- d & N
o "
/ E y. .
‘ Q‘! A
4

In front of the jury composed of:

dusidl ddolydasadl & yiliadl uJQAA:JI
Democratic and Popular Republic of Algeria

alsll codly el ededll 3515

Ministry of Higher Education and Scientific Research N° d’enregistrement

oveedeveedend el oo
Llayl daol>

Ghardala Umver51ty

L ol 9l g p olall &dS

Faculty of Science and Technology

S pllely lao Lyl pud

Department of Mathematics and Computer Science

Thesis Submitted in Partial Fulfilment of the Requirements for the
Master’s Degree

Mathematics and Computer Science Field, Mathematics Stream
Functional Analysis Specialty

Theme

Integration of Differential Forms on
Manifolds With Locally-Finite Variations

Presented by:
Miss. Rahmani Fatma Zohra
Publicly supported the 23/06/2025

M. Salah Kriket MCB Ghardaia University President
M.Abdelouahab Chikh Salah MCB Ghardaia University Supervisor
Mme.Yasmina Khellaf MAA Ghardaia University Examiner

M.Mohamed Zitouni MCB Ghardaia University Examiner

Year 2024/2025



A ally padlal)
ISV iy 50 et Bl il Va3 3615 Tl im0 cblall Sl 3 o831 28Y [l
5 Lok eyl s 8y 3ainll JCEYN ot JolSCH1 g momrsr o Bnid! sl dazel Ll
A pldl e cﬁjy‘ de ol Lo Eods Ol
By ¢S L OV 0 o 08 ol ¢ oS5 ol i s Ml il el
.u‘Y&w‘Y\@s‘}.uKb{v%\.&ﬂ .u,.\,,;w\&&m\wawgcuﬂ\,@&wufmw
VTGSl a3y coSandl o W el i o o el s 05y ST QU1 1 i,

die] g1 Jo OB Gl s GBT i o s K DS Gl s O 1552 e el ol
ikl S e

& i (_g.'ﬂ\ Lo Lu» i L
ol cw.J\ Sl s dace ‘_}: JAKJ\ cLls’- sedd) edl &l3 W.J\ Olodaze ils ) dK«\H s d-luall <L
US- EPREA el o )y gl Ol % csﬂ.\.&\

Abstract in English

Given the fundamental role of integration in measuring distances, there has always been a need
to develop this concept, especially due to the diversity and complexity of shapes in the real world.
Geometers have historically sought to extend integration to more complex geometric objects.

The first major obstacle arose when Riemann and Lebesgue integrals failed to apply on non-flat
surfaces. This prompted the intervention of differential geometers, most notably George Stokes, who
formulated the famous Stokes's theorema partial resolution connecting integration over a manifold
with its boundary.

However, this did not fully solve the issue. Therefore, Alexey V. Potepun approached the problem
differently by modifying the foundations of integration on manifolds, adapting it to the framework of
locally-finite variation. This was a major challenge, but it allowed for powerful new generalizations
of the integral.

Let us now explore what exactly happened.

Keywords : Differential Forms, Manifolds with Locally-Finite Variations, Integration on Manifolds,
Geometric Measure Theory, Topological Degree Theory, Locally-Finite Variation.

Résumé en Francais

Etant donné I'importance du concept d'intégration dans le calcul des distances, il est toujours néces-
saire de développer cette notion, surtout a cause de la diversité et de la complexité des formes dans
la vie réelle. Les géometres ont donc travaillé a généraliser I'intégrale aux objets géométriques plus
complexes.

Le premier probléme est apparu lorsque les intégrales de Riemann et de Lebesgue ont montré leurs
limites sur des surfaces non planes. Cela a conduit a I’intervention des géomeétres différentiels, no-
tamment George Stokes, qui a formulé le célebre théoréme de Stokes, apportant une solution partielle
au probleme.

Cependant, ce n’était pas une solution compléte. Ainsi, Alexey V. Potepun a emprunté une autre
voie en modifiant les régles d’intégration sur les variétés, en les adaptant au cadre de la variation
localement finie. Ce fut un défi majeur, mais ses travaux ont ouvert la voie a de nouvelles extensions
puissantes de 1’intégrale.

Découvrons ensemble ce qui s’est passé !

Mots-clés : Formes différentielles, Variétés a variation localement finie, Intégration sur les variétés,
Théorie de la mesure géométrique, Degré topologique, Variation localement finie.
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Introduction

The classical theory of integration of differential forms is well-established for smooth manifolds,
where integration is defined using local parametrizations and partitions of unity. This theory can be
extended to piecewise-smooth manifolds and even to rectifiable curves in one dimension. However,
when moving beyond one dimension or relaxing smoothness conditions, traditional approaches such
as the use of currents or Lipschitz parametrizations may fail to provide a robust integration framework.

This work introduces a novel class of geometric objects: n-dimensional manifolds embedded in
R™ with locally-finite variations . These manifolds are not necessarily smooth or Lipschitz-regular,
but they support a vector-valued measure that encodes both orientation and geometry. This measure
allows for the definition of an integral of differential forms in a way that retains key properties of the
Lebesgue integral including countable additivity, measurability of forms, and convergence theorems.

A crucial feature of this approach is that it goes beyond the class of rectifiable manifolds. While
every one-dimensional manifold with locally-finite variation corresponds to a rectifiable curve (and
hence admits a natural parametrization), in higher dimensions there exist manifolds with locally-finite
variation that do not admit Lipschitz parametrizations . Thus, these objects lie outside the scope of
classical geometric measure theory and the theory of rectifiable currents.

The main result of the first part of the thesis establishes that every continuous differential form is
integrable over any compact subset of an orientable manifold with locally-finite variations , and that
the integral is finite. This confirms that such manifolds represent a broad and natural class for which
a well-behaved integration theory exists.

The author conjectures that manifolds with locally-finite variation form the most general class
of manifolds for which integration of differential forms can be consistently defined while preserving
essential analytical properties such as limit theorems and the integrability of continuous forms.



Preliminaries

The references for this chapter are [25, 45, 14, 42, 33, 50, 36, 41.]

1.0.1 o-algebra

Definition 1.0.1 (Algebra). Let ) be a non-empty set. An algebra (or field) of subsets of ) is a
collection F C P(Q2) such that:

1. Qe F,
2. If A€ F, then A° € F  (closed under complementation),

3. IfA,Be F,then AUB € F (closed under finite unions).

Definition 1.0.2 (o-Algebra). Let §2 be a non-empty set. A o-algebra (or o-field) of subsets of () is a
collection F C P(Q2) such that:

1. Qe F,
2. If A€ F, then A° € F  (closed under complementation),
3 IfA, Ay As, - € F thenJ;Z | A; € F (closed under countable unions).

Remark 1.0.1. Every o-algebra is an algebra, but not every algebra is a o-algebra. The main dis-
tinction lies in the closure property:

- An algebra is closed only under finite unions.

- A o-algebra is closed under countable unions, making it suitable for defining measures and
probabilities on infinite sample spaces.

Theorem 1.0.1. Fubini's theorem
Let (X, A, u) and (Y, B,v) be o-finite measure spaces, and let

FiXXY SR

be a measurable function such that

/X 1l v)(a.g) < o

Then, the iterated integrals exist and satisfy

[ e = [ ([ enaw)aew = [ ([ e ) oo,

7
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Intuition: This theorem allows you to compute the integral over the product space X X Y by
iteratively integrating with respect to each variable. The main requirement is that the function f is
absolutely integrable with respect to the product measure |1 X v.

Definition 1.0.3. Equivalence Class: Let ~ be an equivalence relation on a set A. For any element
a € A, the equivalence class of a is defined as:

a] ={x € A|x~a}
That is, the set of all elements in A that are related to a under ~.
A relation R on a set A is reflexive if:
Yae A, aRa

That is, every element is related to itself.

A relation R on a set A is symmetric if:
VYa,be A, aRb —= bRa

This means if a is related to b, then b is also related to a.

A relation R on a set A is transitive if:
Va,b,ce A, (aRbandbRc¢) = aRc

This means if « is related to b, and b is related to ¢, then a must be related to c.

Partition of unity:

In order to generalize the notion of integration to n-forms on an arbitrary manifold M, we will need
the concept of a partition of unity.

Definition 1.0.4. Let G be open subset of R". The pre image of a point y € R" under the function
f: G — R™ is the set of all points x € G such that f(z) =y

[Tily)={zeCG | f(x)=uy}

Definition 1.0.5. Let the subset E C G . We take the pre-image of y under [ and then intesection it
with the subset F we get :

flnE={zeE | flx)=y}
Definition 1.0.6. The diameter of a subset A C R" is defined as

diam(A) = sup p(x,y) where p the metric distance in R"
T,yeA

Definition 1.0.7. Summable function
A measurable function g : Q0 — R where (2, A, p) is a measure space is said to be summable if
the Lebesgue integral of the absolute value of g exists and is finite:

/ lg| dp < +o0.
0

An alternative way of expressing this condition is to assert that g € L'(Q).

Remark 1.0.2. Note that some authors distinguish between integrable and summable: an integrable
function is one for which the above integral exists, a summable function is one for which the integral
exists and is finite. see([42])



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

1.0.2 Continuity theorem (Paul Lévy)

Characteristic functions and weak convergence

Definition 1.0.8. The characteristic function of a random variable X is defined by:

p(t) =E(e")

iXn) this let's break down what each part means:

Understanding the expression E(e

* E : is the expected value (or average) of a random quantity. It tells us what value we would
expect to see “‘on average' if we observed the random variable many times.

* ¢ The base of the natural logarithm , used here in an exponential function.
s i : The imaginary unit, defined by i* = —1. It appears in complex numbers.
* t: A real number parameter (can be any real value). It's the input to the characteristic function.

* X, : A random variable, typically one element in a sequence X1, Xo, .. ..It might represent the
result of an experiment that changes each time.

» This is a complex exponential expression. Using Euler’s formula:

e = cos(tX,) +isin(tX,)

itXn

So, e is a complex number that lies on the unit circle and depends on the value of t X,,.

It uniquely determines the distribution of X. That is, two random variables with the same char-
acteristic function have the same distribution.

Proposition 1.0.1. Let X = (X1, Xs,...,Xy) be a random vector in Re. Then its characteristic
function is:

o(t) =E(e"*) =E (ei Ziﬂth’“) fort=(ti,...,ty) € R
This function also uniquely determines the joint distribution of X.

Proposition 1.0.2 (Cramér-Wold device). To determine the distribution of a random vector X, it
suffices to know the distributions of all linear combinations:

a1 X1+ -+ agXy foralla e R4,
Hence, the characteristic function ¢(t) for all t € R determines the distribution of X.

Theorem 1.0.2 (Continuity theorem (Paul Lévy)). Let (X,,) be a sequence of real-valued random

variables. Suppose: '
E(e™n) — o(t) forallt € R

Then the following are equivalent:

1. (X,) is tight, i.e.,
lim sup P(|X,| > z) =0.

T—00 g

The symbol P stands for the probability measure. It is shorthand for:

The probability that the random variable | X,,| exceeds the value .
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Mathematically, this is written as.
P(|X,| > z)

2. Weak convergence: X, 4 x for some random variable X € R™.

3. is a characteristic function of some X € R", i.e.,
p(t) = E(e").

4. is a continuous function of t.

5. @ is continuous at t = Q.

If all the conditions (1)-(5) hold, then X, 4, X for X asin (3).
For more details, see ([14, 41])

Whitneys approximation theorem

For any continuous function f defined on smooth manifold M , there exists , for any € > 0 such that

sup |f(z) —g(z)| <e forallp e M.
xeM

This theorem guarantees that continous function can be approximated arbitrarily closely by differen-
tiable function

Topological reminder

As it is well known, the continuity of a map can be characterised by the concept of open sets. A map
¢ is continuous if and only if the preimage ¢~ !(G) is open for each open subset G. A map ¢ on a
manifold maps to R™. There, the usual notion of distance defines what the open subsets are. In this
section we will choose the open subsets of a manifold so that the maps are continuous.

Definition 1.0.9. A4 topological space [M, G| is a set M together with a collection G of open subsets
of M such that:

(Gl) M,Deg,

(G2) For {G,;} C G, we have|J,G; € G,

(G3) For Gy,...,G,, € G, wehave GiN--- NG, €G.

The collection G is called a topology, and its members are called open sets.
The concept of topology enables one to define the notion of convergence:

* A sequence of elements Py, P, ... in a topological space M converges to an element P € M
if for each G € G such that P € G, there exists an index m such that for every natural number
m > mg, P, € G.

The uniqueness of the limit is enforced by a so-called separation axiom:

10
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Definition 1.0.10. A4 topological space [M,G] is called a Hausdorff space if for every two distinct
P,Q € M, there exist open sets G, H € G such that P € G and Q) € H with G\ H = ().

* For two different limiting values P and () of the same sequence in a Hausdorff space, we could
choose disjoint open sets G and H with P € GG and (Q € H, and then for large m, all P,, would
have to lie in both G and H, a contradiction, since G N H = ().

* An atlas creates a topology on the base set M with the goal of making the maps homeomor-
phisms, that is, they must be continuous in both directions.

Definition 1.0.11. 4 subset G of a set M equipped with an atlas is called open if for each chart (U, @),
the subset
o(UNG)={p(P): PcUANPEeG}

of R™ is open.

Definition 1.0.12. Let M, N be two topological spaces. A continuous map f : M — N is a homeo-
morphism if, in addition, it is invertible and its inverse f~' : N — M is also continuous.

Definition 1.0.13. A map f from an open set U C R" into an open set V C R" is a diffeomorphism

* f is bijective,
* f is differentiable on U,
 f~Vis differentiable on V.

Remark 1.0.3. A map f is called a diffeomorphism of class C*, k > 0, if f is differentiable of class
C*, and there exists g : V C R" — U C R", differentiable of class C*, such that g o f = Idgn and
fog=1Idgn. Wewrite g= 1. In the case k = 0, we say that [ is a homeomorphism.

Definition 1.0.14. An immersion of class C* from an open set U C R" to R" is amap f : U — R",
such that for all p € U, its differential at p, D f,, is injective.

A submersion of class C* from an open set U C R" to R" isamap f : U — R" of class C*, such
that for all p € U, its differential at p, D f,, is surjective.

Theorem 1.0.3 ( Local inversion theorem). Let f be a map from an open set U of R™ into an open
set V of R" of class C*, k > 1, and let a € U such that df, is invertible. Then there exists a
neighborhood U, of a in U and a neighborhood V) of f(a) in V such that the restriction of f to U,
is a C*-diffeomorphism from U, to Vy(,).

Definition 1.0.15 (Local chart). 4 topological space M that is Hausdorff and separable is a topolog-
ical manifold of dimension n if for every p € M, there exists an open neighborhood U of p, an open
set V. C R", and amap ¢ : U — V that is a homeomorphism. The pair (U, ) is called a local chart
of M at the point p. For every p € U, the coordinates of ¢(p) in R" are the coordinates of p in the
chart (U, o).

Definition 1.0.16 (Atlas). Let M be a topological manifold and A = {(Uy, pa)}acr be a family of
local charts of M. We say that A is an atlas of M if M = ., Ua.

Definition 1.0.17 ( Change of chart maps). Let now A = {(U,, ¥a)}ac be an atlas of M, and
(Uas 0a), (Us, pg) two charts such that U, N Ug # 0. The maps

Qop = pp o 90;1 f9a(Ua N UB) — ¢p(Us NUp)

are called transition maps or change of chart maps.

11
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Figure 1.1: The chart transition homeomorphism

Definition 1.0.18. Let M be a topological manifold and A = {(Uy, ¢a) }acr an atlas of M. We say
that A is of class C*, 1 < k < oo, if for all o and 3 in I, the change of chart maps

Dap = s 0 ¢q
are diffeomorphisms of class C* from p, (U, N Ug) onto pz(Uy N Up).

Definition 1.0.19. Let M be a topological manifold and let A,, As be two atlases of class C* on M.
We say that A,, Ay are C*-compatible if A, U A, is still an atlas of class C* on M.

Remark 1.0.4. The relation of C*-compatibility is an equivalence relation on the set of class C*
atlases on M. The union of all atlases in the same equivalence class is called a saturated (or complete)
Ck-atlas. Every class C* atlas on M is therefore contained in a unique saturated C*-atlas.

Definition 1.0.20 (Differentiable maps between manifolds). Let M and N be two manifolds of di-
mensions m and n respectively, and let f : M — N be a map. We say that f is of class C* on M,
with k > 1, if for every point p € M, every chart (U, @) of M at the point p, and every chart (V1)
of N at the point f(p) such that f(U) C V, the map

vofoyp™ip(U) = (V)

is of class C*.

The map [ is a submersion if 1 o f o ¢~ is a submersion from (M) into 1)(N). Since the chart
transition maps are of class C*, the map f is of class C* on M if and only if; for every point p € M,
there exists a chart (U, p) of M at p, and a chart (V,v) of N at f(p) such that f(U) C V, and

Yo fopipU)—=y(V)

is of class C*.
In particular, if N = R, endowed with its natural structure as a C*-manifold, then f : M — R is
of class C*.

12



Multilinear forms

The references for this chapter are [25, 31, 12, 18, 5.]

2.1 Symmetric group .5,

Definition 2.1.1 (Symmetric group S,,). Let n € N*, we denote by S,, the set of bijections from the
set A, = {1,...,n} toitself. S, is a finite set with cardinality card(S,)) = n!. The elements of S,
are called permutations. An element o € S,, is represented by the matrix

- 1 2 ... n
7= \e(1) #2) ... o)
Sy equipped with the composition of functions o is a non-commutative group.

If o, € Sy, wedenote oy = oo p.

Definition 2.1.2 (Support of a permutation). Let 0 € S,, we call the support of o the set, denoted
supp(c), of elements of A, that are not fixed by o, i.e.

supp(0) = {i € Ay, 0(i) # i}
Two permutations from A,, are not equal if their supports are disjoint.

Definition 2.1.3 (p-cycle). 4 cycle of length p is a permutation o € S,, defined by a subset
{i1, ... iy} C A, such that

{a(il) =gy 0 lipr) =iy, o(iy) = o(iy)
a(j) = J, Vi ¢ {in, .0}

The cycle o is represented by the matrix row (i1, . .., 1i,). Two cycles (i1, ... ,1i,) and (j1,...,J,) are
said to be disjoint if {i1,...,i,} N {Jj1,.... 54} = 0.

Definition 2.1.4 (Transposition). A transposition is a cycle T of length 2 defined by (i, j), i.e.
(i) = j,7(j) =i, and 7(k) = k,Vk ¢ {i, j}.

Remark 2.1.1. If o is a cycle of length p and T is a transposition, then:
l. 0P =0o---00 (ptimes)=1Id.

2. o7l =P L

13
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3.7t =1
Lemma 2.1.1. Every cycle 0 = (iy, ..., i,) can be decomposed into transpositions.
Definition 2.1.5 (Signature of a permutation). The signature of a permutation o € S, is defined by
the formula
. _ (i) —o(j)
sign(o) = H -
1<i<j<n

We denote (o) = sign(o).
Remark 2.1.2. sign(o) = £1.
Theorem 2.1.1. The signature of a p-cycle from {1,... n}is (—1)P~L.
Lemma 2.1.2. Let 0 and . be two permutations, then

sign(op) = sign(o o p) = sign(o)sign(p).
Remark 2.1.3. 1. If7 is a transposition, then sign(T) = —1.

2. If o is a permutation, then sign(c) = (—1)*, where k is the number of transpositions that
decompose o (i.e., 0 = Ty ...Ty).

3. e(Id) = 1.
4. e(c7!) = ¢(0).
Example 2.1.1. Let 0 € S; defined by
(1 2 3 4567
7“\2435176
supp(o) = {1,2,4,5,6,7}
To calculate (o), we have the decomposition into a product of transpositions:
o=(1,2,4,5)(6,7) = (1,2)(2,4)(4,5)(6,7)

e(o) = ()" (-1 = (-1 =1

(12 6 7
7 T\5 1 7 6

Now calculate o1

3 4 5
3 2 4
2.2 Linear k-forms

Definition 2.2.1. Let E be a vector space over K with dimension n. A map w : E — F' is said to be
linear if
Vo, y€ ENVA pe K, wAr 4 py) = Aw(z) + pw(y).

We denote the set of linear maps from E to F' by L(E, F).

Remark 2.2.1. If F' = K, we say that w is a linear form, denoted by
E* = L(E,K).

14



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

Definition 2.2.2. (k-Linear forms) Let E be a vector space over K and k > 1 a natural number. A
map w is called a k-linear form or simply a k-form on E if it is a map

,—_ k
w:Ex.. xE=FE —K
defined by (x1,%2,...,%%) — w(T1,T2,...,Tk)

forall (z1,7,...,21) € E*. It satisfies the following condition:
Y(xy,T,...,71) € B*, YA\ p €K,

WL, o T, AT+ Y, Ty Tk) = AW(T1, o T, T, T 1y - 5 Tk
+ ,LLCU([El, ey =1, Y, Tig1y - - - 7$k)7
i.e., wis linear in each variable.

Example 2.2.1. . The dot product of two vectors in R3:
w(T,y) = 1191 + T2z + T3Y3

2. w(x,y,2) = f(x)f(y)f(z) where f € L(E,K).

Proposition 2.2.1. The k-linear forms on E form a vector subspace of the vector space F(E* K) of
maps from E* to K.
We denote L,(E, K) or Li(F) as the K-vector space of k-linear forms on E.

Definition 2.2.3. (Symmetric k-linear form)

Amap w € Li(E,K) is called symmetric if w(xy, . .., xy) is invariant under the exchange of two
vectors, i.e.,
k
V(z1,29,. .. Tiy ... 2, ... xp) € B,
W1,y ey Ty ooy Ty ey Tp) = (X1, o Ty, Ty oo, Th).

The set of symmetric k-linear forms is denoted by Si.(F,K).

Definition 2.2.4. (Antisymmetric k-linear form) Amap w € Ly (E) is called antisymmetric ifw(zy, . . ., Tk)
changes sign under the exchange of two vectors, i.e.,
k
V(l‘l,l'g,...,ZEi,...,Ij,...,l’k) ekl s
W(T1, ey Ty ooy Ty e, Tp) = —W( X1, ooy Ty, Ty oo, L)

Proposition 2.2.2. (Alternating k-Linear Form)
We say that w is an alternating k-linear form if w is zero on any set of vectors where at least two
vectors are equal.:

Ji#je{l,....n}, =z = wl,...,v,z...,2) =0.

Definition 2.2.5. (Alternating k-Linear Form with Permutation)
A k-linear form w € Ly (F) is said to be alternating if for any x1, . . . , xy, € E and any permutation
NS Sk,
W(To(), - s Tow)) = e(0)w(T1, ..., 28),
where (o) is the signature of the permutation o.
The set of alternating k-linear forms is a vector subspace of L(E,K), denoted by Ai(E,K).

Proposition 2.2.3. Let w € A (E,K). If there is a vector x; such that x; is a linear combination of
other vectors x1, . .., Ty, then
w(zy,...,zx) =0.

15
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2.3 Pulback application

Definition 2.3.1. Let E' and F' be two vector spaces over R. Let u : E — F' be a smooth map C'*°
and w a k-linear form on F.
We define the reciprocal image of w, denoted u*(w), by:

u (W) : B¥ = R,
(1, ..., xx) — " (w)(21,. .., 28) = w(u(zy),. .., u(zg))

Remark 2.3.1. .
u* Ly (F) — Lk(E),

w = u(w)
where w — u*(w) is a linear map, i.e.:
u*(aw + fu') = au*(w) + fu*(w')
where a, B € R and w,w’ € Li(F).
* Let E, F, G be vector spaces over R. If u: EE— F and v : F' — G are two smooth maps, then
(vou)* =u"ov*

and

(vou)" : Li(G) = Li(E),
w Ut (v (w))

Definition 2.3.2. (Antisymmetrization) Let w be a k-linear form. The map A(w) defined by
1
Aw)(z, ... xp) = o D ()W ETaiu(r)); - - s To(uir))
’ o€Sk

The map

wi— A(w)

is called the antisymmetrization of w.

