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Résumé :

Systéme Prédateur-Proie avec réponse fonctionnelle de Beddington-DeAngelis est un
modele dynamique décrivant I'un de types d’interaction entre populations. La réponse
fonctionnelle de Beddington-DeAngelis est similaire a la réponse fonctionnelle de Holling
type-ll, sauf qu’elle contient un terme décrivant les interférences mutuelles des prédateurs.
Notre travail vise présenter une étude de la bornitude et la stabilité globale sur le
comportement qualitatif d’'une classe de modéles de prédateurs-proies de type Beddington-
DeAngelis réponse fonctionnelle. Les résultats incluent sur la bornitude des solutions,
I’existence d’un ensemble attractif et la stabilité locale et globale des points d’équilibres. Les
criteres de stabilité sont définis des systemes de Holling-Il.

Mots clés : modele prédateur-proie, réponse fonctionnelle de type Beddington-DeAngelis,
stabilité globale du point d’équilibre, réponse fonctionnelle de Holling de type-II.

Abstract :

Predator-Prey model with Beddington-DeAngelis-type functional response is considered, it
is a dynamic model for the interaction of the population. The functional response of
Beddington-DeAngelis is similar to the Holling type-Il functional response, but it contains a
term describing the mutual interference of predators. The work aims to present a study
boundedness and global stability on the qualitative behavior of a class of predator-prey
models with Beddington-DeAngelis type functional response. Including results the
boundedness of solutions, existence of an attracting set and local and global stability of
equilibria. Stability criteria are set from Holling-1l systems.

Keywords predator-prey model, Beddington-DeAngelis type functional response, global
stability of equilibria point, Holling type-Il functional response.



Introduction

Mathematical modeling in biology and ecology involves using mathematics to de-
scribe or explain phenomenons and the dynamics of a population in the real world,
it has having several applications in various fields.

The modeling process requires a good inderstanding of the factors governing the
evolution of population over time such as available recources, populations in inter-
action, thretening dangers...

In this memory, we are interested in studing the work of W. Khellaf and N.
Hamri [11] and contribute to explaining and analyzing this work.
Predator-Prey interaction is that relationship between organisms occupying the
same environment, where the prey is a (principal) source of food for predators.
Within animals (sharks and fish) or animals and plants (rabbits and plants) or
viruses and cells (HIV virus attacks immune system cells).

The model that describes the dynamics populations of predator-prey over time
is of the form

dX
% = [(X)X —g(X, Y)Y, (1)
— = h(X, Y)Y,
dr (X, Y)Y,
in model X(7) and Y (1) represent respectively the population densities (or
biomasses) of the prey and predator at the 7 moment. This model is based on the

h
assumption thut functions: ¢(X,Y) and h(X,Y) satisfy g_i(i > O,g—X > 0. One

well known Predator-Prey model is the Lotka-Volterra system ([12], [17])

dx
— = ax — bxy,
gt
a4y
dt
with a, b, ¢, d > 0, which imposes a per capita rate of predation depends on prey
numbers only [I§].

= cxy — dy,

IV



The Beddington-DeAngelis response can be generated by a number of natural
mechanisms [2], [6], and because it admits rich but biologically reasonable dynamics
[4], it is worthy for us to further study the Beddington- DeAngelis model.

more presesily, the following predator-prey model with the Beddington-DeAngelis
is considered

dX le

-V = ap — b X — )

dr a X + Y +m (2)
dy TTI,QY

N — ao —

dr 2 X4k )

with the initial values X (0) > 0 and Y (0) > 0. The constants ay, as, by, my, ma, a1, 51,7,

and k; are the parameters of model and are assumed to be positive.

These parameters are defined as follows: ay (resp., as) describes the growth rate of
prey (resp., of predator), b; measures the strength of competition among individu-
als of prey’s species, m; is the maximum value which per capita reduction rate of
prey can attain, y; (resp., k1) measures the extent to which environment provides
protection to prey (resp., to predator), and m2 has a similar meaning to m1. The
functional response in was introduced by Beddington [2] and DeAnglis et al.
[7]. It is similar to the well-known Holling type-II functional response [2] but has
an extra term (1Y in the first right term equation modeling mutual interference
among predators. Hence this kind of type functional response given in is af-
fected by both predator and prey.

A simpler Beddington-DeAngelis predator-prey model is obtained by change for
parameters of system (2), 7 = ait, X(7) = z(t)/(b1/a1), Y (1) = y(t)/(mab1 /aras)

h for —
ence ord,

dX mY
oo al_le_alX%”%)X’ (1)) (mabs faras) 0
dx(t)/(by/ay myy(t)/(maby/ajas x(t
dtja, — \@ 7 O b/a)) = O T + Buy(0)) (mabs faraz) %) (brJar)’
bt _ (maby)/an )y ) o(r
dt ' oq(mafas)x(t) + Bi(az/ma)y(t) + 11 (b1/a1)?(mafaz) ) ar



dy
d for —
and for e

A Yy
dr — \7? X1k )

y(t)
@ ay _ @ — i ((m2b1/a1a2)> y(t)
dt (moby/ajas) ? x(t) (maby/aras)’
(bl/al) + ky
- y(t) >
@ _ @ — (mgbl/alag) y(t) (mgbl/alag)
dt ? (t) (mabyfaras)” ay

Gifan) * 1
dy 1 o y(t)/(bi/araz) )y(t)
dt a \ ° (2 +ki0i/ar)/(bi/ar) ’
@ = i a9 — a

Y
dt aq 2I—|—]{31(b1/a1)

We have by placing (*) a = (miby)/a1,b = as/ar,a = ai(ayms)/as),f =
Bi(araz)/ma,y = n((bi/a1)*(maar/ag), and k = k(b1 /ay).

P S
dt ar + By + 7’
dy

Y
dt _'b<1 v+k)

So, the study of our model prompted us to organize this work in five chapters.
Chapter 1 is devoted to recalling some basic concepts on differential equations and
inequalities. Such as semiflows and invariant sets, limit sets and comparison lemma.
In addition, we have stated some elementary results for studying equilibrium points
and their stability to determine their nature. We also present other necessary math-
ematical results at the end of the chapter.

In the second chapter, we talk about mathematical modeling we give some basic
models.

In chapter 3, we show the boundedness of solutions and existence attracting set
in the first quadrant. we prove positive invariance and ultimate boundedness of
solutions.

Then in chapter 4, we determine trivial and interior equilibrias and we study
their stability, recarding the interior equilibria we discuss global asymptotic stability
as well finally in Chapter 5, We mention the definitions we use to get permanence,
we study uniform permanence.

VI



Remark 0.1. In [11] we find: a = (az/ar)(mi/mg),b = as/a;,a = ay,f =
Bi(az/mz),y = y1(b1/ar), and k = ki(by1/ay). which is different from the conclution
we are lead to in (*).
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Chapter 1

Preliminaries

In this chapter, we give some necessary mathematical definitions that are used in the
studying Beddington-DeAngelis predator-prey model. Let us consider a dynamical
system of the form

(2 2 40 o

where z(t) € R", f : D C R" — R" is a locally Lipschitz in = and is piecewise
continuous in .

1.1 (eneralities on differential equations and in-
equality

1.1.1 Existence and uniqueness
Theorem 1.1. [1] If the system [1.1] satisfy

1 f )= fEy) ISLlz—yl

Va,y € B(xg,r) = {z € R"|||z — zo|| < 1}, Yt € [to, t1]. Then there exists some
0 > 0 such that the state equation

T = f(t,x)

with x(ty) = xo has a unique solution over [ty,ty + J].

1.1.2 Semiflow and Invariant set

Definition 1.1 (Semiflow). [§] Let Q be a subset of a complete metric space Y,
and let R = (—00,00) and RT = [0, +o0[. A mapping o : Q x [0, +00[— Q, is said
to be semiflow on 2, if



1. o(u,0) = u, for all u € Q.
2. 0(0,t), is defined for all t € R.

