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Abstract :

Generalized Fractional Calculus appear in modeling of important various scientific

fields such as the complex phenomena in mathematical, physics, engineering, chem-

istry, electricity and medicine.

The main objective of this thesis is to contribute the development of the theory of the

existence and uniqueness of solutions of certain fractional differential equations such

as: neutral differential equation, Langevin equation, hybrid differential equations

involving different fractional derivatives as ψ-Caputo, Riesz-Caputo, Katugampola

with local and nonlocal conditions in Banach spaces.

The results obtained in this work are based on the fixed point theory: Banach’s con-

traction principle, Boyd-Wong, Scheafer, Krasnoselski”s, the technique of Nonlinear

alternative of Leray-shauder, Dhage. We also establish the Ulam-Hyers stability re-

sults for some addressed problems. We have also provided an illustrative example to

each of our considered problems for exhibit the effectiveness of our achieved results.

.

Keywords : Fractional differential equations, Existence, uniqueness,

Fixed point theorems, Ulam stability analysis.

Resumé

Le calcul fractionnaire généralisé joue un rôle important dans la modélisation des

phénomènes complexes en mathématiques, physique, ingénierie, chimie, électricité

et médecine. L’objectif principal de cette thèse est de contribuer à l’étude de

l’existence et de l’unicité des solutions de certaines équations différentielles fraction-

naires telles que : une équation différentielle neutre, Langevin équation, équations

différentielles hybrides impliquant différents dérivés fractionnaires comme ψ-Caputo,

Riesz-Caputo, Katugampola avec des conditions locales et non locales dans les es-

paces Banach. Les résultats obtenus dans ce travail sont basés sur la théorie des

points fixes: Banach’s principal contraction, Boyd-Wong, Scheafer, Krasnoselski,

la technique de Nonlinear alternative de Leray-shauder, Dhage. Nous établissons

également les résultats de stabilité d’Ulam-Hyers pour certains problèmes abordés.

Nous concluons que les résultats obtenus par des exemples illustratifs.

Mots clés : Equations différentielle fractionnaire, Problemes aux limites,

Existence, Unicité, Théorémes de point fixe, Ulam stabilité



iii

 

 الملخص

 

في الرياضيات والفيزياء  يلعب الحساب الكسري المعمم دورا هاما في نمذجة الظواهر المعقدة

 والهندسة والكيمياء والكهرباء والطب، ...إلخ. 

الحلول لبعض الهدف الرئيسي من هذه الأطروحة هو المساهمة في دراسة وجود ووحدانية 

معادلة أسية ، معادلة لانجفين، المعادلات  التفاضلية الهجينة المعادلات التفاضلية الكسرية مثل: 

تحت  كابوتو ، كاتي غامبولا-كابوتو ،  ريز- 𝛙والتي تتضمن مشتقات كسرية مختلفة كمشتقة  

 شروط محلية وغير محلية في فضاءات بناخ. 

-ناخ، بويدانكماش بنظرية النقطة الثابتة:  تستند النتائج التي تم الحصول عليها في هذا العمل إلى

شودر غير الخطية المتناوبة ونظرية داج في فضاءات بناخ -كراسنوسلسكي، لوراي، شيفرونغ، 

-ركزنا على تحليل الاستقرار لنتائجنا الرئيسية على اساس نظرية الاستقرار لأولام كما الجبرية. 

 نلخص نتائجنا بإعطاء امثلة توضيحية لتبرير صحتها. . هايرز

النقطة ، الوحدانية، الوجود، الحساب الكسري، المعادلات التفاضلية الكسرية المفتاحية:الكلمات  

  الاستقرار.، الثابتة
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Notations

Ξ Xi.

ζ zeta.

α The integer part of the real number α.

Re(α) Real part of complex α.

N Set of Natural numbers 0,1,2,3....

R Set of Real numbers (−∞,∞).

R
n Space of n-dimensional real vectors.

C Complex numbers.

n! Factorial (n), n ∈ N: The product of all the integers from1 to n.

Cn
k Coefficient binomial.

J Finite closed interval of the real axis R.

C(J) The space of all continuous functions from Ω into R.

Cn(J) Space of n time continuously. differentiable functions on Ω

AC(J,E) Space of absolutely continuous functions on J .

ACn(J,E) Space of real-valued functions f(t) which have continuous derivatives

up to order n− 1 on J .

L1(J) Space of Lebesgue integrable functions on Ω.

Lp(J) Space of measurable functions u with |u|p belongs to L1(Ω).

L∞(J) space of functions u that are essentially bounded on Ω .

Xp
c Space of complex-valued Lebesgue measurable functions Ω.

Iα,ψ The fractional ψ-integral of order α > 0.

Iαa+ The Riemann-Liouville fractional integral of order α > 0.

ρIαa+ The Katugampola fractional integral of order α > 0, ρ > 0.
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Iα,δa+,η The Erdélyi-Kober fractional integral of order δ > 0, η > 0, α ∈ R.

Iα,ψa+ The ψ-Riemann-Liouville fractional integral of order α > 0.

RLDα
a+ The left-sided Riemann-Liouville fractional derivative of order α > 0.

