Lontd Lol agll A el &y gl
République Algérienne Démocratique et Populaire

A Eoully Ul el 35,

Ministére de I’Enseignement Supérieur et de la Recherche Scientifique

3135 e

Université de Ghardaia

2

LSl bl 267

Faculté des Sciences et de la Technologie

S Nely sl ) o

Département des Mathématiques de de I’Informatique

Mémoire de fin d’étude, en vue de I’obtention du diplome

Master

Domaine : Mathématiques et Informatiques, Filiére : Mathématiques
Spécialité : Analyse Fonctionnelle

Théme

The condition of non-commutativity of the squares of
two vector fields in a nilpotent distribution

Présenté par :
Mlle. Mimouni Assia Elbatoule

Soutenue publiquement le 22 /06 /2024
Devant le jury composé de :

Mme. GUERRARRA Siham M.C.A Université de Ghardaia Président
Mme.KHELLAF Yasmina M.A.A Université de Ghardaia Encadreuse

M.CHIKH SALAH M.C.B Université de Ghardaia Examinateur 1
Abdelouahab
M.NAIMI Abdelouahab A Université de Ghardaia Examinateur 2

Année universitaire 2023/2024




DEDECATION

Praise be to God for His countless blessings . I have reached the end of my journey , where I
prayed to God to grant me a moment of joy in my success , and God amazed me with His generosity .

I dedicate my graduation to :

To the one with the fragrant character and enlightened mind , who had the primary role in my
reaching higher education : my beloved father , "Ali" .

To the one who set me on the path of life , supported me in my journey , and cared for me until I
grew up : my dear mother , "Fatima" .

To those whom God blessed me with their presence in my life as a sturdy support system , like a
solid knot aiding me in my research phase : "My sisters and brother" .

To those who supported me as we journeyed together towards success in our academic endeavors
: "My classmates" .

To my sister , who wasn’t born to my mother yet was my support throughout my university journey
from start to finish , offering assistance in everything I needed, my beloved : "Bouchra giraa" .

To my family : my grandparents , uncles , aunts , cousins .

To my dear departed grandmother , "Almaoui Massouda" , and my dear departed grandfather,
"Ben Ghataia Elchikh" , may God place you in the highest paradise" .

And finally , to everyone who helped me by praying for the completion of this study , I ask the
Almighty to reward them all with the best of rewards in this world and the Hereafter . And to every
student of knowledge who has sought with their knowledge to benefit Islam and Muslims with all that
God has granted them of knowledge and understanding .

Assia El Batoule



THANKS

I would like to extend my sincere thanks and appreciation to all the individuals who contributed to
the completion of this thesis , which represents numerous efforts and continuous collaboration . First
and foremost , I express my heartfelt gratitude to my dear father and mother . Without their boundless
support and sacrifices , I would not be where I am today . I also thank my sisters who have always
been by my side , encouraging and supporting me every step of the way . I cannot forget the role of
my close friends , "Bouchra giraa" , who have always been there for me with words of encouragement
or practical assistance .

Furthermore , I cannot help but express my deep gratitude to my esteemed professors, including
"chikh Salah Abd elouahabe" , "Hadj Moussa Yassin" , and "Alami Abdelatif" , who provided me
with valuable guidance and sound advice , and were always ready to help me overcome academic
challenges . I also thank my dear supervisor , Doctor Khellaf Yasmina , for her continuous support
, guidance , and encouragement throughout this journey .

Finally , I would like to express my gratitude to all the friends , colleagues , and family members
who have always been there for me with words of love and encouragement , and to everyone who
supported me with prayers and encouragement during this period .

In conclusion , I ask Allah to reward everyone for their support and assistance , and to make this
research work the beginning of a journey filled with successes and achievements .



el

D = span{X,Y} dw,u\ CJjJL Gl jailad! ae wus J md 35U 0da J
Lnddl oda pumic [X2Y?] A0 N ued) 555 ) bl sud Lol oda R L) e
(X272 Clud e Gy y\ ol

iatall oL

Skl e Y i e Jim ¢ e

Abstract

In this Memory , we aim to define certain properties regarding the nilpotent distribution
D = span{X,Y} in the space R" , This property determines the necessary condition for the Lie
bracket [X 2, Yz] = 0 . This result offers less computation and excellent description for the calcul of
27

Keywords:

Distribution , Vector fields , Lie bracket , nilpotent ...

Résumé

Dans ce mémoire , nous visons a définir certaines propriétés concernant la distribution nilpotente
D = span{X,Y} dans un I’espace R" , Cette propriété détermine la condition nécessaire pour le
crochet de Lie [X 2y 2] # 0. Ce résultat offre moins de calculs et une excellente description pour le
calcul de [Xz,Yz}
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INTRODUCTION

The theory of subelliptic operators L = X12 +---+X{" to R, where X12 + .-+ X" are vector
fields , plays a fundamental role in sub-Riemannian geometry . The main question addressed in this
paper is the theory of finding heat kernels . The method for finding heat kernels depends on the com-
mutativity of the squares of the vector fields X ]2 4+ +X,721 . If the operators commute , then the value
of the heat kernel is the product of the heat kernels of the operators . Otherwise , the Toranter formula
will be presented using the method of integration by parts...

The goal se in this memory is to present the result cited in [13] , [6] , defining a very important
property in sub-Riemannian geometry . This property aims to verify the non-commutativity of the
square of the vector fields X and Y in a nilpotent distribution D = span{X,Y } of class 2 and class 3 .