3. The semi-groupe proprety holds, i.e., oy(os(u)) = ops(u), for all u € Q and
t,s € RT.
4. The mapping o : X [0, +00[—> Q is continuous.

Remark 1.1. If the mapping uw — o(u,t) is not linear, then the semiflow (
nonlinear semigroup) is the form o(u,t) = S(t)u. In the case S(t) : Q@ — Q, with
a continuous inverse S(t)~', such that S(—t) = S(t)~' means that flow (nonlinear
groupe).
Let o be a semiflow on Q C Y. For any u € § the (positive) trajectory through
u is defined as the set
Y (u)=SH)u:t>0

If o is a flow on 2, then the trajectory through wu is the set
y(u) = {S(t)u:t € R}.
Definition 1.2 (Invariant set). [§/ A set A C Q is said to be positively invariant

if S(t)A C A, for allt > 0, and A is said to be an invariant set if S(t)A = A, for
all t > 0, and the trajectories through A are given by

YH(A) = {St)u:ue At>0}

Definition 1.3 (Forward invariant). A set is called forward invariant if it is in-
variant for all t € RT.

1.1.3 Limit sets

Definition 1.4. [§] The limit sets of a semiflow namely the omega limit set. The
w-limit set of a point u is defined as
= Nr>o U S(t

We define the w-limit set of 0Ty (the boundary of Yo) as as follows:

w(0Yo) = Nr=o|_J S(H)IY0,

t>T

(10T = ] S(t)u

u€dYo

where

Definition 1.5. The semigroup S(t) is said to be point dissipative in Y if there is
a bounded nonempty set B in T such that, for any u € Y there is a ty = to( Y, B)
such that S(t)u € B fort > t.



1.1.4 Comparison lemma

Definition 1.6. (Absolute Continuity)[19] A function f : [a,b] — R, where [a, b]
is a finite closed intervale, is said absolutely continuous on [a,b] if for every e >0
there exists 0 > 0 such that for any finite collection of pairwise disjoint inter-
vals {|ag,bg] - k =1,...,n} conteined in [a,b] with Y ,_ (by — ay) < 9§, we have

S ) = flar)| < e

Lemma 1. [?] Let ¢ be an absolutely-continuous function satisfying the differential
inequality

%Sf) + a1¢(t) < g, t Z 0 (12)

where (o, an) € R%; oy # 0, then
Vs T () < 22— (_ 4 (T)) emon(=T), (1.3)

Proof: Multiply both sides of (1.2)) by e to get

<d¢—(t) + ozlgb(t)) et et

Then

which is equivalent to

Thus the function

has a non-positive derivative and so is non-increasing for ¢ > 0. Therefore, for all
t>1T >0,

(¢@)—-2?>‘¥“t< <¢Cf)_.gg)eaJ:

1

and hence,



Lemma 2. Let z(t) be a continuous function
dx
= = ¢
dt f( ,.:C)’
z(t) = o,

where f(t,x) is continuous in t and locally Lipschitz in x, for all t € [to,T) and
x € J e R. Let [ty, T) (T can be 0o) be the mazimal interval of existence of the
solution x(t) € J. And the upper right-hand derivative

t+h)—y(t
D*y(t) = lim sup ylt 1) =y )
h—07+ h

Let y(t) be a continuous function that satisfies

DYy(t) < f(ty),
y(to) < o,

with y(t) € J for all t € [ty,T), then

y(t) <z(t),  [to, T).

1.2 Equilibrium points and stability

1.2.1 Equilibrium points

The general n-dimensional autonomuous of the system (1.1, if ¢ does not appear
explicitly can be written as

i = f(x) (14)

and has the form

dIl
- fi(za(t), x2(t), .., za(?)),
dl’g
ZE = (0, a(t), (1)),
S @@ ma(t), D),

where f;,0 < i < n are the functions of z1, zs, ..., x,. The solutions f(z) = Og» are
called equilibrium points of the system (|1.4)).



Consider two-dimensional systems of the form

i = flz,y),
{y = g(z,y). (15)

The intersection point (x*,y*) of the curves
{ flxy) =0,
g(z,y) = 0,
is the equilibrium point of the system . Then the constant functions
w(t) =", y(t)=y",

are a solutions of ([1.5]).

Definition 1.7. (Liapunov stability)[15] Let x*(t) be the solution of the system
wich starts in x*(to) = xf. If for every e > 0, there exists d(e, ty) such that

| 2o —af ||< d = z(t) — 2" (t) [[< e forall t>t,

then the solution x(t) is called Liapunov stable for t > to. Otherwise it is called
Liapunov unstable.

Definition 1.8. (Uniform stability)[15] If the solution is stable for t >ty and the
0 s independent of to, then it is uniformly stable.

Definition 1.9. (Asymptotic stability)[15] If the solution is stable for t >ty and
T | 2(t) — 2°() = .

then it is called asymptotically stable

1.2.2 Types of Equilibrium Points

Definition 1.10. [75] Let C be a path of the system and the solution (z(t), y(t))
of which represents C' parametrically, and the critical point (z*,y*) of this sys-
tem. Thus we have the path C approaches the (z*,y*) as t — +oo if

tﬂgloox(t) - tgl-r‘rlooy(w R
Definition 1.11. [15] Let C be a path which approaches the equilibrium point
(x*,y*) of the system ast — +o00, and the solution (z(t),y(t)) of this system

represents C. We say that C enters the critical point (x*,y*) as t — 400 if

exists.



Definition 1.12. (Isolated equilibrium Point)[14] A equilibrium point (z*,y*) of
is called an isolated equilibrium point if there exists a neighborhood of (z*,y*)
containing no other equilibrium points.

Definition 1.13. (Center)[15] The isolated equilibrium point (x*,y*) is called a
center if there exists a neighborhood of (z*,y*) which contains a countably infinite
number of closed paths each of which contains (x*,y*) in its interior.

Definition 1.14. (Saddle Point)[15] The isolated equilibrium point (x*,y*) is called
a saddle point if there exists a neighborhood of (x*,y*) in which the following two
conditions holds:

1. There exist two paths which approach and enter (z*,y*) from a pair of opposite
directions as t — +o00 and there exist two paths which approach and enter
(x*,y*) from a different pair of opposite directions as t — —oo.

2. In each of the four domains between any two of the four directions in 1, there
are infinitely many paths which are arbitrarily close to (z*,y*) but do not
approach (x*,y*) either as t — +00 or as t — —o0.

Definition 1.15. (Spiral)[15] The isolated equilibrium point (xz*,y*) is called a
spiral point (or focus) if there exists a neighborhood of (x*,y*) such that every path
P in this neighborhood has the following properties:

1. P is defined for all t >ty (or for all t < ty) for some number t.
2. P approaches (z*,y*) ast — +oo (or ast —» —o0).

3. P approaches (z*,y*) in a spiral-like manner, winding around (x*,y*) an
infinite number of times as t — +oo (or ast — —00).

Definition 1.16. (Node)[15] The isolated equilibrium point (x*,y*) is called a node
if there exists a neighborhood of (x*,y*) such that every path P in this neighborhood
has the following properties:

1. P is defined for allt >ty (or for allt < ty) for some number t.
2. P approaches (z*,y*) as t — +oo (or ast —» —o0).

3. P enters (z*,y*) ast — 400 (or ast — —00).

1.2.3 Stability

In order to study the stability of eqilibria of problem ([1.1)). It suffices to study
stability of system

T = f(t,x)+ Alt)r — A(t)z
= A@t)x + (f(t,z) — A(t)x)

6



and hence
&= Az + g(t,x), (1.6)
assume that the Jacobian matrix A = —g(t,x), is an n X n constant matrix and
g(t,%) = (gl(ta x)v.QQ(ta .Z’), 7gn(t?x) satisfies
(i) g(t,x) is continuos for || z ||< a,0 < t < oo,

(i) limyg—o || g(t,z) || / || = ||= O uniformly with respect to ¢, that is ||
g(t,x) ||= o(]| z ||) uniformly in ¢ as || = || approaches as zero.

