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Abstract

In this Memory , we aim to define certain properties regarding the nilpotent distribution
D = span{X ,Y} in the space Rn , This property determines the necessary condition for the Lie
bracket

[
X2,Y 2] ̸= 0 . This result offers less computation and excellent description for the calcul of[

X2,Y 2] .
Keywords:
Distribution , Vector fields , Lie bracket , nilpotent ...

Résumé

Dans ce mémoire , nous visons à définir certaines propriétés concernant la distribution nilpotente
D = span{X ,Y} dans un l’espace Rn , Cette propriété détermine la condition nécessaire pour le
crochet de Lie

[
X2,Y 2] ̸= 0. Ce résultat offre moins de calculs et une excellente description pour le

calcul de
[
X2,Y 2] .

Les mots clés:
Distribution , Champ de vecteur , Crochet de lie , nilpotent ...
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INTRODUCTION

The theory of subelliptic operators L = X2
1 + · · ·+Xm

1 to R , where X2
1 + · · ·+Xm

1 are vector
fields , plays a fundamental role in sub-Riemannian geometry . The main question addressed in this
paper is the theory of finding heat kernels . The method for finding heat kernels depends on the com-
mutativity of the squares of the vector fields X2

1 + · · ·+X2
m . If the operators commute , then the value

of the heat kernel is the product of the heat kernels of the operators . Otherwise , the Toranter formula
will be presented using the method of integration by parts...

The goal se in this memory is to present the result cited in [13] , [6] , defining a very important
property in sub-Riemannian geometry . This property aims to verify the non-commutativity of the
square of the vector fields X and Y in a nilpotent distribution D= span{X ,Y} of class 2 and class 3 .

Our work revolves around three essential points
The first chapter : It is dedicated to recalling the essential basic concepts necessary for under-

standing differential geometry , It provides the mathematical framework , deliberately very detailed ,
in which this document is situated , we definde champ vecteur , distribution , sub-Riemannian structur
, Lie bracket , ...

Second chapter : The kernel of this work , is dedicated to defining a very important notion regard-
ing the nilpotent distribution D= span{X ,Y} of class 2 and class 3 , which are necessary conditions
for the non-commutativity of squar of the vector field X , Y .

Third chapter : We illustrate our work with two excelente examples in sub-Riemannian geometry
those of the Heisenberg distribution and Martinet distribution .

this work shows that the condition of non-commutativity of the squares of two vector fields in
a nilpotent distribution is a fundamental aspect of the study of sub-Riemannian geometry . This
property highlights the uniqueness of nilpotent distributions and their impact on the geometric and
topological structure of the studied spaces . A deep understanding of these conditions opens new
avenues for research in this field , enhancing our knowledge of the interactions between geometry
and analysis .

7



CHAPTER 1

PRELIMINARY

1.1 Vector fields in Rn

We use any of the notation

∂ j , ∂x j ,
∂

∂x j

, ∂/∂x j ,

to indicate the partial derivative operator with respect to the j-th coordinate of Rn . Let Ω ⊆ Rn be an
open (and non-empty) set .

Definition 1.1 [15] Given an N-tuple of a scalar function a1, ...,aN

a j : Ω → R , j ∈ {1, ...,N} .

the first order linear differential operator

X =
N

∑
j=1

a j∂ j . (1.1)

will be called a vector field on Ω with component functions ( or simply , components) a1, ...,aN .
If f : Ω −→ Rm is a differentiable function , we denote Xf the function on Ω by

X f (x) =
N

∑
j=1

a j(x)∂ j f (x) , x ∈ Ω .

Occasionally , we shall also use the notation Xf when

f : Ω −→ Rm .

is a vector-valued function , to mean the component-wise action of X . More precisely , we set

X f (x) =

X f1(x)
...

X fm(x)

 f or f (x) =

 f1(x)
...

fm(x)

 .
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Furthermore , given a differentiable function f : Ω −→ Rm , we shall denote by

I f (x) , x ∈ Ω .

the Jacobian matrix of f at x .

Let C∞(Ω,R) for brevity , C∞(Ω) be the set of smooth (i.e . infinitely-differentiable) real-valued
functions . If the components a j are smooth , we shall call X a smooth vector field and we shall often
consider X as an operator acting on smooth functions ,

X : C∞(Ω)→C∞(Ω), f 7→ X f .

We shall denote by T (Rn) the set of all smooth vector fields in Rn . Equipped with the natural
operations , T (Rn) is a vector space over R .

We adopt the following notation : I will denote the identity map on Rn and , if X is the vector
field in (1.1) , then

XI :=

a1
...

aN

 . (1.2)

will be the column vector of the components of X .

This notation is obviously consistent with our definition of the action of X on a vector-valued
function . Thus , XI may also be regarded as a smooth map from Rn to itself .

Often , many authors identify X and XI . Instead , in order to avoid any confusion between a
smooth vector field as a function belonging to C∞(Rn,Rn) and a smooth vector field as a differential
operator from C∞(Rn) to itself , we prefer to use the different notation XI and X as described in (1.2)
and (1.1) , respectively

By consistency of notation , we may write

X f = (∇ f ) ·XI .

where ∇ = (∂1, · · · ,∂N) is the gradient operator in Rn , f is any real-valued smooth function on Rn

and · denotes the row × column product .

For example : for the following two vector fields on R3 (whose points are denoted by
x = (x1,x2,x3))

X1 = ∂x1 +2x2∂x3 , X2 = ∂x2 −2x1∂x3 , (1.3)

we have

X1I(x) =

 1
0

2x2

 , X2I(x) =

 0
1

−2x1

 , (1.4)
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1.2 Integral Curves
Definition 1.2 [15]

A path γ : D → Rn being an interval of R , will be said an integral curve of the smooth vector
field X if

γ̇(t) = XI(γ(t)) f or every t ∈D .

If X is a smooth vector field , then , for every x ∈ Rn , he Cauchy problem{
γ̇ = XI(γ) .

γ(0) = x .
(1.5)

has a unique solution
γX(.,x) : D(X ,x)→ Rn .

