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Abstract:

In this memory, we present some fundamental notions of the qualitative
theory of differential equations, precisely on nonlinear polynomial planar
differential equation systems which aim to find the properties of their
solutions (such as equilibrium points, invariant curves, and periodic
solutions).We give details about the research of A.Gasull, H.Gizcomini,
J.Torregrosa. In the article entitled: "Explicit non-algebraic limit cycles for
polynomial systems" published by: "Elsevier" on January 3, 2006.

Keywords : Sixteenth Hilbert problem, planar polynomial differential system,
curve invariant, hyperbolic limit cycle.

Résumé:

Dans ce mémoire, nous présentons quelques notions fondamentales de la
théorie qualitative d'équations différentielles, précisément sur différentiel plan
polynomial non linéaire systemes d'équations qui visent a trouver les
propriétés de leurs solutions (telles que points d'équilibre, courbes invariantes
et solutions périodiques).Nous donnons des détails a propos des recherches de
A. Gasull, H. Gizcomini, J. Torregrosa. Dans l'article intitulé:" Cycles limites
explicites non algébriques pour les systemes polynomiaux " publié par:
"Elsevier" le 3 janvier 2006.

Mots clés : Seizieme probléme de Hilbert, systeme différentiel polynomiale
planaire, courbe invariante, cycle limite hyperbolique.
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GENERAL INTRODUCTION

Differential equations have important applications and are powerful tools in the behav-
iorstudy of many problems in the natural sciences and in technology; they are extensively
employed in mechanics, astronomy, physics, and in many problems of chemistry and biol-
ogy. Direct resolution of a differential equation is usually difficult or impossible. However,
another way out is possible. This is the qualitative study of differential equations. This
study makes it possible to provide information on the of the solutions of a differential
equation without the need to solve it explicitly, and it consists in examining the proper-
ties and the characteristics of the solutions of this equation, and to justify among these
solutions, the existence or non-existence of an isolated closed curve form called a limit
cycle.

An important problem of the qualitative theory of differential equations is to determine
the limit cycles of a system of differential equations. Usually, we ask for the number of such
limit cycles as orbits, and an even more difficult problem is to give an explicit expression
of them. The limit cycles were introduced for the first time by Henri Poincaré in 1881
in his "Dissertation on the curves defined by a differential equation" [34]. Poincaré was
interested in the qualitative study of the solutions of differential equations, i.e., points of

equilibrium, limit cycles, and their stability. This makes it possible to have an overall



idea of the other orbits of the studied systems.

The mathematician David Hilbert presented at the second international congress of
mathematics [23] in 1900, 23 problems whose future awaits resolution through new meth-
ods that will be discovered in the century that begins. Problem number 16 is to know
the maximum number and relative position of the limit cycles of a planar polynomial
differential system of degree n. We denote H,, as this maximum number. Dulac [I1] in
1923, offered a proof that H,, is finite. In recent years, several papers have studied the
limit cycles of planar polynomial differential systems. The main reason for this study is
Hilbert’s 16th unsolved problem. Later on, Van der Pol [10] in 1926, Liénard [27] in 1928,
and Andronov [2] in 1929 shown that the periodic solution of self-sustained oscillation of
a circuit in a vacuum tube was a limit cycle.

This work is organized in the following way :

o Chapter 1: Contains some preliminary notions of differential systems, introduc-
tive and necessary for the understanding of all this work. Let’s start with define
differential systems, vector field, flow, phase portrait, point equilibrium, lineariza-
tion of nonlinear differential systems in the vicinity of points of equilibria, periodic

solutions and their stabilities.

o Chapter 2: In this chapter, we are more particularly interested in the study of
cycles limits. We will start with the qualitative study of the limit cycles. We study
the noexistence and existant of limit cycle .We study stability of limit cycles We

study hyperbolic limit cycles

o Chapter 3: This chapter presents the work of A. Gasull, H.Gizcomini, J.Torregrosa
. In the article entitled: "Explicit non-algebraic limit cycles for polynomial systems'

published by: "Elsevier' on January 3, 2006. To prove that a planar polynomial

vi



vector field can have an explicit limit cycle that is not algebraic They prove that
this system has at most one limit cycle and that when it exists, it can be explicitly
found and given by quadratures. They provide valuable insights into the existence
of hyperbolic systems and the existence of algebraic solutions. They provide that

the limit cycle is not algebraic.
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CHAPTER 1

PRELIMINARY CONCEPTS

1.1 Planar polynomial differential systems

Some basic concepts for the qualitative theory of polynomial differential systems are cov-
ered in this chapter .The concepts of vector field, flux, phase portrait, equilibrium point,
and linearization of non-linear differential systems at equilibrium points will all be cov-
ered .We will begin with polynomial differential systems. Next, we study the equilibrium
points’ characteristics and stability .Then integrability and invariant curves. the basic
theorems are reviewed, which include the Hartman-Grobman theorem, the existence and
uniqueness theorem, and the theorems of the Lyapunov and Poincaré stability method of

classification.

Definition : 1 [77] A real planar polynomial differential system of degree m is a system

&= P(z,y),
(1.1)
y = Q(x,y),

where P and @ are real polynomials in the variables x and y, the degree of the system



(1.1) is the mazimum of the degrees of the polynomials P and @ .As usual the dot denotes

derivative with respect to the independent variable t.

1.1.1 Vector field

Definition : 2 [77] The vector field associated to the polynomial differential system (1.1)

s an application

p(z,y)
Q(z,y)
Vector fields are essential for understanding the behavior of solutions to differential equa-

tions . They are used to define the local flow generated by a vector field .

In summary, vector fields provide a geometric interpretation of differential equations,

allowing us to study the behavior of the solutions in a visual and intuitive way.

The graphical representation of a vector field on the plane consists in drawing a number
of well chosen vectors (z,X(x)) as in 1.1.

(= X(e(1)

Q

/ t

Figure 1.1: An integral curve.

Remark: 1 [79] We note X = (P, Q) the vector field associated with the system (1.1) .



It is also written in the form:

0 0

Example: 1 We give the following example

T =2y—+zx,
(1.2)

y=-—r+y.

Figure 1.2: Vector field associated with the system (1.2)[30].

1.2 Solution and periodic solution

1.2.1 Solution of systems differential

Definition : 3 [13] The differential system (1.1) solution is referred to as any differen-

tiable function

¢: I CR— R?
t— o(t) = (e1(t), @2(t)),

where I is R a interval which satisfies the following criteria:

3



1. fort e I,(t,p(t)) € Q all an open of R.

2. for all

418 — Py (t), palt)),

2l — Q(pi(1), #a(1))-

tel

Definition : 4 The orbit of the system (1.1) is called the representation of a solution

X(t),t € I on the plane R

Definition : 5 [12] The graph of a solution ¢ : I — R? is an integral curve or trajectory

of the differential system (1.1).
1. The image ¢ of R of is an orbit of the differential system (1.1).

2. The space R? or the solutions take their values is called the phase space.

Definition : 6 called periodic solution of system (1.1) ,all solution (t) = (p1(t), p2(t))

for which there exists a real T' > 0 such that:

VieR z(t+T)=ux(t) and y(t+T) = y(t).

The smallest number T > 0 is called the period of this solution.

Remark: 2 [12] If X(t) has a period T, the solution also has a period kT

Definition : 7 [13] we call the phase plane associated with a system (1.1) the open

Q) € R? where their solutions have values.

Example: 2 The harmonic oscillator is governed by the differential equation

&4+ wx =0,



which can be written in the form of the following systems:

r =Y,
(1.3)
Yy = _wzxv
system integrates easily since % = —w% this gives a set of solution y? +w?z* = ¢, which

c € R .In other words, this system has a continuous one-parameter family of periodic

solutions represented in this phase plane by ellipses .

1.2.2 Phase portrait

Trajectories that show the systems evolution across time are usually included in the
phase portrait, along with crucial locations like equilibrium points, limit cycles, and other
significant characteristics. The stability, periodicity, and general dynamics of the system
described by the differential equations can all be understood by examining the phase

portrait.

Definition : 8 [29] A phase portrait is a phase space geometric representation of a dy-
namic system trajectories, where each set of initial conditions is represented by a curve

or a point.

Example: 3 The associated phase portrait with the system (1.2)

1.3 Singular point

Definition : 9 [77] A point (x*,y*)is called a singular point of system (1.1) if it satisfies

Pa*,y*) = Q(z",y") = 0.



Figure 1.3: Phase portrait associated with the system (1.2)[36].