Theorem 1.2. If A is an nxn constant matriz whose characteristic matrixz polyno-
mial has all its roots have negatives real part, and function g(t, z) satisfies conditions
(i) and (ii) above, then the solution x(t) =0 of the system (1.6) is asymptotically
stable.

Definition 1.17. (Stability of Non-linear systems) Consider the system (@ such
that

dzi _ )~ o Y ;—x;) + o(h(x;
i —f(xZ)Nf(xi>+dw(xi)<xz i)+ (h( Z))
Thus
) (1.7)

Jacobien matrixz of f at x* is given by

7= (5)

o
o =) =),

Then

18 the linearized system

Remark 1.2. Suppose that the system has an equilibrium point x* € D, i.e.,
f(z*) = 0. We would like to characterize if the equilibrium point x* is stable. We
can always apply a change of variables to & = x — x* to obtain

B =&=fE+a")
and hence
£ = flE+a)
= [f(z") + JE+ o(h(E))
= JE+o(h(§))

then study the stability of the new system with respect to & = 0, the origin.

7



Theorem 1.3. (Stability of Linear systems)[1])] Let & = Ax be an n-dimensional
linear system and A is an n X n constant matriz. Suppose that X\;,;1 = 1,....n are
the eigenvalues of A.

(i) All solutions of the system are asymptotically stable if Re(X\;) < 0,i =1,2,...,n.
(ii) If all solutions of the system are stable, then Re(\;) < 0,i=1,2,...,n.
(i1i) The solution is unstable if Re(X\;) > 0,i=1,2,...,n.

Definition 1.18. If A is an 2 X 2 constant matriz and X is eigenvalues of A, then
classification of equilibrium points as follow

e both eigenvalues are negative means the equilibrium points are stable,
e both eigenvalues are positive means the equilibrium points are unstable,

e cigenvalues have different sign means the equilibrium ponts are saddle.

1.2.4 Lyapunov function

Definition 1.19. Let V : D — R be a continuously differentiable function defined
on the domain D C R™ that contains the origin [1l]. The rate of change of V along

the trajectories of s given by
oV d

Viz(t) = S, e
vy vy v Y
| 0r, Oy or, |~  Ox ’

Theorem 1.4 (Direct Method). [1] Let the origin x = 0 € D C R" be an
equilibrium point for @ = f(x). Let V. : D — R be a continuously differentiable
function such that

V(O) = 0 and V(x)>0, Vz € D\ {0} (1.9)

Then, x = 0 is stable. Moreover, if

V(r) <0, Ve € D\ {0}
then x = 0 s asymptotically stable.

Remark 1.3. If V(z) > 0,Vx € D\ {0}, then V is called locally positive definite.
If V(z) > 0,Vz € D\ {0}, then V is locally positive semi-definite. If the conditions
are met, then V is called a Lyapunov function for the system @ = f(z).



Exemple 1. [1] Consider the nonlinear system

o4 [ 23]

and the candidate Lyapunov function

with A1, Ao > 0. The derwative of the Lyapunov function candidate was given
by

V(Q?) = 2)\1$1(—$1 + 2%%1}2) + 2)\21‘2(—1'2) = —2)\1(%% — 2)\21’% -+ 4)\11’?372
For simplicity, assume that \y = Ay = 1. Then
V(z) = =222 — 222g(z) <0

where g(x) = —1 + 22125, V < 0 will be invariant, or equivalently when g(z) > 0,
i.e., when x1xe < 1/2. So we conclude that the origin is locally asymptotically stable.

Theorem 1.5. Let x = 0 be an equilibrium point of the system .
Let V : R" — R be a continuously differentiable function such that

V() = 0 and V(z)>0, Ve #0 (1.10)
|z] — oo0o= V(zx)— o0, (1.11)
V(z) < 0, Va #£ 0, (1.12)

then the origin 1s globally asymptotically stable.
Remark 1.4. If the function V' satisfies the condition , then it is said to be

radially unbounded.

1.3 Cardan’s method

Cardan’s method [13] used for solve a cubic equation. Suppose this equation
3 +ax® +br+c=0,

a
with a,b,c € R. Making the substitution y = x + 3 the equation becomes:



which s of the form
y* +py+q=0. (1.13)

Letting y = u + v, we obtain

u? +v° 4+ (u+v)(Buv + p) + ¢ = 0.

Supposing
3uv +p =0,
u? +v3 4+ q=0.
Then
w = 2
3 7
w403 = —q
Hence ,
3,3__ P
27’
+ US = —q,
placing h = u?, z = v3, we get
3
p
hz = —=—
© 27’
h +z = —q,
we put
hz = P,
h+z = 9,
replacing the value of h =S — z, we obtain
2(S—2) = P,
Sz—22 = P,

22—Sz+P = 0.

Hence,

3
24 qz+ (—%) - 0. (1.14)

Similarly, replacing the value of z = S — h, then
3
h* + qh + (—Z—?> =0.
3
which implies that u® and v3 are both the roots of the same equation for which

27¢% + 4p®
27

the discriminant 1s A =

10



Lemma 3. [13] The equation admits a unique real root if and only if we
have 4p® + 27¢* > 0.

Proof. [13] We study the function f(y) = y* + py + ¢, and after following the steps
of the Carden method we find A = 4p3 + 27¢?, derivative of f is f'(y) = 3y* + p.

If p is positive. we consider x; = —, | —g, Ty = | /—g,

1. if 2 €] — oo, 1] |J[z2, +00], f(x) increasing,
2. if © €]z, zo[, f(x) decreasing.

She admits a maximum relative M in z; and a relative minimum m in x,. Say that
the equation has only one real root means that m and M have the same sign, so
that the product mM > 0. Or, we have:

M = f(xl)zq—Qp —g

3
m o= fle) =g+ 2\
3 2
and hence A > 0. O

Exemple 2. [13] We solve the equation x> — 2x — 5 = 0.

8
The equation that gives u?,v? is then X? —5X + — = 0.

32 643 27
A== =57 %
. 5 /643

2 63

We deduce the unique root of the given equation:

Lemma 4. [13]

When A is negative, we find first the two roots u3,v® of , which are complex
conjugates, then extract their cubic roots w,v. The first is really find those roots.
We return to it below. The second is does u® admit three cubic roots: u, ju, j*u and
the same for v.

11



2 3
we e (3 e

with j and j* cubic roots of 1.

Proof. We know '
1=¢"=¢e"=cos0+isin0,

let z be a complex number such that

30 _ 0

P =1 e .

Hence,
rd = 1,
30 = 0+ 2km.
Therefore,
r = 1,
0 = 2]“’?” with  keZ
so we search 6 € [0; 27|

2% 2%
O<%<27r(:)0<?<2<:>0<k‘<3.

So k € [0;3[NZ and k € [0;1; 2]
If we calculate all the possible sums u + v of these roots, we will find 9 values for
y, which is too much for an equation of degree 3.

2 = V=1,
2w
29 = e 3 =7,
44 27\ 2
zz = e3 =|e3 =22 = 52

So the possible sums u + v of these roots is 9 values for y, which is too much for
an equation of degree 3. we imposed the relationship

_ P
Uy = ——.

3

12



So that if we perform one of the three possible choises for u, the other value v is

well defined, so also . Precisely, we have v = @. Indeed, uv = —p/3 is real so
p pu pu _ :
V=— = ——— —=——— =l th ceR.
3u 3u u 3|ul? b
3 3 3 3-3 _ -3

But as v° is conjugated from u°, we have v° = ¢’>u° = u°, and ¢ =1, because

involved

to give

we finally deduce the three real solutions:

R e i e R (R
- um:jd—%wwgf—<—§>3+fs—%—z~¢<§>2—<—§>i
e O O )

(1.15)

We admit that:

3
\/———i—Z\/ ——= —a—Hb and \/———Z\/ —=) =a—ib with a,beR.

1. = a+ib+a—ib=2a= y; € R,
Yy, = —(a+bV/3) =y €R, (1.16)
Y3 = bV3—a=y; €R.

