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Abstract :

Generalized Fractional Calculus appear in modeling of important various scientific
fields such as the complex phenomena in mathematical, physics, engineering, chem-
istry, electricity and medicine.

The main objective of this thesis is to contribute the development of the theory of the
existence and uniqueness of solutions of certain fractional differential equations such
as: neutral differential equation, Langevin equation, hybrid differential equations
involving different fractional derivatives as 1-Caputo, Riesz-Caputo, Katugampola
with local and nonlocal conditions in Banach spaces.

The results obtained in this work are based on the fixed point theory: Banach’s con-
traction principle, Boyd-Wong, Scheafer, Krasnoselski”s, the technique of Nonlinear
alternative of Leray-shauder, Dhage. We also establish the Ulam-Hyers stability re-
sults for some addressed problems. We have also provided an illustrative example to

each of our considered problems for exhibit the effectiveness of our achieved results.

Keywords : Fractional differential equations, Existence, uniqueness,

Fixed point theorems, Ulam stability analysis.

Resumé

Le calcul fractionnaire généralisé joue un role important dans la modélisation des
phénomenes complexes en mathématiques, physique, ingénierie, chimie, électricité
et médecine. L’objectif principal de cette these est de contribuer a 1’étude de
I'existence et de I'unicité des solutions de certaines équations différentielles fraction-
naires telles que : une équation différentielle neutre, Langevin équation, équations
différentielles hybrides impliquant différents dérivés fractionnaires comme 1-Caputo,
Riesz-Caputo, Katugampola avec des conditions locales et non locales dans les es-
paces Banach. Les résultats obtenus dans ce travail sont basés sur la théorie des
points fixes: Banach’s principal contraction, Boyd-Wong, Scheafer, Krasnoselski,
la technique de Nonlinear alternative de Leray-shauder, Dhage. Nous établissons
également les résultats de stabilité d’Ulam-Hyers pour certains problemes abordés.

Nous concluons que les résultats obtenus par des exemples illustratifs.

Mots clés : Equations différentielle fractionnaire, Problemes aux limites,

Existence, Unicité, Théorémes de point fixe, Ulam stabilité
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Notations
= Xi
¢ zeta.

a  The integer part of the real number a.

Re(a)  Real part of complex a.

N  Set of Natural numbers 0,1,2,3....

R Set of Real numbers (—oo, 00).

R™  Space of n-dimensional real vectors.

C  Complex numbers.

n!  Factorial (n),n € N: The product of all the integers from1 to n.
Cp Coeflicient binomial.

J  Finite closed interval of the real axis R.

C(J)  The space of all continuous functions from 2 into R.

C™(J)  Space of n time continuously. differentiable functions on {2
AC(J,E)  Space of absolutely continuous functions on J.

AC™(J,E)  Space of real-valued functions f(¢) which have continuous derivatives

up to order n — 1 on J.
L'(J)  Space of Lebesgue integrable functions on .
L*(J)  Space of measurable functions u with |u|? belongs to L'(().
L>(J)  space of functions u that are essentially bounded on €2 .
X?  Space of complex-valued Lebesgue measurable functions 2.
I*¥  The fractional 1-integral of order o > 0.

I, The Riemann-Liouville fractional integral of order o > 0.

P12, The Katugampola fractional integral of order o > 0, p > 0.



Igfin The Erdélyi-Kober fractional integral of order 6 > 0, 7 > 0, a € R.
Ijﬁ) The 1-Riemann-Liouville fractional integral of order a > 0.
RLpDe  The left-sided Riemann-Liouville fractional derivative of order o > 0.
RLpDe  The right-sided Riemann-Liouville fractional derivative of order a > 0.
“DY.  The left-sided Caputo fractional derivative of order a > 0.

“D,-  The right-sided Caputo fractional ¢-derivative of order a > 0 .

RCD7. The Riesz-Caputo fractional derivative of order a > 0.

D The Katugampola fractional derivative of order a > 0.

DZ‘jrw The y-Caputo fractional derivative of order a > 0.

I'(o)  Euler gamma function which is now denoted by
+oo
[Na) = / t*te~tdt.
0

E.(z)  The Its one parameter generalization, called the Mittag-Leffler function

which is now denoted by

Zf‘ak‘+1 a>0.

k=0

E.p(z) A two-parameter function of the Mittag-Leffler type is defined by the

series expansion

>0,0>0.
;Fak+ﬂ a>0p

FC  Fractional calculus.

FD  Fractional derivative.

FDE  Fractional differential equation.
PDE  Partial differential equation.

FI  Fractional integral.
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IVP  [Initial value problem.

BVP  Boundary value problem.

FHDE  Fractional hybrid differential equation.
FPT  Fixed point theory.

UH  Ulam-Hayer stability analysis.

FFPE  Fractional Fokker-Plank equation
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Introduction

0.1 History of fractional calculus

Since the 60s of the last century Fractional Calculus has got a remarkable progress
and now it is recognized to be an important domain for scientists especially math-
ematicians. Fractional Calculus (FC) started in 1695 with the ideas of Gottfried
Leibniz generated from letter which was written by Antoine Marquez-L’Hopital ask-
ing him ”what would happen if the order of the derivative was a real number instead
of an integer?”. Leibniz responded: "It will lead to the paradox, from which ben-
eficial consequences will one day be extracted”. This exchange Between L’Hopital
and Leibnitz is generally considered the beginning of fractional calculus. However,
the actual development of fractional calculus was in 1832. When Joseph Liouville
introduced what is now called the Riemann-Liouville definition of the fractional
derivative. Many other definitions of fractional integrals and derivatives are based
on the Riemann-Liouville integral, other definitions extend the notion based on the

differences of the kernel functions.

0.2 List of mathematician’s contributions to frac-

tional calculus:

In this section we address a list of mathematicians, who have provided important
contributions to fractional calculus.

P.S. Laplace (1812), proposed the idea of differentiation of non-integer order for the
functions [61].

Liouville (1835) derived the formula of the fractional integral and fractional deriva-

tive respectively of the form (see [63])

_ 1 > 4
and
B 1 *d'g(x+1t) 544

Riemann (1835) derived the formula of fractional integrals related with the Liouville

fractional integral of the form (see [86])

D) = o [ - )P g()dt, Re(B) >0, 3)

1



where Re(f) € (n—1,n],n € N and Re(-) denotes the real part of complex number.
Griinwald-Letnikov (1867-1868) introduce the operator called the Griinwald-Letnikov
fractional operator of the form (see [64], 93])

AP
Dg(r) = Jim 25,10, ()

where Ai g(x) is a difference of fractional order, given by

oo

Apg(x) =Y (=1)"Clg(x — kh). (5)

k=0

Sonine (1872) introduced the Sonine fractional derivative, given as on the form (see

[99, 100])

_ 1 “dg(t) P
Digla) = sy | G — 0 (0

where Re(p) < f <Re(p+1), peC.
Hadamard (1892) proposed the following fractional integral in the form (see [51])

Q?B ! X
lﬁg(x)zr(m/o (1g_(tt)zﬁdt, Re(B) > 0. (7)

Weyl (1917) derived the left-sided and right-sided of the Weyl fractional integrals
in the form (see [109])

Py(x) = F(lﬁ) /OO . f(gl_ﬁdt 0<pB<l, (8)
y(z) = F(lﬁ) /:° - f%)lﬁdt, 0<B<l. 9)

Marchaud (1927) introduced the Marchaud fractional derivatives of the form (see
[711)

t1+8

Doy = p [ 8i9(@) g, (10)

where Alg(z) is the finite difference of order [, for [ > 3 and [ € N. When Alg(z),
it is called the Weyl type finite difference for [ =1 and 0 < g < 1.
Hadamard (1927) introduced the Hadamard fractional integral, and the fractional

derivative respectively was given by (see [71])

leoe) = F<16> / x (mg(?l ﬁcf 0<b<, (11)

2



Dag(x) = ml—m /0 géln) _>6g+(1>it’ 0<p<l. (12)

Hille and Tamarkin (1930) proposed the Abel type integral equation on the second
kind (see [?])

§ / v h@)
x) = h(z) — dt, 0<p<1,§eC, 13
o) =ho) = 5 | ¢ (13)
with the solution (also called the Hille-Tamarkin fractional derivative, (see [?])
d [* 5
h(z) = — [ Bslé(z —1)"]g(t)dt, 0<fF <1, (14)
T Jo

where Eg[¢(x—t)?] is the Mittag-Leffler function, with one-parameter constant & € C

is defined as

Es( E(x—t)° if 7 £ > 0.

Love and young (1938) proposed the convergent fractional integral in the form (see

[67, 68])

1 " g(x —1t)

8 . . g

I7g(z) = T3 rignw/o e dt. (15)
In 1939, Hille introduced the Hille fractional differential operator in the form (see
[53])

T T — B
R5.090) = ¢ [ Bl 00 Rels) >0.6eRy (10

where R(3,€) is the resolvent of #L18 and Eg[(x_;)ﬁ] is the one parameter Mittag-
Leffler function, with 5 > 0.

Erdélyi-Kober (1940) proposed the fractional integrals and derivatives in the form
(see [41])

ot—oB+n) to(n+1) 19(5)
I+ang( )_ F(B) /0; ( . )1 5d57 (17)
and the fractional derivatives as
1 k
Do) = 0 (D) 0 (12,100 0, (19

where > 0,0 > 0,n € R.



Cossar (1941) reported the Cossar fractional derivative in the form (see [30])

B 1 od ™ g(t)
Digr) = ~ra—gy im a f Go oy

dt, p>0. (19)

Riesz(1949) defined the fractional calculus based on the Fourier’s work, which is

called the Riesz fractional calculus in the form (see[87])

RZ B (1) = 1 OOLS) s o
905) = et | e B9 >0 e

and

3 B 1 dr [~ 9(s)
Y DRI) = o T B cos(mB/2) da /_ s (21)

Hille and Phillips (1957) introduced the integral in the form (see [54])

B _ é-ﬁ—i_l > B &(z—t)
I (t)—F(HB)/o 7S g (t)dt. (22)

Chen (1961) introduce the Chen fractional integrals and derivative respectively of
the form (see [32])

IPg(x) = ﬁ /a373 |z —t|°tg(t)dt, x> a,Re(B) >0, (23)

1 1 dg(t)

154 _
DY@ =505 ), =i a

dt, x> a,Re(f) >0, (24)

where Re(f) € (n—1,n],n € N and Re(+) denotes the real part of complex number.
Srivastava (1964) proposed the fractional integral in the kernel of the confluent

hypergeometric function was given as (see [102])

x — ¢t B—1

Pow) = [ O R g — g0 Re(®)>0. (29
o T(B)

where 1 Fi(a; B2 — t) is called the confluent hypergeometric function of the first

kind, on the form

3
I

1Fi(a,b2) =) Ezsn o

n=0

is defined for |z| < 1 and «, 8 assumed arbitrarily real or complex values and b € Z .



Cooke (1965) proposed the Cooke fractional operator in the form (see [31])

9g—2(v+8) fb t2(”+1);_1g9(t)t2”_ldt, B >0,

F(B) a (x27t2)
[Vpg( ) g(m)uﬁ ::O, (26)
1_2(’/4’[3)—1 b y
s Jo (@ = )P g(t)dt, 0< B < 1.

Saxena (1967) introduced the Saxena fractional integral within the kernel of the
Gauss hypergeometric function, is defined by (see [95])

—o—1

Pg(z) = xl“(ﬁ) /Ox oF1 (1 — B, a+m;ast/x)g(t)t’dt, Re(B) >0,  (27)

where o F1(1 — 5, + m; «; t/x) is the Gauss hypergeometric function is defined as

o0 ’I’L

o Fi(a,b,c;2) = E In —
(¢)n !

n=0

is defined for |z| < 1 and «, 8 assume arbitrary real or complex values and ¢ € Z*.
Kalisch (1967) proposed the left-sided and the right-sided of the Kalisch fractional
derivative of purely imaginary order (5, where 8 = if, respectively in the form (see

[63])

o) = s [ =0 a0 (28)
and

[0 g(z) = —— / (¢ — 2y g(t)de (29)

I = a1 g) ), it

Caputo (1967) introduced the Caputo fractional derivative in the form (see [?])

1 |
DPg(z) = / g™ (@)dt, x> 0,Re(f) > 0. 30
@ =7 | G0 (5) (30)
Dzherbashyan (1967) proposed the Dzherbashyan fractional integral used the gen-
eralization of Hadamarod’s idea and gave the fractional integral in the form (see
[33])

[ﬁg(gc)zr(lﬁ) /0 (_glf;i’jzﬁdz, Re(f) > 0. (31)

Srivastava (1968) proposed the Srivastava fractional operator which is related to the

generalized Whittakar transform in the form (see [103])

Rgﬁ’ng(];) — %xf /xoo(zn _ mn)ﬁflzféfnﬁJrnflf(Z)dz’ > 0. (32)



where g € L,(0,0), %—i—é: 1,0<p<oo,f>0,§E> %.
Dzhrbashyan and Nersesyan (1968) proposed the Dzhrbashyan-Nersesyan fractional

derivative in the form (see [39])

1 o 1
DPg(x) = m/o mgn(ﬂdt, Re(8). (33)
Osler (1970) introduced Osler the fractional integral in the form (see [103])
1 v t
I7,9(x) = /) / o g(k)@))l_ﬁk(l)(t)dt, 0<p<1, (34)

and the fractional derivative of the form

B oly) — g9(t) p Cogle) —glt) )
Duyg() r(l—ﬂ)(k(z)—k(t))ﬂm—ﬁ)/a (hla) — k(e ()

where > 0,0 < a < 1, k € O(I), k™M (t) # 0.
Love (1971) considered the Love fractional integral and fractional derivative of purely

imaginary order respectively as (see [69])

Do) = iy |, G o
IFg(z) = % /000 %dt. (37)

Rafal’son (1971) introduced the Rafal’son type Bessel fractional integration and

derivative respectively in the form (see [85])

Py(x) = ﬁ /Oo(x — )t g(t)dt, 0< B <1, (38)
DY g(x) = ﬁ /OO(:U —t)f e tgP()dt, 0< B < 1. (39)

Prabhakar (1972) introduced the Prabhakar type Humbert fractional integral in the
form (see [83])

oo = [0, (shat-Lew-n)aon )

where 0O, (ﬁ,b, cl— %,5 (x — t))is two variable hypergeometrique function or the



Humbert function is defined as

o0 (suhst ~ Leta 1) - ifﬁ o (Bhu(1 = )" (el )"

mInl(c)min

where (), = L 5+ ") p=0,1,2,..., and 8,b,c are parameters which assume real or
complex values.

