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Abstract

To understand the properties of matter and predict them, it’s crucial to solve the Schrodinger
equation, where the solution is a wave vector. Many theoretical methods have been explored
in this area.The most common ones are those that reduce the cost and time of calculations,
especially for complex particle systems. The rapid advancement in computer science and the
emergence of new technologies like machine learning have paved a new path towards solving
equations like this.

In this work, we propose calculating the fundamental energy of a physical system using the
Schrodinger equation with the use of deep learning and proving its efficiency in solving by
making a comparison with traditional machine learning techniques.

To apply the theoretical study, we conducted an experimental study on solving the Schrodinger
equation using CNN, CNN-LSTM, SVR, RF, and XGBoost structures with relevant datasets
for calculating the system’s fundamental energy.

The results showed that deep learning can be effective in solving the Schrodinger equation,
achieving an error of 0.0063(ev/atom) and an accuracy of 0.9807 . These findings open up new

possibilities for enhancing and developing models.

Key words: Schrodinger equation, wave vector, machine learning, fundamental energy,

Deep learning.



Résumé

Pour comprendre comment les matériaux fonctionnent et les prédire avec précision,il est
essentiel de résoudre ’équation de Schrodinger, dont la solution est un vecteur d’ondes. Dif-
férentes approches théoriques ont été explorées dans ce domaine. Les plus courantes sont celles
qui réduisent les cotits et le temps de calcul, notamment lorsqu’il s’agit de systémes de partic-
ules complexes. L’évolution rapide de l'informatique et ’émergence de nouvelles technologies
telles que 'apprentissage automatique ouvrent de nouvelles perspectives pour résoudre ce type
d’équation.

Dans ce travail, nous proposons de calculer I’énergie fondamentale d’un systéme physique en
utilisant 1’équation de Schrodinger avec I'utilisation de ’apprentissage profond et de prouver
son efficacité dans la résolution en faisant une comparaison avec les techniques traditionnelles
d’apprentissage automatique.

Pour appliquer I’étude théorique, nous avons mené une étude expérimentale sur la résolution de
I’équation de Schrodinger en utilisant les structures CNN, CNN-LSTM, SVR, RF et XGBoost
avec des ensembles de données pertinents pour calculer ’énergie fondamentale du systéme.
Les résultats ont montré que 'apprentissage profond peut étre efficace dans la résolution de
I'équation de Schrodinger, avec un erreur de 0.0063(ev/atome) et une précision de 0.9807,0u-

vrant ainsi de nouvelles perspectives pour ’amélioration et le développement des modéles.

Mots clés: Equation de Schrodinger, vecteur d’onde, apprentissage automatique, énergie

fondamentale, apprentissage profond

i
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General Introduction

The emergence of quantum mechanics was a reaction to the difficulties faced by classical
physics when it came to interpreting the behavior of objects at the atomic and molecular level,
where quantum mechanics showed that small particles follow completely different laws and
behavioral patterns from those we know from the classical world and in doing so brought about

a revolutionary shift in our understanding of the world in which we live[9].

The Schrodinger equation in quantum mechanics plays the same role as Newton’s equation in
classical mechanics, and its solution is through access to the wave function, which is a mathe-
matical representation describing the quantum state of the system, because it gives information
about the probability of finding a particle in a certain region of space,in addition to other infor-
mation such as energy, kinetic quantum, and others. In this sense, the wave function represents

an essential tool for describing and understanding physical phenomena at the quantum level|[10].

Since the publication of Schrodinger’s works, physicists have sought many ways to solve this
equation, both analytical and numerical. The rapid development of Computer Science and the
emergence of new technologies such as machine learning have seen a coup in how to solve these
equations|[IT].In this work, we propose to use and prove the efficiency deep learning in solving
the problem of calculating the fundamental energy of a physical system using the Schrodinger

equation, by making a comparison between it and machine learning algorithms.

This thesis consists of three chapters:
In the first chapter, we will delve into the origin of the Schrodinger equation, starting with an
introduction to the importance of this equation and then moving on to studying its nature,
history, and evolution. We will also explain the methodological formulation of the Schrodinger
equation and its physical interpretation. In addition, we will discuss the Density Functional
Theory (DFT) as a numerical method for solving the Schrodinger equation and because the

dataset we use in our study is calculated by DFT.

As for the second chapter, we are embarking on a journey towards advanced convergence of
deep learning and quantum mechanics. We discuss how advanced neural network engineering
can revolutionize the solution of the Schrédinger equation. First, we explore the limitations

and challenges we face in moving from classical methods to deep learning, and then we delve



into the role of deep learning in quantum chemistry and computational quantum mechanics. In
addition, we analyze the structures of advanced neural networks of quantum systems, mention
the latest state of the art deep learning methods for solving the Schrodinger equation, and

finally,we highlight the strengths and weaknesses in it.

In the third chapter,we will discuss the implementation and the results obtained by applying
deep learning and machine learning models to solve the Schrodinger equation for the purpose
of making a comparison between them. We will start with an introduction to the environment
used in the experiments, including software libraries and the configuration of the computing
environment. We will explain how to import and process data, preparing it for use in convolu-
tional neural network models (CNN) and (CNN-LSTM). We will provide details on the design
and training of the following models:CNN, CNN-LSTM, SVR, RF and XGBoost. Then, we will

evaluate, analyze, and compare the results.We conclude with a summary of the main points.

Finally, the conclusion to sum up all that we have seen.
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Chapter

Background

1.1 Introduction

One of the latest challenges in classical physics is the inability to explain certain phenomena
using classical theories, even with advanced mathematical methods. Such problems often arise
in the study of objects that are too small or too large, and classical physics is not able to
explain the quantum behavior of particles, such as electrons and atoms. Because they perceive
these particles as solid bodies that have specific properties, such as size, location and speed.
However, experiments have shown that electrons and atoms can behave unpredictably, such as

passing through physical barriers or being in several places at the same time.

As a reaction to this, quantum mechanics appeared, since the latter was able to describe
the behavior of particles at the atomic level. It also relied on the idea that particles have
wave properties, in addition to their physical properties. The other thing that revolutionized
our understanding of the microscopic world and had profound implications in many fields such
as chemistry, materials science, quantum physics, etc. It is the emergence of the Schrodinger
equation, which allowed scientists to make accurate predictions about the probability of finding

particles in different states and also explain their behavior within the quantum system.

In this chapter, we're gonna dig into the origin of the Schrédinger equation and touch on
the basic concepts, the mathematical formula, and the physical interpretations of it.Finally,We
will discuss density functional theory (DFT) as a numerical approach to solv the Schrédinger

equation.



1.2 Basics of the Schrodinger equation

Below we will mention some basic concepts of the Schrodinger equation starting from its
history ,its definition , its mathematical formula right up to its physical interpretation and

solutions .

1.2.1 History

The development of quantum mechanics marked a paradigm shift in our understanding of
the universe at the atomic and subatomic levels, revealing a world governed by probabilistic
laws and characterized by wave-particle duality. Below we will delve into the events that led

to this transformation and the emergence of the Schrodinger equation.

Quantum mechanics was first proposed by Planck in 1900 and continued to evolve until Ein-
stein introduced the photoelectric effect, demonstrating that Planck’s idea could be represented
as a de Broglie wave. This ultimately led to the Schrodinger equation,which describes the behav-

ior of quantum bodies and explains the emission and absorption spectrum of hydrogen[12] [13].

e Planck’s quantum theory (1900)

In the early 20th century, physicists were grappling with the enigmatic behavior of
blackbody radiation, objects that absorb all electromagnetic radiation that falls upon
them. While classical physics predicted a continuous spectrum of emitted radiation, ob-
servations instead revealed a discrete pattern with specific peaks and valleys. Max Planck,
a German physicist, sought to reconcile this discrepancy by introducing the concept of
quanta, discrete packets of energy|[14].

Planck’s revolutionary hypothesis proposed that energy is not infinitely divisible but
rather exists in smallest units, much like atoms or particles. He calculated that the en-
ergy of each quantum was directly proportional to the frequency of the emitted radiation.
This radical departure from classical physics, where energy was considered continuous,
marked a turning point in our understanding of the microscopic world.

Initially met with skepticism, Planck’s quantum theory gradually gained acceptance as
it successfully explained various experimental observations. His groundbreaking work
laid the foundation for quantum mechanics, paving the way for further discoveries in the
field[14].

e Einstein’s photoelectric effect (1905)

Building upon Planck’s quantum theory, Albert Einstein, a Swiss-German physicist,
made a significant contribution to our understanding of light with his explanation of the
photoelectric effect. In this phenomenon, when light strikes a metal surface, electrons are
ejected, a process known as photoemission.

Einstein proposed that light is not just a wave but also exhibits particle-like properties,



existing as a stream of particles called photons. Each photon carries a specific amount
of energy, or quantum, and when interacting with matter, can transfer that energy to
electrons. If the energy of the photon is greater than the minimum energy required to
remove an electron from the metal, the electron is ejected from the surface.

Einstein’s explanation of the photoelectric effect provided compelling evidence for the
quantization of energy and further solidified the quantum revolution. His work highlighted
the dual nature of light, challenging the prevailing understanding of light as a purely wave-

like phenomenon|15].

e De Broglie’s wave-particle duality (1924)

Louis de Broglie, a French physicist, took the quantum revolution a step further by
proposing the concept of wave-particle duality. He suggested that all particles, including
electrons, protons, and neutrons, possess both wave-like and particle-like properties. This
revolutionary idea blurred the distinction between these two fundamental concepts. De
Broglie’s hypothesis was based on the idea that energy and momentum are conserved. He
argued that if momentum is conserved, then a particle with a given momentum must also

have a wavelength. The wavelength of the particle is given by the following equation:
A=nh/p (1.1)

where:
A : is the wavelength of the particle
h: is Planck’s constant particle

p: is the momentum of the particle

De Broglie’s hypothesis was confirmed by experiments that showed that electrons can
be diffracted, just like waves. This discovery demonstrated that particles and waves are

not mutually exclusive but rather two different aspects of the same reality[16], 17, [15].

e Schrédinger’s equation (1925)

Erwin Schrédinger, an Austrian physicist, made a significant contribution to quantum
mechanics with his development of the wave equation in 1925. This mathematical for-
mulation described the behavior of quantum particles as waves, providing a powerful tool

for understanding their properties and interactions|1§].

