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Abstract

In recent years, deep learning-based single image super-resolution (SISR) has attracted
considerable attention and achieved significant success on advanced GPUs. Most state-
of-the-art methods require a large number of parameters, memory, and computational
resources, often resulting in inferior inference times on mobile devices.
In this thesis, we introduce a plain convolution network augmented with a nearest-
neighbor convolution module and 8-bit quantization to achieve real-time SISR on NPUs.
Furthermore, we evaluate the efficiency of our network architecture by comparing ex-
periments on mobile devices to select the tensor operations to implement. The model
comprises only 52K parameters, achieves 4× upscaling in 0.065 s on a Snapdragon
865 CPU smartphone, and by comparing to other SR methods, we found that our model
can achieve high fidelity super resolution results while using fewer inference times.

Keywords: Single image super-resolution (SISR), Quantization, Nearest-Neighbor Con-
volution, Neural Processing Unit (NPU).



Résumé

Ces dernières années, la super-résolution d’image unique (SISR) basée sur l’apprentissage
profond a suscité un intérêt considérable et a rencontré un succès considérable sur les GPU
avancés. La plupart des méthodes de pointe nécessitent un grand nombre de paramètres,
de mémoire et de ressources de calcul, ce qui entraîne souvent des temps d’inférence
inférieurs sur les appareils mobiles.
Dans cette thèse, nous présentons un réseau de convolution simple, complété par un mo-
dule de convolution par le plus proche voisin et une quantification 8 bits, pour obtenir une
SISR en temps réel sur les NPU. De plus, nous évaluons l’efficacité de notre architecture
réseau en comparant des expériences sur des appareils mobiles afin de sélectionner les
opérations tensorielles à implémenter. Le modèle ne comprend que 52K paramètres,
effectue un agrandissement 4× en 0,065 s sur un smartphone équipé d’un processeur
Snapdragon 865. En le comparant à d’autres méthodes de SR, nous avons constaté que
notre modèle permet d’obtenir des résultats de super-résolution haute fidélité tout en
réduisant les temps d’inférence.

Mots Clée : super-résolution d’image unique, quantification, convolution du plus proche
voisin, Unité de traitement neuronal (NPU).
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Introduction

Image enhancement or Image Super Resolution (ISR) as they are called in computer vi-
sion field, is a task aimed at enhancing low-resolution images by recovering high-frequency
details. Recently, with the advancement of deep learning approaches [31], impressive re-
sults in single image super-resolution have been achieved. It has been applied to many
real-world applications, such as digital photography, video compression, file transmission,
and even for the latest image generation model like Midjourny and Stable Diffusion as
a part of its process. However, the big problem with these high-performance models is
requiring a vast computational resource, which leads to limiting their deployment on edge
and mobile devices with strict constraints of low resources. As a consequence, there is
a growing need to develop light and efficient networks that are friendly to low-resource
devices to overcome this problem.

To address this challenge, there is increasing interest in developing lightweight and ef-
ficient network architectures capable of running in real time on mobile hardware without
sacrificing output quality. Bringing such models to devices like smartphones and em-
bedded AI accelerators would significantly expand the practical use of super-resolution,
making it accessible for daily applications where performance and efficiency must be bal-
anced.

In our thesis, we present different studies in image Super Resolution, from the tradi-
tional image enhancement approaches to the first deep learning state of the art algorithms
SRCNN [12], SRGAN [31] passing to the lightweight efficient one and their strategy to
design a friendly network system, such as re-parameterization, FLOP reduction, and net-
work quantization.

We propose a new lightweight efficient architecture inspired by [15], with just 7 con-
volutional layers and the nearest-neighbor method to reconstruct the desired high-quality
image.

The thesis consists of four chapters. In the first chapter, we present a background and
some basic concepts about convolutions neural network (CNN), Machine Learning (ML),
and then some details of the image super resolution. In the second chapter, we present a
detailed study of different approaches in image super-resolution and pass to the strategy

1



INTRODUCTION

used to overcome the complex models. In the third chapter, we provide a comprehensive
understanding of the steps we took to develop and train our image enhancement model, as
well as how we evaluated its performance. In the last chapter, we overview our experiment
results, the quantization process, and the performance of our model on mobile devices.
We discuss and analyze the results we obtained, insisting on the strengths and advantages
of the network.

2



Chapter 1

Background

In today’s life, image is an important source for users to exchange and obtain abun-
dant information in the form of pictures, videos, graphics, two-dimensional (2D) data,
three-dimensional (3D) data, etc. Due to that the quest for higher image resolution is a
persistent challenge with widespread applications. Whether in medical imaging, surveil-
lance, or various other fields, the demand for clearer images is constant. However, achiev-
ing this clarity presents significant obstacles. In this chapter, we delve into the world
of image resolution enhancement, exploring advanced technologies such as convolutional
neural networks (CNNs) and generative adversarial networks (GANs). These technologies
hold the potential to reshape how we perceive and utilize high-resolution images. We’ll
uncover the intricacies of this field, bridging the gap between art and science, where pixels
become the canvas for digital transformation, and innovation expands the boundaries of
visual perception.

1.1 Machine learning

It is the science of teaching computers to learn from data through a range of algorithms
that iteratively acquire knowledge from data. As the algorithms absorb more training
data, it becomes easier to generate increasingly accurate models. As your machine learning
algorithm is trained, it develops a model [23].

3



CHAPTER 1. BACKGROUND

Figure 1.1: Artificial intelligence encompasses machine learning deep learning and neural
networks.

1.1.1 Supervised Learning

In Machine Learning and Deep Learning, Supervised Learning is the labeled learning
paradigm. It refers to supervising machine learning by showing it examples (data) of the
task to be performed [48]. The supervised learning method is used for a wide variety of
problems: computer vision, regression, classification... Most Machine Learning and Deep
Learning problems involve supervised learning.

1.1.2 Unsupervised Learning

Unsupervised learning is best suited when the problem requires a massive amount of data
that is unlabeled. For example, social media applications, such as twitter, Snap chat, and
so on all have large amounts of unlabeled data.

1.2 Deep Learning

Deep learning (DL) is a subset of machine learning that focuses on training artificial
neural networks with multiple layers (hence "deep") to learn patterns and representations
from data. It is inspired by the structure and function of the human brain.

4



CHAPTER 1. BACKGROUND

1.2.1 Neural network

Typically, a neural network has three layers: an input layer, one or more hidden layers,
and an output layer. Using the input layer, data is ingested. Based on the weights applied
to the nodes, the data is modified in the hidden layer and in the output layer. There are
thousands or millions of simple processing nodes in a typical neural network [6].

Figure 1.2: The architecture of a neural networks.

1.2.2 Components of a Neural Network

1.2.2.1 Convolutional Layer

A convolutional layer is a fundamental component of a convolutional neural network
(CNN). It receives a three-dimensional input image, typically represented as a matrix of
pixel values with height, width, and depth (corresponding to the RGB color channels).
The layer applies a set of learnable filters, also called kernels or feature detectors, which
slide over the input image to detect the presence of specific features such as edges, textures,
or patterns. This process is known as the convolution operation, and it is essential for
extracting spatial hierarchies of features from the input image[30].

5



CHAPTER 1. BACKGROUND

Figure 1.3: Convolutional layer.

