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 الملخص: 

ةإ� دراسة الأنظمة التفاضل�ة   مذكرةتهدف هذە ال �  كث�ي ك�ي وتطب�قات  ع� استقرارها، ودوراتها الحد�ة،الحدود، مع ال�ت

ي معادلات 
  لبآمحددة ��

 

ةيتم تقد�م دراسة شاملة للأنظمة التفاضل�ة   ي ذلك تع��فاتها، وتوص�ف النقاط المفردة،  كث�ي
الحدود المست��ة، بما ��

ي المذكرةقرار هذە النقاط. واست
الدورات الحد�ة غ�ي التافهة  دراسةيتم  Dulac- Bendixon مثل لمعاي�ي  أ�ضا  ونتطرق ��

ي ذلك وجودها وعددها وتعددها 
ي معادلات آبل، بما ��

�� . 

 تحت عنوان:  وآخ��ن Changjianالس�د لعمل و�شمل النتائج الرئ�س�ة 

“On the Rational Limit Cycles of Abel Equations” 

ي ظل ظروف معينة ع� درجات  آبتوضيح وجود دورات حد�ة غ�ي تافهة لمعادلات 
اتل ��    B(t)و  A(t)الحدود كث�ي

 . معادلات آبل المضط��ة دراسةة �مكن أن �كون غ�ي محدود، باستخدام تافهثم �ظهر أن تعدد الدورات الحد�ة غ�ي ال

ة ال�لمات المفتاح�ة:   . لبآمعادلات  ،لحدود، الدورات الحد�ةا الأنظمة التفاضل�ة كث�ي

 

 

 

 

 

 

 

 

 

 

 

 



: Abstract 
This work aims to study polynomial differential systems, focusing on their stability, limit 
cycles, and specific applications in Abel equations 
 

 

A comprehensive study of planar polynomial differential systems is presented, including their 
definitions, characterizations of singular points, and the stability of these points. Nontrivial limit 
cycles in Abel equations are analyzed, including their existence, number, and multiplicity. We 
also discuss criteria such as Bendixson-Dulac to determine the presence of limit cycles.  
Key findings from the work of Mr. Changjian and others include: 
“On the Rational Limit Cycles of Abel Equations” The existence of nontrivial limit cycles for 
Abel equations under certain conditions on the degrees of the polynomials A(t) and B(t) is 
demonstrated. Then is shown that the multiplicity of nontrivial limit cycles can be unbounded, 
using the study of perturbed Abel equations. 
 
Keywords : Polynomial differential systems, Limit cycles, Abel equations. 
 
 
 
 

Résumé: 
Ce mémiore vise à étudier les systèmes différentiels polynomiaux, en se concentrant sur leur 
stabilité,leurs cycles limites et leurs applications spécifiques dans les équations d'Abel 
 

.  
 
Une étude complète des systèmes différentiels polynomiaux planaires est présentée, incluant 
leurs définitions, caractérisations des points singuliers et la stabilité de ces points. Les cycles 
limites non triviaux dans les équations d'Abel sont analysés, y compris leur existence, leur 
nombre et leur multiplicité. Dans ce mémiore, nous discutons de critères tels que Dulac-
Bendixon pour déterminer l'existence de cycles limites. Les principales conclusions du travail 
de M. Changjian et d’autres comprennent : 
« On the Rational Limit Cycles of Abel Equations »: L'existence de cycles limites non triviaux 
pour les équations d'Abel sous certaines conditions sur les degrés des polynômes A(t) et B(t) 
est démontrée. On montre ensuite que la multiplicité des cycles limites non triviaux peut être 
illimitée, en utilisant l'étude des équations d'Abel perturbées. 
 
Mots clés : Systèmes différentiels polynomiaux, Cycles limites, Équations d'Abel. 
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GENERAL INTRODUCTION

Differential equations are first encountered in mathematics in the works of Leibnitz

(1646–1716) and Newton (1642–1727), towards the end of the 17th century. First of

all, differential equations are closely related to solving geometric problems, Newtonian

physics (point dynamique and planet motion), and formalized differential and integral

calculus. They quickly establish themselves as a useful tool for analyzing natural phe-

nomena and a source of inquiries about mathematical concepts like function. Following

Newton and Leibnitz, among others, were the brothers Bernoulli, Jacob (1657–1705),

and Johan (1667–1748), who followed earlier research and introduced the first differential

equations of their own. Additional first-order equations with special derivatives that are

frequently related to classification.

In this work, we are interested in an important aspect of the qualitative theory of

planar polynomial differential systems, namely limit cycles. Such systems are fundamental

in understanding various natural and engineered systems, including electrical circuits,

biological systems, and mechanical systems. The core of this research is the analysis of

stability and limit cycles within these systems, providing insights into their long-term

behavior and stability.
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A key concept explored in this work is the limit cycle, a closed trajectory in the phase

space that neighboring trajectories either spiral into or away from over time. This concept

is crucial in many applications, as it can represent stable periodic behaviors in real-world

systems. Understanding the conditions under which limit cycles exist and their stability

properties is essential for predicting the behavior of nonlinear systems.

The work is organized as follows:

• Preliminary Concepts: This chapter covers the basic definitions and theorems

related to planar polynomial differential systems. Concepts such as vector fields,

phase portraits, equilibrium points, and their stability are discussed. Key theorems

like the Hartman-Grobman theorem .

• On the theorie of limit cycles: This chapter delves into the stability and ex-

istence of limit cycles. It includes criteria for the presence of limit cycles, such as

Bendixson’s and Dulac’s criteria, and discusses their application to various types of

nonlinear systems.

• Rational Limit Cycles of Abel Equations: The final chapter focuses on Abel

equations, a specific type of polynomial differential system. The existence and

properties of rational limit cycles within these equations are examined, along with

their implications for Hilbert’s 16th problem.

Overall, this work aims to advance the understanding of polynomial differential sys-

tems and their limit cycles, providing valuable tools and insights for both theoretical

studies and practical applications.
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CHAPTER 1

PRELIMINARY CONCEPTS

1.1 Planar polynomial differential systems

Some basic concepts for the qualitative theory of polynomial differential systems are cov-

ered in this chapter. The concepts of vector field, flux, phase portrait, equilibrium point,

and linearization of non-linear differential systems at equilibrium points will all be cov-

ered. We will begin with polynomial differential systems. Next,we study the equilibrium

points’ characteristics and stability,then integrability and invariant curves.The basic the-

orems are reviewed , which include the Hartman-Grobman theorem, the existence and

uniqueness theorem, and the theorems of the Lyapunov and Poincaré stability method of

classification.
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Definition : 1 [28] A real planar polynomial differential system of degree m is a system


ẋ = P (x, y),

ẏ = Q(x, y),
(1.1)

where P and Q are real polynomials in the variables x and y. The degree of the system

(1.1) is the maximum of the degrees of the polynomials P and Q. As usual the dot denotes

derivative with respect to the independent variable t.

1.1.1 Vector field

Definition : 2 [28] The vector field associated to the polynomial differential system (1.1)

is an application

X : Ω ⊆ R2 −→ R2

M(x, y) 7−→
−−→
dM
dt

=

p(x, y)

Q(x, y)


Vector fields are essential for understanding the behavior of solutions to differential equa-

tions. They are used to define the local flow generated by a vector field .

In summary, vector fields provide a geometric interpretation of differential equations,

allowing us to study the behavior of the solutions in a visual and intuitive way.

The graphical representation of a vector field on the plane consists in drawing a number

of well chosen vectors (x,X (x)) as in (1.1).

Remark: 1 [28] We note X = (P,Q) the vector field associated with the system (1.1) .

It is also written in the form:

X = P (x, y) ∂
∂x

+Q(x, y) ∂
∂y
.

2



Figure 1.1: An integral curve [7].

Example: 1 We give the following example;

where all the following figures were drawn using the phase plane plotter [30]


ẋ = y,

ẏ = −x.
(1.2)

Figure 1.2: Vector field associated with the system (1.2).
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Example: 2 We give the following example


ẋ = y − 2x2 + 1,

ẏ = y2 − 3x.
(1.3)

Figure 1.3: Vector field associated with the system (1.3).

1.1.2 Solution and periodic solution

Definition : 3 [8] The differential system (1.1) solution is referred to as any differen-

tiable function

ϕ : I ⊂ R −→ R2

t −→ ϕ(t) = (ϕ1(t), ϕ2(t)),

where I is R a interval which satisfies the following criteria:

1. for t ∈ I, (t, ϕ(t)) ∈ Ω open of R

4



2. for all

t ∈ I :


dϕ1(t)
dt

= P (ϕ1(t), ϕ2(t)),
dϕ2(t)
dt

= Q(ϕ1(t), ϕ2(t),

Definition : 4 [8] We call periodic solution of system(1.1)any solution ϕ(t)=(ϕ1(t),ϕ2(t)),

for which there exists a real T such that: ∀t ∈ I, ϕ1(t+T)=ϕ1(t) et ϕ2(t+T)=ϕ2(t).

The period of this solution is the smallest T > 0 which is suitable.

Definition : 5 [7] The graph of a solution ϕ : I −→ R2 is an integral curve or trajectory

of the differential system (1.1).

1. The image ϕ of R is an orbit of the differential system (1.1).

2. The space R2 or the solutions take their values (where each point represents a distinct

state of the system ) is called the phase space.

Remark: 2 [7] If the period of X(t) is T, then the solution likewise has a ped KT,K ∈ Z.

Definition : 6 [7] The representation of a solution, denoted by X(t), t ∈ I , on the plane

R2 is the orbit of the system .

Definition : 7 [8] We call the phase plane associated with system (1.1), the open Ω j R2

where their solutions have values.