Since X is smooth , t → γx(t,x) is a C∞ function whose n-th Taylor expansion in a neighborhood of
t = 0 is given by

γX(t,x) = x+ tX (1)I(x)+
t2

2!
tX (2)I(x)+ · · · + tn

n!
tX (n)I(x)+

1
n!

∫ t

0
(t − s)nX (n+1)I(γX(s,x))ds (1.6)

Hereafter , for k ∈ N , we denote by X (k) the vector field

X (k) =
N

∑
j=1

(X (k−1)a j)∂x j .

being X0 = I (the identity map) and Xh , h ≥ 1 , the h-th order iterated of X , i.e .

Xh := X ◦ · · · ◦X︸ ︷︷ ︸
htimes

.

Example 1.1 For example , if X1 is as in (1.3) , since

X (1)
1 I =

 1
0

2x2

 ,X (2)
1 I =

0
0
0

= X (k)
1 I, ∀k ≥ 3 .

we have

γX1(t,x) = x+ tX (1)
1 I(x) =

x1
x2
x3

+ t

 1
0

2x2

=

 x1 + t
x2

x3 +2x2t .


Definition 1.3 [15] Let X be a smooth vector field on Rn . Following all the above notation , we set

exp(tX)(x) := γX(t,x) .

where γX(·,x) is the solution of (1.5) Then , being X smooth , for every n∈N , we have the expansion

exp(tX)(x) =
n

∑
k=0

tk

k!
XkI(x)+

1
n!

∫ t

0
(t − s)nXn+1I(exp(sX)(x))ds .

In particular , for n = 1 ,

exp(tX)(x) = x+ tX1I(x)+
∫ t

0
(t − s)X2I(exp(sX)(x))ds .
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Moreover , from the unique solvability of the Cauchy problem related to smooth vector fields we get:
t ∈D(−X ,x) iff −t ∈D(X ,x) and

exp(tX)(x) : = exp((t)X)(x) = exp(t(X))(x) .

exp(tX)(exp(tX)(x) = x .

exp((t + τ)X)(x) = exp(tX)(exp(X)(x)) .

exp((tτ)X)(x) = exp(t(X))(x) .

when all the terms are defined .

Remark 1.1 [15] Let us consider a smooth function u : Rn → R and the vector field in (1.1) . Then

Xu(x) = lim
t→0

u(exp(tX)(x)−u(x)
t

∀x ∈ Rn . (1.7)

Indeed , since exp(tX)(x) = x+ tXI(x)+O(t2) , the limit on the right-hand side of (1.7) is equal to
the following one :

lim
t→0

u(x+ tXI(x))−u(x)
t

= ∇u(x)·XI(x) = Xu(x) .

1.3 Lie Brackets of Vector Fields in Rn

Definition 1.4 [15]
If X = ∑

N
j=1,a j∂ j and Y = ∑

N
j=1,b j∂ j , a direct computation shows that the Lie bracket [X ,Y ] is

the vector field

[X ,Y ] =
N

∑
j=1

(Xb j −Ya j)∂ j .

As a consequence , Given two smooth vector fields X and Y in Rn , we define the Lie bracket [X,Y]
as follows

[X ,Y ] := XY −Y X .

If X = ∑
N
j=1,a j∂ j and Y = ∑

N
j=1,b j∂ j , a direct computation shows that the Lie bracket [X ,Y ] is

the vector field

[X ,Y ] =
N

∑
j=1

(Xb j −Ya j)∂ j .

As a consequence ,

[X ,Y ]I =

Xb1
...

XbN

−

Ya1
...

YaN

= IY I ·XI −IXI ·Y I .

Example 1.2 [15] If X1,X2 are as in 1.3 , we have

[X1,X2] = (X1(−2x1)−X2(2x2))∂x3 =−4∂x3 .

It is quite trivial to check that (X ,Y ) 7→ [X ,Y ] is a bilinear map on the vector space T (Rn) satisfying
the Jacobi identity

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0 .

for every X ,Y,Z ∈ T (Rn)

11



We now introduce some other notation on the algebras of vector fields . Given a set of vector
fields Z1, · · · ,Zm ∈ T (Rn) and a multi-index

J = ( j1, · · · , jk) ∈ {1, · · · ,m}k .

we set
ZJ := [Z j1, · · · [Z jk−1,Z jk ] · · · ] .

We say that ZJ is a commutator of length (or height) k of Z1, · · · ,Zm . If J = j1 , we also say that
ZJ := Z j1 is a commutator of length 1 of Z1, · · · ,Zm A commutator of the form ZJ will also be called
nested , in order to emphasize its difference from , e.g . a commutator of the form We shall refer
to T (Rn) (equipped with the above Lie bracket) as the Lie algebra of the vector fields on Rn . Any
sub-algebra g of T (Rn) will be called a Lie algebra of vector fields .
More explicitly , g is a Lie algebra of vector fields if g is a vector subspace of T (Rn) closed with
respect to [, ] , i.e . [X ,Y ] ∈ g for every X ,Y ∈ g .

We now introduce some other notation on the algebras of vector fields . Given a set of vector
fields Z1, · · · ,Zm ∈ T (Rn) and a multi-index

J = ( j1, · · · , jk) ∈ {1, · · · ,m}k .

we set
ZJ := [Z j1, · · · [Z jk−1 ,Z jk ] · · · ] .

We say that ZJ is a commutator of length (or height) k of Z1, · · · ,Zm . If J = j1 , we also say that
ZJ := Z j1 is a commutator of length 1 of Z1, · · · ,Zm A commutator of the form ZJ will also be called
nested , in order to emphasize its difference from , e.g . a commutator of the form

[[Z1,Z2], [Z3,Z4]] .

Definition 1.5 (The Lie algebra generated by a set) [15]
If V is any subset of T (Rn) , we denote by Lie{V} the least sub-algebra of T (RN) containing V ,

i.e .
Lie{V} :=

⋂
h .

where h is a sub-algebra of T (Rn) with V ⊆ h . We also define

rank(Lie{V}(x)) := dimR{ZI(x)|Z ∈ Lie{V} .