Our work revolves around three essential points

The first chapter : It is dedicated to recalling the essential basic concepts necessary for under-
standing differential geometry , It provides the mathematical framework , deliberately very detailed ,
in which this document is situated , we definde champ vecteur , distribution , sub-Riemannian structur
, Lie bracket , ...

Second chapter : The kernel of this work , is dedicated to defining a very important notion regard-
ing the nilpotent distribution D = span{X,Y } of class 2 and class 3 , which are necessary conditions
for the non-commutativity of squar of the vector field X, Y .

Third chapter : We illustrate our work with two excelente examples in sub-Riemannian geometry
those of the Heisenberg distribution and Martinet distribution .

this work shows that the condition of non-commutativity of the squares of two vector fields in
a nilpotent distribution is a fundamental aspect of the study of sub-Riemannian geometry . This
property highlights the uniqueness of nilpotent distributions and their impact on the geometric and
topological structure of the studied spaces . A deep understanding of these conditions opens new
avenues for research in this field , enhancing our knowledge of the interactions between geometry
and analysis .



CHAPTER 1

PRELIMINARY

1.1 Vector fields in R”

We use any of the notation
a] ’ ax' ) 5 9 a/ax_/' 9

to indicate the partial derivative operator with respect to the j-th coordinate of R” . Let Q C R" be an
open (and non-empty) set .
Definition 1.1 [/5] Given an N-tuple of a scalar function ay,...,ay

aj:Q—R , je{l,.,N}

the first order linear differential operator

N
X=Y a0 . (L.1)
j=1
will be called a vector field on Q with component functions ( or simply , components) ay, ...,ay .

If f: Q — R™ is a differentiable function , we denote Xf the function on Q by

N
Xf(x) = ZlaJ-(x)ajf(x) , X€Q
j=
Occasionally , we shall also use the notation Xf when
f:Q—R"
is a vector-valued function , to mean the component-wise action of X . More precisely , we set

X fi(x) Ji(x)
Xf(x) = : for flx)=1]
X fin(x) fn(x)



Furthermore , given a differentiable function f : Q — R™ | we shall denote by
Jrx) , xe€Q
the Jacobian matrix of f at X .

Let C*(Q,R) for brevity , C*(Q2) be the set of smooth (i.e . infinitely-differentiable) real-valued
functions . If the components a; are smooth , we shall call X a smooth vector field and we shall often
consider X as an operator acting on smooth functions ,

X:C7(Q)—=C(Q),f—Xf

We shall denote by T (R") the set of all smooth vector fields in R" . Equipped with the natural
operations , T (R") is a vector space over R .

We adopt the following notation : I will denote the identity map on R" and , if X is the vector
field in (1.1) , then
aj
XI:=1: |. (1.2)
an

will be the column vector of the components of X .

This notation is obviously consistent with our definition of the action of X on a vector-valued
function . Thus , XI may also be regarded as a smooth map from R" to itself .

Often , many authors identity X and XI . Instead , in order to avoid any confusion between a
smooth vector field as a function belonging to C*(R",R") and a smooth vector field as a differential
operator from C*(R") to itself , we prefer to use the different notation XI and X as described in (1.2)
and (1.1) , respectively

By consistency of notation , we may write
Xf=(Vf)-XI

where V = (dy,--- ,dy) is the gradient operator in R" , f is any real-valued smooth function on R"
and - denotes the row X column product .

For example : for the following two vector fields on R® (whose points are denoted by
X = (X],X2,.X3))

X| = 0v1 +2x20:3 Xo =00 —2x103 (1.3)
we have
1 0
X Ix)=1 0 . Xol(x) = 1 , (1.4)
2xo —2x1



1.2 Integral Curves

Definition 1.2 [15]
A path y:® — R" being an interval of R , will be said an integral curve of the smooth vector

field X if
y(t) =X1(y(t)) for every tc®

If X is a smooth vector field , then , for every x € R" , he Cauchy problem

T=XI(y) .
{y(o) L (1.5)

has a unique solution
Yx(.,x) : D (X,x) —» R"

Since X is smooth , t — ¥%(t,x) is a C* function whose n-th Taylor expansion in a neighborhood of
t =0 is given by
2 n

t
}/X(t,x):x—l—tX(l)I(xH—%tX(z)I(xH—--- —i—t—'tX(")I(x)—i—l' / (t — )" XD (95 (5,))ds (1.6)
! n. n.Jo

Hereafter , for k € N, we denote by X (k) the vector field

Al k—1
=Y (x*Vaj)ay;

being X0=71 (the identity map) and X" ,h> 1, the h-th order iterated of X , i.e .

X" =Xo...0X

htimes

Example 1.1 For example , if X; is as in (1.3) , since

I 0
xVr={ o | xPr={o|=x¥r1 vk>3

2x7 0
we have
X1 1 X1+t
}/Xl(t,x) :x—i—tX](l)I(x) =\|x |+t 0 = X2
X3 2x> X3+ 2x5t

Definition 1.3 [/5] Let X be a smooth vector field on R" . Following all the above notation , we set

exp(tX)(x) := yx (t,x)

where ¥x (-, x) is the solution of (1.5) Then , being X smooth , for every n € N, we have the expansion
exp(tX)(x) = Z xkz )+ — / "X (exp(sX) (x))ds
In particular , for n=1,
exp(tX)(x) = x4+ X1 (x) + /Ot (t —5)X?I(exp(sX)(x))ds

10



Moreover, from the unique solvability of the Cauchy problem related to smooth vector fields we get:
t€D(—X,x) iff —t € D(X,x) and