1.2.2 Definition of the schrodinger equation

The Schrodinger equation, a partial differential equation, elucidates the evolution of a quantum
system’s state over time[19]. Erwin Schrédinger formulated this equation in 1925, inspired by
Louis de Broglie’s wave hypothesis[I5],and published it the following year. Named after its

discoverer, it holds significant importance in quantum mechanics.



Analytical solutions of the Schrédinger equation are critical in the study of atoms and
molecules. Erwin Schrédinger demonstrated the correctness of this equation by analyzing the
hydrogen atom, successfully predicting many of its properties. However, exact solutions can be

achieved only for single-electron systems, with hydrogen serving as a fundamental example[20)].

1.2.3 Mthematical formula of the schrodinger equation

To obtain the mathematical formula of the Schrodinger equation, we will see how this equa-

tion is constructed in its two types ( time-dependent and time-independent).

e Construction of the Schrodinger equation

The Austrian physicist Erwin Schrodinger used De Broglie’s results to establish an
equation governing the spatial and temporal evolution of the function of a physical system.

To obtain the Schrodinger equation, taking the formula of the de Broglie plane wave :
=
\IJ(?, t) = Aexp'(F 7 -wt) (1.2)

where:
w: The pulsation and k : the wave vector according to the postulates of quantum me-

chanics are related to the classical particle by the Planck-Einstein relation [12]:

E =hw (1.3)
and the relationship of L. De Broglie :
T =hk (1.4)
So:
(T 1) = Aexp!(P T -E0/n (1.5)
We derive the wave relative to time :
%ﬁ’” _ —%EA expi(F7—Eh _ —%E\If(?,t) (1.6)
We obtain:
EU(7,t) = m%\p(?,w (1.7)
so:
E= ih% (1.8)

E: is the energy operator.

By deriving the wave with respect to space, it comes :

3\11(7,15) = %pA exp!(PT—EOh %p@(?,t) (1.9)



where:
-0 —0 =0
? =1 — | — + k — 1.10
! ox t oy * 0z (1.10)
? is the gradient operator, then :
p= —ih? (1.11)

is the impulse operator.
On classical mechanics, the mechanical energy of a free particle is given by :

p2
E—p -—T-2 (1.12)

2m

This quantity appears in the Hamiltonian formulation for a free particle (V(77) = 0) of
classical mechanics.
By applying the principle of correspondence between the classical values and quantum,

for the energy, of the equation (1.7) and (1.12) we obtain :

g L0
—lelf( T, t) = zhallf( 7, t) (1.13)
where:
2 2
T S SR v ey S G~ s
2w 1) = o WV )20(7, ) = —2m€ W(7, 1) (1.14)
?2 = A : is the Laplacian
2
b — _.ﬁ —
—QmA\II( 7, t) = zhatlll( 7, t) (1.15)

The Hamiltonian operator of the system for a free particle is written :
2

> p
H=——NA 1.1
2m ( 6)

Using H , we can simplify the writing of the Schrodinger equation[21], [19], We obtain:

HU(7 t) = ih%\l/(?,t) (1.17)

When the particle is immersed in a scalar potential (V(?) Jfor example the potential of a
harmonic oscillator) according to classical mechanics, the system totale energy is written

as follows:
2

E=T+V(7?) =L +v(7) (1.18)

2m

with this new energy value and from equation (1.8) and the operator of impulse P,

the Schrodinger equation becomes :

[—%A + V(?)} U(7,t) = m%xp(?,t) (1.19)



the total energy is only the Hamiltonian operator of the system [22]:

. 2

H=-2 Arv (@) (1.20)

2m

where :

i: The numerical value of the imaginary unit i is v/—1 . As an operator, multiplication
by i has the effect of causing a 900 rotation in the complex plane , moving numbers from
the positive real axis to the positive imaginary axis, or from the positive imaginary axis
to the negative real axis.

h: The modified Planck constant h is the Planck constant h divided by 2.

m: The mass of the particle or system associated with the quantum wavefunction v (x,t)
is a measure of inertia, that is, resistance to acceleration. In the SI system, mass has
units of kilograms|16].

V: is the potential energy of the particle.

The goal of theoretical physicists has been to solve the Schrédinger equation using various
mathematical techniques, such as analytical or numerical approaches. The basic equation of
quantum mechanics is known as the Schrodinger equation. The majority of quantum systems
find it challenging to solve it. There are two types of Schrodinger equations: the time-dependent

and time-independent ones [13]:

1.2.4 Physical interpretation of Schrodinger equations

The time-independent solution to the Schrodinger equation will be presented in this section. In
classical mechanics, a system’s state can be found by solving its equations of motion; however,
in quantum mechanics, the state of the system can be determined by solving the Schrodinger

equation and identifying its wave function.

e The wave function

A complex function of all particle positions is the wave functionW. All system properties
are accessible through this knowledge. Its square, |[¥?|| in particular, is related to the
probability of finding particles at the locations considered. The operator H applied to
the function, which could be more clearly represented by ¥, must be understood as the
HU operation. The expression EV, on the other hand, refers to a simple product of the
¥ function and the real number E. According to mathematics, the Schrodinger equation
thus described is equivalent to an "eigenvalue equation" and has an infinite number of
solutions known as quantum states. Every quantum state has a corresponding energy E
and a wave function W. The lowest energy state is called the ground state, and the other

states with greater energies are the excited states.

10



In short, the wave function is a quantum postulate that describes the motion of quantum
particles and contains all the information about the quantum states. It represents the
solution to the Schrédinger equation of a quantum system.

The wave function (77, ¢) must satisfy the following requirements:

— It needs to go on forever for 7 .

— The 8—‘1’ derivative has to be continuous; the limit on solutions applies to these

restrlctlons.

— We have to normalize it. This suggests that when 7 approaches infinity, the wave

function approaches zero, meaning;:

with : |¥(7,¢)|? is the probability density.
A solution associated with an energy E is called an energy eigenstate of energy E. The
set of all allowed values of E is called the spectrum of the Hamiltonian[16], 1377 |.

1.3 Density Functional Theory DFT:Numerical approch to

solve schrodinger equation

It has been effectively utilized to explain both finite and periodic systems, density functional
theory (DFT) is a widely used and rigorously precise quantum many-body theory.A (practically
precise) theory of electronic structure, density functional theory (DFT) is based on the electron
density distribution n(r), not the many-electron wave function (rl,r2,r3,...).Mainly expressed
in terms of the electronic density distribution n(r), density functional theory (DFT) is a theory
of electronic ground state structure.All chemical quantities are stated in terms of the electron
density n(r), which is the most fundamental parameter in DFT.The Schrodinger equation’s
parameters in terms of the single-electron wavefunction (¥) and the structural parameters
derived from the electronic density (p(r) concept) compare favorably, and the latter can be
used |23, 24], 25].

1.3.1 The evaluation of Born-Oppenheimer

The nuclei will move much slower than the electrons because they are much heavier, thus the
movements of the electrons and the nuclei are separable and consequently the kinetic energy
of the latter can be neglected, the term of interaction nuclei-nuclei is constant and the term of

interaction nuclei-electrons depends only on the positions of the electrons. The equation:

h? Z1 7 €* Zre?
PP ;_W Z| “R| T Zm—m 27—y 12
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represent the Hamiltonian of an N-body system composed of nuclei and electrons , after this

approximation becomes :
22 e? 7Z,e? 1 e?
H=— — _ 1.22
Z?mr Z|R R;| Z|R—n| Q;M’i—rﬂ (122)
Or again :

H: —Zh_v2+2%xt Tz +Z‘/;)€ T’L?T]) (123)

i#j

The third term in equation (1.34) represents the electron-electron interaction potential, group-
ing together the effect of the Colombian repulsion between the electrons, the Van der Waals

effects (exchange effects) and the repulsion effects due to the Pauli principle (correlation effects).

Despite the simplification brought by the Born-Oppenheimer approximation, the third term
in equation (1.23) remains quite complex to calculate analytically. In this thesis, we will present
two simplifying methods. The first method, called Hartree-Fock, focuses on the system’s wave

function, while the second method is based on the value and shape of the electron density[26].

1.3.2 The evaluation of Hartree-Fock

The major difficulty in the application of variational principle to find the ground state of
a system is the multidimensional nature of wave vector. The Hartree-Fock method consists
in replacing the interaction of each electron with the other electrons by the interaction of
an average field created by the nuclei and the rest of the electrons, as if this electron were
moving independently in an average field . This representation makes it possible to divide the

Hamiltonian into separable terms and equation (1.23) becomes:

H=> h(i)+ Y V(i,j)+ Vi (1.24)

. Zre2 . . .
Where >, h(i) = Zl o Vi = 2i1 Tapo 18 the sum of the Hamiltonians of each electron
independently. Similarly, the wave function of a complex system with several particles, can be
written in the form of a product of wave functions with a single electron and the system energy

is equal to the sum of the energies of all the electrons.

\I/(T‘Zt) = qﬁi(rl)gbj(m)...gbk(r]v) (125)

It should be noted that the Hartree-fock approximation does not take into account, neither
the effects of the correlation, nor the exchange effects, that is to say that the real system

energy, in addition to the Hartree energy given by equation (1.26), a corrective term includes

EHartree - // % dr dT, (126)
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p(r) is the electron density that can be put in the representation of the mean field in the form:

=Y kP (1.27)

Finally, we can rewrite equation (1.23) in the form :

H=— Z —V2 + Z Vit (17) // | drdr + Vxc (1.28)

where Vxc is the potential for exchange and correlation|26].