Example 1.3 Let X1 and X2 be as in (1.3) .
Since [X1,X2] =−4∂x3 and since any commutator involving X1,X2 more than twice is identically zero
then

Lie{X1,X2}= span{X1,X2, [X1,X2]} , and rank(Lie{X1,X2}(x)) = 3 f or every x ∈R3 .

The following result holds .

1.4 Lie groups on Rn

The Lie Algebra of a Lie Group on Rn

We first recall a well-known definition.

12



Definition 1.6 [15] Let ◦ be a given group law on Rn and suppose that the map

Rn ×Rn ∋ (x,y) 7→ y−1 ◦ x ∈ Rn .

is smooth . Then G := (Rn,◦) is called a Lie group on Rn.

Fixed α ∈ G , we denote by τα(x) := α ◦ x the left-translation by α on G . A (smooth) vector
field X on Rn is called left-invariant on G if

X(ϕ ◦ τα) = (Xϕ)◦ τα .

For every α ∈ G and for every smooth function ϕ : Rn → R . We denote by g the set of the
left-invariant vector fields on G . It is quite obvious to recognize that

for every X ,Y ∈ g and for every λ ,µ ∈ R we have λX +µY ∈ g and [X ,Y ] ∈ g .

Then , g is a Lie algebra of vector fields , sub-algebra of T (Rn) . It will be called the Lie algebra
of G.

Example 1.4 (First Heisenberg group H1) The map

(x1,x2,x3)◦ (y1,y2,y3) = (x1 + y1,x2 + y2,x3 + y3 +2(x2y1 − x1y2)) .

are left invariant w.r.t . ◦ . Consequently, X1,X2, [X1,X2] ∈ h1 , say , the Lie algebra of H1 .

Precisely ,
h1 = span{X1,X2, [X1,X2]}= Lie{X1,X2}.

From the theorem of differentiation of composite functions , we easily get the following charac-
terization of left-invariant vector fields on G .

1.5 Distribution
Definition 1.7 [14]

A smooth distribution ∆ of rank m ≤ n (m ≥ 1) on M is a rank m subbundle of the tangent bundle
TM , that is a smooth map that assigns to each point x of M a linear subspace ∆(x) of the tangent
space TxM f dimension m . In other terms , for every x ∈ M , here are an open neighborhood Vx of x
in M and m smooth vector fields X1

x , . . . ,X
m
x linearly independent on Vx such that

∆(y) = Span{X1
x (y), . . . ,X

m
x } ∀y ∈ Vx .

Such a family of smooth vector fields is called a local frame in Vx for the distribution ∆(x) . All
the distributions which will be considered later will be smooth with constant rank m ∈ [1,n] . Thus ,
from now on , “distribution” always means ” smooth distri-bution with constant rank ” . A co-rank
k distribution on M is a distribution of rank m = n− k and any smooth vector field X on M such that
X(x) ∈ ∆(x) or any x ∈ M is called a section of ∆ .

13



1.6 Sub-Riemannian Geometry
Definition 1.8 [9]

Let M be a manifold , together with a subbundle H of the tangent bundle . Then a sub-
Riemannian manifold is a triple (M,H,h) where h is a fiber-metric on H .

In this setting , the subbundle H s called the horizontal distribution and h is called the sub-
Riemannian metric .

We will use the letter d to refer to the rank of H , and n to refer to the dimension of the manifold .
The vector fields in Γ(H) are called horizontal vector fields . Given a sub-Riemannian metric h we
can define the analogue of the flat and sharp operator as in Riemannian geometry . The definition of
flat with respect to h then becomes

♭h : H −→H∗ , ♭h(v) = h(v, .) .

for v ∈H , while the sharp operator with respect to h is defined to be

♯h : T ∗M −→H, ♯h(ω) = (♭h)−1 (ω |H) .

for ω ∈ T ∗M.
Using the sharp operator we can define the cometric with respect to h by

h∗ : T ∗M×T ∗M −→ T ∗M,< α,β >h∗= α(♯h(β )) .

The cometric h∗ is symmetric , since given any two elements α,β ∈ T ∗M such that ♯h(α) = v
and ♯h(β ) = w , we have that

< v,w >h=< v, . >h (w) = α |H (♯h
β ) =< α,β >h∗ .

Note that ♯h(α) = h∗(α, .) . An additional property of the cometric is that h∗ is zero on the
annihilator of H in T ∗M , i.e . the subbundle of T ∗M given by

{α ∈ T ∗M : α(v) = 0 ∀v ∈H} .

It is also possible to define the cometric by the following two properties : h∗ is zero on the
annihilator of H , and

< ♯h
α, ♯h

β >h=< α,β >h∗ .

for all α,β ∈ T ∗M The main advantage of working with the cometric instead of the sub-Riemannian
metric is that the cometric is defened on the entire T ∗M instead of a subbundle . Later we will also
encounter the cometric as the symbol of the sub-Laplacian , which gives us another reason for prefer-
ring the cometric rather than the sub-Riemannian metric .

Let γ : [a,b]−→ M be a continuous curve such that γ̇ ∈H almost everywhere . We say that γ is
a horizontal absolutely continuous curve if it satisfy

d
dx

x∫
a

∥γ̇(t)∥hdt = ∥γ̇(x)∥h .

almost everywhere.The length of γ is then defined to be

l(γ) =
b∫
a

∥γ̇(t)∥hdt .
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Denote by CH
ac(A,B) the set of all horizontal absolutely continuous curves connecting the two

points A and B on the manifold . We define the distance between A and B , denoted d(A,B) to be

d(A,B) = in f
CH

ac (A,B)
l(γ) .

where we use the convention in f∅ = ∞ . There are many cases in which the distance between
two points may be infinite .

For instance , if H is an integrable distribution , i.e . [X ,Y ] ∈ Γ(H) for all X ,Y ∈ Γ(H) .

1.7 Sub-Riemannian structures
Let M be a smooth n-dimensional manifold.

Definition 1.9 [12]
A sub-Riemannian structure on M is a pair (D,g) where D is a distribution and g is a Riemannian

metric on D .

A sub-Riemannian manifold (M,D,g) is a smooth manifold M equipped with a sub-Riemannian
structure (D,g) .