2.4 'Tensor product

Definition 2.4.1. Let E be a vector space over R, w a k-linear form on E, and ' a p-linear form on
E. We define the tensor product w @ W' by:

WwRW B x EP R, (21,...,Tk, Thst, .- yThap) F W(T1, o )W (Thgty oy Thgp)
Proposition 2.4.1. c lfwe Ly(E), ' € Ly(E), thenw @ W € Ly, (E).
* The tensor product is not commutative, i.e. w @ W' # W' ® w.
 In general, if wy € Ly, (E),...,wn € Ly, (E), we define the tensor product as
k1

W@ @t (xd, .2t al ) s w (2l M) (e

with x; € F.

16
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Definition 2.4.2. (Dual space)
Let E be a vector space over R. The set of 1-linear forms is called the dual space of E, denoted
E*or F' ie.:
E* = Ly(F) = L(E;R)

Proposition 2.4.2. If F is of dimension n, then E* is a vector space of dimension n.

Definition 2.4.3. (Dual basis) Let E be a finite-dimensional vector space of dimensionn. If (e1, . . ., e,)

*

is a basis of E, we define a dual basis (e, . .., e’) on E* by the formula:

rn

ez‘(ej>=5i-={1 vi=
0 ifi#]

Proposition 2.4.3. Let E be a finite-dimensional vector space of dimension n.
If (e1, ..., en) is a basis of E, then {e; ® € }1<ij<n i a basis of the vector space of bilinear forms
Lo(E).

From this proposition, we deduce that
dim(Ly(E)) = (dim E)? = n?

Proposition 2.4.4. Let E be a finite-dimensional vector space of dimension n. If (eq,...,e,) is a
basis of E, then
{e5, ® - ® €] h<iiningn

is a basis of the vector space of k-linear forms. From proposition we deduce:
o dim(Ly(F)) = (dim E)* = n*
* Ifwe Ly(E), then

n

n

* * * *

w= Y Wi @ ®e = Y wleg..... el ® @,
11 j

..... ip=1 i1,ip=1

2.5 Exterior product

Definition 2.5.1. Letw € A,(E) and ' € A,(E). The exterior product of w and «', denoted w N\,
is a (p + q)-linear alternating form defined by
|

wAW = <p+Q)'A(w®w')
plg!

1

]Tq! Z 6(0’)&)((1‘0(1), Ce ,[Eg(p)))w,((xg(p+1), e ,xg(p_,_q)))

TESp+q

/
WAW (T, oo Ty Tpi1y - - oy Tpig) =

Proposition 2.5.1. Let wy,ws € A,(E), W), wh € Ay(E), and X € R, then we have:
1. (w1 +wy) AW = wi Aw] + we A wj
2. (Awp) Awp = wi A (Aw)) = dwy A wy

Proposition 2.5.2. Ifw € A,(F) and w' € A,(E) are two linear forms, then w Aw' € Ay(F) and we
have:
wAW =—-w Aw

17
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Proof 2.5.1. We have S, = {id, (1,2)}, thus:
wAW (21, 22)) = w(r))wW' (19) — w(xe)w'(21) = =W A w((21, 22))

Remark 2.5.1. We have:
wAw (21, 1) = det (

&
—~
=

E\
&
-

N———

S
—

8
N
)
<

Proposition 2.5.3. Let w,w',w” € A,(E), then:
(WAW)AW =wA (W AW")

We denote:
WAW AW =wA (W AW")

Definition 2.5.2. Let wy, ... ,w, € Ai(E). We define the exterior product wy N - - - \ wy, by:

(@i A Awp)an, 1) = D e(@)wn(T) A Awp(Tog)

o€Sp
wi(xy) ... wi(xy)
= det :
wp(r1) .. wp(zp)

Remark 2.5.2. Let (ey, ..., e,) be a basis of the vector space E, and (e7, ..., e’) the dual basis of
E*.
Let wy,...,wy, € Ay(E). We have:

1. By the properties of the determinant, if i, j € {1,...,n} such thati # j and w; = w;, then:

wi A Awp =0

2. If p > n, then the system {ef N --- N e;‘p} is linearly dependent, hence:

N Ne =0

Thus, A,(E) = 0.

Proposition 2.5.4. Let E be a finite-dimensional vector space and (e, ..., e,) a basis of E. If
(e, ...,¢€") denotes the dual basis of E*, then:

1 €n
B={ej A+ Nej bicii<o<ip<n
is a basis of the vector space AP(E).
Proposition 2.5.5. Letw,, ... ,wy,wi,...,w, € Li(E), then:
(Wi A Awp) AWy A Awy) = (=1D)PH Wi A= AWl A{wi A= Awp)

Proposition 2.5.6. Ifw is a p-linear form on E, and W' is a q-linear form on E, then w Aw' € APTI(E)
and we have:
wAw = (-1 ANw

18
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2.6 Interior product

Definition 2.6.1. Let x € E. The inner product i, is a map defined by:
iy Lp(E) = L1 (E)

w iy (w)

such that i, (w) is a (p — 1)-linear alternating form given by:

in(w) Ay — A,

w i iy (w) (21, . xp) = w(X, T, Tpg)
Proposition 2.6.1. Letx € E, A € R, and w,w' € A,(E), then:
1 iy (w4 W) =iy(w) +i.(w)
2. i Aw) = Nig(w)
Proposition 2.6.2. If v € E, w,w' € A,(E), then:

(WA Wiy =ig(w) A + (—1)Pw Adg (W)

19



Differential forms

The references for this chapter are [55, 25, 2, 5, 31, 48.]

3.1 Differential forms on R"

Definition 3.1.1. Let U be an open subset of R". A differential form of degree p on U (or simply a
p-differential form) is any map

w:U — A,(R")
T w,

« If{e1,...,e,} denotes the canonical basis of R" and w is a p-differential form on U C R™,
then we have

w = E Wiy.ip€s, Nt A e;kp
1<i) <-<ip<n
* wherew,. ;, : U — Raredifferentiable functions on U, and {e7, . .., e} } denotes the canonical
dual basis of R".

» For all x € U,after Proprety we have:

we = w(x) = Z Wiy, (T)EG; N Aep

1< < <ip<n
Definition 3.1.2. Letw =}, ..; <, Wiy, €, N A€ be a p-differential form on R".

1. wis said to be continuous if the functions w;, . ;, : U — R are continuous for
1<y <o <, <n.

2. w is said to be differentiable of class C* if the functions Wiy..i, - U — R are differentiable of
class CF for1 <i; < --- <1, <n.

Proposition 3.1.1. Let U C R" be an open set, w; = Zl§i1<---<ip§n w}lmipe;*l N Nejy,
Wo = Zl<i1<---<'ip<n w?l_”ipe;*l N -+ N e two p-differential forms of class C*on U,
and

— . . * PP * ~(l1 ] .
w= Z1§j1<-..<qun wij..j,€5, N\ A €. a g-differential form on U, then.

20



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

1. wi+wy = Zl<i1<m<ip<n(w}1_._ip +wi i )en A Aep s a p-differential form of class C* on
U. - -

2. w1 Aw is a (p + q)-differential form of class C* on U, where

_ 1 * * * *
w ANw = E E Wiy iy Wit Ciy VANRERIVA €, VAN €j, VANRIERIAN €,

1<y <-<ip<n 1<j1 < <jg<n

Definition 3.1.3. Let U be an open set of R". If we denote by Q’;(U ) the set of p-differential forms of
class C* on U,

C*(U) denotes the ring of real functions of class C* on U.

C°(U) denotes the ring of continuous real functions on U.

3.2 Characterization of differential forms
Leti € {1,...,n} and P; the i-th projection defined by

P :R" R,
r=(21,...,2T,) = ;

Then dP; is a I-differential form of class C* denoted dx;,

dr; - R" — Al(Rn)7
r— dP|, =€}

If w is a I-differential form on an open set U C R", then w is written as

n
w = E w;dx;
i=1

For xz € U, we have

w(z) = Zwl(:z:)dxl

Example 3.2.1. 1. Ifn = 2, then every I-differential form w on an open set U C R? can be written
in the form

w = widr + wody

where wy, wsy are functions on U.

2. w = ydx + xdy is a I-differential form on R?.
In general, if w is a p-differential form, then w is written in the form:

W= Z Wiy.iydTiy N+ Ndg,

1<i1 <-<ip<n

Remark 3.2.1. For the following, we write dx;, . ..dx;, instead of dx;, N\---Ndx;,. Thus, the formula
is written

W = E wil.,_ipdxil e dl’l‘p

1<i1 < <ip<n
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Theorem 3.2.1. If j € {iy,..., iy}, then
dl’il ...dxj...dxip =0
Example 3.2.2. If U is an open set of R?, then:

1 ok

Definition 3.2.1. Let U be an open set of R". The n-differential form

w= fdxy N--- Ndzx,

where f is a non-vanishing differentiable real function, is called the volume form on U.

3.3 Exterior derivative

Definition 3.3.1. Let U be an open set of R™ and w a p-differential form of class C* on U (1 < k).
The exterior derivative of w is the (p + 1)-differential form.

* dw defined by:

d:QU) = (U); we dw

dw = Z dwil..,ip dwh s dxip

1< <--<ip<n

Remark 3.3.1.
Owi, i,
dw = E E a;] dl’jdl’il Ce dl'ip

1<iy < <ip<n j=1
d(dw;, ...dz;,) =0
Example 3.3.1. Let U be an open set in R3, we have:
1. df = de + SLdy + 8Ld-

d(fdw + gdy + hdz) = Gidady + Sededz + G dyde + Sedydz + GLdzdr + GLdz=dy

(909 Of oh Of oh g
= (833 8y> dzdy + (03: az)dmdz+ (8y ER )d dz

d(fdxdy + gdxdz + hdydz) = (% — g—z + %) dxdydz

4. IfweQ(U) (p > 3), then dw =0
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Proposition 3.3.1. Let U be an open set in R", and let wy € QF(U) and wy € QL (U), then:

d(wi Awy) = dwy Awy + (—1)Pwy A dwy
Lemma 3.3.1. Let U be an open set in R" and f € C*(U) (k > 2), then:
d(df) = 0
Lemma 3.3.2. Let U be an open set in R" and f € C*(U) (k > 2), then:
d (d(fdx,, ... dz;,)) =0
Theorem 3.3.1. Let U be an open set in R" and w € QF(U) (k > 2), then:
d(dw) =0

Definition 3.3.2. Let U be an open set in R". A p-differential form w € Q’;(U) (k > 2) is said to be
closed if
dw =0

Proposition 3.3.2. Let U be an open set in R". A 1-form w is closed if and only if

Owi _ Ow;

a&:i N 8@»

Vi, j

3.4 Exact differential forms

Definition 3.4.1. Let U be an open set in R", w € Q’;;%(U) (k>1),andG € QE(U) (k > 2). wis
said to be a exact if

dw = w.
Proposition 3.4.1. Every exact differential form is a closed differential form.

Example 3.4.1. 1. Let the I-differential form on R* \ {0}

_ xdr + ydy
o x2+y2
We have:
d 2L de 4 ——2 Y gy = 0
w=-—"_dydr + ———=—dzdy =
@+ T @

w:d<ln\/W)

Thus, w is an exact 1-differential form on R? \ {0}.
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2. Let the I-differential form on R* \ {0}

ydr — xdy
W= —"F""F—"
2 + y?
We have:
1:2 _ y2 2 xQ

w is closed, locally exact, but it is not exact.

3.5 Interior derivative of a differential form

Definition 3.5.1. Let U be an open subset of R", X € x(U), and w € Q¥(U). We define the function
w(X) on U by:

Vp e U :w(X)(r) = w.(X,)
orw, € Ly(R™). If

; 0
X = zi:X a—xi, w= Zi:w,-dxi
then
CU(X) = ZXlW'L
The function w(X) is called the interior derivative of w by X, denoted as:
ix(w)
Lemma 3.5.1. Ifw € Q¥(U), then
w: x(U) = C*(U) = Q(U),
X — w(X)
is a C*(U)-linear application, i.e., for all X,Y € x(U) and f € C*(U), we have:
I w(X+Y)=wlX)+wl).
2. w(fX) = fw(X).

Definition 3.5.2. Let U be an open subset of R" and X € x(U). The interior derivative ix is an
application defined by:

ix  QUU) — QF_(U)
w — ix(w)

such that ix (w) is a (¢ — 1)-linear form given by:
in(Xl, PN ,Xq_1> = (,U(X, Xl, PN ,Xq_l)
w(X, X1, ..., Xgo1) (@) = we (X (2), Xq(2),..., Xyma(x), VeelU
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Proposition 3.5.1. Ler X € x(U), w € Q5(U), and oo € Qi(U). Then:

ix(wWAa)=ixwAa+ (—1)pw/\z'Xa

Remark 3.5.1. Let U be an open subset of R" and X = > X' -2 a vector field of class C* on U.
Ifw=dz' A+ Ada™ is a volume form on U, then:

8:p’

:ZXidxl/\---/\dAxi/\---/\da:n

where dx; means that dx' is omitted.

3.6 Pullback of a differential form

Definition 3.6.1. Let U be an open subset of R", V an open subset of R™, and ¢ : U — V a C**!
map (k > 1). We define the pullback of a differential q-form:

P (V) = Qg(U),
w = ¢*(w)
which is defined by:

" (W)a(21,- - - vzq) = (dx¢)*(ww(x))(zla e 7Zq) = wga(a:)(dz@(zl>7 e >dx90(zq))
Jorx € Uand z,. .., z, € R"(see Definition 0.3.1).

Proposition 3.6.1. Let U be an open subset of R, V' an open subset of R™, and W an open subset of
R". Let p: U — Vand ) : V — W be two C*T' maps (k > 1). Then:

1 (Yop) =g oy

@ (w1 + wa) = " (w1) + " (w2).
0" (W) = Ap*(w) for A € R.

¢ (wAa) =¢*(w) Ag*(a).

¢ (f) = fopfor fe CHV).

. Ifk > n, then p*(w) = 0.
Let f € CF(V), w,wi,ws € Q’;(V), and A\ € R, a € Q’;(V).

2
3
4.
5
6.

Proposition 3.6.2. Let U be an open subset of R?, V an open subset of R", and ¢ : U — V a C*
Sunction (p < n). Ifw € Q,(V), then:

" (dw) = de*(w)

Corollary 3.6.1. Let U be an open subset of R", V an open subset of R™, and p : U — V a C*
function (n < m). Ifw € QF(V), then:

¢ (w) = foso(dsol A Ndpy)
f(o(@)) (dpr(x) A~ -+ A dipn())
= " (f(x)) (dpr A -+ N depy,)

where f : U — Ris a C*~! function and x € U.
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Corollary 3.6.2. Let (U, @) be a local chart of M, and let 1, . . ., p, be a C*™ function on U. Then:

i
ﬁxj

d<p1/\--~/\dcpn:det{ }dml/\---/\dxn

Corollary 3.6.3. Let U be an open subset of R", V an open subset of R™, and ¢ : U — V a C*
function (p < min(n,m)). Let w € QF(V), then:

1. Ifwis closed, then o*(w) is closed.

2. Ifwis exact (i.e., w = da), then o*(w) = dp* ().

3.7 Differential forms on a differentiable manifold

Let M be a differentiable manifold of dimension n, we define the application:

II:NTM — M
(pva) =P

as the canonical projection which associates w, € N(T; M) with I1(w,) = p € M.

Definition 3.7.1. (g-Differential form)
A q-differential form of class C*° on M is a application:

w: M — NT*M = A, (T,M)
P w,

of class C'*™° that satisfies 11 o w = Idy,.

Remark 3.7.1. 1. If (U, ) is a local chart of M, then a q-differential form is expressed in this
chart as:

Wp = Z Jiroigdxsy N Ndx;,

1<y <--<ig<n
where {dxs, A -+ N dxi, }1<iy<...<ig<n forms the basis of NT; M.

2. A 1-differential form of class C* on M is a application:

w:M—=T"M

which associates to each point p € M:

Wp = Z fi(p)dz;
i=1

.....

£, € C=(M).
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Theorem 3.7.1. Let M be a differentiable manifold. For any q € N, there exists an exterior differen-
tiation operator:

d:QUM) — QI (M)
such that:
1. Forq=0,d: C>® — Q' is the usual differential of functions.

2. Forallw e Q4(M):

dw(Xo, ..., Xg) =Y (—1)'X; w(Xo,..., Xi,..., X,)

=1

D DMK XL X XL X)

i<j

where )?Z means omitting X;.
3. Forw € QI(M), we have d(dw) = 0.
4. Forw, € QM) and wy € Q7 (M):

d(w1 A CUQ) = dw1 N wo + (—1)qw1 N du)g

ee
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Manifolds and tensor fields

The references for this chapter are [55], [7], [25] .

Let M be a topological space. We assume that M satisfies the Hausdorff separation axian which
states that any two different points in M can be separated by disjoint open sets. An open chart on M
is a pair (U, ¢) where U is an open subset of M and ¢ is a homeomorphism of U onto an open subset
of R™, where R" is an n-dimensional Euclidean space.

4.1 Definition of manifolds

Definition 4.1.1. Let M be a Hausdorff space. A differentiable structure on M of dimension n is
a collection of open charts (U;, ;)icn on M where ¢;(U;) is an open subset of R"™, such that the
following conditions are satisfied:

]. M = UiGA U,L

2. For each pairi,j € A, the mapping ¢; o ¢; ' : ¢;(U; NU;) — ¢;(U; NU,) is a differentiable
mapping.

3. The collection (U;, ¢;)ica is a maximal family of open charts for which conditions [l and [ hold.

4.2 Local coordinate system

Definition 4.2.1. 4 differentiable manifold (or C'*°-manifold, or simply a manifold) of dimension n is
a Hausdorff space with a differentiable structure of dimension n.

* If M is a manifold, a local coordinate system (or local chart) on M is by definition a pair

(¢, Us).

e Ifpisapoint in U; and ¢;(p) = (z'(p), ..., 2" (p)), then Uj is called a coordinate neighborhood
of p, and the numbers x;(p) are called local coordinates of p.

The mapping ¢; : q + (2'(q),...,2"(q)), q € U; is often denoted by {z*, ... a"}.
* We notice that the condition 3 is not essential in the definition of a manifold.

« In fact, if only [l and [} are satisfied, the structure is still well-defined.
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4.3 Differentiable curve

Definition 4.3.1. By a differentiable curve in a manifold M, it shall mean a differentiable mapping
of a interval [a,b] of R into M.
We shall now define a tangent vector (or singly a vector) at a point p of M.

4.3.1 First definition: Tangent to a curve

Consider now a differentiable manifold M and a point p of M of class C*. We are interested in
differentiable curves in M that pass through p.:
c:|—ee]l->M
tec(t), c(0)=p

Definition 4.3.2. Two curves ¢, and cy are tangent at point p if ¢1(0) = c2(0) = p and there exists a
local chart (U, @) such that p € U and

Lpoe)0) = L(poe)(0)

This defines an equivalence relation (i.e., a relation that is transitive, symmetric, and reflexive) on
the set of curves passing through p: ci ~ co if they are tangent at p.

4.3.2 Second definition: Derivation

Definition 4.3.3. A4 tangent vector to M at p is an equivalence class of curves tangent at p.
The tangent space to M at p, denoted T,,M, is the set of tangent vectors to M at p.

Definition 4.3.4. Let U C M be an open subset such that p € U. We define the set :

C®(p)={f:U—=R, feC®|f=g<«< 3V, € V(p) suchthat f(x) = g(z), Vx € V, C U}

That is, we consider the set of real-valued C* functions defined on open subsets of M containing
a neighborhood of p, and we identify functions that are equal on some neighborhood of p. The set is
denoted by C*(p).

Definition 4.3.5. Let C*(p) be the algebra of differentiable functions defined in a neighborhood of p.
Let c(t) (a <t < b) be a curve such that c(ty) =: p.
The vector tangent to the curve c(t) at p is a mapping: D, :C>®(p) — R defined by

Dy = (df (c(t))/dt)s,

In other words, D, f is the derivative of C*°(p) in the direction of the curve c(t) att = t,. The vector
X satisfies the following conditions:

1. D, is a linear mapping of C*(p) into R;

2. Dp(fg) = (Dpf)g(p) + f(p)(Dypg) for f,g € C®(p).

3. If f is constant, then D,(f) = 0.

The set of all derivations at p is called the tangent space of M at p, denoted T,,M. By definition,
a tangent vector to M at p is an element of 'T),M.
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The set of mappings D,, of C*>(p) into R satisfying the preceding two conditions forms a real vector
space.

Let x', ... a"™ be local conditions in a coordinate neighborhood U of p .

For each i, (8/8xi)p is a mapping of C*(p) into R which satisfies [l and . Given any curve c(t) with
p = c(ty), let z°* = c'(t),i = 1,...,n, be its equations in terms of the local coordinates x', ... z",
Then

(df (c(t) /)y = Dy (0f/0x"), (de'(t)/dt),,

i

.., (0/0x™) . Con-

which proves that every vector at p is a linear combination of (0/0z") »

. . P’
versely, given a linear combination ), ¢ (0/0x") p, consider the curve defined by

o' =a'(p)+ &, i=1,...,n

4.4 The vector tangent

Definition 4.4.1. Then the vector tangent to this curve at t = 0 is X:§' (9/0z") .

If we assume X' (0/0x") p = 0, then 0 = X&' (027 /0x"), = & for j = 1,...,n.

Therefore, (0/0x'),,...,(0/dx™), are linearly independent and hence these form a basis of the set
of vectors at p.

4.5 Tangent and cotangent spaces

Definition 4.5.1. The set of tangent voctors at p denoted by T,(M), is called the tangent space of M

at p.
The n-tuple of numbers ', . .. " are components of the vectors > &' (8/8mi)p with respect the local

coordinates z', ... x"

We notice that oe a C* differentiable manifold it the tangent space T,(M) coincides with the
space of D,, : C*(p) — R satisfying the conditions |l and B above.

4.6 Tangent bundle

Definition 4.6.1. Let M be a manifold of dimension n. The tangent bundle of M, denoted T'M, is the
union of the tangent spaces T,M for allp € M:

T™ = | J T,M

peEM

4.7 Vector field

Definition 4.7.1. 4 vector field X on a manifold M is anassignment of a vector X, to each point p of
M. If f is a differentiable function on M, then X f is a function on M defined by

(X)) = Xpf.
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A vector field X is said to be differentlable if X f is differentiable for every differentiable function f.
In terms of local coordinates ', . .. x", X may be expressed by

X=> ¢ (0/0x")

where &' are functions defined in the coordinate neighborhood, called components of X with respect
toxt, ..., 2" X is differentiable if and only if its components & are differentiable.

Definition 4.7.2. Let M be a differentiable manifold. A vector field of class C* on M is a mapping

X:M—TM
p = (p, Xp)
* of class C* that assigns to each point p of M a tangent vector X,, to M at point p.
Where :
& 0
Xp = Z fk(p)%
k=1

* wherep = (z1,...,2,), and {a%k}k:l , s the basis of T),M, with functions

-----

fr€C*(M)and fr, : M — R.
* The set of vector fields of class C* on M is denoted by X (M).
Definition 4.7.3. The canonical projection on T'M is the projection

Im:T™M —- M

(p, Xp) = p
such that X oIl = Idy,.

Remark 4.7.1. A vector field X is of class C* in a local chart (S0, ) if and only if the functions f; of
X in (U, p) are of class C* on U.

4.8 Lie bracket

Definition 4.8.1. If X and Y are vector fields, define the bracket [X,Y| as a mapping from the ring
of functions on M into itself by

(X, Y]f = X(Y[) = Y(X[)
Let X =5 ¢ (0/0x") and Y =1 (0/0x?). Then
(X,)Y]f = Z (& (on')027) — (0€'/027) (8f /0x")) .
1,
This means that [ X,Y] is a vector field with carponents 3, (& (9n'/0x7) — 17 (€' /0x7))
1t =1,...,n. With respect to this bracket operation,

X(M) is a Lie algebra over R. For any vector rields X,Y and Z , we have the Jacobi identity:

[X,Y], 2] + [V, 2. X] + [[Z,X],Y] = 0
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We may also regard X(M) as a module over the algebra F (M) of differentiable functions on M as
follows. If'is is function and X is a vectior field on M, then fX is a vector field on M defined by
(fX) = f(p)X, forpe M. We also have

[fX, Y] = fglX, Y]+ f(Xg)Y —g(Y )X

Lemma 4.8.1. Let X and Y be differentiable vector fields on a differentiable manifold M. Then there
exists a unique vector field Z such that, for all f € D(M),

Zf = (XY - YX)/,

where D(M) is the set of all differentiable functions on M.
The vector field Z given by this lemma is called the bracket of X and Y, noted

[X,Y]=XY - YX.