1.4 The theory of the density functional

Whereas the methods used in the framework of the Hartree-Fock approximation express the
energy of the system as a functional of the wave functiony , those who use DFT from the
English Density Functional Theory, express it as an electron density functional p(r) of the
system.The probability of finding an electron in a unit volume d*r defined by r , it is therefore,
a positive function which depends only on the three coordinates z,y and z space. It cancels out
to infinity and its integral over the entire space is N (total number of electrons).

The theory of the density functional responds to the need to find an exact formalism of the
quantity p(r) ,this makes it possible, using equation (1.27), to solve the Schrédinger equation
in a self-consistent way.

Among the theoretical approaches that have developed formalisms thus making it possible to
calculate the electron density, we present in the following those of Hohenberg-Kohn in 1964 and
those of Kohn-Sham in 1965[26].

1.4.1 The Hohenberg-Kohn approach

The theory of the density functional DFT is based on the work of Hohenberg and Kohn 1964
which demonstrated that the total energy of the ground state of a system at N interacting

particles in an external potential Vext is a functional of its electron density.
E, = Elpo(r)] (1.29)

where p(r) is the electron density of the ground state, which can be calculated from the

Schrodinger equation :
= N/w*GS(fr, 9,13y, IN)Uas (T, 7o, T3, .. ry) dradrs . .. dry (1.30)
The total energy of the electronic system can be expressed as :
Elp(0)] = Fanclp(r) + [ Visa(r)o(r) (131)

Where, Fuk|p(r)] = T[p(r)] + Veelp(r)] is the Hohenberg and Kohn functional,T'[p(r)]is the

functional of the kinetic energy of a system of non-interactive particles and V.[p(r)] is the
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functional of the Colombian electron-electron interaction.

According to the variational principle, the total system energy in a known external potential
reaches its minimum value (the ground state energy) when the density p(r) corresponds to the
density po(r)[26].

Elpo(r)] = minE|p(r)] (1.32)
E[p(r)]| _
o) | 0 (1.33)

1.4.2 The Kohn-Sham approach

The two Hohenberg-Kohn theorems assert that the external potentialV,,; is independent of
density and that the functional Fyyk [p(r)]is stained with errors about kinetic energyT [p(r)]and
about the potentialV, .[p(r)].To correct these errors, in 1965 Walter Kohn and Lu Sham devel-

oped an approach based on the following two ideas :

e The real electronic system is redefined as a fictitious system of fermions without interac-

tion and of the same electronic density of the ground state (correction on the potential

Veelp(r)])

e Single-particle orbitals are introduced in order to treat the error in the kinetic energy

term (correction on kinetic energy T'[p(r)])

With these conditions and taking into account that the total number of particles is conserved,

The functional Fyyk is written :

Fux[p(r)] = Ti[p(r)] + Eulp(r)] + Exc[p(r)] (1.34)
Where
Tilp(r)] = —;—mz / V() V2 (r) dr (1.35)

is the kinetic energy of the independent particles without interaction, and

Eaon) =3 [ [ %drdr' (1.36)

is the electrostatic energy, called Hartree’s energy. Thus the energy of the ground state of a

system can be obtained by minimizing the functional of its energy, and equation (1.31) becomes:
o{ [Veatrptryar = ([ otryar =)} =0 (1.37)

_ 0Fuxlp(r)] o — IT:[p(r)]
o i dp(r)

The result is :

+ Viks(r) (1.38)



Where p is the chemical potential,Vxc(r) is the potential of Kohn-Sham.
Vies(r) = Vear(r) + Vu(r) + Vxc(r) (1.39)

Or again,

Vau(r) = 5%%()”] is Hartree’s potential, and Vi.(r) = w%([:(;)] is the potential for exchange and
correlation.

The Schrodinger equation or also called Kohn-Sham equation for a particle in the framework
of this approach is written :
h2
— Vi + Vis(r) | wi(r) = eipi(r) (1.40)
2m
This equation can be solved numerically in a self-consistent way (figure by starting with a
value of the initial density pinitial, this value corresponds to a potential Vikgs(r) which will give a
solution to the Kohn-Sham equation which is a new value of the density. This same value will

improve the potentialVkg(r) An algorithm repeats this process until convergence is reached|26].

Initial density po: sum of atomic densities

Calculate the effective potential:Vig(r) = Veye(r) + [ ’rﬁ—’;l,l)dr’ + Exclp(r)]

Solve the Kohn-Sham equations: [—%VQ + VKS(T)} bi(r) = €;0i(7)

Calculate the new density:p(r) = >, |#(r)]?

Yes: Set po = p+ apo Yes Is p # po?

No

No: End of cycle

Figure 1.1: Scheme for solving the Kohn-Sham equation.
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1.5 The exchange and correlation functionals

In order to solve the Kohn-Sham equations which implicitly depend on exchange and cor-
relation potential Vxc(r) , it must find an exact expression of the latter. This expression is

unknown, but in practice, to highlight it, approximations are necessary.

1.5.1 Approximation of the local density LDA

Known by the acronym LDA, it is the simplest and most used and which is written in the

form :
EXPA(p(r)] = / p(r)erom o] dr (1.41)

Where EX™([p(r)] = e.[p(r)] + €.[p(r)] is the exchange-correlation energy of a homogeneous
electron gas of densité p(r) .The correlation part €,[p(r)] determined from the numerical results
of Ceperley and Alder and analytically for the exchange part

clo)]: el = - (%)/ [ oysar (1.42)

If we introduce the spin effect, we will have two densities according to the value of spin(Up 71
ouDown | )and equation (1.41) will be in this case [20]:

EgZPA pr(r). py(r)] = / p(r) eze™(pr(r), py(r)) dr (1.43)

1.5.2 Generalized gradient approximation GGA

The approximation of the local density or LDA is valid only for densities that vary slowly.
Indeed, for a long range where the density begins to be heterogeneous, corrections must be
made to the exchange-correlation energy by introducing the density gradient into it. There are
several GGA whose general expression is :

B pr(r), py(r)] = / p(r)ese™ (pr(r), pu(r), Vy(r), Vpu () dr (1.44)

The different GGA used are generally better suited than the LDA to calculate the length and
the binding energy of the molecules, the constant of the crystal lattice, in particular in systems
where the charge density varies rapidly. However, the GGA sometimes overestimates, in the
case of ionic crystals, the value of the lattice constant compared to experimental data . On
the other hand, in the case of systems where the electrons tend to be localized and highly

correlated, such as transition metal oxides and rare earth element compounds, both methods
(LDA or GGA) have poor performance[26].
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1.5.3 Hybrid functions

Hybrid functionals include a series of functionals that mix the two theories of Hartree-Fock
and DFT. They aim to improve the expression of the exchange-correlation energy by incorpo-
rating the exact part of the exchange energy obtained from the Hartree-Fock method. One of
the most used hybrid functional, we find B3LYP .

EFPYT = EGCA + a (BT — EJY) (1.45)

Where a is a fitting parameter (adjustment with the experimental data)[26].

1.6 Conclusion

In this chapter, we provided a comprehensive exploration of the Schréodinger equation, start-
ing from its historical origins, through the basic concepts, mathematical formula, and physical
interpretations of this equation. We also reviewed the density functional theory (DFT) as a

numerical method for solving the Schrédinger equation.

In the next chapter, we will address advanced methods for solving the Schrédinger equation

using a deep learning approach.
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Chapter 2



Chapter

State of the art

2.1 Introduction

Schrodinger’s equation has long held the secret to the universe’s smallest scales, requiring
massive computational resources and challenging traditional methods.
Solving this equation, especially for complex quantum systems with multiple interacting parti-
cles, has historically been a difficult task. Especially given the increasing complexity of systems,
analytical solutions are often unobtainable. Computational methods are crucial to solving the
mysteries of quantum mechanics, providing insights into molecular structure and material prop-
erties.
In recent years, a paradigm shift has occurred with the emergence of deep learning, a subfield
of artificial intelligence, as a transformative tool across various scientific disciplines. Its ability
to recognize complex patterns and process large amounts of data, as well as to approximate
complex functions, has stimulated interest in applying deep learning methods to solve quantum

mechanical problems.

In this chapter, we’ll dig into the shift from traditional methods to deep learning in quantum
science. We’ll explore the limitations and challenges posed by traditional methods, delve into
the relationship between quantum mechanics and deep learning, and study the structures of
advanced neural networks designed for quantum systems.

Additionally, we’ll showcase the latest works that have embraced deep learning to solve the

Schrodinger equation,and discussing the pros and cons of deep learning in quantum mechanics.
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2.2  From Traditional Methods to Deep Learning

The transition from traditional methods to deep learning is a landmark in the history of
artificial intelligence. Deep learning provides immense capabilities for solving complex problems

in various fields.