RLDα
b− The right-sided Riemann-Liouville fractional derivative of order α > 0.

CD
α
a+ The left-sided Caputo fractional derivative of order α > 0.

CD
α
b− The right-sided Caputo fractional q-derivative of order α > 0 .

RC
0 D

α

T The Riesz-Caputo fractional derivative of order α > 0.

Dρ,α
a+ The Katugampola fractional derivative of order α > 0.

Dα,ψ
a+ The ψ-Caputo fractional derivative of order α > 0.

Γ(α) Euler gamma function which is now denoted by

Γ(α) =

∫ +∞

0

tα−1e−tdt.

Eα(z) The Its one parameter generalization, called the Mittag-Leffler function

which is now denoted by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0.

Eα,β(z) A two-parameter function of the Mittag-Leffler type is defined by the

series expansion

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0.

FC Fractional calculus.

FD Fractional derivative.

FDE Fractional differential equation.

PDE Partial differential equation.

FI Fractional integral.
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IVP Initial value problem.

BVP Boundary value problem.

FHDE Fractional hybrid differential equation.

FPT Fixed point theory.

UH Ulam-Hayer stability analysis.

FFPE Fractional Fokker-Plank equation
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Introduction

0.1 History of fractional calculus

Since the 60s of the last century Fractional Calculus has got a remarkable progress

and now it is recognized to be an important domain for scientists especially math-

ematicians. Fractional Calculus (FC) started in 1695 with the ideas of Gottfried

Leibniz generated from letter which was written by Antoine Marquez-L’Hopital ask-

ing him ”what would happen if the order of the derivative was a real number instead

of an integer?”. Leibniz responded: ”It will lead to the paradox, from which ben-

eficial consequences will one day be extracted”. This exchange Between L’Hopital

and Leibnitz is generally considered the beginning of fractional calculus. However,

the actual development of fractional calculus was in 1832. When Joseph Liouville

introduced what is now called the Riemann-Liouville definition of the fractional

derivative. Many other definitions of fractional integrals and derivatives are based

on the Riemann-Liouville integral, other definitions extend the notion based on the

differences of the kernel functions.

0.2 List of mathematician’s contributions to frac-

tional calculus:

In this section we address a list of mathematicians, who have provided important

contributions to fractional calculus.

P.S. Laplace (1812), proposed the idea of differentiation of non-integer order for the

functions [61].

Liouville (1835) derived the formula of the fractional integral and fractional deriva-

tive respectively of the form (see [63])

D−βg(x) =
1

(−1)βΓ(β)

∫ ∞
0

g(x+ t)tβ−1, x ∈ R, Re(β) > 0 (1)

and

Dβg(x) =
1

(−1)βΓ(β)

∫ ∞
0

dng(x+ t)

dxn
tβ−1dt, x ∈ R, Re(β) > 0. (2)

Riemann (1835) derived the formula of fractional integrals related with the Liouville

fractional integral of the form (see [86])

D−βg(x) =
1

Γ(β)

∫ x

a

(x− t)β−1g(t)dt, Re(β) > 0, (3)

1



where Re(β) ∈ (n− 1, n], n ∈ N and Re(·) denotes the real part of complex number.

Grünwald-Letnikov (1867-1868) introduce the operator called the Grünwald-Letnikov

fractional operator of the form (see [64, 93])

Dβg(x) = lim
h→0

∆β
hg(x)

hβ
, β > 0, h > 0, (4)

where ∆β
hg(x) is a difference of fractional order, given by

∆β
hg(x) =

∞∑
k=0

(−1)kCβ
k g(x− kh). (5)

Sonine (1872) introduced the Sonine fractional derivative, given as on the form (see

[99, 100])

Dβg(x) =
1

Γ(ρ− β + 1)

∫ x

a

dg(t)

dt
(x− t)ρ−βdt, (6)

where Re(ρ) < β < Re(ρ+ 1), ρ ∈ C.

Hadamard (1892) proposed the following fractional integral in the form (see [51])

Iβg(x) =
xβ

Γ(β)

∫ 1

0

g(tx)

(1− t)1−β dt, Re(β) > 0. (7)

Weyl (1917) derived the left-sided and right-sided of the Weyl fractional integrals

in the form (see [109])

Iβ+g(x) =
1

Γ(β)

∫ x

−∞

g(t)

(x− t)1−β dt, 0 < β < 1, (8)

Iβ−g(x) =
1

Γ(β)

∫ ∞
x

g(t)

(x− t)1−β dt, 0 < β < 1. (9)

Marchaud (1927) introduced the Marchaud fractional derivatives of the form (see

[71])

Dβg(x) =
C

Γ(β)

∫ ∞
x

∆l
tg(x)

t1+β
g(t)dt, (10)

where ∆l
tg(x) is the finite difference of order l, for l > β and l ∈ N . When ∆l

tg(x),

it is called the Weyl type finite difference for l = 1 and 0 < β < 1.