Proposition 4.8.1. If X, Y, and Z are differentiable vector fields on M, a and b are real numbers,
and f, g are differentiable functions, then:

(a) [X,Y]=—[Y,X]| (anti-commutativity),
(b) [aX +bY,Z) =a[X,Z]+ VY, Z] (linearity),
() [[X.Y,Z|+[[Y.Z],X]|+[[Z,X],Y] =0 (Jacobi identity),

@ [fX,9Y]= fglX, Y]+ fX(9)Y —gY(f)X.

Differential mapping

Let M"™ and N* be differentiable manifolds of dimensions n and k, respectively. Let F' : M — N be
a differentiable map.

Definition 4.8.2 (Pullback). Let g : N — R. The pullback of g by F' is the function:
F*:C*(F(p)) = C*(p), g Frg:=goF
Definition 4.8.3 (Differential). The differential of F' at p € M is the linear map:
dF, : T,M — TppyN, X, — dF,(X))
such that:
dFy(Xp) - g =X, - (F7g), Vg€ C™(F(p))

Theorem 4.8.1. (Composition theorem) If F' : M — N and G : N — W are differentiable maps,
then G o F is differentiable at p € M, and:

d(G o F), = dGp) o dF,

Corollary 4.8.1. If ' : M — N is a diffeomorphism, then dF, is an isomorphism at every point
p € M. The converse is only true locally.
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Theorem 4.8.2. (Local diffeomorphism) A map F : M — N is a local diffeomorphism at p € M if
there exist neighborhoods U C M,V C N such that:

FlU U=V
is a diffeomorphism.
Theorem 4.8.3. (Local inversion theorem) Let ' : M — N be differentiable at p € M, and suppose:
de : TpM — TF(p)N
is an isomorphism. Then F' is a local diffeomorphism at p, and:

d(Fly)™ = (dF,) ™

This provides a key result for defining local coordinates. A chart ¢ : M — R" defines local
coordinates at p if and only if dy, is an isomorphism.

4.9 Cotangent space

Definition 4.9.1. Let M be a manifold of dimension n, p a point in M, and (U, @) a chart of M at p
with associated coordinates (x',... z").

We denote by Ty M the dual space of T,M, and for each i = 1,...,n, we denote by dx'|, the differ-
ential 1-form at pin T3 M, which is def ned by:

; 0
da'l, (@) = 05
p

where 6;; = 1 ifi = j, and 0 otherwise. The family {dz"|,}—1

-----
,,,,,

Definition 4.9.2. The cotangent bundle of M, denoted T M, is defined as the disjoint union of the
cotangent spaces 1) M for allp € M:

M=) ;M

peEM

Theorem 4.9.1. Let M be a differentiable manifold of dimension n. The cotangent bundle T* M has
a natural structure as a differentiable manifold of dimension 2n.

Definition 4.9.3. 4 I-form (or covector) at p € M is a linear form on T,M, i.e., a linear map:

Wp -

.M — R
Xp ’_“*‘)p(Xp)

We denote w,(X,) = (wp, X,), where the bracket denotes the duality pairing.
- The cotangent space to M at p, denoted T7 M, is the vector space of I-forms at p.
- It is the dual vector space of T,,M, i.e., oM = (T,M)*.

Example 4.9.1. 1. The tangent bundle of R" admits a global trivialization: TR"™ ~ R" x R", via
the canonical identification T,R" ~ R".
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2. The tangent bundle of the circle S* admits a global trivialization since it is diffeomorphic to a
cylinder: TS' ~ S* x R. However, the tangent bundle T'S* does not admit a global trivializa-
tion.

Remark 4.9.2. Using differentials of charts, we will extend local coordinate calculations to the tan-
gent space. We start with the case of R".

Case of the tangent space 7, R"

We have the property that T,,R"™ is canonically isomorphic to R", and we can identify it with the set of
partial derivatives at x, i.e.,
Let x € R", the partial derivatives at x are given by the derivations on R":

0
oz’ |,
Among all directional derivatives at x, these partial derivatives form a basis, which is also a basis

of the tangent space T, R", called the canonical basis or the natural basis. Thus, any tangent vector
vy € T,R™ can be written as:

Jg
o ().

R T

xT

vy = vt —

ox!

oxm

xT

Remark 4.9.3. This vector is also the equivalence class of curves c(t) passing through x such that
¢= (v ..., v").
Hence, we have the canonical identification T,R" ~ R", given by:

ve = (v ™).

Case of the tangent space 7),\/

In the case of abstract differentiable manifolds, everything is related to local charts and the fact that
chart maps are diffeomorphisms in the domain of the chart.
Let p € M and (U, @) be a chart of M such that p € U (i.e., U is a neighborhood of p). Then:

0:U— oU) CR"”
is a diffeomorphism, hence:
dep : TyM — T, R"
is invertible, and
(dpp) ™ = d(¢™ o) : TomR" = T,M
is an isomorphism.

Furthermore, if we let v = p(p) € R", then:
0

It

0

,...’_n
" ox

x

is the canonical basis of T,R". We compute the image of this basis under the isomorphism (dp,) ",

which we denote using the same notation:
>, 1=1,...,n.
x

0
oxt

B 0
= d(%p 1)@(19) (%

p

34



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

With these tangent vectors, we construct a basis of T),M called the natural basis associated with

the local coordinates (-
< 8 )
Ox! »

Remark 4.94. If g € C>°(M), then for each i =1, ... ,n, we have:

__8
. g_ﬁxi

0

"'.’_/I’I,
» ox

0 _ 0
5| 9= ew (axi

p

(gopy= 202 ) )

T
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Integration

The references for this chapter are [55, 25, 52, 7].

On a manifold one integrates not functions as in calculus on R™ but differential forms. There are
actually two theories of integration on manifolds, one in which the integration is over a submanifold
and the other in which the integration is over what is called a singular chain. Singular chains allow
one to integrate over an object such as a closed rectangle in R?:

[a,b]x[c,d] = {(z,y) ER*)|a <2 < b,c <y <d}

which is not a submanifold of R? because of its corners For integration over a manifold to be well
defined, the manifold needs to be oriented. We begin the chapter with a discussion of orientations
on a manifold. We then enlarge the category of manifolds to include manifolds with boundary. Our
treatment of integration culminates in Stokes’s theorem for an n-dimensional manifold. Stokes's the-
orem for a surface with boundary in R® was first published as a question in the Smith’s Prize Exam
that Stokes set at the University of Cambridge in 1854. It is not known whether any student solved the
problem. According to the same theorem had appeared four years earlier in a letter of Lord Kelvin to
Stokes, which only goes to confirm that the attribution of credit in mathematics is fraught with pitfalls.
Stokes s theorem for a general manifold resulted from the work of many mathematicians, including
Vito Volterra (1889), Henri Poincare (1899), Edouard Goursat (1917), and Elie Cartan (1899 and
1922). First there were many special cases, then a general statement in terms of coordinates, and
finally a general statement in terms of differential forms. Cartan was the master of differential forms
with excellence, and it was in his work that the differential form version of Stokess theorem found its
clearest expression.

5.1 Orientations on a manifolds

While the definition of an orientation on a manifold as a continuous pointwise orientation is geomet-
rically intuitive, in practice it is easier to manipulate the nowherevanishing top forms that specify a
pointwise orientation. In this section we show that the continuity condition on pointwise orientations
translates to a C* condition on nowhere-vanishing top forms.

If f is a real-valued function on a set M, we use the notation f > 0 to mean that f is everywhere
positive on M.

Lemma 5.1.1. 4 pointwise orientation [( X, ..., X,,)] on a manifold M is continuous if and only if
each point p € M has a coordinate neighborhood (U, z, ... x™) on which the function
(dz' A+ Ada™) (Xq, ..., X,) is everywhere positive.
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Theorem 5.1.1. A manifold M of dimension n is orientable if and only if there exists a C* nowhere-
vanishing n-form on M.

Proposition 5.1.1. Let U and V' be open subsets of R", both with the standard orientation inherited
from R™.

Definition 5.1.1. 4 diffeomorphism F :U — V is orientation-preserving if and only if the Ja-
cobian determinant det[OF" /0x7] is everywhere positive on U.

5.2 Oriented atlas

Using the characterization of an orientation-preserving diffeomorphism by the sign of its Jacobian
determinant, we can describe orientability of manifolds in terms of atlases.

Definition 5.2.1. An atlas on M is said to be oriented if for any two overlapping charts (U, x', ..., x")
and (V,y', ..., y") of the atlas, the Jacobian determinant det[OF"/0x7] is everywhere positive non-null
onUNV.

Theorem 5.2.1. 4 manifold M is orientable if and only if it has an oriented atlas.

Definition 5.2.2. Tivo oriented atlases {(U;, ¢;)} and {(V;,1;)} on a manifold M are said to be equiv-
alent if the transition functions

g0yt i (UiNV;) — i(UiNV;)
have positive Jacobian determinant for all i, j

make Stokes s theorem sign-free.

5.3 Manifolds with boundary
Example of a manifold with boundary is the closed upper half-space
H" = {(z',...,2") € R" | 2" > 0},

with the subspace topology inherited from R".

The points (x',...,2") € H™ with " > 0 are called the interior points of H", and the points
with x™ = 0 are called the boundary points of H™. These two sets are denoted by (H™)° and OH",
respectively.

. _xJi
int(H™)

- I(H")

Figure 5.1: Upper half-space
In the literature, the upper half-space often means the open set
{(z',...,2") € R" | 2" > 0}.
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We require that H" include the boundary in order for it to serve as a model for manifolds with bound-
ary.

If M is a manifold with boundary, then its boundary OM turns out to be a manifold of dimension
one less without boundary.

Moreover, an orientation on M induces an orientation on OM. The choice of the induced ori-
entation on the boundary is a matter of convention, guided by the desire to make Stokes’s theorem
sign-free.

Proposition 5.3.1. Let U and V' be open subsets of the upper half-space H" and F :U —V
a diffeomorphism. Then f maps interior points to interior points and boundary points to boundary
points.

Manifolds with boundary

In the upper half-space H" one may distinguish two kinds of open subsets, depending on whether the
set is disjoint from the boundary or intersects the boundary(Figure 5.J) . Charts on a manifold are
homeomorphic to only the first kind of open sets. A manifold with boundary generalizes the definition

/

Figure 5.2: Two types of open subsets of H"

of a manifold by allowing both kinds of open sets. We say that a topological space M is locally H" if
every point p € M has a neighborhood U homeomorphic to an open subset of H".

Definition 5.3.1. 4 topological n-manifold with boundary is a second countable, Hausdorff topolog-
ical space that is locally H". Let M be a topological n-manifold with boundary.
Forn > 2, a chart on M is defined to be a pair (U, ¢) consisting of an open set U in M and a

homeomorphism
o:U— U)C H"

of U with an open subset p(U) of H".

5.4 The boundary of a manifold with boundary

Let M be a manifold of dimension n with boundary OM. If (U, ) is a chart on M, we denote by

90/ = @\UmaM

the restriction of the coordinate map p to the boundary. Since p maps boundary points to boundary
points,
¢ UNOM — OH" = R" 1.

Moreover, if (U, p) and (V) are two charts on M, then
Yo (P) i UNVNOM) — ' (UNVNOM)
is C*. Thus, an atlas {(U,, pa)} for M induces an atlas
{(Ua 0 OM, palvarom)}
for OM, making OM into a manifold of dimension n — 1 without boundary.
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5.5 Tangent vectors, differential forms, and orientations

Let M be a smooth manifold with boundary and let p € OM. consider two smooth functions:
f:U=>R, ¢g:V—->R

defined on neighborhoods U and V' of p in M. We say that [ and g are equivalent if there exists an
open neighborhood W C U NV of p such that:

flw = glw.

Example 5.5.1. Let H? = {(z,y) € R? | y > 0} denote the upper half-plane, and let

p = (z,0) € H?. Then both:
0 0

dxly Oy

are point derivations on C;°(H?), and thus elements of T,(H?).

p

The tangent space T,(H?) is a 2-dimensional real vector space, visualized as being centered at
the point p.
Since % ‘p is a tangent vector at the boundary, its negative —% ‘p is also a valid tangent vector at p,

even though there is no smooth curve within H? passing through p with initial velocity —8% ,

d |
P

Figure 5.3: A tangent vector at the boundary.

Definition 5.5.1. The cotangent space 1); M at p € M is defined as the dual vector space:
Ty M := Hom(T,M,R),
consisting of all linear functionals from T,,M to R.

Differential k-forms on M are defined as sections of the bundle N*(T* M), the k-th exterior power
of the cotangent bundle. A differential k-form w is said to be smooth if it is a smooth section of this
vector bundle.

Example 5.5.2. On the upper half-plane H?, the differential form:
dz N\ dy

is a smooth 2-form.

Definition 5.5.2. An orientation on an n-manifold M with boundary is a continuous pointwise choice
of orientation of the tangent space T),M at each point p € M. This means choosing a nowhere-
vanishing section of the top exterior power A" (T* M), up to positive scalar multiplication.

Such orientations extend naturally to the boundary and play a crucial role in the formulation of
Stokes's Theorem.
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5.6 Outward-pointing vector fields

Let M be a smooth manifold with boundary, and let p € OM. To understand how orientation behaves
at the boundary particularly in the context of Stokes s Theorem we need to distinguish between inward-
pointing and outward-pointing tangent vectors at boundary points.

A tangent vector X,, € T,,(M) is called inward-pointing if:

* it is not tangent to the boundary, i.e., X, ¢ T,(0M), and

* there exists a smooth curve c : [0, e[— M such that:
c(0)=p, ¢((0,e]) c M°, (0) =X,

meaning that the curve lies in the interior of M for all t > 0, and its initial velocity att = 0 is

X,
Conversely, avector X, is called outward-pointing if — X, is inward-pointing. Thatis, an outward-

pointing vector points away from the interior of M and toward the "outside" of the boundary.

Example 5.6.1. In the upper half-plane H* = {(x,y) € R* | y > 0}, the point p = (x,0) lies on the
boundary (the x-axis). Then:
a% ‘p is inward-pointing,

_g . _ . .
* =3 ‘p is outward-pointing.

More generally, given a local coordinate system (U, (x',... x")) around a point p € OM, a
tangent vector X,, € T,M can be expressed as:

- 0
X, = Z ai(P)%
=1

In this setup, we can identify whether a vector is outward-pointing based on the sign of the component
in the direction normal to the boundary. If the coordinate x" increases in the inward direction (as is
conventional), then a vector is outward-pointing at p if and only if:

a,(p) < 0.
Definition 5.6.1. A vector field along the boundary OM is a smooth assignment:
X :0M — TM,

such that X,, € T,M for eachp € OM. Unlike a vector field on OM, this one is valued in the ambient
manifold's tangent bundle , that is, it allows components normal to the boundary.

p

Definition 5.6.2. A vector field X along OM is said to be smooth at p € OM if there is a coordinate
chart around p such that all coefficients a; of the expression

- 0
Xq = Z ai(‘])%
=1

are smooth functions of ¢ € OM. The field is called smooth if it is smooth at every point of the
boundary.

q

Proposition 5.6.1. Every smooth manifold M with boundary admits a smooth outward-pointing vector
field along OM.

Such vector fields are crucial in defining a consistent boundary orientation and play a key role in
expressing and proving Stokes s Theorem without sign ambiguity. Intuitively, they provide a "direc-
tion" for the boundary to face outward, helping to relate integrals over the boundary to those over the
interior.
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The references for this chapter are [25, 52.]

Theorem 6.0.1. (Lebesgue's theorem)
A bounded function f : A — R on a bounded subset A C R"™ is Riemann integrable if and only if the
set Disc(f) of discontinuities of the extended function f has measure zero.

Proposition 6.0.1. If a continuous function f : U — R defined on an open subset U of R™ has
compact support, then f is Riemann integrable on U.

6.1 The integral of an n-form on R"

Once a set of coordinates x', ..., x" has been fixed on R", n-forms on R" can be identified with
functions on R", since every n-form on R™ can be written as

w=fdx' N--- Adx"

for a unique function f(x) on R™. In this way, the theory of Riemann integration of functions on R"
carries over to n-forms on R".

Definition 6.1.1. Let w = f(z)dz' A --- A dz™ be a smooth n-form on an open subset U C R",
with standard coordinates x', . .., x". Its integral over a subset A C U is defined to be the Riemann

integral of f(x):
/w:/f(x)d:cl e da”,
A A
if the Riemann integral exists.

If the n-form is written in the order dx' A - - - A dz", to integrate, for example, T = f(x) dxy A dzy
over A C R?, we would write

/AT:—/Af(a:)darl/\deZ—/Af(iﬂ)dxldxz'

6.2 Transformation of n-forms under change of variables

LetT :V C R" — U C R" be a diffeomorphism. Let z', ... x" be the standard coordinates on U,
andy*, ..., y" the standard coordinates on V. Then T" := x' o T is the i-th component of T. Denote

by J(T') the Jacobian matrix [g]

oyl
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dTl/\---/\dT":det(J(T))dyl/\---/\dy”.
Hence:
/T*w:/(T*f)T*(dxl/\---/\dx”)
v v

:/(foT)dTl/\---/\dT” (because T"d = dT™)
v (6.1)

:/(foT) det(JT) dy" A--- A dy”
v

:/V(foT) det(JT)dy*-- - dy™.

On the other hand, the change-of-variables formula from advanced calculus gives:

/Uw:/dexl ---d:v":/v(foT)|det(J(T))|dy1---dy”.

Therefore, the relationship between the integrals is:

/T*w:j:/w,
v U

depending on the sign of the Jacobian determinant det(J(T)).
A diffeomorphism T is orientation-preserving if and only if det(J(T)) is positive everywhere on V.

Definition 6.2.1. The support of a differential form w on M is the closure of the set of points x € M
Sfor which w, # 0in N(TM).

We denote by Q).(M) the subalgebra of (M) consisting of differential forms with compact sup-
port.

supp(w) = {z € M | w, # 0}

6.3 Integral of a differential form over a manifold

Integration of an n-form over R"™ is not so different from integration of a function. The integration
over a manifold has several distinguishing features:

» The manifold must be oriented (in fact, R" has a standard orientation).
* On a manifold of dimension n, one can integrate only n-forms, not functions.

* The n-forms must have compact support.

Let M be an oriented manifold of dimension n, with an oriented atlas {(U,, p.)} giving the ori-
entation of M. Denote by QF(M) the vector space of smooth k-forms with compact support on M.

If w € QXU) is an n-form with compact support on U, then because ¢ : U — ¢(U) is a
diffeomorphism, (p~1)*w is an n-form with compact support on the open subset p(U) C R™ We

define the integral of w on U to be
/ W= / (o™ *w.
U (U)

42



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

If (U, ) is another chart in the oriented atlas with the same U,
then p o' : p(U) — ¢(U) is an orientation-preserving diffeomorphism. Thus,

[0 e /w L

proving that the integral on a chart U is well-defined, independent of the choice of coordinates.
Finally, the integral of w over M is defined by using a partition of unity {p,} subordinate to the

open cover {U,}. The integral is:
w = Paw.

Proposition 6.3.1. Let w be an n-form with compact support on an oriented manifold M of dimension
n. If —M denotes the same manifold but with the opposite orientation, then:

[

Thus, reversing the orientation of M reverses the sign of an integral over M.

Definition 6.3.1. A parametrized set in an oriented n-manifold M is a subset A together with a C*
map F : D — M from a compact domain of integration D C R™ to M such that A = F (D) and F
restricts to an orientation-preserving diffeomorphism from int(D) to F (int(D)). Note that by smooth
invariance of domain for manifolds (Remark 22.5), F(int(D)) is an open subset of M. The C* map
F : D — Ais called a parametrization of A.

If A is a parametrized set in M with parametrization F : D — A and w is a C* n-form on M,
not necessarily with compact support, then we define

/wtobe/F*w.
A D

It can be shown that the definition of [ W is independent of the parametrization and that in case A'is a
manifold, it agrees with the earlier definition of integration over a manifold. Subdividing an oriented
manifold into a union of parametrized sets can be an effective method of calculating an integral over
the manifold. We will not delve into this theory of integration .

6.4 Poincaré's lemma

Definition 6.4.1. A4 set U C R" is said to be star-shaped at x, € U if:
Ve e UVt € 0,1]: (1 —t)xg+tx € U.

Lemma 6.4.1. Let U C R" be an open star-shaped set at 0, and let X be a vector field defined by:

Xm:ileﬁxi

If we consider the application:
£ (U) — Qr(U)
W — / i () (t) db
Then & is a linear map such that: 0
dg(w) + &(dw) = w.
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Proof 6.4.1. It is sufficient to prove the lemma for w = fdx® A --- A dx'r+1. We have:

p+1 1 - ‘
Ew) =) (-1 ( / t”f(tx):c"jdt) dz™ A+ Adati A A datr
j=1 0

By differentiating under the integral sign:

: P i — ' p i i - ' P of i i
d(/o  f (to)x dt) = (/0 t f(tz)x dt) d +; (/0 tH%(tx)x dt) dx

We deduce:
pt+1
dé(w) =) (1) [(/ P f (tx) dt) i +Z (/ tf(tx) ”dt) d;ci]
j=1 0

Adzt A Adais A A dair

1 ‘ |
:(p + 1) (/0 tpf(tl‘)dt) dx™ A - A dxrtt

p+1

]. —_— .
T Z Z (/0 tpf(zﬁa:):c”dt) dz' Adx™ A - Adxii A - A da'rt

=1

On the other hand, we have:
- aof . . . .
dw = ——dx' Ndx"™ N - A\ dx'rt.
w ;(%Z x T x

p+l
ix(do' Adz™ A---Ada'P) = x'da™ A- - Ada'rH —i—Z(—l)j.Tijd:L’i/\diL‘il A-ANdzl A~ Nda'rr

Thus:

{(dw) = Zf ( (tz)dz™ A A da:iP“)
i=1 70 axl

p+1
= Z/ A o (1) (fC de't A Adath 4+ Y (<1 ahdat Adat A Ada A A dx’”l) dt.

7=1

Summing the previous equations, we obtain:
1 .
dé(w) 4+ &(dw) = / (p+ D)tP f(tx) Z tp“ dt Adx™ A - A da'rt
0
1 . .
= [/ (tp+1f(tx)) dt} dx™ N -+ A dz'r
0
= [tpﬂf(tzv)}é dzt A - A dx'r

= f(z)dz" A+ Ndxrt = w
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Lemma 6.4.2. (Poincaré)

Let U C R"™ be an open star-shaped set. If w is a closed p-differential form, then w is an exact
p-differential form.

Proof 6.4.2. We can assume that U is star-shaped at 0. Since:

dé(w) + &(dw) = w.

As w is closed, i.e., dw = 0, we deduce:

d¢(w) = w.

6.5 Stokes’s theorem

Definition 6.5.1. Let M be an oriented manifold of dimension n with boundary. We give its boundary
OM the boundary orientation and let i : OM — M be the inclusion map. If w is an (n — 1)-form on
M, it is customary to write [, w instead of [,, i*w.

Definition 6.5.2. (Stokes's theorem) For any smooth (n — 1)-form w with compact support on the
oriented n-dimensional manifold M,
/ dw = / w.
M oM

Proof 6.5.1. Choose an atlas {(U,, @)} for M in which each U, is diffeomorphic to either R" or H"
via an orientation-preserving diffeomorphism. This is possible since any open disk is diffeomorphic
to R™ and any half-disk containing its boundary diameter is diffeomorphic to H™ .

Let {po} be a C™ partition of unity subordinate to {U,}.