O
Exemple 3. [13]
let’s consider the equation x3 — 7z + 6 = 0. and hence equation
343
X2+6X+2—7:0 (1.17)

13



4
AZ_%' The roots of (1.17) are

( 400
6 g —

PR O T A (1)

< 2 W3
. /400

woo V2 g ;10
\ 2 3v3

We find that the three cubic roots are

2iv 3 3 V3
u1:1—|— ;)/—7 U/Q:ju1:_§+%_, u3:j2u1:

N | —

To find the values of v, we use the relation
7
uv = —,
3
and hence,

_Ta
- Buf

f 2
2iv 3 7
and |u] =1/ 12 + Z;)/_ = 3 50 U;, V; are conjugated

2i\/3
3

v

vy =u; =1— = =U +U =2, Vg =1Uy = Ty = —3,

1.4 Sylvester’s criteria

5iv/3
6

w

v3 = U3 =—> r3 = 1.

[16] Let A = [a;;] be an n xn real symmetric matriz, and let Ay, be the k™ principal

minor of A for 0 < k < n. Then:

(a) A is positive definite if and only if A >0 fork=1,2,...,n

(b) A is negative definite if and only if (—=1)*A, >0 for k =1,2

Note that A has the form

ailz Aaiz - Qip

ag1 QA22 -+ Q2p
A=

A1p Ao2n - Ann

14
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The descriminant is defined as the form

11 a1z A3

Al = api, Ag = o G12 s Ag = |G21 Q22 Aa23|, ..., An = d@t(A)
dar a2 az1 a3z 0as3
Exemple 4.
10 -1 -3
A=1]1-1 4 -1
-3 —1 5

We calculate the principal minors of A. We find that
Al - 10, AQ = 39, Ag - 143

Since all principal minors of A are positive, we conclude that A is positive definite.

15



Chapter 2

Mathematical Modeling

2.1 Single species population models

We present two simple models to describe the evolution of a population in time t.

2.1.1 Exponential growth model( Malthusian growth)

Ezxponential growth model [3] allows to describe the dynamics of one population
density (or biomass) of a single species. If the population density at time t is
represented by a real function x : t — x(t), it is reasonable to assume that the
function x(t) is everywhere differentiable, denote by b the per capita birth rate and
by d the per capita death rate, (b — d) the difference between the birth and death
rates is the per capita growth rate.

This model states that there is no migration and the rate of growth (with respect to
time ) is proportional to the population size. Then change in size from time t to
(t+ At) is

z(t+At) —z(t) = (b—d).x(t).At
z(t + At) — x(t)

Ay = (b—d).x(t)
. x(t+ At) — z(t)
oo At = (b-d(t).

Letting the net growth rate r = (b — d),, we obtain the Malthusian growth model

dx

pri r.x(t) (2.1)

This can be integrated between [0, ]

16



t d t
/—xdt - /m"(t)dt
o dt 0

J:(t)d t
/ @ /rdt
z(0) T 0

Inz(t) —lnz(0) = rt

x(t)

In—% = rt

hence, the solution is

We can infer three cases.
1. If r > 0, the population will grow at exponential.

2. If r < 0, the population will diminish at exponential which tends towards
extinction.

3. If r =0, the population remains constant and equal to its initial value.

2.1.2 The Logistic model
The logistic model [3] is given by

dx T
a - ’I”LU(l - E)7

where K is the carrying capacity of the population, it is the mazximum number of
individuals a particular environment. we divide both parts by x(K —x) then multiply
both parts by dt to obtain

R
r(K—z) K

Use partial fraction on the left hand side and get

A 1 l—i— ! dx
r(K—-2) K\z K-ux ’

so our equation takes the form

L/d_m; d _L/dt
K r K| K—-2) K ‘

Now we can integrate both parts and obtain

1 rt
7 (In(x) + In(K —z)) = xte

17



o Ifx < 0 orx > K so logarithm of a negative number is undefined which
means that the solution does not exist.

x
o [fx=0 orx= K and hence i 0 so the solution is constant.

e Assuming 0 < x < K so that we can drop absolute value signs from log-
arithms. If the population size at time t = 0 is xo we will find the value

of

1
c:?(ln(:ﬁo)—kln(l{—xo)).
So now we have
L (@) + (K —2)) = "Lt L (n(ag) + In(K - 20))
K n(x n T = K K n(xo n Zo
i . Zo
hl(K—:c = rt—i—ln(K_xo)

rt

)
i)
) -

Now we solve the equation for x, it gives

2(K —x9) = 29(K — 2)e"™" = Kuxge™ — zxge”
2(K —x9+20e™) = Kuxge™
and hence,
Kaxpe™ Kz,
K —xg+ zpem  xo+ (K —xp)e™t

and when t — oo, x(t) — K, we can discuss two cases:
1. If x(t) < K, a rapid growth of the population.

2. If x(t) — K, a decrease growth of the population.

2.2 Models for interacting populations

We consider a community of two population in this case the dynamics of each
population is affected according to the type of interaction

18



2.2.1 Predator-prey

Lotka-Voltera [10] where the first is to suggest independently a predator-prey model

dx
gl]_gt/ = z(a—by), (22)

% = y(CZL'—d),

where x(t) represent the density of prey population and y(t) is that of predator at
time t. and a,b,c and d are positive parameters.

The model is based on the following assumptions:

(i) The prey grow exponentially with a the per capita growth rate in the absence
of predation.

(i) The effect of predation decreases the prey’s per capita growth rate by —by.

(i1i) The predator diminishes exponentially in the absence of any prey, hence d is
the per capita rate death rate of predator in absence of the prey.

(iv) The prey’s contribution to the predator’s growth rate is cxy.

A general predator-prey model givin

dX

— = f(X)X —g(X, Y)Y,

7r (X)X —g(X,Y) 23)
E - h(X,Y)Y,

in this model X (1) and Y (1) represent respectively the population densities (or
biomasses) of the prey and predator at the T moment of time. f(X) is the per
capita net prey production in the absence of predation and g(X,Y') the number of

preys eaten per predator per unit time and h(X,Y') measures the growth rate of
0 oh
predators. This model is based on the assumption functions: 8_}g/ >0, X > 0.
According [2] early population predator-prey are built on a basic assumption im-
plicitely: the number of prey attacked to be proportional to the density of prey and
the density of predator. While two experiments show that this assumption is false.

the author in [Z], suggeste the following model

dX le >

—_ = ap — le — s

dr ar X +6Y +m (2.4)
dY . ng ’
i~ \"TX¥k)

the model under name Beddington-DeAngelis functional response with predator-prey
model, with the initial values X (0) > 0 and Y (0) > 0. The constants ay, ag, by, my, ma, a1, f1, 71,

19



and ky are the parameters of model and are assumed to be positive.

We have by placing 7 = ayt, X (1) = x(t) /(b1 /a1), Y (1) = y(t)/(mab1 /araz),a =

(maby)/a1,b = az/ar, @ = oy (arma)/az), B = Pi(araz)/ma, v = 11 ((b1/a1)?*(maas /as),
and k = k:l(bl/al).

S S
@ .

y
= b(1-
dt < s+ k)Y

20



Chapter 3

Bondedness of Solutions and
Existence of an Attracting Set

We are interested in the existence and uniqueness of solution (z(t),y(t)) of the
Beddington-DeAngelis with predator-prey model

da
dt

dy
dt

o(l—g)— Y
y—— Y. .
x+k

We show that the positive quadrant is positively invariant for and the solution
(x(t),y(t)) satisfy the initial conditions (x(0),y(0)) is attracted by a bounded set

Int(R%).

3.1 Positively invariant quadrant

Definition 3.1. The set A C R" is called an invariant set of system iof

z(0)e A= x(t) € A, VteR.

Exemple 5. any equilibrium point i.e., T, where f(z) =0

Definition 3.2. A set A is a positively invariant set of system if

z(0) e A= xz(t) € A, Vt>0.