Hadamard (1927) introduced the Hadamard fractional integral, and the fractional

derivative respectively was given by (see [71])

Iβa g(x) =
1

Γ(β)

∫ x

a

g(t)

(ln x
t
)1−β

dt

t
, 0 < β < 1, (11)

2



Dβ
ag(x) =

1

Γ(1− β)

∫ x

0

g(x)− g(t)

(ln x
t
)β+1

dt

t
, 0 < β < 1. (12)

Hille and Tamarkin (1930) proposed the Abel type integral equation on the second

kind (see [?])

g(x) = h(x)− ξ

Γ(β)

∫ x

0

h(t)

(x− t)1−β dt, 0 < β < 1, ξ ∈ C, (13)

with the solution (also called the Hille-Tamarkin fractional derivative, (see [?])

h(x) =
d

dx

∫ x

0

Eβ[ξ(x− t)β]g(t)dt, 0 < β < 1, (14)

where Eβ[ξ(x−t)β] is the Mittag-Leffler function, with one-parameter constant ξ ∈ C
is defined as

Eβ(ξ(x− t)β) =
∞∑
n=1

ξ(x− t)nβ

Γ(nβ + 1)
, β > 0.

Love and young (1938) proposed the convergent fractional integral in the form (see

[67, 68])

Iβ+g(x) =
1

Γ(β)
lim
m→∞

∫ m

0

g(x− t)
t1−β

dt. (15)

In 1939, Hille introduced the Hille fractional differential operator in the form (see

[53])

R(β, ξ)g(x) =
1

ξ

d

dx

∫ x

0

Eβ[
(x− t)β

ξ
]f(t)dt, Re(β) > 0, ξ ∈ R?, (16)

where R(β, ξ) is the resolvent of RLIβ and Eβ[ (x−t)β
ξ

] is the one parameter Mittag-

Leffler function, with β > 0.

Erdélyi-Kober (1940) proposed the fractional integrals and derivatives in the form

(see [41])

Iβa+;σ,ηg(x) =
σt−σ(β+η)

Γ(β)

∫ x

a

tσ(η+1)−1g(s)

(xσ − sσ)1−β ds, (17)

and the fractional derivatives as

Dβ
a+;σ,ηg(x) = t−ση

(
1

σtσ−1
D

)k
tσ(β+η)

(
Iβa+;σ,η+βg

)
(x), (18)

where β > 0, σ > 0, η ∈ R.

3



Cossar (1941) reported the Cossar fractional derivative in the form (see [30])

Dβ
+g(x) = − 1

Γ(1− β)
lim
m→∞

d

dx

∫ m

0

g(t)

(t− x)β
dt, β > 0. (19)

Riesz(1949) defined the fractional calculus based on the Fourier’s work, which is

called the Riesz fractional calculus in the form (see[87])

RZIβRg(x) =
1

2Γ(β) cos(πβ/2)

∫ ∞
−∞

g(s)

|s− x|1−β
ds, Re(β) > 0, (20)

and

RZDβ
Rg(x) =

1

2Γ(n− β) cos(πβ/2)

dn

dxn

∫ ∞
−∞

g(s)

|s− x|β−n+1
ds. (21)

Hille and Phillips (1957) introduced the integral in the form (see [54])

Iβξ g(t) =
ξβ+1

Γ(1 + β)

∫ ∞
0

tβeξ(x−t)g(t)dt. (22)

Chen (1961) introduce the Chen fractional integrals and derivative respectively of

the form (see [32])

Iβg(x) =
1

Γ(β)

∫ x

a

|x− t|β−1g(t)dt, x > a,Re(β) > 0, (23)

Dβg(x) =
1

Γ(1− β)

∫ x

a

1

|x− t|β
dg(t)

dt
dt, x > a,Re(β) > 0, (24)

where Re(β) ∈ (n− 1, n], n ∈ N and Re(·) denotes the real part of complex number.

Srivastava (1964) proposed the fractional integral in the kernel of the confluent

hypergeometric function was given as (see [102])

Iβg(x) =

∫ x

0

(x− t)β−1

Γ(β)
1F1(α; β;x− t)g(t)dt, Re(β) > 0, (25)

where 1F1(α; β;x − t) is called the confluent hypergeometric function of the first

kind, on the form

1F1(a, b; z) =
∞∑
n=0

(a)n
(b)n

zn

n!
,

is defined for |z| < 1 and α, β assumed arbitrarily real or complex values and b ∈ Z+.
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Cooke (1965) proposed the Cooke fractional operator in the form (see [31])

Iν,βa;ρ g(x) =


2x−2(ν+β)

Γ(β)

∫ b
a

t2(ν+1)−1

(x2−t2)1−β
g(t)t2ν−1dt, β > 0,

g(x), β = 0,
2x−2(ν+β)−1

Γ(β+1)
d
dx

∫ b
a
(x2 − t2)βt2ν+1g(t)dt, 0 < β < 1.

(26)

Saxena (1967) introduced the Saxena fractional integral within the kernel of the

Gauss hypergeometric function, is defined by (see [95])

Iβa g(x) =
x−σ−1

Γ(β)

∫ x

0
2F1(1− β, α +m;α; t/x)g(t)tσdt, Re(β) > 0, (27)

where 2F1(1− β, α +m;α; t/x) is the Gauss hypergeometric function is defined as

2F1(a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

is defined for |z| < 1 and α, β assume arbitrary real or complex values and c ∈ Z+.