As we showed in the preceding section, the (n — 1)-form p,w has compact support in U,

Suppose Stokes s theorem holds for R™ and for H".
Then it holds for all the charts U, in our atlas, which are diffeomorphic to R™ or H". Also, note that

(OM) N U, = 0U,.

Therefore,
w = Paw = / Paw  (since Pa = 1).
R Y )

The sum Y, pow is finite. This becomes
Z / paw  (Since supp pow is contained in U,,).
— Jou,

Now apply Stokes's theorem to each U,:

Lo [o(5n)
o]

1t suffices to prove Stokes s theorem for R™ and for H™.

Thus, we have shown that
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6.5.1 Proof of Stokes’s theorem for the upper half-plane H?

Let .,y be the coordinates on H*. The standard orientation on H? is given by dx A dy, and the
boundary orientation on OH? is given by i o (dx N dy) = dx .
Y
The form w is a linear combination

w = f(x,y)dx + g(z,y)dy

for C* functions f, g with compact support in H. Since the supports of f and g are compact, we may
choose a real number a > 0 large enough that the supports of f and g are contained in the interior of
the square [—a,a] x [0, a]. We will use the notation f,, f, to denote the partial derivatives of f with
respect to x and vy, respectively. Then

_ (9 _9f — (a. —
dw = (% a—y) de Ndy = (g9, — fy)dx A dy.

/ dw:/ gxd:cdy—/ fydxdy.
H? H? H?2
We can express this as

/ / gmdxdy—/ / fydydx://gzdxdy—//fydydx. (6.2)
0 —00 —o0 JO 0 —a —aJO

In this expression,

Now calculate

/ ge(x,y) dv = g(x,y) x;a =0
because supp g lies in the interior of [—a, a] x [0, a]. Similarly,
a y=a
| #ewdy= 10|~ = ~5z.0)
0 -

so this expression becomes

/H2dw:/if(x,0)dx

On the other hand, OH? is the x-axis, and dy = 0 on OH?. It follows from (6.2) that w = f(z,0)dz
when restricted to OH?, and .
/ w= f(z,0)dx
OH? —a

This completes the proof of Stokes s theorem for the upper half-plane.

6.5.2 Stokes's Theorem on R"”

By Fubini's theorem:

/ dw —/ a lgfa dxn

= (1)~ / ( aaf dxa) dry...dve_1dTery ... dx,
Rn—1 Jja

— (—1)0‘_1 / ( aaf dma) dry...dxe 1dreyy ... dT,.
Rﬂ—l

46



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

But,

aaf

a—dxa = f(z1,. ., Ta—1,0,...,2,) — f(x1,.. ., To—1,—C,...,2,) =0—0=0.
_q 0%y

Therefore,

/ dw = 0.
Rn

/ w:/wz(),
OR™ 0

since the boundary of R™ is empty. This verifies Stokes' theorem for R".

On the other hand, we have:

6.5.3 Stokes's Theorem on H”

The case when o # n.:

/ dw = (=1)>"1 of dzy ...dx,

H" al‘a
> 0
= (_1)a—1 /Hn_l ( . a—l‘i dxa> dxl - dl’a_ldl’a_;,_l . dlL’n
“ 0
= (_1)a—1 /Hn1 ( 9 a—;; dxa) dry .. .dxa_ldIa_,_l R dl‘n

= 0.

For the same reason as in the case of R", by definition of OH", the 1-form dzx,, is identically zero.
Since o # n:

w=fdrxyAN---Ndxy N--- Ndzx, =0on H".

/
OH™

_ of _ < of
n—1 n—1
/n dw = (—1) /H" P dry...dzx, = (—1) /Rn1 (/0 D dxn) dey...dx,_q.

On the other hand, we have:

Thus,

<0 “ 0
E)g;fndx”: . agidwn:f($17-~,$n—1,a)—f($17~-,$n—1,0):—f($1;~--’1‘n—170)~

0

/ dw = (=1)" flzy, . xn_1,0)dxy ... day, :/ w.
n Rnfl

OHR
Since (—1)"R"! is precisely OH" with its oriented boundary.
Thus, Stokes' theorem also holds in this case.
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Example 6.5.1. Let D = {(z,y) € R? : 22 + y* < 1} and w = zdx + ydy.
We have:

1. D is a compact submanifold with boundary 0D = S' = {(z,y) € R? : 2* + y* = 1}.

2. Ifp:t €0,2n] — (cost,sint) € R? is a parameterization of the submanifold S*, then:

¢ (w)=0 and /w:/w:/ 0" (w) = 0.
St ® [0,27]

3. We have dw = 0. By applying Stokes' formula, we obtain:

/w:/ w:/dw:().
st aD D

Example 6.5.2. On R? we define: w = dxdy, n = 3(zdy —ydz), Dy =1[0,1] x [0,1];
D, = {(z,y) € R?* | 2* +y* < R?}
The parameterizations are given by:

p1:[0,R] x [0,27r] — R?
(r,0) —— (rcos@, rsind)

p2:[0,271] — R?
0 —— (Rcosf, Rsinf)

We have:

1 pl
/ w:/ / dxdy = 1.
D, 0o Jo

@] (w) = (cos@dr —rsin@df)(sin@ dr + rcos 0 db)
=rcos’drdf — rsin®0d dr
= r(cos? @ + sin® ) dr df
=rdrdf.

2T R
/w:/w:/ go’{(w):/ (/ rdr)d@zﬂR2.
D, 1 [0,R]x[0,27] 0 0

1

3. Since w = dn, and ¢5(n) = 5R*d0, Stokes' theorem gives:

2 2 1
/w:/dn:/ 9:/0:/ c,a;(n):/ —R%*d0 = TR*.
Dz D2 8D2 Y2 0 0 2
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Variation of a mapping

The references for this chapter are [43, 1, 37, 34, 30, 53, 12, 45, 41, 19, 51, 46, 44, 19, 29, 55.]

Definition 7.0.1. (n-dimensional interval) A set of the form

n

T = [ [la:, 0:)

i=1
Which is a cartesion product of n intervals in R"
* In one dimension (n=1) , an interval is simply T' = [a, b) which is a segment on the real line .
* In two dimensions (n=2) the set T = [a1,b1) X [ag, bs) is a rectangle in R? half-closed.
* In three dimensions (n=3) the set T = [ay,b1) X [as, by) X [a3,b3) is paralleleped in R3.
* Ingeneral, fore any n, itis a parallelepiped in R™ thus , I used the erm![] n-dimensional interval.
to mean a paralleleped with half-open sides in R™ also call this a half-closed box.

Definition 7.0.2. (cell)

A parallelepiped (n-dimensional interval) of the form

n

T = H[ai, bl>

i=1

Where a;,b; € R
and a; < b; This means that T is an open-closed set (half-closed in each coordinite) called cell.

Decomposition of a cell into compact sets

Let G be an open set in R", and let f : G — R" be a continuous mapping. A cell P C G is a
parallelepiped of the form:

n

P = H[ai;bi) (7.1)

=1
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where each interval [a;,b;) is half-closed.
where the K; are compact parallelepipeds , can be represented in the in the form

j=1

The set P can be written as a contable union of compact parallelepipeds { K;}32, such that each is
compact (ie: closed bounded)
and the sets f(K;) are compact. Hence, the set

F(P) = £(55). (72)

is Lebesgue measurable.
** We will prove:
Any half-closed parallelepiped

n

P = H[az,bz) CR"

=1

can be expressed as a countable increasing union of compact parallelepipeds:

P=JK;,
j=1
with K; C K41, and each K; compact in R".

Key concepts used

* A half-closed cell (or half-closed parallelepiped) in R™ has the form:
P pr—

)

[ai,bi).

1
* A set is compact in R" if and only if it is closed and bounded (Heine-Borel theorem).
» If f is continuous on a compact set, then the image is also compact:

If K C R" is compact and [ : K — R" is continuous, then f(K) is compact.

Strategy

We construct an increasing sequence (K;) of compact subsets inside P such that their union equals
P. We define:

K; = [ lai, b 1]
i=1
for j large enough so that b; — % > a; for all i. This ensures:
* Each K is compact (closed and bounded),
* K;CKj1 CP,
. U;’;l K;=P.
Proof 7.0.1. Let P = []}_,[a;, b;) C R™ be a half-open parallelepiped.
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Step 1: Define the compact sets

Choose an integer N such that for all j > N, b; — % > a; for all i. Define:

n

Kj = H[ai,bi — %]

i=1

Each K is a closed and bounded parallelepiped, hence compact in R".

Step 2: Show inclusion K; C K;; C P

£

Since -~ < 1 we have:
Jj+1 J

bi— g >bi—5 = fanbi— 3] Claibi — 5],

so K; C K. Also, since b; — % < b;, clearly K; C P. Thus,

KiCKyC---CP.

Step 3: Union covers P

Letx = (z1,...,x,) € P. Then x; € |a;, b;), so x; < b;. For each i, there exists j; such that:

1

Let j = max(j1,...,Jn). Then for all i,

xiébi_% = ze€K;

Hence,
pPc|]JK;
j=1
The reverse inclusion is immediate: K; C P for all j, so
UK, cP.
j=1
Therefore,

j=1

Step 4: Compactness of f(K)

Suppose f : G — R" is continuous, with P C G. Then since each K; C G is compact and f is
continuous,
f(K;) is compact in R".
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Conclusion

Any half-open parallelepiped P = [["_,[a;, b;) in R™ can be written as a countable union of compact
sets: -
P=|JK,
j=1

where each K is a compact parallelepiped contained in P. Moreover, if f : G — R" is continuous
and P C G, then:

£p) = U sy)

with each f(K;) compact.

7.0.1 Compact subdivision KX

Ech K; is compact , meaning it must be closed and bounded.
A natural way to construt k; is to take fully closed parallelepipeds inside P

Kj = H[Ci7di]a
i=1

Where c;,d; € [a;,b;) and ¢; < d;
Since K is closed and bounded , it is compact .

7.0.2 Exhaustion by compact sets

A common way to construct such a sequence is

n

K= [lab -~ 7). e (7.3)

i=1
Where b;—1/ J; ensures that each k; is strictly inside P but gets closer to including all of it as J; — +00
* Each k; is compact because it is closed and bounded parallelepiped
* The set sequence satifies ky C ky C ... and U?]?:k K; = P.

(This is called an increasing exhaustion of P by compact set)

Why b; — 1/5:

Take any point v = (21, ..., x,) € P. Then for each coordinate:

x; € |a;, b;) = x; < b; = 37 large enough so that v; < b; — -
J

So eventually, x € K for some finite j, which means:

rel JK;=PC|JK;
j=1 j=1
Also clearly K; C P for all j, so:
Uxr;=r
j=1
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7.0.3 Decompositin of P

The key idea is that we can approximate P using a contable of compact parallelepipeds k;.
One standard way is to take a nested sequence of compact sets that exhaust P .

for exemple :

define :

K= [lab - 7). e (7.4)
=1

Which are fully closed parallelepipeds and satisfy :

P_G&. (7.5)
j=1

7.0.4 Lebesgue measurability of f(P)

* P is an n-dimensional Paralleleped in R".

* {K;}52, is a nested squence of compact Parallelepiped That exahaust P. meaning
P=|JK; (7.6)
j=1

* f G — R" is continous function since [ is continuous image of a compact set under f is
compact meaning

f(K;) is compact for each j.

Theorem 7.0.1. Every compact set F C R? is Lebesgue measurable

* Since Compact set are Lebesgue measurable , their contanle union

f(P) = U FE;). (7.7)

Theorem 7.0.2 (Contable unions of the measurable sets are measurable ). Let {E,|n € N} be a
contable collection of mesurable setsandlet E = J,__| E,

The lebesgue o-algebra L(R") is closed under unions meaning if Ey, E.... are Lebesgue measurable
set
Then

E= G E,
n=1

is also lebesgue mesurable
** Since each f(K;) is compact and hence mesurable. Their contanble union :

f(P) = U FK;). (7.8)

remains lebesgue mesurable.
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7.1 Variation of the mapping

The variation function V (h) of a function f(x) at x = a is defined by

V(h) = fla+h) = f(a).

This is a measure of how much the function change when x change frome a to a + h or, in other words
when x start frome a and change by a variable amount h.

_--"'\.\\ b L {
) ( W)

y=[fx)/

fb)—fla)
= change in y
=V

@)\ \[ﬂ f (al)/
b—a

= change in x

> X

Figure 7.1: Variation of the Mapping f

Variation of the mapping f on a cell P

The variation of a function f over a set P measures how much f stretches or distorts the volume of P
defined as:

Vi(P) = sup {Z Ao (f (Py)) | { P}, is a decomposition of the set P into cells } :
k=1

where the supremum is taken over all possible decompositions of P into finitely many disjoint
subcells Py, and \,(f(Py)) denotes the Lebesgue measure of the set f(Py).

7.1.1 Decomposing P into smaller cells

A finite decomposition of P is a paratition :

P=JP. PNP=0 for i#j
j=1

Each Py is smaller parallelepiped (a cell) contained in P.
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7.1.2 Measuring the image of each partition

For each Py, , we compute the Lebesgue measure of its image under fie \,(f(Py)) hich represents the
volume in R". ('), is the Lebesgue measure, that is, the volume in R" )
Summing these over all k we get :

Z A (f (By)) [This gives a total measure]
k=1

f(Py) is the image of the cell Py, under f, and \,(f(Py)) is the volume of this image in R™. The

supremum is taken over all possible partitions of P.

7.2 The Banach indicatrix

Definition 7.2.1. Let f(x) be a continuous function defined on the interval [a, b),

where a < x < b. An integer-valued function N (y, f), defined for —oo < y < oo, is equal to the
number of roots of the equation f(x) = y.

1If, for a given value of vy, this equation has an infinite number of roots, then

N(y, f) = +oo,

and if it has no roots, then
N(y, f) = 0.

The function N (y, ) was defined by Banach [1] (see also [37]). He proved that the indicatrix N (y, f)
of any continuous function f(x) in the interval |a, b] is a function of Baire class no higher than 2, and

+00
VI(f) = Ny ([a,b],y) dy, (7.9)

—00

where V2(f) is the variation of f(x) on [a,b]. Thus, equation (7.9) can be considered as the defi-
nition of the variation of a continuous function f(x).
The Banach indicatrix is also defined (preserving equation ([7.9)) for functions with discontinuities of
the first kind [34].
The concept of a Banach indicatrix was employed to define the variation of functions in several vari-
ables [30], [53].

Definition 7.2.2. For a set E C GG and a point y € R", denote
N/ (E.y) = card(f~'(y) N E) iftheset f~'(y) N E is finite,
Y= oo if the set f~'(y) N E is infinite.
The function N¢(E) defined on R" is called the Banach indicatrix see [[38], Chapter VII, §5]

* [fthe set f~(y) N E infinite the card f~'(y) N E is just the number of the points in E that map
to y under f.

* If the set set f~(y) N E infinite , then the function N;(E,y) is defined to be +occ indicating
that there are infinitely many points in E that map to y ( f(z) = y has an infinite numbre of
roots).

Theorem 7.2.1. Let P C G be a cell (a Parallelepiped in R") and f be continous mapping and then
Banach indicatrix N¢(P) is Lebesgue measurable in R", and satisfaies the integral fourmule

Ny (P)dA, = V(P). (7.10)

Rn
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Proof 7.2.1. Partition of the Cell P:
A cell P € G is Parallelepiped into disjoint cells Py, forming a decomposition T = { P, } ", ,such that:
P=JP. PNP=0 for i#]
j=1
Indicator function X ;(P)(y) : This is the characteristic function of f(P) defined by

L ifye f(P)

0 otherwise.

X (P)(y) = {

*The function X ¢(P) is indicator function of the lebesgue measurable set f(P). Since f(P) is lebesgue
measurable its indicator function X (P) is also measurable .

Decomposition into disjoint cells:

Let 7 = { Py}, be a decomposition of P into pairwaise disjoint cell P.
Define:

N, (y) is measurable:

Thus, N.(y) counts how many of the sets f(Py) (the images of the sub-cells under f) contain the point
Y.

Since each X ¢(p,)(y) is measurable,because f(Py) is lebesgue measurable A finite sum of meau-
rable function is also measurable so sum N, (y) is measurable.

Now consider the integral of N, (y) over R™:

N (y) dh, = / S e () A
Rn Rn k=1

Using the linearity of the integral, this becomes.

N(y)dha =S / st (y) dhn.
Rn o JR"

The integral of X y(p,)(y) is simply the n-dimensional Lebesgue measure of f(Py), denoted \,,(f(Py)).
In particular, it follows directly from the definition of the Lebesgue integral:

[ xe) dna) = ()

for any measurable set E2 C \,,.
So, for measurable f(Py) C \,, you get

| X dae) = M1 (20,
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Xy (y) dAn = X (f (Pr)).

R

P = U;n:l P.. P, aredisjoint . Summing over all paratitions P, we obtain:

m

N;(y)d\, = Z An(f(Pr))-

R k=1

Remark:  The integral of X y(p,)(y) over R" gives the measure (volume) of f(Py) .
The function N, is measurable, and

N-dX, =) /R X @A = A f(P), (7.11)
k=1 k=1

]Rn

Decompositions:

Indeed any cell Py, € T can be represented as
mg
Py = J Pu,
i=1

If 7' = Py; is a refinement of T = P,. This means that each cell P, € T can be written as a disjoint
union Then:

mg
P, = J Pu,
i=1
* Since f(Py) is also a union of its refined images so
my
F(P) = f(Pu),
i=1
where the union is disjoint. Consequently, the indicator function satisfies:

my
Xreo W) < X ().
i=1

Summing over all k, we find:

m m  my
N-() = xsro®) < D) xren (W) = Noo(y).
k=1 k=1 i=1

N;(y) < Ny(y)

Thus, refining the decomposition increases N, (y).

Decomposition 7:

This represents a specific way of dividing the cell P into smaller subregions. The subscript s indicates
the level of subdivision, where s is a parameter that controls how fine the decomposition is.
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Division into 2°" equal parts:
The decomposition divides P into 2°" smaller regions. Here:

» 2°: Each side of the cell P is divided into 2° equal segments.
This means the number of divisions along each dimension grows exponentially with s.

* n: This could represents the additional factors, such as the number of calls in a higher-dimensional
setting or a multiplier related to the geometry of P. of dimensions of P, meaning the total num-
ber of subregions is 2°".

Dividing any side of P into 2° equal parts:
This implies that each side (or edge) of the cell P is split into 2° segments of equal length.

Define 75 as the decomposition of P into 2°" equal parts by dividing each side of P into 2° equal
intervals. The sequence of decompositions {74}, is nested (each 74,1 refines ), so:

Nr(y) < Nr. (y) forally € R"
By monotonicity, the limit

lim N, (y) (finite or equal to + o).

§—00

exists.

Relation between N (P, y) and the preimage:

We claim that N¢(P,y) = lim, .o N, (y). For any fixed paratition T = { P}, the equality
P =J, Py implies:

y)NP = U y) N Py,

Since the set (f~1(y) N Py,) are disjoint we sum over ther cardinalities Therefore:

card(f )N Py).
Z

because

card(f~ Z card(f~(y) N Py).

Cas 01: If f1(y) NP, =10
Theny & f(Py), so xp(p,)(y) = 0. Which implies :

card(f'(y) N P,) =0 = Xfeo) ()

Cas 02: If f1(y) N P, # 0
Theny € f(Py), so X¢p,)(y) = 1. Since card(f~'(y) N Py) > 1 we get :

card(f~ (y) N Py) > X s (Y),
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Summing over all k, we obtain:
card(f~ (y) N P) > > Xy (y) = N-(y).
k=1
N¢(P,y) > N-(y).

Since N, (y) increases with finer partition, we conclude:

N¢(P,y) > lim N, (y). (7.12)

§—00

If N¢(P,y) > q € N, then the set P contains at least q different roots of the equation f(x) = y.
Ny(P,y) > q € N means that there are q distinct points x1,%s, . ..,x, € P such that:

flz) =y, fori=1,2,...,q,

and these points are pairwise distinct.

Pairwise distinctness:

Since the roots x1, T, . . ., x4 are distinct, their pairwise distances (measured using a metric p on R")
are strictly positive:

= min z;, i) > 0.
Po ISKqup( i )

This minimum distance py ensures that no two roots can be arbitrarily close to each other.

Behavior of the decomposition 7,

The decomposition T, divides the cell P into smaller subregions (cells) P;;, where:
» Each side of P is divided into 2° equal parts.
* The total number of subregions is 2°" for an n-dimensional cell P.

* The diameter of each subregion P, ; decreases as s — 00:

diam(Ps ;) = dl%s(P).

As s — oo, the diameter of each subregion approaches zero:

lim diam(P;;) = 0.

§—00

For sufficiently large s, the diameter of each subregion P;; becomes smaller than the minimum
distance py between any two roots:

diam(P;;) < po.

This implies that no single subregion P, ; can contain more than one of the roots x1,xs, ..., x,.
Consequently:

» Each root x; must lie in its own unique subregion P ;.

* At most q subregions can contain any of the roots 1, xa, . . . , Z,.

59



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

Fix roots x1, ... ,x4 € P. Since these roots are distinct, define

= min x;, zi) >0
£o 1§i<j§qp( 29 J)

where p is a metric in R". If Py; are the cells of the decomposition T, then

1
diam P,; = gdiamP —0 as s— 0.

Thus, there exists s such that diam Py; < py.
In this case, each cell Py; contains not more than one point of the set {x1, ..., x,}, hence the existe
not more than q cells Py; satisfy y € f(Ps;), for each subregion P, ;, the indicator function xy(p, ,)(y)

is defined as:

X P (y) — 17 l.f\y G f(Ps,i)a
F(Pes) 0, otherwise.

The value N (y) is the sum of these indicator function over all subregions :

9sn

N, (y) = Z Xs(Po)(¥)-

As s — oo, the decomposition T, becomes arbitrarily fine, and the subregions P ; shrink to individual
points. In this limit:

* Each root x; contributes one subregion P;; such that y € f(Ps;).

* Therefore, the count N, (y) converges to the number of roots q.

Thus,
lim N, (y) > g. (7.13)
S— 00

We have shown that if N¢(P,y) = q, then:

lim N, (y) > q. (7.14)

If Ny(P,y) =q €N, then

which implies N;(P,y) > lim, o N;, ().
If N¢(P,y) = +oo, then for any q, the inequality N;(P,y) > q holds.
In this case,

lim N, (y) >q foranyq,

5§—00

which means limg_,o, N. (y) = 4+00. Thus, we conclude:
N¢(P,y) = lim N; (y).
S—00
From inequality (7.12), we deduce:

Ny(P,y) = lim N, (y).

§—00
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Conclusion:

In both cases, we have:
Ny (Py) = lim No(y).

This confirms that N;(P) is measurable. By Lévy's theorem and inequality 7.11), we obtain:

N¢(P)dA, = lim N, d\,. (7.15)
Rn §—00 R
Since yon
lim Y A (f(Poa)) € sup > Aa(f(Pr)), (7.16)
Har {Pediin k=1
where { Py}, is a decomposition of the cell P, we conclude:
Vi(P) =sup Y A(f(P)) < | Ny(P)dh,. (7.17)
Tok=1 R

Inequalities and limits:

On the other hand, since N¢(P,y) > N (y) for any decomposition 7, it follows that:

S0P = [ Ndr, < [ N(Pyax,. (7.18)
k=1 R™ R™
Thus,
Vi(P)=sup Y M(f(P)) < | Ny(P)d,. (7.19)
T k=1 R

For any decomposition T, the inequality
Ny(P,y) = N:(y) (7.20)

holds. Integrating both sides with respect to y over R", we get:
Ni(Py)din(y) = | N:(y) dAn(y). (7.21)
Rn Rn
For the specific decomposition Ts, we have:

2S7L

N-. (y) dhuly) = Z M f(Py2)). (7.22)

R’I’L

Taking the limit as s — oo, we obtain:

lim [ N (y)d\(y) = | Ne(Py)dAa(y). (7.23)

S5—00 Rn Rn

Thus:
Ny (P,y) d\(y) = Vi (P). (7.24)

R
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Supremum over all decompositions:

For any decomposition T = { P, }7"_,, we have:

STMFP) = | No(y) dhaly): (7.25)

k=1 R

Since N¢(P,y) > N.(y), it follows that:

SO B) < | Ni(Poy) daly). (7.26)

k=1 Rn

Taking the supremum over all decompositions T, we conclude:

Vi(P) =sup > M(f(PR) < | Np(Py)dAa(y). (7.27)

T k=1 R

On the other hand, since N¢(P,y) = lims_,o, N7, (y), and

/ No. () () = Vi(P), (7.28)

we also have:

Ny (P,y) dra(y) < Vi(P). (7.29)

R’FL
Combining these inequalities, we conclude:

Vi(P)= [ N¢(Py)dA.(y). (7.30)

Rn
Definition 7.2.3. 4 continuous mapping f : G — R" is called a mapping with locally-finite variation
if the variation V;(P) is finite for any cell P such that P C G.