Denote by R3 the positive quadrant of R?, i.e.,

Ri = {(Il,J?Q) € Rzll’z >0,1= 1,2}

And denote by [nt(R%r) the interior positive quadrant of R?, i.e.,

Int(RY) = {(z1,22) € R?|z; > 0,i = 1,2}
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Lemma 5. Positive quadrant 1 nt(]Ri) is positively invariant for system.

Proof:
We show that the positive x-azis and y-axis are invariant for this system:
Consider an initial value on y-azis, that is x(0) = 0,y(0) = yo > 0, let z(t) =0
fort >0, and y(t) the solution of

the (0,vy), is solution of system for the initial value (0,yo) arbitrary in R,
this makes the positive part of y-azis positively invariant.

Similarly, suppose x(0) = zo > 0,y(0) = 0 and (x(t),y(t)), let y(t) = 0 for
t >0, and z(t) the salution of

Z—f =z(l —x),

we can easily see that (x,0) is the solution of for (z9,0) as an initial value,
therefor the positive part x-axis is also positivaly invariant. Now it remains to show
that if (0) > 0 and y(0) > 0 then the trajectory of the solution of does not
leave the positive quadrant. Suppose this result is not true, and proof that it leads
to some contradiction. This means that we assume that there exists ty such that
x(to) < 0 ory(ty) < 0. if x(ty) < 0 we have, £(0) > 0 accorrding to the Intermediate
Value Theorem it exists t1 € [0, o] such that x(t1) = 0.
Then, the curve of the solution intersects the positive part of the axis'Oy’ which is
another trajectory and therfor contradicts the uniqueness of the solution.
If y(to) < 0, the same reasoning applies and leads the contradiction. Therefore,
densities x(t) and y(t) are positive for allt > 0 if x(0) > 0 and y(0) > 0.

3.2 Ultimate Boundedness and Attracting Set

Definition 3.3. A solution ¢(t,ty,xo,y0) of system 15 said to be ultimately
bounded with respect to R? if there exists a compact region A € R and a finite
time T (T = T(to, z0,Yo)) such that, for any (to, zo,yo) € R x RZ,

o(t, to, xo,y0) € A, t>T.

Definition 3.4. [5] A closed invariant set v C R™ is called an attracting set if
there exists some open neighborhood A of v such that, for all xy € A, ¢(t,x0) € A
for allt >0 and ¢(t,x9) — v as t — 0.

Theorem 3.1. Let A be the defined by

A:{(a:,y)e(Ri):Oéxél,ng—i—yéLl},
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where

1 2
L1:4—b(5b+(1+b) (1+k)).

then
1. A is positively invariant

2. all solutions of ingtiating in R% are ultimately bounded with respect to
R? and eventually enter the attracting set A.

Proof: Let (x(0),y(0)) € A, we will show that (x(t),y(t)) € A for allt > 0:
from Lemma 5. as, (x(0)),y(0)) € A, (z(t),y(t)) is in Int(R%). Then, we have show
to that for allt > 0,0 < z(t) < 1, and 0 < z(t) + y(t) < L.

1. (a) First, We prove that for allt > 0,0 < x(t) < 1.
We have x > 0 and y > 0 in Int(R%); then every solution ¢(t) = (x(t),y(t))
of system, which starts in Int(R3), satisfies the differential inequality
dr (1 —x(t)x(t). Thus, z(t) may be compared with solutions of

{ (‘% = (1 —u(®))u(?)

0) = z(0)>0
so we have,
u(t) = u(t) = (ut)?
and
u'(t) 1
WOF  w@
set
1
z(t) = M
then
o ()
O

hence



(b)

all the solutions of the homegenous differential equation z'(t) + z(t) = 0, are
of the form:
2(t) = ce!

particular solution of 2'(t)+z(t) = 1 is obtained by constant variation method

d = e
c = ¢
Zp(t) =
Then the solution 1s:
1
u(t) =
0 = O+ 50
1
u(t) ce t+1
Since u(0) = (0) = —
imce u(0) = 2(0) = ———
ce Y+ 1
1
0) —
z(0) |
1
1l = —
c+ 2(0)
1
- 1
(i)
1
with x(0) < 1, which implies that ¢ = W — 1 > 0. From the fact that
x

0<e <1 fort>0, and we have ¢ > 0 therefor x(t) < 1.
It follows that every nonnegative solution ¢(t) = (z(t),y(t)) of satisfies

() <1 Vt>0.

For allt >0, and (z(t),y(t)) e RZE0< v +y < Ly.
We define the function o(t) = x(t) + y(t);

do dxr dy ay Y
@t < ’ ax+ﬁy—|—7)x+ ( x+k)y’

do dr dy Yy
— =4+ 2 <(1- 1 —
i~ ar Tar SV ‘”)$+b< x+k)y

then
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Thus, as

(1 2)e =2
B 2= g
we have p
g Yy
— < -+b(1——— |y
di 4+( x+k)y
then 4 .
o )
— < -+b(1- ) —o(t),
ar 4+( a:+k:)y+a() o(t)

o(t) = z(t) + y(t) which implies that

9 ey <t (b Y yyas
dt ? 4 T + gy

do 1 by
b <= — L)y,
dt+a(t) 4+x+<b+1 " )y

Since in (1)(a), x(t) < 1 for all t > 0, we obtain
d b
2ot < +(b+1—Ty)y

Moreover, set

with "
/ —0Y
=——+(b+1
J) = a4 )
which give
b+1D)(1+k) = 2by
s0,
(1)1 +k)
V= 2
Thus,

max|g(y)] = max Kb+ - %) y} - 4%(1 L BP(1+ k).
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Consequently

do
% —|—O'(t) < L17

By applying Lemma 1. then we get
VE>T>0:0(t)<Li— (L —o (T)) e D,

Then, if T =0, for (z(0),y(0)) € A4,

Then
(z(t),y(t) € A, Vt>0.

. We have to prove that, for (x(0),y(0)) € R, (x(t),y(t)) — A when t —
+00. We will show that limy__, oz (t) < 1 and lim,__, 1 (2(t) +y(t)) < L.

(a) For, lim,__, . x(t) < 1, we have from the system

< (=)

and using lemma 2 with u(t) from 1,a) we obtain
z(t) < wu(t)

therefor
limy oo 2(2) < limy—y oo u(t) = 1.

(b) Let e >0, and T\ > 0 exists, such that
() < 1+% V> T
From with T =T, we get for all t > Ty,

o(t)

z(t) +y(t)

L1 — (Ll — 0 (T1>> ei(tiTl)

Ly — {Lie"™ — (x(Th) + y(T1))e" } e*
Ly — {Ly = (a(Th) + y(Ty)e" f e

NN N

o(t) = w)+y(t) < (Lo +5)~{ (B +5) = @) + (@)™ f e,

Let T2 Z T1

26
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at) = =(t)+y(t)

< () (e 5) - e utmnr e

because t > 11 and Ty > T} so,

(1+5) — @@ +ym)et et <|(L+3) - L <5 W=
Then

c(t)+yt) <Li+e  VE>Th.
Hence,

fm (2() +y(t) < Lu.

t— 400

In the latter we deduce that system is dissipative (solutions are bounded
) in R
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Chapter 4

Stability

4.1 Linear stability

4.1.1 Equilibrium points

we find equilibrium points of the system in order to study their stability.

axy

Car+By+’
)

W= (1 .
dt ( v+k)?

dz

w = z(l—=x)

We solve

axy

z(l—z)— ——2—— =,
( ) ax + By +
Yy
-7 = 0
x+k Y ’

which implies that by = 0 and hence y =0 or

— y —
x+k
therefore
y=x+k.
Hence, ify=0:

x(1—2)=0 means z=0 or x=1.
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Or, if
y = z+k,
by replacing y in the first equation we get

ar(x + k)
axr + Bz +k)+~

z(l—x)— =0

then we get

(z — 2®)(ax + Bz + k) +7) — az® + azk = 0,
hence
az? + Ba* + Bak + yr — ax® — fad — pka? — az? +axk = 0,
then
—2*(a+B)+2*(a+ B — Bk —a) +x(Bk+~v+ak) = 0,

therefore

—z(2*(a+B) +x(a+ B — Bk —a)+ (Bk+v+ak)) = 0

which implies that

—(a+8—pk—a)£/((a+8—pk—a)*—4(a+B)(Bk + + ak))

r=0 or x=

2(a+ p)

y = 0 y = 0 y = x+k
{xzov{lev{x:O.