Sneddon (1975) introduced the Sneddon fractional integral of the form (see [98])

—p(v+B)  rr yp(v+1)-1
1"g(z) = 22 / £)dt. 41
o 9() @ . (xp_tp)l_ﬁg() (41)

where 8,v € C,Re(5) > 0,p > 0,t > 0.
Saigo (1978) introduced the Saigo type Gauss hypergeometric fractional integral

operator in the form (see [63])

[Prvga) = / w0 F (6+ —v 5~1—3) (t)dt,  (42)
- T, SRR

where 5 F (5 +v,-v,5;1— %) is the Gauss hypergeometric function defined by

2F1(ﬁ+%—l/,531_£) - <6+(7)3L( 2 ;!E)n,

n=0

and 3,v,v € C.
Gearhart (1979) introduced the Rafal’son-Gearhart type Bessel fractional integral
(see [48])

Py(z) = ﬁ /Ooo(x — )P et Dg()dt, 0< B < 1. (43)

Skornik (1980) reported the Skornik tempered fractional integral and derivative
respectively of the form (see [96] O7])

I%g(x) = 6712 /I %efg(t)dt, 0< /<1, (44)
and ,
el L T
DPg(x) = F(el i / - c S 0<f<1 (45)
and
D;Ilg(x) = g(x). (46)

Peschanskii (1989) introduced the fractional integral operator involving the curvi-



linear convolution type in the form (see [84])

1 t dt
P77 g(x) = T/ZFl (17 L1+ 5; —) 9(t)—, B.v,v eC, (47)
™ Jr i t

where o F} (17 1,14+ 5; %) is the Gauss hypergeometric function.
Samko and Ross (1993) reported the variable-order fractional integral given by (see
1941)

IP@g(z) = m / w(m — )@ g)dt, B(x) >0, (48)

and the variable-order fractional derivative given as

D@ g(x) = m% /j@ — )7 P Wg(t)dt, 0 < B(x) < 1. (49)

Hilfer (2000) introduced the Hilfer fractional derivative by (see [55])
DMg(a) =137 D1 g (), (50)

where 0 < a < 1,0 < < 1,9 € LY(R*) and DWg(x) = d%(;), 170=8) and [(=70-F)

are the Riemann-Liouville fractional integrals.
Coimbra (2003) introduced the variable-order fractional integral in the form (see
[297)

v _ 1 Y1 dg(t) g9(0" —¢(07)
D*gla) = F(l—ﬁ(w))/o eoor a T pee - O

where 0 < f(z) < 1.
Kilbas, Saigo and Saxena (2004)introduced the following general fractional deriva-

tive defined by (see [57])

Dlgta) = gz [ 6=t B e = 0 (52)

where 3, p,v,w € C,Re(8) € (n—1,n],n € N and Ef ., (w(x —1)7) is two

parameter generalized Mittag-Leffler function with parameters a, 8 > 0 defined as

n

> z
Eop(z) =) .
“— no+ I6;

Agrawal (2007) developed the fractional derivative and integral operators in terms



of the Riesz fractional derivative, in the form (see [10])

IPg(z) = F(nl— 3 dci:" / z f(;)n_ﬁdt, Re(p) € (n — 1,n], (53)
DPg(x) = F(nl— B z _1 E dtsz)dt, Re(pB) € (n — 1,n], (54)

and
Py(z) = %@/ w— P g(0)dt, 0<B<1. (55)

Gajda and Magdziarz (2010) introduced the fractional derivative for Fokker
Planck equation (FFPE) in the form (see [45])

Dl g(z) = % /OxM(x —t)g(t)dt, B>0. (56)

where the memory kernel M (t) is defined via its Laplace transform denoted by M (p),
is
M(p) 1
P) = ——5—F
(p+&)7+¢°

Garra et al.(2014) introduced the fractional derivative of the form (see [47])

(57)

D ga) = [ (= B fwle = 0°)gV (Ode. Rel) >0 (59)

where 3, u, p,w € C, and Re(8) € (n — 1,n|, n € N, Re(u) > 0,9 € AC™[0,b],0 <
t<b<ooand Ef (w(z — t)%) is two generalized Mittag-Leffler function.
Caputo and Fabrizio (2015) introduced the Caputo-Fabrizio derivative in the form

(see [25])
Balr) = M(B) ’ exp [ — B r— (1)
D+g( ) (1 _ /B) /{; p ( (1 _ /8)( t)) g (t)dt7 (59)

where M () is a normalization function such that M (0) = M(1) =1, 0 < g <
1,9 € H'(a,b),b > a,a <x < b.

Zayernouri, Ainsworth and Karniadakis (2015) proposed the fractional derivatives
in the form (see [115])

Ex d x
D g(x) = ﬁ@ / (x—t) Pl Sgt)dt, x> a, (60)

and o 4
D29(w) =t / (x—t) P Sgt)dt, < a, (61)

9



where 0 < < 1,£ > 0.
Yang, Srivastava and Machado (2015) proposed the fractional derivative with the
exponential function by (see [114])

Bo(x _ 2= M) 4 xex __B xr —
Dgte) = LD Moy (L ta-0)) st (o)

where 0 < 8 < 1, M(5) is a normalization function such that M(0) = M (1) = 1,
g€ H'(a,b),b>a,a <x <b.

Sabzikar, Meerschaert and Chen (2015) introduced the fractional integrals and
derivatives respectively of the form (see [91], 22, 26])

@ gy = L [ (g — f)E1e—ED)

I7g() F(B)/z (x—1) g(t)dt, (63)
B oiz) = L [ (g — )Lt o (8)

D7g(x) F(ﬁ)/x (z—1) g (t)dt, (64)

where 0 < < 1,£ > 0.
Atangana and Baleanu (2016) proposed the Atangana-Baleanu fractional derivative
with the Mittag-Leffler function in the form (see [I§])

gy M@B) [“. (B _ ) Y
Digla) = 7 5)/a B (~ i e —07) G (65)
where 0 < 8 < 1, M(5) is a normalization function such that M(0) = M (1) = 1,

g € H'(a,b),b > a,a < z < b, and Ep <—ﬁ(m — t)5> is one generalized Mittag-

Leffler function.
Yang (2016) proposed the Yang fractional derivatives and variable fractional order
as (see [111])

DPg(z) = \/% ax exp (—ﬁ(m — t)zﬁ) dii—it)dt’ (66)

where 8 > 0,9 € ACla,b] and a < x < b.

DPg(x) = % /az exp (—(z — 1)) di]l—it)dt, (67)
and
DyWg(x) = o) —16(:1:)) / Eg(a) (—(a = )") dz—?d@ (68)

where Eg() (—(z — t)?®) is the Mittag-Leffler function with one-parameter variable

10



0<pB(x) <1
Li and Deng (2016) proposed the Li-Deng fractional derivatives in the form (see
[62]).

6—&1‘ n T
Dig(e) = dcin / ; f<z))ﬁ+leftdt, (69)
and
(=Dre s a [P gt)
DPg(x) = T —7) dx”/m (:vgt)ﬁ“ef dt, (70)

where Re(8) € (n — 1,n],n € N and for any £ > 0.

Torres (2017) introduced the Torres fractional derivatives in the form (see [107])

Digte) =€'ate) + iy [ g e @
and
o) =)+ i [ G )

where 0 < # < 1 and for any £ > 0.
Sun, Hao, Zhang and Baleanu (2017) proposed the fractional derivative in the form
(see [104])

DPg() = M/z exp (—%(as - t)ﬁ) df;—(?dt,o <B<l  (13)

Yang and Machado (2017) introduced the Yang-Machado variable-order fractional
derivative with the another function by (see [113])

D™ g(x) = dt, (74)

I(1—p(t)) /a ((x) = (1))
where 0 < 8(z) < 1, and g, p € c'[a,b], 'V # 0.
Dehghan, Abbaszadeh and Deng (2017) presented the fractional derivative in the

form (see [?])

1 ’ d’g(t)
Dlg(z) = ——— — t)fHlemSet) dt 75
where djﬁfg) is the Riesz fractional derivative, with 1 < g <2, > 0.

Yang, Machado and Baleanu (2017) proposed the fractional derivatives in the form
(see [112])
8 ! dg(s)
Dlga) = [ Bgi-(t - 5) s, (76)

a

11



where ng(z) =3 B IT N T o, B, ¢, 0,v € C, and Re(f) > 0, max(0,Re(f)) €

n=0 I'(nf+v) n+1°’

Ri,n € N.
Yang, Gao, Machado and Baleanu (2017) proposed (see [112])
g oo BME@B) [T Ble—1t)\ dg(t)
Dlg(x) = (1—5)/(1 sin ¢ 15 o dt, (77)

where 0 < § < 1, M () is a normalization function such that M(0) = M (1) = 1,
g€ HYa,b),b>a,a <z <b.,

,x e R. (78)

Almeida (2017) based on the Liouville-Sonine-Caputo fractional derivative, Almeida
defined the Liouville-Sonine-Caputo fractional derivative with respect to another

function in the form

vseDl (@) = (1:779) 9(w)

’ pW(s) 1 d\",
T(n—ﬁ)/a ((x) — p(s))p 1 (gp(”(@%) g"(s)ds,  (79)

where g, € C™(I),¢'(x) £ 0,8 > 0,n = [8] + 1.
Sousa and de Oliveira (2018) introduced the Sousa-Oliveira fractional derivative by
(see [101])

wDg(a) = O () [ gt (s0)

1 —pB(t) dx
and
“D9(e) = Ty [ W ORE w05 ) (s1)
where

and 0 < S(t) < 1,0 < 4,0 < 1, E(-) is a Mittag-Leffler function, which is con-
sidered uniformly convergent on the interval [a,b] = I, M(5(t)) is a normalization
function such that M(0) = M (1) = 1, and #(+) is a positive function and increasing
monotone, such that ¢ (t)" # 0.

12



0.3 Some published books

The evolution and applications of the fractional derivative fractional calculus have
been analyzed in several books and survey papers. Therefore, it is important to col-
lect as many up-to-date information as possible today. With the aim of highlighting
key documents and events in the field of fractional calculus and the extent of their
contribution and coverage of a large variety of applications in the real world from
1974 until the current year 2021.

The first monograph, published a book devoted to fractional calculus in 1974. This
collaboration between a chemist (Oldham) and a mathematician (Spanier) in treat-
ing problems of mass and heat transfer in terms of the so-called semi-derivatives
and semi-integrals, clearly manifested the origin of a new area for FC based both on
physical intuition and mathematical versatility. In 1987, the most important book
of S. Samko, A. Kilbas and O. Marichev, referred to now as ”encyclopedia” of FC,
appeared first in Russian, and later with an English edition in [1993].

I would like to refered to some books devoted to fractional calculus (and its ap-
plications) from Oldham and Spanier (1974), Samko, Kilbas and Marichev (1987-
1993)[92], Miller and Ross (1993)[73], Kiryakova (1994)[59], Podlubny(1999)[82],
Sabatier, Agrawal and Machado (2007)[90], Diethelm (2010) [36], Tarasov (2011)
[105], Baleanu, Machado and Luo (2011) [36], Machado, Kiryakova and Mainardi(2011)
[70], Baleanu, Diethelm, Scalas and Trujillo (2012) [19], Abbas, Benchohra and
N’Guérékata (2012)[1], Carpinteri and Mainardi (2014), Gu. Xueke and Fenghui(2015)[49],
George A. Anastassiou, loannis K. Argyros(2018), Piotr Ostalczyk, Dominik Sankowski,
Jacek Nowakowski (2019), Xiao-Jun Yang(2019)[110], G.A. Anastassiou (2021)[I5].

0.4 The objective and Motivation

The boundary value problems (BVPs) acquainted by FDE have been broadly con-
centrated throughout the most recent years. Especially, the investigation of solutions
of FDEs is the key and critical subject of applied mathematics research. Many in-
teresting and fascinating results have been considered with respect to the existence,
uniqueness, and stability of solutions via some fixed point theorems [3], [4, [5]. the
generalized fractional calculus has played an important role in modeling the complex
phenomena with the power law behaviors in mathematical physics and engineering.
For the details of the history of the generalized fractional calculus, readers refer to
the results [58] 59, [70], [73, [79, [F].

In any case, the majority of the considered problems have been treated in the frame

of FDs of Riemann-Liouville, or Caputo types . In order to enrich the work on
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fractional BVPs involving generalized FD and generalized FI boundary conditions
further, we study the existence and uniqueness of solutions for the generalized frac-
tional differential equations.

In the context of this study, we have organized this thesis as follows:

Chapter 1, contains fundamental concepts of nonlinear analysis, generalized frac-
tional calculus such as 1-Riemenn-Liouville fractional integrals, ¢-Caputo fractional
derivative, Katugampola fractional calculus and Riesz-Caputo fractional calculus.
We also describe a number of fixed-point theorems used to establish the existence
results for the proposed problems. Included among the fixed-point theorems rec-
ognized by their names are Banach’s contraction principal, Boyd and Wong, Kras-
noselskii’s, Schiefer, Dhage, Leray-Schauder nonlinear alternative.

In Chapter 2, is devoted to study the existence and uniqueness of solutions for a
nonlinear neutral ¢-Caputo type FDE with ¢-Riemann-Liouville FI boundary con-

ditions of the form:

CDSY DG se(1) — Q(7, 3¢(7)) | = F(7, (7)), T€J:=[0,T],
(82)
#(x) =0, IJ¥%(T)=0, xe€(0,7T),

where CDZF is the 1)-Caputo fractional derivative of order o € {&,(} C (0,1], ]gjrw
is the y-Riemann-Liouville fractional integral of order v > 0, and F,9: J x R - R
are given functions.

The objective of Chapter 3 is to investigate the existence of solution for the following
Katugampola fractional differential equation equipped with Erdélyi-Kober fractional

integral boundary conditions of the form:

Droy(t) + h(t,u(t)) =0, 0<t<T,
u(0) =0, (83)
W/ (T) = M0/ (€), 0<&E<T,

where 1 < < 2,p>0,0>0,1n7>0 A\ v €R, and h : [0,T] x R = R is
a continuous function. We establish some existence and uniqueness results for the
given problems by means of classical fixed-point theorems.Finally, the main result
is strengthened the through examples.

In Chapter 4, we examine existence and uniqueness of solutions for nonlinear Langevin

equation involving Riesz-Caputo fractional derivatives, with a class of anti-periodic
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boundary conditions of the form:

(84)

GCDY(FCDr + x)a(t) = f(t,2(1) 0 <t <T,
z(0)+z(T) =0, 2/(0) + 2/(T) =0,

where 1D and B¢ D# are the Riesz-Caputo fractional derivatives of order 1 < o <
2and 0 < S <1, x € Rand f : [0,7] x R — R is a continuous function with

respected to its both variables, ¢t and x.

Our results obtained by using a variety of fixed point theorems as Banach, Schae-
fer and Krasnoselskii’s fixed point theorems. Three examples are given to illustrate
main results.

In Chapter 5, is concerned with the existence of solutions for ¥-Caputo hybrid frac-

tional integro-differential equations of the form

=S BYE (2o (r
D=2l OO 0 (7)), 7 € J = [, 8],

cDVﬂ/’ z
at G(t,2(1)) (85)

z(a) =0,

where CIDZT is the i-Caputo fractional derivative of order v € (0,1], I]Z;f is the
y-Riemann-Liouville fractional integral of order 8 > 0,0 € {o1,09,...,0m}, 0 >
0,k=1,2,....m.Ge C(JxR,R\{0}) and F,He C(J x R,R),(k =1,2,...,m).

Existence and uniqueness results for the given problems are obtained with use
an hybrid fixed point theorem for a sum of three operators due to Dhage for proving
the main results. Also, the main result is strengthened an example. Finally, general

conclusion and future research are given.
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Chapter 1

Preliminaries

In this chapter we introduce preliminary facts that will be used in the remainder of
this thesis. We give here the essential notions of functional space, the concepts of the
fractional derivatives and fractional integrals, and the generalized fractional calculus.
Methods of nonlinear analysis for boundary values problem will be discussed. Also
we give some theorems of fixed point, that will need in our work.

A first we introduce the following function spaces.

1.1 Functional Space

1.1.1 Space of Continuous Functions
Let J = [a,b]( —00 < a < b < +00) be a finite closed interval of the real axis

R = (—o00, +00).

Definition 1. Let C'(J,R) be the Banach space of all continuous functions f : J —
R, equipped with the norm

[ fllee = sup [£(1)]-
teJ

Analogously, C™(J,R) is the Banach space of functions f : J — R, where f isn

time continuously differentiable on J.