Kalisch (1967) proposed the left-sided and the right-sided of the Kalisch fractional

derivative of purely imaginary order β, where β = iθ, respectively in the form (see

[63])

I iθa+g(x) =
1

Γ(1 + iθ)

∫ x

a

(x− t)iθg(t)dt, (28)

and

I iθb−g(x) =
1

Γ(1 + iθ)

∫ b

x

(t− x)iθg(t)dt. (29)

Caputo (1967) introduced the Caputo fractional derivative in the form (see [?])

Dβg(x) =
1

Γ(n− β)

∫ x

0

1

(x− t)β
g(n)(t)dt, x > 0,Re(β) > 0. (30)

Dzherbashyan (1967) proposed the Dzherbashyan fractional integral used the gen-

eralization of Hadamarod’s idea and gave the fractional integral in the form (see

[38])

Iβg(x) =
1

Γ(β)

∫ 1

0

g(xz)

(−lnz)1−β dz, Re(β) > 0. (31)

Srivastava (1968) proposed the Srivastava fractional operator which is related to the

generalized Whittakar transform in the form (see [103])

R−ξ,β,ng(x) =
n

Γ(β)
xξ
∫ ∞
x

(zn − xn)β−1z−ξ−nβ+n−1f(z)dz, x > 0. (32)
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where g ∈ Lp(0,∞), 1
p

+ 1
q

= 1, 0 < p <∞, β > 0, ξ > 1
p
.

Dzhrbashyan and Nersesyan (1968) proposed the Dzhrbashyan-Nersesyan fractional

derivative in the form (see [39])

Dβg(x) =
1

Γ(n− β)

∫ ∞
0

1

(x− t)n−β
gn(t)dt, Re(β). (33)

Osler (1970) introduced Osler the fractional integral in the form (see [103])

Iβa;kg(x) =
1

Γ(β)

∫ x

a

g(t)

(k(x)− k(t))1−β k
(1)(t)dt, 0 < β < 1, (34)

and the fractional derivative of the form

Dβ
a;kg(x) =

1

Γ(1− β)

g(t)

(k(x)− k(t))β
β

Γ(1− β)

∫ x

a

g(x)− g(t)

(k(x)− k(t))1+β
k(1)dt, (35)

where x > 0, 0 < α < 1, k ∈ C(I), k(1)(t) 6= 0.

Love (1971) considered the Love fractional integral and fractional derivative of purely

imaginary order respectively as (see [69])

Diβ
a g(x) =

1

Γ(1− iβ)

d

dx

∫ x

a

g(t)

(x− t)iβ
dt, (36)

I iβa g(x) =
1

Γ(iβ)

∫ ∞
0

g(t)

(x− t)1−iβ dt. (37)

Rafal’son (1971) introduced the Rafal’son type Bessel fractional integration and

derivative respectively in the form (see [85])

Iβ−g(x) =
1

Γ(β)

∫ ∞
x

(x− t)β−1ex−tg(t)dt, 0 < β < 1, (38)

Dβ
+g(x) =

1

Γ(β)

∫ ∞
x

(x− t)β−1ex−tg(β)(t)dt, 0 < β < 1. (39)

Prabhakar (1972) introduced the Prabhakar type Humbert fractional integral in the

form (see [83])

Iβa g(x) =

∫ x

0

(x− t)β−1

Γ(β)
Θ1

(
β, b, c; 1− t

x
, ξ(x− t)

)
g(t)dt, (40)

where Θ1

(
β, b, c; 1− t

x
, ξ(x− t)

)
is two variable hypergeometrique function or the

6



Humbert function is defined as

Θ1

(
β, b, c; 1− t

x
, ξ(x− t)

)
=

∞∑
m=0

∞∑
n=0

(β)n+m(b)m(1− t
x
)m(ξ(x− t))n

m!n!(c)m+n

,

where (β)n = Γ(β+n)
β

, n = 0, 1, 2, ..., and β, b, c are parameters which assume real or

complex values.

Sneddon (1975) introduced the Sneddon fractional integral of the form (see [98])

Iν,βa,ρ g(x) =
ρx−ρ(ν+β)

Γ(β)

∫ x

a

tρ(ν+1)−1

(xρ − tρ)1−β g(t)dt. (41)

where β, ν ∈ C,Re(β) > 0, ρ > 0, t > 0.

Saigo (1978) introduced the Saigo type Gauss hypergeometric fractional integral

operator in the form (see [63])

Iβ,γ,νx g(x) =
x−β−γ

Γ(β)

∫ x

0

(x− t)β−1
2F1

(
β + γ,−ν, β; 1− t

x

)
g(t)dt, (42)

where 2F1

(
β + γ,−ν, β; 1− t

x

)
is the Gauss hypergeometric function defined by

2F1(β + γ,−ν, β; 1− t

x
) =

∞∑
n=0

(β + γ)n(−ν)n
(β)n

(1− t
x
)n

n!
,

and β, γ, ν ∈ C.