1.2.2.2 Filters

The filter or kernels consists of a two-dimensional (2D) array of weights, which represents
part of the image. While they can vary in size, a 3x3 matrix is usually used, this also
determines the size of the receptive field. the convolution can be:

• Valid padding: It is also known as no padding. It simply drops the last convolution
if its dimensions don’t match.

• Same padding: This padding ensures that the output layer has the same size as
the input layer.

• Full padding: In this type of padding, zeros are added to the input border to
increase the output size.

1.2.2.3 Activation Function

In CNN, the activation function enables nonlinear mappings between layers, which allows
the network to learn complex representations of the data. It would not make sense to
have several hidden layers if they did not behave in a non-linear manner, as one hidden
layer could achieve the linear transformation[17].

1.2.2.4 Batch Normalization

A technique used to improve the stability and speed of neural networks. It normalizes the
outputs of each layer to ensure that activations remain well-scaled. By doing so, it helps
the networks learn more efficiently and reduces the chances of unstable training behavior.

1.2.2.5 Pooling Layer

Is a technique used to reduce the spatial demension of feature maps while retaining im-
portant information. The pooling process sweeps a filter across the entire input, similar
to the convolutional layer, but the filter does not have weights. By aggregating values

6



CHAPTER 1. BACKGROUND

from the receptive field, the kernel populates the output array. The pooling layer consists
of two categories:

• Max pooling: When the filter moves across the input, it selects the pixel with
the highest value to send to the output array. This approach is more common than
average pooling.

• Average pooling: By moving across the input, the filter computes the average
value of the receptive field to be sent to the output array.

Figure 1.4: effect of using max pooling.

1.2.2.6 Fully-Connected Layer

Fully connected layers are self-explanatory. In partially linked layers, the input image
pixel values are not directly connected to the output image. Alternatively, each output
node connects directly to a node in the previous layer in the fully connected layer. In this
layer, classification tasks are performed based on the features retrieved by the previous
layers and their various filters. Fully connected layers use soft max activation functions to
produce probabilities from 0 to 1, while convolutional and pooling layers often use ReLU
functions to categorize inputs.

1.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) proposed by Yann Lucan[30], are the main ar-
chitecture behind computer vision applications. They consist of three different types of
layers:

• Convolution layer.

• Pooling Layer.

• Fully Connected Layer.

7



CHAPTER 1. BACKGROUND

Figure 1.5: The main component of CNN architecture.

1.3 Image Super Resolution Principle

1.3.1 What is image super resolution?

Super-Resolution (SR) is a branch of Artificial Intelligence (AI) that focus on enhanc-
ing the resolution and recovering fine details of low-resolution images by using mod-
els called image super-resolution. See figure 1.6. Those models are used to replicate a
high-resolution image (HR) from a lower-degraded version (LR), filling in missing high-
frequency information in the resulting super-resolution image (SR).

8



CHAPTER 1. BACKGROUND

Figure 1.6: example of the results produced by various SR methods, image from [59].

1.3.2 Image Degradation Model

Image super-resolution, as the primary goal of our research, involves the recovery of a
high-resolution image (HR) from a given low-resolution (LR) or degraded input. The LR
image denoted by ILR can be represented as the output of the degradation function, as
shown in eq 1.1:

IxLR = d (IyHR, δ) (1.1)

Where d is the SR degradation function, that is responsible for the degradation of HR
image to LR image, IHR is the HR image, (x, y) are the spatial coordinates (pixel position)
in the image, and δ are the parameters for the function d. Degradation is a complex
process that’s unknown. It’s influenced by a lot of things, like noise (sensor, speckle),
compression, blur (defocus and motion) [60]. Figure 1.7 shows a sketch map of the
degradation procedure:

9



CHAPTER 1. BACKGROUND

Figure 1.7: image degradation model

However, contrary to eq 1.1, most research studies prefer the following degradation
model:

IxLR = (IyHR ⊗ k) ↓s +n (1.2)

With k and n as the blurry kernel and noise, respectively. IyHR⊗k as the convolution
between the HR image and the blur kernel, and ↓s as a downsampling operation with a
scaling factor s. This study focuses on the degradation caused by downsampling oper-
ation, with commonly used scaling factors such as 2, 3, 4 or 8. Bicubic interpolation is
frequently employed as a standard downsampling method. The case of noisy images is
beyond the scope of this study.

1.4 Conclusion

In this chapter, we give a brief overview of Machine Learning (ML), Convolutional Neural
Networks (CNNs), and an introduction to image super resolution is presented. In the
next chapter we will discuss the different approaches of image super resolution.

10



Chapter 2

Related work

This chapter discusses the developing deep learning models for image super resolution on
mobile and edge devices. Early convolutional neural networks improved over traditional
methods, but are often too large for constrained hardware. More advanced architectures,
such as adversarial generative networks and transformers, further boost results, but re-
main challenging to deploy efficiently. Key techniques aim to make models lightweight
through techniques such as pruning parameters, quantization, and restructuring network
computations. Optimizing for both speed and accuracy simultaneously on real devices
poses challenges. Emerging approaches explore multi-objective optimization and hard-
ware co-design.

2.1 Image Resolution Enhancement Techniques

In these sections, we discuss three kinds of traditional image enhancement techniques for
super-resolution: interpolation-based methods [61], reconstruction-based methods [45],
and learning-based methods [16].

2.1.1 Interpolation-based Methods

Interpolation-based single-image super-resolution methods,(e.g: bilinear, bicubic, and
nearest neighbor) can be used to resize images, zoom them in, enhance images, reduce
images, register subpixels, decompose images, and correct spatial distortion [47].

primarily rely on mathematical techniques. and the core concept is to increase the
size of an image and estimate the value of an unknown pixel by considering its neigh-
boring pixels. Compared to other methods, these methods are computationally efficient
and straightforward and have the least computational complexities; however, they lack
accuracy and often produce smoothed results with a loss of fine details [62].

11



CHAPTER 2. RELATED WORK

Figure 2.1: Comparison between interpolation-based methods. Among these, Nearest
Neighbor (top right) produces the most jagged artifacts, Bilinear (bottom left) produces the

softest results and Bicubic (bottom right) produces the best balance overall. The ground truth
image (top left) can be observed for reference.

2.1.2 Reconstruction-based Methods

Super-resolution techniques that use reconstruction-based methods employ advanced knowl-
edge to narrow down the possible solution space, leading to more distinct details. This
approach involves applying linear constraints to the reconstructed high-resolution (HR)
image that is derived from a low-resolution (LR) image. The procedure models image
degradation by incorporating motion estimation and utilizing prior knowledge. The ob-
jective of these methods is to establish a forward observation model and solve the issue
using an image degradation model (shown in figure 1.7). However, these algorithms may
not be appropriate for large magnification factors or limited input images, as they might
produce images that are excessively smooth and lacking in high-frequency details [5].

12
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2.1.3 Learning-based Methods

A learning-based SISR method is also known as an example-based method because of
its high computational speed and outstanding performance. These methods typically
use machine learning algorithms to analyze statistical relationships between the (LR)
and its corresponding (HR) counterparts from substantial training examples. Inspired
by the sparse signal recovery theory researchers applied sparse coding methods [56] to
SISR problems. In parallel, many researches have combined reconstruction-based and
learning-based methods to reduce the artifacts brought by training example [66]. However,
learning-based methods may face challenges when dealing with large upscaling factors, as
the network’s ability to generate fine details diminishes with significant scaling [69].