Recall that a distribution D of rank m(m ≤ n) is a family of m-dimensional linear subspaces
Dq ⊂ TqM depending smoothly on q ∈ M . A Riemannian metric on D is a smooth function g : D →R
which restrictions gq to Dq are positive definite quadratic forms .

Let (M,D,g) be a sub-Riemannian manifold . A horizontal curve γ : I ⊂ R→ M is an absolutely
continuous curve such that γ̇(t) ∈ Dγ(t) for almost every t ∈ I .

We define the length of a horizontal curve , as in Riemannian geometry , by :

length(γ) =
∫

I

√
gγ(t)(γ̇(t))dt .

Definition 1.10 [12] The sub-Riemannian distance on (M, D, g) is defined by

d(p,q) = in f {length(γ) : γ horizontal curve γ joins p to q } .

We use the convention
in f /0 =+∞ .

Thus,if p and q can not be joined by a horizontal curve ,

d(p,q) = +∞ .

1.8 Brackets-Generating Distributions
In the following we shall define a very important type of horizontal distributions . Let TpM be to

tangent space of the manifold M at p . For each given point p ∈ M We shall construct the following
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sequence of ascendant linear subspaces of the space TpM :

D1
p = Dp

D2
p = D1

p +[Dp,D
1
p]

D3
p = D2

p +[Dp,D
2
p]

...
Dn+1

p = Dn
p +[Dp,D

n
p]

Where [Dp,D
n
p] =

{
[X ,Y ];X ∈Dp,Y ∈Dn

p
}

, such that + is ∪ .

Definition 1.11 [5]
The distributions D is said bracket generating at the point p ∈ M if there is an integer r ≥ 1 such

that Dr
p = TpM . The integer r is called the step of the sub-Riemannian manifold (M,D,g) at the point

p .

Remark 1.2 [5]

1. The step is a property of the distribution D and does not depend on the sub-Riemannian metric
g .

2. We have rank Dr
p = dimM

3. There are distribution where the step is the same for all points . They are called constant-step
distribution

1.9 Nilpotent Distibutions
We Difine the iterated commutator sets

C1 = {[X ;Y ] ;X ,Y ∈ Γ(D)}
C2 = {[[X ;Y ] ,Z] ;X ,Y,Z ∈ Γ(D)}

=
{[
C1,Z

]
;Z ∈ Γ(D)

}
...

Cn+1 = {[Cn,Z] ;Z ∈ Γ(D)}

Cn is the set of vector fields obtained by n iterated lie brackets of horizontal vector fields

Definition 1.12 [5] the distibutions D is called nilpotent if there is an integer n ≥ 1 such that
Cn = 0 : i.e , all the n iterated Lie brackets vanish . The smallest integer n with this property is called
the nilpotnce classe of D

Example 1.5 Let’s consider the following vector fields in R3

X =
∂

∂x
+ y

∂

∂z
, Y =

∂

∂y
.

Step-by-Step Verification of Nilpotency :
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1. First-order Lie bracket :
Let’s compute the Lie bracket between the vector fields :

[X ,Y ] =
[

∂

∂x
+ y

∂

∂z
,

∂

∂y

]
.

Using the definition of the Lie bracket :

[X ,Y ] = X (Y )−Y (X) .

• X (Y ) represents the action of X on Y :

X
(

∂

∂y

)
= 0 .

• Y (X) represents the action of Y on X :

Y
(

∂

∂x
+ y

∂

∂z

)
=

∂

∂z
.

Thus ,

[X ,Y ] =− ∂

∂z
.

2. Higher-order Lie brackets :
Let’s compute second-order Lie brackets, i.e . brackets of the form [X , [X ,Y ]] , [Y, [X ,Y ]] ,etc.

Since [X ,Y ] =− ∂

∂z
is a constant vector field :

[X , [X ,Y ]] =
[

∂

∂x
+ y

∂

∂z
,− ∂

∂z

]
= 0 .

[Y, [X ,Y ]] =
[

∂

∂y
,− ∂

∂z

]
= 0 .

Then , the nilpotent distribution of class 2 .

Proposition 1.1 [5] There are brackets-generating distibutions that are not nilpotent

Proof 1.9.1 [5] We shall provide an example . Let D= span{X1,X2} ,where

X1 = ∂x1 + ex2
∂t , X2 = ∂x2 .

are vector fields on R3
(x,t) .

Since [X1,X2] = −ex2∂t , it follows that X1,X2, [X1,X2] are lineary independent vector fields at
every point (x1,x2, t) ∈ R3.

Hence the distibution D is brackets generating with constant step 2 .

On the other hand , the distibution D is non nilpotent since the iterated Lie brackets never vanish
because of the expontial factor ex2 .
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CHAPTER 2

THE NON-COMMUTATIVITY ANALYSIS OF THE SQUARES
OF TWO VECTOR FIELDS IN A NILPOTENT DISTRIBUTION

2.1 Introduction
In this chapter , we define a necessary condition for

[
X2,Y 2] ̸= 0 such that D= span{X ,Y} is a

nilpotent distribution in Rm .

Definition 2.1 the vector fields X and Y be satisfing condition Rk at point p if
[
Xk,Y k]

p ̸= 0 .

Example 2.1 [6] The vector fields

X = ∂x , Y = ∂y + x∂z .

The vector fields satisfy the condition everywhere on R2 . This follows from the relations

[X ,Y ] = ∂z .

X2 = ∂
2
x , Y 2 = ∂

2
y +2x∂y∂z + x2

∂
2
z .[

X2,Y 2]= 4∂x∂y∂z +2∂
2
z +4x∂x∂

2
z .

2.2 Posed the problem
Let X and Y be two vector fields on Rm . Consider the differential operator of order n obtained by

iterating the same vector field k times Xk = X . . .X . We start by observing that if the vector fields X
and Y commute , then the operators Xk and Xk k also commute . This can be written as the following
set relation [4] :{

p; [X ,Y ]p = 0
}
⊆
{

p;
[
Xk,Y k

]
p
= 0

}
⇐⇒

{
p;
[
Xk,Y k

]
p
̸= 0

}
⊂
{

p; [X ,Y ]p ̸= 0
}

.