Example: 3 The harmonic oscillator is governed by the differential equation

ẍ+ w2x = 0,

Witch can be written in the form of the following systems:


ẋ = y,

ẏ = −w2x,

(1.4)

5



is system integrates easily since dy
dx

= −w2 x
y
,this gives a set of solutions y2 + w2x2 = c

which c ∈ R .In other words this system has a continuous one-parameter family of periodic

solutions represented in this phase plane by ellipses.

1.1.3 Phase portrait

Trajectories that show the system’s evolution across time are usually included in the

phase portrait, along with crucial locations like equilibrium points, limit cycles, and other

significant characteristics. The stability, periodicity, and general dynamics of the system

described by the differential equations can all be understood by examining the phase

portrait.

Definition : 8 [22] A phase portrait is a phase space geometric representation of a dy-

namic system’s trajectories, where each set of initial conditions is represented by a curve

or a point.

Example: 4 The associated phase portrait with the system (1.2)

Figure 1.4: Phase portrait associated with the system (1.2).

6



Example: 5 The associated phase portrait with the system (1.3)

Figure 1.5: Phase portrait associated with the system (1.3) .

1.2 Singular point

Definition : 9 [28] A point (x∗, y∗) called a singular point (respectively regular point) of

system (1.1) if it satisfies

P (x∗, y∗) = Q(x∗, y∗) = 0.

Remark: 3 [28] For the vector field, the concept of an equilibrium point is equivalent to

that of a single point. When examining the vector field in isolation, we prefer to refer

to it as a solitary point, and when considering the trajectories, we speak of a point of

equilibrium.

7



Example: 6 Let the system:


ẋ = (x− 2)(1 + x+ y),

ẏ = (y − 1)(x− 1),

then the singular points are : (2,1),(-2,1),(1,0).

1.2.1 Linearization and Jacobian matrix

Most existing systems in nature are nonlinear. The most natural approach to studying

the behavior of trajectories of a nonlinear autonomous differential system near a singular

point is to reduce it to the study of the associated linear system.

We denote by Jx(x∗, y∗) the Jacobian matrix associated with the vector fieldmathcalX in

the neighborhood of a singular point (x∗, y∗) defined by

Jx(x∗, y∗) =


∂P
∂x

(x∗, y∗) ∂P
∂y

(x∗, y∗)
∂Q
∂x

(x∗, y∗) ∂Q
∂y

(x∗, y∗)

 (1.5)

The linearization of the nonlinear system (1.1) is given by:

u̇
v̇

 =


∂P
∂x

(x∗, y∗) ∂P
∂y

(x∗, y∗)
∂Q
∂x

(x∗, y∗) ∂Q
∂y

(x∗, y∗)


u
v



1.2.2 Classification of singular points

Definition : 10 [7] Singular point stability is determined by the general stability theo-

rems. Therefore, if the real eigenvalues (or real components of complex eigenvalues) are

negative, the equilibrium point is asymptotically stable. Two examples of such equilibrium

places are stable focus and stable node. If the real part of at least one eigenvalue is posi-

8



tive, the corresponding equilibrium point is unstable. It might be a saddle for example.

Lastly, we are dealing with the classical stability in the Lyapunov sense where the singular

point is a center, or simply imaginary roots. Let’s assume that the eigenvalues of the

Jacobian matrix (1.5) are denoted by λ1 and λ2

1. If 0 < λ1 < λ2 then the singular point is unstable. is an "unstable node".

2. If λ1 < 0 < λ2 then it is said that the singular point is a "saddle point".

3. If λ1 < λ2 < 0 then the singular point is asymptotically stable. It is said that the

singular point is a "stable node".

Figure 1.6: Real non-zero and distinct eigenvalues [22]

If λ1 and λ2 are distinct complex numbers (where their imaginary parts are not zero)

(see figure 1.5):

1. If Re(λ1), Re(λ2) < 0 then the singular point is asymptotically stable.

It is said that the point is a stable spiral sink "stable focus".

2. If Re(λ1), Re(λ2) = 0 then the singular point is a center.

3. If Re(λ1), Re(λ2) > 0 then the singular point is unstable.

It is said that the point is an unstable spiral source "unstable focus".

9



Figure 1.7: Complex eigenvalues[22]

If λ1 and λ2 are equal:

Jx is diagonalizable .

1. If λ > 0 then we say that the point is a "source in star".

2. If λ < 0 then we say that the point is a "sink in star".

Figure 1.8: Eigenvalues are λ1 = λ2 [22]

A is not diagonalizable

1. If λ > 0 then the point is called a source.

2. If λ < 0 then the point is called a sink.

3. If λ = 0 then all points on the line kv are equilibrium points.

10



Figure 1.9: Real non-zero and distinct eigenvalues [22]

Remark: 4 [7] We recall that a singular point p is hyperbolic if the eigenvalues of the

linear part of the system at (x∗, y∗) have non zero real part.

Theorem: 1 [28] Let (x∗, y∗) be a hyperbolic singular point of system (1.9). Then in a

neighborhood of the trajectories of (x∗, y∗) the solutions of system (1.9) have the same

shape as the trajectories of the solutions of its linearization.

Example: 7 
ẋ = −3x− y2,

ẏ = 3x4 − y,
(1.6)

The system (1.6) has a single singular point which is the origin (0, 0). The Jacobian

matrix associated with this system is given by:

Jx(x∗, y∗) =

 −3 −2y

12x3 −1

 (1.7)

the system linearized at this point is

ẋ
ẏ

 =

−3 0

0 −1


x
y


11



. This system has two negative real eigenvalues λ1 = −3andλ2 = −1. Then the singular

point (0, 0) is a stable node.

Definition : 11 [28] The singular point in the system (1.1) is called hyperbolic if the

eigenvalues of the matrix Jx(x∗, y∗) have real part different from 0. Otherwise, the singular

point is said to be non-hyperbolic.

1.2.3 Topological equivalence

Definition : 12 [7] A homeomorphism of R2 is a bijective continuous map h : R2 −→ R2

whose inverse bijection is continuous.

Definition : 13 [7] Two autonomous systems in the plane


ẋ = P1(x(t), y(t)),

ẏ = Q1(x(t), y(t)),
(1.8)

and 
ẋ = P2(x(t), y(t)),

ẏ = Q2(x(t), y(t)).
(1.9)

Defined on two open sets U and V in R2 ,respectively are topologically equivalent if there

exists a homeomorphism.

h : U −→ V

, such that h transforms the orbits of (A) into orbits of (B) and preserves the orientation of

the orbits. The following theorem allows us to reduce the study of a differential system in

the neighborhood of a hyperbolic singular point to the study of a linear system topologically

equivalent to (1.9) in the neighborhood of the origin.

12



1.2.4 Theorem of Hartman-Grobman

The Hartman-Grobman theorem, sometimes referred to as the linearization theorem, is

an important finding in the mathematical study of dynamical systems.Grasp the behavior

of systems close to equilibrium points requires a grasp of this theorem. It asserts that

a nonlinear system can be spatially topologically identical to its linearization around a

hyperbolic equilibrium point under specific circumstances.

Theorem: 2 (Hartman-Grobman,1967)[28]

Let’s assume that the Jacobian matrix at the singular point has two eigenvalues λ1 and

λ2 such that the solutions of system (1.1) are approximately given by the solutions of the

linearized system (1.1) in the vicinity of the singular point. In other words, the phase

portrait of the linearized system constitutes, in the vicinity of this equilibrium point, a

good approximation of that of the system (1.1).

Remark: 5 [7] If Re(λ1,2) = 0,the singular point (x∗, y∗) is called a center for the lin-

earized system. Determining its nature in the case of system (1.1) requires further inves-

tigations: this is the center problem.

1.2.5 Stability of an singular point

Definition : 14 [7] Let (x∗, y∗) is singular point of the system (1.1). Note by

X∗ = (P (x∗, y∗), Q(x∗, y∗)) and X(t) = (P (x(t), y(t), Q(x(t), y(t)))).

• (x∗, y∗) is called stable if

∀ε > 0, ∃η > 0, ‖X(t0)−X∗‖ < η ⇒ ∀t > 0, ‖X(t0)−X∗‖ < ε.

• (x∗, y∗) is called asymptotically stable if it is stable and : ∀ε > 0,∃δ > 0, α >

0andβ > 0 such as:
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lim
t−→+∞

‖X(t)−X∗‖ = 0.

• (x∗, y∗) is called exponentially stable if

‖X(t0)−X∗‖ < ε∀, t > 0 : ‖X(t0)−X∗‖ < α‖X(t0)−X∗‖e−βt.

1.2.6 Stability in the sense of Lyapunov

The concept of Lyapunov stability is rooted in the idea of finding Lyapunov functions that

certify the stability or asymptotic stability of equilibrium points, with positive definite

and negative definite functions playing key roles in stability analysis.

Definition : 15 [22] Let F : R2 −→ R2 be a C1 function ẊF (X), and X0 a differential

system,with singular points of system a Lyapunov C1 function such as

V (X0) = 0, ∀X 6= X0 : V (X) > 0,

∀X 6= X0 :
−−−−−−−−→
−gradV (X)Ẋ < 0.

Theorem: 3 [22] Let X0 an equilibrium and is a Lyapunov function. Then

• V̇ (X) ≤ 0 then X0 is lyapunov stable .

• V̇ (X) ≤ 0 then X0 is asymptotically stable.

• V̇ (X) > 0 then X0 is unstable .

Remark: 6 [22] T0 distinguish between the first and second cases, the Lyapunov function

is usually called strict Lyapunov function.
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Figure 1.10: Different types of stability in the sense of Lyapunov[22]

Example: 8 [22] Let the simplest possible example


ẋ = −x,

ẏ = y.

V (x, y) = x2 + y2

2 ,

which is a positive definite function on all R2.

V̇ (x, y) = −(x2 + y2),

which is negative for all (x, y) 6= 0. We conclude that the equilibrium (x̂, ŷ) = (0.0) is

asymptotically stable. Moreover, since V̇ < 0 for all R2 and clearly

V (x, y) −→∞ if
√
x2 + y2 −→∞,the equilibrium is globally asymptotically stable.