2.2 Deep Learning Methods for Super Resolutions

Image super-resolution (ISR), is meant to produce a high-resolution (HR) image from
a counterpart low-resolution (LR) image that has been degraded, extensive methods of
deep learning have been applied to solve this task, ranging from the early method based
on convolutional neural networks (CNNs) [12, 13, 35, 51, 67] to recent promising (SR)
approaches based on generative adversarial networks (GANs) [31, 59], and transformers
[14, 38, 57], which have become popular for their ability to recover intricate image de-
tails. They find practical applications in tasks like improving image and video quality,
transitions, and display [63].

1. CNN-based Methods

Our first discussion will be about Image Super-Resolution utilizing Deep Convolu-
tional Neural Networks (SRCNN) [12], The authors successfully acquired to learn
the mapping function between (LR) images and their corresponding (HR) images
through a training process. As a result, the learned model could reconstruct the HR
image from its corresponding LR input image. See figure 2.2. SRCNN model in-
cluded a three-layer structure. also included a pre-processing step, where the input
image was upscaled using bicubic interpolation to the desired (HR) size. The goal
was to produce an image F (Y ) as similar to the ground truth image X as possible,
assuming that Y represents the LR image (with the same size as the HR).
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Figure 2.2: General architecture of the SRCNN model [12].

The above figure 2.2 shows the general architecture of the SRCNN model. It also
shows the kernel sizes fx × fx and filters (n1 and n2) for the different convolutional
layers. We can see clearly that the model takes a low resolution image patch, Y ,
and outputs a high resolution image, F (Y ). According to the authors, this process
requires three operations are explained next.

(1) Patch Extraction and Representation: First, extracting overlapping patches
from the low-resolution images. These patches will be fed to the SRCNNmodel,
while the high-resolution patches will serve as ground truth.

(2) Non-linear mapping: During this phase, the model will learn the mapping,
That is. it will learn to map the low-resolution patches to the high-resolution
ones.

(3) Reconstruction: The final layer, where the model generates the final high-
resolution image by aggregating the high resolution patches from the second
layer.

As we see the SRCNN With such a lightweight structure composed with 3 stages,
outperformed most of traditional SR algorithms. Moreover, it provided a reasonable
theoretical interpretation on its inherent mechanism.

Inspired by SRCNN, Several other models are presented to improve the performance
of deep learning methods based on CNNs. Most of them extract local features with
spatially invariant kernels, which are inflexible to model pixels’ relationships. Mo-
rover, to enlarge the receptive field, usually, they employ complex and very deep
network topologies [9, 42, 44, 67] to recover more details, resulting in much com-
putational resource consumption. Among them, A residual-in-residual structure
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and channel attention are proposed by Zhang et al [67] to train an extremely deep
network over 400 layers, whereas dense blocks [20] are employed in memory net-
work for image restoration method in [55] and residual dense network in [68] to
utilize intermediate features across all layers. Additionally, some works, such as
second-order attention network by [9], residual feature distillation network by [36],
and Pocs based super-resolution image reconstruction [44] improve super resolution
performance by analyzing feature correlations across spatial or channel dimensions.

2. GAN-based Methods

Different to previous works, generative adversarial networks (GANs) are most com-
monly used for SR applications [18]. As a result of GAN-based methods, HR images
can be generated with much sharper details [31] allowing for a much more realistic
reconstruction of texture details with a large upscaling factor.

Methods based on deep CNNs. It was described above, the majority of them trying
to minimize the loss between (SR) and (HR) images by using Mean Squared Error
(MSE) as the objective function. This optimization strategy is straightforward,
easy to implement, and can be applied to a wide range of tasks, including pattern
recognition and image processing. The (MSE), however, has some serious problems,
such as unfaithful results and a poor visual appeal. As MSE loss assumes that noise
is not a factor in image characteristics, it is incompatible with many applications.
This delicate quality and structure, on the other hand, is more sensitive to human
perception. Consequently, the perceptual and adversarial loss are introduced in
order to solve this problem. Based on feature maps extracted from deep CNNs
that have been pre-trained, the perceptual loss is calculated. With GANs, the term
adversarial loss is introduced, meaning the adversarial loss guides the network to
produce more realistic super resolution images.

In [31], Ledig developed the first generative adversarial network for SISR tasks,
which included both generators and discriminators (fig 2.3). It uses a novelty learn-
ing strategy that combines a perceptual loss and an adversarial loss. With the
help of these two losses, the SRGAN can improve the visual impact of SR images
produced.
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Figure 2.3: General architecture of the SRGAN model

The figure 2.3 shows the general architecture of the SRGANmodel. It consists of two
modules, the generator (G) and the discriminator (D). Each block has a generic deep
network structure, such as convolution layers (Conv), batch normalization (BN),
and parameterized ReLU (PReLU) in (G) with additional pixel-shuffle. A skip
connection is also implemented in G much like it is in ResNet [19]. In contrast, the
discriminator (D) uses Leaky ReLU non-linearity instead of PReLU. Furthermore,
SRGAN is based on the structure of both the VGG [52] and DCGAN [49] networks.

Moreover, Wang et al [59]. Proposed an improvement to SRGAN called enhanced
SRGAN (ESRGAN). Their approach enhances the SRGAN in three aspects: net-
work architecture, discriminator, and objective loss. Compared to SRGAN, ESR-
GAN produces more desirable images. anouther GAN framework propodes by Park
(SRFeat) [46]. Concerning perceptual loss and pixel-wise loss, SRFeat optimizes the
training process and produces fine, and detailed results.

3. Transformer-based Methods

Recently, Transform-based methods have been demonstrated to be highly effective
at modeling self-attention (SA) in input data in natural language processing [58].
A great deal of success has been achieved by transformers when it comes to natural
language processing, which has led researchers to explore how they can be applied to
computer vision problems. Multiple high-level vision tasks have produced interesting
results [14, 38, 50]. Generally, the input image is divided into nonoverlapping patches
of different scales as tokens, and the local feature extraction and SA modules are
applied to the collection of patches. Despite its effectiveness, SA is limited to low-
level tasks, such as SR, where feature sizes are typically large, because its complexity
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increases quadratically with feature size.

Efforts have been made to make SA more efficient for super-resolution, but the large
bandwidth consumption and computational complexity still make it time consum-
ing. Mei et al [42] divided an image into nonoverlapped patches to model local
features and SA independently, However, this approach can introduce artifacts at
the patch borders and potentially reduce the visual quality of the final images.

Another approach, SwinIR [34], took inspiration from the Swin Transformer [39]. It
starts by extracting local features using two successive 1x1 convolutions and then
applies SA within small windows (like 8x8) with a shifting mechanism to establish
connections with neighboring windows. However, using 1x1 convolutions with a
limited receptive field might not capture enough information for long-range SA.
Moreover, using small windows restricts the model’s ability to capture long-range
dependencies among pixels.

There’s also Restormer [65], which tries to streamline SA by focusing on channel
space, making it more efficient. However, this approach might sacrifice some impor-
tant spatial information necessary for generating high-quality images.

While deep learning based models have been successful in reproducing fine image
details, their deep and complex architectures pose challenges for practical deployment.
The high computational demands and memory consumption associated with these models
hinder their use in real-world applications, particularly on resource-constrained edge and
mobile devices.