2.2.1 Limitations and challenges of traditional methods

Traditional methods of solving the Schrodinger equation have served us well for decades,
such as numerical methods and analytical approximation, but they have many limitations and
challenges compared to the use of deep learning techniques that it aims to overcome, among

them:

e Dimensionality (IN)

The dimensions of a system significantly affect complexity. In general, as the number
of dimensions increases, the computational resources required to solve the Schrodinger
equation increase significantly. This is because the number of ground states or grid

points required to estimate the system grows exponentially with N[27, 28§].

e Interactions

Complexity increases further when a system involves interactions between its compo-
nents. Interactions can lead to entanglements and correlations between different parts of
the system and increase the computational effort when simulating dynamics or calculating
system properties. For example, in many-body systems, interactions between particles

can lead to complex collective behaviors that are difficult to model accurately[29, [30].

e Intractable Entanglement

In the context of the Schrodinger equation, intractable entanglement arises with quan-
tum systems of multiple particles. The equation describes the wave function evolution,
where entanglement occurs as states of particles become interdependent. As particle
numbers increase, entanglement complexity grows exponentially, rendering accurate de-
scription or simulation infeasible with traditional computational methods. This challenge,
termed intractable entanglement, impedes understanding and manipulation of complex
quantum systems, hindering accurate prediction and analysis of their behavior. Re-
searchers pursue new computational and theoretical approaches like tensor network and
variational methods to tackle intractable entanglement and advance understanding and
utilization of quantum phenomena. This issue has implications for quantum comput-

ing, communication, and simulations, necessitating its resolution for progress in these

fields|31].
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e Convergence and Accuracy

Achieving convergence and high accuracy with traditional numerical methods can be
challenging, particularly for systems with strong spatial variations or complex poten-
tials.Additionally, analytical approximations may introduce errors, especially for systems
with non-linear or non-perturbative interactions|32].

In the context of the Schrodinger equation, the accuracy problem arises from the need
to obtain reliable and meaningful results when solving the wave function of a quantum
system.

Accuracy refers to the degree to which calculation results correspond to the actual physical
behavior of a quantum system, obtaining a solution that faithfully represents real-world
behavior, including energy levels and wave functions. This involves minimizing errors
and uncertainties in the numerical methods used to solve the equations to ensure that

the results are as close as possible to the true values.

The challenge with the Schrédinger equation is to achieve a balance between preci-
sion and accuracy, which often requires computationally intensive methods to minimize
numerical errors.When solving the Schrodinger equation and predicting the behavior of
quantum systems, the balance between accuracy and precision is critical to obtaining
reliable results|33].

e Limited Analytical Solutions

While analytical solutions exist for some simple systems, such as the hydrogen atom
or harmonic oscillator, obtaining analytical solutions for complex systems with arbitrary
potentials or interactions is often not feasible. This limitation restricts the applicability

of traditional analytical methods[34].

All these constraints and more have led scientists to resort to deep learning in the context of
solving the Schrodinger equation due to the complexity of physical systems and strong spatial
variations. Analytical approximations may not be sufficient and can lead to errors, especially in
systems with non-linear or non-perturbative interactions. Accurate solutions to the Schrodinger
equation require advanced and precise computational techniques to ensure accurate and reliable
results. This necessitates the use of sophisticated computational methods like deep learning to

analyze and understand quantum system interactions in a precise and effective manner.
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2.3 Deep learning in quantum Sciences

The seamless integration of deep learning and quantum chemistry illustrates the transforma-
tive power of interdisciplinary collaboration in scientific research. By combining the strengths
of these fields, this research opens up new avenues of exploration and innovation. This integra-
tion significantly improves the efficiency and accuracy of molecular property predictions and
expands the range of properties that can be reliably determined. Deep neural networks can now
predict a variety of molecular properties such as energy levels, bond lengths, and vibrational
frequencies, providing insights into complex molecular systems.

In addition to predicting molecular properties, this integration paves the way for a paradigm
shift in computational chemistry. Its ability to simulate complex molecular systems efficiently
and accurately has the potential to revolutionize fields such as materials science, drug develop-

ment and energy research|35].

2.3.1 Bridging quantum mechanics and deep learning

The combination of deep learning and quantum mechanics could lead to more efficient and
accurate simulations of complex quantum systems, providing deeper insights into the behavior
of matter at the fundamental level. The ongoing efforts to bridge the gap between quantum
mechanics and deep learning represent a significant milestone in the pursuit of scientific progress
and technological innovation. The transformative potential of this interdisciplinary approach is
immense, and its impact on various fields is only beginning to unfold. As research continues to
advance, we can anticipate groundbreaking discoveries and transformative advancements that

will shape the future of science and technology|[36].

To bridge quantum mechanics and deep learning, researchers are exploring the fusion of quan-
tum computing and machine learning, leading to the emergence of quantum machine learning
(QML). This innovative concept aims to revolutionize computational science, data analytics,
and predictive modeling across various fields. Quantum computing provides the computational
power to accelerate complex machine learning algorithms, while machine learning offers tools

for optimizing quantum circuits and decoding quantum states[37].

The convergence of quantum mechanics and deep learning holds immense promise for shaping
the future of science and technology. Their combined power could lead to transformative

breakthroughs in various fields.

In the search for common ground and to capture the potential of both domains, scientists are
constantly engaged in investigations that result in original constructs, theoretical relationships,
and future applications. Such activities can foster novel solutions to problems encountered

during research projects and contribute towards major technological advances.
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e Materials Discovery

Accurately predicting material properties at the atomic and molecular level could lead
to the development of revolutionary materials with enhanced properties, such as super-

conductors and materials with programmable properties|3g].

e Drug Design and Development

Deep learning integrated with quantum chemistry could revolutionize drug discovery
by enabling the rapid screening of vast libraries of potential drug candidates, leading to

the development of more effective and personalized therapies|39].

e Precision Medicine

Quantum-enhanced deep learning could pave the way for precision medicine, tailoring

treatments to individual patients based on their unique genetic and molecular profiles.

¢ Quantum Computing Hardware Development

Deep learning algorithms could play a crucial role in optimizing quantum algorithms
and enhancing the performance of quantum computing hardware, accelerating the devel-

opment of practical quantum computers.

2.4 Advanced Neural Network Architectures for Quantum

Systems

Advanced neural networks offer an innovative solution for understanding and simulating
quantum systems, blending artificial intelligence techniques with quantum physics concepts.
These networks are a crucial part of recent advancements in quantum computing, unlocking

the potential to grasp complex quantum behavior and analyze it efficiently.

2.4.1 Qubit

The name "quantum bit" or qubit, refers to the quantum counterpart of a conventional bit. It
was coined by combining the words "bit" and "quantum" It is a "computer description" of a
situation that particle, a simple quantum arrangement. A qubit can exist in a superposition of

states, in contrast to a traditional bit, which can only take one value at a time[I].
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2.4.2 Handling a qubit

It is required to apply some formality before viewing the Bloch sphere. A Hilbert space H
with a dimension of two and an orthogonal basis {|0),|1)} is examined. For the purpose of
differentiating the states during the measurement, this basis has to be orthogonal. Because
the states are normalized, the basis is also normalized. The fact that 2 x 2 matrices are used
to describe the operations that will be carried out on its members is evident based on the
dimension of H[I].

Figure 2.1: Bloch sphere

Using Pauli operators, also known as Pauli gates, we may describe the fundamental rotations
around the X, Y, and Z axes in this form.

e Pauli-X (X)

01
It uses the following operator to rotate around the X axis: o, = (1 0) [

Figure 2.2: X gate

e Pauli-Y (Y)

0 —i
It uses the operator to rotate around the Y axis: o, = ( 0 ) [
i

Figure 2.3: Y gate
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e Pauli-Z (Z)

1 0
It uses the following operator to rotate along the Z axis: o, = ( 1) [

Figure 2.4: 7 gate

2.4.3 Quantum circuit

A quantum circuit is a computing process that combines real-time classical computation
with coherent quantum operations on quantum states. It consists of sequential quantum gates,

resets, and measurements, allowing for the description of any quantum program|I].

Initialization
& Resets Quantum Gates Measurements

—— I 1 ] Lt
qgo — |w) — H
o
. ol
crz L A o
crx L A ﬁ

Classically Controlled
Quantum Gates

Figure 2.5: Example of a quantum circuit composed of three qubits and two classical bits[I]

2.4.4 Quantum Neural Networks (QNNs)

A sequence of neurons is used to construct a classical neural network, with each layer having
a weight matrix that minimizes the objective function. In these networks, inputs and outputs
are represented by quantum states, and the objective function is calculated using a unitary

transformation[1].
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Figure 2.6: Quantum Neural Network|[I]
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QNN is A subtype of variational quantum algorithms, quantum neural networks are made up
of quantum circuits with parameterized gate operations[40]. Models, systems, or gadgets known
as Quantum Neural Networks (QNNs) combine elements of quantum theory with neural network
characteristics[41]. (QNNs) encode data into one or more read-out qubits after extracting it
from the input, which is often a high-dimensional quantum wave function. Typically, QNNs
are composed of local unitary quantum gates, and the issue of how to appropriately build
QNN architectures should arise in practice[42].A variational model with parameterized gates is
applied and optimized for a specific job after information is first encoded into a quantum state
using a state preparation procedure or feature map. By applying a classical post-processing
function to a measurement, the output of a quantum model can be retrieved, and this is achieved

by loss function minimization final result[40)].

Q0O O

Q 0O O

i

b} CNOT Gate

)

=

U % &
.=

# of guhits: constant # of qubits: decreases

15
1]
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Figure 2.7: Examples of QNN architectures|2]

In figurd2.7] there are:
a): three layers make up a typical feed-forward neural network: input, hidden, and output.
b): another possible QNN strategy is to keep the qubits fixed, without discardingor replacing
them.
c):shows a convolutional QNN where qubits are measured at each layer to minimize the dimen-

sion of the data while keeping its pertinent characteristics|2].
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2.4.5 Variational Quantum Circuits (VQCs)

Unitary convolutional layers and pooling layers are used to create the quantum convolutional
neural network, a basic variational quantum machine learning . VQCs are quantum circuits
having parameters that may be adjusted through iterative optimizations using gradient-free
or gradient-based algorithms on a classical computer. Quantum circuits with programmable
parameters that are amenable to classical iterative optimizations are known as variational quan-
tum circuits. The word "variational" refers to the ability to update certain circuit components
based on a predetermined parameter, known as the "loss".