Gearhart (1979) introduced the Rafal’son-Gearhart type Bessel fractional integral

(see [48])

Iβ−g(x) =
1

Γ(β)

∫ ∞
0

(x− t)β−1eξ(x−t)g(t)dt, 0 < β < 1. (43)

Skornik (1980) reported the Skornik tempered fractional integral and derivative

respectively of the form (see [96, 97])

Iβa g(x) = e
−x2
4

∫ x

a

(x− t)β−1

Γ(β)
e
t2

4 g(t)dt, 0 < β < 1, (44)

and

Dβ
ag(x) =

e
−x2
4

Γ(1− β)

dn

dxn

∫ x

a

e
t2

4

(x− t)−β
g(t)dt, 0 < β < 1, (45)

and

Dβ
aI

β
a g(x) = g(x). (46)

Peschanskii (1989) introduced the fractional integral operator involving the curvi-
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linear convolution type in the form (see [84])

Iβ,γ,νx g(x) =
1

2πi

∫
Γ

2F1

(
1, 1; 1 + β;

t

x

)
g(t)

dt

t
, β, γ, ν ∈ C, (47)

where 2F1

(
1, 1; 1 + β; t

x

)
is the Gauss hypergeometric function.

Samko and Ross (1993) reported the variable-order fractional integral given by (see

[94])

Iβ(x)
a g(x) =

1

Γ(β(x))

∫ x

a

(x− t)−β(x)g(t)dt, β(x) > 0, (48)

and the variable-order fractional derivative given as

Dβ(x)
a g(x) =

1

Γ(1− β(x))

d

dx

∫ x

a

(x− t)−1−β(x)g(t)dt, 0 < β(x) < 1. (49)

Hilfer (2000) introduced the Hilfer fractional derivative by (see [55])

Dβ,γg(x) = I
γ(1−β)
0 ·D1 · I(1−γ)(1−β)

0 g(x), (50)

where 0 < α < 1, 0 ≤ β ≤ 1, g ∈ L1(R+) and D(1)g(x) = dg(x)
dx

, Iγ(1−β) and I(1−γ)(1−β)

are the Riemann-Liouville fractional integrals.

Coimbra (2003) introduced the variable-order fractional integral in the form (see

[29])

Dβ(x)g(x) =
1

Γ(1− β(x))

∫ x

0

1

(x− t)β(x)

dg(t)

dt
dt+

g(0+ − g(0−)

Γ(1− β(x))(x− t)β(x)
, (51)

where 0 < β(x) < 1.

Kilbas, Saigo and Saxena (2004)introduced the following general fractional deriva-

tive defined by (see [57])

Dβ
+g(x) =

dn

dxn

∫ x

a

(s− t)µ+n−ν−1Eϕ
β,µ+n−ν($(x− t)β)g(t)dt, (52)

where β, µ, ν,$ ∈ C,Re(β) ∈ (n − 1, n], n ∈ N and Eϕ
β,µ+n−ν($(x − t)β) is two

parameter generalized Mittag-Leffler function with parameters α, β > 0 defined as

Eα,β(z) =
∞∑
n=0

zn

nα + β
.

Agrawal (2007) developed the fractional derivative and integral operators in terms
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of the Riesz fractional derivative, in the form (see [10])

Iβg(x) =
1

Γ(n− β)

dn

dxn

∫ b

a

g(t)

|x− t|n−β
dt, Re(β) ∈ (n− 1, n], (53)

Dβg(x) =
1

Γ(n− β)

∫ b

a

1

|x− t|β
dng(t)

dtn
dt, Re(β) ∈ (n− 1, n], (54)

and

Iβg(x) =
1

2Γ(β)

∫ b

a

|x− t|β−1g(t)dt, 0 < β < 1. (55)

Gajda and Magdziarz (2010) introduced the fractional derivative for Fokker

Planck equation (FFPE) in the form (see [45])

Dβ
+g(x) =

d

dx

∫ x

0

M(x− t)g(t)dt, β > 0. (56)

where the memory kernel M(t) is defined via its Laplace transform denoted by M(p),

is

M(p) =
1

(p+ ξ)β + ξβ
. (57)

Garra et al.(2014) introduced the fractional derivative of the form (see [47])

Dβ,ϕ,µ,ω
a+ g(x) =

∫ x

a

(t− µ)µ−1Eϕ
β,µ(ω(x− t)β)g(n)(t)dt, Re(µ) > 0 (58)

where β, µ, ϕ, ω ∈ C, and Re(β) ∈ (n − 1, n], n ∈ N, Re(µ) > 0, g ∈ ACn[0, b], 0 <

t < b <∞ and Eϕ
β,µ(ω(x− t)β) is two generalized Mittag-Leffler function.

Caputo and Fabrizio (2015) introduced the Caputo-Fabrizio derivative in the form

(see [25])

Dβ
+g(x) =

M(β)

(1− β)

∫ x

a

exp

(
− β

(1− β)
(x− t)

)
g(1)(t)dt, (59)

where M(β) is a normalization function such that M(0) = M(1) = 1, 0 < β <

1, g ∈ H1(a, b), b > a, a < x < b.