The variation Vy(P) measures how much the image of P under f "spreads out" in R™.
It quantifies the "size" of the image of P under f, taking into account the multiplicity of preim-
ages.Formally, V;(P) is defined as:

m

Vi(P) =sup ¥ _ Ml f(P2)), (731

T k=1

where:
o 7 ={P}}", is a decomposition of P into disjoint subregions P,
* )\, is the n-dimensional Lebesgue measure,

» The supremum is taken over all possible decompositions T of P.

Closure condition:

PcCG

The condition P C G ensures that not only the interior of P but also its boundary lies entirely
within the domain G of the mapping f.
This is stricter than requiring P C G, as it guarantees that f is well-defined and continuous on the
entire boundary of P.
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Examples

(a) Mapping with locally-finite variation
Let [ : [0,1] — R? be defined as:
fla) = (z,27).

For any subinterval [a,b] C [0, 1], the image of |a, b] under f is a curve in R* with finite length.
Thus, Vi([a, b)) is finite for all [a,b] C [0, 1], and f has locally-finite variation.

(b) Mapping without locally-finite variation
Let f : (0,1) — R be defined as:

f(x) =sin (é) Sforxz > 0.

Near x = 0, f(z) oscillates infinitely often, causing the variation V;([a, b]) to become infinite for any
interval |a, b] containing points arbitrarily close to 0.
Therefore, f does not have locally-finite variation.

Corollary 7.2.1. If f : G — R" is a mapping with locally-finite variation and P is a cell such that
P C G, then the set

ffy)ynpP is finite for almost every point y € R"

(with respect to the Lebesgue measure).
Moreover, the function Ny(P) is summable, hence this function is finite almost everywhere.

Proof 7.2.2. Step 1: Finite variation implies finiteness of f~!(y) N P almost everywhere:

Since f has locally-finite variation, the variation V;(P) is finite for any cell P such that P C G. By
definition of V(P), the total "size" of the image of P under f is finite:

m

Vi(P) =sup Y A (f(Pr)) < o0, (7.32)

T k=1

where T = { P, }}, is a decomposition of P into disjoint subregions.

If f~*(y) N P were infinite for some y € R", then the contribution of y to the variation V;(P)
would also be infinite, contradicting the finiteness of Vy(P). Thus, f~'(y) N P must be finite for
almost every y € R"™ (with respect to the Lebesgue measure).

Step 2: Summability of N;(P,y):

The function N(P, y) counts the number of points in f ' (y) N P. Since f~'(y) N P is finite for almost
every y, N¢(P,y) is finite almost everywhere. Moreover, the integral of N;(P,y) over R" is equal to
the variation V;(P):

Ni(P,y)dAn(y) = Vi(P). (7.33)

Rn
Since V;(P) < oo by assumption, it follows that N;(P,y) is summable (i.e., integrable).

63



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

Step 3: Conclusion

The summability of N;(P,vy) implies that N;(P, y) is finite almost everywhere. Thus, the set f ~(y)NP
is finite for almost every y € R™.

Remak:Intuition behind the result

Why is f~!(y) N P finite almost everywhere?

The condition of locally-finite variation ensures that the image of P under [ does not spread out
infinitely in R", preventing f~'(y) N P from being infinite for too many values of y.

Intuitively, if f~1(y) N P were infinite for many vy, the total "size" of the image of P would become
infinite, contradicting the finiteness of Vy(P).

Why is N;(P,y) summable?

The summability of N;(P,y) reflects the fact that the total number of preimages of all points y € R"
is controlled by the finite variation V(P).
This ensures that N¢(P,y) does not grow too large over any significant subset of R".
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Topological degree of a mapping with
locally-finite variation

The references for this chapter are [43, 35, 27, 47,9, 2.]

Compact manifold X' C R"

K is an n-dimensional compact manifold with a piecewise-smooth boundary OK. The boundary 0K
is a union of finitely many smooth manifolds whose dimensions do not exceed n — 1. A simple example
of such a manifold is a compact parallelepiped (e.g., a closed rectangle or cube).

Definition 8.0.1. The boundary OK is a union of a finite family of smooth manifolds whose dimensions
do not exceed n — 1:

0K = U M;, where each M; is a smooth manifold with dim M; <n — 1.

i=1

Mapping g : K — R"

g is a C'-mapping (continuously differentiable) from K to R™. The point y € R" is chosen such that
y ¢ g(OK), meaning y does not lie in the image of the boundary of K under g.

Definition of piecewise-smooth boundary

A piecewise-smooth boundary of the set K C R"™ means that the boundary 0K is composed of a finite
union of smooth (n — 1)-dimensional manifolds .That is OK consists of several smooth pieces that
may meet at their boundarics but are otherwise smooth within their individual regions.

Formally ,0K is piecewise-smooth if :

1. There exists a finite number of smooth (n — 1)-dimensional manifolds M, Ms, . .., M,, such
that : .
0K = | M,
i=1

2. Each M; is a smooth (n — 1)-dimensional submanifold of R"™ meaning it has continous partial
derivatives up to a certain order

65



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

3. The manifolds M; may intersect along lower-dimensional subsets (such as edges or corners in
the cas of a polyhedron)

Degree of a smooth map between manifolds

Let M and N be oriented n-dimensional manifolds without boundary, and let
S:M— N

be a smooth map. If M is compact and N is connected, then the degree of S is defined as follows:
Let x € M be a regular point of S, so that the differential

de : TIM — TS(:B)N
is a linear isomorphism between oriented vector spaces.
Define the sign of dS, to be +1 or —1 according as dS,. preserves or reverses orientation.
For any regular value y € N, define:
deg(S;y) = Z sign(dsS;).

zeS—1(y)

this integer deg(S; y) is a locally constant function of y. It is defined on a dense open subset of N see

(135)).

Definition of the topological degree

Let g : K — R" be a C' mapping, and lety ¢ g(0K).The topological degree of the mapping g at the
point y is defined as the index of the cycle g|ok (see [[47], Chapter VI,§8] and see [43])with respect
to vy, i.e., the integral:

1
degg(Kyy):—/ Wy,
1(S™Y) Jyory

where:
o u(S™1) is the surface area of the unit sphere in R".
* wy is the (n — 1)-form:

wy = Z(_l)i—l ‘iz__ylﬁ’ dzi A A j;z A Aday,
i—1

where |z —y| = (3 0, (z; — yi)Q)l/2 and dz; indicates omission of dx;.

Interpretation of w,:

* The differential form w, represents a normalized volume form on the sphere centered at y. It
captures orientation and density of g(OK') around y.

» The wedge product dzy N --- N dx;_y Ndx;_1--- N\ dx,, represent the exterior product of all
variables except x;.
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Integral over g(0K)

The integral fg(a Ky Wy computes the index of the cycle glox with respect to y.
This index reflects how g(OK ) wraps around y in R™.

Normalization
* Dividing by 1(S™™') ensures that the topological degree is an integer.
» If f is continous mapping of a set G C R" into R" f : G — R" Assume , K C G is compact
subset, and y ¢ f(OK),meaning y deoes not lie in the image of the boundary of K under f.
Approximation by C'-mappings

» Since f is continuous but not necessarily differentiable we approximate f by a sequence of
CY-mappings g;, such that g;, — f uniformly on K.

* For each gy, ,the topological degree deg gi.(K,y) is well-defined using the formula above.

The topological degree is stable under small perturbations of the mapping. Therefore, the degree
deg f(K,y) can be defined as the limit:

deg f(K,y) = l}ggodeggk(K, Y).

Compactness and distance condition
(a) Since OK is compact and [ is continuous, the image f(0K) is also compact in R".

(b) Positive distance to y:
The condition y ¢ f(OK) implies that there exists a positive minimum distance between y and

f(OK):
ply, [(OK)) = inf{p(y, 2) | z € f(OK)} > 0.

This ensures that y is sufficiently far from f(OK), so the integral defining the degree is well-
defined.

8.1 Definitions: paths and homotopy of paths

Let us assume the closed unit interval I := [0, 1] and a topological space X are given.

1. Path : A continuous function p : I — X from a point xq € X to a point 1 € X is called a
path if it satisfies:
p(0) = zo, p(1) = 1.

2. Homotopy of paths : Let f = hg and g = hy be two paths in X from x to x1. A family of paths
{he : I = X }iepo,1) is called a homotopy of paths (relative to endpoints) if:

(i) Forallt € |0, 1], the paths satisfy the endpoint conditions:

he(0) = 20, he(1) = 1.
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(ii) Themap H : I x I — X, defined by
H(s,t) := h(s),
IS continuous.

Depending on the context, either the function H or the family {h}.c(01) itself is referred to as a
homotopy.

8.1.1 The meaning of homotopy

As mentioned before, the idea that two paths are homotopic can be understood to mean that by slightly
altering one path, it can be turned into the other. However, in topology, exploring such ‘practical
sameness’ is to see the ‘true difference’ see([27]).

8.2 Definition of C'-homotopy

(a) General definition

Let X and 'Y be topological spaces, and let f,g : X — Y be two continuous mappings.
A C°-homotopy between f and g is a continuous mapping:

H:Xx[0,1 =Y,
such that:
H(z,0)= f(z), H(x,1)=g(z) forallze X,

and for each fixed t € [0,1], the map Hy(x) = H(x,t) is continuous.
In simpler terms, H provides a continuous "path" of mappings from f to g.

(b) Homotopy in R" \ {y}

Iff,g: 0K — R"\ {y}, then f|ox and g|ox are said to be C°-homotopic in R™ \ {y} if there exists
a C°-homotopy:
H:0K x [0,1] - R"\ {y}

such that:
H(z,0) = f(z), H(z,1)=g(x) forallzx € 0K,

and
H(z,t) #y forallx € 0K andt € |0, 1].

This ensures that the homotopy avoids the point y throughout the deformation see(/35]).
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8.2.1 Properties of C°-homotopy

* Continuity: The homotopy H is continuous as a function of both x € 0K and t € [0, 1].

* Avoidance of y: Since H(x,t) # y forall x € OK andt € |0, 1], the homotopy stays entirely
within R™ \ {y}.

* Equivalence Relation: C°-homotopy defines an equivalence relation on the set of continuous
mappings from 0K to R" \ {y}:

— Reflexivity: flox is C°-homotopic to itself.
— Symmetry: If f|aox is CO-homotopic to glox, then glar is C°-homotopic to flok.

— Transitivity: If flox is C°-homotopic to glox, and glox is C°-homotopic to h|sk, then
flox is C°-homotopic to h|x.

Lemma 8.2.1. Let f : G — R™ be a continuous mapping and suppose y ¢ f(0K).
Then there exists a mapping g : K — R" of class C' such that:

If =gl = max|f(z) — g(z)| < ply, F(OK)),

and the restriction g|sx is C°-homotopic to the restriction f|ax in R™\ {y} for any such mapping

Y.
Moreover,
deg f(K.y) = degg(K.y) = s [
€ YY) =daeggin,y) = w
p(S™1) Jyor)
Proof

Step 1: Approximation by C*'-mappings:

By Theorem 52 in [47], any continuous mapping f : K — R™ can be approximated by a C*-mapping
g : K — R" such that:

If =gl = max|f(z) — g(z)| < p(y, f(OK)).
This ensures that g(x) # y for all x € OK, because:

l9(z) —yl = |f(z) —yl = [f(2) —g(x)| >0 forallx € IK.

Distance condition:

The condition || f — g|| < p(y, f(OK)) guarantees g(x) # y for all x € OK. Hence, g(0K) avoids vy,
making the integral formula valid.

Step 2: Homotopy between restrictions:

By item 2 of Theorem 51 in [47], the restriction g|sx is C°-homotopic to f|sx in R™ \ {y}. That is,
there exists a continuous family of mappings H, : 0K — R™ \ {y}, t € [0, 1], such that:

Hy = flox, Hi=glox, and H(x) # yforallz € 0K, t € |0,1].
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Homotopy avoiding y:
Since || f — g|| < p(y, f(OK)), we have for all x € OK andt € [0,1]:
[Hi(x) —y| = [f(x) =yl = [f(z) = g(z)] > 0,

ensuring Hy(x) # y throughout the homotopy.

Step 3: Invariance of the degree under homotopy:

By Theorem 62 in [47], the topological degree is invariant under C°-homotopies that avoid y. There-

fore:
deg f(K,y) = deg g(K,y).

Homotopy invariance:

The degree is invariant under C°-homotopies avoiding v.

Step 4: Integral formula for the degree:

For the C'-mapping g, the degree deg g(K, 1) can be computed via the integral formula:

1

degg(K,y :_/ Wy,
( ) p(S™Y) Joor) Y

Smooth Approximation:

The smooth approximation g is constructed using standard techniques such as convolution or parti-
tions of unity. These ensure that g is C* and remains uniformly close to f where w, is the differential
form defined previously. Since deg f(K,y) = deg g(K,y), we conclude:

1
deg f(K,y) = —/ Wy
(5:9) 1(S™Y) Jyory

8.3 Topological degree on a cell

Let P =]}, [a;,b;), and for € > 0, define the shifted cell

K_(P) is used to construct neighborhoods of P that remain within G, ensuring that the approximation
g can be extended smoothly to the boundary of P.

Definition 8.3.1. If there exists ¢, > 0 such that the degree deg f(K.(P),y) is defined for all
0 < € < gy, and the finite limit

lim deg f(K.(P),y) exists forany y ¢ f(OK.)

e—0t

Then this limit is called the topological degree of the mapping f on the cell P at the point y, and is
denoted by deg f(P,y).

Theorem 8.3.1. Assume that f : G — R" is a mapping with locally-finite variation, and let
P =TT, [a;, b;) be such that P C G. Then the degree deg f(P,vy) exists for almost all y € R", and
the function deg f(P,y) is Lebesgue measurable.
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Proof 8.3.1. Step (1): Points not on the boundary 0K_(P)
We first show that for any x € R", there exists £, > 0 such that v ¢ OK.(P) for all € € (0,¢,).

Case(a): z € P.

Letx = (v1,...,x,) € P. Then :
a; <x; < b forallv=1,... n.

Define:
Eg = lrélilgnn{bi —x;} > 0.

Then for all € < e,, we have
a; < x; <b¢ (221,,71)

ri<bj—e and x;>a;—¢ forall i=1,....n and 0<e<e¢,.
Hence, © ¢ OK_.(P).

Case (b): = ¢ P.
If x ¢ P .Then there exists an index iy such that either x;, > b;, or T;, < a;,.
In the first case (v;, > b;,):

Tiy > by, —e forall >0

So x ¢ OK.(P) forall e > 0.
In the second case x;, < a;, :
define

Eg = Qjy — Tjy >0

For e < g,, we have
Tiy < Gy, — E.

So x ¢ OK.(P)

Conclusion of Step (1):

For any finite set T' C R", there exists ep > 0 such that define:

TNIOK.(P)=0 forall € (0,er).

This follows by setting :
er:=min{e, |z € T} #0.
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Step (2): Avoidance of y in f(OK_.(P))
We now claim that for almost every y € R", there exists (y) > 0 such that:
y & f(OK(P)) forall ¢ € (0,e(y)).
Since P C G and P is compact,the distance frome P to R™ \ Glis positive :
inf{p(z,2) |z € P,z € R"\ G} > 0.

Hence, there exists ¢y > 0 such that

n

By = H[al —80,bi +€0) C F()C G.

=1

By the corollary to Theorem the set T = f~1(y) N P, is finite for almost all y € R".
For the finite set T, by Step (1), there exists e > 0 such that:

ff ) NP NOK(P)=0 foralle € (0,er).
Since OK.(P) C P, for e € (0,¢e0),it follows that :
T y)N P NOK(P)=10 foralle € (0,min{ey,er}).

Where for almost all y, there exists £(y) := min{eg, e} .
In this case v € f~(y) for x € f(OK.(P)ie f(x) # ythusy ¢ f(OK.(P)) forall e € (0,(y)).
Then deg f(P,y) existe

Step (3): Existence of the limit

To establish the existence of the limite :

lim deg f(K.(P),y)

e—0t
exists for almost all y.

We use the mappings ¢. : R — R" define as(Translation diffeo C'*°):
Oe(x1,y . yxpn) = (11— &, .., Ty — €),

@ shifts the coordinates of x© by —¢ , effectively shrinking the domain P to K_.(P) .
For small € > 0, . ensures that K.(P) N Py and OK.(P) N P.

Then
Ke(P) = SOE(?)'

Boundary transformation under ¢.:
The boundary of the shifted parallelepiped K. (P) is given by:
OK.(P) = ¢-(0P),
* where o (x1,...,0,) = (T1 —€,...,2y, — €).

* This means that 0K.(P) is a translated of OP, shifled inward by ¢
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Finite preimage condition :

Assume that the set = N Py is finite for some y € R™ .
Where:

n

PO:H[ai_EO,bi—i—a’fo] cG

i=1
* Since OK.(P) C Py C G forVe, 0 < e < e(y), the mappings ¢.|,p are homotopic on G.

« Consequently, the compositions fop. |5 are C°-homotopic on R"\{y}, becausey ¢ f(OK.(P)).

Homotopy between f o ¢, |sp and f o ., |sp:
e If0 < &1 < g9 < (), then the mappings f o ., |ap and f o ¢.,|sp are C°-homotopic.

» This implies that the topological degree is invariant under this homotopy.

Approximation by C'-mappings:
Construction of g; and g,:

e Let g, : K., (P) = R"and g5 : K.,(P) — R" be C'-mappings approximating f such that:

If =gl = max [f(z) = gi(x)] < ply, fOK, (P))),

z€Ke, (P)
and

If = g2ll = max [f(x) = g2(x)] < ply, f(OK,(P))).

2€Key (P)

Homotopy between restrictions:

* By Lemma the restrictions g ok, (p) and flok. (p) are C-homotopic in R™ \ {y}, simi-
larly for galok., () and flox.,(p) are CY-homotopic in R™ \ {y}.

Transitivity of homotopy:
* Since f o ., |op is CO-homotopic to g; 0 p., |ap, and f o ¢.,|op is C°-homotopic to gs 0 ., |op.

* By transitivity ,g; © ., |ap is C°-homotopic to g, o ., |sp.

C'-Homotopy:
* By Theorem 53 in [47], the mappings g, © -, lop and gz 0 ¢, |op are C'-homotopic in R"™\ {y}.

Integral invariance under homotopy:
Equality of integrals:

If w, is a closed differential form in R™ \ {y}, then the integrals of w, over homotopic cycles are equal

specifically:
[ |
g10pe; (OP) 9205 (OP)
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Change of variables:

* Since the determinant of the Jacobi matrix of a mapping det(Dg.) = 1 at the faces of the
parallelepiped P, we can change variables in the integrals to show:

Ty

91(8Ke, (P)) g10¢e, (9P)

/ o, = / w,.
92(0K<y (P)) 920p<, (OP)

Combinig these results , we have :

/ a= [ .
91(0K<, (P)) 92(0K<, (P))

» From Lemma the degrees of f,g1 and g, are related as follows:

and

Constancy of the degree function

degf(Km(P)ay) = deggl(Km(P)ay)?

and
deg f(K.,(P),y) = deg ga( K., (P), ).

» Using the integral formula for the degree:

1

deg g1 (K., (P).y) = —/ .
B pu(Sm=1) 91(0K<, (P)) Y

1
deg go(Koy(P), y) = ——— / .
(8" ) Jgor Py

* Since the integrals are equal,it follows that :

deg f(K<,(P),y) = deg [(K,(P), y).
Thus, the function deg f(K.(P),y) is constant for 0 < € < €(y).
Existence of the limit
* The constancy of deg f(K.(P),y) for 0 < € < e(y) implies that the limit:

lim deg f(K.(P),y)

e—0t

exists and is finite.

* By the corollary to theorem ,the set f~1(y) N Py is finite for almost all y € R".

* Therefore ,the above limit exists for almost all y € R™.

74



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

Step (4): Measurability of deg f (P, y)
Compact parallelepiped K C G:

 If K is a compact parallelepiped such that K C G, then deg f(K,y) is defined for
y € R"\ f(OK). The function:

d(K,y) — deg f(K,y), ifyeR"\ f(OK),
AU ify € (OK).

* is Lebesgue measurable. This follows because d(K,y) is constant on connected open compo-
nents of R" \ f(0K), and f(OK) is compact (hence measurable).

Sequence of shrunken parallelepipeds K /,,,(P):

» Form > 1/gg: o
Kiym(P)C P CG

(see the proof of the step(02))

* Thus, the function d(K y,(P),y) is defined and measurable for y € R™.

Limit of the degree function

* If1/m < e(y):
d(K1m(P),y) = deg f(K1m(P),y).

* Taking the limit as m — oo (or equivalently ¢ — 0%):

lim d (K%(P),y> = lim deg f(K(P),y)

This limit exists for almost all y € R", and the function deg f(P,y) is measurable as the point-
wise limit of measurable functions.

Lemma 8.3.1. Let f : G — R" be a mapping with locally-finite variation. If P is a cell such that

P C Gand .
P=|J~R,
k=1

where the Py, are disjoint cells, then:

deg f(P,y) = deg f(Py,y)

k=1

for almost all y € R".
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Proof 8.3.2. Step (1): Additivity for cells sharing a common face:

Let P and () be two cells such that:
* P and Q share a common (n — 1)-dimensional face.
» PUQ C G, where G is the domain of f.

Claim:
For almost all y € R™:

deg f(PUQ,y) = deg f(P,y) + deg f(Q, ).

Finite preimage set:

» Since P U Q C G, there exists g > 0 such that PUQ, C G, where P U Q) is a slightly
expanded version of P U Q).

* By the Theorem the set f~1(y) N (P U Q)qg is finite for almost all y € R".

* Consequently, the sets f~'(y) N Py and f~'(y) N Qo are also finite.

Existence of small <:

o For sufficiently small ¢ > 0, the degrees deg f(P,y) and deg f(Q,y) can be expressed as:
There exist €1 and £ such that:

0<e<e =degf(Py)=deg f(K.(P),y),

and
0 <e<ey=deg f(Q,y) = deg f(K(Q),y),
where K.(P) and K.(Q) are shrunken versions of P and @), respectively.

* If0 < e < min{ey, ea}, then :
deg f(P,y) + deg f(Q,y) = deg f(K(P),y) + deg f(K(Q),y)

Approximation by C'-mappings:

e Letg: K.(PUQ) — R" be a C'-mapping approximating f such that:

If = gll < p(y, FOKA(P)) U f(OK.(Q))).

Additivity of the degree for g:

* By Lemma the degree satisfies:

deg f(K:(P),y) = deg g(K(P), ),

deg f(K.(Q),y) = deg g(K.(Q),y).

* The mappings glak.(py and gloxk. (@) contribute to the boundary integral in a way that respects
the shared face D. between P and ().

76



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

Orientation of shared faces:
* The boundaries OK.(P) and O0K.(Q) intersect along a common face D..

* The orientation of D, induced from K_(P) is opposite to the orientation induced from K.(Q).
This ensures that contributions from D. cancel out in the integral formula for the degree.

Integral formula:

» Using the integral formula for the degree:

1
degg(KePLy) = gy [
w(S") Joor.py
1
deg g(K.(Q),y) = —/ wy-
1(S" ) Joor. @)
Adding these contributions:
1
degg(K.(P).y) + deg g (K(Q)w) = oo | .
p(S™ ) Jgor.(pug)

* Since P and Q have a common (n — 1)-dimensional face, the sets K. (P) and 0K.(Q) have a
common face D., and the orientation of D. induced from K_(P) is opposite to the orientation

induced from K .(Q).