Ifllen =D N lle = ZmaXHf neN.
k=0
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CHAPTER 1. PRELIMINARIES

1.1.2 LP Spaces

Definition 2. Denote by L'(J,R) the Banach space of functions f Lebesgues inte-

grable with the norm
b
19 = [ If@)e

We denote by LP(J,R) the space of Lebesque complex-valued measurable functions f

on J for which ||f||» <1, endowed with the norme (see

11 = ( | b !f(t)lpdt); (1<p<oo),

In particular, if p = 0o, we denote by L>(J,R) the space of all functions u that are

essentially bounded on J with essential supremum

| fllze = esssup|f(t)| =inf{c > 0:|f(t)| <c for a.e.t}.
ted

1.1.3 X?”(a,b) Space

Definition 3. We denote by X?(J,R), (c € R,1 < p < o0) the space of Lebesgue

complez-valued measurable functions f on J for which || f||» < 1, endowed with the

b d -
IIfHXg=< / \th(t)V’?t) - .

In particular, if c € R, p = 0o, we have

norme (see

| fllxee = esssup [t°f(t)| = inf{c > 0: [t°f(t)| < c  for a.e.t}.
teJ

In particular, when ¢ = 1/p, the space XP(a,b) coincides with the LP(a,b)-space:
X? = LP(a,b).

1/p

Remark 4. [T7] Let p,c,T € R% be such thatp > 1, ¢ > 0 and T < (pc)i. One
can easily see that Vf € C[0,T]

T pds% T %_ 7C
e = () 1) = (e [ otas) = st

and if p = 00

[fllxz = ess sup (#°[f()]) < T°[| flle,
0<t<T
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CHAPTER 1. PRELIMINARIES

which implies that C[0,T] — XP?[0,T], and || f|lx» < || fllc for all T < (pc)

1
pc’

1.1.4 Ths space of functions absouletly continuous AC"|a, b]

Definition 5. We denote by AC"([a,b],R) the space of real-valued functions f(t)
which have continuous derivatives up to order n — 1 on [a,b] such that f"~V €

AC([a, b)) (see [58, 92])
AC™([a,b]) = {f : [a,b] = R, f* € Cla,b],k = 0..n — 1, f"V € AC([a,b])}.

In particular, AC'[a,b] = AC|a,b).

A characterization of the functions of this space is given by the following.
In 1968, Kolmogorov and Fomin observed that the space AC(2) is in agreement

with the space of the primitives of the Lebesgue summable functions (see [58, 92]):
t
f € AC([a,b]) & 3¢ € L'(]a,b]) such that f(t) = c—l—/ o(t),

where ¢(t) is called the Kolmogorov-Fomin condition.
We remark that, if an absolutely continuous function f(t) has a derivative f()(t) =
¢(t) almost everywhere on [a, b], then there are ¢ = f(a) and f(t) € AC([a,]).

Lemma 6. A function f(t) € AC™([a,b]),n € N*, if and only if it is represented of
the form

1.1.5 Opérateurs compacts

Definition 7. An operatorT : E — E is called compact if the image of each bounded

set Q C E s relatively compact i.e ( T() is compact). T is called completely

continuous operator if it is continuous and compact.

1.1.6 The criteria for compactness for sets in the space of

continuous functions C(]a,b])

Theorem 8. (Arzela-Ascoli theorem). A set Q C C([a,b],R) is relatively compact
in C([a;b],R) if and only if the functions in Q0 are uniformly bounded and equicon-

tinuous on |a, b|.
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We recall that a family of continuous functions is uniformly bounded if there
exists M > 0 such that

1fll = max Ifz)| <M, feq.

The family © is equicontinuous on [a;b], if Ve > 0,30 > 0 such that Viq,ts € [a,d]
and Vf € ), we have

[t —tao| <6 =|f(t) — f(t2)] <e

1.2 Basic fractional calculus

In this section we give the definitions and some properties of fractional integrals
and fractional derivatives of different kinds, such as Riemann-Liouville, Caputo,

Liouville, Riesz-Caputo, Katugampola, Erdély-kober, ¢ — Riemann — Liouville.

1.2.1 The contribution for generalized fractional calculus

and applications

The fractional calculus has found the important applications in fields of mathemat-
ics, science and applied engineering, including fluid flow, heat transfer, rheology,
electrical circuit, networks, electromagnetic theory, control theory and probability,
numerical analysis, economics and finance, engineering, physics, biology, , image
denoising, cryptography, controls, etc. for instance, phenomena of physics [108],
Applications in Engineering, Life and Social Sciences [20], Systems Decision and
Control [I5], Control and Optimization [23], Viscoelasticity [44], Financial Eco-
nomics [42]. For the details of the history of the generalized fractional calculus,
readers refer to the results [58] 59, [70, [73, [79], 88].

1.2.2 Riemann-Liouville fractional integrals
Definition 9. The left-sided and right-sided Riemann-Liouville fractional integrals
of order a > 0 of a function f € L'([a,b]) are defined as (see [58, [79, 82, 188, [92]).

o (1) = ﬁ/ (t— )" f(s)ds, (t>a, a>0). (1.1)

19



CHAPTER 1. PRELIMINARIES

and

1o f(t) = ﬁ/t (s — ) f(s)ds, (t<b, a>0). (1.2)

where T'(«v) is gamma function (see[58, [79]).
Moreover, for a = 0, we set I%, f := f. That the Riemann-Liouville fractional

integral coincides with the classical definition of I} in the case n € N.

Lemma 10 ([58]). The following basic properties of the Riemann-Liouville integrals
hold:

1. The integral operator I, is linear;

2. The semigroup property of the fractional integration operator I, is given by

the following result

S (I f() = ISP F(), o8> 0, (1.3)

holds at every point if f € C([a,b]) and holds almost everywhere if f €
L'([a, 0]),

3. Commutativity
S (I f ) = I (I (1), B> 0; (1.4)

4. The fractional integration operator I%. is bounded in LPla,b] (1 < p < 00);

o (b_ a)a
15 fllze < m”f”m- (1.5)

1.2.3 Riemann-Liouville fractional derivatives

Definition 11. The left-sided and the right-sided Riemann- Liouville fractional in-
tegrals of order a € C, Re(a) > 0, of a continuous function f : (0,00) — R are
defined as (see [79, 82, (88, (92)).

e R N 3l =

and

where Re(a) € (n—1,n],n € N.
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1.2.4 Caputo type fractional derivative

The Caputo (1967) fractional derivatives are closely related to the Riemann-Liouville

derivatives.

Definition 12 ([58]). For a function f € AC"(|a,b]), the left sided and right sided
Caputo fractional derivatives of order « are defined by (see [79, 82,88, [92]).

D2, (1) = 15D (1) (16
~ s [ = s
and
"D (1) = (<17 =" D" 1) %
= el [ et s

where n = [a|+1 and [ denotes the integer part of the real number . In particular,
when 0 < a < 1 and f(t) € AC|a,b],

1 ! —a pl _ 7l-
[ = sy = enpo. (18)

‘D f(t) = Ti—a)

and

b
DEf(#) =~ | /t (s — 1) '(s)ds = =Dy (¢). (1.9)

'l -«

In the following, we give the proprieties of Caputo fractional derivative:

Lemma 13 ([58]). The following basic properties of the Caputo fractional derivative
hold:

1. The Caputo fractional derivative is linear.
2. Let a >0 and let f(t) € Lo or f(t) € Cla,b], if « ¢ N

DI f(t) = f(t) and CDy I f(t) = f(2). (1.10)

3. Let a > >0, and f € L*([a,b]). Then we have:

DEIZ (1) = I (1), (1.11)
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4. If f(t) € AC"[a,b] or f(t) € C"[a,b], then

n—1 ,p
1.6D2, fk('a t—a)t (1.12)
k=0
and
n—1 )
I°Dy f (b—t)". (1.13)
k=0

5. In particular, if 0 < a <1 and f(t) € AC[a,b] or f(t) € Cla,b], then
IODg f(t) = f(t) = fla), and IZCDy f(t) = f(t) = f(b).  (L14)

Example 14 ([58,02]). The Caputo derivative of the power function (t—a)’~! o >
0,6 >0,n=[a]l+1, then the following relation hold

cHo o -1 __ o B—a—
(t—a)’ ! = —F(B — o) (t—a) Lo (B>n), (1.15)
r
DY (b— 1) = %(b —t)P77t (B >n), (1.16)
In particular,
“D%C =0 and °DyC =0. (1.17)

The relation between the derivative of Caputo and that of Riemann-Liouville is

given by following remark

Remark 15. We note that if f € AC"([a,b]), then

n—1
RID, £(t) = D +ZF 1+k—a) (t —a)*, (1.18)
k=0

Clearly, we see that if f*)(a) =0, fork=0,1,...,n —1 then we have

D f(t) = "DL f(0). (1.19)

1.2.5 Riesz-Caputo type fractional derivatives

In this section we present the definitions and some properties of the Riesz-Caputo

type fractional integrals and fractional derivatives.

Definition 16. ([{3, [58/) Riesz-Caputo derivative of order a, of a function f €
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C™([0,T)) is defined by

RO paf(t) = o) / |t — u’nalf () (1.20)

_ % (€Dg, + (~1)" °Dg) £(1),

where CD(‘)“+ is the left Caputo derivative and ¢ D is right Caputo derivative.

Remark 17. In particular if f € C*([0,T]) and 0 < a < 1, then

FOD§F(t) = 5 (CDg — D) (1), (1.21)
If f € C*([0,1]) and if 1 < a < 2, then
FOD§F(1) = 5 (CDg + ©DF) F(0). (122

Lemma 18. ([43,[58]) If f(t) € C™([0,T]), Then

D (1) = f(1) - P G (1.23)
k=0 ’
and
S f(’“ (T)
I8 DS f(t) = Z (T —t)* (1.24)
From the above definitions and lemmas, we have
oIf o“Dyf(t) = 5 (Ig- “Dgi + 17 “Dg) f(2) (1.25)

D" (1o, cDg 4 120D £(1)

2
(13- °Dg. + (=1)" I3 “ D) f(b).

l\DIn—

In particular if 1 < a < 2 and f € C*([0,T]), then

Loy + %f’(T)(T —4). (1.26)

oI55 DRF(0) = £(1) — S(F(0) + F(T)) 1

1.3 Generalized fractional integrals

In this section we present the definitions and some properties of the generalized type

fractional integrals such as Katugampola fractional integrals, Erdélyi-kober and -
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Riemann-liouville fractionl integrals, )-Caputo derivative.
In the first we present the definitions and properties of Katugampola fractional

integrals introduced by Katugampola in 2011.

1.3.1 The Katugampola fractional integral

Definition 19. [76] The Katugampola fractional integral of order o > 0 and p > 0
of a function f(t) for all 0 <t < oo, is defined by

](’)’f‘f(t):?(ao; /0 = _Spsp)l_a f(s)ds, tel0,T), (1.27)

for p > 0. This integral is called left-sided integral.

Lemma 20. [70] Let be the constants p,q > 0 and p > 0. Then the following

formula holds:
F(%) p+pa

F(M;;ﬁp) pq '

[P97 = (1.28)

Remark 21. [76] The above definition (@) of Katugampola fractional integral cor-
responds to the Riemann-Liouville fractional integral of order o > 0, when p =1,

while the famous Hadamard fractional integral follows for p — 0; that is:

_— AN

1.3.2 The Erdélyi-Kober fractional integrals

The conceptions of the Erdélyi-Kober type operators of fractional integration, as the
extensions of the Riemann-Liouville left-sided and right-sided fractional integrals,

are given as follows ([58]).

Definition 22. [58, [92] The Erdélyi-Kober fractional integral of order § > 0 with
n >0 and v € R, of a continuous function f : (0,00) — R is defined by :

o nt=n0+) -t gmEn—1
. — 1.
70 =55 /0 ), (1.30)

provided that the right-side is pointwise defined on R .

Remark 23. [58,(92] For n =1 the above operator is reduced to the Kober operator

76 t7(5+7) 3 S’Y
00 = 5 /O(t_s)l_éh(s)ds.
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That was introduced for the first time by Kober. For v = 0, the Kober operator is

reduced to the Riemann-Liouville fractional integral with a power weight

199n(t) = 1f(_5>/0 0 f(j))l_&ds, 5> 0. (1.31)

Lemma 24. [58,[92] Let §,n > 0 and v,q € R . Then we have

t0(y+ (1) +1)

Fy+(E)+d+1) (1.32)

75 p—
%t =

Theorem 25. The operator J is linear and bounded from C([a,b]) to C([a,b]),

then
17782l lo < Ko pllzllc, (1.33)
with Koy = s (07 — a?)°.

Proof. For any x € C|[0,T]; one has

pl—a t pl—a t
m/a (tr — ") tsP 1y (s)ds| < F(a)HxHC/a (tr — ) 1sP s,
pfa
b —af)” :
< s = ey lsle

1.3.3 -Riemann-Liouville type fractional integrals

In this section we present the definitions and some properties of the i)-Riemann-

Liouville type fractional integrals introduce by Almeida.

Definition 26 ([13, [15]). For a > 0, the left-sided ¥ —Riemann-Liouville fractional
integral of order « for an integrable function f: [a,b] — R with respect to another
function ¢ : [a,b] — R that is an increasing differentiable function such that i'(t) #
0, for all t € J is defined as follows

i —Ltls (s £(s)ds
L f(t) = F(a)/a U (s)(W(t) — P(s))* f(s)ds, (1.34)

where I'(+) is the (Euler’s) Gamma function (see [58, [79]).
The following semigroup property is valid for fractional integrals: if o, 5 > 0, then

ISP F() = 1079 (1.35)
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1.4 Generalized fractional derivatives

1.4.1 The generalized Katugampola fractional derivative

In this part we give the definitions of Katugampola fractional derivative, introduced

by Katugampola in 2014.

Definition 27. [76] The generalized fractional derivative of order o > 0 correspond-

ing to the Katugampola fractional integral is defined for any 0 < t < oo by:

D) = (105 ) (1) 0 (1.36

pa_n+1 1 d " ¢ SP—l
= —_—m— -—P__
I'(n—a) (t dt) /0 (17 — sp)anil f(s)ds, te€l0,T],

where n = [a] + 1 and p > 0 (when the integral exists).

Remark 28. [76] As a basic example, we quote for a,p >0 and p > —p

P+ 8)

— ' 1.
Fi—a+t) (137)

Dyet =

1.4.2 The generalized y-Riemenn-Liouville fractional deriva-
tive

Definition 29 ([I3,[15]). Letn € N and let ¢, f € C™([a,b], R) be two functions such

that v is increasing and ' (t) # 0, for allt € J. The left-sided 1—Riemann—Liouville

fractional deriwative of a function f of order o is defined by

s _ 1 i " n—a;y
Da+ f(t) - (w/(t) dt) [aJr f(t)

1 1 a\" [, o
- I'(n—a) (w’(t)%) /a¢(5)(¢(t)—¢(8)) f(s)ds,

where n = [a] + 1.

1.4.3 The generalized -Caputo fractional derivative

In this section we present the definitions and some properties of the y-Caputo type

fractional derivarive introduce by Almeida in 2017.