)=x
exp((t +7)X)(x) = exp(tX)(exp(X)(x))
exp((17)X)(x) = exp(t(X))(x)

when all the terms are defined .
Remark 1.1 [15] Let us consider a smooth function u : R" — R and the vector field in (1.1) . Then

Xu(x) = lim “L¥PUX >t(x) —u g e ge (1.7)

t—0

Indeed , since exp(tX)(x) = x +tXI(x) + O(t?) , the limit on the right-hand side of (1.7) is equal to

the following one :
lim u(x+1XI(x)) — u(x)

t—0

= Vu(x)-XI(x) = Xu(x)

1.3 Lie Brackets of Vector Fields in R”

Definition 1.4 [15]
IfX = Z] 1,ajdjandY = y
the vector field

i=1,bjd; , a direct computation shows that the Lie bracket [X,Y] is

N
X, Y] =) (Xbj—Ya;)d;
j=1
As a consequence , Given two smooth vector fields X and Y in R" , we define the Lie bracket [X,Y]
as follows
X,Y] :=XY-YX

Ifx =y% =1 b;d; , a direct computation shows that the Lie bracket [X,Y] is

the vector field

ajdjandY =Y,

N
[X,Y] =Y (Xbj—Ya;)o

j=1
As a consequence ,
Xby Ya;
x, Y=\ : | = : | =0y;-XI-03x;-YI
XbN YaN

Example 1.2 [15] If X;,X, are as in 1.3, we have
[X1,Xa] = (X1(—2x1) — X2(2x2)) Oy, = —40k,

It is quite trivial to check that (X,Y) — [X,Y] is a bilinear map on the vector space T (R") satisfying
the Jacobi identity
X,V ZI| + Y, [Z,X]] + (2, [X, Y]] = 0

forevery X,Y,Z € T(R")

11



We now introduce some other notation on the algebras of vector fields . Given a set of vector
fields Zy,--- ,Zy, € T(R") and a multi-index

J:(jlv"'7jk)€{la"'vm}k

we set

Zj:= [Z]’H"'[ijfwzj]”']

We say that Zj is a commutator of length (or height) k of Zy,--- ,Z,, . If J = j; , we also say that
Zj = Zj is a commutator of length 1 of Z,--- ,Z,, A commutator of the form Z; will also be called
nested , in order to emphasize its difference from , e.g . a commutator of the form We shall refer
to T(R") (equipped with the above Lie bracket) as the Lie algebra of the vector fields on R" . Any
sub-algebra g of T (R") will be called a Lie algebra of vector fields .
More explicitly , g is a Lie algebra of vector fields if g is a vector subspace of T (R") closed with
respectto [,] ,i.e. [X,Y] € g forevery X,Y € g

We now introduce some other notation on the algebras of vector fields . Given a set of vector
fields Zy,--- ,Zy, € T(R") and a multi-index

J:(jlv"'7jk)€{17'“7m}k

we set
Zp=1Zj, 2y, Zj] -]

We say that Zj is a commutator of length (or height) k of Zy,--- ,Z,, . If ] = ji , we also say that
Zj = Zj is a commutator of length 1 of Z,--- ,Z,, A commutator of the form Z; will also be called
nested , in order to emphasize its difference from , e.g . a commutator of the form

121,25}, (23, Z4]]

Definition 1.5 (The Lie algebra generated by a set) [/5]
If V is any subset of T(R") , we denote by Lie{V'} the least sub-algebra of T (R™) containing V,

ie.
Lie{V}:=(h
where b is a sub-algebra of T(R") with V C by . We also define
rank(Lie{V }(x)) := dimg{ZI(x)|Z € Lie{V'}

Example 1.3 Let X and X, be asin (1.3) .

Since [X1,X>] = —40y, and since any commutator involving X, X, more than twice is identically zero
then

Lie{X),X>} = span{X|,X2,[X1,X2]} , and rank(Lie{X;,X>}(x)) =3 for every xeR>

The following result holds .

1.4 Lie groups on R”

The Lie Algebra of a Lie Group on R”

We first recall a well-known definition.

12



Definition 1.6 [/5] Let o be a given group law on R" and suppose that the map

1

R"xR"> (x,y) =y oxeR"

is smooth . Then G := (R",0) is called a Lie group on R".

Fixed oo € G , we denote by T (x) := o ox the left-translation by @ on G . A (smooth) vector
field X on R" is called left-invariant on G if

X(@otq) = (Xp)oTa

For every oo € G and for every smooth function ¢ : R" — R . We denote by g the set of the
left-invariant vector fields on G . It is quite obvious to recognize that

forevery X,Y € g and forevery A,ut € R we have AX +uY € gand [X,Y] €g.

Then , g is a Lie algebra of vector fields , sub-algebra of T (R") . It will be called the Lie algebra
of G.

Example 1.4 (First Heisenberg group H') The map

(x1,%2,x3) 0 (¥1,¥2,¥3) = (X1 +y1,X2 +y2,X3 + y3 + 2(X2y1 — X1y2))

are left invariant w.r.t . o . Consequently, X1,X>,[X,X>] € h! , say , the Lie algebra of H' .

Precisely ,
bl = span{X, X2, [X1,X]} = Lie{X;, X, }.

From the theorem of differentiation of composite functions , we easily get the following charac-
terization of left-invariant vector fields on G .