2.3 Model Optimization for Mobile and Edge Deploy-

ment

While many challenges and works employ deeper and more complicated network architec-
tures for better image quality proposed recently, Their developed solutions are generally
evaluated on desktop CPU and GPU, making the obtained solutions unusable due to the
limited amount of RAM available on edge devices, the limited capacity of deep learning
operators, and the power consumption limitation. as a result of that it is demanded to
design lightweight and efficient super resolution models. We will now discuss the existing
designs and optimizing strategies for lightweight and efficient SR for resource-constrained
devices.
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2.3.1 Efficient Super Resolution Network

The main focus of existing efficient SR network design methods is to reduce the number
of parameters and FLOPs. Using a weight-sharing strategy, the parameter-reduction
strategy decreases the model parameters without changing the computational complexity
of the network. Using residual learning [27], the authors proposed a very deep SR network
(VDSR) along with a deep recursive convolutional network (DRCN) [28] to reduce the
number of parameters. And by combining residual and recursive learning, Tai et al
[54] improved the recursive convolutional network algorithm in order to achieve better
performance with fewer parameters.

As part of the latter strategy, low-FLOPs operations (such as group convolutions,
depthwise convolutions, and element-wise operations) and FLOP-free operations (such
as feature splitting, concatenation, and shuffling / reshaping) are introduced in order to
reduce FLOP consumption while maintaining competitiveness with large SR models. In
[2], Ahn et al. Presented an efficient cascading residual network (CARN) with group
convolutions. Hui et al. [22] presented the idea of compressing the number of filters per
layer by using an IDN (information distillation network). Their next step was to extend
IDN to an information multi-distillation network (IMDN) [21]. As a result they won the
constrained image SR challenge at AIM 2019.

With Liu et al. [37], the residual feature distillation block (RFDB) of the IMDN was
further improved and the AIM 2020 SR challenge was won. For the purpose of finding
a lightweight and effective SR network, authors in [6, 7] used FLOPs as a constraint of
latency objective. It is important to note, however, that fewer parameters and FLOPs
don’t necessarily translate to greater efficiency on mobile devices. Recent studies have
shown that not necessarily to lead into faster running speeds. In addition SR designs are
most often studied on GPU servers, which cannot accurately represent the speed at which
they run on limited devices.

2.3.2 Re-parameterization

Recentely, several studies have demonstrated the effectiveness of re-parameterization for
a variety of high-level vision tasks, including image classification, object detection, and
semantic segmentation. According to Arora et. al [3], reparameterizing the fully connected
layer enables quicker network training as the network depth increases. The DiracNet
[64] offers comparable performance to the ResNet series when training a plain CNN. in
ACNet [10] As part of its structural re-parameterization, uses asymmetric convolution to
enhance the normal convolution. RepVGG [11] boost the performance of traditional VGG
to the level of series [19] on several high level vision tasks by decouples a normal (3x3)
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convolution into multibranch block consisting of identity mapping, (1x1) convolution and
(3x3) convolution.

Although previous re-parameterization blocks have been validated on high-level tasks,
they have not been applied successfully to low-level vision tasks, sush super resolution
problem

2.3.3 Low-Cost Computation (quantization and pruning)

A number of attempts have also been made to reduce computational costs while preserving
SR performance. By quantizing features and weights of SR models, low-bit quantization
[8, 32, 41] significantly reduces the model size and computational cost, as a resulte of
reducing the number of bits required to represent each weight or feature component. in
the MAI 2021 Challenge [25] Ayazoglu et al. [4] presented an extremely lightweight,
quantization-robust real-time super resolution network. Du et al. [15], (Hence were we
inspired our architecture) aim to design and deploy an efficient architecture for 8-bit
quantization on a mobile device. To boost performance further, they proposed anchor-
based plain nets (ABPNs) along with Quantization Aware Training strategies (QATs).
In addition, many mobile devices employ the INT8 quantization since can accelerate the
inference and save memory. see table 2.1.

Quantization #Parameters CPU GPU Delegate PSNR-int8

INT 8 42K 216ms 77ms 30.21

float 32 42K 215ms 62ms 30.06

Table 2.1: Runtime and PSNR on ABPN quantization model [15]

PSNR: The Peak Signa-to-Noise Ratio (PSNR) is a widely used metric to evaluate
image quality. It measures the ratio between the maximum possible signal power and the
power of corrupting noise that affects the image fidelity. A higher PSNR value indicates
better image quality.
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Model pruning can reduce computational costs as well. DHP [33] employs a differen-
tiable pruning method via hyper networks for automatic network pruning, demonstrat-
ing its effectiveness on SR tasks. Some researchers wish to replace multiplication with
more economical operations. AdderSR [53] replaces multiplication with addition, whereas
GhostSR [43] generates redundant features using the shift operator. Nevertheless, for com-
modity mobile devices that only support 8/16/32 bit arithmetic calculations and limited
operations, these special operations, including binary/ternary convolutions, fully adder
convolutions, and shift operations, require customized hardware optimization to achive
infernce speed. As a result of computational reduction techniques, we have primarily
focused our thesis on efficient SR design based on quantization, which can be further
accelerated.

SR CNN ML DL GAN RGB AI HR LR SISR SRCNN SRGAN MSE BN ReLU PReLU CPU GPU RAM FLOP QAT PSNR API TFLite
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Methodology

In this chapter, we analyze the key components that constitute our research methodol-
ogy. First we will start by invastigating with the help of table 3.1 and Meta-node Latency
to find a perfect network architecture specifically for efficient deployment on mobile and
edge devices. Then we delve into the crucial elements of dataset, network architecture,
training strategies, model optimization, and the metrics used to evaluate the model’s
performance.

3.1 Proposed Image Enhancement Method

3.1.1 Overview

The goal of our thesis is to develop a real-time ISR model for resource-constrained devices.
However, the limited amount of RAM, the inability to support many CNN operators, and
the power consumption of mobile and edge devices prevent CNN deployment on mobile
devices. In order to achieve this, it requires a careful design of the network architecture.
In addition, we also use a full 8-bit Quantization-Aware Training (QAT) strategy and
design neural architectures using hardware-friendly operations. The overall methodology,
detailing these stages from raw image input to final model evaluation, is illustrated in
Figure 3.1.
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Figure 3.1: The overall workflow of our proposed image enhancement model.

Our first step is to determine which tensor operators are compatible and efficient for
deployment on portable devices. Our baseline operation node has a 3x3 convolution layer
and 16 output channels. and one multichannel (elementwise) tensor operation, which was
crucial to achieving the desired image enhancement result.

Table 3.1: Meta-nodes inference time (ms) on Synaptics Dolphin Platform(NPU) [15].