Definition 30 ([13]). Let n € N and let ¢, f € C"([a,b],R) be two functions such
that 1 is increasing and ' (t) # 0, for all t € J. The left-sided 1p-Caputo fractional
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derivative of f of order « is defined by

g — e (LY
i) = 1 (Smg) F0

where n = o] + 1 fora ¢ N, n =« for a € N.
To simplify notation, we will use the abbreviated symbol

0= (o) 10

From the definition, it is clear that

P ()~ IZJ "alf[n] ds,ifa ¢ N

1.38
fgl}(t),zfae N. (1.38)

We note that if f € C™*(J,R) the v¥- Caputo fractional derivative of order a of f is

determined as

“Def(t) = Dy

£t = 32 P () — ()

Lemma 31 ([13]). . Let o, 3 > 0,and f € L*(J,R). Then
IVIDYF(t) = ISPV f(t),aet € 1.

In particular, if f € C(J,R), then Igﬂ]gjwf(t) = ]gf53¢f(t),t el

Lemma 32 ([13]). . Let a > 0, The following holds:
If f € C(J,R), then
DIV F(t) = f(t)t € ).

If feC"(J,R),n—1<a<n. Then

« /0

LDyl = f(t) —

Lemma 33 ([13]). Let a, 8 > 0, and f € C([a,b],R). Then for each t € J we have
1. DEVISY f(t) = f(1),
2. ITPDEV f(t) = f(t) = fa), 0<a<1,
3 I () — (@)’ = 2 (u(t) — v(a))PHet,
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£ DI — w(@) = (0 ~ vl@)

5. CDZ‘jrw(w(t) —(a))* =0, forallk € {0,...,n—1},n € N.

1.5 Some Fixed point theorems and their appli-

cations

In fractional differential equations, it would be necessary to introduce the distinc-
tion between quantitative and qualitative information in finding the solution, if all
fractional differential equations could be solved as easily, it would be unnecessary to
introduce the distinction between quantitative and qualitative information concern-
ing solutions. Most fractional differential equations, especially nonlinear equations,
must be studied with one technique to obtain quantitative information (using numer-
ical analysis), and by another technique to obtain qualitative information (nonlinear
analysis).

Currently, the numerical analysis of fractional differential equations is an active
field of research. Various numerical methods have been developed to solve nonlin-
ear fractional differential equations, such as, Adomian Decomposition Method [6],
New Iterative Method [33], predictorcorrector approach [37], Homotopy perturba-
tion method, for detail see [35], (66, 14, [16], 19].

1.5.1 Nonlinear Analysis and fixed point theory

Nonlinear Analysis is a very broad subject a useful in the study of boundary value
problems. The fundamental methods of nonlinear analysis and their efficient applica-
tion to nonlinear boundary value problems for fractional differential equations such
as, nonlinear operators (classes of nonlinear operators: compact, maximal monotone,
pseudomonotone, generalized pseudomonotone), no smooth analysis, fixed point the-
ory (Banach’s fixed point theory, was created and demonstrated in the year 1922 by
Stefan Banach (1892-1945), it guarantees the existence and uniqueness of solution),
degree theory (presents degree theories: Brouwer’s degree (1912), Leray-Schauder
degree (1934) and degree of set-valued maps), variational principles and critical
point theory, Morse theory, bifurcation theory, regularity theorems and maximum

principles, and a spectrum of differential operators for detail see [75].

In the following we give a description to use and the application of certain the-
orems of fixed point and topological methods (topological degree) in the study ex-

istence of solution for nonlinear fractional differential and integral equations.
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1.5.2 Application of fixed point theory

The most original and far-reaching the contributions made by Henri Poincaré to
mathematics was his introduction of the use of topological or ”qualitative” methods
in the study of nonlinear problems in analysis [24].

Fixed point theory is important tool for solving problems arising in various
branches of mathematical analysis such as in the existence of the theory of FDE
and PDE, integral equations and inclusions, nonlinaer matrix equations, stochastic
fractional differential equations, equilibrium problems, variational inequality prob-
lems, these problems can be solved by reducing them to an equivalent fixed point
problem. As example for applications of the fixed point theory in several areas such
as Optimal control theory, the approximation methods, economics to stochastic

game theory [80], 8]

1.5.3 Classification of fixed point theory

There is a rough classification of fixed point theorems into three basic classes:

e (a) Metric fixed point theory.
e (b) Topological fixed point theory.

e (c) Order fixed point theorems,

Metric Fixed Point Theory

We include all characteristics geometric of spaces and/or the maps, with use of
metric structures, including (Banach’s fixed point theory, Boyd and Wong, Scheafer,

Krasnoselskii’s, Shauder,...).

Topological fixed point theory

These theories are fundamentally based on the topological structure of space. The
first work given by Brouwer’s (1912), in the case of infinite dimensional subsets
of some function spaces. Brouwer’s-Schauder (1934), extended Brouwer’s theorem
to the case the space is compact and convex subsets of a normed linear space,
this theorem was extended to locally convex topological vector space by Tychonoff

(1935).
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Order fixed point theorems

This class belong all those fixed point results which exploit the order structure in-
duced by a cone. Of course this classification is not strict and there are no clear

boundaries separating the three classes see [78, 81].

When to apply fixed point and topological techniques No exact answer

to the question however

e Topological methods describe qualitative information such as the upper and

lower bounds of the solution values.

e The fixed-point theorem and local topological degree are closely connected.

They were developing by Leray, schauder, Nirenberg, Cesari and others.

e We can prove the fixed-point theorem without using any ”topological machin-

WM

ery’.

e The topological degree it has an important advantage over the fixed-point the-
orem: it gives information about the number of distinct solutions, continuous
families of solutions, and stability of solutions [27]. The concept of degree of
mapping in all these forms is one of the most effective tools for studying the

properties of existence and multiplicity of solutions of nonlinear equations.

e In the finite-dimensional case, we use the classical topological degree as they
were explicitly formulated by Brouwer in 1912. In infinite dimensional its ex-
tension by Leray and Schauder [65] in 1934 to mappings in infinite-dimensional

Banach spaces of the form I — g, with g compact.

e The fixed point and the topological methods should be regarded as a last resort

or at least a later resort than analytical methods.

1.6 The Classical Fixed points theory

Fixed point theorems are the basic mathematical tools that help establish the ex-
istence of solutions of various kinds of equations. The fixed point method consists
of transforming a given problem into a fixed point problem. The fixed points of the
transformed problem are thus the solutions of the given problem. In this section,
we recall the famous fixed point theorems that we will use to obtain varied exis-
tence results. We start with the definition of a fixed point theorems which are used
throughout this thesis.
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Definition 34. Let f be an application of a set E in itself. We call fixed point of f
any point u € E such that

f(u) = u.

1.6.1 Banach’s contraction principle

Banach’s contraction principle, which guarantees the existence of a single fixed point
of a contraction of a complete metric space with values in itself, is certainly the best
known of the fixed point theorems. This theorem proved in 1922 by Stefan Banach
is based essentially on the notions of Lipschitzian application and of contracting

application.

Theorem 35. [80, [46/(Banach contraction principle)
Let E be a complete metric space and let T': E — E be a contracting application,
then T has a unique fixed point.

1.6.2 Schaefer’s Fixed-Point Theorem

Lemma 36. [80, [81] Let E be a Banach space. Assume that T : E — E is com-

pletely continuous operator and the set
Q={relb:x=pTz,0<p<1},

is bounded. Then T has a fixed point in E.

1.6.3 Leray-Schauder Nonlinear Alternative

Theorem 37. [f0] (Leray-Schauder nonlinear alternative) Let K be a convexr sub-
set of a Banach space E, and let U be an open subset of K with 0 € U. Then
every completely continuous map N : U — K has at least one of the following two

properties:
1. N has a fized point in U;

2. there is an x € OU and \ € (0,1) with x = ANzx.

1.6.4 Boyd-Wong Nonlinear Contraction

Definition 38. [2]|, [12] Assume that E is a Banach space and T : E — E is a

mapping. If there exists a continuous nondecreasing function v : Rt — R such
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that 1(0) = 0 and ¢ (g) < € for all ¢ > 0 with the property:
[Tz = Tyll < (| = yll), Ve, y € E,
then, we say that T" is a nonlinear contraction.

Theorem 39. (Boyd-Wong Contraction Principle)[21, [12] Suppose that E is a Ba-
nach space and T : E— FE is a nonlinear contraction. Then T has a unique fized

point in E.

1.6.5 Krasnoselskii’s Fixed-Point Theorem

Theorem 40. [80, (81 (Krasnoselskii’s) Let M be a closed bounded, convexr and
nonempty subset of a Banach space E. Let A, B be two operators such that,

(a) Ax + By € M, whenever x,y € M,
(b) A is compact and continuous,

(¢) B is a contraction mapping.
Then there exists z € M such that z = Az + Bz.

1.6.6 Dhage’s Fixed Point in Banach Algebra

Definition 41. An algebra € is a vector space endowed with an internal composition
law noted by (-) that is,

ExE — &

(x,y) — -y,

which s associative and bilinear.

A normed algebra is an algebra endowed with a norm satisfying the following property
forallz,y € &/ ||z -yl < lz|lllyll
A complete normed algebra is called a Banach algebra.

The following hybrid fixed point theorem for three operators in a Banach algebra
€ due to Dhage [77, [72] will be used to prove the existence result for the nonlocal

boundary value problem.
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Theorem 42. [3]|] Let S be a closed convex , bounded and nonempty subset of a
Banach algebra &€, and let A,C: E — &€ and B : S — & be three operators such
that

1. A and C are Lipschitzian with Lipschitz constants § and & , respectively;
2. B is compact and continuous,

3. v=HAxBy+Cr=ax€S forally e S,

4. OM + & < 1 where M = || B(9)]|.

Then the operator equation AxBx + Cx = x has a solution in S.
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Chapter

Existence Results for Nonlinear Neutral
Generalized Caputo Fractional Differential

Equations

2.1 Introduction

A differential equation is said to be neutral if the highest degree derivative of the
unknown function appears with and without delay. Neutral differential equations
are one of the most thoroughly studied classes of equations. It has many appli-
cations in technology and the natural sciences such as: the oscillatory behavior
problems of neutral differential equations have a number of practical applications
in the study of distributed networks containing lossless transmission lines that arise
in high speed computers where lossless transmission lines are used to interconnect
switching circuits, see [52, [74]. During the past few years there has been interest
in many researchers to study the oscillatory behavior of this type of equations, see
[7] Furthermore, many researchers are investigating the regularity and existence of
solutions of nonlinear neutral fractional differential equations see [50, §].

This chapter is devoted to proving some existence and uniqueness of solutions to
a category of boundary value problems for a nonlinear neutral generalized Caputo
fractional differential equation with generalized Riemann-Liouville integral bound-
ary conditions. We apply a variety assort of fixed point theorems such as Kras-
noselskii’s and Banach. We also establish the Ulam-Hyers stability results for the
addressed problem. Further, an example illustrate our results.

In order to enrich the work on fractional BVPs involving generalized FD and gen-

eralized FI boundary conditions further, we study the existence and uniqueness of
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solutions for a nonlinear neutral 1-Caputo type FDE with ¢-Riemann-Liouville FI

boundary conditions of the form

“DEY D5 (7) = 97, (7)) | = F(r, (7)), 7€ = (0,7,
(2.1)
() =0, I¥5(T) =0, x€(0.T),

where CDerw is the -Caputo fractional derivative of order o € {&,(} C (0, 1), ]gf’/’
is the y-Riemann-Liouville fractional integral of order v > 0, and F,9: J x R - R

are given functions.

2.2 Main Results

We denote by C(J,R) the Banach space of all continuous functions » : J — R

endowed with a topology of uniform convergence with the norm defined by
[]l = sup{[s(7)| : 7 € [0, T]}.

Before proceeding to the main results, we give the following lemma.

Lemma 43. For given F,Q € C and 0 < &, < 1, the solution of the boundary

value problem

DY D5 (r) — 9(7)| = F(r), TeI=[0.7],

2.2
#(x) =0, 1JV(T)=0, x€(0,7), 22)

1S given by

(7) = I Q) (r) + IV F ) ()

+ (?/’é;lz(gf(lo)))c [Igrv;wg(u)(T) + ]ngJrvwar(u)(T)

M 5 +G;
o (1900 + 15 00)|

1 MY ) .

—N< v +(+7;
CT(C+1) (féf YO(u)(T) + IS¢ w?(u)(T)>]7 (2.3)
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where

M = ((T) —4(0)), N = (¢(x)—v(0)), (2.4)
_ MCENY MESHY
ST+ DI(y+1) T(C+v+1)

Proof. using lemma [33] the general solution of the nonlinear fractional differential

equation in ([2.2)) can be represented as

(7) = IEQw)(r) + 1§ F () () +

where ¢y, c; € R are an arbitrary constants.
Applying the ¥-Riemann-Liouville integral of order « to (2.6)), we obtain

(U(r) = ¥(0)  (@(r) —¥(0))

vt R e ) E+CHy3¢
I 2e(m) = I QM) (D)o F () (M 9 1 3 1

Ct.
(2.7)
By using the boundary condition in (2.7 and the above value of s(7) in ({2.6]), we

have
N¢

I'¢+1)

(W(T) =) ((T) — % (0)
TC+y+1) D(y+1)

[gin(u)(X) + I§f<;¢3"(u)(x) + co+c1 =0, (2.8)

ISP Q(u)(T) + IS F () (T) + ¢ = 0.
(2.9)

Solving the above system for ¢y and ¢, we find that

1 : :
0= |57 Q0)(T) + ISV (w)(T)

M¢
"T(y+1)
1 M
"0 [F(C+7+1) (
N¢

_m (ISrVWQ(u)(T) _‘_ISIC-F’Y%l/):}‘(u)(T))] '

(152000 + 1525 )00) |

ISPQ(u) (x) + I5T (u)(x))

C1

Finally, substituting the values of ¢y and ¢; in equation ([2.6]), we obtain the general
solution of problem (2.2)) which is (2.3). Converse is also true by using the direct

computation. This completes the proof. O
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Also, we define the notations:

MEHS MEFH2C+y MEFS NEHC
lz{r@+<+n*WQW@+nF@+<+v+n*WMN<+an+nr@+<+n
1 MEF2CHY METHSHY NE ) }

\TC 7+ M€+ ¢+ TC+DIETCTr+1D)

(2.10)

+
62:

Q
MC M2§+’y MC+’YNC
{r«+1f*mw<+nnc+v+w*Wch+wwv+wmc+w
1 M2+ M+ NS 511
+@(F<£+<+1)F(<+1)+F(<+1)F(<+v+1))} (211)
M¢ M2+ MY NS
:[N<+n*|ﬂw«+1w«+w+1>*N<+nwv+nmc+n
MY NS MY NS
+MW@+7+DN<+D+F@+¢W@+7+D}

(2.12)

In the sequel, the following assumptions will be considered fulfilled:

(C1) The functions F,Q : J x R — R are continuous.

(C5) There exist two constants £,XK > 0 such that
F(r, (7)) — Fr, 72(0)| < Llse— 7|, for 7€ 7€ C(),
and

1Q(7, (7)) — Q(7,32(7))| < K|sc — 3|, for 7€, ,3%x3eC(J).

(C3) There exist two functions p,q € C(J,R;) with bounds ||p[|, ||¢||, respectively
such that:
|F(7,3)| < p(r) and |Q(7, )| < q(7),

for all 7 € J and s € C(J).

In the following subsections, we prove existence (uniqueness) results for the

boundary value problem (2.1 by using a variety of fixed point theorems.

2.2.1 Existence result via Krasnoselskii”s fixed point theo-

rem

Theorem 44. Suppose (Cy) — (C3) hold. If Xw < 1. Then the problem (2.1)) has a

least one solution defined on J.
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Proof. We consider B, = {5 € C(J) : ||| < p}, be a closed, bounded, convex, and
nonempty subset the Banach space C(J,R), where p is a fixed constant.