Zayernouri, Ainsworth and Karniadakis (2015) proposed the fractional derivatives

in the form (see [115])

Dβ
+g(x) =

eξx

Γ(1− β)

d

dx

∫ x

a

(x− t)−β−1e−ξtg(t)dt, x > a, (60)

and

Dβ
−g(x) =

eξx

Γ(1− β)

d

dx

∫ b

x

(x− t)−1−βe−ξtg(t)dt, x < a, (61)
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where 0 < β < 1, ξ ≥ 0.

Yang, Srivastava and Machado (2015) proposed the fractional derivative with the

exponential function by (see [114])

Dβ
xg(x) =

(2− β)M(β)

2(1− β)

d

dx

∫ x

a

exp

(
− β

(1− β)
(x− t)

)
g(t)dt. (62)

where 0 < β < 1,M(β) is a normalization function such that M(0) = M(1) = 1,

g ∈ H1(a, b), b > a, a < x < b.

Sabzikar, Meerschaert and Chen (2015) introduced the fractional integrals and

derivatives respectively of the form (see [91, 22, 26])

I
(β)
− g(x) =

1

Γ(β)

∫ ∞
x

(x− t)β−1e−ξ(x−t)g(t)dt, (63)

D
(β)
+ g(x) =

1

Γ(β)

∫ ∞
x

(x− t)β−1e−ξ(x−t)g(β)(t)dt, (64)

where 0 < β < 1, ξ ≥ 0.

Atangana and Baleanu (2016) proposed the Atangana-Baleanu fractional derivative

with the Mittag-Leffler function in the form (see [18])

Dβ
xg(x) =

M(β)

(1− β)

∫ x

a

Eβ

(
− β

(1− β)
(x− t)β

)
dg(t)

dt
dt. (65)

where 0 < β < 1,M(β) is a normalization function such that M(0) = M(1) = 1,

g ∈ H1(a, b), b > a, a < x < b, and Eβ

(
− β

(1−β)
(x− t)β

)
is one generalized Mittag-

Leffler function.

Yang (2016) proposed the Yang fractional derivatives and variable fractional order

as (see [111])

Dβ
xg(x) =

1 + β2√
πβ(1− β)

∫ x

a

exp

(
− β

(1− β)
(x− t)2β

)
dg(t)

dt
dt, (66)

where β ≥ 0,g ∈ AC[a, b] and a < x < b.

Dβ
xg(x) =

M(β(x))

(1− β(x))

∫ x

a

exp
(
−(x− t)β(x)

) dg(t)

dt
dt, (67)

and

Dβ(x)
x g(x) =

1

Γ(1− β(x))

∫ x

a

Eβ(x)

(
−(x− t)β(x)

) dg(t)

dt
dt, (68)

where Eβ(x)

(
−(x− t)β(x)

)
is the Mittag-Leffler function with one-parameter variable
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0 < β(x) < 1.

Li and Deng (2016) proposed the Li-Deng fractional derivatives in the form (see

[62]).

Dβ
+g(x) =

e−ξx

Γ(n− β)

dn

dxn

∫ x

a

g(t)

(x− t)β+1
eξtdt, (69)

and

Dβ
−g(x) =

(−1)ne−ξx

Γ(n− β)

dn

dxn

∫ b

x

g(t)

(x− t)β+1
eξtdt, (70)

where Re(β) ∈ (n− 1, n], n ∈ N and for any ξ ≥ 0.

Torres (2017) introduced the Torres fractional derivatives in the form (see [107])

Dβ
+g(x) = ξβg(x) +

β

Γ(1− β)

∫ x

−∞

g(x)− g(t)

(x− t)β+1
e−ξ(x−t)dt, (71)

and

Dβ
−g(x) = ξβg(x) +

β

Γ(1− β)

∫ ∞
x

g(x)− g(t)

(x− t)β+1
e−ξ(x−t)dt, (72)

where 0 < β < 1 and for any ξ ≥ 0.

Sun, Hao, Zhang and Baleanu (2017) proposed the fractional derivative in the form

(see [104])

Dβ
xg(x) =

Γ(1 + β)

(1− β)
1
β

∫ x

a

exp

(
− β

1− β
(x− t)β

)
dg(t)

dt
dt, 0 < β < 1. (73)

Yang and Machado (2017) introduced the Yang-Machado variable-order fractional

derivative with the another function by (see [113])

D
β(x),ϕ

a+ g(x) =
1

Γ(1− β(t))

∫ x

a

g
(1)
ϕ (t)

(ϕ(x)− ϕ(t))β(x)
dt, (74)

where 0 < β(x) < 1, and g, ϕ ∈ c1[a, b], ϕ′(1) 6= 0.

Dehghan, Abbaszadeh and Deng (2017) presented the fractional derivative in the

form (see [?])

Dβ
+g(x) =

1

Γ(β − 1)

∫ x

0

(x− t)β+1e−ξ(x−t)
dβg(t)

d|t|β
dt, (75)

where dβg(t)
d|t|β is the Riesz fractional derivative, with 1 < β ≤ 2, ξ > 0.