Main type Meta-node Time (ms)

Tensor operator nodes

Channel split 9.8
Channel concat 10.4
Add two tensors 5.2
Multiply two tensors 9.6
Global max pooling 20.0
Global average plooling 13.1

Convolution nodes 3 x 3 Convolution 4.3
1 x 1 Convolution 2.9

Activation nodes ReLU 1.3
Leaky ReLU 3.6

Resize nodes Nearest neighbor 57.6
Bilinear 75.4

To guide our architectural choices, we analyze the inference time for various tensor
operators on the Synaptics Dolphin Platform Neural Processing Unit (NPU), proposed
by the authors of abpn [15]. As we can see in the table 3.1, the runtime of channel
splitting and concatenation on NPUs are much higher compared to summation (element
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wise), we prioritize the element wise operations to ensure the real-time performance on
portable devices. iIn the selection of activation functions, we chose ReLU over Leaky
ReLU due to its significantly faster execution speed (approximately 1.2 times faster) the
marginal performance gain by Leaky ReLU is quite small (within 0.03dB). For the choice of
convolution layers, we prefer to use 3x3 convolution ahead of 1x1 convolution even though
it’s faster but the convincing to achieve a good performance isn’t good, so we favored 3x3
convolutions for their superior performance and efficiency in image enhancement tasks.
we adopt to all convolution layers a kernel size of 3x3 multi-layer structures, we keep all
layers with the same number of channels without changing them to ensures the consistency
of the network.

In summary, our network is designed with only 3x3 convolution layers and ReLU
activation as its main component. A residual learning algorithm for RGB images is
integrated into our proposed network, inspired by ABPN [15]. Figure 3.2 illustrates the
proposed network.

Figure 3.2: The network architecture of our proposed model. formed with only 7 efficient
layers (to accelerate the inference time) of 3x3 conv and 1x1 conv in the nearest-neighbour

convolution to fed the final result with the low-frequency information [40].

1. Nearest-neighbour Convolution
The nearest-neighbour convolution module is the most critical component of this
network, which plays a crucial role in achieving efficient image resolution enhance-
ment.

We make a slight difference from traditional Nearest-neighbour convolution. To
achieve nearest interpolation, we adopt a distinctive approach, freezing the convo-
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lution layer weights and initializing them manually using s2 groups of 3x3 identity
matrices, where ’s’ represents the upscale factor.1 0 0

0 1 0

0 0 1


1 0 0

0 1 0

0 0 1

 ...
1 0 0

0 1 0

0 0 1

 ===> s2 of 3x3 matrix

As each group generates an RGB image, it replecate the input image s2 times, just
as a copy operation. Subsequently, through the depth-2-space operation, these s2

RGB images can then be reconstructed into a HR image.

Thus, the reconstructed image will be identical to the nearest interpolated HR
image. However, it is much faster since it is based on fixed weights, especially on
limited GPUs/NPUs. As can be seen in the table below 3.2, the proposed nearest
convolution can save approximately 40 ms in comparison with the original nearest
upsampling.

Table 3.2: the difference runtime of commonly used upsample methods between the new
nearest convolution and traditional nearest and bilinear on CPU and GPU mobile accelerator

(those performance achieved on a OnePlus 9 Pro smartphone)

Upsamling method CPU GPU Delegate PSNR

bilinear 33.1ms 9ms 27.67dB

nearest 9.7ms 8ms 26.67dB

new nearest+ depth2space 6.7ms 8.5ms 26.63db

The implementation of the nearest convolution:

1 import tensorflow as tf
2 from tensorflow.keras.layers import Input , Conv2D , ReLU ,

Concatenate ,Lambda , Layer , Add
3 out_c = 3 # outuput channle
4 scale_factor = 4
5

6 # Define the input tensor for the Nearest Convolution
7 x_in = Input(shape=(None , None , 3))
8

9 # Create a weight matrix ’w’ for new nearest convolution
10 # This matrix consists of a 3x3 identity matrix repeated
11 #’scale_factor ^2’ times
12 w = np.transpose(np.array ([[
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13 [[1, 0, 0],
14 [0, 1, 0],
15 [0, 0, 1]]* scale_factor **2
16 ]]), (0, 1, 3, 2))
17

18 res_conv = Conv2D(out_c*( scale_factor **2), kernel_size =1,
19 padding=’same’, use_bias=False)
20

21 # the Conv layer are frozen here we set trainable to false
22 res_conv.trainable = False
23 res_conv.build(x_in.shape)
24 res_conv.set_weights ([w])
25

26 # by applying the Nearest Convolution to
27 # the input tensor ’x_in’
28 x_res = res_conv(x_in)

List of Source codes 3.1: The code snippet demonstrates the implementation of the
Nearest Convolution

2. Residual Learning
ABPN [15] inspired us to incorporates residual learning from RGB images to enhance
the final result.

In our case, we added the output channels obtained from the new nearest convolution
(s2×3 channels in total, if the scale factor is 4, you’ll get 48 feature maps (channels))
to the layer output of the plain network immediately before the depth-2-space layer.
By doing that, we allow the plain network to focus on learning residual information.
And since we are trying to shorten the inference time we incorporate our network
with only 7 layers of 3 x 3 convolution with the ReLU activation function, and we
fix the channels to 32, see the code in 3.2.

3.1.2 The Network Function

Assuming that x is the HR image and y is the degraded LR image, we could obtain
the super-resolved image x̂ as follows:

x̂ = clip (D2S (fres(y; θ) + fnc(y)) , 0, 255) (3.1)

Where:

• f(.) denote to the super resolution SR network with θ is the paramater.
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• fres represents the residual learning.

• fnc represents the nearest neighbour.

• D2S represnt the depth to space orerator.

• clipped function to ensure the range of image pixel outputed from the D2S

function falls within the range from 0 to 255.

Therefore, the final output High resolution image x̂ is the clipped result ofD2S (f(·) + fnc(y))

The implementation of the network architecture:

1 n_feat =32, out_c=3, scale_factor =4
2

3 # Define a series of 6 convolutional layers for feature
extraction

4 # followed with activation ReLU
5 x = Conv2D(n_feat , kernel_size =3, padding=’same’, activation=’

relu’, kernel_initializer=glorot_normal (), bias_initializer=’
zeros’)(x_in)

6 x = Conv2D(n_feat , kernel_size =3, padding=’same’, activation=’
relu’, kernel_initializer=glorot_normal (), bias_initializer=’
zeros’)(x)

7 x = Conv2D(n_feat , kernel_size =3, padding=’same’, activation=’
relu’, kernel_initializer=glorot_normal (), bias_initializer=’
zeros’)(x)

8 x = Conv2D(n_feat , kernel_size =3, padding=’same’, activation=’
relu’, kernel_initializer=glorot_normal (), bias_initializer=’
zeros’)(x)

9 x = Conv2D(n_feat , kernel_size =3, padding=’same’, activation=’
relu’, kernel_initializer=glorot_normal (), bias_initializer=’
zeros’)(x)

10 x = Conv2D(out_c *( scale_factor **2), kernel_size =3, padding=’
same’, activation=’relu’, kernel_initializer=glorot_normal (),
bias_initializer=’zeros’)(x)

11

12 # Define the last convolutional layer for transition to D2S
without ReLU

13 x = Conv2D(out_c *( scale_factor **2), kernel_size =3, padding=’
same’, kernel_initializer=glorot_normal (), bias_initializer=’
zeros’)(x)

14

15 # Add the result of Nearest Convolution (’x_res ’)
16 # to the feature extracted tensor (’x’)
17 x = Add()([x_res , x])
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18

19 # Perform depth -to-space operation for upscaling
20 depth_to_space = Lambda(lambda x: tf.nn.depth_to_space(x,

scale_factor))
21 x = depth_to_space(x)
22

23 # Clip the pixel values to be within the range [0, 255]
24 clip_func = Lambda(lambda x: tf.clip_by_value(x, 0., 255.))
25 x = clip_func(x)
26

27 return Model(x_in , x)

List of Source codes 3.2: The code snippet demonstrates the implementation of the
plain network

This code show the implemented plain network (or the architect network), which
serves as the foundation for our proposed model.
The network can be segmented into three main stages:

(1) Feature Extraction layers

• We define a series of 6 convolutional layers for feature extraction.