Choosing
p = |Ipll6r + [lql|6-.

We define the operator H : C'(J) — C(J) as H = H; + Hy, where

(3C152)(7) = L5 Qu, 52(u))(7)

T)— ¢ . 2] .
i wér)@ ; (10>)) {151 " () () = %1&%(% %<u>><x>]
¢+ ¢
+4 [hzgmm (W) (x) - %f&ﬁ*‘@(u, %<u>><T>] ,

(2.13)

and

(Fa52)(7) = L5 F (u, 5¢(u)) (1)

i (¢(7') - ¢(O>>C {Igi{-&-wb\rfr(u, %(u))(T) _ Fﬂjgr@w?(u, %(10)()()}

1 M+ L N¢ e
"a [mﬁ%”"ﬂu, Au)00 = Fregpyle I, m»m} |
(2.14)

Now, we show that the operators H; and H, satisfy the hypothesis of Krasnoselskii’s
theorem in three steps.
The first step, we show that 3¢ + Hy3z € B, for any s, € B,, we have

|| FH12e + Hozz|| < Ing(u, s(u)|(T) + Iéic;wlff”(u,ﬁ(u))KT)
¢
+ MTU [[gi'ﬁ’ﬂﬂg(u, %(u))|(T) + jng-&-VWl&r(u’%(u))l(T)
+% (15190, ()00 + [5E15(w, %(u))(x)ﬂ
1 MSHY
B

o [ 7 (190 (w00 + 150 7(0) ()

NC Y5 +C+; —
R (Igr 219w, se(u)(T) + IS | F (u, %(u))(T))]
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- MEFC
<ol (et
MET2C+HY MEHC NEHC
TTCT OTE+ ¢ty + D) ¢ JTC+ OT(v + DLE T ¢+ 1)
1 MEF2+Y METHTNE
+Wﬂ(NC+7+UF@+<+1Y+H<+UF@+C+7+D>)

ME< M2+ MSHYNS
+ [lall (F(C ) T F T+ D) JQTC+ )T + DT + 1)

1 M*+ MEH NS
_'_@ <P(§ +(¢+ 1)F(C + 1) + F(C + 1)I‘(< +v+ 1)))
= |Ipl|6: + llqll62 < p.

Which implies that F(;5¢ + Hye € B,,.
Next step, is related to the compactness and continuity of the operator Hs,.
Continuity of the function & implies that the operator H, is continuous.

Also, H, is uniformly bounded on B, as
13| < [lq]|61-

Now, we prove the compactness of the operator Hs.
Let 71,7 € J, with 7 < 7 and s € B,. Then we obtain

|(Fos2) (1) — (Hoz2)(11)]
< % [2|1(72) — D(1) 5T 4 | (W(1) — (0))*C — (W(y) — w(o))é%u
Ipll| (¥ (72) — (0))S = (¥(71) — ¥ (0))] MEHCH MY NER

" QI+ 1) TE+Ctr+1) T+ DIE+C+1)]’

which is independent of s¢ and tends to zeros as 79 — 73 — 0. Thus, H, is equicon-
tinuous. So J, is relatively compact on B,. Hence by the Arzela-Ascoli, H, is

compact on B,.
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Finally, we show that the operator H; is a contraction. By using assumption (C1),

[915¢ — H,32]) < 15919, s2(u)) — O, 7(u))|(T)
M¢S
*mw«+w[
M7 . o
+ﬁ7;ﬁﬁﬁMm%w»—Mw%wmuﬂ
L b [ﬂ
9 TC+r =D

N¢ +; %
+mfg+ 19(u, #(u)) — Qu, %(u))!(T>(T)]

1571w, 52(u) — Q(u, 32(w))|(T)

Y19 u, s(w)) — Q(u, 52(w))|(T)(x)

<% M¢ M2+ A6 N
<[ ¢ T ITCH 1) * I TG DT D

M+ NS M+ NS B
+‘Q‘F(C +y+1)I(C+1) * T(C+ DO+ + 1)} |2 — 7|

= Kwl|s — 7|

Thus all the assumptions of Krasnoselskii”s FPT are satisfied. So, Theorem
shows that (2.1) has at least one solution on J. The proof is finished. [

2.2.2 Existence and uniqueness Result

Here we prove the existence and uniqueness result for the problem (2.1)) and by using

the Banach’s contraction mapping principle.

Theorem 45. If the conditions (Cy) and (Cy) hold, then the problem ({2.1) has a
unique solution on J, if A := (L6, + Kb,) < 1.

Proof. Let us fix Fy = sup,¢o 17 |F(7,0)|, Qo = sup,¢p. 71127, 0)],

and choose r > %. In the first step, we show that HB, C B,, we take
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nw€ B, ={xeC(J): || <r} sothat

I(FGo)(T)| < sup {féfp\Q(u,%(u))!(T)+I§f<;¢l?(u,%(U))|(T)

relo.)
N ’%ﬁ?(‘ﬂ%‘c 1610, se(w))[(T) + 16 |Q(u, () |(T)
+% (fg;ﬂg(u, s(u))|(x) + IV F (u, %(W)(X)ﬂ

b [% (IS1000, eI (x) + TE 15 o, ()| (x)
iy évj 3 (555719 0w, se(u)I(T) + 15| F %(U))I(T))] }
< sup {15190, 2(w)) = O(u,0)| + 19(u, 0)|)(T)

U519, 22(w) = T, 0)] + [F (s, 0))(T)

(1) = (0)]° +7; _
PRy 100 ) = 9w 0) +10(w O))(T)
IEE T o) — T, 0)] + |, 0))(T)

sl (I%Q(u se()) = Qu, 0)| + 2(u, 0)) (1) () + I |, %<u>><x>)]

T+

[(y +
T [ Fer 1 100 ) 00 + 55 3w e(w) - 5.0 + 5.0 ()

+ (I“W!Q(u () = Qu, 0)] + |Q(u, 0)[)(T)

(C+ 1)

_I_I§+<+w/)|3r( »(u)) — g(u70)|+|3"(u,0)|)(T)>}}
MEHS MEFEAY
< @l + 90 { e oy + T Cro
MEFCNEHC

N ES DT

) MEF2CHY MEFHTNG
Tl (r<<+v+1>r<£+<+1) i F(C+1)F(§+C+7+1))}

Mg M2C+’y ]\4C+’7]\/vC
+ (Kllll + o) {P(c D) N DIC A+ D) QR+ DI( + DIC + 1)

1 M2+ M+ NS
Tl (F<£+<+ DIC+1D) T+ DT +7+ 1))}
= (LT + 3'())91 -+ (JCT + QO)QQ S r,

which implies that HB, C B,.

41



CHAPTER 2. EXISTENCE RESULTS FOR NONLINEAR NEUTRAL
GENERALIZED CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS

Next, we let 5,32 € C(J). Then, for 7 € J, we have

I(Fe)(7) = (FG) (7]
< sup {Iéf’lQ(u, se(u)) = Qu, 52(w))| (1) + 15 |F(u, 52(u)) — F(u, 52(w))|(r)

7€[0,T]
|¢(T) - ¢(0)|< +; — +C+; _
TN ST 19w, s¢(u) — O, ZW)|(T) + 15T 0w, 3(u)) — Qu, 3(w) (T)
M7 o B
TG (1<¢|Q(u se(w)) — Qu, 52(w))| (x) + 15T F (u, 2¢(u)) — Q(u, %(u>>|(x)>]
1 M . B B
i [ 1y (190 () = QI + 150, () = T )] 0)
Ve Nk 57 ++7; —
+F(C+1) (571900, ) = 9 WD)+ B2 ™50, 0) - T I (1) |
. METC .
< s { e A e e A
M¢ MS+HY 5 B MEFCH B
Tarc+ { TS G A Ve Tl
M

M7 ¢ o MEHC -
T (e g s e o)

1 MSHY M¢ _ A -
! 1 {F(C—FV%— 1) (F(§+ 1)KH%_ #|| + —1)L||%_ %H)

N¢ M+ B ME+ B

As (L6, + K6y) < 1, the operator H is a contraction. So, the problem (2.1)) has a
unique solution on J. O

2.3 UH stability analysis

In this section, we study the Ulam stability, and we adopt the definitions in ([89, 2])
of the UH and generalized UH stability of the problem ({2.1)). Let € > 0. We consider
the following inequality:

‘Dﬁf’ [Dgﬁ”%(f) —o(r, ;;(T))] — F(r, ;2(7))] <e Tel (2.15)

Definition 46. The equation 1s UH stable if there exists a real number cy > 0
such that, for each € > 0 and for each solution 3¢ € C(J) of inequalz’ty there
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exists a solution s € C(J) of with

|5¢(T) — 2(7)| L ecy, TEJ.

Definition 47. The equation 1s generalized UH stable if there exists Cy :
C(Ry,Ry) with C5(0) = 0 such that, for each ¢ > 0 and for each solution 3 € C(J)

of inequality (2.15)), there ezists a solution » € C(J) of with

|72(7) — 2(7)| < Cs(e), 7€

Lemma 48. A function 3 € C(J) is a solution of inequality if and only if
there ezists a function o € C(J) (which depends on solution 3 ) such that

Llo(n)| <eTeld.
2.D%¢ [Dgzﬂ%(f) —Q(r,32(7))| = F(r,54(1)) + o(r), TEI

Now, we discuss the UH stability of solution to the problem (2.1)).

Theorem 49. Suppose that the assumption (Cs) is fulfilled. Then the problem
1s UH stable on J and consequently generalized UH stable provided that A < 1.

Proof. Let € > 0 and let 3c € C'(J) be a function which satisfies the inequality (2.15)
and let s € C(J) the unique solution of the following problem

DY |D§(r) = Qr 4(7)) | = F(r, (7)), 7€ T:= (0,7,

(2.16)
#(x) =0, I)Vx(T)=0, ye€(0,T).
By Lemma [3] we have
(1) = I 0(u)(7) + I T (w)(7)

N (1/1&2(2 jf(lo)))C [ ISP Q()(T) + 165 () (T)

o (1900 + 15 (00)|

+ o [ (5000 + 15 5w )

T évj ¥ (15 a@u)(T) + Igf“W?(u)(T))} | (2.17)
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Indeed, by Remark [48, we conclude that

DEY [DSP3(r) — Q(r, 54(7)) | = F(r, 2(0) + o(7), 7 €I =[0,T),
(2.18)
#(x) =0, I7V3(T)=0, x€(0,7).

Again by Lemma [43] we have

) = 1§ 8(@)(r) + 5 F )

(W)~ VO g

torer ) @ @) + @)

M o e
o (18@00 + 1T @00)

1 MY ab 7y~ Hp gy

N¢ sBeYort V(7
ey (A + @)

+¢; (¢(T) B ¢(0))< +CH; MY +¢;
+[§+<’/’U(T)—|— O+ 1) [[§+C wU(T)_Fh/_}_l) <I§+Cw0_(x)>:|

¢+ ) ¢ e
v |Fery T (E9900) g (15om)|

On the other hand, we have, for each 7 € J

5(r) — se(7)| < IS

9(@)(r) — Qu)(7)] + 155 [F(@) () = Fw)(7)
() — VO fycrns

+ Q(@)(T) — Q(u)(T)| + I

et F(@)(T) - F(u)(T)]
o (18 e - aw ] + 1525 [F@e - ]|

n é [% (zgﬁ’ Q@) (x) — Q(u)(x)] + ISTY ]ﬁ(ﬂ)(x) - 3’(u>(x>\)
Y évj 5 (5577 |2G@)(T) - o) (T)‘ + IEETAF@)(T) — F(u) (T)D]
#1510t + LB fpersmyom) - A (151010001

+ 4 [y (86 10001) - oy (165 o)
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Hence. Using part (i) of Remark |48/ and (C}) we can get

~ MEH M¢ MEFH M MEte
) =l = {F(§+C+1)+ QIT(C+1) {F(£+C+v+1> TTh ) (F@*CH))]

1 MEHY METC N¢ MEHHY
] {F(C+7+1) (r<5+<+1>) X (Muuwﬂﬂ}g

+A|| 7 — x| :=Ee + Aljze — |

In consequence. It follows that

—_

e

1-2)

3¢ = x|l <
If we let C5y = =, then, the UH stability condition is satisfied. More generally, for

Cy(e) = (E—‘Z); C5(0) = 0 the generalized UH stability condition is also satisfied.
This completes the proof. O

2.4 Application

This section is devoted to the illustration of the results derived in the last section.

Example 50. Consider the following BVP:

(74+50) e™+9 1| 5(7

c Ler C 3iem sin |5(7)] 1 |5¢(7)]
Dé_ D61+ %(T)— ] - (1+ )|)7TE [071}
3.7
#(0) =0, I} (1) =,

(2.19)

In this case we take

f=5.C=2T=19(n)=¢,
o1 |7(7))]
F(r, ) e +9 (1—|_1—i-|%(7')|)7
~sin |x(7)|
A2 = T 50)

It is clear that assumptions (C1) and (Cs) of the Theorem |45 is satisfied. On the
other hand, for any T € [0,1], ¢,y € R we have

1
1T (7, 2) = F(7,y)| < 1—OI%— yl,
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1

Hence condition (Cy) holds with L = 1io and K = %. Also by simple calculations,
we find that A = 0.5342 < 1. Then by Theorem the BVP has a unique
solution on [0, 1]. Moreover, Theorem implies that the problem 1s HU stable

and generalized HU stable.

Example 51. Consider the following BVP: In this case we take

CDEF CD§+;2T%(T) — Q(, %(T))] = J (7, %(7)), 7 € [0,1], (2.20)
A0) =0, 17 (1) = 0,
with 1
F(r, (7)) = 3(r 1 2)? <T - m) ’ 2
9, e(r)) = g+ G o

It is clear that assumptions (Cs) of the Theorem are satisfied. On the other hand,
for any T € [0,1], 5 € R we have

1
1F(r, ) = 5(r,)| < 51—,

9(r, %) A(r,9)] < e~ 3l
Hence condition (Cs) holds with L = 35 and X = i. We shall check that condition
in Theorem[{J] is satisfied. Indeed A = 0.2014 < 1.
To explain Theorem let us take F (T, 5) given by . Clearly, the condi-
tions (C1) — (Cs) holds with ||p|| = 35 and ||q|| = 5. In addition, K@ ~ 0.0723 < 1.
Hence, all hypotheses of Theorem are satisfied. So, the problem has an

existence of a solution on [0, 1].
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2.5 Concluding Remarks

In this chapter, we have given some results of the existence and uniqueness of so-
lutions for BVPs of nonlinear neutral FDEs involving the generalized Caputo FD
and the generalized Riemann-Liouville FI boundary conditions. As a first step, the
BVP is turned to a fixed point problem. Based on this, the existence results are
established via the Krasnoselskii’s and Banach’s fixed point theorems. On other
hand discusses the Ulam-Hyers stability result of the considered problem. We give
an example to justify the theoretical results.