1.5 Distribution

Definition 1.7 [14]

A smooth distribution A of rank m < n (m > 1) on M is a rank m subbundle of the tangent bundle
TM , that is a smooth map that assigns to each point x of M a linear subspace A(x) of the tangent
space T,M f dimension m . In other terms , for every x € M , here are an open neighborhood 75 of x
in M and m smooth vector fields X, ..., X" linearly independent on V, such that

A®y) = Span{X}(y),.... X"} Wye %

Such a family of smooth vector fields is called a local frame in 'V, for the distribution A(x) . All
the distributions which will be considered later will be smooth with constant rank m € [1,n] . Thus,
from now on , “distribution” always means ~’ smooth distri-bution with constant rank ”. A co-rank
k distribution on M is a distribution of rank m = n — k and any smooth vector field X on M such that
X(x) € A(x) or any x € M is called a section of A .

13



1.6 Sub-Riemannian Geometry

Definition 1.8 /9]
Let M be a manifold , together with a subbundle H of the tangent bundle . Then a sub-
Riemannian manifold is a triple (M,3{,h) where h is a fiber-metric on J{ .

In this setting , the subbundle J{ s called the horizontal distribution and h is called the sub-
Riemannian metric .

We will use the letter d to refer to the rank of H , and n to refer to the dimension of the manifold .
The vector fields in I'(HH) are called horizontal vector fields . Given a sub-Riemannian metric h we
can define the analogue of the flat and sharp operator as in Riemannian geometry . The definition of
flat with respect to h then becomes

b H — I, b(v) =h(,.)
forv € H , while the sharp operator with respect to h is defined to be
' TM — 31 (0) = 07! (0] H)
for o € T*M.
Using the sharp operator we can define the cometric with respect to h by
B T*M x T*M — T*M, < o, B >p-= a(t"(B))

The cometric h* is symmetric , since given any two elements «,3 € T*M such that §(o) = v
and t"(B) = w, we have that

<vw =<y, > (w) = o 3 (1"B) =< o, B >

Note that #"(a) = h*(,.) . An additional property of the cometric is that h* is zero on the
annihilator of H in T*M , i.e . the subbundle of T*M given by

{oeT"™M:a(v)=0 YveXH}

It is also possible to define the cometric by the following two properties : h* is zero on the
annihilator of H , and
<t'a,i"B >p=<a,f >p

for all a, 3 € T*M The main advantage of working with the cometric instead of the sub-Riemannian
metric is that the cometric is defened on the entire T*M instead of a subbundle . Later we will also
encounter the cometric as the symbol of the sub-Laplacian , which gives us another reason for prefer-
ring the cometric rather than the sub-Riemannian metric .

Let y: [a,b] — M be a continuous curve such that 7 € H almost everywhere . We say that y is
a horizontal absolutely continuous curve if it satisfy

[0l = 173

almost everywhere.The length of vy is then defined to be
b
1) = [1130) e

14



Denote by ng (A,B) the set of all horizontal absolutely continuous curves connecting the two
points A and B on the manifold . We define the distance between A and B , denoted d(A,B) to be

d(A.B) = inf I()
CI(A,B)

where we use the convention inf& = oo . There are many cases in which the distance between
two points may be infinite .

For instance , if J is an integrable distribution , i.e . [X,Y] € I'(H) forall X,Y € I'(H) .

1.7 Sub-Riemannian structures

Let M be a smooth n-dimensional manifold.

Definition 1.9 [12]
A sub-Riemannian structure on M is a pair (D,g) where D is a distribution and g is a Riemannian
metric on D .

A sub-Riemannian manifold (M,D,g) is a smooth manifold M equipped with a sub-Riemannian
structure (D,g) .

Recall that a distribution D of rank m(m < n) is a family of m-dimensional linear subspaces
D, C TyM depending smoothly on g € M . A Riemannian metric on D is a smooth function g : D — R
which restrictions g, to D, are positive definite quadratic forms .

Let (M,D,g) be a sub-Riemannian manifold . A horizontal curve y:I C R — M is an absolutely
continuous curve such that y(t) € Dy;) for almost every t €1 .

We define the length of a horizontal curve , as in Riemannian geometry , by :

tengih(y) = [ /ey (1O)dr .

Definition 1.10 [12] The sub-Riemannian distance on (M, D, g) is defined by
d(p,q) =inf{length(y):y horizontal curve 7y joins p to q '}

We use the convention
inf@ = +oo

Thus,if p and q can not be joined by a horizontal curve ,

d(p,q) = +oo

1.8 Brackets-Generating Distributions

In the following we shall define a very important type of horizontal distributions . Let T,M be to
tangent space of the manifold M at p . For each given point p € M We shall construct the following

15



sequence of ascendant linear subspaces of the space T,M :

D= D,
@§ - ®%+ [D,,D!]
D= D2+[D,, D

Ditl = D14 [D), D]
Where [D, D}] = {[X,Y];:X €D,,Y € DZ} , such that +is U .