1.2.7 Stability in the Poincaré sense

Compared to Lyapunov’s concept, stability in the Poincaré sense is more precisely defined

as the distance from a point M(x, y) to a periodic solution.
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Definition : 16 [33] Let X(t) = x(x(t), y(t)) a solution of system (1.1) a periodic solu-

tion φ(t) of this system is stable in the poincaré sense (or orbitally stable) if :

∀ε > 0,∃δ > 0 : ‖X(t0)− φ(t0)‖ < δ =⇒ d(t) = inf
t∈[0,t]

‖X(t)− φ(t)‖ < ε,

for t ∈ [t0,+∞], φ(t) is asymptotically stable if it is stable and if in addition

limt−→+∞ d(t) = 0.

Remark: 7 [33] Stability in the Lyapunov sense implies stability in the Poincaré sense

but the converse is not true.

1.3 Invariant curve

The study of differential systems benefits greatly from using invariant curves, which can

disclose crucial structural characteristics of the underlying dynamical system and shed

light on the qualitative behavior of solutions.

Definition : 17 [15] let U : Ω ⊆ R2 −→ R a function from class C1

CU = {(x, y) ∈ Ω/U(x, y) = 0} ,

is referred to as an invariant curve if a function K of class C1 exists in Ω that satisfies

the following relation, and that function is known as the cofactor:

P (x, y)∂U
∂x

+Q(x, y)∂U
∂x

= K(x, y)U(x, y),

for all (x, y) ∈ Ω.

Example: 9 [10] The curve defined by the equation x2 + y2 = 0 and 2x2 + y2 − 1 = 0, is
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an invariant curve for the system :


ẋ = −(x− y)(x2 − xy + y2) + x(2x4 + 2x2y2 + y4),

ẏ = −(x+ y)(2x2 − xy + 2y2) + y(2x4 + 2x2y2 + y4),

the curves x2 + y2 − 1 = 0, and 2x2 + y2 − 1 = 0, have the cofactors

2(2x4 + 2x2y2 + y4 − x2 − 2y2) and 2(2x4 + 2x2y2 + y4 − x2 + xy − 2y2), respectively.

Remark: 8 [15]

• When the cofactor K(x, y) is an invariant curve of polynomial cofactor.

• On the invariant curve, the gradient (∂U
∂x
, ∂U
∂y

) of U is orthogonal to the vector field

X (P,Q), so the vector field is tangent to the invariant curve at every point on this

curve, hence this name is inspired by the fact that this curve is formed by solutions

(or trajectories) of the vector field X .

1.3.1 Algebraic invariant curve

Definition : 18 [15] An invariant curve U(x, y) = 0 is said to be algebraic of degree m if

U is a polynomial of degree m, otherwise we say that it is non-algebraic or transcendent.

As you may recall the divergence of the system (1.1) is represented by the div notation.

div(x, y) = ∂P (x, y)
∂x

+ ∂Q(x, y)
∂y

.

Definition : 19 [15] An algebraic curve U(x, y) = 0 is irreducible, if U(x, y) is a irre-

ducible polynomial in the ring R[x, y].

Theorem: 4 [20] We consider the system (1.1) and Γ(t) a periodic orbit of period T > 0
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We suppose that U : Ω ⊂ R2 −→ R is an invariant curve

Γ(t) = {(x, y) ∈ Ω : U(x, y) = 0} ,

and K(x, y) ∈ C1 is the cofactor specified in the equation (1,3) of the invariant curve

U(x, y) = 0 .We suppose that p ∈ Ω such as U(p) = 0 and ∇U(p) 6= 0 so P is singular

point of systeme (1.3) and

∫ T

0
div(Γ(t))dt =

∫ T

0
K(Γ(t))dt. (1.10)

1.4 Integrability and first integral

Definition : 20 [3] The R-polynomial system (1.1) is integrable on an open subset Ω of

R2 if there exists a nonconstant analytic function H : Ω ⊆ R2 −→ R called a first integral

of the system on Ω , which is constant on all solution curves (x(t), y(t)) of system (1.2)

contained in Ω i.e. H(X(t)) = cste ∀t ∈ I onstant for all values of t for which the

solution (x(t), y(t)) is defined and contained in Ω . Clearly H is a first integral of system

(1.1) on U if and only if XH = P ∂H
∂x

+Q∂H
∂y
≡ 0 on Ω .

1.4.1 Integrating factors

Definition : 21 [3] Let Ω be an open subset of R2 and let R : Ω −→ R be an analytic

function which is not identically zero on Ω. The function R is an integrating factor of

the R-polynomial system (1.1) if one Factors of the following three equivalent conditions

holds :

1. ∂(RP )
∂x

= −∂(RQ)
∂y

.

2. div(RP,RQ) = 0.
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3. XR = −Rdiv(P,Q).

Definition : 22 [3] The first integral H associated to the integrating factor R is given by

H(x, y) =
∫
R(x, y)P (x, y)dy + h(x). (1.11)

where h is chosen such that ∂H
∂x

= −RQ then

ẋ = RP = ∂H

∂y
, ẏ = RQ = −∂H

∂x
. (1.12)

In (1.11)we suppose that the domain of integration Ω is well adapted to the specific expres-

sion. Conversely, given a first integral H of system (8.1)we always can find an integrating

factor R for which (1.1) holds.

Proposition: 1 [7] If the R-polynomial system (8.1) has two integrating factors R1 and

R2 on the open subset Ω of R2, then in the open set Ω\ {R2 = 0} the function R1/R2 is a

first integral, provided R1/R2 is non-constant.

1.4.2 Exponential factors

Definition : 23 [1] Let g, h ∈ C be relatively prime polynomials. The function F = eg/h

is an exponential factor of system (1.1) if XF/F = L ∈ C[x, y]. In this case, L is called

the cofactor of F . It has degree at most m − 1. The expression which defines L is often

written as

P
∂eg/h

∂x
+Q

∂eg/h

∂y
= Leg/h. (1.13)

Remark: 9 An exponential factor appears when an invariant algebraic curve has a geo-

metric multiplicity greater than one.The exponential factors play the same role as invariant
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algebraic curves to obtain a first integral for the polynomial system. For more details on

exponential factors than the ones given in this section.

1.4.3 Inverse integrating factor:

The inverse integrating factor is an important tool in the study of the existence and non-

existence of limit cycles.

Definition : 24 [20] A non-zero function V : Ω −→ R is an inverse integrating factor

of the system (1.1) on an open Ω ⊂ R2 if V ∈ C1(Ω), V 6= 0 on Ω which satisfies the

following equation

P
∂V

∂x
+Q

∂V

∂y
=
(
∂P

∂x
+ ∂Q

∂x

)
V.

Theorem: 5 [8] Let V an inverse integrating factor (1.1) on an open Ω ∈ R2

1. the function 1
V

on Ω\V = 0 is an inverse integrating factor of system (1.1)in addi-

tion, the function

I(x, y) = −
∫ P (x, y)
V (x, y)dy +

∫ (
Q(x, y)
V (x, y) + ∂

∂x

∫ P (x, y)
V (x, y)dy

)
dx,

is a first integral of the system (1.1) .

2. If the system (1.1) has a first integral I, then the function

V1(x, y) = P

−∂I
∂y

= Q

−∂I
∂y

,

is an integrating factor of system (1.1).
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1.4.4 Darboux first integral:

The Darboux first integral is a significant class of first integrals exponential factors and

the algebraic invariant curve can be used to define these functions.

Definition : 25 [5] x = (P,Q) of degree n is a polynomial planar complex vector field

that admits p irreducible invariant algebraic curves fi = 0 with cofactors. Ki for

i = 1, ..., P and q exponential factor exp
(
gi

hi

)
with cofactors Lj for j = 1, ...., q so :

1. There exists λi, µj ∈ C not all zero such that ∑p
i=1 λiKi + ∑q

j=1 µjLj = 0 if the

function

fλ1
1 ...fλp

p

(
exp

(
g1

h1

))µ1

...

(
exp

(
gq
hq

))µq

. (1.14)

is a first integral of the vector field X .

2. It exists λi, µj ∈ C not all zero such that ∑p
i=1 λiKi + ∑q

j=1 µjLj = −div(P,Q) if

the fanction (1.14) is a first integral of the vector field X .

Definition : 26 [5] The Darboux function is the name given to the function (1.14). We

say that the polynomial system (1.1) has a Darboux first integral if its first integral takes

the form (1.14).

Definition : 27 [20] A Liouville function is a function that can be expressed by quadra-

tures of elementary functions. The following theorem gives a relationship between the first

integral and the inverse integrating factor.

Theorem: 6 [8] If a polynomial system has a Liouville first integral, then it has an

inverse Darboux integrating factor.
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CHAPTER 2

ON THE THEORIE OF LIMIT CYCLES

The existence of limit cycles was first detected by Poincaré en 1882.These cycles are

characterized by their stability and are crucial for simulating the behavior of numerous

oscillatory systems found in real life. Neighboring trajectories are drawn to a stable or

attractive limit cycle as time approaches infinity. On the other hand, when time gets

closer to negative infinity, an unstable limit cycle repels nearby trajectories. Semi-stable

limit cycles behave in both repellent and appealing ways. Trajectories’ stability and the

existence of nearby trajectories that spiral toward or away from the limit cycle are among

the properties of trajectories that are analyzed in the study of limit cycles. By forecasting

the existence or absence of these periodic orbits, the Poincaré-Bendixson theorem is an

important tool in determining the existence of limit cycles in two-dimensional nonlinear

dynamical systems. In this chapter, we are particularly interested in the study of limit

cycles. We will begin with the qualitative study of limit cycles. Then, we present the

main results on existence and non-existence.
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Definition : 28 [8] A limit cycle of system (1.1) is an isolated periodic solution in the

set of all the periodic solutions.