• Each layer uses a 3x3 kernel, and uses Glorot normal initialization for
weights.

• The padding is set to ’same,’ which means that the output feature maps
have the same spatial dimensions as the input image

• These layers followed by ReLU to perform typical feature extraction oper-
ations.

(2) Transition Layer to Depth-to-Space

• A final convolutional layer follows, with the same kernel size and padding.

• However, this layer does not apply ReLU activation, its purpose is to
transition to the depth-to-space operation.

• The output of this layer is added to the result of the nearest neighbor
upsampling x_res using an Add layer.

(3) Depth-to-Space Operation

• A depth-to-space upsampling operation is performed using the depth_to_space
Lambda layer, effectively increasing the spatial dimensions by a factor of
scale_factor.
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• The pixel values are clipped to the range [0, 255] using the clip_func
Lambda layer, ensuring valid image values for the final output.

The final output of the entire architecture is a Keras model that takes x_in as input
and produces the processed tensor x.

3.1.3 The Loss Function

as we know the L2 Mean Squared Error loss function (MSE) is sensitive to outliers and
suffers from noisy data, we choose L1 as it is less sensitive and robust when dealing with
noisy data. And The following formulation is used:

L1(θ) =
1

N

N∑
i=1

(f(y; θ)− x) (3.2)

where:

• θ represents the model’s parameters that are optimized during training.

• f(y; θ) represents the predictions made by our model when given input data y and
parameterized by θ. This is essentially the output of our neural network.

• x represents the actual target values that our model is trying to predict.

• N is the total number of the dataset examples.

•
∑N

i=1 denotes the summation over all the image in the dataset, where we calculate
the absolute difference between the model’s prediction and the ground truth for
each image.

• 1
N

is used to compute the average absolute difference by dividing the sum of absolute
differences by the total number of images.

Table 3.3: The table shows the runtime on CPU and GPU delegate and the PSNR
performance of the proposed network on OnePlus 9 pro smartphone using AI benchmark

application [24]

OnePlus 9 pro #Parameters CPU GPU Delegate PSNR-int8 PSNR float32

our model 52K 0.185 s 0.065 s 29.57 29.68
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3.2 Training Methodology

Since Python is efficient, robust, and powerful in computer vision and deep learning, we
chose it to implement our super-resolution model. As a programming language, Python
is known for its extensive library and tool ecosystems that make development and exper-
imentation easy. We can conduct our experiments with the help of its powerful libraries
tensorflow keras and open cv.

We utilize TensorFlow, an open-source machine learning framework, along with the
Keras api, to build and train our super-resolution model. Keras, integrated within Tensor-
Flow, offers a high-level interface for designing and configuring neural networks, stream-
lining the model-building process.

We also use the specialized framework from TensorFlow, TensorFlow Lite. It plays a
crucial role in optimizing and converting our model for efficient execution on resource-
constrained edge devices. This enables us to achieve real-time super-resolution capabilities
on those limited devices. We also use OpenCV and Numpy for the implementation.

As the computer vision demand a lot of GPU due to the extensive calculation, we
trained the model in google colab pro under the following resourses:

• L4 GPU 24 GB GDDR6 VRAM

• 48 GHz CPU

Data Preprocessing

For the dataset, we use the DIV2K in order to train the model, it is one of the most
popular datasets used for image super-resolution tasks, proposed by Agustsson et al.
[1] for NTIRE2017 and NTIRE2018 Super-Resolution Challenges. It contains 1000 HR
images in total: 800 HR images for training, 100 HR images for validation, and 100 HR
images for testing. Examples are shown below in Fig 3.4.

We download it from (https://data.vision.ee.ethz.ch/cvl/DIV2K/)
Preprocessing is an important step in preparing our dataset for training. It involves

the following operations to ensure the input data is training-ready and aligns with the
model’s specifications:
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Figure 3.3: Samples from DIV2K. (HR ground truth image, LR images downscaled by 2, 3,
4, and 8 factors, from top to bottom.)

1. Downgrade: the downgrade operation is a crucial step in super resolution applica-
tions, the image in real world may encounter varying quality due to factors such as
noise, compression, or imperfect acquisition devices. Due to that, we offer the op-
tion to apply downgrades to the high-resolution images. We support various scaling
factors ( 2x, 3x, 4x, 8x) with bicubic methods to create low-resolution counterparts
of the high-resolution images.
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1 class DIV2K:
2 def __init__(self ,
3 scale=2,
4 subset=’train’,
5 downgrade=’bicubic ’,
6 images_dir=’/data/dataset ’,
7 caches_dir=’/data/dataset/’):
8

9 _scales = [2, 3, 4, 8]
10

11 if scale in _scales:
12 self.scale = scale
13 else:
14 raise ValueError(f’scale must be in ${_scales}’)
15

16 if subset == ’train ’:
17 self.image_ids = range(1, 801)
18 elif subset == ’valid ’:
19 self.image_ids = range (801, 901)
20 else:
21 raise ValueError("subset must be ’train’ or ’valid ’")
22

23 _downgrades_a = [’bicubic ’, ’unknown ’]
24 _downgrades_b = [’mild’, ’difficult ’]
25

26 if scale == 8 and downgrade != ’bicubic ’:
27 raise ValueError(f’scale 8 only allowed for bicubic

downgrade ’)
28

29 if downgrade in _downgrades_b and scale != 4:
30 raise ValueError(f’{downgrade} downgrade requires scale

4’)
31

32 if downgrade == ’bicubic ’ and scale == 8:
33 self.downgrade = ’x8’
34 elif downgrade in _downgrades_b:
35 self.downgrade = downgrade
36 else:
37 self.downgrade = downgrade
38

39 self.subset = subset
40 self.images_dir = images_dir
41 self.caches_dir = caches_dir
42
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43 os.makedirs(images_dir , exist_ok=True)
44 os.makedirs(caches_dir , exist_ok=True)

List of Source codes 3.3: The code snippet demonstrates the downgrad fuction

2. Data Augmentation: The use of data augmentation techniques enhances the
diversity of our training data and improves the generalization of our models. These
include random cropping, flipping, and rotation. With random cropping, we can
extract random patches from the high-resolution images, while flipping and rotating
provide additional information.