Then we conclude that the trivial equilibria are

50,

Pi(0,0), P5(0,k), P5(1,0).

The other equilibria are defined by the system

ey
az + Py + ’ (4.1)
y = z+k.
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Proposition 4.1. The system has a unique interior equilibria P*(x*,y*) (i.e.,
x* >0 and y* > 0) if the following condition is verified:

ko —B) <. (4.2)

Proof. We remplace the value of the unknown y in the second equation of

in the first one, then

alz+k) = (1 —z)((a+ Bz + (Bk +7)),

and we obtain
(a+B)2* +(Bk+~v+a—a—pB)r+ak— Bk —v=0. (4.3)

15 a second degree equation, so in order to solve it we need to determine
the sign of the discriminant

(Bk +~+a—a—p)*—4(ak - gk —7)(a+ )
((Bk 47 +a) = (a+ B))* +4((Bk +7) — ak)(a + B)
(BE+v+a)*+ (a+ B)*—2(Bk +v+a)(a+ B)
APk +v+a)(a+ B) —dalk+ 1)(a+ 5)
(Bk+~+a)+ (a+B))? —4a(l + k) (o + B).

A

=+ 1

Therefore, if holds (i.e.,0k +~v > ak), then

A = (Bk+y)+a+ (a+p)*—4a(l+k)(a+pB)
> (a(k+1) + (a+ B))* — da(l + k)(a + B) (4.4)
> (a(k+1)+(a+p))?=0.

Consequently, A is positive, and the system has two other equilibriums
P (x1,y1) and Pj(xa,y2), where

((Bk+7) — (a+B) +a) £ VA

e 2(a + B) ’
y172 = (xLQ—'_k).

however one of these equilibriums is not in (Ri) In deed, let

b (BE+9+0) —(a+5) VA

2(a+p)

then
(B + v+ a) + VA)

=1 (a+8) ’
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from we have,
VA > la(k +1) = (a+ B)],

and due to

(a(k + 1) + |a(k + 1) — (a + B)])
(o +5) ’

21,’2 < 1-—
which implies that
(1) if a(k+1) < (a+ B)

alk+1)—alk+1)+ (a+ B)

(2) if a(k+1) > (a+ B),
alk+1)+ak+1)— (a+pP) a(k+1)

209 <1 — <2-2

(o +5) a+p

it results that Pj(xa,ys) is not in (R%), remains to verify that x1 > 0 in
order to have (and only one) equilibrium point in the interior of the positive
quadrant, we know that x1 and xo satisfy

<0.

r12x9 = ak — Bk — v < 0;

then the first point Py (x1,y1) is in (R%).

4.1.2 Stability of equilibria

The Jacobian matriz of the system at equilibrium P; is given by

| oy _WWBy+y)  az(azt7)
J(P) — (ax +By+7)?  (ax+ By +7)?
(£) Y 2by
b )2 b—
x+k r+k

(1) At Py(0,0)
J(Py) = ((1) 2) .

The eigenvalues of this matriz are

)\1:1, )\sz

Because, (A1, \2) are positive, then Py(0,0), is an unstable node.
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(2) P1(0, k),

1 ak
J(P) = Bk +
b —b
The eigenvalues are
O L Cltc) e e A W S
Pk + Bk +

Then, we have

(a) if k(a — B) >, Pi(0,k) is stable node;

(b) if k(a— B) <, Pi(0,k) is unstable point.
(3) At P(1,0),

The eigenvalues are

/\1:—1<O, Ay =b>0.

Then the equilibrium Py(1,0) is a saddle point.

Around P*(z*,y*), the Jacobien matriz takes the form

Lo ay*(By* +v)  az*(az” +7)
J(P*) = (aﬂg* +0y +7)? (axt+ ﬁby +7)?

The characteristic equation s

N — trJ(P*)\ + det J(P*) = 0,

where

ay*(By* + ) ) z*(ox* 4 )
det J(P*) = —b(1—2x* — + ab
et J(F7) ( T e+ By +9)2) TVl + By 1)

(or T By 1712 {ay*(By* + )
+ (22" — 1)(az* + By* +7)* + az*(az* +7)}

(or 1 By o @~ Dle+ By )7
+ 2f(az* + Byt + )% + ay*(By* +7) + az*(axt + )}
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From we get

b
det J(P*) = ar T By TP {—ay*(az* + By* +7) + z*(az* + By* +7)?
+ ay*(By* b+ v) + az*(az” + )}

s {—aaz*y* + 2*(ax* + By* + ) + az*(ax* + )}

(™ + Bby* +7)

(™ + By* + )2 {z*(ax* + By* +7)* + az*(ax* — ay* +7)}
b

— v Ty TP {x*(az* + By* +7)? — azx*(ak — )} ;

then

bx*
(x* 4 By* +

det J(P*) = B {(az* + By* +7)* —alak —7)}.  (45)

If det J(P*) is positive, then the stability of the interior equilibrium P* is
determined by the sign of trJ(P*). We observe that det J(P*) is positive if

{(az* + By* +7)* — alak — )} > 0.

To simplify, we developed det J(P*) respecting one variable, from ' then

. 2
(ot + 3+ —afak =) = (D) etk )

= % —a(ak —7),

which implies that det J(P*) has the same sign of

a(x* +k)* + (1 — 2%)(y — ak).

We rewrite

a(z*)? + 2kaz* + ak® + (v — ak) ((2%)* —2z" + 1) .

Let
f(z) = (a+~v — ak)r® +2(ak + ak — 7)x + (y — ak + ak?).
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The discriminant is

A = (ak+ak —7)? —4(a+v— ak)(y — ak + ak?)

(

(

(a+ a)?k? = 29k(a+ a) + 2 — (a + ) (ak? + ) + (ak® + a + 27)ak — (ak)?
(a* + 2aa + o®)k* — 2vk(a + ) + 72

— (@®k* 4+ a(1 4+ kv + %) + aak® + v + (a + 2y)ak — a?k?,
= 2aak?® — 2avk — avk® — ay + aak® + ack

af{ak®+ (20 —y)k* + (a — )k — v}

af{ak(k®+2k+1) —v(k*+ 2k + 1)}

= a(ak —~)(k+1)2

We get three cases.

(1) If ak < ~, A’ is negative, f(x) has the same sign of (a + v — ak), and
we have (a + v — ak) > a > 0.

Then, det J(P*) is positive.
(2) If ak > ~, A" is positive and det J(P*) has at least two solutions x1 and
To, then
(a) if v €] — 00, 1] J[x2, +00[,det J(P*) has the same sign of (a + v —
ak);
(b) if x €]xy, x| it has sign of —(a + v — ak).
(3) If ak =, then

f(x) = ax® + 2akx + ak® = a(z + k)* > 0.
Then, det J(P*) is positive.

Remark 4.1. From the expression ({.5), we find that det J(P*) is positive,
if ak <, hence the eigenvalues associated to P* have the same sign.

To determine the sign of these eigenvalues, it suffices to determine the sign

of trJ(P*),

trJ(P*) = 1-—2z*— ay" By +7) —b
(az* + By* +7)?

= Gor s gy g (20T = b)aat 4 ByT 4 9)" = ay (ByT + )}
1

= e (e + By £ - @ B 4 By )

— ay*(By*+)}-
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From , we get

1
I = g gy e O A )
- (@"+b) (1a:v* + By + )2 — ay* (By* +7)}
= lar 1 By 1o ety = (@ h)aa” + By +9)%
ozt ay” .
- (aa:(* ¥ ﬁy*) +7)? S
(1 —

= oz:c*—(l _f ) — (2" +b)

p
= o - —a + b+ k)
— a(x*1+ k) {a(x*)?) — (a + 206)(3;*)2 _ (a(b + k) . a)x* . abk}_

Let
Py(7) = az® — (a+ 2a)2® — (a(b+ k) — a)x — abk.

ak < v ensures that the determinant is positive, so the stability of P* is

1
related to sign of trJ(P*) = mPg(x).