Proof 2.2.1 [11] We begin with the case where k = 2 , Using XY = Y X ,

Multiling the left :
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X2Y 2 = XXYY = XY XY = Y XXY = Y XY X

= Y 2X2 .

...

For n=k XkY k = X · · ·XY · · ·Y = X · · ·Y X · · ·Y
...
= Y · · ·Y X · · ·X
= Y k · · ·Xk .

Example 2.2 Consider the following vector fields :

X = ∂x , Y = y∂y .

We have :

[X ,Y ] = [∂x,y∂y] = XY −Y X = y∂x∂y − y∂x∂y = 0 .

Then we calculate

X2 = ∂
2
x , Y 2 = y2

∂
2
y .

we calculate the commutator[
X2,Y 2]= [

∂
2
x ,y

2
∂

2
y
]
= X2Y 2 −Y 2X2 = y2

∂
2
x ∂

2
y − y2

∂
2
x ∂

2
y = 0 .

So

([X ,Y ] = 0) =⇒
([

X2,Y 2]= 0
)

.

For the other side of the equivalence :

Example 2.3 :
Consider the following vector fields :

X = ∂x , Y = ∂y + x∂z .

[X ,Y ] = XY −Y X = ∂x (∂y + x∂z)− (∂y + x∂z)∂x

= ∂x∂y +∂x (x∂z)− (∂y∂x + x∂z∂x)

= (∂y∂x +∂z + x∂x∂z)− (∂y∂x + x∂z∂x)

= ∂y∂x +∂z + x∂x∂z − ∂y∂x − x∂z∂x

= ∂z + x∂x∂z − x∂z∂x

= ∂z

̸= 0 .

X2 = ∂
2
x , Y 2 = ∂

2
y + x∂y∂z + x∂z∂y + x2

∂
2
z
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[
X2,Y 2]= X2Y 2 −Y 2X2

= ∂
2
x
(
∂

2
y + x∂y∂z + x∂z∂y + x2

∂
2
z
)
−
(
∂

2
y + x∂y∂z + x∂z∂y + x2

∂
2
z
)

∂
2
x

= ∂
2
y ∂

2
x +∂y∂z∂x +∂y∂z∂x +∂z∂x∂y +∂x∂z∂y +2∂

2
z +2x∂x∂

2
z −

(
∂

2
y ∂

2
x +∂y∂z∂x +∂z∂y∂x +2x∂

2
z ∂x

)
= 2∂

2
z +2x∂x∂

2
z − x∂y∂z∂x − x∂z∂y∂x

̸= 0 .
So ([

X2,Y 2] ̸= 0
)
=⇒ ([X ,Y ] ̸= 0) .

Remark 2.1 The opposite of the property is not always true .

counterexample
The vector fields

X = ∂x , Y =
(
1+ x2)

∂z .

We have :
[X ,Y ] = XY −Y X .

we calculate XY :

XY =
∂

∂x

((
1+ x2) ∂

∂ z

)
.

Since
(

∂

∂ z

)
is just a coefficient function , we can take the derivative of the coefficient

(
1+ x2) with

respect to x :

XY =
∂

∂x

(
1+ x2) · ∂

∂ z
= 2x

∂

∂ z
.

we calculate YX :

Y X =
(
1+ x2) ∂

∂ z

(
∂

∂x

)
.

Since
(

∂

∂x

)
is a constant vector field , the derivative of

(
∂

∂x

)
with respect to (z) is zero :

Y X =
(
1+ x2) ·0 = 0 .

we calculate [X ,Y ] :

[X ,Y ] =
[
∂x,

(
1+ x2)

∂z
]
= XY −Y X = 2x

∂

∂ z
−0 = 2x

∂

∂ z
.

We have the square of vector fields is :

X2 = ∂
2
x , Y 2 = (1+2x2 + x4)(∂z)

2 .

We have : [
X2,Y 2]= X2Y 2 −Y 2X2 .

we calculate X2Y 2 :

X2Y 2 =
∂ 2

∂x2

(
(1+ x2)2 ∂ 2

∂ z2

)
.
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Applying
(

∂ 2

∂x2

)
to

(
(1+ x2)2) :

∂ 2

∂x2 (1+ x2)2 =
∂

∂x

(
4x(1+ x2)

)
= 4(1+ x2)+8x2 = 4+12x2 .

Thus:

X2Y 2 = (4+12x2)
∂ 2

∂ z2 .

Next , we calculate Y 2X2

Y 2X2 = (1+ x2)2 ∂ 2

∂ z2

(
∂ 2

∂x2

)
.

Since
(

∂ 2

∂ z2

)
does not act on x , we get :

Y 2X2 = (1+ x2)2 ∂ 2

∂x2
∂ 2

∂ z2 .

Therefore:

[
X2,Y 2]= X2Y 2 −Y 2X2 =

(
4+12x2) ∂ 2

∂ z2 −
(
1+ x2)2 ∂ 2

∂ z2 .

Simplifying further:

[
X2,Y 2]= (

4+12x2 −1−2x2 − x4) ∂ 2

∂ z2 =
(
3+10x2 − x4) ∂ 2

∂ z2 .

Thus, the commutator
[
X2,Y 2] is:

[
X2,Y 2]= (

3+10x2 − x4) ∂ 2

∂ z2 .

At the point (0,y,z) ,We have

[X ,Y ]p = 0 , and
[
X2,Y 2]

p ̸= 0 .

• In the following part , we will define the vector fields X and Y in a nilpotent distribution
(whether it be of class 2 or class 3) in such a way that the opposite of this property holds
true .

2.3 The necessary condition For
[
X2,Y 2

]
̸= 0

2.3.1 The case of nilpotent distribution of class 2
Theorem 2.3.1 [13]

Any distribution D= span{X ,Y} of nilpotency class equal to 2 is a R2-distribution .

Proof 2.3.1 See [6]
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2.3.2 The case of nilpotent distribution of class 3
Theorem 2.3.2 [13] Any distribution D = span{X ,Y} of nilpotency class equal to 3 is a R2-
distribution , i.e ,

[
X2,Y 2] ̸= 0 .