First, distinguish between a limited and a free architecture before adapting the architecture
to the quantum scenario. A variational quantum circuit (VQC) with a free design is charac-
terized by the locations of controlled-not gates (CNOTs) and rotation gates (ROTs). In other
words, CNOTs can join any two wires. Instead, a VQC with a restricted design is a circuit in
which the ROTs and CNOTs exhibit regular patterns following the first encoding layer. There
are numerous architectures available for use, including a basic architecture Ansétze. Typical
instances are the architecture that is efficient with hardware or the architecture that is highly
entangled[43, [44] [45] 3], 146].

0) —

0) —

0) —

ﬁ@@@

0) —

Figure 2.8: Generic circuit architecture for the variational quantum classifier|3].

In Figure , the data encoding block, represented by U(z), is a crucial part of the architec-
ture, while the learnable portion, ®(), is optimized using gradients. These circuits, capable of

withstanding quantum noise, are suitable for NISQ device applications|[3].

2.4.6 Quantum Convolutional Neural Networks (QCNNs)

Cong’s proposed QCNN builds on the main features of current CNN designs for quantum
systems. When transferring a quantum physics problem from a many-body Hilbert space to
a classical computing environment, the quantity of data needed increases exponentially with
system size. The problem stems from the possibility of using qubits in a quantum environment
to represent data. These can be avoided by employing a CNN-designed quantum computer.

Tree-like, or hierarchical, structures are used in an intriguing class of quantum neural net-
works, where the number of qubits in a subsequent layer is reduced by a factor of two. Since
these designs contain O(log(n)) layers for n input qubits, they offer shallow circuit depth. They
can also ensure trainability by preventing "barren plateau," which is one of the major problems

with PQC-based algorithms. Moreover, these structures are naturally related to the tensor

27



network, offering an invaluable platform to study neural networks, many-body physics, and
their interrelationships.
The steady drop in qubit count is analogous to the CNN pooling approach. One of the

distinctive features of the QCNN design is its translational invariance |5, 47, [48].

Pin

i =2 i =1 i=0

Figure 2.9: Schematic representation of a QCNN [4].

Figure 2.9 shows that an n-qubit quantum state p, serves as the QCNN’s input. After that,
the state py, is passed through a series of pooling (P) and L convolutional (C) layers. Two rows
of two-qubit unitaries (W) operating on alternate pairs of qubits make up the convolutional
layers. The pooling operators (seen in the dashed box) make up the pooling layer. A qubit is
measured in each pooling module, and the measurement result governs a unitary applied to a
nearby qubit (7). Following the last pooling layer, the remaining qubits are subjected to a fully
connected unitary (F), yielding an output state p,,; with a dimension significantly less than

pin- Lastly, the expectation value of an operator O over the state poy is measured [4].

Pooling (red circle), convolutional filters (blue rounded rectangle), and quantum data en-
coding (green rectangle) are the three elements of the quantum circuit shown in Figure .
The convolutional filter and pooling processes employ parameterized quantum gates, but the
quantum data encoding is fixed inside a particular QCNN structure. This example comprises
three layers, each of which can have several convolutional filters applied to it. For the ith layer,
the number of filters is represented by li. The same two-qubit ansatz is applied translationally-
invariantly to nearest neighbor qubits via the convolutional filter in each layer. Similarly, the
pooling processes of the layer use the same ansatz. In this case, the pooling procedure is rep-
resented as a controlled unitary transformation, which activates upon setting the control qubit

to 1. However, in general, controlled operations may be used [5].
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Figure 2.10: A schematic of the QCNN algorithm for an example of 8 input qubits [5].

C(0) = X Y aiclyi, /(:,0)) (2.1)

2.4.7 Quantum Recurrent Neural Networks (QRNNs)

Typically, RNNs are multilayer structures, with each layer containing the basic recurrent
block. Depending on the specific design of the recurrent block, an RNN’s input layer x;, hidden
layer h;, and output layer y;,; are all composed of real-valued vectors. In order to improve
sequential learning tasks, recurrent neural networks and quantum computing concepts are com-
bined in a new field of study called Quantum Recurrent Neural Networks, or QRNNs. These
networks are intended to possibly outperform classical resources in sequential learning applica-
tions by utilizing the capabilities of quantum computing devices, specifically near-term noisy
intermediate-scale quantum (NISQ) devices. To lessen the algorithm’s demands on the coher-
ence time of quantum devices, QRNNs are built using quantum recurrent blocks (QRBs) in
a staggered fashion, making them more accessible on NISQ devices. They have outperformed
previous quantum neural network models and traditional RNNs in prediction accuracy for se-
quential learning tasks such as text categorization, stock price prediction, and meteorological
indicators. Given their extraordinary ability to generalize from short training sets and their
capacity to learn broad causal quantum automata, QRNNs hold great promise for sophisticated
quantum processes including memory. The unitary structure of QRNNs improves training effi-
ciency and performance by mitigating the vanishing gradient issue that plagues many quantum

classifiers and conventional RNNs currently in use [49] [50], 49, 6, 51, [52], 49].
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Figure 2.11: A general Quantum Recurrent Neural Network [6].

A QRNN is an iteration over the feed-forward QNN’s memory system (orange), where the
entire input is divided into an input (blue) and the memory, and the total output is divided
into an output (purple) and the memory, as shown in Figure with L =1 [6].

g | Uz, 6) Ulx2,80) U(xy,0) |

]

Figure 2.12: The QRNN model [7].

Figure [2.12] may be understood as a variation of a dissipative QRNN, as depicted in the
figure with 7' = 3. Here, unitaries U(z, ) reuse the same parameter vector ¢, and distinct data

samples z; are loaded at each time ¢ [7].

2.4.8 Quantum Graph Neural Networks (QGNN5s)

For most GNN models designed for quantum physics calculations, the main output of the
model in the energy-centric simulation framework is the energy of the entire atomic system.
Rotationally-invariant GNNs are used to forecast the energy [53]. Graph Neural Networks
(GNNs) are a powerful class of machine learning models designed to handle graph-organized
data. The three main components of a GNN are feature embedding, decoding, and message
forwarding. During the feature embedding step, graph nodes and edges are mapped to high-
dimensional feature vectors, encapsulating their properties and relationships [54]. A specific
family of quantum neural network designs called Quantum Graph Neural Networks (QGNN)
is intended to model quantum processes with a graph topology. These networks are very well
suited for quantum network execution on dispersed quantum systems. QGNN encompasses
specialized designs such as Variational Quantum Circuits (VQC), Quantum Graph Recurrent
Neural Networks (QGRNN), and Quantum Graph Convolutional Neural Networks (QGCNN).
Applications include learning the Hamiltonian dynamics of quantum systems, generating mul-
tipartite entanglement, spectral clustering unsupervised learning, and graph isomorphism clas-

sification supervised learning [55, 6] 57, §].
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A circuit including a 6-qubit with angle encoding and two hidden VQC layers is shown
graphically in Figure 2.13] Specifically, the ansatz uses R, rotations for angle encoding and
capitalizes on R,, R,, and CNOT operations. Pauli-Z expectation is then used as the final step
in the circuit measurement process. The result of careful consideration of circuit expressibility

and complex node-node interactions embedded within graphical data is this strategic circuit

design [§].

Rx Ry
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Figure 2.13: Quantum circuit for angle encoding and VQC in the QGNN architecture with R,,
R, and CNOT gates [§].
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Figure 2.14: Architecture of the quantum graph neural network [§].

Figure illustrates that a graph is first fed into the QGNN, and then a feature compression
stage is performed. The data is prepared for VQC processing by angle encoding. After passing
through a linear layer and average pooling, the VQC’s output is delivered into the output layer
18]

Furthermore, for graph-structured data, a brand-new hybrid quantum-classical algorithm
known as the Ego-graph based Quantum Graph Neural Network (ego QGNN) has been pro-
posed. It uses tensor product and unity matrix representation to implement the GNN theo-
retical framework, requiring fewer model parameters while achieving better performance than
previous models [55] 58].
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2.5 State of the Art of Deep Learning approaches for Solv-
ing the Schrodinger Equation

In the ever-evolving landscape of computational physics, the integration of deep learning
methodologies has emerged as a transformative force, offering new perspectives and innovative
solutions to old challenges. Among these stands the schrodinger equation, a fundamental pillar
of quantum mechanics that governs the behavior of particles at the atomic and subatomic
levels. Traditionally, solving this equation requires complex mathematical frameworks and
computational techniques, often constrained by the complexity of the systems under study.
The advent of deep learning has provoked a paradigm shift in how we approach such problems.
By harnessing artificial neural networks and vast datasets, researchers are exploring a new
frontier in quantum mechanics: employing deep learning architectures to solve the Schrodinger
equation directly. This fusion holds tremendous promise, not only in accelerating the calculation
of quantum states but also in revealing deeper insights into the fundamental physics governing

quantum phenomena.

Carleo and Troyer introduced the concept of using neural networks to represent quantum
systems in their groundbreaking 2017 work [59]. Utilizing a neural network called a restricted
Boltzmann machine (RBM), researchers successfully represented the wave function of quantum
many-body systems, achieving notable success in solving problems related to many-body local-
ization and quantum spin systems. This work showcased the effectiveness of NNQS in capturing
the complexity of quantum systems and offering a fresh perspective on understanding quantum
many-body systems.

The study delved into the intricacies of many-body quantum systems in Physics, highlight-
ing the non-trivial correlations embedded in the exponential complexity of the multibody wave
function. The authors aimed to simplify this complexity into a manageable computational form
for specific cases of material significance.

To address this challenge, the authors introduced a variable representation of quantum states
based on artificial neural networks with a flexible number of hidden neurons. They employed a
reinforcement learning scheme capable of determining the ground state or describing the uni-
tary time evolution of intricate interacting quantum systems. The neural network parameters
were optimized using constant variable Monte Carlo (VMC) sampling or time-dependent VMC
for dynamic characteristics.