Definition 1.11 /5]
The distributions D is said bracket generating at the point p € M if there is an integer r > 1 such
that Dlrg =T,M . The integer r is called the step of the sub-Riemannian manifold (M,D, g) at the point

p-
Remark 1.2 /5]

1. The step is a property of the distribution D and does not depend on the sub-Riemannian metric
g.

2. We have rank D; =dimM

3. There are distribution where the step is the same for all points . They are called constant-step
distribution

1.9 Nilpotent Distibutions

We Difine the iterated commutator sets

el ={[x;Y];:X,Y e (D)}
€2 ={[[x;Y],Z];X,Y,Z (D)}
={[c',z];zeT(D)}

el ={[e",z];Zze (D)}
C" is the set of vector fields obtained by n iterated lie brackets of horizontal vector fields

Definition 1.12 /5] the distibutions D is called nilpotent if there is an integer n > 1 such that
C" =0 i.e, all the n iterated Lie brackets vanish . The smallest integer n with this property is called
the nilpotnce classe of D

Example 1.5 Let’s consider the following vector fields in R

d d d

Step-by-Step Verification of Nilpotency :

16



1. First-order Lie bracket :
Let’s compute the Lie bracket between the vector fields :

X,¥] = d . Jd d
R PR R}
Using the definition of the Lie bracket :

X, Y] =X(Y)-Y(X)

* X (Y) represents the action of Xon Y :

(3)-

* Y (X) represents the action of Y on X :

y(2 9\ 2
2. Ya.) T o
Thus ,

d
[X>Y] - _52

2. Higher-order Lie brackets :
Let’s compute second-order Lie brackets, i.e . brackets of the form [X,[X,Y]],[Y,[X,Y]],etc.

Since [X,Y] = —g is a constant vector field :
Z
o d 4
R A
d d
[Y7 [va]] = |:a_y,_51:| =0

Then , the nilpotent distribution of class 2 .
Proposition 1.1 /5] There are brackets-generating distibutions that are not nilpotent
Proof 1.9.1 /5] We shall provide an example . Let D = span{X,X,} ,where
X|=0q+e20 , Xo=0do

are vector fields on fo 5 -

Since [X1,X>] = —e*?d;, it follows that X1,X,[X1,X,] are lineary independent vector fields at
every point (x1,x2,t) € R3,

Hence the distibution D is brackets generating with constant step 2 .

On the other hand , the distibution D is non nilpotent since the iterated Lie brackets never vanish
because of the expontial factor e*

17



CHAPTER 2

LTHE NON-COMMUTATIVITY ANALYSIS OF THE SQUARES
OF TWO VECTOR FIELDS IN A NILPOTENT DISTRIBUTION

2.1 Introduction
In this chapter , we define a necessary condition for [X 2y 2] # 0 such that D = span{X,Y} is a
nilpotent distribution in R™ .

Definition 2.1 the vector fields X and Y be satisfing condition Ry, at point p if [X ky k} ) #0

Example 2.1 /6] The vector fields
X=0d , Y=0+x0,
The vector fields satisfy the condition everywhere on R, . This follows from the relations

[X7Y] =0,
X*=92 | ¥Y2=02+2xd,0, + 20>
[X2,Y?] = 40,0,0. + 29 + 4x9,0?

2.2 Posed the problem

Let X and Y be two vector fields on R™ . Consider the differential operator of order n obtained by
iterating the same vector field k times X* = X ... X . We start by observing that if the vector fields X
and Y commute , then the operators X* and X* k also commute . This can be written as the following
set relation [4] :

{p;[X,Y]p 20} C {p; [X",Y"} 20} = {p; [X",Y"} 7&0} - {p;[X,Y]p 7'50}
p p
Proof 2.2.1 [11] We begin with the case where k =2, Using XY =YX ,

Multiling the left :
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X2y? = XXYY = XYXY = YXXY =YXYX
_y2x?

For n=k  Xfyk=X...XYy...Y=X---YX---Y

—Y---YX--X
—yk...xk

Example 2.2 Consider the following vector fields :
X=0d , Y=yo
We have :
[X,Y] = [0y, ydy] = XY —YX = ydidy — ydidy =0
Then we calculate
X*=9} , Y*=)y9;
we calculate the commutator
[X2,Y%] = [97,y°07] =XV —Y?X* =y*0}9] —y*97d; =0
So
(X, Y] =0) = ([x*,¥?] =0)

For the other side of the equivalence :

Example 2.3 :
Consider the following vector fields :

X=0 , Y=0,+x0;

[X,Y]| =XY —YX = 0 (dy +x9;) — (dy +x09;) 0,
= axay + 0, (xaz) - (ayax +xazax)
— (940 + 9+ x0x.) — (3,; +x0.0)
— 0,0i+ 0. 10D, — A — 100y
= 0, +x0,0d; — x0,0x
=0,
£0

X?=0? , Y*=0}+x0)0.+x0.0,+x°02
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[X2,7?] =X*Y? - yx?
= 83 (ayz +x0y,0; +x0d;0, +x2812) — (8y2 +x0y0; + x0d;0, +x2(9z2) aj
= 0797 + 0400 + 0y0;0x + 0:0x0y + 0x0:0y + 297 + 2x0,0; — (9797 + 9400k + 0:0y0; + 2x92d)
=202 +2x0,07 — x93, — x0.9, 0y
#0
So
([x*. 7] #£0) = (X,¥Y] #0)

Remark 2.1 The opposite of the property is not always true .

counterexample

The vector fields
X=0 , Y=(1+x)0,

We have :
[X,Y]=XY -YX

_d 2 0
XY_a((1+x)a—Z>
dJ

Since <3—Z> is just a coefficient function , we can take the derivative of the coefficient (1 -|-x2) with
respect to x :

we calculate XY :

d

XY = —
ox

we calculate YX :

d d
Since (8_) is a constant vector field , the derivative of (8_) with respect to (z) is zero :
X X

YX=(1+x%)-0=0

we calculate [X,Y] :

) J
X,Y] = [0y, (1+x%)0;] =XY —YX = 2xa-—0=2xo

We have the square of vector fields is :
X?=02 | Y?’=(1+2"4+x%(3,)?