Lemma 6. If ak < 7 is verified, the interior equilibrium P*(z*,y*) is locally
asymptotically stable if Ps(z*) < 0 and it is unstable if Ps(z*) > 0.

We use the Cadran’s methode [13] to solve the cubic equation Ps3(x*) = 0.
Then we consider the equation

asx® 4 apx® + a1z + ag = 0, (4.6)
with ag = o, as = —(a + 2a),a; = —(a(b+ k) — a), a9 = —abk. Making the
substitution y = asx + as /3 reduces the equation to the standard from

Y’ —py—q=0, (4.7)
where p and q depend on as, as, ay, ag

2

as
p = —a1a3+—3,
a9 3 a3zt
= it -2(5) '
q apas 3 + 3
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Let

Yy=u-+u.

v —py —q=(u+v)®—3uw(u+v)— (u+0*)=0.

And from there

Then

3uv = p,
w40 = q.
3
3,3 _ p>
vt = (=],
(3
uw P = g,

and we obtain that u® and v3 are solutions of the quadratic equation

22— qz+ (2)3:0.

Then we constitute three cases.

(1) if 27¢> — 4p® > 0, then (4.8) admits two real roots u®,v® such that

R O]
! SRAAY: 3/
R (CEE)
2 2 3/
each admits a single real cubic root
— 24 a\* _ <2)3
B RO
- O
2 2 3/
From lemma 3 we deduce the unique real root of the equation
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then @ has one real root

So, we have P3(x) <0 if 0 < x <19, and P3(x) >0 if ro < x.

(2) if 27¢* — 4p* < 0, we find first both u®,v® roots of (4.8), which are com-
plex conjugates, then extract their cubic roots u,v. And u® admits three

cubic roots: w, ju, j*u and even for v.

S ORI CRO O]
J <ﬂ>—<@> dﬂ— <€>2—<2>3

So the posszble sums of these roots is 9 values for Y, whzch s too much
for an equation of degree 3. we imposed the relationship

u/l]:g.

So that if we perform one of the three possible choises for u, the other
value v is well defined, so also x. Precisely, we have v = u. Indeed,

uv = p/3 is real so

p D ﬂ b .
= —=——-—=——U=cl with c € R.
3u  3u u 3|u|2

But as v3 is conjugated from u®, we have v® = u® = u®, and c=1

we finally deduce the three real solutions: (lemma 4)

_ /(4 q_ /Q 7_’
Vi = up = \/+Z \/ 2 3
Yo = uz—l—vg—j\/ +m/ 2\3/——1\/
Ys = u3+v2—]2§/ —l—u/ —l—]\/——z\/

Then there are three real roots: r1,19 and r3.
we know that Psy(x) = (x — r1)(z — ro)(x — r3), and therefore, riryrs =
abk > 0 then one of them is positive, then
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(a) if ro <13 <0<y, then P3y(x) >0 if 0 <r <z, and P3(x) <0 if
0<z<ry

(b) if 0 <1y <1y <3, then Py(x) >0 if ry < o <19, o1y <, and
Py(z) <0 ifx <ry, andry <z <rj.

(3) if 27¢* = 4p3, then

v o= q/2,
v = q/2,
then admits
q
Yo = 2</;7
and

_~3Q ~23Q
y1,2_]\/;+j \/;7

and j*+j+1=0%& 52+ 7= —1 so,

_ (:2 -3€:_3Q
Y12 =1(J +])\/; \/;
1 a

then there are one real root positive ro = — (yo — 32), and a double root
as

T = —(Yy12 — %); we also have P3(x) < 0 if 0 < x < ro, and Ps(x) > 0 if

as
o < @.
Remark 4.2. In [11] we find: (b) if 0 < 1y < 1o < 13, then P3(z) > 0 if
0<mr <z and Ps(z) < 0 if < ry, which is different from the conclution
we are lead to in (b).

4.2 Global stability

Lapunov function is one of the methods in study the stability and in this
chapter, through this function, we will prove globally asymptotically stable of

system :

Theorem 4.1. The interior equilibrium P*(x*,y*) is globally asymptotically
stable if

g < a (4.9)

2aL, < 7, (4.10)

Bk +y)(aLy +7)(1+k) < 4Bk, (4.11)
a(l+2k) = B(1+k) < 7, (4.12)
a—A4BL, < 4. (4.13)
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Proof. Theorem 1.3 gives a result for solution x = 0 to be globaly asymptot-
ically stable. In our cas we are studying the global stability at (x*,y*) # 0, by
this a simple changes variables which

x(t) =2'(t) + 2%, and y(t) =y'(t) +y",

then

da'
dt

L G
dt (@ + %)+ k v
we choose a Liapunov function
/ / * * / * * :LJ a * / * * y/
V(2" y) = (ex"+By"+7) (2 — 2" — 2" In - —i-g(x—l—/{:) Yy —y —y'In 7))

where

(2" +2")(y +y")
ax + Py + v

— (@ +2)(1 - (2 +a7)) - ©

Y

Vilte',y) = (ax*+By*+7v) |2 — 2" —2*In x—*)>,

X

a(@,y) = 3" +k) (y’—y*—y*ln (3—))

we find that V' has to satisfy

(a) V(z*,y*) =0, if 2’ =3 = 0.
(b) V(«',y') > 0, for all (z',y') # (0,0), we have that (c,3,7,a,b) are
positive and (z*,y*) > 0, under the condition (4.3), and hence

we suppose
.,LJ
fl@) = 2 —2z"—2"In <—>
:Ln*
/ /
()
r* r*
and



) 1
we making o = —, 3 = —, s0
x

fla)= é (az' — 1 —In(az’)),

9() = % By —1—In(3y).

befor to study variation of this function f,g we get that f(«) and g(5)

are positive for all (o, B) € RT, therefor V(x*,y*) > 0.

av(z',y)
dt

we know,

(c) <0, for all x # 0,

av; dvl-l; N dv; -
dt  dx dy’'

dt

dV a * y* :
T = s rn(1-L) 7,

and using , we get

dav; £\
— (@) = (az*+By* +7) (1 - —) z,

%( /,y/> — (ax*+5y*—|—’y)(x’—x*) 1— o/ — ayl T
dt x! ax' + By +
ay” ay’
= (az* + Py +7)(a' — a* tart - - ——
( By + ) ) (ax*+ﬁy*+”y ax’+ﬁy’+”y)
— —(ax* +6y* +’Y>(ZE, —.’E*)2
ay*(ax’ + By +7) — ay'(ax” + By + 7))
+ O_/I’* + * ‘I‘ l’/ —l'*
AR (az + By + o’ + By +7)
acx’ + ary aoy’ )
_ .T/—ZL'* Ik + .T/—.T*z,
@ =) o) () (Y )
Similarly,
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Doy = %(x*—l—k:)b(y/_y*) (1 v )y

dt Y ! +
= alz* + k)Y — ) x* v x,+ )
e (222 T
— aly —y) (—k(y —y*) + y(’g:r—k:)v) 7'y — )
— aly — o) - — y)/(a(:;lk]){: )+ y(2' — z*)]
= —a(y -y )+ (m,ai m (' —z*)(y — y*).

Therefore,

= = (—(aaz* + 8y +7) + (—m, f‘;‘z . 7)) (af —a*)?

/ *\ ()1 * acx’ + ay ay’ / %
+ (2 — %) (y —y)(— (a:ﬂ’+ﬁy’+7> + (m,+k)> —a(y —y*)*.