Remark: 3 [73] For the vector field, the concept of an equilibrium point is equivalent to
that of a singular point. When examining the vector field in isolation, we prefer to refer
to it as a equilibrium point, and when considering the trajectories, we speak of a point of

equiltbrium.
Example: 4 We give the system:
y = Y,

then the singular points are : (0, 0) and (1,1).

1.3.1 Linearization and Jacobian matrix :

Most existing systems in nature are nonlinear. The most natural approach to studying
the behavior of trajectories of a nonlinear autonomous differential system near a singular
point is to reduce it to the study of the associated linear system We denote by J,(z*, y*)

the Jacobian matrix associated with the vector field x in the neighborhood of a singular



point (x*,y*) defined by

Jo(2",y") = : (1.4)
%( ) @( )

The linearization of the nonlinear system (1.1) is given by:

i) [FENy) Gaty)) [
0 sty Gaty)) v

1.3.2 Classification of singular points:

Definition : 10 [/2] Singular point stability is determined by the general stability theo-
rems. Therefore, if the real eigenvalues (or real components of complex eigenvalues) are
negative, the equilibrium point is asymptotically stable. Two examples of such equilibrium
places are stable focus and stable node. If the real part of at least one eigenvalue is positive,
the corresponding equilibrium point is unstable. It might be a saddle, for example.Lastly,
we are dealing with the classical stability in the Lyapunov sense where the singular point
s a center, or simply imaginary roots. Let’s assume that the eigenvalues of the Jacobian

matriz (1./) are denoted by Ay and \y:

1. If 0 < Ay < Ay then the singular point is unstable.

is said that the singular point is an "unstable node’.
2. If \y <0 < Ay then it is said that the singular point is a "saddle point'.

3. If Ay < Ay < 0 then the singular point is asymptotically stable.

It is said that the singular point is a "stable node".



/
‘\‘ | l“\\‘ /,/ J |
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Bl e e S “*-)-_ ==
> R B
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‘/}/K \X\\\ \\ | I’ /
\ b N,
/ \ g \
3) e)) 2

Figure 1.4: Real non-zero and distinct eigenvalues [29].

If Ay and Ay are distinct complex numbers (where their imaginary parts are not zero)

(see figure 1.5):

1. If Re(A1), Re(A2) < 0 then the singular point is asymptotically stable.

It is said that the point is a stable spiral sink "stable focus".
2. If Re(\1), Re(A2) = 0 then the singular point is a center.

3. If Re()A1), Re(A2) > 0 then the singular point is unstable.

It is said that the point is an unstable spiral source "unstable focus".

N

. [N, A
N/

(1) (2) (3)

v

Figure 1.5: Complex eigenvalues[29].

If Ay and A\, are equal J, is diagonalizable .

1. If A > 0 then we say that the point is a "source in star".



2. If A < 0 then we say that the point is a "sink in star".

< A - N
= 4 > %’

Figure 1.6: Eigenvalues are \; = Ay [29].

A is not diagonalizable
1. If A > 0 then the point is called a source.

2. If A < 0 then the point is called a sink.

3. If A =0 then all points on the line kv are equilibrium points.

\; A
. -

Figure 1.7: Real non-zero and distinct eigenvalues [29].

Remark: 4 [12] We recall that a singular point p is hyperbolic if the eigenvalues of the

linear part of the system at (z*,y*) have non zero real part.

9



Theorem: 1 [77] Let (x*,y*) be a hyperbolic singular point of system (1.7).Then in a
neighborhood of, the trajectories of (z*,y*) the solutions of system (1.7) have the same

shape as the trajectories of the solutions of its linearization.

Example: 5 We give the system

i = =3z — y?,
(1.5)
y = 3'1'4 - Y

The system (1.5) has a single singular point which is the origin (0, 0), and the system

linearized at this point is

2N 5.(0,0) 57(0,0) T
y 82(0,0) %2(0,0)) \w
x -3 0 x
Y 0 -1 Y
. this system has two negative real eigenvalues \y = —3 and Ao = —1 Then the singular

point (0, 0) is a stable node.

Definition : 11 [77] The singular point in the system (1.1) is called hyperbolic if the
eigenvalues of the matriz J,(z*,y*) . Have real part different from 0.Otherwise, the sin-

gular point is said to be non-hyperbolic.

1.3.3 Topological equivalence:

Definition : 12 [12] A homeomorphism of R? is a bijective continuous map

h : R? — R2. whose inverse bijection is continuous.

10



Definition : 13 [/2] Two autonomous systems in the plane

@ = Py(z(t),y(t)),

y = Qu(x(t),y(1)),

and

&= Py(x(t),y(t)), (1.7)

= Qa(x(t), y(t)),
defined on two open sets U and V in R? respectively are topologically equivalent, if there

exists a homeomorphism.

h:U—V.

such that h transforms the orbits of (A) into orbits of (B) and preserves the orientation of
the orbits. The following theorem allows us to reduce the study of a differential system in
the neighborhood of a hyperbolic singular point to the study of a linear system topologically

equivalent to (1.7) in the neighborhood of the origin.

1.3.4 Theorem of Hartman-Grobman

The Hartman-Grobman theorem, sometimes referred to as the linearization theorem, is
an important finding in the mathematical study of dynamical systems.grasp the behavior
of systems close to equilibrium points requires a grasp of this theorem.It asserts that
a nonlinear system can be spatially topologically identical to its linearization around a

hyperbolic equilibrium point under specific circumstances.

Theorem: 2 (Hartman-Grobman,1967):[55]
Let’s assume that the Jacobian matrix at the singular point has two eigenvalues Ay and As

such that and, then the solutions of system (1.1) are approzimately given by the solutions

11



of the linearized system (1.1) in the vicinity of the singular point. In other words, the
phase portrait of the linearized system constitutes, in the vicinity of this equilibrium point,

a good approximation of that of the system (1.1).

Remark: 5 [12] If Re(A12) = 0, the singular point (z*,y*) is called a center for the
linearized system. Determining its nature in the case of system (1.1) requires further

investigations: this is the center problem.

1.3.5 Stability of an singular point:

Definition : 14 [12] Let (x*,y*) is singular point of the system (1.1).Note by

X7 = (P(e",y7), Qa",y")) and X(t) = (P(x(t),y(t), Q(x(1), y(1))))-

o (z*,y*) is called stable if

Ve > 0,9 >0, [|(z,y) — (25, y")|| <n=Vt>0,[|X(t) - X" <e.

o (z*,y") is called asymptotically stable if it is stable and :

lim ||X(t) — X*|| = 0.

t—+o00

o (z*,y*) is called exponentially stable if:
Ve >0,40 >0,aa>0 and [ >0 such as:

X () — X* || <&, ¥t > 0,[|X(t) — X*|| < al| X () — X*[le”™.

12



1.3.6 Stability in the sense of Lyapunov:

The concept of Lyapunov stability is rooted in the idea of finding Lyapunov functions that
certify the stability or asymptotic stability of equilibrium points, with positive definite

and negative definite functions playing key roles in stability analysis.

Definition : 15 [20] Let F : R? — R? be a C" function X = F(X), a differential

system,with Xy singular points of system a Lyapunov C function such as

V(X()) =0 VX %X() : V(X) > 0,

VX # X, —gde(XﬁX < 0.

Theorem: 3 [20] Let be an Xg equilibrium and is a Lyapunov function. Then

o V(X) <0 then Xy is lyapunov stable .
o V(X) <0 then Xy is asymptotically stable.
o V(X) >0 then X, is unstable .

Example: 6 [29] Consider the system:

T =—x+4y,
y:—l'—y3,

let V(x,y) = 2% + 49?, then:

Viz,y) >0,  V(z,y)#(0,0),

gradV (z,y) - F(z,y) = —22% — 8y*,

ik

gradV(z,y) - F(x,y) <0.

13



Thus, V is a Lyapunov function, and the system does not admit a closed orbit (all

trajectories tend towards 0).

Remark: 6 [29] T, distinguish between the first and second cases, the Lyapunov function

s usually called strict Lyapunov function.

asymplotiguement stable

"" ’ r et _"“” —
‘114 instable
4 TT

stable —

Figure 1.8: Different types of stability in the sense of Lyapunov [29].

1.3.7 Stability in the Poincare sense:

Compared to Lyapunovs concept, stability in the Poincare sense is more precisely defined

as the distance from a point M(x, y) to a periodic solution.

Definition : 16 [//] Let X (t) = x(x(t),y(t)) a system solution (1.1) a periodic solution

o(t) of this system is stable in the poincare sense (or orbitally stable )if :
ve > 0,30 >0 [[X(to) = o(to)l| < 0= d(t) = inf [|X(t) —o(®)] <,

for t € [to, +oo[ &(t) is asymptotically stable if it is stable and if in addition

lim d(t) =0.

t—>+00

14



Remark: 7 [/1] Stability in the Lyapunov sense implies stability in the Poincare sense

but the converse is not true.