Their approach yielded highly accurate results in characterizing the equilibrium and dynamic
properties of models representing typical interactive cycles in various dimensions. This method
effectively resolved the phase problem commonly encountered in stochastic quantum Monte
Carlo methods. Furthermore, the authors explored the potential advantages of artificial intel-
ligence in resolving issues related to multiple quantum entities.

In summary, the researchers successfully demonstrated that systematic machine learning of the
wave function through artificial neural networks can significantly simplify the complexity of
multibody wave functions, offering a potent tool for addressing the challenges posed by many

quantum bodies .
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Researchers Jiequn Hanand colleagues|60], conquered in 2018 the challenge of solving the
multi-electron Schrodinger equation, a fundamental problem in computer science. They in-
troduced the Deep Wave Function (DeepWF) method, which uses deep neural networks to
represent test wave functions and ensure compliance with the Pauli Exclusion Principle. The
method was optimized through variational Monte Carlo to accurately represent the ground
state energies of a variety of systems, including He, H2, Be, B, LiH, and chains of 10 hydrogen
atoms. However, the accuracy of this method decreases as the number of electrons increases.
The future of this approach is promising, as it opens up new possibilities for solving the large-
scale multi-electron Schrodinger equation. The authors highlight the simplicity of the method
and suggest areas for further improvement, such as: B. Improving the representation of anti-
symmetric methods and optimizing variational Monte Carlo processes to achieve more efficient
sampling. These prospects demonstrate DeepWF’s potential to solve large-scale Schrodinger
equations involving many electrons, providing a promising avenue for future research in com-

putational physics and quantum chemistry.

Jan Hermann and colleagues[20], also arrived in 2020 Due to the analytical solvability
of the electronic Schrodinger equation only for a hydrogen atom, the approach of numerically
complete configuration interaction becomes prohibitively expensive as the number of electrons
increases.

This study focuses on the computational hurdles associated with solving the Schrodinger elec-
tron equation in quantum chemistry, particularly for systems with a large electron count. The
escalating computational complexity with increasing electrons renders achieving high accuracy
impractical for most molecules using conventional methods. To tackle this challenge, the re-
search introduces Polynet, a deep-learning wave function trained with variable quantum Monte
Carlo. Polynet aims to provide nearly exact solutions to the electronic Schrédinger equation
for molecules containing up to 30 electrons by amalgamating valid wave function physics and
leveraging the expressive capabilities of neural networks.

The findings demonstrate Polynet’s superior performance over modern ansatz resolutions for
atoms, diatomic molecules, and linear hydrogen chains. It achieves remarkable accuracy with
fewer determinants compared to traditional quantum Monte Carlo methods, showcasing its
computational efficiency and scalability. The study emphasizes the significance of trainable
reverse flow ansatz in optimizing the nodal surface of the Hartree-Fock baseline to achieve high
precision. Furthermore, the successful extension of Polynet to larger molecules with intricate
electronic structures underscores its utility for complex systems in quantum chemistry.

In essence, the study addresses the computational constraints of current methods for solving the
electronic Schréodinger equation in quantum chemistry by introducing Polynet, a deep learning
approach that offers high accuracy with reduced determinants and exhibits scalability for larger

systems.
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Researchers Mitsumasa Nakajima and colleagues|[61],in 2022 a new approach to neural
networks in their paper "The Neural Schrodinger Equation: A Law of Physics as a Deep Neural
Network." They address the challenge of training deep neural networks (DNN) by introducing
a new family of neural networks based on the Schrédinger equation (SE-NET). The problem
they want to solve is the instability caused by exploding gradients when training deep SE-NET
models. In order to solve this problem, they introduced a pure phase optimization method,
which only updates the phase of the potential field in the Schrédinger equation, ensuring stable
training of the deep SE-NET model while maintaining the uniformity of the system.

The approach they used involved implementing SE-NET on Pytorch using the Crank-Nicolson
finite difference method. They demonstrated the deep dependence and stability of SE-NET
using a modified National Institute of Standards and Technology (MNIST) database dataset.
The results show that the performance of SE-NET improves with increasing width and depth,
but the training is unstable due to gradient explosion. However, with the introduction of the
pure stage optimization method, the deep SE-NET model also achieves stable training. They
also compared the performance of SE-NET and ODE-NET and found that the performance of
SE-NET was equivalent to standard ODE-NET but worse than enhanced ODE-NET. Datasets
and models become very large.

In addition to solving immediate problems, the researchers also discuss future prospects for
their work. They suggested that the performance of SE-NET could be improved by considering
the 3D Schrédinger equation and implementing sparse solvers on GPUs. They also highlight
the potential of this approach to jointly optimize physical structures and DNNs, as well as the
possibility of ofloading some digital processing to passive physical structures, thereby reducing

energy consumption.

The researchers Leon Gerard and colleagues[62],in 2022 from the Johann Radon Institute
for Computational and Applied Mathematics at the Austrian Academy of Sciences addressed
the challenge of accurately solving the Schrédinger equation in computational chemistry. The
Schrodinger equation is crucial for predicting properties of molecules and materials, but its
high dimensionality and the need for extreme accuracy make it computationally challenging.
Despite decades of research, existing methods struggle to achieve the desired accuracy, leading
to a spread of results in energy calculations.

To tackle this issue, the researchers introduced a novel deep-learning architecture that combines
deep learning with Monte Carlo methods. Their approach significantly reduced energy errors
by 40-70% at 6 times lower computational cost compared to previous methods. By using their
method, they established a new benchmark by calculating the most accurate variational ground
state energies ever published for various atoms and molecules. The results showed substantial
improvements in accuracy across different systems, outperforming existing variational methods,
both deep-learning-based and classical ones.

Through systematic analysis, the researchers found that including too much physical prior
knowledge in the architecture could actually hinder optimization and decrease accuracy. They

highlighted the importance of balancing physical constraints and prior knowledge in achieving
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accurate results. Despite the advancements made, challenges remain in terms of computational
speed and accuracy for large molecules. Further research is needed to enhance the efficiency
and effectiveness of deep-learning-based methods in computational chemistry.

The study demonstrates the potential of deep-learning-based methods as a new gold standard
in computational chemistry, offering promising avenues for future research and applications
in chemistry and biology. The results pave the way for new discoveries in drug development,
material science, and other fields, with implications for advancing scientific knowledge and

technological innovations.

The researchers Kai-Fang Pu and colleagues[63], in 2023 addressed the challenge of solv-
ing Schrodinger equations using physically constrained neural networks. They introduced a
method that utilizes a monotonic neural network to represent the Cumulative Distribution
Function (CDF) of the ground state wave function, allowing for efficient trial wave functions
of Schrodinger equations. By minimizing the violation of the trial function to the Schrodinger
equation, they achieved high accuracy in solving quantum many-body problems.

Their method involved using auto-differentiation and stochastic gradient descent to optimize
the neural network’s parameters, ensuring the trial wave function adhered to physical con-
straints. Through training on spatial coordinates and minimizing the violation of the wave
function to the Schrodinger equation, they obtained ground state wave functions and energies
with very low errors for classical quantum mechanical problems like the harmonic oscillator and
Woods-Saxon potential.

The results showed that the DNN-based approach provided accurate solutions, with relative
errors within 0.06% for the harmonic oscillator problem. The method demonstrated high fi-
delity in approximating the exact wave function, with performance improving with the number
of variational parameters. However, challenges were observed with potentials exhibiting dis-
continuities, like the infinitely high potential well.

Future prospects include extending the method to solve more complex problems, such as many-
nucleon systems, and improving the handling of potentials with discontinuities. The researchers
highlighted the efficiency and data effectiveness of their approach, paving the way for advance-
ments in solving nuclear many-body problems and offering a universal solution for problems

with unknown exact solutions.

The researchers Sherif Abdulkader Tawfik and colleagues [64],in 2024 addressed the

challenge of accurately predicting the total energy of materials with imperfections using a
novel physics-informed machine learning framework called DIEP.
By integrating the external potential of a structure, DIEP improved the accuracy of predicting
total energy per atom for various material imperfections, including diamond defects. The results
showed that DIEP outperformed the existing M3GNET model in most cases, demonstrating
its effectiveness in predicting the energy of deformed materials. Additionally, the study trained
a potential energy surface (PES) model using DIEP, achieving a mean absolute error (MAE)
of 61 meV /atom for total energy and 73 meV/ A for atomic forces.

The future prospects of this work include the potential for high-throughput screening in material
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discovery processes and the application of DIEP in ab initio molecular dynamics simulations

for further advancements in material science research.

In this journey, we aim to provide readers with a comprehensive understanding of deep
learning’s role in unraveling the mysteries of the quantum world. This review is envisioned as
a bridge, connecting the power of deep learning with the complexities of quantum mechanics.
By fostering a deeper exploration of this fascinating intersection, we hope to inspire further

advancements and discoveries in both fields.

2.6 Advantages and disadvantages of deep learning in quan-

tum mechanics

With the increasing interest in deep learning in quantum mechanics, it has become possible
to use these techniques to solve the Schrédinger equation accurately and effectively. However,

there are still challenges and weaknesses in using deep learning in this context.

2.6.1 Disadvantages
Among the disadvantages are:

e Data Requirements:

Compared to conventional machine learning models, deep learning models for quantum

mechanics require a large quantity of high-quality data and higher processing power[65,

66).

e Complexity and Interpretability:

Unlike typical machine learning algorithms, deep learning models can be difficult for
consumers to grasp because of their complicated interpretations and explanations of how

they make decisions[65].

¢ Bias and Legal Complexities:

Deep Learning algorithms have the danger of replicating or escalating preexisting biases
in training data, which might produce biased outcomes. Furthermore, there may be legal
issues associated with the use of intellectual property and private data in Deep Learning
that should be carefully considered[65][66].