1 def random_crop(lr_img , hr_img , hr_crop_size =192, scale =2):
2 lr_crop_size = hr_crop_size // scale
3 lr_img_shape = tf.shape(lr_img)[:2]
4

5 lr_w = tf.random.uniform(shape =(), maxval=lr_img_shape [1] -
lr_crop_size + 1, dtype=tf.int32)

6 lr_h = tf.random.uniform(shape =(), maxval=lr_img_shape [0] -
lr_crop_size + 1, dtype=tf.int32)

7

8 hr_w = lr_w * scale
9 hr_h = lr_h * scale

10

11 lr_img_cropped = lr_img[lr_h:lr_h + lr_crop_size , lr_w:lr_w +
lr_crop_size]

12 hr_img_cropped = hr_img[hr_h:hr_h + hr_crop_size , hr_w:hr_w +
hr_crop_size]

13

14 return lr_img_cropped , hr_img_cropped
15

16

17 def random_flip(lr_img , hr_img):
18 rn = tf.random.uniform(shape =(), maxval =1)
19 return tf.cond(rn < 0.5,
20 lambda: (lr_img , hr_img),
21 lambda: (tf.image.flip_left_right(lr_img),
22 tf.image.flip_left_right(hr_img)))
23

24

25 def random_rotate(lr_img , hr_img):
26 rn = tf.random.uniform(shape =(), maxval=4, dtype=tf.int32)
27 return tf.image.rot90(lr_img , rn), tf.image.rot90(hr_img , rn)

List of Source codes 3.4: The code snippet demonstrates the random and flip and
rotate function
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Figure 3.4: the result of code 3.4 on an image from div2k.

As shown in the figure 3.4, the data augmentation step include image cropping,
flipping, and rotation, which help augment the training dataset.

3. Caching: another technique we use is the caching. Caching involves storing the
preprocessed images in a cache directory. This step significantly reduces data loading
time during subsequent training iterations.
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3.3 Evaluation Metric

To present our experimental results, we implemented the function (as shown in the code
snippet in 3.5) to calculate the PSNR.

PSNR: The Peak Signa-to-Noise Ratio (PSNR) is the most popular metric in the
image super resolution tasks, calculated as follow 3.3:

PSNR(img1, img2) = 20 · log10
(

255.0√
MSE

)
(3.3)

where, 255.0: This is the maximum possible pixel value.
MSE refer to the Mean Square Error, which measures the average difference between
two images img1 and img2, High PSNR values correspond to high similarity between two
images, while low PSNR values mean low similarity.

MSE =
1

N

N∑
i=1

(I1(i)− I2(i))2 (3.4)

1 def calculate_psnr(img1 , img2):
2 # img1 and img2 have range [0, 255]
3 img1 = img1.astype(np.float64)
4 img2 = img2.astype(np.float64)
5 mse = np.mean((img1 - img2)**2)
6 if mse == 0:
7 return float(’inf’)
8 return 20 * math.log10 (255.0 / math.sqrt(mse))

List of Source codes 3.5: The code snippet show the PSNR function

3.4 Optimization Strategies

In the optimization strategy, we mainly focus on preparing the super-resolution model for
efficient deployment on edge devices using TensorFlow Lite (TFLite) quantization tool.
which is basically a Post-Quantization strategy. But Before we talk about anything else
we need to discuss what is Quantization (QAT)?.

• What is Quantization?
Basically the quantization [26] is the process of reducing the precision of the weights,
biases, and activation’s function.
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In simple word, is the process of converting a neural network, which typically uses
32-bit floating numbers for parameter representation, into a smaller representation,
like 8-bit integers (our example). However, floating numbers have high precision,
but they can be very memory intensive and computationally expensive which is not
ideal for the real time image super resolution.

Going from 32-bit to 8-bit for example, and performing some or all of the operations
on 8-bit integers, would reduce the model size and memory requirements by a factor
of 4 (fig 3.5), which is really impressive for constrained devices resources.

Figure 3.5: Quantization decreasing the precision of float-32 to INT-8 can reduce the model
size by a factor of 4.)

However, Performing quantization to go from 32-bit to 8-bit is tricky. Only 256
values can be represented in int8, while float32 can represent a wide range of values.
The idea used from TFLite quantization that we use in our model is to find the best
way to project range [a, b] of float32 values to the int8 space, so values outside of
the [a, b] range are clipped to the closest representable value.

The importance of quantization in training the image super-resolution model cannot be
overstated. Due to the limited resources in our hand when we talking about portable
devices, even though, as we see before in the table 3.3loss in the quality of the super
image isn’t big just (0.1dB), and with this negligible sacrificing we are gaining a lot of
memory consummation led us to approximately 4 time smaller model size.

The code below 3.6 represent the function we use to generate the TF lite version of
the model by using ’tf.lite.TFLiteConverter’ and it’s built in function. note that for eval-
uation perpose of the qauntizaied model (float 32 and INT 8) in PSNR metric, we set
the input shape of the image to [1, None, None, 3] to be able to Handel arbitrary shape

35



CHAPTER 3. METHODOLOGY

images. and for evaluation of inference time in mobile, we set the input shape to [1, 360,
640, 3]. and we test the model in the AI Benchmark application proposed by [24] on a
OnePlus 9 pro smartphone.

1 def generate_tflite(name , model_path , folder):
2 # Define input shape and representative dataset based on ’name’
3 if name == ’model’:
4 # Input shape for the TFLite model
5 input_shape = [1, 360, 640, 3]
6 # Representative dataset for quantization
7 rep_data = representative_dataset_gen
8 else:
9 # Input shape with dynamic dimensions

10 input_shape = [1, None , None , 3]
11 # Representative dataset for quantization
12 rep_data = representative_dataset_gen_none
13

14 # Load the TensorFlow saved model
15 model = tf.saved_model.load(model_path)
16 # Create a concrete function from the saved model
17 concrete_func = model.signatures[tf.saved_model.

DEFAULT_SERVING_SIGNATURE_DEF_KEY]
18 # Set the input shape of the concrete function
19 concrete_func.inputs [0]. set_shape(input_shape)
20 # Create a TFLite converter from the concrete function
21 converter = tf.lite.TFLiteConverter.from_concrete_functions ([

concrete_func ])
22 # Enable experimental features for the converter
23 converter.experimental_new_converter = True
24 converter.experimental_new_quantizer = True
25 # Apply default optimizations to the converter
26 converter.optimizations = [tf.lite.Optimize.DEFAULT]
27 # Set the representative dataset for quantization
28 converter.representative_dataset = rep_data
29

30 # Configure quantization options if ’name’ is ’model’ or ’model_none
’

31 if name == ’model’ or name == ’model_none ’:
32 print("====== uint8 quantification ======")
33 converter.target_spec.supported_ops = [tf.lite.OpsSet.

TFLITE_BUILTINS_INT8]
34 converter.inference_input_type = tf.uint8
35 converter.inference_output_type = tf.uint8
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36

37 # Convert the model to TFLite format
38 tflite_model = converter.convert ()
39 # Define the path for the TFLite model and write it to disk
40 tflite_model_path = f"{output_folder }/{ name}. tflite"
41 open(tflite_model_path , "wb").write(tflite_model)

List of Source codes 3.6: The code snippet demonstrat how we use tensorFlow lite to
generate the quantized model in float 32 and INT 8
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Experimental Results and Discussion

In this chapter, we present the experimental results. We will discuss the settings and
results of the experiments conducted on four benchmarks and and their efficiency on a
typical hardware, to provide evidence of the efficacy of the proposed approach.

4.1 Configuration Details

We used the DIV2K dataset for our image super-resolution experiment, consisting of 800
training images and 100 testing images. Using a batch size of 64, we trained our model
iteratively, increasing image resolution by a factor of 4. To train with LR images, we
fixed the size of patches to 64x64. We set the number to 500,000 iterations. Using the
Adam optimizer, and we started with an initial learning rate of 10−3 as we see in code
4.1, which was halved every 200,000 iterations. AT the end, we try to fine-tune the model
by adding 200,000 iterations performed by LR patches of (128x128). For fine-tuning, all
the experiments were conducted on a single L4 GPU from Google Colab Pro, to ensure
the consistent performance of our original model without quantize model throughout the
training and evaluation phases.