1.4 Invariant curve

The study of differential systems benefits greatly from using invariant curves, which can
disclose crucial structural characteristics of the underlying dynamical system and shed

light on the qualitative behavior of solutions.

Definition : 17 [22] let U : Q C R*> — R a function from class C' in the open

Cu ={(z,y) € Q/U(x,y) = 0},

is referred to as an invariant curve if a function K of class C' exists in ) that satisfies

the following relation, and that function is known as the cofactor:

ou ou

for all (x,y) € Q.

Example: 7 /73] The curve defined by the equation x? +y* = 1 is an invariant curve for

the system :
i =24yt +y—1,

y =a*+y —z—1,

Ulx,y) = 2> +y° — 1,

P(z,y) %2 (2, y) + Qa,y) 5 (x,y) = 2x(2” +y* +y — 1) + 2y(a® + 4> —x — 1),

= (22 +2y)(2* +y* - 1),

15



The cofactor is K(z,y) = 2z + 2y.

Remark: 8 [22]

o When the cofactor K(x,y) is a polynomial, is an invariant curve of polynomial

cofactor.

e On the invariant curve, the gradient (g—g, %—Z) of U is orthogonal to the vector field
X (P,Q), so the vector field is tangent to the invariant curve at every point on this

curve, hence this name is inspired by the fact that this curve is formed by solutions

(or trajectories) of the vector field X.

Definition : 18 [22] An invariant curve U(x,y) = 0 is said to be algebraic of degree m if
U is a polynomial of degree m, otherwise we say that it is non-algebraic or transcendent.

As you may recall the divergence of the system (1.1) is represented by the div notation.

OP(z,y) N 0Q(z,y)

div(z,y) = — 9y

Definition : 19 [22] An algebraic curve U(x,y) = 0 is irreducible, if U(x,y) is a irre-

ducible polynomial in the ring Rz, y].

Theorem: 4 [20] We consider the system (1.1) and T'(t) a periodic orbit of period T > 0.

We suppos that U :  C R? — R is an invariant curve

P(t) ={(z,y) € Q: U(x,y) =0},

and K(x,y) € C! is the cofactor specified in the equation (1.8) of the invariant curve

U(z,y) = 0. We suppose that p € Q such as U(p) = 0 and VU (p) # 0 so P is singular
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point of systeme (1.8) and

/OT div(T (1)) dt = /OTK(F(t))dt. (1.9)

1.5 Integrability and first integral

Definition : 20 /7] The R-polynomial system (1.1) is integrable on an open subset 2 of
R? if there exists a nonconstant analytic function H : Q C R? — R called a first integral
of the system on Q, which is constant on all solution curves (x(t),y(t)) of system (1.2)
contained in 0 i.e. H(X(t)) = cste Vt € I onstant for all values of t for which the
solution (z(t),y(t)) is defined and contained in Q . Clearly H is a first integral of system

(1.1) on U if and only if XH:P%—Z—I—Q%—ZEO on ) .

1.5.1 Integrating factors

Definition : 21 /7] Let Q be an open subset of R* and let R : Q@ — R be an analytic
function which is not identically zero on 2. The function R is an integrating factor of the

R-polynomial system (1.1) if onefactors of the following three equivalent conditions holds

1. O(RP) __ _8(RQ)'

ox dy

2. div(RP, RQ) = 0.
3. XR = —Rdiv(P,Q).

Definition : 22 /7] The first integral H associated to the integrating factor R is given by
H(z,y) = [ Riw,y)P(@, y)dy + hz). (1.10)
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where h is chosen such that %—I; = —RQ Then

. OH . OH

In (1.10) we suppose that the domain of integration Q is well adapted to the specific
expression. Conversely, given a first integral H of system (1.9) we always can find an

integrating factor R for which (1.1) holds.

Proposition: 1 [712] If the R-polynomial system (8.1) has two integrating factors Ry and
Ry on the open subset Q of R?, then in the open set Q\ {Ry = 0} the function Ry/Ry is a

first integral, provided Ry/Rs is non-constant.

1.5.2 Exponential factors

Definition : 23 [/] Let g, h € C be relatively prime polynomials. The function F = e9/"
is an exponential factor of system (1.1) if XF/F = L € Clx,y|. In this case, L is called
the cofactor of F. It has degree at most m — 1. The expression which defines L is often

written as
Ded/h Ded/h
P +Q

= Led/h, 1.12
ox dy ¢ ( )

Remark: 9 [/] An exponential factor appears when an invariant algebraic curve has a
geometric multiplicity greater than one. The exponential factors play the same role as
invariant algebraic curves to obtain a first integral for the polynomial system. For more

details on exponential factors than the ones given in this section .

1.5.3 Inverse integrating factors

The inverse integrating factor is an important tool in the study of the existence and non-

existence of limit cycles.
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Definition : 24 [26] A non-zero function V : Q@ — R is an inverse integrating factor

of the system (1.1) on an open Q C R? if V € C1(Q),V # 0 on Q which satisfies the

following equation
ov ov oP 0Q
P— — ===+ ==V 1.13
8x+Q8y <8x+8x> (1.13)
Theorem: 5 [15] Let V an inverse integrating factor (1.1) on an open Q € R?

1. the function % on Q\V =0 is an inverse integrating factor of system (1.1) In ad-

dition, the function
_ [ Plzy) Qlz,y) 0 [Pxy)
Iay) = _/ V(:c,y)dy +/ <V(a:,y) o / V(x,y)dy> 4z,

is a first integral of the system (1.1) .

2. if the system (1.1) has a first integral I, then the function

P Q
Vi(z,y) = — o1 — ol
oy dy

is an integrating factor of system (1.1).

1.5.4 Darboux first integral

The Darboux first integral is a significant class of first integrals exponential factors and

the algebraic invariant curve can be used to define these functions.

Definition : 25 [§] x = (P, Q) of degree n is a polynomial planar complex vector field
that admits p irreducible invariant algebraic curves f; = 0 with cofactors. K; for

t=1,..., P and q exponential factor exp (%) with cofactors L; for j =1,....,q so :

1. There exists \i,pu; € C not all zero such that Y7_y NG + Y5, Ly = 0 if the
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function

fl...fﬁp <exp (}g;))m <exp (ilq]))m] ) (1.14)

is a first integral of the vector field X .

2. it exists \;, p1; € C not all zero such that Y5_y K+ Y1_, ;L = —div(P, Q) if the

fanction (1.14) is a first integral of the vector field X .

Definition : 26 [5] The Darboux function is the name given to the function (1.1/). We

say that the polynomial system (1.1) has a Darboux first integral if its first integral takes

the form (1.14).

Definition : 27 [20] A Liouwville function is a function that can be expressed by quadra-
tures of elementary functions. The following theorem gives a relationship between the first

integral and the inverse integrating factor.

Theorem: 6 [17] If a polynomial system has a Liouville first integral, then it has an

inverse Darboux integrating factor.
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CHAPTER 2

ON THE THEORIE OF LIMIT CYCLES

2.1 Introduction

The existence of limit cycles was first detected by Poincaré en 1882, these cycles are
characterized by their stability and are crucial for simulating the behavior of numerous
oscillatory systems found in real life. Neighboring trajectories are drawn to a stable or
attractive limit cycle as time approaches infinity. On the other hand, when time gets
closer to negative infinity, an unstable limit cycle repels nearby trajectories. Semi-stable
limit cycles behave in both repellent and appealing ways. Trajectories’ stability and the
existence of nearby trajectories that spiral toward or away from the limit cycle are among
the properties of trajectories that are analyzed in the study of limit cycles. By forecasting
the existence or absence of these periodic orbits, the Poincaré-Bendixson theorem is an
important tool in determining the existence of limit cycles in two-dimensional nonlinear
dynamical systems. In this chapter, we are particularly interested in the study of limit
cycles. We will begin with the qualitative study of limit cycles. Then, we present the

main results on existence and non-existence.
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Definition : 28 [15] A limit cycle of system (1.1) is an isolated periodic solution in the

set of all the periodic solutions.