2.6.2 Advantages

Among the Advantages are:

e Enhanced Performance:
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Improved performance in resolving deep-Q learning issues has been demonstrated by
hybrid quantum neural networks with deep-Q learning, particularly on larger-scale maze
problems[65].

e Prediction of Chemical Properties:

Chemical characteristics may be directly predicted using deep learning algorithms in

quantum mechanics, which is a major breakthrough in the discipline[67].

e Quantum Features Utilization:

By utilizing quantum properties like entanglement and superposition, quantum machine

learning gives quantum computers special powers[66, [68].

2.7 Conclusion

In this chapter, we tackled the approach of deep learning to solve the Schrédinger equation,
illustrating how advanced neural network engineering can revolutionize solving this equation
and coming to the conclusion that traditional methods may not offer the same efficiency and
accuracy as deep learning when dealing with complex equations like the Schrodinger equa-
tion.We started by exploring the limitations and challenges we face when adopting classical
and traditional methods in solving such equations, then delved into the role of deep learning
in computational quantum mechanics.

Additionally, we analyzed the structures of advanced neural networks designed for quantum
systems, and mentioned the latest modern deep learning methods for solving the Schrodinger
equation.

Finally, we’ve highlighted the strengths and weaknesses in these methods.

In the next chapter, we will discuss all the implementation details and the preceding stages,

as well as discussing the results obtained.
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Chapter 3



Chapter

Implementation and Discussion of Results

3.1 Introduction

In this chapter, we applied the proposed approach to calculate the core energy of a physical
system using the Schrodinger equation with deep learning and some machine learning tech-
niques in order to highlight the efficiency of deep learning compared to traditional machine
learning.

We started by setting up the working environment with programming tools and deep learn-
ing libraries, followed by importing and processing the data. Next, we prepared the data for
CNN,CNN-LSTM,SVR,Random Forest and XGBoost networks, focusing on representing input
data as a periodic table of elements. Then, we designed the architectures models for all net-
works, and we trained them to solve the Schrodinger equation.

Our principal task was to compare CNN,CNN-LSTM and on top of that, we trained SVR,Random
Forest and XGBoost to study the stability of perovskite using the same dataset.The perovskites
are a class of materials defined by a specific crystal structure, which is represented by the for-
mula ABXj;.

Finally, we evaluated and analyzed the results obtained, discussed them, and made a compari-

son between the architectures.

3.2 Environnement

3.2.1 Libraries

During the work we used the following libraries that enabled us to effectively build, train,

evaluate, and visualize deep learning models

1. TensorFlow

e [t serves as the basis for the construction and implementation of deep learning mod-
els. Tt provides low-level building blocks such as tensors (multidimensional arrays)

and their manipulations.
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e [t offers various backends, including CPU and GPU, allowing efficient execution on
different devicedl]

2. Keras

e Built on top of TensorFlow, Keras simplifies the model building process.

e Provides a high-level API with pre-built layers (like Conv2D, Dense) and activation

functions (like relu) for constructing neural networks.

e Makes the code more concise and readable compared to using TensorFlow directlyP}

3. Pandas

Used for:

e Loading data from CSV files in the code.
e Cleaning and pre-processing the data (not explicitly shown in the code snippet).
e This might involve handling missing values, scaling features, or transforming data

into a format suitable for the modelPl

4. Matplotlib

A versatile library for creating various plots and visualizations.
Used in the code for:

e Plotting the training loss and R2 score curves to monitor the model’s learning pro-
cess.

e Visualizing the predicted values against the true values (delta e) to assess the
model’s performancd’]

5. Scikit-learn

e Simple and efficient tools for predictive data analysis
e Accessible to everybody, and reusable in various contexts
e Built on NumPy, SciPy, and matplotlib

e Open source, commercially usable - BSD licenseﬂ.

Thttps: //www.tensorflow.org/?hl=fr
https://keras.io/
3https://pandas.pydata.org/
“https://matplotlib.org/
Shttps://scikit-learn.org/stable/
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6. NumPy

NumPy, short for Numerical Python, is a fundamental package for scientific computing
in Python}

3.2.2 Configure the computing environment

The hardware environment used for this experiment is a Dell computer. It includes an
Intel Core i7-7600U processor operating at a frequency of 2.80 GHz. This device has RAM
with a capacity of 8.00 GB (7.64 GB usable). The operating system is Windows 10, a 64-bit
architecture, with support for a screen that supports ten-point touch. The Google Colab service
was also used in this experiment, as Google Colab offers a web-based integrated development
environment in the cloud and provides the possibility of running and developing software using

Python and the Jupyter Notebook operating environment for free.

3.3 Import & preprocessing data

3.3.1 Import and description of data

The Open Quantum Materials Database (OQMD) is a database containing density func-
tional theory (DFT) calculated all properties of 1,226,781 materialsﬂ This massive database

was created by Chris Wolverton’s research group at Northwestern University .

e The sheer scale of the database, with over 1.2 million materials computed using accurate
density functional theory calculations, is truly remarkable. This vast dataset enables

unprecedented opportunities for data-driven materials discovery and design.

e The inclusion of a wide range of computed properties, such as formation energies, den-
sities, elastic constants, and more, makes the OQMD valuable for diverse applications, in-
cluding thermodynamic modeling, mechanical property prediction, and structure-property

relationships.

e The use of consistent computational methods across all entries ensures a high degree of
reliability and comparability within the database, which is crucial for developing robust

machine learning models and drawing meaningful conclusions from the data.

e The public availability of the OQMD and its integration with various materials science
software packages have facilitated its widespread adoption and enabled researchers world-

wide to leverage this powerful resource.

Shttps://numpy.org/
"https://oqmd.org/
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e As the database continues to grow and incorporate more advanced computational meth-
ods, it will likely play an increasingly important role in accelerating the development
of new materials and driving innovations in fields such as energy storage, catalysis, and

advanced manufacturing[69, [70].

Overall, the OQMD represents a significant milestone in the transition towards data-driven
materials science, enabling more rapid and efficient exploration of the vast materials space.
The dataset is available on: https://github.com/NU-CUCIS/ElemNet/tree/master/data/.

3.4 Deep learning architectures

3.4.1 Data preparation for CNN and CNN-LSTM networks

The OQMD provided the dataset that was utilized. It offers thorough information on the char-
acteristics of different materials and is a valuable source for materials science research. Along
with electronic characteristics like band structures and electronic band gaps, it also contains
formation energies, enthalpy of formation, Gibbs free energies, and other thermodynamic char-
acteristics. The theory of functional density (DFT) is used to create the dataset appropriately,
and validation against experimental observations ensures correctness and dependability[69)].
After removing the rare-earth elements, the data set used in this work comprises 341450 com-
pounds, of which 90% constitute the training set and 10% the test set. A pre-processing
operation was carried out to represent the data in matrix form, equivalent to a periodic table of
86 elements figurd3.1] The periodic table is used to determine the location of each element in
the matrix, thereby capturing the structure and arrangement of the elements. This represen-
tation derives its significance from the element’s position in the table and in the compound, as
well as its proportional contribution in the compound. A matrix representing the presence and
quantity of chemical elements in each chemical compound of the training data set is produced.
The chemical composition data can now be transformed into a matrix suitable for model analy-
sis and learning. Next, a certain transformation is applied to the resulting matrices, as shown in
Figure 3.1 With this transformation, the values of the elements in the matrices are modified so
that empty cases and grey-colored cases take on the value 0, while the rest of the cases take on
-1, with the exception of the elements that form the compound, for example in the compound
BeScLu2 (Be=Sc=0.25,L.u=0.5), so that the sum of the cases is zero. In fact, there are 86-3—=83
elements: 83*(-1)+0.25%83+0.25%83+4-0.5*83=0 . This can facilitate data normalization and in-
crease the stability of subsequent calculations[71]. This data pre-processing concerns both the
training and testing of the two CNN and CNN-LSTM models.

3.4.2 Input data representation as periodic table of elements

The dataset comprises of chemicals with varying stoichiometries organized in a one-dimensional
array. This has been pre-processed into a two-dimensional matrix so that our models may
utilize it as input.The table in Fig has 86 components, which means that there might be
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both ternary and quaternary compound in it. The input dataset in reference[72] has been
modified by filling the table with the value -1, with the exception of the positions of the
compound elements, which are assigned numerical values corresponding to their fractions of
the compound. The contents of all cases in the table will sum to zero.
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Figure 3.1: Elements included in the dataset in blue according to the compound

3.4.3 Stability trends in perovskites

The stability of perovskites is determined by the minimum of energy. For that, we trained SVR,
Random Forest, and XGBoost, and the results are illustrated in the figure [3.2] For position A,
elements like Li, Rb, and Cs are the most favorable, with stability decreasing for other elements.
Non-metals, transition metals, and light elements form very few stable systems in this position.
On the other hand, position B prefers light elements such as B and W. Interestingly, Au and

Ru can also stabilize perovskites when placed in this position.
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3.4.4 Architecture CNN and CNN-LSTM model

and filtering layers.
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Figure 3.2: Periodic Tables showing the stable structures for possible element A, B and X

Convolutional neural networks (CNN) are one of the most effective models for processing and
analyzing visual data, excelling in multiple applications such as image classification and pattern

recognition. These networks extract spatial features from the input data through Convolution

On the other hand, convolutional neural networks integrated with long-and short-term memory

modules (CNN-LSTM) combine the ability to extract spatial features of convolutional neural



networks (CNN) and the ability to learn from the temporal dependencies of iterative neural
networks (RNN) and especially long-and short-term memory modules (LSTM). This integration
makes CNN-LSTM a powerful tool for analyzing sequential data with spatial and temporal

dimensions, such as videos and time series of sensory data.