The above equation can be written as

avi e e (9@ y) —h(2 ) (2 -
i = (iU T,y Yy ) (—h(x’,y’) a y/ _y* )

where

aay’

l‘/, / = —(az* + * 4 4
9(",y) ( B;y 7) a1 By
a —ax’ — Y
h(z',y) = = .
(@ 9) 2<ax’+5y’+7+(x’—l—k:)3
* To prove dV/dt < 0 we follow the steps Sylvester’s criteria that we
mentioned in the chapter 1, since a > 0, if only if

(1) g(z',y") <0;
(2) ¢(2',y') = ag(z',y') + h*(z',y') < 0.
Proof. It is of (1)

aay’

— <0

ar’ + By’ +v

So, as A is an attracting positively invariant set, where, all solutions
satisfy 0 < 2’ <1 and 0 < 2’ +y < Ly, then

g(a',y") = —(ax” + By" +7) +
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aay’

g(x',y) < —ax*+

az’ + By +7 ,

ay* ay
< « _1+ + 9
ax* + By* + v aw’+ﬁy’+7)

a
S o~y
2aL
< al -1+ a 1).
Y
Therefore, if holds, then

g(2',y") <0, V(2 y') € A.

Proof. of (2)

a*ay’ a2 ar’ + Y 2
N * * 1 [ = + < 0.
owsy) = —alaa™ By )+ o ( or' + By +y otk

Since (for z' fived)

% _ dafoz’'+1)
Oy’ (aa’ + By’ + )
N @ ( ar'ty LY Blas’™+y) 1
2 ar' + By +~ ' +k (ax' + By +7)?  2'+k)’
then,
P —2a’Bafax +7)(az’ + By +7)
ay* (ax' + By’ +7)?
L[ Bl ) flaz'+y) 1
2 [\(aa' + By +7)* o' +k) \(aa! + By +7)* 2'+k
P Y —28%(aa’ +7)(ex’ + By + 7))}
ar' + By +~v ' +k (o’ + By + )4
. _mzcw«w+ﬁw (e 1Y
B (ax’ + By’ +7)? (! + By +7)? o' +k
L @ —252(0@“ +7) ar’+y Y
2 (ax' + By +7)3 )\ aa' + B8y +~ o' +k
_ 2d’aB(aa’ +79) N a?B?(ax’ + )3 a?
(aa’ + By +7)° (a2’ + By +7)* 22 + k)?
a*B(az’ +7) B a*8%y' (ax’ +7)

(o’ By + 72 + k) 2ax’ + By + 1P +E)
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We have

@ . _2a2a6(ax’+7) B a’B%y (' + )
oyt T (e + By +9) | 2ew’ + By + 1) (@ + )
a a
(a2’ + ) (* 2w +)k)2 T @ R -
a*Blaz’ + a”f
< - Aoz + k O
(ol + By P Ry T
a a

2 k2 (o )@+ )

We note, using ({.9), that for (z',y') € A

1 82¢ ﬁ(CY‘F’V) /
@07 S TaLi 4Py k) TR
6] 1
B R (RN S C Ry
therefore,
1 0% < _ 2k 32 +5_2+L+£'

ady® (el +7)P(1+k) P28 ky
If holds, then

2
Sat<
a” oy
Hence, 0¢/0y' is strictly decreasing in R, with respect to y'.
Now,

0.

0¢ a’a a? B 1
0 ,|y’:0 - / Y / + /
Yy ar’+v 2 \ax'+v 2 +Ek
2
a , oo
- 2(0&&]’ +7)($, n k‘)((a - B)SC + k(2a 6) ’7)

In, A, all solutions satisfy 0 < x < 1, and from

(o= B)a’ + k(20 = B) =y < (o = B) + k(2 = B) — 7,

then, if holds, (0¢/0y")|y=0 < 0 in Ry. Hence, ¢p(2',y') is strictly
decreasing in Ry. This yields ¢(2',y') < D(a',0) for (z/,y') € A; that is,

using @, we get
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2
* * a
o2, y) < —alax™ 4+ By" +7)+ —

4
a
< a(ﬁ(l‘ +ya)+7 4)
Consequently, due to ,
o', y') <0, V(' y') € A.

Then dV/dt < 0 along all trajectories in the first quadrant (z*,y*); so P*(z*, y*)
18 globally asymptotically stable.
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Chapter 5

Permanence

Permanence or uniform persistence of strictely positive equilibria means that
the omega limit of the trivial equilibrium points cannot intersect of the positive
cone. In this chapter, we prove under necessary condition the permanence of
the system

Definition 5.1. Consider an ODE model for n interacting biological species

dl’i

dt
where x;(t) denotes the density of the ith species. Let (x1(t),x2(t), ..., x,(t))
denote the solution of with componentwise positive initial values. The
system, 15 said to be weakly persistent if

:fi(x1>$27'-'7xn)7 1=1,2,...,n,

lim sup z;(¢) > 0, i=1,2,...,n,
t—>+00

persistent if
liminf z;(t) > 0, i=1,2,....n,
t—>+00

and uniformly persistent if there is an €9 > 0 such that
liminf ;(t) > e, i=1,2,...,n.
t—>+00

The system 1s said to be permanent if for each i = 1,2,...,n there are
constant €9 and M; such that

0 < e < liminf z;(t) < limsup z;(t) < M;.
t<+00 t<+o00
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Suppose that Y is a complete metric space with T = Yo|JOYo for an open
set To. We choose Y to be the positive cone in R2.

Definition 5.2. A flow or semiflow on T = Yo|JOYo under which Ty and
0Yy are forward invariant is said to be permanent if it is dissipative and if
there is a number € > 0 such that any trajectory starting in Yo will be at least
a distance € from 0Yq for all sufficiently large t.

Let w(0Y0) = U,eor, w(u),such that w(0YTy) € 9T denote the union of the

sets w(u) over u € 0Yy.

Definition 5.3. The w-limit set w(0Yy) is said to be isolated if it has a
covering §) = Ufcvzl Q. of pairwise disjoint sets C which are isolated and
invariant with respect to the flow or the semiflow both on 0y and on YT =
TolJOYo, (2 is called an isolated covering). The set w(0Yo) is said to be
acyclic if there exists an isolated covering Uszl Q. such that no subset of ()
is a cycle (The chain is called a cycle if Q= Q).

Theorem 5.1. Suppose that a semiflow on Y leaves both Yy and 0Ty forward
invariant, maps bounded sets in Y to precompact set for t > 0, and it is
dissipative. If in addition

(1) w(0Yy) is isolated and acyclic;

(2) W*(Q) N Yo =0 for all K, where Up_, Q is the isolated covering used
in the definition of acyclicity of 9Y.

Then the semiflow is permanent.

Remark 5.1. [J] The stable set of pairwise disjoint sets ), is denoted by W*
( the stable manifold) and is defined as

Wo () = {z|x € T,w(z) # 0,w(x) C U}

And, we have this theorem.
Theorem 5.2. Let us assume the following condition:

k(a—pB) <. (5.1)
Then, system is permanent.
Proof. We take Y the strictly positive quadrant of R?; then w(9Yy) consists
of the equilibria Py(0,0), Py(0, k), and Py(1,0).
Py(0,0) is an unstable node, Py(1,0) is saddle point, and its stable manifold
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IS T-axis.

If ak < Bk +7, Pi(0,k) is a saddle point stable along the y-axis and unstable
along the x-axis.

Then, all trajectories on the axis (ox) other than Py(0,0) approach the point
Pi(0,k). It follows from these structural features that the flow in 0Yy is
acyclic. So w(0Yy) is isolated and acyclic.

The stable manifold of P»(1,0) is the x-azxis and the stable manifold of Py(0, k)
1s the y-axis, and we know, from Theorem 3.1, thet these stable manifolds can-
not intersect the interior of 1.

In this case, Theorem 5.1 implies permanence of the flow defined by .
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Conclusion

In this memory, we have presented and analysed the mathimatical models de-
scribing the dynamics of the population of interacting species. This model takes
into account the domain biological.

The main study out during this work is the treatment of the question of exis-
tence of an attracting set, boundedness of solutions and persistence for model

Under certain imposed conditions, we have formulated the result of existence,
boundedness of solutions in the Theorem 35.1.

We have considered with a certain condition the local and global asymptotic
stability of trivial and interior equilibrium .

We have completed this study by the permannence of system .
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