Example: 10 [28] Either the system


ẋ = −y + x(1− x2 − y2),

ẏ = x+ x(1− x2 − y2).
(2.1)

Figure 2.1: The phase portait of system (2.1)

Example: 11 [31] Either the system


ẋ = 2x− y − 2x(x2 + y2),

ẏ = x+ 2y − 2y(x2 + y2),
(2.2)

In polar coordinates x = r cos(θ) and y = rsin(θ), with r > 0, it becomes :


ṙ = 2r(1− r2),

θ̇ = 1.
(2.3)
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Hence

ṙ = 0 =⇒ r = ±1 or r = 0.

Since r > 0, only the positive root r = 1 is accepted. So for r = 1 we have the periodic

solution (x(t), y(t)) = (cos(t+ θ0), sin(t+ θ0)), with θ(0) = θ0. In the phase plane there is

a single limit cycle whose equation x2 + y2 = 1 and amplitude r = 1.

Figure 2.2: Thé phase portait of system (2.2)

Definition : 29 [10] An algebraic limit cycle is a limit cycle which is contained in the

zeroes set of an invariant algebraic curve.

Theorem: 7 [24] Let f ∈ R [x, y] i.e. f is a polynomial in the variables x and y. The

algebraic curve f(x, y) = 0 is an invariant algebraic curve of the polynomial system of

differential equations (1.1) if for some polynomial K ∈ R [x, y], we have

P
∂f

∂x
+Q

∂f

∂y
= Kf. (2.4)

The polynomial K is called the cofactor of the invariant algebraic curve f = 0.
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Example: 12 [29] Let the system be :


ẋ = x(x2 + y2 − 1)− y(x2 + y2 + 1),

ẏ = y(x2 + y2 − 1) + x(x2 + y2 + 1),
(2.5)

this system admits a single algebraic limit cycle of equation :

Figure 2.3: System limit cycle (2.5)

Example: 13 [4] The differential polynomial system of degree 3


ẋ = x+ (y − x)(x2 − yx+ y2),

ẏ = y − (y + x)(x2 − yx+ y2),
(2.6)

has a unique non–algebraic limit cycle.
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Figure 2.4: System limit cycle (2.6)

2.1 The non existence and existence of limit cycles

2.1.1 The non existence of the limit cycle

Theorem: 8 [37] (Bendixson). If the divergence ∂P/∂x + ∂Q/∂y of system (1.1) has

constant sign in a simply connected region U , and is not identically zero on any subregion

of U , then system (1.1) does not possess any limit cycle (in fact a closed trajectory) which

lies entirely in U .

Proposition: 2 [14] Let (P, Q) be a C1 vector field defined in the open subset U of

R2 Let V = V (x, y) be a C1 solution of the linear partial differential equation . Let∑ = (x, y) ∈ U : V (x, y) = 0.If the divergence {∂P/∂x+ ∂Q/∂y} of system (1.1) has

constant sign in the simply connected domain of definition of V�∑,then any limit cycle

(in fact a closed trajectory) which lies entirely in the simply connected domain of definition

of V must be contained in ∑.

Proposition: 3 [14] In the interior D of any closed trajectory of system (1.1) of a simply
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connected region we have ∫ ∫
D

(
∂P

∂x
+ ∂P

∂x

)
dxdy = 0. (2.7)

Example: 14 we give the following example :


ẋ = −x3y2 + 5,

ẏ = −x4y5 − 1.
(2.8)

We have

∂P
∂x

+ ∂Q
∂y

= −3x2y2 − 5x4y4 < 0. (2.9)

then there can therefore be no limit cycle in R2

Figure 2.5: Phase portrait of the system (2.9)

Theorem: 9 [14](Bendixon criterion) Let D be a related domain of R2 .If div(dP
dx

+ dQ
dy
)

is non-zero and of constant sign on D, then the differential system (1.1) does not admit

an entirely contained periodic solution in D.
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Example: 15 Consider the system


ẋ = 2x5 − 3y,

ẏ = 4y + 2x2,

(2.10)

dP
dx

+ dQ
dy

= 10x4 + 4 > 0 at any point of R2, there can therefore be no limit cycle contained

in R2.

Figure 2.6: Phase portrait of the system (2.10)

Theorem: 10 [37] (Bendixson-Dulac). If there exists a continuously differentiable func-

tion B(x, y) in a simply connected region U such that ∂(BP )/∂x+∂(BQ)/∂y has constant

sign and is not identically zero in any subregion, then system (1.1) does not possess any

limit cycle (in fact a closed trajectory) which lies entirely in U .

Proposition: 4 [14] Let (P, Q) be a C1 vector field defined in the open subset U of R2 Let

V = V (x, y) be a C1 solution of the linear partial differential equation (1.2). Let B(x, y)

a continuously differentiable function in U such that ∂(BP )/∂x+∂(BQ)/∂y has constant

sign, then any limit cycle (in fact a closed trajectory) which lies entirely in the simply

28



connected domain of definition of V must be contained in {∑ = (x, y) ∈ U : V (x, y) = 0} .

Theorem: 11 [14] (Cherkas).the vecteur field X (x, y) defined in the in the open subset U

of R2 Suppose that in a simply connected domain U ⊂ R2, there exists a function Ψ(x, y)

f class C1 and a number k > 0 such that

kΨdivX + XΨ > 0,

then the domain U contains no limit cycles of system (1.1).

Corollaire: 1 A closed trajectory has a critical point in its interior.If we turn this state-

ment around, we see that it is really a criterion for non-existence: it says that if a region R

is simply-connected (i.e., without holes) and has no critical points, then it cannot contain

any limit cycles.For if it did, the Critical-point Criterion says there would be a critical

point inside the limit cycle, and this point would also lie in R since R has no holes.

2.1.2 The existences of limit cycles

Theorem: 12 [13] (First criterion). Let (P , Q) be a C1 vector field defined in the open

subset U of R2 , (u(t), v(t) a periodic solution of (P , Q) of period T,R : U −→ R a C1

map such that
∫ T

0 R(u(t), v(t))dt 6= 0 and V = V (x, y) a C1 solution of the linear partial

differential equation (1). Then the closed trajectory

y = ((u(t), v(t)) ∈ U : t ∈ [0, T ]),

is contained in {∑
= (x, y) ∈ U : V (x, y) = 0

}
.
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and γ is not contained in a period annulus of (P , Q). Moreover, if the vector field

(P , Q) is analytic, then γ is a limit cycle.

Remark: 10 [13] We note that theorem 12 shows that when we know explicitly the tra-

jectories V (x, y) = 0 of a vector field (P , Q) through equation (1.1) for a given R,

we additionally have information on the periodic solutions of (P , Q), because if γ is a

closed trajectory it must satisfy that either γ is contained in (x, y) ∈ U : V (x, y) = 0, or∫
γ Rdt = 0.

The Poincare-Bendixson Theorem

Suppose R is the finite region of the plane lying between two simple closed curves D1 and

D2, and fis the velocity vector field for the system (1.1). If

1. at each point of D1 and D1, the field points toward the interior of R.

2. R contains no critical points,

then the system (1.1) has a closed trajectory lying inside R.

Example: 16 [28] Consider the system


ẋ = −y + x(1− x2 − y2),

ẏ = x+ y(1− x2 − y2),
(2.11)

had a limit cycle Γ represented by γ(t) = (cos t, sin t),the Poincaré map for Γ can be found

by solving this system written in polar coordinates on pose


x = rcos(θ),

y = rsin(θ),
(2.12)
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the formulation of the system allows you to go from Cartesian coordinates (x,y) to polar

coordinates (r,θ)


ṙcos(θ)− rθ̇sin(θ) = −rsin(θ) + rcos(θ)(1− r2),

ṙsin(θ) + rθ̇cos(θ) = rrcos(θ) + rsin(θ)(1− r2).
(2.13)

This means that :

cos(θ)ẋ+ sin(θ)ẏ = ṙ

= −rsin(θ)cos(θ) + rcos2(θ)(1− r2) + rsin(θ)cos(θ) + rsin2(θ)(1− r2)

= r(1− r2).

and we replace the value of ṙ in (2.13)

sin(θ)(r(1− r2)− r(1− r2)) = rcos(θ)(1− θ̇),

θ̇ = 1.

We obtain the system: 
ṙ = r(1− r2),

θ̇ = 1,

with r(0) = r0 and θ(0) = θ0.the first equation can be solved either as a separable differ-

ential equation or as a Bernoulli equation,the solution is given by

r(t, r0) =
[
1 +

( 1
r2 − 1

)
e−4π

]−1/2
, (2.14)

and

θ(t, θ0) = t+ θ0

If ∑ is the ray θ = θ0 through the origin,then ∑ is perpendicular to Γ and the trajectory
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through the point (r0, θ0) ∈ ∑∩Γat t = 0. intersects the ray θ = θ0 again at t = 2π.

It follows that the Poincare map is given by

P (r0) =
[
1 +

( 1
r2 − 1

)
e−4π

]−1/2
, (2.15)

Clearly P (1) = 1 corresponding to the cycle Γ and we see that

P ′(r0) = e−4πr0
−3
[
1 +

( 1
r2 − 1

)
e−4π

]−1/2
, (2.16)

and that P ′(1) = e−4π < 1.

Figure 2.7: Phase portrait of the system (2.11)

Example: 17 [27] Let be the following dynamic system


ẋ = y + x(1− x2 − y2),

ẏ = −x+ y(1− x2 − y2).
(2.17)

The function V (x, y) = 1
2(x2 + y2) is a Lyaponov function for this System
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V = xẋ+ yẏ

= (x2 + y2)(1− x2 − y2).