We confirm that the results of this work are novel and generalize some previous
works. For example, by taking ¥ (7) = 7 in the obtained results, which can be
considered a special case studied by [I1]. In addition to this, when taking different
values for the function ¢, our studied problem covers many problems that contain

classical operators, which are incorporated into the operators used in our study.
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Chapter

Existence results for Langevin equation

with Riesz-Caputo fractional derivative

3.1 Introduction

The Langevin equation is a stochastic differential equations which describes the
Brownian motion, it was first formulated in the work of Paul Langevin 1908. This
Scientist prepared a detailed and accurate of Brownian motion. In physics the
Langevin equation is utilized as a modeling of physics phenomena such that: study
of the random motion of a small particle in a fluid due to collisions with the sur-
rounding molecules in thermal motion, analyzing the stock market, photo electron.
Therefore, the generalized of the Langevin equation can be used to formulate many
various problems featuring molecular motion in condensed matter, for example com-
plex systems. An important characteristic of the generalized Langevin equation is
that it involves an aftereffect function, which is named a memory function. As ex-
amples for applications of nonlinear Langevin equation, one many refer to modeling
the financial market (SPW), Fractional Langevin equation to describe anomalous
diffusion [60], fractional Brownian motion (JHMR), single-file diffusion [40] and ap-
plications to stochastic Problems in Physics, Chemistry and Electrical Engineering
[28].

The most current work related to fractional differential equations of the Caputo
derivative which are unilateral factors unfortunately only reflect the influence of
past and future memory. The Riesz-Caputo derivative is a two-sided fractional op-
erator, including the right and left derivative, which can reflect both past and future
memory effects. This function is particular for partial modeling on a finite body.

Some recent applications of this derivative concern abnormal diffusion.
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Many researchers studied existence and uniqueness solution for fractional nonlinear
Langevin equation with fractional derivatives ([56], 106, []).

The objective of this chapter is to develop the existence and uniqueness of solutions
for nonlinear Langevin equation involving Riesz-Caputo fractional derivatives, with

a class of anti-periodic boundary conditions of the form:

{§CD%<§CD!?+x>x 9= f,ale) 0<t<T, 51)

z(0)+z(T)=0,2/(0)+2/(T) =

where #¢D® is the Riesz-Caputo fractional derivatives of order 1 < a < 2 and
0<p <1 xeRand f:]0,7] x R— R is a continuous function with respected to
its both variables, t and . We aim to establish an existence and uniqueness result
of the problem .Via Banach , Schaefer (Theorem and Krasnoselskii’s FPT
(Theorem [40). Three examples are given to illustrate main results.

Let « >0,and n — 1 < o < n, n € N and n = [a], where [-] is The integer part of

the real number «.

3.2 Existence of solutions

Before proved the existence of solution for Langevin fractional differential equations

with Riesz-Caputo derivative, we first shall present and prove the following lemma.

Lemma 52. Let g € C([0,T],R) and x € C*([0,T],R). Then the problem
B DR(E DR+ )alt) = gl1), 0 < 1 < T, )
z(0)+x(T) =0, 2'(0)+2/(T) = 0, .

15 equivalent to the integral equation given by

2(t) = % /0 (t—s)ﬁlx(s)ds—ﬁ /t (s— ) la(s)ds  (3.3)

X T (T~ 57) ' — $)P24(s)ds
G 1)(2T(B) + xT%) /0 (T — )" "a(s)d
B XT(t? — (T = t)?) T i
BT (o + B — 1)(20(B) + xT?) /0 (T = )" g(s)d

+—1 >/0(t—s)°‘+ﬁ_1g(s)ds

I'a+p
o ! s — 1) 1g(s)ds
+F<a+6>/t (s — =g (s)d
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Also, we define the notations:

2x|T? AT

P= TG 1) T DRI TN (34)
\X]LlTa”ﬁ 2L1T"+6
T B(a+ AL (@) + xI7] | Tlat+p+1)

2x|T” T
“:(Hﬁ+n+rw+nmnm+xm0’ (3:5)
by — { x| T2 . 9T +s } (36)

AU(a+ B)2T(B) +xT?|  T(a+B+1)] '

Proof. Applying the integral operator /¢ to both sides of (3.2)and by using Lemma([L8)),
we get
ROply(TyT 1

FODRa(t) + xalt) + ST 4 (0T = Ig(t). (3.7)

Applying the integral operator olg to the both sided of 1) and using the Lemma
(18), we obtain

2(0) = 5 (a0) + (1) — xolfalt) = 5 B/ (TIT +o Ig(0). (39

Rewriting equation ([3.8)) under the form

w(t) = % /0 (t—s)ﬂ_lx(s)ds—ﬁ /t (s — )% La(s)ds (3.9)

XTZL'/<T) XTZEI(T) 1 t g
T+ 1)tﬁ + 2T (8 + 1)(T — 1)’ + m/o (t — )" g(s)ds

* F(ozl—l— A) /t (s — )" g (s)ds.

Then taking the derivative of (3.9)), we get

2 (t) = _—X)/o (t — 8)°2x(s)ds + FL)/t (s — )7 %2 (s)ds

fG -1 G-
_ xT2'(T) B—1 xT'2'(T) 8-l

o) | ) Y

a+p-1 [ _g)etB2 (g S_OH“ﬁ_l TS_ 6200\ ds
+?@?EJA“ e+5-2g (5)d ?@Iﬁiﬁ< B2 g(s)ds.



CHAPTER 3. EXISTENCE RESULTS FOR LANGEVIN EQUATION WITH
RIESZ-CAPUTO FRACTIONAL DERIVATIVE

Using the boundary conditions of (3.1]), we deduce

(T) = % /0 (T — 5)°~2x(s)ds (3.10)

21(5) P
WQ+B—U@W@+XW5A(T )* P2 g(s)ds.

Substituting the value of (3.10)) in (3.9)), we obtain (3.3)). The proof is complete. [

By lemma(52), we define an operator H : C([0,T]) — C([0,T7]), associated to
B1)

(Hz)(t) = % /O (t—s)ﬁ_lx(s)ds—% /t (s— ) a(s)ds  (3.11)

XZT(tﬁ — (T — t)ﬁ) ! — $)%24(s)ds
+5Hﬁ—nenm+xpgA(T )" a(s)d
N I — (T~ B) ' — )22 (5, 2(s))ds
ﬁr(a+5—1)(2r(,3)+xw)/0 (T = )72 f (s, 2(s))d
1 t
+F(a+ﬁ)0
1

—_— Ts— oA=L £ (s, 2(s))ds.
v A (RO

In the next, we obtain some existence and uniqueness results or the boundary value
problem(3.1]) by using a variety of fixed point theorems.

(t = s) "7 f (s, 2(s))ds

3.2.1 Existence and uniqueness result via Banach fixed point

theorem

Theorem 53. Let f:[0,7] x R — R be a continuous function. Assume that:

(Hy) There exists a constant Ly > 0 such that

|f(t,z) — f(ty)] < Lilz —yl,

for each t € [0,T] and z,y € R.
Then the boundary value problem has a unique solution on [0,T) if

¢1<]—7

where ¢q is defined by .
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Proof. By using operator H, which is defined by (3.11)), we have

T — M t —5)P Ya(s) — y(s)|ds ﬁ Ts— F=12(s) — y(s)|ds
()0) = (0] < 5 [ 0= o) vl + 5255 [ (5= 0 ale) ~ o)l

TP — (T — )| T N,
BT = D5 1 J, L) lels) —uls)ld
IX|T|t? — (T —t)?| T
7@ + 8~ DRI(A) + X771

(T = )" 72| f(s,2(s)) — £(5,9(5))lds

1 ! _ atp-1 -

T | T (s = s ()l
b | =0 t) — S (sl

F(O{—i—/@) t b) b )

DT X 1 o=yl
STE+ ) 6+ 1) T(6 — D)(120(8) T AT7|

L1|X|Ta+25 LlTa+ﬁ LTetB

t it o Yt e T e a e Y
<{ 2/x|T7 X% x| L TP 2L, TF }”x_ H
S\T@+1) T+ D20B) +x|TP  BT(a+ B)20(8) + XT?| ' T(a+ B+ 1) ol

S gble - y”v

for any x,y € C([0,77]), and for each ¢t € [0,7]. Thus implies that |[Hz — Hy|| <
o)z —y|l. As ¢1 < 1, the operator H : C([0,7]) — C([0,T]) is a contraction

mapping. Consequently, the boundary value problem (3.1)) has a unique solution on
[0, T7. O

3.2.2 Existence result via Scheafer fixed point theorem

Theorem 54. Assume that there exists a positive constant Lo > 0, such that
|f(t,z)| < Lo, fort € [0,T],2 € R. Then the boundary value problem has

at least one solution on [0,T].

Proof. Step 1: We show that the operator H defined by (3.11]) is completely con-
tinuous. Observe that the continuity of H follows from the continuity of f.

For a positive constant d, let
By ={z € C([0,T)) : [lz]| <d},

be a closed bounded subset in C([0,T7).
Step 2: H maps bounded sets into bounded sets in C([0,77) .
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For each € B, and t € [0, T, we have

() ()] < XL / (t — 5P a(s)lds + X / (t — 5P a(s)|ds

L) o T
X2T|t6 — (T _ )B| ’ — s B—2 x(s)|ds
BT = DL () + 17 J, (T o) )l

AT = (T = O % o k2| (s, a(s))]ds
Aot 3D () +x17] J, T8 s als)ld

_ t — 5)TPL £ (s, 2(s))|ds
el At O

! ' — )BT f (s, 2(s))|ds
)/<s B0 £ (5, 2(5)) d

4+
[(a+ 5 t
X2T25

2|><|

(8 + )H ()H+F<ﬁ+1)’2F(5)+XT6
|X|Ta+25 2Ta+5 B

Bt pREE) - T T

|ch(S)H

Then K is a constant and ||H (z)|| < K, which implies that H maps bounded sets
into bounded sets in C([0,77).

Step 3: H maps bounded sets into equicontinuous sets of C'([0,T]) (H is completely
continuous). Let t1,ty € [0,T], with t; < 5, and x € By. Then we have

|(Hz)(ts) — (Hx)(t )‘_lel)/ |(t2 = 5)7" = (tr = )77 | (s)|ds

G
b [ =97 = 1 et s
’X| / (5 — t2)% 1 = (s — t1)° Y| |2(s)|ds
+m / (b2 — )™ — (81 — )™ | (5, 2(s)|ds
. ﬁ / "t — P (s — )5 f(s, ()l
e s = )™ = (s — 1) (s, ()
2 ) (T — )P B _4p T
= T<|(Tﬁr<t;)— 1>|(2Tr<ﬂjli T m)/o Lol

T (I(T = 1)? = (T = 11)?] + 1t = £71)

T PRy § 1 ) s

/0 (T — )52 £ (s, a(s))|ds

53



CHAPTER 3. EXISTENCE RESULTS FOR LANGEVIN EQUATION WITH
RIESZ-CAPUTO FRACTIONAL DERIVATIVE

: % ‘(t2 —h) (1 — 1))+ % |(ta —11)7 + (t2 — t1)°)
- % ((t2 — 11)? = (1 — )"

NG f; 1) (b — £)™*F + (ty — 1))

I'(a +L2 1) |(t2 — £1)°F7 — (t1—2)* "]

VT (T = 1) = (T = )" + (& — 1))
T(3+ 2L (B) + XT7|

T (T = 12)° = (T = 1)? + (1 — #)
Al(a+ B)20(B) +xT7

_I_

+

As ty — t; — 0, the right-hind side of the above inequality tends to zeros indepen-
dently of € B;. That means H is equicontinuous and by Arzela-Ascoli theorem
the operator H : C([0,T]) — C(]0,T]) is completely continuous.

Step 4: Finally, we consider the set V' defined by:

V={zeC(0,T)/x = pHz,0 <p <1},

and show that V' is bounded.
For z € Vand ¢t € [0,T], we have

2|x|T? Yl
=01 (7555 * e
|X|To¢+2[3 2Toc+5 ’
BT{a+ B)20(B) +xT7] *  TlatA+1) "~
<(2ww5 T )
“A\I(B+1)  T(B+1)20(B) + xT7|

+

( x| T +28 L e )L
BL(a+B)20(B) + XTP| " T(a+p+1)) %

Consequently
|lz(t)]] < (kid + koLo) = G.

Then
2] < G.
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Therefore, V' is bounded. Hence, by theorem , the boundary value problem (3.1
has at least one solution on [0, 7. O

3.2.3 Existence result via Krasnoselskii’s fixed point theo-

rem

Theorem 55. Let f : [0,7] x R — R be a continuous function, and suppose that
condition (Hy) holds.

In addition, we assume that the function f satisfies the assumptions:

(H3) There exists a nonnegative function Q € C([0,T],R") such that
|f(t,x(t)| < Qt) for any (t,z) € [0,T] x R.

(Hy) Liko < 1, where ko is defined by (@
Then the boundary value problem has a least one solution in [0, T].

Proof. We first define two new operators H; and H, by:

= X g X TS_ 5 e
(Hl )(t) F(ﬁ)/o(t ) ()d F(ﬁ)/t ( t) ()d
2T(t? — (T —t)P) T e
_+5FU3—1X215%+XT®LA (T — 5)"“w(s)ds, (3.12)
. - XT(tﬁ i t>ﬂ) ' — §)P2 1 (5 x(s))ds
) = 6Na+ﬁ—U@N®+XWQA(T ) f(s,2(s))d

* ‘r(a1'+ B) /o (t =) f(s,2(s))ds

; TS_ a+p—1 s. z(s s
b | 0 s 0.7 (3.13)

We consider a closed, bounded, convex and nonempty subset of Banach space defined
by C([0,T]) as B, = {z € C([0,T)), ||z|| < p},with supcpm|2(t)| = ||| We take

Fal|€2]]

> )
P=0 k)

where k1 < 1 and kq, ky are given by (3.5)) and ({3.6|) respectively.
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Now, we show that Hyx + Hyy € B,, indeed for any z,y € B,, we have

T ﬁ t — 5) 7 z(s)|ds M TS— “Ha(s)|ds
Hialt)+ Hay(0)] < s [ 0=y ato)lds + 255 [ 5= 0 alo)la

XQT(tﬁ — (T - t)’B) ! — )2 |2(s)|ds
i 5F(ﬁ—1)(2r(5)+XTﬁ)/o (T = )" "|a(s)|d

XT (7 — (T —1)°) T 02 £(s (8Dl
5F(a+ﬁ—1)(2F(ﬁ)+XTﬁ)/o (T = 5)* 721 £ (s, y(s))ld

S t — 5) P F(s, y(s))|ds
el AT O
S - ' s — )2 £, y(s))|ds
" F(m_@)/t (s =) f(s,(5))ld
2|X|TB X2T25
= (F(ﬁ +1) * (B +1)20(B) + XTB|) |z (s)]l

N ( |X|Ta+2,3 N QT o+B ) ” H
Bl(a+ B)20(B) + XTP| ~ I(a+B+1)
= kip + ko[ < p.

which implies that ||Hyx + Hsy|| < p. This shows that Hyz + Hoy € B,.

The next step is related to the compactness and continuity of the operator H;.
Continuity of f implies that the operator H; is continuous, also H; is uniformly
bounded on B, as

2x|T” X>T%

2x| 7" X>T%
S(H6+U+FW+DBNm+MWOp
= kip.

Now we will prove the compactness of the operator Hj.
For t1,ty € [0,T], t; < ty we have

KHwWﬂ—Uﬂ@mNSJﬁiAW@—wWl—ﬁrwflmwwﬁ

0(0)
M ! s — 1) — (s — )2 Y|z(s)|ds
gy L 6= 8 s =) e
ﬁ ” — ) — (t; — )P Y|z(s)|ds
oy L =0 = (0 (o)l

56



CHAPTER 3. EXISTENCE RESULTS FOR LANGEVIN EQUATION WITH
RIESZ-CAPUTO FRACTIONAL DERIVATIVE

R O AR )
' BL(B — 1)|20(B) + XT7| /0 (T — )°2Ja(s)|ds
< %l@? — ) = (t2 — 1) ()]
F T~ ) = (T =)+ (= 1)l
X
To+ 1)t~ 1) — (t1 — to)°||2(s)|

VT (I = 0)" = (T = ) + (1 = 1) )|
BT+ DRI(B) + xT7

+ ()],

we see that the right-hand side of the above inequality tends to zero independently
of v € B,, as t, — t;. Thus H; is equicontinuous, so H; is relatively compact on
B,. Therefore, by the conclusion of the Arzela-Ascoli theorem, the operator H; is
continuous and compact on B,,.