Example: 8 [77] Either the system

)

(2.1)
y=x+x(l—2%—19°%).
bt ] R R R R R L LT LT,
o nnagagy
i et R 1
Figure 2.1: The phase portait of system (2.1)[30].
Example: 9 [7] Either the system
i = —2x —y— 2x(2? + y?),
(2.2)
y=a+2— 2@ +y7),
In polar coordinates x = 1 cos(0) and y = rsin(f), with r > 0, it becomes :
7 =2r(1—r?),
(2.3)
0=1,

Hence

r=0=r==1 or =0
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Since v > 0, only the positive root r = 1 is accepted. So for r = 1 we have the periodic
solution (x(t),y(t)) = (cos(t 4+ 6y),sin(t + 6y)), with 6(0) = Oy. In the phase plane there is

a single limit cycle whose equation x> + y? = 1 and amplitude r = 1.

i
e

vteviviy

Figure 2.2: The phase portait of system (2.2)[36].

Definition : 29 [25] An algebraic limit cycle is a limit cycle which is contained in the

zeroes set of an invariant algebraic curve.

Theorem: 7 [70] Let f € R|x,y| i.e. fis a polynomial in the variables x and y. The
algebraic curve f(x,y) = 0 is an invariant algebraic curve of the polynomial system of

differential equations (1.1) if for some polynomial K € R [x,y], we have

O L 0% _ gy, (2.4)

P% oy

The polynomial K is called the cofactor of the invariant algebraic curve f = 0.
Example: 10 [75] Let the system be :

b o=z@? 4y —1) —yl@®+y? + 1),

g =y@@®+y*—1)+z@@®+y>+ 1),

this system admits a single algebraic limit cycle of equation :
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(2.6)

et e S S S TR NN RY

e e RN R X AN

— Yy + yZ)a
—yx +4?).

) (*
)(@

— X

+

Y
y—(y+o

xz

Figure 2.3: System limit cycle (2.5)[30].

Example: 11 [0] The differential polynomial system of degree 3
T
Y

has a unique non—algebraic limit cycle

(2.2) [36].

24

Figure 2.4: System limit cycle



2.2 The non existence and existence of limit cycles

2.2.1 The non existence of the limit cycle

Theorem: 8 [/0] (Bendizson). If the divergence OP/0x + 0Q /0y of system (1.1) has
constant sign in a simply connected region U, and is not identically zero on any subregion
of U, then system (1.1) does not possess any limit cycle (in fact a closed trajectory) which

lies entirely in U .

Proposition: 2 [21] Let (P, Q) be a C* vector field defined in the open subset U of R?
Let V = V(z,y) be a C' solution of the linear partial differential equation (1.12). Let
> = (z,y) €U :V(x,y) =0 . If the divergence {OP/0x + 0Q/0y} of system (1.1) has
constant sign in the simply connected domain of definition of V\'>_ hen any limit cycle
(in fact a closed trajectory) which lies entirely in the simply connected domain of definition

of V must be contained in Y.
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Proposition: 3 [21] In the interior D of any closed trajectory of system (1.1) of a simply

connected region we have

//D g{;—i_?ﬂi dxdy = 0.

Example: 12 we give the following example :

& = dady? — 2By,
we have
98 % = 122%y? — baty* + Saly* + 622y?,
= 1822y? > 0.

then there can therefore be no limit cycle in R?

\\S

\ ‘\ ‘\\,\\3\\‘;"
N
VA"

\Y
/

N
NN

NN

T\\\ N\
A

Figure 2.5: Phase portrait of the system 2.9[30].

. . . . . . dP
Theorem: 9 [2/](Bendizon criterion) Let D be a related domain of R*. If div(4-

(2.7)

(2.9)

+92)

is non-zero and of constant sign on D, then the differential system (1.1) does not admit

an entirely contained periodic solution in D.
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Example: 13 [72] Consider the system

& =a2’+y,
(2.10)
y=1vy— .

fl—i + % =322+ 1> 0 at any point of R?, there can therefore be no limit cycle contained

in R2.

e Y
[N L W
S N v N N N NN
SN N N N NN
Mo N NN

O
R R N =P

RNNRN N NN
NN NN NN s ..

v
<
—————— e v & |
'

Figure 2.6: Phase portrait of the system 2.10[36].

Theorem: 10 [/(] (Bendizson-Dulac). If there exists a continuously differentiable func-
tion B(z, y) in a simply connected region U such that O(BP)/0x+0(BQ)/dy has constant
sign and is not identically zero in any subregion, then system (1.1) does not possess any

limit cycle (in fact a closed trajectory) which lies entirely in U .

Proposition: 4 [21] Let (P, Q) be a C* vector field defined in the open subset U of R? Let
V =V(xz,y) be a C' solution of the linear partial differential equation (1.12). Let B(z, y)
a continuously differentiable function in U such that O(BP)/0x+ 0(BQ)/0y has constant
sign, then any limit cycle (in fact a closed trajectory) which lies entirely in the simply

connected domain of definition of V must be contained iny, = {(z,y) € U : V(z,y) = 0}.
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Example: 14 [72]Consider the system

t =z(3—z—3y), 2.11)

y =yR2—y-—3u).
Either the domain D = {(z,y) € R*/x > 0 and y > 0}
We have % + % =5 — 5y — dx the quantity % + % cancels and changes sign in D. And
the Bendizon criterion does not allow to conclude the non-existence of a closed orbit in D

Let be the function ¥(x,y) = é so D) | d¥Q)

_1_ 1
dx dy Yy T

So, for everything (x,y) € D the quantity % + d(:ff) is negative and it can be concluded

that the system does not admit a limiting cycle in the domain D.

Figure 2.7: Phase portrait of the system 2.11[15].

Theorem: 11 [21] (Cherkas). The vecteur field X (x,y) defined in the in the open subset
U of R? Suppose that in a simply connected domain U C R2?, there ewists a function

U(z,y) f class C' and a number k > 0 such that

EVdivX + X¥ > 0,

then the domain U contains no limit cycles of system (1.1).
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Corollaire: 1 (Critical-point) A closed trajectory has a critical point in its interior. If
we turn this statement around, we see that it is really a criterion for non-existence: it
says that if a region R is simply-connected (i.e., without holes) and has no critical points,
then it cannot contain any limit cycles. For if it did, the Critical-point Criterion says
there would be a critical point inside the limit cycle, and this point would also lie in R

since R has no holes.

2.2.2 The existences of limit cycles

Theorem: 12 [19] (first criterion). Let (P, Q) be a C' wvector field defined in the open
subset U of R? | (u(t),v(t) a periodic solution of (P, Q) of period T,R:U — R a C!
map such that [ R(u(t),v(t))dt #0 and V = V(z,y) a C* solution of the linear partial

differential equation (1.12). Then the closed trajectory

y = ((u(t),v(t)) € Ut € [0,T7),

is contained in

S ={(z,y) € U:V(x,y) =0}.

and 7 s not contained in a period annulus of (P, Q). Moreover, if the vector field

(P, Q) is analytic, then v is a limit cycle.

Remark: 10 [19] We note that theorem 12 shows that when we know explicitly the tra-
jectories V(z,y) = 0 of a vector field (P, Q) through equation (1.12) for a given R,
we additionally have information on the periodic solutions of (P, @), because if vy is a
closed trajectory it must satisfy that either ~y is contained in (x,y) € U : V(x,y) =0, or

[, Rdt = 0.
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2.2.3 The Poincare-Bendixson Theorem

[39] Suppose R is the finite region of the plane lying between two simple closed curves D

and Dy, and Fis the velocity vector field for the system (1.1). If
1. at each point of D; and D,, the field Fpoints toward the interior of R .
2. R contains no critical points.

then the system (1.1) has a closed trajectory lying inside R.

Example: 15 [77] Consider the system

& =—y+a(l—a®—y?),
(2.12)

y=x+y(l—a—y?),

to solve this system, we pose :

T =1rcosb,

y =rsinf.

Then
i =7 cosf — rfsiné,
§ = 7sin @ + r cos 6.
Thus
cosf — rfsin@ = —rsin @ + rcos O(1 — r?),
7sin@ + 76 cos = rcos @ + rsin O(1 — r?),

(2.13)
7= —rsinf +rcos(1 —r?) +rcosf +rsinf(1 —r?),

r=r(l—r?.
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And
r(1 —7r?)sinf + rfcos® = rcosf + rr(1 —r?)sinf,

O(rcosf) =rcosf +rr(1 —r*)sinf —r(1 —r?)siné,

(2.14)
) __ rcosf
0 = (rcosf)’
0=1.

had a limit cycle T represented by v(t) = (cost,sint). The Poincaré map for I' can be

found by solving this system written in polar coordinates.

with r(0) = 19 and 6(0) = 0y. The first equation can be solved either as a separable

differential equation or as a Bernoulli equation. The solution is given by

r(tro) = |14 (:2 1) ] 7 (2.15)

and

0(t,0p) =t + by,

If Y is the ray 0 = Oy through the origin, then Y is perpendicular to I' and the trajectory
through the point (rg, 69) € > N Latt =0 intersects the ray 0 = 0y again at t = 2.