If we consider the Domain D defined by the circle of radius 1
2 , and the circle of radius 2,

D =
{

(x, y)\1
4 ≤ x2 + y2 ≤ 4

}
(2.18)

we get an attractive domain for our system.The domain of therefore, we can conclude

from the corollary of the Poincare-Bendixon theorem that there is at least one limit cycle

completely contained in D. We consider the domain D1 defined by

D1 =
{

(x, y)\x2 + y2 ≤ 2
}

(2.19)

the domain D contains a single unstable equilibrium point (the origin), so we can conclude

from the Poincare-Bendixon theorems that there exists at least one limit cycle

Figure 2.8: The phase portait of system (2.17)

Theorem: 13 [34] Let (P, Q) be a C1 vector field defined in the open subset U of R2.
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Let V (x, y) be an inverse integrating factor If γ is a limit cycle of the vector field (P, Q)

in the domain of definition of V , then γ is contained in {∑ = (x, y) ∈ U : V (x, y) = 0} .

2.2 Stability of limit cycles

Theorem: 14 [7] Let E be an open subset of R2 and suppose that f ∈ C1(E). Let γ(t) be

a periodic solution of (1) of period T,then the derivative of the Poincaré map P(s) along

a straight line ∑ normal to Γ = x ∈ R2|x = γ(t)− γ(0), 0 ≤ t ≤ T at x = 0 is given by

P ′(0) = exp
∫ T

0
∇.f(γ(t))dt

.

Corollaire: 2 [18] Under the hypotheses of Theorem 14, the periodic solution γ(t) is a

stable limit cycle if ∫ T

0
∇.f(γ(t))dt < 0

and it is an unstable limit cycle if

∫ T

0
∇.f(γ(t))dt > 0

. It may be a stable.unstable or semi-stable limit cycle or it may belong to a continuous

band of cycles if this quantity is zero.
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Stable limite cycle Unstable limite cycle half stable limite cycle

Figure 2.9: Classification of limit cycles [35]

For Example2.11 above , we have γ(t) = (cost, sint)T ,∇.f(x, y) = 2− 4x2 − 4y2 and

∫ 2x

0
∇.f(γ(t))dt =

∫ 2x

0
(2− 4cos2t− 4sin2t)dt = −4π.

Thus, with s = r − 1,it follows from Theorem 14 that

p′(0) = e−4π

, which agrees with the result found in Example 2.11 by direct computation. Since

P ′(0) < 1 the cycle γ(t) is a stable limit cycle in this example.

Definition : 30 [18] Let P(s) be the Poincare map for a cycle Γ of a planar analytic

system(1.1)and let

d(s) = P (s)− s

be the displacement function,then if

d(0) = d′(0) = · · · = d(k−1)(0) = 0 and d(k)(0) 6= 0,

Γ is called a multiple limit cycle of multiplicity k If k = 1 then Γ is called a simple limit
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cycle. We note that Γ = {x ∈ R2|x = γ(t), 0 ≤ t ≤ T} is a simple limit cycle of (1) if

∫ T

0
∇.f(γ(t))dt 6= 0

It can be shown that if k is even then Γ is a semi-stable limit cycle and if k is odd then Γ

is a stable limit cycle if d(k)(0) < 0 and Γ is an unstable limit cycle if d(k)(0) > 0.

Example: 18 [31] 
ẋ = 3x− y − 3x(x2 + y2),

ẏ = x+ 3y − 3y(x2 + y2),
(2.20)

the periodic solution is a stable limit cycle.

Figure 2.10: Stable limit cycle of system (2.20)


ẋ = −5x− y + 5x(x2 + y2),

ẏ = x− 5y + 5y(x2 + y2),
(2.21)

the periodic solution is a unstable limit cycle
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Figure 2.11: Unstable limit cycle of system (2.21)

Example: 19 [36] The system


ẋ = −y + ηx(1− x2 − y2),

ẏ = x+ ηy(1− x2 − y2),
(2.22)

has a limit cycle Γ represented by

Γ(θ) = (cos θ, sin θ),

because we have

div(P,Q) = ∂P

∂x
+ ∂Q

∂y
= η(2− 4x2 − 4y2),

where P = −y + ηx(1− x2 − y2) and Q = x+ ηy(1− x2 − y2).
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∫ T

0
div(Γ(θ)) dt =

∫ T

0
div(cos θ, sin θ) dt

= η
∫ 2π

0
(4(cos θ)2 + 4(sin θ)2 − 2) dθ,

= η
∫ 2π

0
2 dθ.

So the cycle Γ(θ) = (cos(θ), sin(θ)) is an unstable limit cycle if η > 0 and is a stable limit

cycle if η > 0

Figure 2.12: Limit cyle of system ( 2.22) [36]

2.3 The first return map

Probably the most basic tool for studying the stability of periodic orbits is the Poincaré

map or first return map, defined by Henri Poincaré in 1881. The idea of the Poincaré map

is quite simple: If Γ is a periodic orbit of system (1.1), through the point (x0, y0) and Σ

is a hyperplane perpendicular to Γ at (x0, y0), then for any point (x, y) in Σ sufficiently

near (x0, y0), the solution of (1.1) through (x, y) at t = 0, Φt(x, y) will cross Σ again at a

point Π(x, y) near (x0, y0). The mapping (x, y)→ Π(x, y) is called the Poincaré map.

The next theorem establishes the existence and continuity of the Poincaré map Π(x, y)

and of its first derivative DΠ(x, y).

Theorem: 15 [18] Let E be an open subset of R2 and let (P,Q) ∈ C1(E). Suppose that
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Φt(x0, y0) is a periodic solution of (1.1) of period T and that the cycle

Γ = {(x, y) ∈ R2 | (x, y) = Φt(x0, y0), 0 ≤ t ≤ T}

Figure 2.13: The poincare map [18]

is contained in E. Let Σ be the hyperplane orthogonal to Γ at (x0, y0), i.e.; let

Σ = {(x, y) ∈ R2 | (x− x0, y − y0) · (P (x0, y0), Q(x0, y0)) = 0}.

Then there is a δ > 0 and a unique function τ(x, y), defined and continuously differentiable

for (x, y) ∈ Nδ(x0, y0), such that

τ(x0, y0) = T,

and

Φτ(x,y)(x, y) ∈ Σ,

for all (x, y) ∈ Nδ(x0, y0).

Definition : 31 [28] Let Γ, Σ, δ, and τ(x, y) be defined as in Theorem (2.5). Then for

(x, y) ∈ Nδ(x0, y0) ∩ Σ, the function

Π(x, y) = Φτ(x,y)(x, y)
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is called the Poincaré map for Γ at (x0, y0).

The following theorem gives the formula of Π0(0, 0).

Example: 20 [18] Let the following system of equations:


ẋ = −y + x(4− x2 − y2),

ẏ = x+ y(4− x2 − y2).
(2.23)

Note that (0, 0) is the only critical point of (2.23). In polar coordinates, the system

(2.23) becomes: 
ṙ = r(4− r2),

θ̇ = 1.
(2.24)

The differential system (2.24) is equivalent to the following Bernoulli differential equa-

tion
dr

dθ
= 4r − r3.

The general solution is

r(θ) =
[1
4 + ce−8θ

]− 1
2
.

A solution of (2.24) satisfying the initial condition r(0) = r0 is given by

r(θ, r0) =
[

1
4 +

[
1
r2

0
− 1

4

]
e−8θ

]− 1
2

.

For θ = 2π, it follows that the Poincaré first return map is given by:

Π(r0) = r(2π, r0) =
[

1
4 +

[
1
r2

0
− 1

4

]
e−16π

]− 1
2

.

Definition : 32 [18] A fixed point of the application Π is a point (x, y) such that
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Π(x, y) = (x, y). It corresponds to a periodic orbit of the system (1.1).

2.4 Stability of poincare map

Theorem: 16 [28] Let Γ(t) be a periodic solution of (1.1) of period T . Then the derivative

of the Poincaré map Π(s) along a straight line Σ normal to Γ = {(x, y) ∈ R2 : (x, y) =

Φt(x0, y0), 0 ≤ t ≤ T} at (x, y) = (0, 0) is given by

Π′(0) = exp
∫ T

0
∇ · (P (Γ(t)), Q(Γ(t))) dt.

Corollaire: 3 [12] Under the hypotheses of (1.10.2), the periodic solution Γ(t) is a stable

limit cycle if ∫ T

0
∇ · (P (Γ(t)), Q(Γ(t))) dt < 0,

and it is an unstable limit cycle if

∫ T

0
∇ · (P (Γ(t)), Q(Γ(t))) dt > 0.

Example: 21 [18] The system (1.12) has a limit cycle Γ1 represented by

Γ1(θ) = (2 cos θ, 2 sin θ),

we have ∇ · (P (x, y), Q(x, y)) = 8− 4x2 − 4y2 and

∫ 2π

0
∇ · (P (Γ1(θ)), Q(Γ1(θ))) dθ =

∫ 2π

0
8− 4((2 cos(θ))2 + (2 sin(θ))2) dθ.

= −8π < 0.

41



Then, the cycle Γ1 is a stable limit cycle.

2.5 Hyperbolic limit cycle

Definition : 33 [28] A limit cycle Γ = (x(t), y(t)), t ∈ [0, T ] is a T-periodic solution

isolated with respect to all other possible periodic solutions of the system.

A T-periodic solution Γ is a hyperbolic limit cycle if
∫ T

0 div(Γ)dt is different from zero.

Example: 22 [28] The system


ẋ = −y + x(1− x2 − y2),

ẏ = x+ y(1− x2 − y2),
(2.25)

polar coordinates

x = r cos θ,

y = r sin θ,
(2.26)

coordinates the previous system becomes


ṙ = r(1− r2),

θ̇ = 1.
(2.27)

So

ṙ = 0⇔ r = 0 or r = 1

, for

γ(t) = (cos(t), sin(t))
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∫ 2π
0 div(γ(t))dt =

∫ 2π
0

(
∂P
∂x

+ ∂Q
∂y

)
(cos(t), sin(t)) dt,

=
∫ 2π
0 (1− 3 cos2(t)− sin2(t)) + (1− cos2(t)− 3 sin2(t)), dt

=
∫ 2π

0 (1− 4 cos2(t)− 4 sin2(t))dt,

=
∫ 2π

0 −2dt = −4π 6= 0.