Yang, Machado and Baleanu (2017) proposed the fractional derivatives in the form

(see [112])

Dβ
+g(x) =

∫ t

a

Eϕ,φ
β,ν (−(t− s)β)

dg(s)

ds
ds, (76)
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where Eϕ,φ
β,ν (z) =

∑∞
n=0

(ϕ)nφ
Γ(nβ+ν)

zn

n+1
, with ϕ, β, ϕ, φ, ν ∈ C, and Re(β) > 0,max(0,Re(β)) ∈

R
+
0 , n ∈ N.

Yang, Gao, Machado and Baleanu (2017) proposed (see [112])

Dβ
xg(x) =

βM(β)

(1− β)

∫ x

a

sin c

(
−β(x− t)

1− β

)
dg(t)

dt
dt, (77)

where 0 < β < 1,M(β) is a normalization function such that M(0) = M(1) = 1,

g ∈ H1(a, b), b > a, a < x < b.,

sin c(x) =
sin(πx)

πx
, x ∈ R. (78)

Almeida (2017) based on the Liouville-Sonine-Caputo fractional derivative, Almeida

defined the Liouville-Sonine-Caputo fractional derivative with respect to another

function in the form

LSCD
β
a+,hg(x) =

(
In−β;ϕ
a+

)
g(n)(x)

= In−β;ϕ
a+

(
1

ϕ′(x) d
dx

)n

g(x)

=
1

Γ(n− β)

∫ x

a

ϕ(1)(s)

(ϕ(x)− ϕ(s))β−n+1

(
1

ϕ(1)(s)

d

ds

)n
gn(s)ds, (79)

where g, ϕ ∈ Cn(I), ϕ′(x) 6= 0, β > 0, n = [β] + 1.

Sousa and de Oliveira (2018) introduced the Sousa-Oliveira fractional derivative by

(see [101])

RLD
β(t)

a+ g(x) =
M(β(t))

1− β(t)

(
1

ψ′(t)

d

dx

)∫ x

a

ψ′(t)H
β(t);ψ
γ;δ (x, t)g(t)dt, (80)

and
CD

β(t)

a+ g(x) =
M(β(t))

1− β(t)

∫ x

a

ψ′(t)H
β(t);ψ
γ;δ (x, t)g′(t)dt, (81)

where

H
β(t);ψ
γ;δ (x, t) = E

[
−β(t)(ψ(x)− ψ(t))γ

1− β(t)

]
,

and 0 < β(t) < 1, 0 < γ, δ < 1, E(·) is a Mittag-Leffler function, which is con-

sidered uniformly convergent on the interval [a, b] = I, M(β(t)) is a normalization

function such that M(0) = M(1) = 1, and ψ(·) is a positive function and increasing

monotone, such that ψ(t)′ 6= 0.
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0.3 Some published books

The evolution and applications of the fractional derivative fractional calculus have

been analyzed in several books and survey papers. Therefore, it is important to col-

lect as many up-to-date information as possible today. With the aim of highlighting

key documents and events in the field of fractional calculus and the extent of their

contribution and coverage of a large variety of applications in the real world from

1974 until the current year 2021.

The first monograph, published a book devoted to fractional calculus in 1974. This

collaboration between a chemist (Oldham) and a mathematician (Spanier) in treat-

ing problems of mass and heat transfer in terms of the so-called semi-derivatives

and semi-integrals, clearly manifested the origin of a new area for FC based both on

physical intuition and mathematical versatility. In 1987, the most important book

of S. Samko, A. Kilbas and O. Marichev, referred to now as ”encyclopedia” of FC,

appeared first in Russian, and later with an English edition in [1993].

I would like to refered to some books devoted to fractional calculus (and its ap-

plications) from Oldham and Spanier (1974), Samko, Kilbas and Marichev (1987-

1993)[92], Miller and Ross (1993)[73], Kiryakova (1994)[59], Podlubny(1999)[82],

Sabatier, Agrawal and Machado (2007)[90], Diethelm (2010) [36], Tarasov (2011)

[105], Baleanu, Machado and Luo (2011) [36], Machado, Kiryakova and Mainardi(2011)

[70], Baleanu, Diethelm, Scalas and Trujillo (2012) [19], Abbas, Benchohra and

N’Guérékata (2012)[1], Carpinteri and Mainardi (2014), Gu. Xueke and Fenghui(2015)[49],

George A. Anastassiou, Ioannis K. Argyros(2018), Piotr Ostalczyk, Dominik Sankowski,

Jacek Nowakowski (2019), Xiao-Jun Yang(2019)[110], G.A. Anastassiou (2021)[15].

0.4 The objective and Motivation

The boundary value problems (BVPs) acquainted by FDE have been broadly con-

centrated throughout the most recent years. Especially, the investigation of solutions

of FDEs is the key and critical subject of applied mathematics research. Many in-

teresting and fascinating results have been considered with respect to the existence,

uniqueness, and stability of solutions via some fixed point theorems [3, 4, 5]. the

generalized fractional calculus has played an important role in modeling the complex

phenomena with the power law behaviors in mathematical physics and engineering.

For the details of the history of the generalized fractional calculus, readers refer to

the results [58, 59, 70, 73, 79, 88].

In any case, the majority of the considered problems have been treated in the frame

of FDs of Riemann-Liouville, or Caputo types . In order to enrich the work on

13



fractional BVPs involving generalized FD and generalized FI boundary conditions

further, we study the existence and uniqueness of solutions for the generalized frac-

tional differential equations.