To prove this theorem , we use several lemmas , and we recall the following . The distribution
D= span{X ,Y} is nilpotent of class 3 meaning that

[X ,Y ] ̸= 0 . (2.1)

[X [X ,Y ]] ̸= 0 or [Y [X ,Y ]] ̸= 0 .

and [X [X [X ,Y ]]] = 0, [Y [Y [X ,Y ]]] = 0 . (2.2)
[X [Y [X ,Y ]]] = 0, [Y [X [X ,Y ]]] = 0 . (2.3)

Lemma 2.1 [13] In a distribution D= span{X ,Y} of nilpotency class 3 , we have[
X2,Y 2]= 0 =⇒ (XY )2 = (Y X)2 .

Proof 2.3.2 [13] By developing the first equation of (2.5)

[X , [Y, [X ,Y ]]] = 0 ⇐⇒ X2Y 2 −Y 2X2 −2(XY )2 +2(Y X)2 = 0

=⇒ X2Y 2 −Y 2X2 = 2
(
(XY )2 − (Y X)2

)
.

or [
X2,Y 2]= 0 .

then
(XY )2 = (Y X)2 .

Lemma 2.2 [13] In a distribution D= span{X ,Y} of nilpotency class 3 , we have[
X2,Y 2]= 0 =⇒ XY X2Y 2 = X2Y 2XY . (2.4)

Proof 2.3.3 [13] The expansion of the equations (2.3.1) gives

X3Y −3X2Y X +3XY X2 −Y X3 = 0 . (2.5)

Y 3X −3Y 2XY +3Y XY 2 −XY 3 = 0 . (2.6)

Multiplying the right-hand side , then the left-hand side of the relation (2.5) by Y 2 and therelation
(2.6) by X2 , we obtain

X3Y 3 −3X2Y XY 2 +3XY X2Y 2 −Y X3Y 2 = 0 . (2.7)

X3Y 3 −3Y 2XY X2 +3Y XY 2X2 −XY 3X2 = 0 . (2.8)

X3Y 3 −Y 2X3Y +3Y 2X2Y X −3Y 2XY X2 = 0 . (2.9)

X3Y 3 −X2Y 3X +3X2Y 2XY −3X2Y XY 2 = 0 . (2.10)
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By the subtractions of these equations , (2.7)-(2.8),(2.7)-(2.9)-(2.10)-(2.9) we have found ,
respectively ,

X3Y 3 −Y 3X3 = 3X2Y XY 2 −3XY X2Y 2 +Y X3Y 2 −3Y 2XY X2 +3Y XY 2X2 −XY 3Y 2 . (2.11)

X3Y 3 −Y 3X3 = 3X2Y XY 2 −3XY X2Y 2 +Y X3Y 2 −Y 2X3Y +3Y 2X2Y X −3Y 2XY X2 . (2.12)

X3Y 3 −Y 3X3 = X2Y 3X −3X2Y 2XY +3X2Y XY 2 −Y 2X3Y +3Y 2X2Y X −3Y 2XY X2 . (2.13)

Subtracting the equations (2.11)-(2.12) gives

−3XY X2Y 2 +Y X3Y 2 +Y 2X3Y −3Y 2X2Y X −XY 3X2 +3Y XY 2X2 −X2Y 3X +3X2Y 2XY = 0 .

In view of the fact that X2Y 2 = Y 2X2 , the last equation becomes

−XY X2Y 2 +XY X2Y 2 +X2Y 2XY −X2Y 2XY = 0 .

then
X2Y 2 [X ,Y ] = [X ,Y ]X2Y 2 . (2.14)

On the other hand , subtracting the equations (2.13)-(2.11) gives

−3XY X2Y 2 +Y X3Y 2 −X2Y 3X +3X2Y 2XY = 0 .

then
− [X ,Y ]X2Y 2 +X2Y 2 [X ,Y ]+2

(
X2Y 2XY −XY X2Y 2) .

Using the relation (2.3) , we obtain

XY X2Y 2 = X2Y 2XY .

Lemma 2.3 [13] In a distribution D= span{X ,Y} of nilpotency class 3 , we have[
X2,Y 2]= 0 =⇒ X2Y 2 = 3(XY )2 . (2.15)

Proof 2.3.4 [13] Multiplying the equation (2.5) in the proof of Lemma (2.2) by Y on two sides , we
obtain

Y X3Y 2 −3Y X2Y XY +3Y XY X2Y −Y 2X3Y = 0 . (2.16)

Lemma(2.2) proves that
XY X2Y 2 = X2Y 2XY .

and interchanging X and Y , we get

Y XX2Y 2 = X2Y 2Y X .

then (2.16) becames
X2Y 2 [X ,Y ]−3

(
(XY )3 − (Y X)3

)
= 0 .

this implies that (
X2Y 2 −3(XY )2

)
[X ,Y ] = 0 .

but [X ,Y ] ̸= 0 , then
X2Y 2 = 3(XY )2 .
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Proof 2.3.5 (Proof of theorem 2.3.1) [13]
We shall prove this theorem by contradiction , i.e , we assume that

[
X2,Y 2]= 0 . (2.17)

By developing [X ,Y ]3 and using Lemma(2.1) we get

[X ,Y ]3 = (XY )3 − (XY )2 (XY )− (XY )(Y X)(XY )+(XY )(Y X)2

− (Y X)(XY )2 +(Y X)(XY )(Y X)+(Y X)2 (XY )− (Y X)3

= 3(XY )3 −3(Y X)3 − (XY )(Y X)(XY )+(Y X)(XY )(Y X) .

(2.18)

Using Lemma(2.3) , we get

(XY )(Y X)(XY ) = XY 2X2Y

= 3X (Y X)2Y

= 3XY XY XY = 3(XY )3 .

(Y X)(XY )(Y X) = Y X2Y 2Y

= 3Y (XY )2 X

= 3Y XY XY X = 3(Y X)3 .