We have :
[X2,7?] =X*Y? - y*x?

we calculate X2Y? :
2y2 9? L+ 42)2 0?
xy2=2 7
5.2 \1+) 55
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32
Applying (ﬁ) to ((1+x%)?) :

2 0
ﬁ(l—kxz)z =5 (4x(1+x%)) = 4(1+x%) +8x* =4+ 1247
Thus:
212 2 9°
Next , we calculate Y?X?
2v2 2282 0?
Y°X =(1 — | =—=
() 52 (axz)
2
Since | = | does not act on x , we get :
072
0% 92
y2x2 — (142229
(1+x7) dx? 972
Therefore:
2 2 2y2 2v2 2 9 2\2 9
[X°,Y?] =X°Y?—Y°X* = (4+ 12x )8_z2_<l+x ) 2
Simplitying further:
2 2 2 2 4 0° 2 4 9*
(X7 = (44 12" — 1 —2x —x)a—zzz(?)—i—le _x)a_ZZ

Thus, the commutator [X?,Y?] is:
2

d
[XZ,YZ] = (3+ 10x? —x4) 92

At the point (0,y,z) ,We have
2 y2
X,Y],=0 , and [X,Y]p;éO

* In the following part , we will define the vector fields X and Y in a nilpotent distribution
(whether it be of class 2 or class 3) in such a way that the opposite of this property holds
true .

2.3 The necessary condition For [X* Y?| =0

2.3.1 The case of nilpotent distribution of class 2

Theorem 2.3.1 [/3]
Any distribution D = span{X,Y } of nilpotency class equal to 2 is a R, -distribution .

Proof 2.3.1 See [6]
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2.3.2 The case of nilpotent distribution of class 3

Theorem 2.3.2 [13] Any distribution D = span{X,Y} of nilpotency class equal to 3 is a R;-

distribution , i.e, [X?,Y?] #0

To prove this theorem , we use several lemmas , and we recall the following . The distribution

D = span{X,Y} is nilpotent of class 3 meaning that

0
0
Lemma 2.1 [13] In a distribution D = span{X,Y } of nilpotency class 3 , we have
[X%,Y?] =0 = (XY)> = (YX)?
Proof 2.3.2 [13] By developing the first equation of (2.5)
X[V, X, Y]] =0 <= X?Y2 —¥2X> —2(XY)? +2(YX)> =0
— X2y =2((xy)’ - (vX)?)

or
[X2,Y*] =0
then
(X7)? = (rX)?

Lemma 2.2 [13] In a distribution D = span{X,Y} of nilpotency class 3, we have
[X?,Y?] =0 = XYX°’Y* = X’Y*XY
Proof 2.3.3 [13] The expansion of the equations (2.3.1) gives
X3y —3X?YX +3XYX*> —vXx* =0

Y3X —3Y2XYy +3YXY2 —XY? =0

2.1

2.2)
(2.3)

(2.4)

(2.5)

(2.6)

Multiplying the right-hand side , then the left-hand side of the relation (2.5) by Y? and therelation

(2.6) by X? , we obtain
X33 - 3X2yXy2 +3XYX*y? —yvx3y?=0

X373 —3Y2Xy X2 +3YXy2x? —xy3x? =0
X33 —v2x3y +3Y2x2yX — 3Y2XyX%? =0
X373 - X2y3x 4+ 3X2y2XYy — 3X2YXY? =0
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By the subtractions of these equations , (2.7)-(2.8),(2.7)-(2.9)-(2.10)-(2.9) we have found ,
respectively ,

X33 —¥3X3 =3X2yXY? - 3XYX?Y2 4+ YX3Y? —3Y?XYX? +3YXY2X? —XYY? . (2.11)
X33 —y3x3 =3X2yXY? - 3XYX?Y2+ YXY2 —Y2X3Y +3Y2X?YX —3Y?XYX? . (2.12)
X373 —Y3X3 = X?73X - 3X?Y2XY +3X2YXY? —Y2X3Y +3Y2X2Y X — 3V’ XYX? . (2.13)

Subtracting the equations (2.11)-(2.12) gives
—3XYX2Y?+YXIY?2+Y2X3Y - 3Y2X2YX — XY3X? +3YXY?X? — X?Y3X +3X°Y2XY =0
In view of the fact that X2Y? = Y2X? , the last equation becomes
—XYX?Y2 4+ XYX2YP+ X2Y2XY —X2YPXY =0

then
X2Y?[X,Y] = [X,Y]X*Y?> . (2.14)

On the other hand , subtracting the equations (2.13)-(2.11) gives
—3XYXY?+YXY? —X2Y3X 4+ 3X%Y?XY =0

then
— X, Y] X*Y*+ XY (X, Y] +2 (X?Y2XY — XY X?Y?)