It follows that the Poincare map is given by

P(rg) = [1 - ( —~ 1) eﬂ _1/2, (2.16)

Clearly P(1) =1 corresponding to the cycle I' and we see that

1 ~1/2
P/(To) = e 73 {1 + ( - 1) 34#} ) (2.17)

72
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and that P'(1) = e™™ < 1.

Figure 2.8: Phase portrait of the system 2.14[30].

Example: 16 [72] Let be the following dynamic system :

i =y+(1—2a?—yHz, (218)
g =-—x+(1—2%—y?)y.
The function V(x,y) = %(mQ +y?) is a Lyaponov function for this System.
V =uxx+ yy,
= (2? + ) (1 —2® = ).
If we consider the Domain D defined by the circle of radius %, and the circle of radius 2,

D:{ (z,y)\1 <a?+y? <4 }7 (2.19)

we get an attractive domain for our system. The domain of therefore, we can conclude
from the corollary of the Poincare-Bendixon theorem that there is at least one limit cycle

completely contained in D. We consider the domain Dy defined by

D, = { (z,y)\2? +9? <2 } : (2.20)
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the domain D contains a single unstable equilibrium point (the origin), so we can conclude

from the Poincare-Bendizon theorems that there exists at least one limit cycle.

Figure 2.9: The phase portait of system 2.18[30] .

Theorem: 13 [/2] Let (P, Q) be a C' vector field defined in the open subset U of R%.
Let V (z, y) be an inverse integrating factor If vy is a limit cycle of the vector field (P, Q)

in the domain of definition of V, then «y is contained in Y = {(z,y) € U : V(x,y) = 0}.

2.3 Stability of limit cycles

Theorem: 14 [12] Let E be an open subset of R* and suppose that f € C*(E). Let ~(t)
be a periodic solution of (1.1) of period T. Then the derivative of the Poincare map P(s)
along a straight line 3" normal to T = x € R*|z = v(t) — v(0),0 <t < T at x = 0 is given
by

P0) = eap [ V. f(0))dr,

Corollaire: 2 [2/] Under the hypotheses of Theorem 1/, the periodic solution ~(t) is a

stable limit cycle if

[ V.56 <o,
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and it is an unstable limit cycle if

ATij@»ﬁ>o.

It may be a stable, unstable or semi-stable limit cycle or it may belong to a continuous

band of cycles if this quantity is zero.

s

Unstable limite cycle. half stable limite cycle.

Stable limite cycle.

Figure 2.10: Classification of limit cycles [13].

Example: 17

= —y+a(l— o — ),

(2.21)
y=a+y(l—2*—y?),

we have y(t) = (cost, sint)T, V. f(x,y) = 2 — 42* — 4y* and
2z 2z
/ V.f(v(t))dt = / (2 — 4cos’t — 4sin’t)dt = —4.
0 0
Thus, with s =1 — 1, it follows from Theorem 1/ that
p/(O) — 6_47T,

which agrees with the result found in the system 2.21 by direct computation. Since

P'(0) < 1, the cycle v(t) is a stable limit cycle in this example.
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Figure 2.11: stable limit cycle [30] .

Definition : 30 [2/] Let P(s) be the Poincare map for a cycle I' of a planar analytic

system (1.1)and let

be the displacement function. Then if
d0)=d0)=---=d*V0)=0 and d®(0) #0,

I' is called a multiple limit cycle of multiplicity k. If k = 1 then I is called a simple limit

cycle. We note that T = {x € R?|x = ~(t),0 <t < T} is a simple limit cycle of (1.1) if

[ V.60,

It can be shown that if k is even then I' is a semi-stable limit cycle and if k is odd then T’

is a stable limit cycle if d®(0) < 0 and T is an unstable limit cycle if d®(0) >0 .
Example: 18 [75]

i =3x —y— 3z(z* + y?),

§=a+3y—3y(® + ),
the periodic solution is a stable limit cycle
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g

- N
%////fm

Figure 2.12: stable limit cycle [30] .

Example: 19

&= —bx —y+ da(a? + y?),
§=x =5y +5y(a® +y?),

the periodic solution is a unstable limit cycle

!

§Qa..z::;if‘f@%

'—(_‘:,_, ,,,,,,,,,,,,,,,, o
W ..................... e
?/5/ ,,,,,,,,,

%‘/‘/?21.‘51221 \\,§

%/ \i\\x\@

Figure 2.13: unstable limit cycle[36].

Example: 20 [//] The system

(2.22)
y=x+y(l—az*—y?),

|<>
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has a limit cycle I' represented by

I'(#) = (cosb,sinh),

because we have

. orP 0
6(P.Q) =5 + 58 =n(2— 42— 1P)

where P = —y +nz(l — 2% —y?) and Q = x4+ ny(1 — 2* — 3?),
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and

T T
/ dz’v(F(Q))dt:/ div(cos 0, sin 0) dt,

0 0
2T
- / (4(cos 0) + 4(sin 0)? — 2) db,
0

2

=1 2d6.
0

So the cycle I'(0) = (cos(0),sin(0)) is an unstable limit cycle if n > 0 and is a stable limit

cycle if n > 0.

Figure 2.14: limit cyle of system ( 2.22) [30] .

2.4 The first return map

Probably the most basic tool for studying the stability of periodic orbits is the Poincare
map or first return map, defined by Henri Poincare in 1881. The idea of the Poincare map
is quite simple: If ' is a periodic orbit of system (1.1), through the point (x¢, o) and X
is a hyperplane perpendicular to I' at (g, o), then for any point (z,y) in ¥ sufficiently
near (g, yo), the solution of (1.1) through (x,y) at t = 0, ®;(z,y) will cross 3 again at a
point I1(z,y) near (xq,yo). The mapping (z,y) — II(z,y) is called the Poincare map.
The next theorem establishes the existence and continuity of the Poincare map II(x, y)

and of its first derivative DII(z,y).
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Theorem: 15 [2/] Let E be an open subset of R? and let (P,Q) € CY(E). Suppose that

Oy (x0,v0) 1s a periodic solution of (1.1) of period T' and that the cycle.

I'={(z,y) € R?*| (2,y) = ®s(z0,%),0 <t < T},

4
/

f

P(x) [ i <" ‘
* +‘.!‘U ' J

0. -

Figure 2.15: The poincare map [2].

is contained in E. Let Y be the hyperplane orthogonal to T' at (xo,yo), i-e.; let

2 ={(z,y) € R?| (z — z0,y — %) - (P(20,0), Q(0, %)) = O}.

Then there is a 0 > 0 and a unique function 7(x,y), defined and continuously differentiable

for (z,y) € Ns(zo,v0), such that

T(:COJ yO) = T7

and

cI)T(:c,y) (x,y) € 27
for all (x,y) € Ns(xo, o).

Definition : 31 [77] Let T, X, §, and 7(x,y) be defined as in Theorem (15). Then for
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(x,y) € Ns(xo,y0) N X, the function

H(l‘, y) = cI)T(w,y) (ZE, y>7

is called the Poincare map for T' at (xq, o).

The following theorem gives the formula of 115(0,0).

Example: 21 [2/] Let the following system of equations:

&= —y+a(d-2" -y,
(1.12)

v=x+y(4—2*—1y?).

Note that (0,0) is the only critical point of (1.12). In polar coordinates, the system

(1.12) becomes:

(1.13)

The differential system (1.13) is equivalent to the following Bernoulli differential equa-

tion
dr 3

@:47’—7’.

The general solution is

D=

r(0) = Lll + 06_80} )

A solution of (1.13) satisfying the initial condition r(0) = rq is given by

r(0,7r0) = [411 + [:{2) - ﬂ 6_89‘| _

=
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For 0 = 2, it follows that the Poincaré first return map is given by:

M(ro) = r(2r, 7o) = [411 + [12 _ 11 e—lﬂ N

i A A 5
//'7/’/// AAS

00

Figure 2.16: stable limit cycle [30] .

Definition : 32 [2/] A fized point of the application 11 is a point (x,y) such that

(z,y) = (x,y). It corresponds to a periodic orbit of the system (1.1).

2.5 Stability of poincare map

Theorem: 16 [77] Let T'(t) be a periodic solution of (1.1) of period T. Then the derivative
of the Poincare map 11(s) along a straight line > normal to T = {(z,y) € R? : (z,y) =

(I)t(xﬂvyO)aO <t< T} at ('Tay) = (070) is given by

() = exp [ V- (PT(0), QT(0) .