1 def __init__(self , model , checkpoint_dir ,
2 learning_rate=PiecewiseConstantDecay(boundaries =[50000 ,

150000 , 300000 , 400000] , values =[1e-3, 5e-4, 2e-4, 1e-4, 5e-5])):
3 super().__init__(model , loss=MeanAbsoluteError (),

learning_rate=learning_rate , checkpoint_dir=checkpoint_dir)
4

5 def train(self , train_dataset , valid_dataset , steps =300000 ,
evaluate_every =1000, save_best_only=True):

6 super().train(train_dataset , valid_dataset , steps , evaluate_every ,
save_best_only)

List of Source codes 4.1: The code snippet show how we configuer the learning rate
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4.2 Model Quantization

As we mentioned before, we use the standard TensorFlow Quantization tool TFLite to
quantize the trained model as the Post-Quantization strategy. To evaluate the PSNR of
the quantized models (float32 and int8), we set the input shape to [1, None, None, 3].

To evaluate the inference time, we fix the input shape to [1, 360, 640, 3] and test the
model in the AI Benchmark [24] application on OnePLUS 9 pro smartphone.

Here is some qualitative examples of our model compared with some lightweight SR
model:

Figure 4.1: Visual comparison of two img from the DIV2K validation dataset. the result by
INT8 quantization model, and the scale factor 4.
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4.3 Results Benchmark

Table 4.1: A performance comparison of various SR lightweight models is conducted across
four benchmarks on X4 scale. PSNR the Y channel are reported for each dataset. The metrics
# Params, # FLOPs, # Acts, and # Conv denote the total number of network parameters,

floating-point operations, activation, and convolution layers, respectively. FLOPs and Acts are
measured when generating an SR image of 256x256 resolution. Results for our model and the

best-performing candidate are highlighted in red and blue, respectively.

Model #param #FLOPs(G) #Acts(M) #conv Set5 (dB) Set14 (dB) Urban100 (dB) DIV2K (dB)

Bicubic - - - - 28.43 26 23.14 28.10

SRCNN [12] 57K 52.7 89.39 3 30.48 27.49 24.52 29.25

FSRCNN [13] 12K 5 10.81 8 30.70 27.59 24.60 29.36

LapSRN [29] 813K 149.40 264.04 27 31.54 28.19 25.21 29.88

EDSR-C32 [35] 241.80K 14.15 50.69 13 31.46 28.07 25.21 29.87

Our model 52K 25.1 11.05 7 30.72 27.88 25.11 29.68

We evaluate our proposed model against well-established single image super-resolution
(SR) lightweight models on tasks involving x4 upscaling. These established models include
SRCNN [12], FSRCNN [13], LapSRN [29], and EDSR [35].

Since the standard version of EDSR is optimized for powerful GPU servers and has a
very complex architecture, we choose a more streamlined version, EDSR-C32. EDSR-C32
consists of five residual blocks, each containing convolutional layers with 32 channels.

Table 4.1 summarizes the performance comparison of various SR models on four bench-
mark datasets. We’ve included not only the PSNR index but also the number of param-
eters, FLOPs (Floating-point Operations), activation layers, and convolution layers for a
more in-depth comparison. These values are calculated for the task of upscaling an image
to 256x256 resolution at x4 task. Recent research suggests that the number of activations
is a more reliable indicator of model efficiency compared to parameters and FLOPs [138,
99].

Key takeaways from Table 4.1: Our proposed model significantly outperforms both
SRCNN and FSRCNN on all four benchmarks. This is achieved while using fewer re-
sources then SRCNN approximately 2x fewer FLOPs, and 9x fewer activations. And also
demonstrates that our model can achieve superior performance to bicubic upsampling
while requiring a bit computational power and memory.

Secondly, our model show some advantages over the other two SR model LapSRN and
EDSRC32 especially when we compare on term of complexity as we see, we use roughly
18x/ 9x fewer parameters, and 26x/ 5x fewer in activation layers and 3.5x / 2x fewer
convolutional layers, respectively, and yet can achieve some comparable results to them,
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and from our point of view, a small loss in quality of images while gaining a significant
margin of time and complexity, especially since it is designed to use on weak devices such
as mobile and edge devices, can be considered somewhat worth it.

4.4 Mobile Benchmarking

While factors like model size, parameters, FLOPs, and activations provide insights into
model complexity, they don’t directly translate to real-world performance on mobile de-
vices. To address this, we conducted real-time speed evaluations on mobile platforms. We
used a OnePlus 9 Pro with a Snapdragon 865 processor (representing a high-end phone)
and ensured a consistent software environment with the same SDK and settings for all
models. The AI Benchmark App by ignatov [24] served as the execution platform, see
figure ??, while TFLITE GPU and Hexagon NN, common inference engine delegates,
were employed. To further optimize for mobile performance, all models were quantized
for 8-bit arithmetic. The task involved upscaling images to 1080p resolution with a 4x
factor. The results, presented in Table 4.2, reveal that most evaluated models struggle
to achieve real-time processing speed. However, our proposed model stands out close to
FSRCNN for its efficiency, to reaching real-time performances.
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Figure 4.2: Samples from DIV2K. (the performance of the OnePlus 9 pro smartphone with
(865 snapdragon CPU) based on the AI app tested on a large collection of the state of the art

computer vision models.)

Table 4.2: Compares the processing speed of SR models on upscaling image to 1920x1080
using Oneplus 9 pro mobile devices with SNAPDRAGON 865. and achieving the performance

of (>15 fps)

Model OnePlus 9 pro ( SD 865 )

SRCNN [12] 1.583 s

FSRCNN [13] 0.032 s

LapSRN [29] 5.378 s

EDSR-C32 [35] 0.101 s

OURS 0.065 s

Among the compared models, our model is the second after FSRCNN the only one
that achieves real-time performance. This is likely due to its very neat architecture. While
SRCNN also utilizes a simple design, its pre-upsampling approach significantly increases
computational and memory demands, leading to slower execution. Even the lightweight
versions, EDSR-C32 and LapSRN, fall short of real-time processing on both devices. This
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can be attributed to their complex structures with dense connections and multi-branch
pathways, ultimately limiting their speed.
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Conclusion

Super-resolution (SR) design based on deep neural networks (DNNs) has many real-
world applications, such as image and video restoration, transition, and display. Recent
advancements in DNN have also enabled remarkable progress in SR tasks. Still, it remains
to be seen whether to design SR networks that are both lightweight and efficient and can
be used on commodity devices, such as GPU servers and mobile devices.

In this thesis, we have attempted to design an effective and efficient SR network
optimized for mobile and edge devices. By comparing the state-of-the-art SR lightweight
methods with our designs, we achieve a good PSNR comparable to those of conventional
designs, while using significantly less hardware resources in order to satisfy real-world
needs.

In the future, we will try to explore further how deep learning and resources limited
hardware can be combined. Lightweight and efficient-based SR will be the next generation
of designing efficient SR for mobile devices.
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