Below, we will give a detailed description of the architecture of the two models adopted in

this work:

1. Architecture CNN model

We created a CNN network architecture with aggregation layers and connected layers

to reduce dimensions and extract spatial features from the data.

The following is a description of a Convolutional Neural Network (CNN) architecture

implemented using the. TensorFlow and Keras libraries.

e Layer-by-Layer Description
— Input Layer:
« Input Shape: (9,18,1)

Convolutional Layer 1:
x Number of Filters: 32
x Filter Size: 3 x 3
x Padding: Same
x Activation Function: ReLU

Zero Padding Layer:
x Padding: 1
Dropout Layer:
x Dropout Rate: 0.1

Convolutional Layer 2:
x Number of Filters: 32
x Filter Size: 5 x5
x Activation Function: ReLU

Convolutional Layer 3:
x Number of Filters: 32
x Filter Size: 3 x 3
x Activation Function: ReLU

Flatten Layer:

« This layer flattens the input, converting the 2D matrix into a 1D vector.
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— Dense Layer 1:
x Unats: 192
x Activation Function: ReLU
— Output Layer:
x Units: 1
e Summary The described CNN architecture is designed for a regression task, with
an input shape of (9,18,1). It consists of three convolutional layers, followed by a

zero padding layer and a dropout layer to prevent overfitting. The network includes

two dense layers, with the final layer producing a single output,as in the figure |3.3|

zero_padding2d

conv2d_ 'k — 32}. conv2d
: ernel %1 .
input . zero_padding2d ’—. dropout
1

kernel(5x5x32x32)
bias(32)

convad

m dense | kernel(2240%192) flatten conv2d | kernel(3x3x3x32)

—
del;/_ ey wﬁuﬂm bias(32)

dense

Figure 3.3: CNN architecture

2. Architecture CNN—-LSTM model We integrated CNN networks with LSTM networks
to create a CNN-LSTM network architecture.
e Layer-by-Layer Description
— Input Layer:
« Input Shape: (9,18, 1)
— Convolutional Layer 1:

x Number of Filters: 32
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x Filter Size: 3 X 3
* Padding: Same
x Activation Function: ReLU
— Zero Padding Layer:
x Padding: 1
— Dropout Layer:
x Dropout Rate: 0.1
— Convolutional Layer 2:
x Number of Filters: 32
x Filter Size: 5 x5
x Activation Function: ReLLU
— Convolutional Layer 3:
x Number of Filters: 32
x Filter Size: 3 x 3
x Activation Function: ReLU
— Reshape Layer:
« Reshapes the output to a 2D tensor with shape (—1,5 x 14 x 32).
— LSTM Layer 1:
x Units: 256
x Activation Function: ReLU
x Return Sequences: True
— LSTM Layer 2:
x Units: 64
x Activation Function: ReLU
— Dense Layer 1:
*x Units: 192
x Activation Function: ReLU
— Output Layer:
x Units: 1
e Summary The described CNN-LSTM architecture is designed to handle sequences
of spatial data. The network starts with three convolutional layers to extract spatial
features, followed by a reshape layer to prepare the data for sequential processing.It

includes two LSTM layers to capture temporal dependencies and ends with two dense

layers for the final regression output,as in the figure (3.4}
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Figure 3.4: CNN-LSTM architecture

3.5 Training CNN and CNN—-LSTM models

To train the convolutional neural network model (CNN) and (CNN-LSTM),we used the pre-

defined training data (Xivain, Yrain)to train the model for a specified number of epochs.

csv_logger = CSVLogger("/content/drive/MyDrive/RES/training_history.csv", append=False)
history = model.fit(X_train, Y_train, epochs=160,validation_data=(X_test, Y_test),callbacks=[csv_logger])

Figure 3.5: CNN and CNN—LSTM training

This code in figure [3.5effectively trains the CNN model by leveraging the training data,
incorporating validation for generalization, and logging the training history for later analysis.

This structured approach ensures a robust and well-monitored training process.
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3.6 Different machine learning algorithms

3.6.1 SVR

Periodic element atomic radii can be predicted by support vector regression (SVR). With a
correlation between the experimental and predicted values of over 99 %, a study using SVR to
reliably estimate the atomic radii of periodic elements was published in the journal Computa-

tional Materials Science[73].

3.6.2 Random forest

The periodic table’s elements have been effectively categorized and arranged using random
forest algorithms according to their chemical and physical characteristics. To create the pre-
dictive models, the random forest models make use of a range of atomic-level characteristics
and attributes, such as atomic number, electronic configuration, and other chemical physi-
cal descriptors. To get high prediction accuracy with random forest models, hyperparameter
tuning such as maximizing the number of trees, leaf nodes, and feature sampling ratios is
crucial |74, [75] [72].

3.6.3 XGBoost

The XGBoost architecture’s weighted quantile sketch methods, out-of-core processing, and
capacity to handle sparse data are particularly pertinent qualities when examining its applica-
tion to the periodic table. Because of the way it is designed, XGBoost can effectively manage
instance weights in approximation tree learning, which makes it appropriate for situations where

the data may be weighted or sparse[76].

3.7 Analysis and discussion of the results

We trained two models to compute formation energy, a crucial parameter in forecasting com-
pounds stability, in order to show the suitability of convolutional neural networks for predicting
the physical characteristics of materials. The learning curves for the models in terms of ac-
curacy and loss are shown in figure .The outcomes demonstrate the good performance of
both models, with CNN-LSTM showing a little advantage. In actuality, the former obtained
an accuracy of 0.9827, while the latter obtained 0.9807.

The formation energy estimates for CNN and CNN-LSTM, respectively, are revealed by
the trained models with an error of 0.0070 ev/atom and 0.0063 ev/atom respectively. The
histograms of the real values of the energies compared to the predicted values for the two
models are finally displayed in figure [3.7
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From figure [3.6, we can note the following:

e during training, both the CNN and CNN-LSTM models show a downward trend in the

loss function, indicating that the models learn and improve over time.

e validation loss curves closely follow training loss curves, indicating that both models

generalize well to unseen data.

e the curves r2 score (determination coefficient) and val r2 score (validation r2 score)
show an increasing trend, approaching values close to 1, which indicates a good agreement

between the expected and real values.
From figure we can make the following observations:

e the CNN-list model (left diagram) shows a tighter correlation between the expected and
real DFT values of delta E .

e the CNN model (the right graphic) shows a slightly more scattered distribution of data

points, which indicates a higher degree of deviation from the true DFT values.

e the CNN-LSTM model appears to have a smaller absolute error range (Y-axis) compared

to the CNN model, indicating better predictive accuracy.

Overall, the CNN-LSTM model seems to outperform the CNN model in predicting the DFT
values of the delta E for the given test dataset. The LSTM component of the CNN-LSTM
model is likely to capture temporal dependencies and long-term correlations in the data more

effectively, improving predictive performance.

The trained machine learning models reveal formation energy values with n-estimators= 20
and an error of 0.20 ev/atom for SVR and 0.03 for Random forest and error of 0.29 ev/atom
for XGBoost. figure |3.8 shows the Histogram of the true vs the predicted values of energies
(a)SVR. (b)RF. (¢)XGBoost. for the two models.
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3.7.1 Comparisons between Architectures

Figure [3.9| shows a comparative study of the SVR, RF, XGBoost, CNN and CNN-LSTM
models, trained on different representations of the input data, with reference to the real OQMD

dataset data, which is the formation energy calculated by the DFT. Performance rankings in
ascending order were as follows: SVR, XGBoost, RF, CNN and CNN-LSTM.
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Figure 3.9: Comparison of the performance of the model with respect to the target values
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The SVR model, while being a powerful tool for many machine learning tasks, showed
the lowest performance in this particular study. This could be due to the high-dimensionality
of the data or the presence of non-linear relationships that are not well captured by SVR.
The XGBoost and RF models performed better than SVR, demonstrating their ability to
handle complex datasets with a mix of numerical and categorical features. However, they were
outperformed by the deep learning models, CNN and CNN-LSTM. The CNN model, designed to
process grid-like data such as images, showed superior performance, indicating its effectiveness
in capturing local dependencies in the data. The CNN-LSTM model, which combines the
strengths of CNNs and LSTMs to process sequential data, achieved the highest performance.
This suggests that the temporal dependencies in the data were significant and well-captured
by the CNN-LSTM model.

3.8 Conclusion

In this chapter, we have implemented the proposed method for determining the fundamental
energy of a physical system using the Schrodinger equation through deep learning and some
machine learning techniques for comparison. After preparing the environment, construction,
and training, we discussed the results in detail.

The results show the effectiveness of using deep learning instead of traditional machine learning
techniques to solve the Schrodinger equation. While CNN and CNN-LSTM provide reasonably
accurate predictions compared to other machine learning algorithms SVR, RF and XGBoost.

This comparative analysis sheds light on the potential of deep learning and encourages further

investigation of its promotion and application in similar areas.
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General Conclusion

Our thesis focuses on the use of deep learning to solve the Schrodinger equation and prove
its efficiency in solving by making a comparison between it and traditional machine learning

techniques.

We first looked into the principles of this equation and its basic concepts, then discussed the
challenges facing traditional methods and how deep learning can offer effective solutions.
After that, we applied the deep learning approach to calculate the fundamental energy of a
physical system, where we prepared the working environment, processed the data, designed the
neural network models (CNN),(CNN-LSTM),(SVR),(RF) and (XGBoost), Then train them,

evaluate the results and make a comparison.

The results showed that deep learning can be effective in solving the Schrodinger equation,
hitting high accuracy with an error margin of around 0.0063 ev/atom,opening up new horizons

for improving and developing models.

To move forward, we aim to build a new framework for predicting the bandgap and the energy.
This requires developing more complex models to handle multidimensional data, enhancing
prediction accuracy, understanding the physical properties of quantum systems, and opening

the door to new scientific and technological discoveries.
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