(2.28)

So, system (1.12) has a hyperbolic limit cycle γ(t) = (cos(t), sin(t)),which is stable

Figure 2.14: Hyperbolic limit cycle stable of system ( 2.25) .
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CHAPTER 3

ON THE RATIONAL LIMIT CYCLES OF

ABEL EQUATIONS

In this chapter, we will detail the work of Changjian Liu et al [21] . The Abel equations,

which are dt
dy

= A(t)y2 + B(t)y3, are the subject of this work. A(t) and B(t) are real

polynomials. They call a solution to the preceding equations, y = ϕ(t), periodic if it

fulfills the formula ϕ(0) = ϕ(1). A periodic solution is referred to as a limit cycle if it

is isolated. They refer to a limit cycle y = ϕ(t) as nontrivial rational if it is a rational

function rather than a polynomial.

Firstly, They investigate the existence of nontrivial rational limit cycles. They demon-

strate that there are Abel equations with at least two nontrivial rational limit cycles and

others with at least one nontrivial rational limit cycle and one non-rational limit cycle.

Secondly, we examine the relationship between the existence of nontrivial rational limit

cycles and the degrees of A(t) and B(t). Lastly, They show that the multiplicity of a

nontrivial rational limit cycle can be unbounded.
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Definition : 34 [23] we consider Abel equations,

dy
dt

= A(t)y2 +B(t)y3. (3.1)

where t [0, 1] and y is real variables and A(t) and B(t) are real polynomials.

Definition : 35 [23] We say that a limit cycle is a periodic solution isolated in the set of

periodic solutions of a differential equation (3.1) is a solution y(t) defined in [0, 1] such

as y(0) = y(1).

Remark: 11 We are interested in the rational limit cycles of equation (3.1) when the

functions A(t) and B(t) are polynomials.

Definition : 36 [6] Let y = ψ(t, y0) be the solution of equation (3.1) such that ψ(0, y0) =

y0.We say that the solution y = ψ(t, y0) of equation (3.1) is periodic if ψ(1, y0) = y0.

If ψ(t, y0) is well defined on [0, 1], then we can define a mapΦ : R −→ R such that

Φ(y0) = ψ(1, y0)−y0.Clearly, Φ(y0) = 0 if and only if system (3.1) has a periodic solution

starting at y0.

Theorem: 17 [21] For equation (3.1), the following statements hold:

(a) Any polynomial limit cycle of equation (3.1) has the form y = c. Furthermore, if

there exists a polynomial limit cycle y = c, c 6= 0, then except for the polynomial

solution y = 0, there is no other polynomial solution, thus no other polynomial limit

cycle.

(b) For any given integer k with k ≥ 2, there exist polynomials A(t) and B(t) such that

y = 0 is a polynomial limit cycle of multiplicity k of equation (3.1).

Proof: 1 It is worth pointing out that if a polynomial limit cycle y = c, c 6= 0, exists, then

it is hyperbolic. The proof will be found in the next section. Recall the a function y = φ(t)
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is called algebraic if and only if there exists a polynomial f(t, y) such that f(t, φ(t)) = 0.

Is a limit cycle y = φ(t, y0) of system (1.1)is an algebraic limit cycle if φ(t, y0) is algebraic.

To solve the problem of algebraic limit cycles, it is natural for us to start from the

simple case; rational case, in other words, the limit cycle y = φ(t, y0) can be written as

y = q(t)
p(t) , where p(t), q(t) are polynomials and (p(t), q(t)) = 1. Since we are only interested

in rational limit cycles, which are not polynomial limit cycles, is a polynomial limit cycles

trivial rational limit cycles and other rational limit cycles nontrivial rational limit cycles.

The following lemma gives the sufficient and necessary conditions that a rational

function can be a periodic solution of equation (3.1).

Lemma: 1 [21] The nonzero rational function y = q(t)
p(t) is a periodic solution of equation

(3.1) if and only if all the following three conditions hold:

(a) q(t) = c1, where c1 is a nonzero constant.

(b) c1B(t) + p(t)p′(t)
c1+p(t)A(t) = 0.

(c) p(0) = p(1) and p(t) has no zeros in [0, 1].

Proof: 2 If y = q(t)
p(t) is a periodic solution of equation (3.1), then obviously p(t) has no

zero in [0, 1]. Denote by F (t, y) = p(t)y − q(t), then along the curve {F (t, y) = 0}, the

derivative of F (t, y) in t is zero, in other words,

dF

dt
= p′(t)y − q′(t) + p(t)(A(t)y2 +B(t)y3) = 0.

Notice that F (x, y) is irreducible, so there exists a polynomial k(t, y) so that

p′(t)y − q′(t) + p(t)(A(t)y2 +B(t)y3) = k(t, y)F (t, y). (3.2)
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The left-hand side of formula (3.2) is a polynomial of degree 3 in y and F (t, y) is a poly-

nomial of degree 1 in y, so we can suppose that k(t, y) = k0(t) + k1(t)y + k2(t)y2, where

k0, k1, and k2 are polynomials in t.

p′(t)y − q′(t) + p(t)(A(t)y2 +B(t)y3) = K(t, y)F (t, y)

Let K(t, y) = K0(t) +K1(t)y +K2(t)y2 where K0(t), K1(t) and K2(t)

are polynomials in t .

p′(t)y − q′(t) + p(t)(A(t)y2 +B(t)y3) = [K0(t) +K1(t)y +K2(t)y2] [p(t)y − q(t)]

= −K0q(t) + [K0(t)p(t)−K1(t)p(t)−K1(t)q(t)] y

+ [K1(t)p(t)−K2(t)q(t)] y2 +K2(t)p(t)y3.

By comparing the coefficients of yj, j = 0, 1, 2, 3, in formula (3.2), we obtain

(i) −q′(t) = −k0(t)q(t).

(ii) p′(t) = k0(t)p(t)− k1(t)q(t).

(iii) p(t)A(t) = k1(t)p(t)− k2(t)q(t).

(iv) p(t)B(t) = k2(t)p(t).

From (i), q(t) is a factor of q′(t), that is, q(t)/q′(t).This fact implies that q(t) is a constant

and we denote it by q(t) = c1 ∈ R. If c1 = 0, then y = q(t)
p(t) = 0. This is impossible, so

we have that c1 6= 0, and condition (a) holds. Furthermore, y = q(t)
p(t) = c1

p(t) is a periodic

solution, thus p(0) = p(1), and condition (c) holds.

From (ii), k1(t) = −p′(t)
c1

; from (iv), k2(t) = B(t). Substituting them into (iii), we

47



have

c1B(t) + p(t)
(
p′(t)
c1

+ p(t)A(t)
)

= 0.

Condition (b) holds.

On the contrary, if all three conditions (a), (b), (c) hold, then one can easily check

that the rational function y = c1
p(t) is a periodic solution of equation (3.1).

Since q(t) = c1 is a nonzero constant, without loss of generality, in the rest of this

paper, we will suppose that q(t) = 1. To decide if a periodic solution of equation (3.1) is

a hyperbolic limit cycle,

Lemma: 2 [21] Consider the differential equation dy
dt

= F (t, y), where F (t, y) is a func-

tion of class C2 in R2. Assume that y = ϕ(t) is a periodic orbit of this equation, then it

is a hyperbolic limit cycle if and only if D1(1) 6= 0, where

D1(t) =
∫ t

0

∂F

∂y
(t, ϕ(t)) dt.

We firstly use Lemma 3 to deal with polynomial limit cycles:

Corollaire: 4 [21] If y = c, c 6= 0, is a limit cycle of equation (3.1), then it must be a

hyperbolic limit cycle.

Proof: 3 Simce y = c is solution of equation (3.1) by lemme 2 we have that

A(x) = −q(t)B(t)
p(t) − p(t)p′(t)

q(t)p(t) .

and as y = q(t)
p(t) = c =⇒ q(t) = cp(t), so

A(t) = −cp(t)B(t)
p(t) − 0

= −cB(t)
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and system (3.1) becomes

dy

dt
= −cB(t)y2 +B(y)y3 = B(t)y2(y − c).

If
∫ 1

0 B(t)dt 6= 0,

D1 =
∫ 1

0

∂B(t)y2(y − c)
∂y

(t, c)dt,

=
∫ 1

0
3y2B(t)− 2ycB(t)dt,

=
∫ 1

0
3c2B(t)− 2c2B(t),

= c2
∫ 1

0
B(t)dt 6= 0.

By lemma 2 the priodic solution y=c is a hyperbolic limit cycle.

Corollaire: 5 [21] . If y = 1
p(t) is a periodic solution of equation (3.1), then it is a

hyperbolic limit cycle if and only if
∫ 1

0
B(t)
P 2(t)dt 6= 0

Proof: 4
D1 =

∫ 1

0

∂A(t)y2 +B(t)y3

∂y
(t+ 1

p(t))dt,

=
∫ 1

0
2A(t)y + 3B(t)y2(t+ 1

p(t))dt,

=
∫ 1

0
2A(t) 1

p(t) + 3B(t) 1
p2(t)dt,

=
∫ 1

0

2A(t)p(t) + 3B(t)
p2(t) dt.

By lemme 2, p(0) = p(1) and p(t)A(t) = p(t)p′(t)−B(t),

D1 =
∫ 1

0

B(t)
p2(t) − 2p

′(t)
p(t) dt,

=
∫ 1

0

B(t)
p2(t)dt− 2 [ln p(t)]10 ,

=
∫ 1

0

B(t)
p2(t)dt.