Using the relation (2.3) , we obtain
XYX?y? = X*v’Xy
Lemma 2.3 [13] In a distribution D = span{X,Y} of nilpotency class 3 , we have
[X%¥?] =0=X*¥>=3(XY)* . (2.15)

Proof 2.3.4 [13] Multiplying the equation (2.5) in the proof of Lemma (2.2) by Y on two sides , we

obtain
YX3Y? - 3YX?YXY +3YXYX%Y - Y*X3y =0 . (2.16)

Lemma(2.2) proves that
XYX2%y? =x°y*xy

and interchanging X and Y , we get
YXx2y? =x%r’rx
then (2.16) becames
X2y2[X,Y] -3 ((XY)3 - (YX)3) —0

this implies that
<X2Y2 -3 (XY)2> X,Y] =0

but [X,Y]| #0, then
X2y? =3(xy)?
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Proof 2.3.5 (Proof of theorem 2.3.1) [13]
We shall prove this theorem by contradiction , i.e , we assume that

(X%, y*]=0 . (2.17)

By developing [X,Y]* and using Lemma(2.1) we get

X, Y] = (XY)° = (XY)* (XY) = (XY) (YX) (XY) + (XY) (YX)°
—(YX)(XY)* 4+ (YX) (XY) (YX)+ (YX)* (XY) — (vX)? (2.18)
=3(XY)?=3(rx)®— (XY)(YX)(XY)+ (YX) (XY)(YX)
Using Lemma(2.3) , we get
(XY)(YX)(XY) =XY*X?%Y
=3X (YX)*Y
= 3XYXYXY =3(XY)>.
(YX)(XY)(YX) =YX?Y%Y
=3Y (XY)*X
= 3YXYXYX =3(YX)>.

The equation (2.18) becomes
X, Y]} =3(xy)* =3(rx)*—3(xY)’+-3(rx)’=0

then [X,Y]| = 0 is a contradiction . It turns out that (2.17) cannot hold . It follows that the vector fields
X and Y span a *R, distribution .
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CHAPTER 3

APPLICATION TO THE SPECIFIC DISTRIBUTION

In this section , we introduce two examples of the sub-Riemannian geometry : the Heisenberg
distribution and Martinet distribution , where we apply the all proprties that we saw in the previous
chapters .

3.1 The Distribution of the Heisenberg

we introduce the Heisenberg group H! , a non-commutative group with underlying manifold R> .
For the sake of transparency considering the type of problems we are dealing with in this dissertation
, we only look at the one-dimensional Heisenberg group , and the extensions to higher dimensions are
easy generalizations .

We identify points in R? with points in C through the following law :

R? > (x,y) <> z=xi+yeC
LetH! = C xR . Then for all points (z,t), (w,s) € H! , we define the group law by

(z,1) - (w,s) = (z+w,t+s+%[z,w]>

3.1.1 The left-invariant vector fields

A vector field V on H! is said to be left-invariant if

VLws) = Lws)V

for all (w,s) € H' where L(,s) 18 the left translation by (w,s) defined by

(L(w7s)f)(zat) - f((W,S) : (ZJ)), (Z,f) € Hl
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We now introduce a particular Lie algebra, namely the Lie algebra of left-invariant vector fields on
Hl

Theorem 3.1.1 Let b' be the set of all left-invariant vector fields on H'.Then b! is a Lie algebra in
which the Lie bracket|.,.]is the commutator given by

[X,Y] =XY —YX

forall X,Y €bl.

Proof 3.1.1 Linearity is obvious.Let X,Y € b',and we need to show firstly that [X,Y] € b'.
We write

X J +b J + o
Pox oy T or
and
0 0 0
Y=a—+by— —
PR R Y
where a;,by,cy,az,b,,cy are C* functions on H!.Then one can easily check that
2 2 82 az 82
XY = —+b1br—= — b b))=——+ (b b _— _—
a1a26x2+ 1 2ay2—|—clczat2+(a1 r+an 1>8x8y+( 1c2+ zcl)ayat+(a1C2+a261)atax+
Vi

where V; is a vector field on H'! By switching subscripts in the second-order terms in XY, we get

X,Y]|=XY -YX =V, -V,

where V5 is another vector field on H' To see that [X,Y] is left-invariant, let (wys) € H!,and we use
the left-invariance of X,Y to check that

L XY =XL(,, )Y = XYL,

and

Loy YX =YL, X =YXL,y

Thus, we have

[XaY]L(ms) = L(w7s) [XaY]

and therefore [X,Y] € b',as desired. Secondly, we prove Jacobi’s identity.

X,[Y,Z]| = [X,YZ—ZY|=XYZ - XZY —YZX + ZY X,
Y,[Z.X])| =[Y,ZX —XZ] =YXZ - YZX — ZXY + XZY,
1Z,[X,Y]] = [Z,XY —YX] = ZXY — ZYX —XYZ +YXZ,
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Thus,

[Xa [Y,Z]] + [Y7 [ZvXH + [Z7 [XvYH =0

and therefore b! is a Lie algebra.

Theorem 3.1.2 X,Y,T are vector fields on H' defined as follows ,

x=2 L9
“ox 2001
_J 19
T ox 2 or
r_9
ot

Then X,Y,T form a basis for b!
Proof 3.1.2 Firstly, we check that X,Y,T € bli.e.,
XLiws) = Liws)
for all (w,s) € H'.To see this, we write w = (u,v),z = (x,y) Then
1
(Lows) £) (2 1) = f((wi5) - (2,1)) = flutx, vty s+14 5 (v —uy))
where(z,t) € b!.To simplify notation, we denote
1
(..)=(u+x,v+ys+t+ E(vx— uy)

Then, we have
(XL(w,s)f) (Za t)

Jd 14
= ((a_x + EyE)L(W’S)f)(ZJ)

af 1 df
= x0T () g ()
of 1 af
= _8x("')+§(v+y)_8t (...)