» [n this case,

9lox.(pug) = 9lok.p) + 9lok.(Q)
(the sum of cycles), and

g (OK(P))wy, + g (0K (Q))wy = g (0K (P UQ)) wy.

* Thus, if 0 < e < min{ey,eq}, then :

deg f(P,y) +deg f(Q,y) =

,U(Sn_l)g (aKs(P U Q)) Wy

deg f(P,y) + deg f(Q,y) = deg g (K(PUQ),y),
=deg f(PUQ,y).
Step (2): Decomposition of intervals:
Partitioning each interval [a;, b;):

* We start by decomposing each interval [a;,b;) into smaller disjoint subintervals:

ki—1
jai b)) = [ [0, af™), (8.1)

Ji=0
where:

This partition ensures that:
* The intervals [az(»ji), az(jiﬂ)) are disjoint.

* Any point x; € [a;, b;) belongs to exactly one subinterval.
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Notation for subcells:
Using the partition points, we define subcells of P as follows:

s Form < n, let:

| | ji ji+1
Pj1j2~-~jm = [az(j ),agj - )) X | | [aia bz)
1=1 i=m+1

o Form =n, let:

These subcells form a decomposition of P into smaller disjoint cells.

Recursive decomposition of P:
The cell P can be expressed as:

k1—1ko—1 km—1

P=UU U P m=1...m 8.2)

J1=0 j2=0 Jm=0
where:
» The union is over all indices ji, jo, . . ., Jm»

* The subcells P; ;, ;. are disjoint.

For example:
* When m = 1, P is decomposed into subcells along the first coordinate:

k1—1

P = U Jio

Jj1=0
where P, = [a§j1)> ) ) X Hz 2[6617 )
* When m = n, P is fully decomposed into subcells:

k1—1ko—1 kn—1

P=UU- U P

J1=0 j2=0 Jn=0

Shared faces between neighboring cells:

« From equality (8.1), neighboring subcells in the decomposition share common (n—1)-dimensional
faces. For example:

* If Pyj,. 4, and Py, ;o differ only in one index (e.g., j1 # ji but jo = jo, ..., jm = J.,), then
their boundaries intersect along an (n — 1)-dimensional face.
This structure ensures that the degree is additive across neighboring subcells, as shown in Step

().
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Induction hypothesis:

» Assume that for any cell P decomposed into subcells up to dimension m = n — 1, the degree

satisfies:
ki—lka—1  kp—1

deg f(Poy)=>_ Y -+ > deg f(Pjs.jun¥) (8.3)

Jj1=0 j2=0 Jm=0
for almost all y € R"™.

Base case (m = 1):
* When m = 1, the cell P is decomposed along the first coordinate:

k1—1

P:UPJU

j1=0

where:
n

41
Py, = lag",ai" ") x [ Jlas, o).
i=2

* By step (1), the degree satisfies.

k1—1

deg f(P,y) = > _ deg f(P;,,y),

Jj1=0

for almost all y € R".

Base case (m = 1):

» Assume the hypothesis holds for m = n — 1. We now prove it for m = n.

Decompose P:

« Using equality (8.2), write:

k1—1ko—1 kn—1

P=U U U P

Jj1=0 j2=0 Jn=0

Decompose intermediate cells:

* Each intermediate cell P; ;, ;. can be further decomposed along the (m + 1)-th coordinate:

kmy1—1
Py s = U J1j2-gmim1-
Jm+1=0
* By Step (1), the degree satisfies:
Km1—1
deg f(P, Jij2. Jm’y) = Z deg f(Pj1j2---jmjm+17y)7
Jm+1=0

for almost all y € R".
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» Summing over all indices j1, ja, . .., jm, we obtain:

k1—1ko—1 km—1

deg f(Py) =Y > -+ > deg f(Ppjp.jury)-

Jj1=0 j2=0 Jm=0

* Replacing P, j, ;.. with its decomposition along the (m + 1)-th coordinate, we get:

k1—1ko—1 kn—1

deg f(P,y) = Z Z Zdegf ijadny Y

Jj1=0 j2=0 Jn=0

for almost all y € R"™.

Step (3) : General decomposition into disjoint cells

o Let P =[] [ai,b;) and Py = T, [, d™) (k = 1,...,m) such that:

pP= 6 P,
k=1

and the Py are disjoint.

Refinement of partitions:

) gy la;, b;). For each coordinate i, order all of the numbers c ) and d; (k)

* In this case, [c;”, d;

(k=1,2,...,m) in the form of an increasing sequence:
a; = ago) < agl) <-e < agki) =b;. (8.4)
* This refinement partitions P into subcells P; ;, ;.. where:

n

'lejQ---jn = H[ag‘h)’ ag‘h—i_l)]

=1

Family of subcells:
* Denote by Tj, the family of subcells P; ;, ;. that belongto P, (k =1,...,m).

* Since the Py, are disjoint, each subcell P ;,. ;. belongs to exactly one family Tj.

Applying formula :
« Using formula (8.3) with m = n, we have:

k1—1ko—1 kn—1

deg f(Poy)=>_ Y -+ deg f(Pj.ju: ).

J1=0 j2=0 Jn=0

for almost all y € R".
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* Since each P;;,. . ;. belongs to exactly one Py, , we can group terms according to families T},:

k1—1ko—1 kn—1

deg f(P, y) = Z Z T Z deg f(Pj1j2~~-jn7y>

71=0 j2=0 Jn=0

Z Z deg f(Pj1j2...jn7 y)
k=1

Pjjo...in €Tk

I
NE

deg f(Px,y)

b
Il

1

for almost all y € R".

Compact manifold with boundary:

Let K be a compact n-dimensional manifold with boundary such that K # () and K C G. The interior
Int K = K \ 0K is a boundaryless manifold.

8.3.1 Definition : Degree of a mapping over a compact set

Let f : M'™ — M™ be a continuous map between oriented n-manifolds, and let K C M be a compact
connected subset (K # () such that f~*(K) is compact.
Then the induced map on homology:

for Hy(M', M"\ f7H(K)) = Ho(M, M\ K)

sends the fundamental class o1 to an integral multiple of ox. That is, there exists an integer
called the degree of [ over K, denoted deg;, f, such that:

f*(Offl(K)) = (degK f) *0K.

Special cases

« If K =0:
The degree degy; f is not defined. By convention, we can agree that:

degy f =7 (the set of all integers).

« If K = {y} is a single point and M, M' are open subsets of S™:
The definition of deg [ reduces to the classical degree of a map at a point (see Section IV.5).

— If fHK) =0 (eg., ify & im(f)), then:
deg, f = 0.
— If f is the inclusion map of an open subset M' C M, with orientations agreeing, then:
degy f =1 forevery K C M’
— More generally, if [ is a homeomorphism from M’ onto an open subset of M, then:

deg, f ==+1 forevery K C im(f).

81



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

8.3.2 Generalization to larger compact sets

It is sometimes convenient to replace f~'(K) with a larger compact set C > f~1(K), provided C
satisfies certain conditions:

« Compact support: Let C C M' be a compact set such that f~*(K) C Int(C). Then the degree
deg;; f can be computed using C' instead of f~'(K), because:

H,(M',M'\ C) = H,(M', M\ f~/(K)).
 Homotopy invariance: If [ is homotopic to another map g with g~*(K) compact, then:
degy f = degg g.

* Additivity over disjoint sets: If K|, K, C M are disjoint compact sets, and f~'(K, U K5) is
compact, then:

8.3.3 Proposition (Additivity)

Let f : M" — M be a continuous map between oriented n-manifolds and K C M a compact set as
in Definition 4.2. Suppose that M’ is a finite union of open sets M (A = 1,2,...,r), such that the
sets

K\ = fH(K)n M

are mutually disjoint. Then:
degy f = degy f*,
A=1

where fA = f|M; is the restriction of f to Mj.

Key observations
1. Each K} is compact, since f~1(K) is a topological sum of the K}.
2. The additivity reflects that the global degree is the sum of the degrees over disjoint parts of the
preimage.
Proof 8.3.3. Step 1: Decomposition of homology groups
Consider the maps:
D H. (M, M}, — K5 B B, (M — £ (K)) S B (M M- Q)

A=1

where i} are the inclusion-induced maps, and QQ € f~'(K) is an arbitrary point.

Step 2: Behavior of fundamental classes

Applying i, o i} to the fundamental classes ok gives:

(iA(OKf\)) _ {OQ lf@ € KS\:

iQ
* 0 otherwise.

*

This implies:
in({ox}) = 05110,

where 01 is the fundamental class of the preimage.
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Step 3: Global contribution and degree

Now consider:
(degg [) o = fu (05-1(x0))

—f{z (0k3)}
—;fﬁ i)

= (Z deg f’\> 0K
A=1

By comparing both sides:

degy f = Z degy fA-

A=1

Interpretation of deg,, f

Number of points in f~!(p) counted with multiplicities

deg, [ = Z k(z

zef-1

where k(x) is the local degree at x, determined by the orientation:

k() +1 if z is positively oriented,
xT) =
—1 if x is negatively oriented.

Detailed explanation of the proof

Step 1: Direct sum of homology
H,(M',M' — [~Y(K)) = D H, (M, M} - K}).
A=1

Step 2: Pushforward of fundamental classes
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Step 4: Conclude

f*(Offl(K)) = (degg f)ox = (Z degy, f/\> OK.
A

Examples

Example 1: Map between spheres
Let f:S" = S", and K = {p}. If f*(p) = {x1,...,2,}, then:

deg, f = > k()

Example 2: Disjoint subsets
If K = Ky UKy and K; N Ky = ), then:
degy f = degg, [+ degy, [.

Remark 8.3.1. . Homotopy invariance: If { ~ g and both have compact preimages of K, then
degy [ = degg g.

2. Locally-finite variation: If { : G — R™ has locally finite variation, then f~'(y) N P is finite
for almost every y.

3. Non-oriented manifolds: The mod 2 degree:

degr f mod 2= |f71(K)| mod 2.

Summary

degy f = Z degy an
A=1

with f>\ = f‘M’

A
This expresses the degree as a sum of local contributions from disjoint subsets of the preimage.
Isolated preimage point:

A point x € G is said to be isolated in the set f~'(f(z)) if there exists a neighborhood V (z) such
that:

FH(f(@) NV(x) = {z}.
8.3.4 Multiplicity k(x)

The multiplicity k(x) of a point x is defined as the degree deg f (K, f(x)) for any compact n-dimensional
manifold K with x € Int K and K C V(x), where V (x) is a sufficiently small neighborhood of x.
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8.3.5 Additivity of degree
The degree satisfies the additivity property:
deg f(K1 U Ka,y) = deg f(K1, y) + deg f(K2,y),
provided K, and K, are disjoint compact manifolds with boundary and y ¢ f(0K; U 0K>).

Lemma 8.3.2. If z € G is an isolated point of the set f~'(f(x)), then there exists a neighborhood
V(x) of x such that for any n-dimensional compact C°-manifold K with boundary satisfying x &
Int K and K C V(x), the degree deg f(K, f(x)) is defined and does not depend on K.

Proof 8.3.4. Compact parallelepiped /:

» Construct a compact parallelepiped K, C G such that x € Int Ky and K contains no other
points of [~(f(x)) except x.

* This ensures that if v' € Ky and 2’ # x, then f(2') # f(x).
Claim V (x) = Int K:

* Let K be any compact n-dimensional manifold with boundary such that K C Int Ky and x €
Int K.

* Decompose Int K as:
Int Ky = Int K U (Int Ko \ {z}),

where both sets on the right-hand side are open.
Degree over Int K \ {x}:
* Since f(x) ¢ f(Int Ko\ {x}) (by construction of K,), the degree:

deg f(Int Ko \ {z}, f(2)) = 0.
Additivity of degree:
* By the additivity property:
deg f(Ko, f(x)) = deg f(Int K, f(x)) + deg f(Int Ko \ {x}, f(x)).
* Substituting deg f(Int Ky \ {z}, f(z)) = 0, we get:
deg f(Ko, f(x)) = deg f(Int K, f(x)).

Conclusion:

* The degree deg f(K, f(x)) is independent of the choice of K, as long as K C Int Ky and
x € Int K.

* Define k(x) = deg f(Ky, f(x)), which serves as the multiplicity of x.

Lemma 8.3.3. Let P be a cell (e.g., a parallelepiped). Assume that the degree deg f(P, f(x)) is
defined and the set f~'(f(x)) N P consists of a single point .
Then z is an isolated point of {~*(f(x)) N P, and:

deg f(P, f(x)) = k(z).
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Proof 8.3.5. Definition of deg f (P, f(x)):
* By assumption, the degree deg f(P, f(x)) is defined, meaning there exists € () > 0 such that:
f(x) ¢ f(OK(P)) forall0 < e < epq).

* Isolation of x:

Suppose ¥’ # x and x’' € f~1(f(x)).
Then f(2') = f(z).

* For sufficiently small € > 0, 2’ ¢ K.(P) because x' ¢ P or z' lies outside K_(P).

Contradiction argument for 2’ ¢ Int K.(P)
Assume ¥’ # x and 2’ € f~1(f(x)). To show that ' ¢ Int K_(P), we proceed as follows:

Assumption:

Suppose x' € Int K. (P) for some ¢ such that 0 < g9 < €f(y).
This implies:

a; — g < Tt < b;—eg, foralli=1, .. n.
Contradiction with 2’ ¢ P:

* By the assumptions of Lemma we have x' ¢ P, thus, at least one of the inequalities
a; < x; < b; does not hold.

* Since x, < b; — g¢ < b; for all i, it must be that x; < a; for some index i,. Specifically,
Qig > Ty -
Define ¢;:
* Define
£ = 121%};{@ — x5} > 0.

* By construction, €1 > 0, and the following chain of implications holds:

a; —eo < T foralli = ey >a;—x, foralli = &y > ¢

Verification of 2’ € 0K, (P):

» For ¢4, consider the shrunken parallelepiped

* By definition of €1, we have:
a;—e1 < a, <b—e; foralli,
with equality holding for some index 1y:
Qi — €1 = T}

This implies ' € 0K, (P).
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Contradiction with 2’ ¢ 0K, (P):
* Since 0 < €1 < €9 < £4(g), it follows that f(x') # f(x) fora' € OK. (P).

* Therefore, ' ¢ OK.,(P), leading to a contradiction.

' ¢ Int K. (P) forany > 0.

Localization of = in K.(P):

Behavior of :

* Since x € P, for sufficiently small € > 0, we have:

a;—e<x; <bj—e foralli=1,... n.
* This implies x € Int K.(P) for 0 < &€ < ().

Exclusion of other points:
* Any point ' # x satisfying f (') = f(x) lies outside K.(P) for sufficiently small € > 0.
» Specifically,
o' ¢ OK.(P)UInt K.(P) = K.(P).
Isolation of x:
« For0 < e < ey theset f~1(f(x)) N K.(P) consists only of x.

e Thus, x is isolated in set f~'(f(x)) and single point of the mentionel set inside the parallepiped
K.(P).

Obviously, any set Int K.(P) with 0 < € < €(,) has the desired properties of the neighborhood V (x)
in Lemma .

In addition,

deg f(P, f(z)) = deg f(K.(P), f(x)) = k(z).

Corollary 8.3.1. If x is an isolated point of the set [ ~*(f(x)), then there exists a neighborhood V ()
of the point x such that if P C V() is a cell and x € P, then:

deg f(P, f(x)) = k(z).

Obviously, it is enough to take the neighborhood V (x) given by Lemma 8.3.2; in this case, the set
f7Y(f(x)) N P consists of the single point x.
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Measures of oriented parts of the image of a
set

The references for this chapter are [43, 15, 24, 55, 13, 25, 50, 27, 2, 49/.

Definition 9.0.1. Let x be an isolated point of the set f~'(f(x)). The mapping [ is called positively
(negatively) oriented at the point x if k(x) > 0 (k(z) < 0, respectively).

» Fory € R", denote:
fity) ={z e 1) | k(@) >0} and f7'(y) = {x e [ (y) | k(x) <0}.

» Foraset E C G, denote

NH(E,y) = card(f:'(y) N E) ifthe set f'(y) N E is finite,
A 400 if the set f;l(y) N E is infinite;
and
-1 E : -1 Ei .
N7 (B.y) = {Card(f— W)NE) ftheset § () s fnite

+o0 if the set f~*(y) N E is infinite.

* Since the sets f;'(y) and f="(y) are disjoint and f*(y) U f='(y) C f~'(y), the inequality
NI (E,y) + N7 (E,y) < Ny(E,y) holds.
Theorem 9.0.1. Let f : G — R" be a mapping with locally-finite variation. If P is a cell such that

P C G, then the functions N ]'f (P,y) and N; (P, y) are summable in R™ with respect to the Lebesgue
measure.

Proof 9.0.1. Let T = { P, } ", be a decomposition of P into disjoint cells.
* Define:

NE(y) =D xs+(Po)w).

* Where x ¢+ (Py)(y) is the indicator function of the set :
f+(Pe) = {y € R" : deg f (P, y) > 0}.

* By Theorem the function deg f(P) is measurable; hence, the set above is measurable as
well. (here x . (Py) is the indicator function of the set f(Fy)).
Then obviously the function N is measurable.
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Step (1): Monotonicity under refinement
Claim:

If a decomposition 7' refines T, then:

Ni(y) > Nt (y) foralmostall y € R™.

Refinement property:

o If 7' refines 1, then any cell P, € T can be written as:

mg
P = Pes,
=1

where Py ; € 7' are disjoint subcells of Py.

Additivity of degree:
* By additivity of the degree :
m
deg f(Py,y) = Z deg f(Pyi,y) foralmostall y € R".
i=1
(in particular, for almost all y € f,(Py))

» Ifdeg f(Py,y) > 0, then at least one of the terms (for the latter points 1), there exists an index
i, 1 <i < my, such that deg f(Py;,y) > 0.
This implies:

y € fr(P) =yelJf(P).

i=1

Indicator function inequality:

» The above implication leads to:
X+ (P)( <2Xf+ (Pri)(

» Summing over all k, we get:

m o mg

ZXH (P () <D D x4 (Pei)y) = Ni(y).

k=1 i=1

for almost all y € R”

Conclusion:

The sequence { N (y)}32, increases monotonically for almost all y € R”".
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Step (2): Indicator function and counting function
Claim:

For almost all y € R":

(a) Indicator function x ¢+ (P)(y):

* The function x s+ (P)(y) is defined as:

]-7 lf‘yef-F(P)a

0, otherwise.

Xf+(P)(y) = {

* Here, fi(P)={y € R":deg f(P,y) > 0}.
(b) Counting function N} (P,y):
» The function NJT(P, y) counts the number of positively oriented preimages of y in P:

card(f7'(y) NV P), if f7'(y) N P is finite,

Nf(Py) =
7 (Py) {+oo, if {1 (y) N P is infinite.

* Here, f{'(y) = {z € f(y) : k(z) > 0}.
We aim to prove that:

X+ (P)(y) < NJ(P,y) foralmostall y € R".

Existence of a cell F:

* From Theorem in (Step (2)), there exists a cell Py = [[;_,[a; — €9, b; + €¢) such that:

l. PLcG=PCPCqG
2. Theset f~(y) N Py is finite for almost all y € R™.

Fix a point y € R satisfying this property and such that x s, (P)(y) = 1. This implies:

y € fr(P), ie, degf(Py)>0.

Isolation of preimages:

* Since f~Y(y) N Py is finite, any point v € f~(y) N P is isolated. By isolating these points, we
can decompose P into a finite union of disjoint cells { P, }}'_, such that:

1. Each cell Py contains at most one point of f~*(y) N P.
2. Ifv € f~Yy)N Py, then k(x) = deg f(Py,y) (by Lemma8.3.3).
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Additivity of degree:
» Using the additivity property of the degree :

deg f(P,y) = Zdegf (Pr,y).

* Since deg f(P,y) > 0, at least one term deg f(Py,y) > 0. For such a Py, we have:
y € (P
Contribution to f'(y) N P:
 For each Py, containing a positively oriented preimage x € [ Y(y) N P, we know:

deg f(Pg,y) = k(z) > 0.

o Thus, x € f;'(y) N P, and the counting function satisfies:

N/ (Py) = card(f'(y) N P),

Inequality for x;, (P)(y):

* If xs, (P)(y) =1, theny € f.(P), meaning deg f(P,y) > 0.
From the decomposition P = |J,_, Py, it follows that:

deg f(P,y) Zdegf Py, y),

k=1
and at least one term deg f(Py,y) > 0. Consequently:

Nf(Py) = card(f(y) N P) > 1= x;5+(P)(y).

* If xy. (P)(y) =0, theny ¢ f.(P), meaning deg f(P,y) < 0.
In this case:
N{(Py) > 0= xy,(P)(y)

Conclusion: For almost all y € R":
X+ (P)(y) < NJ(Py).
Step (3): Lower bound on the limit

Claim:

lim N (y) < Nf(P,y) foralmostally € R".

5—00

Decomposition 7,:

* Divide P into 2°" smaller cells { P, ;}2"| with diam(P;;) = 27* diam(P).
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Monotonicity:

* From Step (1), the sequence { N (y)}32, increases monotonically:

Ni(y) < NS (y).

Ts+1

Limit exists:

* Since N} (y) is monotonic non-decreasing and bounded above by N;“(P, y), the limit

lim N (y)

S§—00

exists (finite or infinite).

Inequality:

* For any decomposition of the set P into disjoint cells T = { P} ', we have :
card(f ' (y anrd Aty NPy, e, N/ (Py) = ZN]T(Pk,y).

* By Step (2), the inequality x+(Pi)(y) < Nyi(Pg,y) holds for all P, and almost all y €

R™. Hence:
ZX# Pe)(

Ms

Pk; N;F<P7 y)
k=1
for almost all y € R™.

* Taking the limit as s — oo, it follows that :

lim N/ (y) < N]T(P,y).

S§—00

Step (4): Upper bound on the limit

Claim:

lim N (y) > Nf(P,y) foralmostally € R".

§—00

Finite case (N (P,y) = ¢ (g value is finite)):
 Suppose NJT(P, y) = gmeaning {7 (y) NP = {z1,...,2,}.

By acorollary to Lemma , there exist neighborhoods {V,,(x,,)}L._, around each .,
such that:

deg f(Pn,y) = k(zm) > 0
for any cell P,, C V,,(z,,) with x,, € Pp,.
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Neighborhoods:

* By the definition of the value k(z,,), the neighborhoods V,,(x,,) may be chosen pairwise dis-
joint.

* Assume that balls B(x,; ) are contained in 'V, (z,,).

(Choose 1o = miny << {rm}, where B(x,;rm) C Vip(2m).)

For sufficiently large s, the diameter of each subcell P, ; < ry.

(Ps

stm

1
:§diamP—>0 as s — 00.)

Hence, there exists an integer s, such that the diameter of P ; is less than r for all s > s¢. In
this case, if X, € P, then Py;  C B(Ty;rm) C Vin(m), and deg f(Psi,y) = k(z,,) > 0.

Thus, y € f+(Ps,iy) ,and the indicator function satisfies:

X f+(Ps i) (y) =1

Each x,, is in some Py ;  C B(Zp;7m) C Vin(Ty), and:
degf(PS,imay) =k(xn) >0=yc¢€ f—‘r(PS,im) = Xf+(P57im)(y) =L

Counting cells:

* Since the neighborhoods V,,(x,,) are pairwise disjoint, the corresponding subcells P;;  are
distinct.

* The number of such subcells equals ¢ = NJT(P, Y)-

Inequality:

 For sufficiently large s:

§—00

25n
Ni(y) = ZXf+(\p) (y) fors>so, ie, lim N'(y)=N;(P,y)
i=1

Then

 Taking the limit as s — o0, it follows that:

lim N (y) > N/ (Py).

-
S§—00 s

Infinite case (N, (P, y) = +o0):

. IfNJT(P, y) = +oo, then Ny(P,y) = 400 as well, which occurs on a set of measure zero

corollary to Theorem [7.2.1]
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Conclusion:

For almost all y € R™:

» From Steps (3) and (4), we have:

lim N (y) = Nf(P,y) foralmostally € R".