Which finishes the proof .
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Theorem: 18 [26] Let v1, v2, . . . , vn be elements of a vector space E endowed with an

inner product 〈·, ·〉. Then

G(v1, v2, . . . , vn) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈v1, v1〉 〈v1, v2〉 · · · 〈v1, vn〉

〈v2, v1〉 〈v2, v2〉 · · · 〈v2, vn〉
... ... . . . ...

〈vn, v1〉 〈vn, v2〉 · · · 〈vn, vn〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0,

and it is zero if and only if the vectors v1, v2, . . . , vn are linearly dependent. The

determinant G(v1, v2, . . . , vn) is usually called the Gram determinant.

In fact, we will use the above result when E is the space of continuous functions on

the interval [0, 1] and the inner product is 〈u, v〉 =
∫ 1

0 u(t)v(t) dt. In this context, it is also

called the integral Gram determinant .

3.1 The existence and the number of nontrivial ra-

tional limit cycles

Firstly, we are interested in the existence of nontrivial rational limit cycles and the degrees

of A(t) and B(t) in equation (3.1). Suppose that degA(t) = m and degB(t) = n, then

we have:

Theorem: 19 [21] If (m,n) satisfies one of the following conditions:

(a) n ≥ 2m+ 3 and n. is odd;

(b) m+ 2 ≤ n ≤ 2m+ 1.

(c) n = m+ 1 ≥ 2.
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where degA(t) = m and degB(t) = n, then we can find suitable A(t) and B(t) so that

equation (3.1) has a nontrivial rational limit cycle; else (m,n) does not satisfy any these

conditions, then equation (3.1) has no nontrivial rational limit cycle.

Proof: 5 If equation (3.1) has a nontrivial limit cycle y = 1
p(t) ( meaning P (t) is not a

constant polynomial ) then by lemma 2 P(t) must satisfies the equation

B(t) + P (t)(p′(t) + A(t)) = 0.

Here , A (t) and B(t) are polynomials where

deg(A(t)) = m and deg(B(t)) = n.

For y = 1
p(t) to be a limit cycle,it is required that p(0) = p(1),this implies that p(t) must

have a degree of least if deg(p(t)) = 0,then p(t) would be a contradict the fact that y = 1
p(t)

is a nontrivial limit cycle because a constant p(t) would imply a trivial solution

B(t) = −p(t)(p′(t) + A(t))

deg(B(t)) = deg p(t) + deg p′(t) (if deg p(t) > m+ 1),

= deg p(t) + deg A(t) (if deg p(t) > m+ 1).

So we have

• if deg p(t) = ` > m+ 1 then deg p′(t) > m = deg A(t)

n = deg(B(t)) = deg p(t) + deg p′(t)

= 2`− 1 > 2m+ 1 ≥ 2m.

thus n is an add integer and n ≥ 2m+ 3 the condition (a) holds;
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• if deg p(t) = ` = m+ 1 then m ≥ 1

m+ 1 = deg(p(t)) ≤ n = deg(B(t)),

≤ deg p(t) + deg p′(t),

≤ m+ 1 +m,

≤ m+ 2.

so m + 1 ≤ n ≤ 2m + 1 the condition (b) holds; or n = m + 1 ≥ 2 the conditio (c)

holds;

if deg(p(t)) = ` < m+ 1 then deg p′(t) < m = deg(A(t))

n = deg(B(t)) = deg p(t) + degA(t) = m + ` which implies that 2 + m ≤ n ≤ 2m

the condition (b) holds; In any case , on of the condition (a) (b) (c) holds so if (m,n

) does not satisfies these conditions, equation (3.1) has no nontivial rationale limit

cycles.

On the contrary,

If the condition (a) holds : n ≥ 2m+ 3 , then we let.

We Correct the degree of p(t)

p(t) = t
n−1

2 (1− t) + 1.

A(t) = tm.

B(t) = p(t)(A(t)− p′(t)).

we need to check that deg(A(t)) = m and deg(B(t)) = n

– A(t) = tm cleary, the degree of A(t) is m

– Degree of B(t) is a degree of the product P (t)(A(t)− p′(t)) involve

deg(p(t)) = n−1
2 + 1 = n+1

2
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DegreeA(t)− p′(t) having degree m and n+1
2 − 1

So, the highest degree term dominates is n−1
2 , thas

deg(B(t)) = n+1
2 + n−1

2 = n

y = 1
p(t) and p(t) is not constant polynomial (its degree is at least n+1

2 ), y = 1
p(t)

represents a nontrivial rational limit cycle

Additionally , because p(t) is a polynomial and not a constant , this limit cycle

is hyperbolic

If the condition (b) holds m+ 2 ≤ n ≤ 2m+ 1 then we let

p(t) = tn−m−1(1− t) + 1

A(t) = tm

B(t) = p(x)(A(t)− p′(t))

– The degree of A(t) is m

– The higest degree term in B(t) will come from the highest degree Term in

p(t)× tm

deg(p(t)) = n−m

so : deg(p(t)× tm) = n−m+m = n there fore deg(B(t)) = n

The rational function y = 1
p(t) is a hyperbolic nontrivial rational limit cycle of the

equation

Application : [21]

There exist examples of equation (3.1) with at least two nontrivial rational limit cycles;

there also exist examples of equation (3.1) with at least one nontrivial rational limit cycle

coexisting with one nontrivial irrational limit cycle. Firstly we construct the following
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equations
dy

dt
= A(t)y2 +B(t)y3,

where

A(t) = (t− 1)(8t3 − 35t2 + 24t− 3).

B(t) = (2 + t2 − t)(t2 − t+ 1)(t− 4)(t+ 1)(t− 3)(5− 3t2 − 12t).
(3.3)

Then the equation (3.1) has two rational solutions. 1
p1(t) and

1
p2(t) which are both periodic,

where

P1(t) = (t− 3)(t+ 1)(t− 4)(t2 − t+ 1),

P2(t) = (t− 3)(t+ 1)(t− 4)(t2 − t+ 2).
(3.4)

we have:

B(t)
p2

1(t) = (2+t2−t)(5−3t2−12t)
(t−3)(t+1)(t−4)(t2−t+1)∫ 1

0
B(t)
p2

1(t) =
∫ 1
0

(2+t2−t)(5−3t2−12t)
(t−3)(t+1)(t−4)(t2−t+1)

= 1
546 [−46

√
3 arctan

[
−1+2t√

3

]
+ 588 ln(−4 + t)

+624 ln(−3 + t) + 728 ln(1 + t)− 151 ln(1− t+ t2)]|10

= 1
819

(
−23
√

3π + 264 ln 2− 54 ln 3
)
6= 0

B(t)
p2

2(t) = (1+t2−t)(5+3t2−12t)
(t−3)(t+1)(t−4)(t2−t+2)∫ 1

0
B(t)
p2

2(t) =
∫ 1

0
(1+t2−t)(5+3t2−12t)

(t−3)(t+1)(t−4)(t2−t+2)

= 1
112 [6
√

7 arctan
(
−1+2t√

7

)
+ 104 ln(−4 + t)

+98 ln(−3 + t) + 84 ln(1 + t) + 25 ln 2− t− t2]|10

= 1
56

(
6
√

7 arctan
(

1√
7

)
− 13 ln 2 + ln 27

)
6= 0

Thus they are hyperbolic limit cycles. The system that we construct has at least two

nontrivial limit cycles.
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Next we consider the perturbation of the above system

dy
dt

= (A(t) + ε) y2 + (B(t)− εP1(t)) y3. (3.5)

Where A(t), B(t) and P1(t) are defined in 3.4 and 3.3 is a small parament

if y = 1
p1(t) So

dy
dt

= (A(t) + ε) 1
p2

1(t) + (B(t)− εP1(+)) 1
p3

1(t) .

y = 1
p1(t) remains a hyperbolique nontrivial rational limit cycle.

Additionally, equation (3.5) has a hyperbolic limit cycle ant tends to y = 1
p2(t) when

ε −→ 0, since the aforementioned equation has another hyperbolique limit cycle Γε when

tends to y = 1
p2(t) , we argue that if is rational, then p(t) = P2(t) + εp3(t) + O(ε) will

exist as a polynomial, where P3(0) = P3(1) and y = 1
p(t) is a limit cycle of equation. (3.5)

Through Lemma 2

(p′(t) + A(t))p3(t) + p2(t)p′3(t) + p2(t) = 0

B(t)− εP1(t) + (p′2(t) + εP ′3(t))(P2(t) + εP3(t)) = −(A(t) + ε)(P2(t) + εP3(t))

B(t)− εP1(t) + P ′2(t)P2(t) + εP ′3(t)P2(t) + P ′2(t)εP3(t) + ε2P ′3(t)p3(t)

= −A(t)P2(t)− A(t)εP3(t) + P (1) + ε2P ′3(t).

comparing the coefficients of ε of the above equation, we have

ε(−P1(t) + P ′3(t)p2(t) + P ′2(t)P3(t)) = −ε(A(t)P3(t))(P ′2(t) + A(t))p3(t)

+P2(t)p′3(t)− P1(t) + p2(t)

= 0
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So the polynomial. P3(t) satisfies the following equation:

(t−3)(t+1)(t−4)(2+t2−t)p′3(t)−(t2−t+1)(5+3t2−12t)p3(t)+(t−3)(t+1)(t−4) = 0.