On the other hand ,
(XL(w,s)f) (Z7 t)

=(X1)(...)

af 1 of

Thus ,
XLys) = Liwg)X

So we have proved that X € b' , and similar arguments show that Y, T are also elements of b'
Moreover , we know that the Lie algebra b! s isomorphic to T(())O?O)Hl , the tangent space of the
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Heisenberg group at the origin, and a proof can be found in [44] . Since T(O,O,O)Hl is a three dimen-
sional vector space , it remains to show that X,Y,T are linearly independent.The see this, we consider

, the equation

aX +bY +cT =0

where a,b,c are real numbers. for all of H' , we must show that

(aX+bY +cT)f=0<a,b,c=0

But this is clear if we pick

f(x,y,1)
f(x,y,1)
flx,p,1)

X
y
t

Therefore,X,Y,T is a basis for b!
Lastly, we explain the choice of vector fields X,Y,T as a basis for b!

Theorem 3.1.3 [8] Letey,es,e3 be the coordinate axes and write them in their parameterized form

el(s):(s,0,0), seR
ez(S):«),S,O), seR
83(S):(0507S)7 seR

Then for all C* functions f on H' , we have
KN = ol (@) -erls),
(¥ F)(et) = S lsmo (1) -ea(s).
(T1)(et) = 5o ((2:0) - €3(5)),
for all (z,t) € H!

Proof 3.1.3 [8] Since

Lemof((@1)-(5)

d 1
- %’s:()f(x—i_sv‘y?t"i_s"i__sy)

2
af 1 0
- x(xﬂ)?t) +§ya(xay7t)
We get
Jd 1 d
=2

as asserted.
Lastly , an observation can be made through the theorem below .
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Theorem 3.1.4 [8] [X,Y] = —T, and all other commutators among X,Y,T vanish .

The vector fields X ,Y ,and their first-order commutator span the Lie algebra b' on the Heisenberg
group. In fact, they are the so-called horizontal vector fields on H',and T is known as the missing
direction.

Now, we develop the sub-Laplacian on H',which will later give rise to a family of linear operators
known as the twisted Laplacians on R>.The sub-Laplacian £ on H! is defined by

L=—(X2+7?
More explicitly ,
Jd 1 d_,d 1 0
29 2.9y 1.9
X =235 2
_ 9t 9 1,9
o2 Yoxar 4 a2
and
0 1 0.0 1 0
2_ —_—— — JE— e — JE—
=Gy 2%
_ 979 1,9
T2 Toyar 4 o
Thus,
L _1 2 02 8_ d\ 0
where

02 92
A=oetop

3.1.2 The right-invariant vector fields

[3] Where as the right-invariant vector fields write :

X =0, +y0.
)

3.1.3 The degree of bracket generating distribution
The distribution D = span{X,Y } such that

X =0dy—yo, , Y = dy,—x0;
We have ,

X,Y] = [0 —yd,0y,—x0,) =XY —YX =0, , [[X,¥Y],Y]=0 , [[X,¥],X]=0

According of chapter 1 , we have :
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« D=0
e D' =D =span{X,X>}
« D*=D'+[D,D'] = TR’

Then , the degree of bracket generating distribution of step 2

3.1.4 The class of nilpotence
We have:
el = {[X,Y] = [0~ 9,0, —xd] = d;; X,Y €[(D)} #0

€2 ={[X;¥],Y]=0, [[X;¥],X]=0; X,YeI(D)}=0
Then the class of nilpotent distibution is step 2 , according to the sited by chapter 2, we have

[X2,Y?] £0

3.2 The Martinet distribution

We define the distribution D = span{X,Y } such that , X , Y two vector fields on H! defined

3.2.1 The left invariant vector fields

xZ
X=0, , Y=9+30

3.2.2 The right-invariant vector fields

Where as the right-invariant vector fields write :
2
X =0 ,Y:%—E&

3.2.3 The degree of bracket generating

We have:
X.,Y]=xd, , [X,[X,Y]]=0 , [Y,[X,Y]]=0

The case of x =0 :

The distribution D = span{X,Y } such that

xZ
X=0, , Y=0+50z

is bracket generating of step 3
The case of x # 0 :

Then the bracket generating of step 2, we have
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e DV=0

D' =D =span{X,Y}

D*=D'+[D,D'] = {X,Y,[X;Y]}

D*=D?+[D,D*] = {X,Y,[X;Y],[[X;Y],X]}

Then,the distribution D = span{X,Y} is bracket generating of step 3 .

3.2.4 The class of nilpotence

The distribution D = span{X,Y } is nilpotente of class 3, We have
Forx#0:
'={[X,Y]=xd.; X,YeDl(D)}

€% = {[[X,¥],X] = 2, [[X,Y].Y] =0; XY € (D)}

The distrbution is bracket generating of degree 2 , then the step of sub-elliptic operator is 3 .
For x=0:
Since the distrbution is bracket generating of degree 2 , then the step of sub-elliptic operator is 3

63:{[[[X7Y]7X]7X] :07[[[X7Y]7X]7Y] 20,[[[X,Y],Y],X] :O’[HX?Y]’Y]?Y] =0, XY EF(D)}

Then,the distribution D = span{X,Y } is bracket generating of step 3 .
According to the result of chapter 2, we have directly

[X2,Y?] #0
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CONCLUSION

In conclusion , the condition of non-commutativity of the squares of two vector fields in a nilpotent
distribution constitutes a fundamental aspect in the study of sub-Riemannian geometries and nilpotent
distributions . This non-commutativity , which manifests through the fact that the Lie brackets of the
squares of the vector fields are not necessarily zero , reveals deep and complex structures within the
geometric spaces studied .

We have presented two properties of a distribution in space R" , which give us a good description
of the state of [X 2y 2] . These properties facilitate or guide the future calculation of the heat kernel
of the operator £ = (Xz, Yz).
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