Corollaire: 3 [/8] Under the hypotheses of (32), the periodic solution I'(t) is a stable
limit cycle if

[V (@), Q) i <o
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and it is an unstable limit cycle if
T
| V(). Q) de > o
Example: 22 [2/] The system (1.12) has a limit cycle T'y represented by
['1(0) = (2cos6,2sinb),

we have V - (P(z,y), Q(x,y)) = 8 — 42 — 4y and

PV PO QOO) B = 78— A(2eos0) + Q@)

= —167 < 0.

Then, the cycle 'y is a stable limit cycle.

2.6 Hyperbolic limit cycle

Definition : 33 [77] A limit cycle T = (x(t),y(t)),t € [0,T] is a T-periodic solution
isolated with respect to all other possible periodic solutions of the system.

A T-periodic solution I' is a hyperbolic limit cycle if foT div(T")dt is different from zero.

Example: 23 [77] The system

= —y+a(l—a? - y2),
(2.24)

y=x+y(l—a*—y?),
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coordinates the previous system becomes

' (2.25)
0=1,
polar coordinates
x =rcosb,
(2.26)
y =rsind,
s0
r=0&r=0o0r r=1,
for
7(t) = (cos(t),sin(t)),
ST div(y(D)dt = 57 (92 + 52 (cos(t), sin(t)) dt,
2 2 .2 2 .9
= 3" (1 = 3cos*(t) —sin®(t)) + (1 — cos*(t) — 3sin(t))dt,
(2.27)

— [2™(1 — 4cos®(t) — 4sin(t))dt,
= [J7 —2dt = 41 # 0.

So, system (1.12) has a hyperbolic limit cycle v(t) = (cos(t),sin(t)), which is stable.

Figure 2.17: Hyperbolic limit cycle stable [30].
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CHAPTER 3

ON THE EXPLICIT NON-ALGABRAIC LIMIT CYCLE OF

CLASS OF PLANAR POLYNOMIAL DIFFERENTTAL

SYSTEM

3.1 Introduction

In this chapter, we present studies conducted by A. Gasull and all in the article entitled
"Explicit Non-Algebraic Limit Cycles for Polynomial Systems." published by :ELSEVIER
3 January 2006, They considered a system of the form:
&= Py(x,y) + xRpn(x,y), (3.1)
= @nl(,y) +yRm(z,y),
where P, (z,v), Qn(x,y), and R,,(z,y) are homogeneous polynomials of degrees n, n,
and m respectively, with n < m.
They proved that this system has at most one limit cycle, and when it exists, it can

be explicitly found and expressed in terms of quadratures. They studied a particular case
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where n = 3 and m = 4.
They demonstrate that this quintic polynomial system has an explicit limit cycle which
is not algebraic. To their knowledge, there are no such examples in the existing literature.
The method they introduce to prove that this limit cycle is not algebraic can also
be used to detect algebraic solutions for other families of polynomial vector fields or to
demonstrate the absence of such solutions.

A function F(x,y) is an algebraic solution of a real polynomial system (i,y) =

(X(z,y),Y (z,y)) if:

X(l’, y) + M

Theorem: 17 The planar differential system

i =—(x—y)(a® —zy +y*) + z(22* + 22%y* + y*), 53

y=—(z+y)(22% — zy + 2y%) + y(22* + 22%y* + y*),

has exactly one limit cycle which is hyperbolic and non-algebraic. In polar coordinates,

this limit cycle is

where (0) = 2 [0 s gs gnd

0 2+tan?s

372505 ~ 1.19903,

9eim—6v2r /2” cost(s) +1
a =
0

1 — edm—6v2r cos?(s) + 1
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3.2 Systems with explicit limit cycles

Theorem: 18 System (3.1) has at most one limit cycle, when it exists, it is hyperbolic

and in polar coordinates it can be written as

(ol L))

A = exp ( i Mds) and B = /02” hgs) exp (— ’ (“’)dw> ds.

o g(s) g9(s) 0 g(w)

Lemma: 1 The system (5.1). In polar coordinates, it can be written as

7= f(0)r™ + h(0)r™tt

6= g(0)rm,
where
f(0) = cos 0P, (cosf,sinf) + sin 0Q),,(cos 0, sin b)),
g(0) = cos 0Q,,(cos 0, sin @) — sin 0 P, (cos 0, sin 0),
h(0) = R,,(cosf,sinb).
proof: 1
r2 = g2 442,
x =rcosb,
Yy = 1rsiné,
tanf = £,
y
i = Jzx Or + Az 00

~ or ot a0 dt >

_ Oyor , O0yo9
Y=%a t 0ot
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(3.8)



Lemma: 2 System (3.1) has F(x,y) = yPu.(z,y) — zQn.(x,y) as an algebraic solution
with cofactor (n + 1)R,, + div(P,, Q,). Notice that it is formed by a product of (complex

or real) invariant straight lines through the origin.

proof: 2 By Using the homogeneity of P, and Q),,, we know from Euler’s formula that

0P, 9P, 0Qn ,  0Qn
nP,(z,y) =z 5 Y ay and nQn(z,y) =z gi +y 3% :
Thus,
(%52 = Qu = 2%) (Put aR) + (Put y%5 = 082 ) (Qu + yRo),
Pnaap;" —|— zyRm% - QnPn - l’Ran xPTLaann - xaan‘n ﬂme _I_ PnQn

+yR,, P, + yap" Qn + yap" YR, aQ” o — xyag;“ Ry,

- R, (xyaézn — 20, _xQBQn +yP, +yzapn xya(%”)

+yPn8£L _ann _l'aa%npn“_PnQn_‘_y 3"Qn _l.aQan

_ Rm( (2 +yapn) — 2Q, — 2?9 4 yP, +y26Pn myag/n) (3.9)
+ (Poy G — P + y 5 Qu — 2% Qu)

= Ry (ynP, — 2nQ,, — 2Q, + yPy) + %2 (yp, — 2Q,) +
+Qn (w92 +yt ) — Py (2% +y %),

(14 1) R F + (%2 + %92) F + nPyQp — nPyQn,

(14 n) Ry + (952 + %82)) F.

2 (yPy + —2Qy)

Lemma: 3 Let F(x,y) be an algebraic solution of degree { of the system

&= P(z,y) + xR, (z,y), 3.10)
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Where P(z,y) and Q(z,y) are polynomials of degree less than or equal to n and R, (x,y)
is a homogeneous polynomial of degree m, with n < m. Thus the homogeneous part of

mazximum degree of its cofactor is dR,(x,y).
proof: 3 Since F' is an algebraic solution of system (5.1), we know that

oF oF
67:<P +zR,,) + a—y(@ +yRy) = KF,

where K is the cofactor of F. Denote by F,,(x,y) and by K,,(z,y) the homogeneous parts
of mazimum degree of F(z,y) and K (z,vy), respectively. By using the homogeneity of F,,,

we know, from Euler’s formula, that

OF,, OF,,
F = —_— Z—m
e (30) o (%)

By equating the higher degree terms in the above equation, we obtain

8FmRm _ ameRm N 0F,,
ox

—uyR,, = K, F,,.
ox oy Y

Thus, Ky (z,y) = Ry(x,y) as we wanted to prove.
The next lemma, which has an elementary proof, collects some easy remarks on the

structure of the cofactors.

Lemma: 4 Consider system (3.1) and define

V(w,y) = (" "'G(0,a) = 1) (yPul,y) — 2Qu(x,)), (3.11)

where G(0, po) is the function given in (3.5) and py = a is the value for which this

function is 2m-periodic. Then, whenever it is defined, 1/V (x,y) is an integrating factor
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of the system and we call V(x,y) an inverse integrating factor.

proof: 4 We use the following formula: let Fy and Fy be two solutions of

(,9) = (X(z,y),Y(x,y)) with cofactors Ky and K;, respectively. Thus,

1 1
W X,)Y)—— = (X, Y) — (K + Ks)).
d“)( ? )Fl F2 Fl F2 (dZ'U( Y ) ( 1 + 2))

We remark that the above formula, taking a denominator of the form ILF ", for some real

or complex constants «y;, is indeed the key point of the Darboux theory of integrability, see
[28]. Take Fy(z,y) = yP,(z,y) — Q. (x,y) and Fy(z,y) = r" """ G(a,a) — 1. By using

Lemma 2 and Remark 77?7, we know that their associated cofactors are

Ki(z,y) = (n+ 1) R(z,y) + div(Pu(z,y), Qu(z,y)),

and

KQ(x7y) - (m —n+ 1)Rm(l', y)u
respectively. On the other hand, taking the vector field associated with system (3.1) we
get

oR,,

OR,,
div(X,Y) = div(P,, Qn) + 2R, + T + yTy = div(P,, Qn) + (2+m)R,,,

where we have used again Fuler’s formula. Collecting all the above results we get

div (%) 0.