Now, we prove that Hj is contraction mapping.
Let 2,y € C([0,T]), and for each t € [0,T], we have

B _ _£\8 T
= ﬁrm'f?t— 1)((27;(5;)+|xT5) | = s a(s) = Sl

1 K at+f—1
T / (t = )0 f(s,2(5)) — f(s,y(s))|ds

by [ 07 s 9 — (sl
F(O‘ + 5) t 7 Y

_ ( |X|Ta+25 N 2Ta+ﬁ )L HJ;— ||

= \Br(a+B)2TB) + 17 T(a+p+1)) Y

= koLy|jz — y||.

| Hax(t) — Hay(t)

Thus all the assumptions of theorem are satisfied. So the boundary value
problem (3.1)) has at least one solution on [0, 7. ]
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3.3 Examples

Example 56. Consider the following nonlinear Langevin equation with Riesz-Caputo

fractional deriwative:

T |z (@)|+5 (m+t2)

: 3 T cos?
RCDREODS + La(t) = ZHOL et g < < 1, (3.14)
z(0)+z(T) =0, 2/(0)+2/(T) =0,

— 1

Here, a = %,ﬂ =z, X= %,Ll = ;- Moreover,

W=

_wlz(t)]  cos®t
J2) = N s r s )

Hence, we have
1
t — f(t < —||lx — vyl
£t,2) = FEw)] < e =yl

The condition (Hy) is satisfied with Ly = %, =0,4032. So ¢1 < 1.
Then by using theorem the boundary value problem has a unique solution
on [0, 1].

Example 57. Consider the following nonlinear Langevin equation with Riesz-Caputo

fractional derivative:

1*'1 : cos?2 L T
{ODF (EOD + $alt) = =t sin (L) <<, (3.15)
z(0)+z(T) =0, 2/(0)+ 2/(T) =0,
Here, a = %, = é,x = é,Ll = %,gbl = 0,3781. Also we have |f(t,z)| < %, with

Ly = Clearly the hypothesis of theorem z's satisfied. Thus boundary value
problem admz’ts at least a solution on |0, %] )

wly

Example 58. Consider the following nonlinear Langevin equation with Riesz-Caputo

fractional derivative:

Viz+121 \ (1+]=])

(3.16)
z(0)+x(T)=0, 2/(0) + 2/(T) = 0,

9 1 t
{ BODHECD] + B)o(t) = v (k) +5 0<t<2,

1 || el

ft2) = ey T 2
H8
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Moreover,
1 et

tr)| < ——— — + —.
72l VEF+121 0 2

Hence, we have
1

with Ly = 1—11, ko = O,3584,L1k2 = 0,0326 So Liky < 1.

Then by using theorem the boundary value problem has at least a solution
on [0,2].
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Chapter I

Katugampola fractional differential

equation with Erdélyi-Kober integral

boundary conditions

4.1 Introduction

This chapter investigates the following Katugampola fractional differential equation

with Erdélyi-Kober fractional integral boundary conditions:

Droy(t) + h(t,u(t)) =0, 0<t<T,
u(0) =0,
u(T) = MU/ (€), 0<&<T,

(4.1)

where D”* is the Katugampola derivative of order 1 < o < 2, p > 0 and h :
[0, T]xR — R is a continuous function, I} % denotes Erdélyi-Kober fractional integral
of order 6 > 0, 7 > 0, A\, v € R. Some new existence and uniqueness results
are obtained using nonlinear’s contraction principle and Krasnoselskii’s and Leray-
Schauder’s fixed point theorems. Four examples are given in the last section to

illustrate the obtained results.

4.2 Existence of solutions

For the existence of solutions for the problem (4.1)), we need the following auxiliary

lemma.
Lemma 59. [?] Let a,p > 0, if u € C[0,T], then we have the following properties.
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(i) The fractional differential equation D{fu(t) =0 admits a solution defined by:

u(t) = co + c1t? + ot + ...+ A

where ¢; € R, withi=0,1,2,...,n,n = [o] + 1.

(ii) Let a > 0, then
12D u(t) = u(t) + co + et” + cpt™ + ... + ¢t " D?,

where ¢; € R and n = [a] 4+ 1.

Lemma 60. Let 1 < a <2 and A € R. A function v € C([0,T],R) is a solution of

nonlinear Katugampola fractional integral equation

P

_Tr—1yp
ot ERnae e Tlg() - 1), (42)

u(t) = =1 g(T) +

if and only if u is a solution of the Katugampola fractional differential equation with

Erdélyi-Kober fractional integral conditions

“u(t)+g(t)=0, 0<t<T,
(0):0 (4.3)
W(T) = A0(€), 0<&<T.

Proof. Applying Lemma to equation (4.3)), we obtain
u(t) = —co — c1t? — IP%g(t), (4.4)

with cg, ¢; € R. The condition u(0) = 0 implies that ¢y = 0.
Thus
u'(t) = —pert?™t — P 1P g (1) (4.5)

Combining the Erdélyi-Kober fractional integral with (4.5)), we get

Dy + (%1) +1)
Fw+( D4 o+1)

AL (€) = —pe AP — AP g (€).

— AP g )
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Solving the above equation for ¢; and choosing

D(y+(57) +1)

A= pert Tt
e @& rern
we obtain —— \
— Ip,a—l T) — _I%J p—le,cx—l )
6 =— 9(T) = 7 1;°¢ 9(¢)
Substituting the constant c¢; into , we find (4.2 . m

Also, we consider the notations:

—Q

P e PTG (D + 1)

_ (a+1) n p(a+1)—1 P pa
(b_AF(oz) AD(@)T(y + (55) +6 + 1 )T +F(Oé+1)T ’
(4.6)
. pl_o‘ pa 1 a‘)\’r(,.y + ( 0 ) ) pla+1)—1
fh = AF(a)T AT(a)T(y + (&) + 6 + 1)T (4.7)

In the following section, we investigate existence and uniqueness results for the
boundary value problem ({4.1).

4.2.1 Existence and Uniqueness Result via Banach’s Fixed
Point Theorem
We defined the operator H : C([0,7]) — C([0,T]) associated to the problem

as

p—14p p
T2 s ugs)) ()42

(Hu)(z) = = Lyoer= P (s, u(s))(€) =17 h(s, u(s))(t).

We use the following expressions:

-«

Ph(r, u(r _F E — )P h (e u(r) ) dr
PERr(r)) = foos [ (€= ()

8 Tos 775 n(7+6)p1 oY rn7+n 1 7,,) tp)o‘—ltﬂ—l
1 h(r, u(r))(§) = (e u(t)dtdr

7.17)1 1

where £ € [0, 7.

Theorem 61. Let h: [0,T] — R be a continuous function. Assume that:
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(Hy) there exists a positive constant L such that
Ih(t,u) = it 0)] < Liju— o]

for each t € [0,T) and u,v € R.

(H2) Lo < 1, where ¢ is defined by[4.6|

Then the boundary value problem has a unique solution on [0,T).

Proof. By using the operator H defined by the formula (4.8) and applying the
Banach contraction mapping principle, we will show that the operator H has a
unique fixed point.
For any u,v € C([0,T]) and for each t € [0, 7], we have
T2p71
|Hu(t) — Ho(t)| <
T7[Al
A
+ Ip7a|h<8a U(S)) - h(S, U(S))Kt)a
L||lu — v||T?~!
<
- A
. Lllu=v|7]
A
+ Lfju — [ I7*(1)(T),

—a l1-a pa—1
< Llu—n| I—Tp(oz—i-l)—l P AL (y + ( n )+ 1) Tolat1)-1
AT («) AD(e)D(y + (222) + 0+ 1)

172~ Hh(s, u(s)) — h(s, v(s))[(T)

— L0 P (s, u(s)) — (s, v(s))](€)

1 i()(7)

Lo e (1)(8)

p—Oé
L
Tt } ’
= Loflu—v].
This implies that |[Hu — Ho|| < Lo||lu — v|| because L¢ < 1.
The operator H : C([0,7]) — C([0,T]) is a contraction mapping, therefore, we

deduce by Banach’s contraction principle mapping, that the operator H has a fixed
point which is the unique solution of problem (4.1)) on [0, 7. O

4.2.2 Existence and Uniqueness Result via Boy-Wong Fixed

Point Theorem

Theorem 62. [12] Let h : [0,T] x R — R be a continuous function such that the

following condition holds:
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(H3) |h(t,u)—h(t,v)| < k(t)B!:h:i'L”, fort €10,T), where k : [0,T] — R is a given

function.
Then the problem has a unique solution on [0,T].

Proof. Let us define the continuous and nondecreasing function, ¢ : R* — R by

o(r) = BB—:W Vr >0,
e(0)=0, ()<,

where B := %]'D’Oﬁlk(T} + %wlg’éﬁpfllp’aflk‘(f) + IPk(T).

For any u,v € C([0,T]) and for each t € [0, 7], one has

2p—1

|Hu(t) — Ho(t)| < 177 (s, u(s)) — h(s, v(s))[(T)

+ T g1 =t s, u(s) — s o(s)) (0

+ 17| h(s, u(s)) = h(s,v(s))|(1),

7o = ol
<_[p,a71 k | e | T
<A <(@B+wu—m0(>

o

. =
F e 1(M$§;W;;a0<@

o (g lu=1l
o (”)B+nu—m0(ﬂ’

- B A A
= ¢([[u =),

. T2p—1 TP
_ ¢l vm{ ]mh%uy+_Jﬁﬁﬁﬁ*ﬂqu@%%ﬂ”MT%.

This implies that || Tu —T|| < ¢(||u —wv]|). Therefore T is a nonlinear contractions.
Hence by Theorem the operator T has a fixed point which is solution of the
problem (4.1)), which completes the proof. O]

4.2.3 Existence Result via Krassnoselskii’s Fixed Point The-

orem

Theorem 63. Let h: [0,T] x R — R be a continuous function and suppose that the

condition (Hy) holds and the function h satisfies the assumptions:

(Hy) There exists a nonnegative function © € (C[0,T],R) such that |h(t,u(t))| <
O(t) for any (t,u) € [0,T] x R,

64



CHAPTER 4. KATUGAMPOLA FRACTIONAL DIFFERENTIAL EQUATION
WITH ERDELYI-KOBER INTEGRAL BOUNDARY CONDITIONS

(Hs) Ly < 1, where Q4 is defined by (4.7).

Then the boundary value problem has a least one solution in [0, T].

Proof. We first define two new operators 77 and 75 as

(Tru)(t) =~ 1ra=th (s, u(s))(T), (4.9)
(Tyu)(t) = %Ig’éfp‘llp’a‘lh(s, w($)(E) — IPh(s, u(s))(t), te0,T]. (4.10)

Then we consider a closed, bounded, convex and nonempty subset of the Banach
space X as By = {u € C([0,7)),||u]| < d} with, |[|©]¢ < d, where ¢ is defined by

(E5).

Now for any u,v € By, we have

2p—1

ITyu(t) + Too(t)] < 10 (s, u(s))|(T)

Te|\ e
+ T gt et s, u(s)) )
+ I7°|h(s, u(s))|(T)

2p—1

S T AH@”[/),a—l(l)(T)

T#|A|[|© e
L+ iel ,4|1H ”I,yﬁgﬂ e (1)(8)
+ [[Of 77 (1)(T)

o 11—« pa—1

<ol _pl __pelat)-1 Py ( 1 )+ 1) Telat)-1
= AT () AD()0(y + (222) + 0+ 1)

pfa
— T
Tla+ 1) }

= [[©ll¢ < d.

Therefore, it’s clear that ||Tiu(t) + Tov(t)|| < d. Hence Thu(t) + Tov(t) € By.
The next step concerns the compactness and continuity of the operator 77. Conti-
nuity of h implies that the operator 7T} is continuous and uniformly bounded on By

as

1—an(a+1)—1

p
T <
I < 11—y

Now we prove the compactness of the operator T7. For t,ts € [0,7T], t; < tg, we
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have

1fana71
[Tra(ts) = Trofts)| < €)= 5—

which is independent of v and tends to zero when t5 — t; — 0. Thus 77 is equicon-

|t§_t?|7

tinuous. By Arzela-Ascoli theorem, T is compact on Bj.
Now, we prove that T, is a contraction mapping.
For w,v € C([0,T]) and for each t € [0, T], we have

|Tou(t) — Tyu(t)] < 177 Hh(s, u(s)) — h(s, v(s))|(T)

+ T g1 s, u(s)) — s o(s)) (0

< Llju — | 171 (1)(T)

P < —
+ T |)\| — LHU U”I;]y,(sfpfl]p,afl(l)(g)

A
o - pa—1
Ll = Ol o gy MW”+{ﬁ>+l> plat) =1,
Al'(a+ 1) Al(a)l(y + (=) + 0+ 1)

AT () AT (@)D(y + (222) + 6 + 1

n

_ 1—a pa—1
o PN (y + +1
:L||u—v||{ L NG+ ) )>Tp<a+”‘1},

which implies that | Tou(t) —Tov(t)|| < L4 ||lu—wv]|. As L4 ||lu—wv]|| < 1, the operator
T, is a contraction. Thus all the assumption of Theorem are satisfied. So this
implies that the problem (4.1)) has at least one solution on [0, T7. O

4.2.4 Existence Result via Leray-Schauder’s Nonlinear Al-

ternative

Theorem 64. Let f:[0,7] x R — R be continuous function. Assume that

(Hg) There ezist a nonnegative function z € C([0,T],R) and a continuous nonde-
creasing function © : [0,00) — [0,00) such that |f(t,u)| < z(t)O(||ul), for all
(tou) € 0,7) x R,

(H;) There exists a constant N > 0 such that

L >1
olz[6(N) ~

where ¢ is defined as in @ Then the problem has a least one solution
on [0,T].
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Proof. Let Bg = {u € C([0,T])/||u]| < R} be a closed bounded subset in C([0, T, R).
Let H be the operator defined by (4.8). As a first step, we show that the operator
H maps bounded sets into bounded sets in C([0, 7], R). Then for ¢ € [0, 7], we have

Hu(t)] < T s, u(s) (T)
+TJ1 ‘[766,0 P h(s, u(s)| (€)
+ 172 h(s, u(s))|(T),
. w 1721 5(s)(T)
i TONOUD) g ot )
+O(ul) 17 =(s)(T),
< T2200D) pcr
. w o612 €)

O(llul) 17 (|=[I(T),

P i PTCGE DD e
@<|\uu>|rzr|{AF(a>T< B T e = Ew FRTIA T e }

= ¢O([lull)l|=]

Consequently, ||[Hu(t)|| < ¢O(||u|])||z||. Next, we show that the map H : C([0,T]) —
C([0,T7]) is completely continuous. Therefore, we will prove that the operator H
maps bounded sets into equicontinuous sets of C([0, 7], R). Indeed let t1,t, € [0, 7],
with ¢; < t5 and u € Bpg, then we have

Hu(ta) — Hu(e)] < T 0Bl ot u(@) (1) + 112 u(s)) (1) — 1B, u(s)) 1)
U8 gt et s, uis) )
< = Bl upy=(o) oo 1)) + O (30117 (1)(82) — 19 (1) 1)
+ W@(||u||)z(s)fg’5§”‘1lp’“‘1(1)(5)
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< |tp—tp| o([ul)|l=| (a)Tpa 1+@(||u||)HZH<—:1)

Mmp #le, TOD(y + () + 1)

OllulDll=ll -

a—1 a—1
|(tp( ) tr{( ))‘

pa—1

() (v+(557) +0+1) ’

- tp|

Ity — 15| pa—1 L geta=) _ gela=D)
<7 (MIH(aﬂj +@(>HH< ﬂ@ =t )
yMW—f\ ( ( —1) +1) -

It is clear that the right-hand side of above inequality tends to zero independently
of u € Bg as ty — t; — 0. Therefore by the Ascoli-Arzela theorem, the operator
H :C([0,T]) — C(]0,T]) is completely continuous.