The equation (2.18) becomes

[X ,Y ]3 = 3(XY )3 −3(Y X)3 −3(XY )3 +−3(Y X)3 = 0 .

then [X ,Y ] = 0 is a contradiction . It turns out that (2.17) cannot hold . It follows that the vector fields
X and Y span a R2 distribution .
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CHAPTER 3

APPLICATION TO THE SPECIFIC DISTRIBUTION

In this section , we introduce two examples of the sub-Riemannian geometry : the Heisenberg
distribution and Martinet distribution , where we apply the all proprties that we saw in the previous
chapters .

3.1 The Distribution of the Heisenberg
we introduce the Heisenberg group H1 , a non-commutative group with underlying manifold R3 .

For the sake of transparency considering the type of problems we are dealing with in this dissertation
, we only look at the one-dimensional Heisenberg group , and the extensions to higher dimensions are
easy generalizations .

We identify points in R2 with points in C through the following law :

R2 ∋ (x,y)↔ z = xi+ y ∈ C .

Let H1 = C×R . Then for all points (z, t),(w,s) ∈H1 , we define the group law by

(z, t) · (w,s) =
(

z+w, t + s+
1
4
[z,w]

)
.

3.1.1 The left-invariant vector fields
A vector field V on H1 is said to be left-invariant if

VL(w,s) = L(w,s)V

for all (w,s) ∈H1 where L(w,s) is the left translation by (w,s) defined by

(L(w,s) f )(z, t) = f ((w,s) · (z, t)),(z, t) ∈H1
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We now introduce a particular Lie algebra, namely the Lie algebra of left-invariant vector fields on
H1

Theorem 3.1.1 Let b1 be the set of all left-invariant vector fields on H1.Then b1 is a Lie algebra in
which the Lie bracket[.,.]is the commutator given by

[X ,Y ] = XY −Y X

for all X ,Y ∈ b1.

Proof 3.1.1 Linearity is obvious.Let X ,Y ∈ b1,and we need to show firstly that [X ,Y ] ∈ b1.
We write

X = a1
∂

∂x
+b1

∂

∂y
+ c1

∂

∂ t

and

Y = a2
∂

∂x
+b2

∂

∂y
+ c2

∂

∂ t

where a1,b1,c1,a2,b2,c2 are C∞ functions on H1.Then one can easily check that

XY = a1a2
∂ 2

∂x2 +b1b2
∂ 2

∂y2 +c1c2
∂ 2

∂ t2 +(a1b2+a2b1)
∂ 2

∂x∂y
+(b1c2+b2c1)

∂ 2

∂y∂ t
+(a1c2+a2c1)

∂ 2

∂ t∂x
+

V1
where V1 is a vector field on H1 By switching subscripts in the second-order terms in XY,we get

[X ,Y ] = XY −Y X =V1 −V2

where V2 is another vector field on H1 To see that [X,Y] is left-invariant, let (w,s) ∈ H1,and we use
the left-invariance of X,Y to check that

L(w,s)XY = XL(w,s)Y = XY L(w,s)

and

L(w,s)Y X = Y L(w,s)X = Y XL(w,s)

Thus, we have

[X ,Y ]L(w,s) = L(w,s)[X ,Y ]

and therefore [X ,Y ] ∈ b1,as desired. Secondly, we prove Jacobi’s identity.

[X , [Y,Z]] = [X ,Y Z −ZY ] = XY Z −XZY −Y ZX +ZY X ,

[Y, [Z,X ]] = [Y,ZX −XZ] = Y XZ −Y ZX −ZXY +XZY,
[Z, [X ,Y ]] = [Z,XY −Y X ] = ZXY −ZY X −XY Z +Y XZ,
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Thus,

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0

and therefore b1 is a Lie algebra.

Theorem 3.1.2 X,Y,T are vector fields on H1 defined as follows ,

X =
∂

∂x
+

1
2

y
∂

∂ t

Y =
∂

∂x
− 1

2
x

∂

∂ t

T =
∂

∂ t
Then X,Y,T form a basis for b1

Proof 3.1.2 Firstly, we check that X,Y,T ∈ b1i.e.,

XL(w,s) = L(w,s)

for all (w,s) ∈H1.To see this, we write w = (u,v),z = (x,y) Then

(L(w,s) f )(z, t) = f ((w,s) · (z, t)) = f (u+ x,v+ y,s+ t +
1
2
(vx−uy))

where(z, t) ∈ b1.To simplify notation, we denote

(...) = (u+ x,v+ y,s+ t +
1
2
(vx−uy)

Then, we have
(XL(w,s) f )(z, t)

= ((
∂

∂x
+

1
2

y
∂

∂ t
)L(w,s) f )(z, t)

=
∂ f
∂x

(...)+
1
2

v
∂ f
∂ t

(...)+
1
2

y
∂ f
∂ t

(...)

=
∂ f
∂x

(...)+
1
2
(v+ y)

∂ f
∂ t

(...)

On the other hand ,

(XL(w,s) f )(z, t)

= (X f )(...)

=
∂ f
∂x

(...)+
1
2
(v+ y)

∂ f
∂ t

(...)

Thus ,
XL(w,s) = L(w,s)X

So we have proved that X ∈ b1 , and similar arguments show that Y,T are also elements of b1

Moreover , we know that the Lie algebra b1 s isomorphic to T(0,0,0)H1 , the tangent space of the
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Heisenberg group at the origin, and a proof can be found in [44] . Since T(0,0,0)H1 is a three dimen-
sional vector space , it remains to show that X,Y,T are linearly independent.The see this, we consider
, the equation

aX +bY + cT = 0

where a,b,c are real numbers. for all of H1 , we must show that

(aX +bY + cT ) f = 0 ⇔ a,b,c = 0

But this is clear if we pick

f (x,y, t) = x
f (x,y, t) = y
f (x,y, t) = t

Therefore,X,Y,T is a basis for b1

Lastly, we explain the choice of vector fields X,Y,T as a basis for b1

Theorem 3.1.3 [8] Let e1,e2,e3 be the coordinate axes and write them in their parameterized form

e1(s) = (s,0,0), s ∈ R
e2(s) = (0,s,0), s ∈ R
e3(s) = (0,0,s), s ∈ R

Then for all C∞ functions f on H1 , we have

(X f )(z, t) =
d
ds

|s=0 f ((z, t) · e1(s)),

(Y f )(z, t) =
d
ds

|s=0 f ((z, t) · e2(s)),

(T f )(z, t) =
d
ds

|s=0 f ((z, t) · e3(s)),

for all (z, t) ∈H1

Proof 3.1.3 [8] Since

d
ds

|s=0 f ((z, t) · e1(s))

=
d
ds

|s=0 f (x+ s,y, t + s+
1
2

sy)

=
∂ f
∂x

(x,y, t)+
1
2

y
∂

∂ t
(x,y, t)

We get

X =
∂

∂x
+

1
2

y
∂

∂ t
,

as asserted.
Lastly , an observation can be made through the theorem below .