Remark: 11 (i) When we apply the above lemma to systems (3.3) and (1) we get both

non-algebraic and algebraic inverse integrating factors.
(ii) In [20] it is proved that when 1/V (x,y) is an integrating factor of & = X (x,y) and
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y = Y(x,y) and V(x,y) is defined in the whole plane, all the limit cycles of the
system are included in the curve V(z,y) = 0. This is the case of system (5.1), the

limit cycle, whenever it exists, is given by the expression ,

Fy(z,y) =r™""1G(6,a) — 1 = 0.

(1ii) The equality div (%) = 0 also holds when instead of
Fy(z,y) = r™ "M G(0, po)|py=a — 1 we take a different value of po, but in this case

F; is indeed a multivalued function and the result of [20] cannot be applied.

3.3 Algebraic limit cycles of subfamily differential

system

The existence of limit cycles for a subfamily of system (3.1) has been studied in [16]. Here

we prove that the limit cycle found there is algebraic .

Proposition: 5 Consider the system

t=—y+x(a+ Rn(z,y)),
(3.12)

y=x+y(a+ Rn(z,y)),

where a is a real parameter and R,,(x,y) is a homogeneous polynomial of degree m. Then,
it has only two algebraic invariant curves z* + y* and H(x,y) = Gun(x,y) — 1, where
G(0) = G,u(cosb,sinf) satisfies G' + maG + mR,,(cos@,sin @) = 0. Furthermore, when
the limit cycle exists, m is even and H(x,y) contains a real oval which is the limit cycle

of the system.

proof: 5 From Lemma 2 we can see that x* + y* is an algebraic solution with cofactor

K(z,y) =2a+ 2R, (x,y). Now, we study other possible algebraic solutions.
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Write the Fourier expansion of R,,:

R, (cosf,sinf) = Z cre®® where ¢, = c_;, € C, and ¢, = 0 when k #m  (mod 2),

k=—m

Note that the solution of (3.12) starting atr = ro when @ = 0 can be written asr = r(0,19).

Following the steps of the proof of Theorem 2.1 we obtain that

m

-m -m Ck —mab .
Mt =rgm4+m Yy ———e + Gn(cosf,sin6),
o ki +ma
or
_ “ Ck —mab .
o+ m —— e MY 4+ G, (reosf, rsinf) =1,
0 k:z_:m ki +ma ( )

where G, (z,y) is the homogeneous polynomial of degree m defined by its Fourier expansion

as

m

: Ck kif
Gp(cosf,sinf) :=—m > ————e"
(cosf,sinf) m 2> hi ¢

and G(0) = G, (cos0,sin ) satisfies G' + maG + mR,,(cosf,sinf) = 0.
By using the above expression we get that the only algebraic solution of system (5.12)

is the one that satisfies

m

_ Ck
m 720
"o +mkzz_mki+ma

Moreover, it is easy to check that the cofactor of this algebraic solution,
H(z,y) = Gn(z,y) — 1, is K(z,y) = mR,,(x,y), see also the proof of Lemma /j. Notice
that a necessary and sufficient condition for the existence of a real algebraic solution is

that

m Ck
—— < 0.
Z ki + ma

k=—m

Finally, the limit cycle exists when G, (cosf,sinf) > 0 for 6 € [0,2x]. This can happen
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only when m is even, see also [10].

3.4 Applications

Example: 24 Consider the system

v = —(z —y)(2? — zy + y?) + z(22* + 222y* + y*),
(3.13)

Y = —(z+y)(22% — zy + 2¢?) + y(22* + 22%y* + y*).

and in polar coordinates, it can be written as:

cosf — Orsinf = —(rcosf — rsin@)(r? — r2sinf),

+7r cos 0(2r* cos® 0 + 2r* cos? 0 sin? 6 + rt sin? 6), (3.14)
3.14

sin@ + 0rcos = —(rcosf — rsin6)(2r2 — r2sin ),

+7 cos 0(2r* cos* 6 + 2r* cos? 0 sin? 0 + r* sin* 6),

7 = —(rcos?d —rcosfsinf)(r* — r?cosfsinf),
+7rcos? 0(2rt cos* 0 + 21 cos® sin? 6 + rt sint 0), (3.15)
3.15

—(rcos@sin @ + rsin?0)(2r* — r? cos fsin 6),

+rsin? 6(2rt cos? 6 + 2rt cos® 6 sin? 0 + 7 sin' 6),

i =15(2cos* § 4 2 cos? §sin? § + sin* 0) + r3(— cos? § — 2sin? 6),
= 75 [cos? 0(2 cos® O + sin? 0) + sin?0(cos? O + sin? 0)] + r3(— cos® § — 2sin?§),
= 75 [cos? O(1 + cos? 0) + sin? 0] + r® [— cos? 6 — 2(1 + cos? 0)],

=r%(cos? @ + 1) + r3(cos® 6 — 2).
(3.16)
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icosf — Orsinf = —(rcosf — rsinf)(r2 — r2sin f cos ),
+1 cos 0(2r* cos® 6 + 2r* cos® 0 sin? § + rtsin? 6),
= r°cosf(cos* O + 1) — rcos + r® cos? fsin 6 + r3 sin @ — 73 cos § sin? 0,
—frsin 6 =75 cosf(cos* @ + 1) — r® cosO(cos? @ + 1) — 13 cos O(cos? 6 — 2),
—r3cos 0 + 13 cos? Osin 6 + 3 sin § — 13 cos 0 sin? 6,
= 73[(1 — cos @ sin 0)(— cos O + sin f) — cos f(—sin? 0 — 1)],
= 72(—cos f + cos? @ sin @ + sin @ — cos O sin? @ + cos @ sin® 6 + cos ),

0 = —r%(cos? 0 + 1).
(3.17)

Eliminating the time betwen the variables r and 6 we obtain the differential equation

—dr p_ db

T dt T odt?
dr __ (cos®0+1)r®  (cos®H—2)r3 (318)
dt = —(cos2?6+1)r2 (cos2 0+1)r2>

_ (cos*6+1) 3 (cos? —2)

(cos? 6+1) r (cos? 6+1) T

we introduce the change of variable r = % obtainis .

1 dp -2
P=0 0 @ =~ 3
dp __ dpdr __ (cos®0+1) 3-2 (cos?20—-2) 2
CTS - djﬁ:@ " (cos? 9+1)7’ 3 (cos? 9_,_1)7170737 (319)

we obtain the linear equation

4 1 20 -2
dp 2(cos. 0+1) _(cos”d ; ‘. (3.20)

dd " (cos26+1) * (cos?6 +1
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Notice that system (3.13) has a periodic orbit if and only if Eq. (3.20) has a strictly

positive 271 periodic solution. The solution satisfying that p = py > 0 when 6 = 0 is:

6 4 1 6
) _ —30(0)+20 2/ cos(s) + 3%(s)~2s g _ [.%(00) _/ —e(5) 75| .
p(0; po) = e <p0+ ) co?(s) £ 1° s| >0, [e ] o= | p(s)e " ds

(3.21)
Hence
1+ cos?s

= 3.22
#(s) 1+ cos?s’ (3.22)
(s) 5 s —cos?z (3.23)

s) = — . )

14 0o 1+ cos?z

The initial condition of the limit cycle is given by the equation p(27) = p(0) = pg.

Hence,
27 cos? s—2
% 62<f0 cos?2 s+1d5)
p() - (f27" cos s— 2d9)
l1—e cos2 s+1
2 2
27 cos? s+1 7(.[07r EZ: ;jds)
0 cos?6+1°
27 cos® s—2
2f cos2s+1ds<2f 002 +1d8<0
Thus

2m cos s— 2

0< e2(f coZar1 %) < 1,

27 cos? s—2
62(f0 cos2 s+ld8)

27 cos? s—2
1 — € (f cos? s+1ds)

Po = >07

on the other side

us 4 T cos® s ™
[T LTy [ (s > 0,
0 0

cos? 0 + 1
dﬂ- (2 f277 cos? s—2 ds)
7(p0) = e 0 cos?s+1 < 17
dpo
246V am cogt(s) 1 4
r = (5)=2s4s > 0. 3.24
o= 1 g6V /0 cos?(s) + 1° 8 (3.24)
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This value can be computed numerically, giving p; ~ 1.1990. The intersection of the

limit cycle with the OX™ axis is the point having r§ = \/1,0—* ~ 0.9132. Since the Poincaré
0
return map is I(py) = p(2m; po), we have IT'(py) = e@ V2™ < 1 for all py and 6 < 0.