In the last step we show that the operator H has a fixed point. Let u be a solution
of H(u) = u, then for each t € [0, T],

[Hull = [[ull < ¢[lz[O([ul]),

which implies that
[l

ellzllO(ul)
From (H7), there exists N > 0 such that ||u|| # N. Let us set G = {u € C([0,7]) :
|lu] < N}. B
Then the operator H : G — C([0,T]) is continuous and completely continuous.

<1

Consequently, there doesn’t exist any u € 0G such that u = pHu for some p € (0, 1).
Assume that there exists u € OG such that u = pHu for some p € (0,1). Then

lull = [lpHull < |Hull < oll2[[O(]ull),

Il
AllzlOull) ~

ol 1, Consequently, by nonlinear alternative Leray-Schauder

ollz19([lull) .
principal, we conclude, that H has a fixed point u € GG, which is a solution of problem

(4.1)), this completes the proof. O

This contradicts
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4.3 Examples

Example 65. Consider the following nonlinear Katugampola fractional differential

equation with Erdélyi-Kober fractional integral conditions:

Jul+1 T+2

w(0) =0, (4.11)

DY3u(t) = ( Ju| ) 1 e (0,1)

Hence, we have

£(t0) ~ F(t.0)] < —

Assumption (Hy ) is satisfied with L = #2 Using the given value, we get ¢ = 3, 3839.
Therefore Lo = 0,6581 < 1, which implies that assumption (Hy) holds. Using
theorem , we deduce that the boundary value problem has a unique solution
on [0,1].

Example 66. Consider the following nonlinear Katugampola fractional differential

equation with Erdélyi-Kober fractional integral conditions:

ul+5
u(0) =0, (4.12)

DViu(t) = —f (s ) + %52, te 0,4),

Choosing k(t) = %, we get

t2 lu — |
£t u) = f(tv)l < 3 (0,0751+ |u—v|> ‘

Clearly, all the assumptions of Theorem @) are satisfied, witch tmplies that the
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problem has at least one solution on [0, 3].

Example 67. Consider the following nonlinear Katugampola fractional differential

equation with Erdélyi-Kober fractional integral conditions:

ut) = (Iul\ﬂrl) 3(7rf7) +£ ot el0,2]
(0) - (4.13)

with L = ﬁ, ¢ =8,4101, Lo = 0,2764, 2y = 3,8622, LQ; =0,1269 < 1.
Again, the hypothesis of Theorem @ are satisfied and, as a consequence, the
problem has at least one solution on [0, 2].

Example 68. Consider the following nonlinear Katugampola fractional differential

equation with Erdélyi-Kober fractional integral conditions :

D¥5u(t) = <|u|(+i + 1) <%> € [0, 5}
u(0) 0. (4.14)

o i
u’(ﬁ):ﬁlg“ “u/(

E=a=4

He?"@a:%;PZS;’Y:%ﬂ?: 1

=

Moreover

e = | (5 1) (V) < ﬁ8“<|u|+1>.

lu| +1 8
We choose z(t) = Y2 and O(||lul]) = |lul| + 1. We have ||z|| = &5 and ¢ =
0,0115. Now, we need to show that there exists N > 0 such that
N > 1
O(N)=ll¢

and such N > 0 exists if 1 — ||z]||¢ > 0. A straightforward calculus give ||z||¢ =
0,0025 < 1, assumption H7 is satisfied. Hence using Theorem , the boundary
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value problem has at least one solution on [0, ).

4.4 Conclusion

In this chapter with the help of standard fixed point theorems type, we obtained
conditions for existence of at least one solution of a Katugampola fractional differ-
ential equation with Erdélyi-Kober fractional integral boundary conditions. In the
future it seems interesting to obtain sufficient conditions to ensure Ulam-Hyers and

Ulam-Hyers-Rassias stabilities.
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Chapter

Existence results for generalized Caputo
hybrid fractional integro-differential

equations

5.1 Introduction

The class of fractional differential equations includes an unknown derivative and a
nonlinear hybrid function. The importance of hybrid fractional differential equations
is that they involve different dynamical systems in mathematics and applied physics,
for example, in the deflection of a curved beam having a constant or varying cross
section, a three-layer beam, electromagnetic waves or gravity driven flows [72] [77].

In this chapter,we prove the existence of solutions for hybrid fractional integro-

differential equations involving 1-Caputo derivative of the form

=S RYE (7 a(r
(1) Zk=11a+ Fi(r,2(7)) — [H(T,Z(T)),T eJ= [avb]a

cDVﬂlJ z
at @(T,Z(T)) (51)

z(a) =0,

where CDZT is the i-Caputo fractional derivative of order v € (0, 1],[2;;# is the
y-Riemann-Liouville fractional integral of order 8 > 0,0 € {o1,09,...,0m}, 0% >
0,k=1,2,....m.Ge C(JxR,R\{0}) and Fy,He C(J x R,R),(k =1,2,...,m).
We use an hybrid fixed point theorem for a sum of three operators due to Dhage for
proving the main results. An example is provided to illustrate main results.

We denote by C([a,b],R) the Banach space of all continuous functions z from [a, 0]
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into R with the supremum norm

Izllc = sup [2(7)],

T€[a,b]

and the multiplication in C'(J) by

(29)(7) = 2(7)y(7).

Clearly, C'(J) is a Banach algebra with respect to the supremum norm and multi-

plication in it.

5.2 Existence Theorem

In this section,we establish an existence result for the problem (5.1). Firstly, we

need the following lemma.

Lemma 69. Let v € (0,1] be fized and functions F;, (i = 1,--- ,n),G,H satisfy
problem (5.1)). Then the function z € C([a, b, R) is a solution of the hybrid fractional
integro-differential problem (5.1)) if and only if it satisfies the integral equation

2(1) = 6(r, 2(1)) [Md) + I YH(T, (1 ] +Z ”’“w[l-_k (1,2(1)), 7€]ab], (5.2)
k=1

where

— S 10V Fy(a, 0)

M p—
v G(a, 0)

For the proof of Lemma [69] it is useful to refer to [72, [77].
Theorem 70. Assume that:

(Hy) Let the functions G: J x R — R\ {0} and, Fy,H: JxR =R, k=0,1,2,....m

are continuous

(Hy) There exists two positive functions Ly, , Lg, k =0, 1,2, ..., m with bounds ||Lg,||
and |Lgl|, k =0,1,2,...,m, respectively, such that

|Fr(T,2(7)) — Fr(r,2(7))| < Lg (7)|z —Z|, k=0,1,2,...,m, (5.4)
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and
|6(7, 2(7)) = G(7,2(7))| < Le(7)|2 — 2, (5.5)
for all (1,2,Z) € I x Rx R.

(Hs) There exist a function p € C(J,Ry) and a continuous nondecreasing function
Q:[0,00) = (0,00) such that

[H(7, 2(7))| < p(T)(z]), (5.6)
forallT €J and z € R.

(Hy) There exists a number r > 0 such that

. G*A +£;'fa[F;; | (5.7)
1—[[LefA = €[y, |
and
[LollA + I5FF; < 1, (5.8)
where Fy, = suprej|Fr(7,0)|, and G* = sup,¢;5|G(7,0)|, k =0,1,2,...,m, and
A = My + Q) Il (5.9)

Then hybrid fractional integro-differential problem has a least one solution
defined on J.

Proof. In order to use Dhage’s fixed-point theorem to prove our main result, we
define a subset S, of C(J) by

S, ={zeC):|z|]lc <r},

with r is a constant defined by hypothesis Hy.
Notice that S, is closed, convex and bounded subset of C'(J). Define three operators
AC:C(J)— C(J)and B: S, — C(J) by

Az(1T) = 06(r, 2(1)),

. T € J,
Bz(r) =My + I:J:p[l-l(T, z(1)),
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and
Cz(r) = lef;wﬂ‘_k(T,Z(T))v T € J.
k=1

Then ((5.2)) in operator form becomes
2(1) = Az(1)Bz(1) + C2(71), 7€ J.

We shall prove that the operators A, B and C satisfy the conditions of Theorem [42]
For the sake of clarity, we split the proof into a sequence of steps.

Step 1: First, we show that A and C are Lipschitzian on C(J). Let z,z € C(J).
then by (H2), for 7 € [a, b], we have

|Az(T) = AZ(7)| = |C(7, 2(7)) — G(7, 2(7))]
< Le(n)l[2(7) = 2(7)lle

Taking supremum over 7 € [a, b], we obtain
Az — AzZ]lo < |Lelll[2(7) — 2(7) e,

for all z,z € C(J). Therefore, A is a Lipschitzian on C(J) with Lipschitz constant
Lg. Also, for any z,z € C(J), we have

C2(7) = C2(7)| < Y I7E*|Fil7, 2(r)) — Fa(r, 2(7))]

<D I (D)(r) = 2(7)le

<3 P Il 20l

Hence, we have
1€z — Czlle < £ [[Le [l[2(7) = 2(7) e

Which means that C is a Lipschitzian on C(J) with Lipschitz constant £7*||Lg, ||.
Step 2: We show that B is completely continuous on S,.. The continuity of B follows
by the continuity of H. Now, it is sufficient to show that B is uniformly bounded

and equicontinuous on 5,. On the other hand, Keeping in mind the definition of the
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operator B on [a, b] together with assumption (H3). For any z € 5, we can get
|[BZ(7’)| §|qu| + /T W(S)W(T) — ¢<3))V_1 |[H(3,z(s)|ds
T 0/ . v—1
iy [ LD,

R

(¥(b) — ¢(a)”
I'(v+1)

=My [+ Qr)lpl1€-

S’Mw|+

Q@)

Hence
1Bzl < [My| + Q(r)|[pll £

Thus ||Bz|| < A with A given in (5.9), for all z € S,. This shows that B is uniformly
bounded on S,.

Now, we will show that B(S,) is an equicontinuous set in C'(J).

Let 71,7 € J with 7 < 75 . Then for any z € S, by we get

" Y(s) (W (1) —(s)"
a [(v)
" () (Y(T )—¢(8))”‘1

|Bz(19) — Bz(1y)| < H(r, z(7))ds

H(7, z(7))ds
< T)HPH/ V(s — ()" = (W(72) = (s))" ] ds

I'(v)
L [ ) ) - ) 59
It is clear that the right-hand side of is independent of z. Therefore, as 75 — 71,
inequality tends zeros. As consequence of the Arzela-Ascoli theorem, B is a
completely continuous operator on S,.

Step 3: The hypothesis (c¢) of Theorem (42| is satisfied.

Let z € C(J) and y € S, be arbitrary elements such that z = AzBy + Cz.
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Then we have

|2(7)| < |A2(7)] [By(7)] + |C=(7)]

< 16(r, 2(r )] {Wy + LI,y | + D0 17 Fa(r, (7))

k=1

< (1B(r, 2(7)) = 6(r,0)| + [6(r, 0)]) {Vy + I |H(r, y(r))] }

+ 317 (IFu(r, 2(7)) — Fa(r, 0)] + [Fu(7,0)])

< (ILelllizlic + 6%) [IMy] + Qr)lIpliey] + €3 (e, N2l + FF)-
Thus,
2(T)] < (ILelllzlle + ) A + €3 (ILs, M 2lle + Fr).-

Taking the supremum over 7,

G* A+€"k[F* <
[Lo||A — €°k||[L[rk|| -

<
ol < —

Step 4: Finally we show that dM + ¢ < 1, that is, (d) of Theorem [42| holds.

Since

M = || B(S)| = sup { sup | B=(t)| } < A,

zeS TeJ

and so
Lol M + 3F[|Lg, || < [[LollA + £ |Lg, |l < 1,

with ¢ = [[Lel[,§ = £ [|Lr, . Thus all the conditions of Theorem (42 are satisfied
and hence the operator equation z = AzBz 4 Cz has a solution in S,. As a result,
problem (|5.1)) has a solution on J. O

5.3 Application

In this section, we present an example to show the applicability of the main result.

Example 71. Consider the following hybrid fractional integro-differential equation:

e | 21—k 1ﬂ”i Fr(rz(m))| 4 2|
|D2 G(1,2(7)) } T V25422 ((4\z|+1) + |z\+1 + ) TeJ:i= [O, 1],

(5.10)
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We take

10
k=1
3.5 TCOST z(7)| T
|]2
o 12(1 +e7) <1+ |2(7)] L

Hg;w?)sin T |z(7)] N
COS T
447 \5+|2(7)] ’

b7, 2(7)) = g(f +1),7€[0,1],

_ 6y/7sin*(77)  z(7) N 1
(t4+5) 1+2z(r) 2

1 2] 22 1
A=) = a5 ((4|z| ) T Z) :

G(, 2(7))

We can show that

Fu(r,2(r) = Fa(r.2(7)] < g5le = 2,
IFa(7,2(7)) = Fo(r, 20| £ oy =21

- 3 _
[Fa(r,2(7)) = Fal(r 2] < o2 — 21
_ VT

6(r, () 6(r 27)) | < sl

IH(r. (7)) ~ Hm 2] = (Il + 5

where
1

Qlz]) = [z + 1, plr) = e

Hence we have

Then
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6/7 1 1 3 1 2
Lol = VO Le || = — Lell —— Le |l = = N
ILell === ltnll= 15 Ilrl D 1e) el =550 lpl =5 & NG
Ly [ = 81(1+e)+25 . ., 58 234(1 +e) + 100
eI T 50 m(1+e) YO E T Taymer YT 225 /m(l+e)

and

1 1
. =sup |[Fx(7,0)] = =, G =sup|C(7,0)| =, k=12,3.
zeJ e zeJ 2

By using Matlab program, it follows by (5.7) and (5.8) that the constant r satisfies
the inequality 0.7411 < r < 0.9970. As all the assumptions of Theorem are
satisfied then the problem (5.10) has at least one solution on J.
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Conclusion and Perspective

The main goals of this thesis is to investigate the existence and uniqueness of so-
lutions to certain boundary value problems for of a class of fractional differential
equations is established by using some fixed point theorems, Banach contraction
principal theorem, Krasnoselskii’s, Scheafer, D’hage, Leray-Shouder fixed point the-
orem, stability Ulam-Hayers

In the future researches, a first we intend to study some boundary problems,
the application of certain other methods by combining the technique of measure of
noncompactness, topological degree, monotone iterative technique.

Concerning the second research is concerned dynamics fractional systems, we
propose the models mathematical biology such as: Endemic model (covid-19), and
models in mathematical ecology, by combin numerical methods of resolution, Ho-
motopy perturbation methods, ADM method.

Concerning the third research, is concerned of application the fractional calculus

in machine learning, such as the dynamics of Hopfield-type natural networks.
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