28



Theorem 3.1.4 [8] [X ,Y ] =−T , and all other commutators among X,Y,T vanish .

The vector fields X ,Y ,and their first-order commutator span the Lie algebra b1 on the Heisenberg
group. In fact, they are the so-called horizontal vector fields on H1,and T is known as the missing
direction.
Now, we develop the sub-Laplacian on H1,which will later give rise to a family of linear operators
known as the twisted Laplacians on R3.The sub-Laplacian L on H1 is defined by

L=−(X2 +Y 2)

More explicitly ,

X2 = (
∂

∂x
+

1
2

y
∂

∂ t
)(

∂

∂x
+

1
2

y
∂

∂ t
)

=
∂ 2

∂x2 + y
∂ 2

∂x∂ t
+

1
4

y2 ∂ 2

∂ t2

and

Y 2 = (
∂

∂xy
− 1

2
y

∂

∂ t
)(

∂

∂y
− 1

2
y

∂

∂ t
)

=
∂ 2

∂y2 − x
∂ 2

∂y∂ t
+

1
4

x2 ∂ 2

∂ t2

Thus,

L=−∆− 1
4
(
x2 + y2) ∂ 2

∂ t2 +

(
x

∂

∂y
− y

∂

∂x

)
∂

∂ t

where

∆ =
∂ 2

∂x2 +
∂ 2

∂y2

3.1.2 The right-invariant vector fields
[3] Where as the right-invariant vector fields write :

X̂ = ∂x + y∂z .

Ŷ = ∂y + x∂z .

Ẑ = ∂z .

3.1.3 The degree of bracket generating distribution
The distribution D= span{X ,Y} such that

X = ∂x − y∂z , Y = ∂y − x∂z .

We have ,

[X ,Y ] = [∂x − y∂z,∂y − x∂z] = XY −Y X = ∂z , [[X ,Y ] ,Y ] = 0 , [[X ,Y ] ,X ] = 0 .

According of chapter 1 , we have :
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• D0 = 0 .

• D1 = D = span{X2,X2} .

• D2 = D1 +
[
D,D1]= TqR3 .

Then , the degree of bracket generating distribution of step 2 .

3.1.4 The class of nilpotence
We have:

C1 =
{
[X ,Y ] = [∂x − y∂z,∂y − x∂z] = ∂z; X ,Y ∈ Γ(D)

}
̸= 0 .

C2 = {[[X ;Y ] ,Y ] = 0, [[X ;Y ] ,X ] = 0; X ,Y ∈ Γ(D)}= 0 .

Then the class of nilpotent distibution is step 2 , according to the sited by chapter 2 , we have[
X2,Y 2] ̸= 0 .

3.2 The Martinet distribution
We define the distribution D= span{X ,Y} such that , X , Y two vector fields on H1 defined

3.2.1 The left invariant vector fields

X = ∂x , Y = ∂y +
x2

2
∂ z .

3.2.2 The right-invariant vector fields
Where as the right-invariant vector fields write :

X = ∂x , Y = ∂y −
x2

2
∂ z .

3.2.3 The degree of bracket generating
We have:

[X ,Y ] = x∂z , [X , [X ,Y ]] = 0 , [Y, [X ,Y ]] = 0 .

The case of x = 0 :

The distribution D= span{X ,Y} such that

X = ∂x , Y = ∂y +
x2

2
∂ z .

is bracket generating of step 3 .

The case of x ̸= 0 :

Then the bracket generating of step 2 , we have

30



• D0 = 0 .

• D1 = D = span{X ,Y} .

• D2 = D1 +
[
D,D1]= {X ,Y, [X ;Y ]} .

• D3 = D2 +
[
D,D2]= {X ,Y, [X ;Y ] , [[X ;Y ] ,X ]} .

Then,the distribution D= span{X ,Y} is bracket generating of step 3 .

3.2.4 The class of nilpotence
The distribution D= span{X ,Y} is nilpotente of class 3 , We have

For x ̸= 0 :
C1 = {[X ,Y ] = x∂z; X ,Y ∈ Γ(D)} .

C2 = {[[X ,Y ] ,X ] = ∂z, [[X ,Y ] ,Y ] = 0; X ,Y ∈ Γ(D)} .

The distrbution is bracket generating of degree 2 , then the step of sub-elliptic operator is 3 .
For x = 0 :
Since the distrbution is bracket generating of degree 2 , then the step of sub-elliptic operator is 3

C3 = {[[[X ,Y ] ,X ] ,X ] = 0, [[[X ,Y ] ,X ] ,Y ] = 0, [[[X ,Y ] ,Y ] ,X ] = 0, [[[X ,Y ] ,Y ] ,Y ] = 0; X ,Y ∈ Γ(D)} .

Then,the distribution D= span{X ,Y} is bracket generating of step 3 .
According to the result of chapter 2 , we have directly[

X2,Y 2] ̸= 0 .
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CONCLUSION

In conclusion , the condition of non-commutativity of the squares of two vector fields in a nilpotent
distribution constitutes a fundamental aspect in the study of sub-Riemannian geometries and nilpotent
distributions . This non-commutativity , which manifests through the fact that the Lie brackets of the
squares of the vector fields are not necessarily zero , reveals deep and complex structures within the
geometric spaces studied .

We have presented two properties of a distribution in space Rn , which give us a good description
of the state of

[
X2,Y 2] . These properties facilitate or guide the future calculation of the heat kernel

of the operator L=
(
X2,Y 2).
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