Thus, we conclude that the limit cycle of system (3.13) is hyperbolic and unstable.

O
-
) ///

7

Figure 3.1: The phase portait of system 3.13[30].

3.5 A method for studying the existence of algebraic
solutions
Let F(z,y), K(z,y), X(z,y), and Y (z,y) be real analytic functions such that

OF(z,y) ——=Y (z,y) = K(z,y)F(z,y). (3.25)

Thus, it is clear that the set {(x,y) € R* : F(x,y) = 0} is formed by solutions of the

system

T=X(z,y),
(0) (3.26)

Y= Y(.Z‘,y).
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Fixing an analytic solution of (3.26) of the form y = ¢(z), we can consider the following

Taylor expansions in z:

F(z,z + a(z)) = Folx) + 2F(z) + 22 Fy(z) + -+ -,
K(z, 2+ a(x)) = Ko(z) + 2K, (z) + 22 Ka(z) + -+ -,
X(z, 2+ a(x)) = Xo(x) + 22X (2) + 22 Xo(x) +-- -,

Y(r.z + a(2) = Yo(a) + 2Yi(x) + 2Yalx) + -+

Notice that o/ (x) = % Then, Eq. (3.25) can be written as

i (Z (XM @) Fl(x) + (Y —ia/ () X — KR Fi(x))> =0

k=0 \:=0

The functions Fi(z) can be obtained recurrently from the above relation by solving the

linear differential equations in Fj(x), obtained by vanishing each coefficient in z*. In

particular, for £k = 0 and 1, we get

Xo(z)Fy(z) — Ko(x) Fo(x) = 0,

Xo(@)Fi(z) + (Yi(z) — o/ (2) X1 (x) — Ko(x)) Fi(z) + Xa(2) Fj(z) — Ky () Fo(z) = 0.

We obtain Fy(x) = Cyexp ( IS )[gggzg ds), where Cj is an arbitrary constant, and similarly
we could get Fi(z).

When «(z) is a polynomial (resp. rational) function and F(z,y), K(z,y), X(z,y), and
Y (x,y) are polynomials with real or complex coefficients, the linear differential equations
for each Fi(x) described in the above algorithm give us a collection of necessary conditions

for the existence of an algebraic solution F'(z,y). The conditions are that, for each k, the

functions F(z) must be polynomials (resp. rational functions). For instance, for k = 0,
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the first necessary condition is that the primitive of the rational function

must be a linear combination of logarithms of polynomials. Furthermore, the coefficients
of the logarithms have to be natural (resp. integer) numbers.

The necessary conditions obtained for the existence of algebraic solutions restrict the
possible cofactors of F'. These restrictions give the key for searching the possible algebraic
solutions of system (3.26), see Remark 13. As we will see, in our case we only need to
apply the described method for £ = 0, but we remark that in other situations, by using it
for bigger k, it can give more information about the existence or nonexistence of algebraic

solutions.

Remark: 12 Notice that the above method can only be applied when the candidate F(x,y)

to be an algebraic solution of system (3.26) does not contain the factor y — a(zx).

Remark: 13 Assume that system (5.26) is fized and it is polynomial. Notice thal Eq.
(5.25) that gives the possible set of algebraic solutions of system (3.26) is equivalent to a
set of quadratic equations where the unknowns are the coefficients of F' and the coefficients
of K. In general, it is very hard to solve this system of equations, even by using algebraic
manipulators. On the other hand, the method developed in this section imposes restrictions
on the cofactor K for the existence of F. Ideally, if K is totally known, the system to
be solved will be linear and so the problem of knowing the existence or not of algebraic
solutions of a given degree would be a much easier task. In any case, any information on

K makes the problem simpler. Another method to impose conditions on K is developed
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3.6 A non-algebraic limit cycle

This section is devoted to proving that the limit cycle of system (3.3) is not algebraic. We
will prove that the only algebraic solutions of the system are the ones given in Lemma 2.
The algebraic solution given by this lemma is y P, —2Q,, = (22> +y?)(2?+y?). Concretely,
the curves 2%+ y* = 0 and 222 + y* = 0 have the cofactors 2(2x? + 222y? + y* — 22 — 2y?)
and 2(2z* + 22%y% + y* — 2% + zy — 2y?), respectively. These two curves coincide with the
four complex lines y = +iz and y = ++v/2ix.

As we will see, the first step (k = 0) applied to each one of the four complex lines,
y = +iz and y = ++/2iz, will give enough restrictions to prove that the only algebraic
solutions of system (3.3) are the ones described above.

Assume that the differential system has a real or complex algebraic solution F' and
that it does not contain any of the given four lines as a factor. By using Lemma 4, it
is not restrictive to assume that F' is real and that its cofactor is an even function, i.e.,
K(—z,—y) = K(x,y). Since the degree of the vector field (4) is 5, we know that the
degree of K(x,y) is at most 4. By the above restrictions on K(z,y) and by using also

Lemma 3, we can write it as the real polynomial ...

K(z,y) = ago + ar® + anzy + agy® + (22" + 22%y* + y4)7

where £ is the degree of the corresponding algebraic curve F(z,y) = 0.

We apply the first step of our method, i.e., we take k = 0. By considering the cases

n(x) = +iz we obtain .

58



/K x d xj:m
T —
X(z,a(x) Xx:l:m:

Ko(z)

Xo()
ag(—1=£1)
o 4a? 41

dx,

1 .

+ 5(6020 + a1 — ap2 £ i(—ag + a1 + ap2 + ag)) log(x),
1

—+ g(—ago — a11 —+ ap2 —+ 2@25 + i(ago — a1 — Ao — CLO(])) log(2 + 21’2 + $4>,
1 )

+ 1(0@0 — a1 — apz — ago £ i(ag + ay — age — 2¢)) arctan(.zn2 +1).

By forcing F(z,n(z)) = F(x, +iz) = Fy(z) = Cyexp (f Xe(o izi dm) ,to be a polyno-

mial, with Cy an arbitrary constant, we obtain a first set of necessary conditions:

a0 — @11 — agz — agp = 0,
ago + a1 — age — 2¢ =0,

Aoy — 0.

The same computations can be done for the other pair of algebraic solutions, y =

+iv/2z, that is,

K(z,n(x)) K(x, ’L\/_{E)
/ ) /X(x :jl;\/_x)

_ [ Ko(z)
_/XO()dx

62241
1
+ § (3&20 — 6&02 — 2&00 + 3\/52@11) log($),

1
+ E ( 3@20 + 6@02 + gd) + 2@00 F 3\/52@11) log(S + 23’)2)
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As in the previous case, we obtain a second set of necessary conditions:

{all = 0, agp = O}

Collecting all the obtained equations, we get that the degree of the invariant algebraic

curve is ¢ = 0, or in other words, such a curve does not exist.

Remark: 14 if a planar system has an explicit non-algebraic solution which is in the zero
level set of a Liouvillian function then it has a Darboux integrating factor and therefore
the whole system is integrable by quadratures. Notice that this is the case for system it
has a non-algebraic Liouvillian limit cycle and it can be transformed into a Bernoulli
equation. Consequently, if we would like to have an explicit non-algebraic limit cycle for
a planar system, which is not integrable by quadratures, we should look for a limit cycle

given by a non-Liouvillian function.
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CONCLUSION

In this memory, we presented some results concerning the qualitative study of certain
classes of nonlinear planar polynomial differential systems .

A differential system needs to know whether it admits a periodic solution or not; more-
over, periodic solution, and limit cycle. The results obtained in this work are articulated
,around these questions .

First of all, in Chapter 1, we recalled some basic notions ,concerning the qualitative theory
of differential systems.

In Chapter 2, we are more particularly interested in the study of cycles limits.

We will start with the qualitative study the theorie of the limit cycles. We study the
noexistence and existant of limit cycle .We study stability of limit cycles We study hy-
perbolic limit cycles .

This chapter presents the works of A. Gasol, and all. In an article entitled "Explicit
non-algebraic limit cycles of polynomial systems,"Published by "Eelsevier" on January 3,
2006. To prove that the polynomial is planarA vector field can have an explicit limit cycle
that is not algebraic. Prove that this system has at most one limit cycle and that, when
it exists, it can be explicit. They are found and given by squaring. They provide valuable

insights into the presence of hyperbolic systems and the existence of algebraic solutions.
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They provide that.The limit cycle is not algebraic. 1
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