§—00

 Similarly, for the negatively oriented case:

lim N_(y) = N; (P,y) foralmostall y € R".

S§—00

* Since N (y) is measurable for each s (as a sum of indicator functions), and
N]?L(P, y) = lim,_o N1 (y).

It follows that N (P, y) is measurable.

Summability of N/ (P, y):
o The summability ofN;r(P, y) follows from its relationship to N;(P,y):

N7 (P,y) + Ny (Py) < N¢(P,y).

* Since Ny(P,y) is summable (by assumption of locally-finite variation), the functions N JT (P,y)
and N; (P,y) are also summable.

Lemma 9.0.1. Let f : G — R" be a continuous mapping. Then the following statements hold.:

1. If E =, Ex C G (union of an at most countable family of pairwise disjoint sets), then :

Ny(E) =) Ni(Ew).

2. IfEl C Es, then Nf(El) < Nf(Eg)
5. /B, CEyC - CEyC By C ... and E=\J°, Ey, then :

Ny(E,y) = lim N¢(Ep,y) foranyy e R";

4. IfE, D Ey D D E; D E1 D..., E=\, Ex, and N¢(E1,y) < oo, then

Ny (E.y) = lim Ny(Eg,y).

* If, in addition, f is a mapping with locally-finite variation, then similar statements are valid for
the functions N (E) and N; (E).
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Proof 9.0.2. [1]: Countable additivity of N,(E,y):

« statement (1), Let E = |, Ex, C G where {Ey},_ | is an at most countable family of pairwise
disjoint sets, then:

» Forany y € R" the equality

'y NE=0(f"'(y)NEy)  holds.
* Since the sets ets f _1(y) N L}, are disjoint, and their cardinalities add up:

card (f'(y) N E) = anrd (f"'(y) N Ey)

k

o Thus:
Ni(E,y) = > Ny(Eg,y).
k

e Similarly, the same argument applies to N;F(E, y) and N; (E,y):

[2]: Monotonicity of N,(E,y):

* statement (2), if E1 C Ej, then:

) NE C f(y)NEy

o This implies:

* The same applies to NJT(E, y) and N, (E,y):
N;_(Ehy) SN‘;—(EQay)? Nf_(Ehy) SNf_(EQay)
[3]: Limit properties of N;(E,y):
» The statements (3) :

« Let By C Ey C -+ and E = J;_, Ey, then:

fH )N E =0, (f(y) N Ey)
* By the monotone continuity of N;(E,y) ,we have :
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[4]: Limit properties of N;(E,y):
» The statements (4) :

* IfEy D EyD -+ and E = (o, Ex with N;(E\,y) < oo, then:
)N E =0, (f (y) N E)

* By the monotone continuity of N;(E,y) ,we have :

Ny(B,y) = lim Ny(Ep,y).
e The same properties hold for N}"(E, y) and N; (E,y).

Extension to N/ (E,y) and N (E, y):

The same arguments apply to N;F(E, y) and N; (E,y), since these functions also satisfy countable
additivity and monotone continuity.

9.0.1 Measures on the semiring of cells:
(a) Definitions of v}, v, and V}:

Let f be mapping with locally-finite variation and let P a cell such that P C G, define:

vi(P)= [ N{(Py)di(y) . vi(P)= [ Ny(Py)di(y),

Rn R"

VI(P) = v (P + v (P) = [ Ny(P) Nl

(these values are the measures of the positively and negatively oriented parts of the image of the cell
P, counted with multiplicities).

(b) Countable additivity

From Lemma statements (1)--(4), the functions N}“(E, y), Ny (E,y), and N;(E,y) are count-
ably additive on the semiring of cells. Therefore,

vf (U Pk> => vi(P), vy (U Pk> => v (P, V; <U Pk> => V(P
k k k 2 k k
where { P, }32 , is a disjoint family of cells.

(c) Lebesgue integral properties

The countable additivity of 1/;[, vy, and Vy follows from the properties of the Lebesgue integral:

/n SN (Poy)dha(y) = | Nf(Piy)dia(y).
k r YRn
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9.0.2 [Extension to o-algebras via caratheodory process:

Theorem 9.0.2 (Caratheodory extension theorem). Let A be an algebra of subsets of a set X, and let
o : A — [0, 00] be a countably additive pre-measure. Then there exists a measure yi on the o-algebra
o(A) generated by A such that:

1. p extends p, i.e., jt|a4 = po;

2. the extension is unique if | is o-finite.

(a): Caratheodory extension theorem:

The measures V;[, vy, and Vy are initially defined on the semiring of cells {P| P C GY}. To extend

these measures to more general subsets of G, we use the Carathéodory extension theorem, which
States:

1. Any countably additive measure defined on a semiring can be uniquely extended to a o-algebra.

2. The extended measure satisfies the same countable additivity and monotone continuity proper-
ties.

(b): Outer measure

We denote the corresponding o-algebras by Ql;{ Ay, and 2y, respectively, and preserve the notation
1/;[, vy, and Vy for the extended measures (we note that the o-algebra 2y, and the measure Vy are
defined for a continuous mapping f).

Define the outer measure V; (E) for any subset E C G as:

VH(E) =inf{V;(Q) | Qisopenand E C Q C G}.
A set E C G is measurable with respect to V; if and only if:
VIH(E) + Vi(G\ E) =V;(G).

(c): Extended measures

Using the Carathéodory process, we extend V;[, vy, and Vy to o-algebras Ql}“ 2y, and Uy, respec-
tively. These extensions preserve the notation V;r, vy, and Vy.

9.0.3 Regularity of the measures
(a) Regularity of V/;:

The measure Vy is regular, meaning:
- For any subset E2 C G, the outer measure V' (E) can be approximated by open sets:

Vi(E) =inf{Vy(Q) | Qis openand E C Q C G}.
- A set E C G is measurable if and only if there exist Gs-subsets K, H C G such that:
ECK, K\ECH, VyH)=0.
In this case:

Vi(E) = Vi (K).
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(b) Regularity of v and v} :

The same regularity properties hold for yj‘f and v, since they are defined similarly using N;F(E ,Y)
and N; (E,y).

9.0.4 Locally-finite variation :

* The assumption that f has locally-finite variation ensures that N (P, y), N;r (P,y), and N; (P, y)
are finite for almost all y € R" when P C G is a cell.

* This finiteness allows us to integrate these functions over R", defining the measures 1/;[, Vi,
and V.
9.0.5 Countable additivity :
The measures V;{, vy, and Vy are countably additive because the counting functions N; (E,y), Nf_ (E,y),
and N¢(E,y) are countably additive.
9.0.6 Monotone continuity:
The measures 1/;{, Vi, and V; satisfy monotone continuity:
* For increasing sequences Ey C Ey C -+, Vi(E) = limy_,o0 Vi (Ej),
* For decreasing sequences E)y D Ey D --- with V;(Ey) < oo, Vi(E) = limy_, V(Ek).

Lemma 9.0.2. Let f : G — R" be a mapping with locally-finite variation. Then the following
statements hold.:

+ - .
1. the measures V7, Vi, and vy are o-finite,
2. if K C G is a Borel set, then K is measurable with respect to the measures V5, y;[, and vis

3. the measure V; is regular, i.e., for any subset & C G, the outer measure of E is given by the

formula
Vi(E) =inf{V;(Q) | Qisopenand E C Q C G},

and a set /' C G is measurable with respect to the measure V; if and only if there exist Gs-subsets

K, H C Gsuchthat E C K, K\ E C H, and V;(H) = 0 (obviously, V;(E) = V¢(K) in this case).
The measures l/;_ and v, are regular in the same sense.

Proof 9.0.3. Step (1): Decomposition of open sets
Let () C G be an open set. By standard results in topology (see [Chapter V] [54]), there exists a

decomposition:
[ee]
Q = U Pk7
k=1

where:
» The Py are disjoint cells,

* The closures P, C Q.
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Since f has locally-finite variation, the values V(Py,), V}“(Pk), and v (Py) are finite for each k. Thus:
ViQ) =Y ViR, vi(@Q) =) vi(R), vi(Q) =) vi(R.
k=1 k=1 k=1

This shows that open sets are measurable with respect to Vy, 1/;{, and v .

Step (2): o-Finiteness of V;, v}, and v

* Since G is an open set, it can be written as a countable union of disjoint cells { Py, } 32 | such that
P, C G.

* For each cell Py, the measures Vi(Py), v} (Py), and vy (Py) are finite (by the definition of
locally-finite variation and Theorem [9.0.1).

o Thus:

Vi(G) =Y Vi(P), vi(G) =) vi(R), v (G)=) vi(F).

k=1 k=1

This implies that V, 1/}“, and v; are o-finite.

* Since open sets are measurable, Borel sets are measurable as well (in particular, compact sets,
Gs-sets, and F,-sets are measurable).

Step (3): Regularity of V;

* Assume that P = [[_,[a;,b;) is a cell such that P C G. In the proof of Theorem it was
shown that there exists cq > 0 such that:

PO = H[CL@ — &9, bz + 60) C G.
i=1
* Define a sequence of open parallelepipeds:

A =TT o - 2m).

=1

Then:

A13AQD"'DAkD"',P:ﬂAk, AkCﬁ then Vf(Ak)SVf(P0)<OOfOI"aH]{?.

k=1
* By the monotone continuity of Vy, we have:
Vi(P) = lim Vy(Ay).
Forany P C G and any €y > 0, there exists an open parallelepiped A such that:
ACPCG and Vi(A)<Vi(P)+e.
» For any subset E C G, the outer measure Vf*(E) is given by:
Vi(E) =inf{V;(Q) | Qis openand E C Q C G}.
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» Aset . C G is measurable with respect to V; if and only if there exist Gs-sets K and H such
that:
ECK, K\ECH, ViH)=0.

* [n this case:
Vi(E) = Vi (K).

» The same regularity criterion applies to the measures V;{ and v .

Application of caratheodory process

The measures Vy, vf, and vy are initially defined on the semiring of cells {P | P C GY}. These
measures satisfy countable additivity and monotone continuity on the semiring.
Extension to o-algebras

Using the Carathéodory extension process, these measures can be uniquely extended to o-algebras
Ay, Ql}“ and 205, which include all Borel subsets of G. The extended measures preserve the notation

Vi, vy, and vy
Measurability of borel sets

Since open sets are measurable with respect to Vy, I/;_, and vy, all Borel subsets of G are also mea-
surable. In particular, compact sets, Gs-sets, and F,-sets are measurable.

Measurability of sets in 2,

Existence of Gs-sets
For any E € Uy, there exist Gs-sets K and H such that:
ECK, K\ECH, and Vi(H)=0.

Since all sets considered are subsets of G, we have K C G and H C G.

Measurability of £
Assume E C K C G, K\ E C H, and V;(H) = 0, where K and H are G;-sets.

Since the continuation of a measure by Carathéodory gives a complete measure, the set K \ E is
measurable.

Hence, the set E = K \ (K \ E) is measurable.

Regularity of v; and v

The same arguments apply to V}L and vy, since they are defined similarly using Nf (E,y)and N, (E,y).

Measurability of &
A set E C G is measurable if there exist Gs-sets K and H such that:
ECK, K\ECH, Vi(H)=0.

In this case:
Vi(E) = Vy(K).

The same regularity holds for 1/;[ and vy .
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Approximation by open sets

For any subset 2 C G, approximate E from above by open sets () O E such that () C G. The outer
measure V; (E) satisfies:

Vi(E) =inf{V;(Q) | Qis open and E C Q C G}.

Approximation by compact sets

Similarly, approximate E from below by compact sets K C E. For any € > 0, there exists a compact

set K C E such that:
Vf(E) < Vf(K) + €.

Theorem 9.0.3. Let f : G — R" be a mapping with locally-finite variation. Then the following
statements hold.:

(1) If a set E is measurable with respect to the measure Vy, then the function N;(E) is Lebesgue
measurable and

Vi(E) = | N(E)dA,

Rn

and similar statements are valid for the measures 1/;{ and v .
+ —

(IIl) The inequality
V}“(E) + vy (E) > Vi(E)

holds for any E € 2.
(IV) If E is a compact set such that E C G, then the values V(E), v{ (E), and vy (E) are finite.
(V) Let G’ be an open subset of R™ such that G' C G and let f; = f|g. Then

EcA; & EcCGandEeAF,

and the equality v; (E) = v; (E) holds for such sets E. Similar statements are valid for sets
E e, and £ € Ay,

Proof 9.0.4. Part (I): Integral representation
Step (I.1):Integration representation

If E is an open set in G, it can be written as a disjoint union of "cells" Py (e.g., rectangles or other

simple measurable sets).
By Lemma the counting function N;(E) satisfies:

Ni(B) = 3 Ny(B).

By the definition of Vy, each term V(D) can be expressed as:

Vi(Py) = N¢(Py) dA,.

R"
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Since Ny(Py) is Lebesgue measurable by Theorem N¢(E) is also measurable.
Using the additivity of V; over disjoint sets, Summing over k, we get:

VHE)=> Vi(P) = s N¢(Py) d\, = . Ny(E) d,.
k=1 k=1

For the measure V7, l/Jf, and vy , the proof is similar (in this cas , we refer to Theorem

Step (I.2): Gs-Sets.

* If Eis a Gs-set (a countable intersection of open sets) with V;(E) < oo, it can be approximated
by a decreasing sequence of open sets Gy, such that E = (", G, where the sets G, are open.

* By Lemma there exists an open set G' C G such that:
ECG and ViG)<Vi(E)+1<oo.
» Consider the open sets define:
k
Qr = ﬂ G,NG"  Clearly.
p=1
Then:
GOG>Q1DQD--DQrD---, and ﬂQk:E.
k

e Since Vi (Q1) < Vi(G') < oo, the monotonicity of Vi implies:

k—o0

« Since Vi(Q1) = Jgn Nr(Q1) dX\, < o0, it follows that N;(Q1,y) < oo for almost all y € R™.
* By Lemma step (2) and (4), the equalities
Ny(E,y) = lim Ny(@sy) and 0< Ny(E,y) < Ny(Qu,v)

hold for almost all y € R".

* The function N¢(E) is measurable (for almost all y € R™, this function is the limit of the
sequence N¢(Qy) of measurable functions).

* By the Lebesgue theorem on majorized convergence,

N(E)dA,

Rn

m [ Np(Qx)dA, = lim Vi(Qy).

= li
k—oo Jpn
* By the monotone continuity of the measure considered,

lim V(@) = Vy(B).
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Step (I.3): Zero measure sets.

If Vi(E) = 0,By Lemma in (Step (4)), there exists a Gs-set K O E such that V;(K) = 0.

Since Ny(K,y) > 0 and [, Ny(K)d\" = 0, it follows that N;(K,y) = 0 almost everywhere
in R™.

By Lemma 0 < N¢(E,y) < N¢(K,y); hence, N¢(E,y) = 0 for almost all y € R™.

In addition, the function N¢(E) is measurable and

N{(E)dA, =0 = V;(E).

Rn

Step (I.4): Integral representation.

Assume Vy(E) < oo. By Lemma [9.0.2, there exists a Gs-set K such that E C K and V;(K \
E) = 0.
Since K =EU(K\ E)and EN (K \ E) = (), Lemma implies:

Ny(K,y) = Ny(E,y) + N (K\ E,y).

From (1.2) and (1.3), we have N;(K) and N¢(K \ E) are measurable functions. Hence, N¢(E)
is also measurable.

Since Vi(K \ E) = 0, it follows from (1.3) that N¢(K \ E.y) = 0 almost everywhere. Thus,
Ny (K,y) = Ni(E,y) almost everywhere.

Therefore:
Ni(E)dN, = Ni(K)d\, = Vi(K) = Vi(E).

R™ 1
This completes the integral representation for sets E with V;(E) < oc.

For the measures 1/;r and v, the same reasoning applies, as they are derived from V via the
Hahn decomposition.

Part (I1): Inclusion 21, C A} N2A;

If E € 2y, then by Lemma E = K \ Ey, where K is a Gs-set and Vi (E;) = 0.
By Lemma there exists a Gs-set H such that Ey C H and V;(H) = 0.
Since Vi(H) = [o, Ny(H)d\, = 0, it follows that Ny(H,y) = 0 almost everywhere.
The remark following the definition of N;r and N implies:

N7 (H)+ Ny (H) < Ny(H).
Hence, N}?L(H ) and N (H) vanish almost everywhere.

Consequently:
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» Since £y C H, the standard continuation argument shows that F, € QI}L N, Therefore:
E=K\E GQI}LHQLJI.
* Thus, Ay C A7 N AT

Part (III): Variation inequality
* If B €Ay, then & € Ql]f N2l By Lemma 9.0.1, we have:

Ny(E) = Ny (E) + N; (E).

From (1), the functions N;(E), N/ (E), and N (E) are measurable.

* Therefore:
vi(E)+vi(E)= | NA(E)d\,+ [ N;(E)d\,.

R™ R™

* Using the inequality N/ (E) + N, (E) < Ny(E), we conclude:

vi(E) +v;(B) < | Ny(B)d, = Vy(E).

R

This establishes the variation inequality.

Part (IV): Finiteness for compact sets

* Let E be a compact subset of G. Then the distance from E to R™ \ G is positive:

do =inf{p(z,2) |z € £,z € R"\ G} > 0.

» Foreach x € E, let A, be the open cube of diameter d centered at x, and let \!, be the corre-
sponding closed cube.(let A!, be the cell with the same faces).

s Clearly, ifv € E, then A/, C G, i.e. :

EclJa.clJA ca

zel zeE

* Select a finite covering { A, },_, from the covering {A,},cp. .
* Since f is a mapping with locally-finite variation:

Vi(Al) <oco for k=1,...p

* By additivity of V;:

Vi(E) < S V(AL ) < 0.

Tk
k=1

By (I1l), v} (E) and vy (E) are also finite.
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Part (V): Restriction to subsets
Let G' C G be an open subset, and let f; = f|q. For any set E C G':

» The multiplicity of a point x under fi is defined locally, so:
kf (z) = k(z) forallz € G'.
o This implies:
W) ={z e i) [ kp(@) > 0} ={z € f () NG | kp(z) > 0} = fH(y) NG

and
card(f, " (y) N E) = card(f ™" (y) N E) = N} (E,y) = N} (E,y).

* Forany E C G, the counting functions satisfy:
N/ (E.y) = NS (E,y).
Step (V.1):
* If E €A}, then E C dom f, = G".
* By Lemma in (step (3)), there exist Gs-sets K and H such that

K,HCG, ECK, K\ECH, and v;(H)=0.

* In this case,
v ()= | Nf(H)dh = | NG (H)dh = v, (H) =0,
and Lemma implies that EE € 2.

Step (V.2):
* Assume E € QL}L and E C G'. By Lemma there exist Gs-sets K and H such that:

K,HCG, ECK, K\ECH, and vi(H)=0.

* Define K1 = KNG and Hy = HNG'. Clearly, K1 and H, are Gs-sets.

» Since E C GG, it follows that:

ECKl, Kl\ECHl, and I/?(Hl) =0.
* By the same reasoning as in (V.1), we conclude that V}E (Hy) =0.
* By Lemma this implies E € Ql}“l

» For such sets E, the equality of measures holds:

vi(E) = 5 N} (E)d\, = / N (B)dh, = v (B).

* The proof for A} is similar in the proof for Uy, we apply the obvious equality:
fffyYnNE=f'yYnE forEcCG.
This completes the proof of Theorem [9.0.3
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9.0.7 Definition Of orientation-preserving homeomorphism

On any topological n-manifold M, define an orientation of M to be a function i defined on M such
that for each input x € M, the output (1(x) is one of the two generators of the infinite cyclic group
H, (M, M \ {z}), and the following property holds:

* for each embedded open n-ball B C M, there exists a generator g of the infinite cyclic group
H, (M, M \ B) such that for each x € B, the inclusion-induced homomorphism

H,(M,M\ B) — H,(M, M\ {z})
maps i to pu(x).

* Now one proves:

Theorem 9.0.4 (and definition). For every topological manifold M, exactly one of two possi-
bilities holds:

1. either M has exactly two orientations, in which case we say that M is orientable;

2. or M has no orientations, in which case we say that M is nonorientable.

* This theorem is one of the preliminary steps to the proof of Poincaré Duality, see for example
As explained in [2], orientation on a topological manifold involves choices of local generators
of relative homology groups.

* In fact, proving that the relative homology groups H,,(M, M \ B) and H,(M,M \ {z}) are
infinite cyclic is also one of the preliminary steps.

» Let M be a connected topological manifold.lf M is nonorientable, then it makes no sense to ask
whether a homeomorphism f of M preserves orientation, and the whole concept of “preserving
orientation” is undefined for M.

» If on the other hand M is orientable, then to say that a homeomorphism f : M — M is
orientation-preserving means that for either of the two orientations i of M, and for any v € M,
the induced isomorphism

fe: Ho(M, M\ {x}) — Hp(M, M\ {f(2)})
takes p(x) to p(f(x)).
9.0.8 Definition Of reverse orientation homeomorphism
* Let ¢ be the homomorphism and F' an arbitrary lift. Then define

B(x) = F(x) — x.

* Note that this is continuous because ¢ is a homomorphism, and continuous itself (and so F, its

lift, is too).
* See then that a fixed point of ¢ means

o(r)=xz= F(z)=x+ k= [B(x) € Z.

106



Integration on Manifolds With Locally-Finite Variations University of Ghardaia

* So it suffices to show that 3 is valued at least at two different integers.

» Then see, using that

Flx+k)=F(z)+k

(easily proven as an exercise, by induction, making use of the fact that ¢ preserves orientation),
that
p(1)=F1)—-1=F0)+1—-1=F(0)=p(0) +2.

* This means that [3, a continuous function, increases by 2 between the inputs 0 and 1.

» This means it must take on two integer values in between, by the Intermediate Value Theorem
(graph [ against x if you're not convinced).

* And therefore, these two distinct values correspond to two distinct fixed points of our original
function ¢, as required.

Theorem 9.0.5. Let Gy and G5 be connected open subsets of R"™ and let p be a homeomorphism of
G4 onto Gs. If f is a continuous mapping of G into R", then the following statements hold:

1. fis a mapping with locally-finite variation < f o p is a mapping with locally-finite variation;
2. B ey, & @(E) € Uy, in this case,

Viop(E) = Vi(0(E));
3. if p preserves orientation, then

EcAf

fop & P(E) € QI}L and FE €A

fop A SO(E) S Ql;a

in this case,
Vieo(E) = vi(p(E)) and vy, (B) = v (p(B));

4. if p reverses orientation, then

EcAf

fop & P(E) €AL and E €A,

fop g SO<E) € Ql}_a

in this case,
v (B) = vi (9(E)) and vy (E) = v} (o(E)).

Proof 9.0.5. Part (1): Locally finite variation
Step(1.1):
First, we prove that Nyo,(E) = N¢(p(E)) for any E C Gi.

* Since @ is a bijection, the following implications hold:
o ((fop) (W)NE) = [ (y)Np(E).
* Taking the cardinality of both sides, we get:
card ((f o)™ (y) N E) = card (f~(y) Np(E)).
* By definition of the counting function N, this implies:
Nyop(E,y) = Ny ((E), y).
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Step(1.2):

Let f be a mapping with locally finite variation, and let P C G1 be a cell. Then:
* P is a Gs-set, and since o is a homeomorphism, p(P) is also a Gs-set in Gs.
* By Lemma ©(P) the set is Vi-measurable.

Since the set p(P) is compact, V(¢(P)) < 00

Using (1.1) and Theorem 9.0.3, we have:

Viep(P) = | Nyop(P)dAn = [ Ny(o(P)) dAn = Vi(p(P)) < oo.

R™ R"
Vi(p(P)) < o0
» Thus, f o is a mapping with locally finite variation.

s The converse statement follows similarly because = is also a homeomorphism.
Part (2): Measurable sets and total variation
If E € Ayo,, then by Lemma there exist Gs-sets K, H C (G such that:
E=K\E, FE CH, Vi,(H)=0.
* Since  is a bijection, we have:

P(E) = oK)\ p(E1), @(E) Cp(H) C Gy ¢(K) C Go.

* Since y is a homeomorphism, (K ) and o(H) are Gs-sets; hence, these sets are V-measurable.

