The collection RM

Define:
RM = {E ⊂M | E ∈

⋂
α

(A+
α ∩ A−

α ) and µ+
α (E), µ

−
α (E) <∞ for all α}.

ThenRM is a δ-ring of subsets ofM , meaning it is closed under differences, finite unions, and count-
able intersections.

1. Properties:

• Closed under differences, since A+
α ∩ A−

α is a σ-algebra.
• Closed under finite unions.
• Closed under countable intersections.

118



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

Simple n-vectors in Rm

Let ei denote the standard basis vectors in Rm. For n ≤ m and indices 1 ≤ i1 < · · · < in ≤ m, the
simple n-vectors eα = ei1 ∧ · · · ∧ ein form a basis for the space of n-vectors in Rm.

1. For indices 1 ≤ i1 < · · · < in ≤ m, the wedge product eα = ei1 ∧ · · · ∧ ein defines a simple
n-vector.

2. Each α defines a projection onto the subspace spanned by the eik , and the measures µ±
α and µα

are constructed with respect to these projections.

Conclusion
• This explanation clarifies the construction of the σ-algebras A−

α , the measures µ−
α , and the

oriented measure µα.

• Additionally, it defines the δ-ring RM and the role of simple n-vect

Definition 10.0.6. The mapping from RM into the space of n-vectors defined by

µM(E) =
∑
α

µα(E)eα, E ∈ RM ,

is called the standard vector measure on an n-dimensional orientable manifoldM with locally-finite
variations that is embedded into Rm (withm ≥ n).

Theorem 10.0.1. LetM be an orientable n-dimensional manifold with locally-finite variations that
is embedded into Rm (m ≥ n).
Then the following statements hold:

1. Compact subsets of the manifoldM belong to RM ;

2. The function µM is countably additive on RM ;

3. IfM ′ is a manifold with the same support and inverse orientation, thenRM ′ = RM

and µM ′ = −µM .

Proof 10.0.4. Step 1: Compact subsets belong to RM

By Lemmas 10.0.2 and 10.0.3, any compact setK ⊂M satisfies:

1. K is α+-measurable and α−-measurable for any α = {i1, i2, . . . , in},

2. The values µ+
α (K) and µ−

α (K) are finite.

• Thus, K ∈ RM by definition, since RM consists of sets that are measurable with respect to all
projections α and have finite measures µ+

α and µ−
α .

• This proves that compact subsets ofM belong to RM .
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Step 2: Countable additivity of µM

• Recall that the space of n-vectors in Rm is finite-dimensional. Convergence of series in this
space is equivalent to coordinate-wise convergence in any basis.

• For each projection α, the measures µ+
α and µ−

α are countably additive (Lemma 10.0.3).

• Since µM is defined as a vector-valued function whose components correspond to µ+
α and µ−

α ,
the countable additivity of µM follows from the countable additivity of its components.

• Thus, µM is countably additive on RM .

Step 3: Behavior under orientation reversal

• LetM ′ be the manifold with the same support asM but with the opposite orientation. Assume
f : Rn → U ⊂M is a positive parametrization of a subset U ⊂M .

• Define ϕ : Rn → Rn as a homeomorphism that reverses orientation, such as:

for example ϕ(x1, x2, . . . , xn) = (−x1, x2, . . . , xn).

• Then g = f ◦ ϕ is a positive parametrization of U inM ′, because reversing the orientation of
ϕ compensates for the reversed orientation ofM ′.

• Let E ⊂ U be a small α+-measurable set inM . By definition:

f−1(E) ∈ A+
f,α , µα+,M(E) = ν+f,α(f

−1(E)).

• Using Theorem 9.0.5, we know that ϕ reverses orientation, so:

g−1(E) = ϕ−1(f−1(E)) ∈ A−
f◦φ,α = A−

g,α,

and:

µα+,M(E) = ν+f,α(f
−1(E)) = ν−f◦φ,α(ϕ

−1(f−1(E))) = ν−g,α(g
−1(E)) = µα−,M ′(E). (10.1)

• Thus, E is a small α−-measurable set inM ′, and:

µα+,M(E) = µα−,M ′(E).

• Similarly, applying ϕ−1 shows that the classes of small α+-measurable sets in M and small
α−-measurable sets inM ′ coincide. Hence:

Aα+,M = Aα−,M ′ , Aα−,M = Aα+,M ′ .

• Decompose an arbitrary set E ∈ Aα+,M into a disjoint union of small measurable sets. Using
the above equalities eq 10.1, it follows that:

µα+,M(E) = µα−,M ′(E) , µα−,M(E) = µα+,M ′(E).

• If E ∈ RM , then:

E ∈
⋂
α

(Aα+,M ∩ Aα−,M) =
⋂
α

(Aα−,M ′ ∩ Aα+,M ′) .
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• All the numbers µα+,M(E) = µα−,M ′(E) and µα−,M(E) = µα+,M ′(E) are finite. This statement
is equivalent to the following statements:

E ∈ RM

• Thus:

µα,M ′(E) = µα+,M ′(E)− µα−,M ′(E) = µα−,M(E)− µα+,M(E) = −µα,M(E).

• Taking the sum over all projections α, we conclude:

µM ′(E) = −µM(E).

Conclusion
The proof establishes the following:

• Compact subsets ofM belong to RM .

• The function µM is countably additive on RM .

• IfM ′ has the same support asM but opposite orientation, then RM ′ = RM and µM ′ = −µM .

These results demonstrate the well-definedness and consistency of the oriented measure µM on an
orientable manifoldM .

Theorem 10.0.1 is fully proven.

Remark 10.0.2.

• If a manifoldM is orientable and disconnected, then this manifold admits more than two ori-
entations (the orientation ofM is determined by orientations of its components).

• Since any component admits exactly two orientations, we may apply Theorem 6 to components
and show that RM = RM ′ in the case of an arbitrary (not necessarily opposite) orientation of
the manifoldM ′.
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Conclusion and open problems

In this work, we have introduced the class of n-dimensional manifolds embedded in Rm with locally-
finite variations, together with a corresponding vector-valued measure that allows for the integration
of differential forms in a manner analogous to the Lebesgue integral. This framework extends classi-
cal integration theory to a broader class of non-smooth geometric objects while preserving essential
analytical properties such as countable additivity and convergence theorems.

Several important open problems and conjectures arise naturally from this study:

1. The author conjectures that the definitions of a manifold with locally-finite variations and the
associated standard n-vector-valued measure are independent of the choice of basis in the am-
bient space Rm. It is further suggested that such manifolds may coincide with those possessing
a locally-finite Favard measure or a locally-finite Hausdorff measure. In the second part of this
work, it will be shown that smoothly embedded manifolds in Rn do indeed have locally-finite
variations, and for these, basis independence of the integral is well known.

2. Another conjecture concerns the geometric examples of such manifolds. Specifically, the author
proposes that the boundary of any n-dimensional convex body in Rn provides an example of an
(n− 1)-dimensional manifold with locally-finite variation, even when not necessarily smooth.
For lower dimensions k < n, boundaries of k-dimensional convex sets may serve as similar
examples.

These open questions suggest promising directions for future research, particularly in clarifying
the relationship between locally-finite variations and other measures commonly used in geometric
measure theory, as well as in identifying new classes of manifolds admitting robust integration theo-
ries.
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