Given that P3(t) is a fraction of (t− 3)(t+ 1)(t− 4), degP3(x) ≥ 3. Assume that, for

any n ≥ 3, P3(t) = a0 + a1t+ ...+ ant
n. where an 6= 0 Then equation (3.1) becomes

(n− 3)ant4+n + `.O.t = 0.

where `.O.t stands for the degree - less elements of equation (3.1) that imply n = 3. For

the equation to hold, the coefficient of tn + 4 must be zero:

(n− 3)an = 0⇒ n− 3 = 0.⇒ n = 3

There exists a constant c so that P3(t) = c(t − 3)(t + 1)(t − 4) Substituting it to

equation (3.1), we obtain 3ct2 − 12ct+ 5c+ 1 = 0

(2 + t2 − t)p′3(t)− (t2−t+1)(5+3t2−12t)
(t−3)(t+1)(t−4) P3(t) + 1 = 0,

(2 + t2 − t)(c(−4 + t)(−3 + t) + c(−4 + t)(1 + t) + c(−3 + t)(1 + t)),

−(t2 − t+ 1)(5 + 3t2 − 12t)c+ 1 = 0,

1 + c(5− 12t+ 3t2) = 0.

Thus 3c = 12c = 5c+ 1, which is impossible.

3.2 The multiplicity of nontrivial rational limit cycles

In this section, we will show that, unlike the polynomial limit cycle y = c, c 6= 0, the

multiplicity of the nontrivial rational limit cycle is unbounded.
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Theorem: 20 [21] For any integer number k with k ≥ 2, there exist polynomials A(t)

and B(t) such that equation (3.1) has a nontrivial rational limit cycle, whose multiplicity

is k.

Proof: 6 [2] Firstly, we consider the following Abel differential equation

dy

dt
= −p′(t)y2, (3.6)

where p(t) = t2 − v + 1, which satisfies that p(0) = p(1) = 1 and p(v) > 0 in [0, 1].

It is the solutions of equation (3.6) have the form

y = 1
p(t) + c

,

thus any solution of equation (3.6), which is well-defined in [0, 1], is periodic, so equation

(3.6) has no limit cycle. Now we consider a perturbation of equation (3.6)

dy

dt
= −p′(t)y2 + εA(t, ε)y2(1− p(t)y), (3.7)

where ε is a small parameter, A = A(t, ε) is a polynomial in t and only analytic in ε.

Notice that y = 1
p(t) remains a periodic solution, but in general, the other solutions are

not periodic solutions anymore, thus y = 1
p(t) will be a limit cycle.

We need to show that, for any integer number k with k ≥ 2, there exists a polynomial

A in t such that y = 1
p(t) is a rational limit cycle of multiplicity k of the Abel differential

Eq. (3.7). Denote by y = ψ(t, y0, ε), the solution of Eq. (3.7), with initial condition

ψ(0, y0, ε) = y0. Since we need to consider the multiplicity of y = 1
p(t) , we expand the
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function ∆(y0, ε) = ψ(1, y0, ε)− y0 as a power series of z = y0 − 1:

Ψ(y0, ε) =
∞∑
i=1

ϕi(ε)zi,

where ϕi(ε) is analytic in ε. To get the desired multiplicity k, one needs to find suitable

A so that ϕ1(ε) = ϕ2(ε) = · · · = ϕk−1(ε) = 0, but ϕk(ε) 6= 0. The main difficulty of this

problem comes from not knowing ϕi(ε) explicitly. For any integer k with k ≥ 2, we choose

A having the following form:

A(t, ε) = p2k+1(t)1
ε

k−1∑
i=0

b̃i(ε)T i(t),

where T (x) = 1−p(t)
p(t) and the functions b̃i(ε) are analytic in a neighborhood of ε = 0, to

be chosen in order to get the desired multiplicity. Obviously, A is a polynomial in x of

degree 2k + 1. In order to simplify our notations, we will denote by bi = b̃i(0).

We expand the function ψ(t, y0, ε) in a Taylor series in a neighborhood of ε = 0:

ψ(t, y0, ε) = ψ0(t, y0) + ψ1(t, y0)ε+ o(ε), (3.8)

then ψ0(0, y0) = y0 and ψ1(0, y0) = 0. Expanding the equality

We Correct the functions:

∂ψ(t, y0, ε)
∂t

= −p(t)ψ(t, y0, ε)2 + ε
(
A(t)ψ(t, y0, ε)2 − p(t)A(t)ψ(t, y0, ε)3

)

as a power series of ε and equating the coefficients of the powers ε0 and ε1, we deduce that

ψ0(t, y0) = y0

1 + (p(t)− 1)y0
.
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and that

ψ1(t, y0) = ψ0(t, y0)2
∫ t

0
A(s, 0) (1− p(s)ψ0(s, y0)) ds.

We evaluate ψ1(t, y0) at t = 1 and recall that ψ0(1, y0) = y0, then we have

ψ1(1, y0) = (1− y0)y2
0

∫ 1

0
A(s, 0) 1

1− y0 + p(s)y0
ds.

Assume that y0 − 1 = z and use that T (s) = 1−p(s)
p(s) , then we can write

Ψ1(y0) = ψ1(1, y0)− ψ1(0, y0) = −z(z2 + 2z + 1)κ(z),

where κ(z) =
∫ 1

0
A(s,0)

p(s)(1−T (s)z) ds. For any integer i with i > 0, we denote by Ii =∫ 1
0 p

2k(s)Ti(s) ds. Since

A(s, 0) = p2k+1(s)(b0 + b1T (s) + b2T
2(s) + · · ·+ bk−1T

k−1(s)),

we can write

κ(z) =
∫ 1

0
p2k(s)

k−1∑
j=0

bjT
j(s)

(k−1∑
i=0

T i(s)zi + o(zk−1)
)
ds

=
k−1∑
i=0

∫ 1

0

k−1∑
j=0

bjp
2k(s)T i+j(s) ds

 zi + o(zk−1)

=
k−1∑
i=0

∫ 1

0

k−1∑
j=0

bjIi+j ds

 zi + o(zk−1).

We consider the system of k linear equations with the k×k matrix M = (kij) = (Ii+j),

for 0 ≤ i, j ≤ k − 1, the vector of k unknowns (b0, b1, b2, . . . , bk−1) and the independent

vector (0, 0, . . . , 0, 1). If we show that the determinant of M is different from zero, we

have that this system always has a unique solution and, thus, we can always find values of
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b∗ = (b0, b1, b2, . . . , bk−1) for which κ(z) = zk−1 + o(zk−1). We consider the vector space

S of linear combinations of pk(s)T i(s), with i = 0, 1, . . . , k − 1, and where we recall that

T (s) = 1−p(s)
p(s) . The space

S =
m−1∑
i=0

cip
k(s)T i(s) : ci ∈ R

is a real vector space of dimension k. For given f(x), g(t) in S, we can define the inner

product of f(t) and g(t) by

〈f(t), g(t)〉 =
∫ 1

0
f(t)g(t) dt.

It is clear that pk(s)T i(s), with i = 0, 1, . . . , k − 1, forms a basis of S, and that M is

the symmetric matrix of the metrics corresponding to this inner product. Therefore, by

Theorem 20,

det(M) 6= 0. Thus, we can find values of b∗ = (b0, b1, b2, . . . , bk−1) so that

Ψ1(y0 − ε)
1 + 2z + z2 = −κ(z) = −zk + o(zk). (3.9)

Let us reconsider the function Ψ(y0, ε). Since the multiplicity of z = 0 of Ψ(y0, ε) is the

same as that of Ψ1(y0−ε)
1+2z+z2 , we can use Ψ1(y0−ε)

1+2z+z2 instead of Ψ(y0, ε). Suppose that

Ψ1(y0 − ε)
1 + 2z + z2 =

∞∑
i=1

φi(ε,b)zi, (3.10)

where b is the vector (b0, b1, b2, . . . , bk−1) and φi(ε,b) is analytic in ε and b. By (3.9),we

have

Ψ(y0, ε)
(
1 + 2z + z2

)
= Ψ1(y0)

(
1 + 2z + z2

)
ε+ o(ε) (3.11)

= −z
k−1∑
i=0

k−1∑
j=0

bjIi+jz
i + o(zk−1)ε+ o(ε).
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From (3.10) and (3.11), we know that for i satisfying 1 ≤ i ≤ k,

φi(ε,b) = −ε
k−1∑
j=0

bjIi−1+j + o(ε).

For i satisfying 1 ≤ i ≤ k, we define the function φ̃i(ε,b) so that

φi(ε,b) = −εφ̃i(ε,b),

then φ̃i(ε,b) = ∑k−1
j=0 bjIi−1+j + o(1).

At last, we consider the function v(ε,b) : R× Rk → Rk, defined by

v(ε,b) = (φ̃1(ε,b), φ̃2(ε,b), . . . , φ̃k(ε,b)).

We have known we can find b∗ so that v(0,b∗) = (0, 0, . . . , 0, 1). On the other hand,

the Jacobian matrix Db∆(ε,b) corresponding to the derivation only with respect to the

variables b satisfies that Db∆(ε,b) = M . Thus, the determinant of M is nonzero. By

the Implicit Function Theorem, there exist k functions b̃0(ε), b̃1(ε), . . . , b̃k−1(ε) analytically

near ε = 0, such that b̃i(0) = bi for i = 0, 1, . . . , k − 1 and

v(ε, b̃0(ε), b̃1(ε), . . . , b̃k−1(ε)) ≡ (0, 0, . . . , 0, 1).

Therefore, if we let bi = b̃i(ε) for i = 0, 1, . . . , k − 1, then by (3.10), we have

∆(y0, ε)
(
1 + 2z + z2

)
= −εzk + o(zk),

which has a zero z = 0 with the multiplicity of k.
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CONCLUSION

This work has undertaken a comprehensive qualitative study of polynomial differential

systems, with a specific focus on their stability, limit cycles, and applications in Abel

equations. Through the detailed analysis, several significant findings have been made.

This work has significantly advanced the understanding of polynomial differential sys-

tems, particularly in the context of Abel equations. The findings not only enrich the

theoretical framework but also have practical implications that extend across multiple

scientific disciplines. The work sets a foundation for future research, promising further

advancements in the analysis and application of differential systems.
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