« Theorem 9.0.3and step (1.1) and step (1.2) imply that

Vile(H) = | Ny(p(H)dAi = | Nyop(H)dAy = Vyo (H) = 0.

Rn Rn

* Since p(E1) C p(H) and the measure V¢ is complete, we have (E,) € Uy and p(E) € Ay
(noting that ¢(E) = ¢(K) \ p(E1)).

* We apply Theorem and step (1.1) and step(1.2) once more to show that

Vi(p(E)) = [ Np(p(E))dA, = - Nyog(E) dXy = Vyoo (E).

Rn

1

* Since o~ is a homeomorphism and ¢(E) € Ay = A; o p o =1, it follows that

E=¢ ' (p(E)) € Asop;

thus, statement (2) is proved.
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Part (3): Multiplicity of points

» We claim that the multiplicity of a point v € G under the mapping f o o is defined if and only
if the multiplicity of the point p(x) under the mapping [ is defined, and:

kfop(w) = deg(p) - kr(p(x)).

* Assume that the multiplicity k;(¢(x)) is defined. By Lemma there exists a neighborhood V
of p(x) such that for any compact n-dimensional manifold K with boundary satisfying K C V,
o(x) € Int(K), and the degree deg(f(K), f(p(x))) equals k¢(o(x))(i.e., the degree does not
depend on K).

* Since p is a homeomorphism, o~ * (V') = Vi is a neighborhood of x.

* If K, is a compact n-dimensional manifold with boundary such that K; C V; and x € Int(K,),
then K = (K1) is also a compact n-dimensional manifold with boundary, K C p(V}) =V,
and:

p(x) € p(Int(K,)) = Int(p(Ky)) = Int(K).
* Using the remark preceding Lemma we have:

degyo, (K1, (f 0 ¢)(x)) = degy,, (Int K1, (f o ¢)(x))

and

degy ((K1), f(p(x))) = degy (Int o(K), f(@(x))) -

» From [Chapter VIII, §4, Corollary 4.6] [13], we have:

deg(f o (Int(K1)), (f o @)(x)) = deg(p) - deg(f(Int(K)), f(e(2))).
* Since degj,,, (Int Ky, (f 0 ¢)(x)) = deg ¢ - deg; (Int o(k7), f((2)))

And the above-mentioned properties of the set K = ¢o(K7) imply that the value
deg; (K, f((2))) = ky (¢(x))
does not depend on K, we conclude that the value
degyo, (K1, (f o p)(x)) = degp - ky (p(x))
does not depend on K, C V, i.e., the multiplicity
kop(z) = degp - kg (p())
is defined.

* Similarly, if the multiplicity k., () is defined, then the multiplicity k;(¢(x)) is defined as well
(since =1 is a homeomorphism).
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Part (4): Positive and negative variations

Assume @ preserves orientation, i.e., deg(¢) = 1,and N;(¢p(x)) = Nyop(z). Then:

* Foranyy € R" and E C (G4, the following equivalences hold:

r e F,
re(fop)ltWNE <= (xe(fop) ' (y),
k:focp(x) > 07
* which implies:
p(z) € p(E)
=1 fle@) =y <= o) e fi'(y) NelE),

o Thus.
i ) n(B) = o((fow)i(y) N E).

* Taking the cardinality of both sides, we get:
card(f; " (y) Np(E)) = card((f o) (y) N E),

* which implies:
N{(0(E),y) = N (E,y).

* A similar reasoning applies to the negative variation, proving:
Ni(p(E),y) = Ny (E,y).

* If p is a homeomorphism that reverses orientation, i.e., deg(p) = —1.
Then, for any measurable function f, the signed multiplicity function satisfies

kp(p(x)) = —kpop(x).
* In particular, for any y € R", we have the following identities:
Ry neE)=¢((fop)- (y) NE),
2y neE)=¢ ((fop)I(y) NE).
» That is, the preimages of positive and negative multiplicities are interchanged under .

» Consequently, the multiplicities satisfy:

Ni(@(E),y) = Npo(Eyy) o Np(o(E),y) = N (E.y).
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Part (5): Positive and negative variations under homeomorphisms

 Assume E € AT . By Lemma there exist Gg-sets K, H C G4 such that:

fopr
ECK, K\ECH, v} (H)=0.

* Since @ is a homeomorphism, p(K) and o(H) are Gs-sets in Go. Thus, these sets are measur-
able with respect to the measures 1/;[ and v .

« If p preserves orientation, then by Part (4) and Theorem 9.0.3, we have:

vi(p(H)) = NJr ) d\, = / oo (H =i, (H) = 0.

 If p reverses orientation, then:

v (elH) = [ N7 () an, / = (H)dA, = v (H) = 0.
* Since K \ E C H,and p is a bijection we have :

P(K\ E)=¢(K)\ ¢(E) C p(H).

* The completeness of the measure VJJ{ implies that if © preserves orientation, then:

pE)\p(E) €Ay = @(E)=o(K)\ (p(K)\¢(E)) € Af.

* Similarly, if @ reverses orientation, the completeness of v implies:

P(K)\p(E) €A, = ¢(E)e;.
» Using step (4) and Theorem we compute the measures:

 If p preserves orientation, then:

veE) = [ Nj(e(E) i, /  (B)dh, = v (B).

 If p reverses orientation, then:

i o) = [ NpeE) N = [ N7 (B)dh = v ()

* If E € Ay, , the proof is analogous. In this case, the roles of 1/;{ and v; are swapped depending
on whether ¢ preserves or reverses orientation.

s Finally, since ¢~ is also a homeomorphism, the implications:

p(E) e A7 = E €A, p(E) ey = E e,

Jop? Jop

hold. This completes the proof.
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Manifolds with locally-finite variations

The references for this chapter are [43]

Definition 10.0.1. Let G be an open subset of R™ and let fi,. .., f.. be the coordinate functions of a
continuous mapping f : G — R™ (m > n).

o Fora = {iy,...,in}, where 1 < iy < iy < ... < i, < m, wedenote by f, the mapping with
coordinate functions f;,, ..., fi.:

fal e e (tl,...,tn)GG.

» We say that f is a mapping with locally-finite variations if any of the mappings f, : G — R" is
a mapping with locally-finite variation.

Definition 10.0.2. Let M C R™ be an n-dimensional manifold whose topology is induced from R™.
We say that M is a manifold with locally-finite variations embedded into R™ if, for any point x € M,
there exists a neighborhood U of x in M and a homeomorphism f of R™ onto U with locally-finite
variations (local parametrization of the neighborhood U ).

Remark 10.0.1. If a local parametrization of a neighborhood U is a mapping with locally-finite
variations, then any parametrization of this neighborhood is a mapping with locally-finite variations
as well.

s Indeed, if f : R® — U and g : R* — U are homeomorphisms, then ¢ = f~1ogisa
homeomorphism of the space R" onto itself.

* In this case, g = f o @, and the formula g, = f, o @ is valid for any o« = {iy,... i}, by
Theorem the mappings g, and f, are (or are not) mappings with locally-finite variations
simultaneously.

It is well known that if U C R™ and there exists a homeomorphism f : R" — U, then it is
possible to fix an orientation on U.

» For example, one may proceed as follows: let g be one more homeomorphism of R™ onto U and
let g = fop.

» Ifdegp = 1, weinclude g into class I, if deg ¢ = —1, we include g into class II. The orientation
on U is fixed by a choice of one of the above classes as the class of "~ positive" orientations.
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 Let M be a manifold. Consider neighborhoods U,V C M suchthatUNV # 0; let f : R" - U
and g : R" — V be positive parametrizations of the oriented neighborhoods U and V. In
this case, o = [~' o g is a homeomorphism of the open set G, = g~ (U NV) C R" onto
Gy=f"HUNV)CR"

The neighborhoods U and V' are oriented consistently if degp = 1, the manifold M is ori-
entable if it is possible to choose a consistent orientation for all of its parametrized neighbor-
hoods.

Definition 10.0.3. Let M be an oriented n-dimensional manifold with locally-finite variations em-
bedded into R™ (m > n).
Let o = {iy, ... in}, whereiy, ... i, € Nand 1 <i; < ... <i, <m.
A subset EC M is called small o™ -measurable if there exists a neighborhood U of a point of M and
a positive parametrization f : R™ — U of U such that E C U and f~'(E) € 2} .
For such a set F, we set:

pie (E) = v} (f"YE)) by definition.

Lemma 10.0.1. The property of a subset E to be a small o -measurable set and the value ;i (E) do
not depend both on the neighborhood U O E and the positive parametrization f.

Proof 10.0.1. If E = (), the statement is obvious.

e Assume that E # 0, E C UNYV, f is a positive parametrization of the neighborhood U, and g
is a positive parametrization of the neighborhood V' .

o In this case, p = [~' o g is a homeomorphism of the set G, = g~ (U N'V) onto the set
Gy = f"HUNV)anddegp = 1.

* Denote ?a = fa|G2 and ga = ga‘Gp' in this case, ga = 7a © .

« IfEy = g7 '(E) € A, then the inclusion Ey C G and Theorem Part (V), imply that
F, € Qﬁ_ = 91+ op
Obvzously, Ey = f7YE) = p(FE)); since deg v = 1, we deduce from Theorem step (3),
that p(F,) = Es € Qlfa. Theorem implies now that Fy € Ql;f&.

 Similarly, E, € Ql;{a = By e AT .
* In this case, the following equalities hold:
v (g7 () = v, (Ey) - (Theorem 003,
Vg (By) = vf o (Er) = v (p(Ey))  (Theorem[10.0.1),
Vi (p(En) = vi.(E2) = vi (F(E))  (Theorem B.0.3).

e Hence,

Definition 10.0.4. A subset E C M is called o -measurable if, for any parametrized neighborhood
U C M, the set ENU is a small o™ -measurable set.

Lemma 10.0.2. The set of o -measurable subsets of an oriented n-dimensional manifold M C R™
with locally-finite variations forms a o-algebra that contains all of Borel subsets of M.
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Proof 10.0.2. Step 1: Small o"-measurable sets form a o-algebra

e Let f : R" — U be a positive parametrization of a neighborhood U C M. By definition of a
small o™ -measurable set :

E C U and E is a small o -measurable set < [~'(E) € A}

* where Qljfa is the o-algebra of sets measurable with respect to the positive variation measure

+
Vfot'

* Since Q[;[a is a o-algebra, we can apply operations (e.g., complements, countable unions, inter-
sections) on preimages under f~! to deduce that the collection of small o™ -measurable subsets
of U also forms a o-algebra.

o Thus, the family of small o -measurable subsets of U is closed under complementation, count-
able unions, and countable intersections.

Step 2: Complementation in M/

e Let E C M be an a*-measurable set. For any parametrizable neighborhood U C M, the
intersection E N U is a small o -measurable set.

* By step (1), the complement of E N\ U in U, denoted (M \ E)NU = U\ (ENU), is also a
small ot -measurable set.

* Since U is arbitrary, the set M \ E is o -measurable.

This shows that the family of o -measurable subsets of M is closed under complementation.

Step 3: Countable unions

* Let { E}} be an at most countable family of ot -measurable subsets of M, and let E = |, Ej.

* For any parametrizable neighborhood U C M, the intersection E,,NU is a small o -measurable
set for each k.

* Byitem (1), the union ENU = J,(Ex NU) is a small ot -measurable set.
* Since U is arbitrary, the set E =\, Ey, is a-measurable.

o This shows that the family of o -measurable subsets of M is closed under countable unions.

Step 4: Open sets are o -measurable

» Assume G C M is an open set. For any parametrizable neighborhood U C M, the intersection
GNUisopeninU.

« Since [ : R" — U is a positive parametrization, the preimage f~'(G N U) is open in R™.

» From the proof of Lemma open subsets of the domain of definition of

fo i R" = R" are V]Ta—measumble. Hence:
-1 +
f(GnNU) e Qlfa.
e Therefore, G N\ U is a small o -measurable set.
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e Since U is arbitrary, the set G is o -measurable.
* By step (2) and (3), any Borel set (which can be expressed as a countable union, intersection,
or complement of open sets) is also o -measurable.
Conclusion

The proof demonstrates that the set of o -measurable subsets of M satisfies the following properties:

* [t is closed under complementation.
It is closed under countable unions.

* It contains all open subsets of M, and hence all Borel subsets of M.

Thus, the collection of ot -measurable subsets of M forms a c-algebra that contains all Borel

subsets of M. Lemma is fully proven.

Representation of o™ -measurable sets

Denote by A} the o-algebra of all at-measurable subsets of M. Since the topology of M has a
countable basis of parametrizable neighborhoods, any set E € A can be represented as a union of
an at most countable family of small o -measurable sets:

E=|JE, E.CU,
k

where Uy, are parametrizable neighborhoods. If necessary, we can assume that the sets Ej; are pairwise
disjoint by considering their differences:

Ei:E1’ _E‘é:_E2\E117 Eé:E3\<E1UE2),

This ensures that the resulting family {E}} consists of pairwise disjoint, small o -measurable
sets.

Definition 10.0.5. For E = | |, Ey, (a disjoint union of an at most countable family of small -
measurable subsets), we set

e (B) =Y uk(By).

Lemma 10.0.3. The function pi; is well-defined on the o-algebra 217 and is a o-finite complete mea-
sure. If K C M is a compact set, then u} (K) < oo.

Proof 10.0.3. Step 1: Correctness of the definition

* By definition, for any measurable set E C U = f(R"), where f is a positive parametrization
of U:
pa (B) = v (f7H(E)).

)

* Since V}fa is a measure (as established in earlier results), it follows that ;" satisfies the prop-
erties of a measure on subsets of U.

* By Lemma the value 1} (E) does not depend on the choice of the parametrization f.
This ensures that u is well-defined.
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Assume E = \J, B}, = Up Ezla’ where B, C U, and E; C UI’) are disjoint unions of small
at-measurable sets.

Define Ey, = ExyNE,. These sets Ey, are pairwise disjoint, small, ot -measurable sets. Hence,
the implication

I_lEkp = i, (Ey) = Zﬂa Eip)

p
holds (we refer to the countable additivity of the measure i on subsets of Uy).

Similarly:
:ua EI Zluoa Ekp

S uEED) =)D ul(By) =Y > pi(Br) =Y ui(B).
k k p D k p

Thus, the value 1 (E) does not depend on the representation of E as a disjoint union of small
at-measurable sets. This establishes the correctness of the definition of |1} (by properties of
sums of nonnegative families, we can take sums of subfamilies and change the order of summa-
tion).

and:

Step 2: Countable additivity

Let E =, E) be a disjoint at most countable family, where each E); € 2.

Each E}, can be expressed as a disjoint union of small o™ -measurable sets:

B, = Ew.

p
E=JE =UJUEw
k k »p
where all the sets Ey, are disjoint. By definition:
HE) = 3 it (Biy).
k.p
Using the property of sums of nonnegative families:

= (B =) (Z ui(Ekp)> = ui(Ep).

Thus, i1} is countably additive.

Then:

Step 3: Completeness and o-finiteness

The completeness and o-finiteness of p; on subsets of a parametrizable neighborhood U follow
from the corresponding properties of V?’a (see Lemma 9.0.2).

Forany E € A}, E can be represented as a union of an at most countable family of disjoint,
small ot -measurable sets:
E=|JE
k

Since u is countably additive and each 1 (Ey) is finite, i} is o-finite on 2.
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Step 4: Finiteness on compact sets

Let K C M be a compact set.

Foreachx € K, there exists a neighborhood U, = f(R™) such that f is a positive parametriza-
tion of U,. Let P, C R" be a cell such that {~'(x) € Int(P,).

Define:
Gy = f(Int(F,)).

Since f is a homeomorphism, G, is open and G, C U,. By definition:
pa (Ga) = v, (fH(Go) = vf,(Int(Py)) < vp,(Py) < o0,
because the closure P, is compact and f., has locally finite variation (Theorem 9.0.3).

Forany x € K, we have x € G, i.e.,

Kc|]G.

zeK
Since K C |J,cx G we can extract a finite subcover:
p
Kcl|JG.,.
k=1
Thus, this implies:

pE(K) < 3 pE(G,) < .

k=1

This proves that 1 (K) < oo for any compact set K C M.

Conclusion

The proof demonstrates that 1) is well-defined, countably additive, o-finite, and complete on 2.
Additionally, i (K) < oo for any compact set K C M.

Extension to x_, and p,,

In a similar way, one defines pi_, and shows that it satisfies analogous properties. The oriented measure
Lo (E) is defined for sets E € AT N A with finite values of i) (E) and pu, (E) as:

ta(E) = 3 (E) — pg (E).

(the oriented measure of the a-projection of the set E). The collection Ry of all such sets forms a
0-ring of subsets of M.
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10.0.1 The o-algebra 2(

Similar to A}, the collection of subsets of M that are measurable with respect to the negative variation

Vi o Jorms a o-algebra denoted 2.
This o-algebra contains all Borel subsets of M, as shown in Lemma 9.0

1. By analogy with A}, the o-algebra 2L, consists of subsets of M that are measurable with respect
to the negative variation v, . Closure under standard operations follows as in Lemma 10.0.3

2. Since vy, is defined via positive parametrizations and open sets are measurable, all Borel sub-
sets of M belong to 2, .

The measure 1,

On 2, a complete o-finite measure p, is defined. For any compact set K C M, we have u;,(K) <
00.

1. The measure is defined by:
ta (B) = vy (fH(E)),

where [ is a positive parametrization of a neighborhood £ C U.
2. For any compact K C M, it can be covered by finitely many such Uy, with p_ (Uy) < 0o, so
fio (K) < oo
Oriented measure 1,

1. For E € AL N QA with finite p} (E) and p, (E), the oriented measure is defined as:
Ha(E) = 1o (E) = pi (E).
This reflects the net contribution under the projection associated with .

2. lq is well-defined and inherits additivity and finiteness from .

The collection R,
Define:
Ry={ECM|EE¢€ ﬂ(%; N2 and !t (E), u,, (E) < oo for all a}.

Then SRy is a 6-ring of subsets of M, meaning it is closed under differences, finite unions, and count-
able intersections.

1. Properties:

* Closed under differences, since A} N A is a o-algebra.
* Closed under finite unions.

e Closed under countable intersections.
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Simple n-vectors in R"™

Let e; denote the standard basis vectors in R™. Forn < m and indices 1 < 11 < --- < 1, < m, the
simple n-vectors e, = e;, \ - -- N\ e;, form a basis for the space of n-vectors in R™.

1. Forindices 1 <11 < - < 1, < m, the wedge product e,, = e;; \ --- A e;, defines a simple
n-vector.

2. Each « defines a projection onto the subspace spanned by the e;,, and the measures 1= and ju,,
are constructed with respect to these projections.
Conclusion

* This explanation clarifies the construction of the o-algebras U, the measures i, and the
oriented measure [i,.

* Additionally, it defines the d-ring Ry and the role of simple n-vect

Definition 10.0.6. The mapping from R, into the space of n-vectors defined by

pr(E) = pa(E)ea, E € Ry,

is called the standard vector measure on an n-dimensional orientable manifold M with locally-finite
variations that is embedded into R™ (with m > n).

Theorem 10.0.1. Let M be an orientable n-dimensional manifold with locally-finite variations that
is embedded into R™ (m > n).
Then the following statements hold:

1. Compact subsets of the manifold M belong to Ry,
2. The function ) is countably additive on R );;

3. If M is a manifold with the same support and inverse orientation, then Ry = Ry
and iy = —pipr.

Proof 10.0.4. Step 1: Compact subsets belong to ‘R,

By Lemmas |10.0.2 and |10.0.3, any compact set K C M satisfies:

1. K is a"-measurable and o~ -measurable for any o = {iy, 19, ... ,1,},

2. The values i (K) and u, (K) are finite.

» Thus, K € Ry by definition, since Ry, consists of sets that are measurable with respect to all
projections « and have finite measures u and |i7,.

* This proves that compact subsets of M belong to *R),;.
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Step 2: Countable additivity of 1),

* Recall that the space of n-vectors in R™ is finite-dimensional. Convergence of series in this
space is equivalent to coordinate-wise convergence in any basis.

* For each projection «, the measures ;1 and pi, are countably additive (Lemma 10.0.3).

* Since yy is defined as a vector-valued function whose components correspond to ;i and 7,
the countable additivity of s follows from the countable additivity of its components.

o Thus, jps is countably additive on R ;.

Step 3: Behavior under orientation reversal

o Let M' be the manifold with the same support as M but with the opposite orientation. Assume
f:R" = U C M is a positive parametrization of a subset U C M.

* Define ¢ : R" — R"™ as a homeomorphism that reverses orientation, such as:
for example @(x1,79,...,2,) = (—T1,T,...,Ty).

» Then g = f o p is a positive parametrization of U in M', because reversing the orientation of
© compensates for the reversed orientation of M'.

e Let E C U be a small a*-measurable set in M. By definition:
fUE) €], o parm(E) = v}, (fTH(E)).
» Using Theorem we know that @ reverses orientation, so:

g E) = (fTHE)) € Upopo = Uga

and:
parat(B) = Vi (fTUE)) = Vi, o (0 (fTHE))) = vpalg™ (B)) = pta-ar(E). (10.1)
* Thus, E is a small o~ -measurable set in M', and:
pot M (E) = o= (E).

o Similarly, applying =1 shows that the classes of small o -measurable sets in M and small
o~ -measurable sets in M' coincide. Hence:

Q[(;u+,M = Qla*,M’7 moF,M = QlaJF,M“

* Decompose an arbitrary set & € 2+ ) into a disjoint union of small measurable sets. Using
the above equalities eq it follows that:

Ma+,M(E) = ,ua*,M’(E) ) ,ua*,M(E> = Ma+,M'(E)-
* If B € Ry, then:

E () @arar Na-ar) =) Qa-ar N Ao arr) -

07
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o All the numbers fio+ p(E) = pio- ar(E) and pio- p(E) = pio+ v (E) are finite. This statement
is equivalent to the following statements:

E e Ry

o Thus:

tran (E) = proct v (E) = pra=nr(E) = pra= 1 (E) = proct m(E) = —prana (E).
* Taking the sum over all projections o, we conclude:

o (B) = —p (E).

Conclusion

The proof establishes the following:
» Compact subsets of M belong to ‘R ).
* The function [y is countably additive on R ;.
o If M' has the same support as M but opposite orientation, then Ry = Ry and iy = —fiag.

These results demonstrate the well-definedness and consistency of the oriented measure |1, on an
orientable manifold M.

Theorem is fully proven.
Remark 10.0.2.

* If a manifold M is orientable and disconnected, then this manifold admits more than two ori-
entations (the orientation of M is determined by orientations of its components).

* Since any component admits exactly two orientations, we may apply Theorem 6 to components
and show that Ry, = Ry in the case of an arbitrary (not necessarily opposite) orientation of
the manifold M’.
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Conclusion and open problems

In this work, we have introduced the class of n-dimensional manifolds embedded in R™ with locally-
finite variations, together with a corresponding vector-valued measure that allows for the integration
of differential forms in a manner analogous to the Lebesgue integral. This framework extends classi-
cal integration theory to a broader class of non-smooth geometric objects while preserving essential
analytical properties such as countable additivity and convergence theorems.

Several important open problems and conjectures arise naturally from this study:

1. The author conjectures that the definitions of a manifold with locally-finite variations and the
associated standard n-vector-valued measure are independent of the choice of basis in the am-
bient space R™. It is further suggested that such manifolds may coincide with those possessing
a locally-finite Favard measure or a locally-finite Hausdorff measure. In the second part of this
work, it will be shown that smoothly embedded manifolds in R™ do indeed have locally-finite
variations, and for these, basis independence of the integral is well known.

2. Another conjecture concerns the geometric examples of such manifolds. Specifically, the author
proposes that the boundary of any n-dimensional convex body in R™ provides an example of an
(n — 1)-dimensional manifold with locally-finite variation, even when not necessarily smooth.
For lower dimensions k < n, boundaries of k-dimensional convex sets may serve as similar
examples.

These open questions suggest promising directions for future research, particularly in clarifying
the relationship between locally-finite variations and other measures commonly used in geometric
measure theory, as well as in identifying new classes of manifolds admitting robust integration theo-
ries.
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