In the context of this study, we have organized this thesis as follows:

Chapter 1, contains fundamental concepts of nonlinear analysis, generalized frac-

tional calculus such as ψ-Riemenn-Liouville fractional integrals, ψ-Caputo fractional

derivative, Katugampola fractional calculus and Riesz-Caputo fractional calculus.

We also describe a number of fixed-point theorems used to establish the existence

results for the proposed problems. Included among the fixed-point theorems rec-

ognized by their names are Banach’s contraction principal, Boyd and Wong, Kras-

noselskii’s, Schiefer, Dhage, Leray-Schauder nonlinear alternative.

In Chapter 2, is devoted to study the existence and uniqueness of solutions for a

nonlinear neutral ψ-Caputo type FDE with ψ-Riemann-Liouville FI boundary con-

ditions of the form:
CDξ;ψ

0+

[
CDζ;ψ

0+ κ(τ)− Q(τ,κ(τ))
]

= F(τ,κ(τ)), τ ∈ J := [0, T ],

κ(χ) = 0, Iγ;ψ
0+ κ(T ) = 0, χ ∈ (0, T ),

(82)

where CDσ;ψ
a+ is the ψ-Caputo fractional derivative of order σ ∈ {ξ, ζ} ⊆ (0, 1], Iγ;ψ

0+

is the ψ-Riemann-Liouville fractional integral of order γ > 0, and F,Q : J× R→ R

are given functions.

The objective of Chapter 3 is to investigate the existence of solution for the following

Katugampola fractional differential equation equipped with Erdélyi-Kober fractional

integral boundary conditions of the form:
Dρ,αu(t) + h(t, u(t)) = 0, 0 < t < T,

u(0) = 0,

u′(T ) = λIγ,δη u′(ξ), 0 < ξ < T,

(83)

where 1 < α < 2, ρ > 0, δ > 0, η > 0, λ, γ ∈ R, and h : [0, T ] × R → R is

a continuous function. We establish some existence and uniqueness results for the

given problems by means of classical fixed-point theorems.Finally, the main result

is strengthened the through examples.

In Chapter 4, we examine existence and uniqueness of solutions for nonlinear Langevin

equation involving Riesz-Caputo fractional derivatives, with a class of anti-periodic

14



boundary conditions of the form:{
RC
0 Dα

T (RC0 Dβ
T + χ)x(t) = f(t, x(t)) ,0 < t < T ,

x(0) + x(T ) = 0 , x′(0) + x′(T ) = 0,
(84)

where RCDα and RCDβ are the Riesz-Caputo fractional derivatives of order 1 < α ≤
2 and 0 < β ≤ 1, χ ∈ R and f : [0, T ] × R → R is a continuous function with

respected to its both variables, t and x.

Our results obtained by using a variety of fixed point theorems as Banach, Schae-

fer and Krasnoselskii’s fixed point theorems. Three examples are given to illustrate

main results.

In Chapter 5, is concerned with the existence of solutions for ψ-Caputo hybrid frac-

tional integro-differential equations of the form
cDν;ψ

a+

[
z(τ)−

∑m
k=1 I

σk;ψ

a+
Fk(τ,z(τ))

G(τ,z(τ))

]
= H(τ, z(τ)), τ ∈ J = [a, b],

z(a) = 0,

(85)

where c
D
ν;ψ
a+ is the ψ-Caputo fractional derivative of order ν ∈ (0, 1], Iθ;ψa+ is the

ψ-Riemann-Liouville fractional integral of order θ > 0, θ ∈ {σ1, σ2, . . . , σm}, σk >
0, k = 1, 2, . . . ,m. G ∈ C(J× R,R \ {0}) and Fk,H ∈ C(J× R,R),(k = 1, 2, . . . ,m).

Existence and uniqueness results for the given problems are obtained with use

an hybrid fixed point theorem for a sum of three operators due to Dhage for proving

the main results. Also, the main result is strengthened an example. Finally, general

conclusion and future research are given.
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Chapter 1
Preliminaries

In this chapter we introduce preliminary facts that will be used in the remainder of

this thesis. We give here the essential notions of functional space, the concepts of the

fractional derivatives and fractional integrals, and the generalized fractional calculus.

Methods of nonlinear analysis for boundary values problem will be discussed. Also

we give some theorems of fixed point, that will need in our work.

A first we introduce the following function spaces.

1.1 Functional Space

1.1.1 Space of Continuous Functions

Let J = [a, b]( −∞ < a < b < +∞) be a finite closed interval of the real axis

R = (−∞,+∞).

Definition 1. Let C(J,R) be the Banach space of all continuous functions f : J →
R, equipped with the norm

‖f‖∞ = sup
t∈J
|f(t)|.

Analogously, Cn(J,R) is the Banach space of functions f : J → R, where f is n

time continuously differentiable on J .

‖f‖Cn =
n∑
k=0

‖fk‖C =
n∑
k=0

max
t∈J
‖fk(t)‖, n ∈ N.
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CHAPTER 1. PRELIMINARIES

1.1.2 Lp Spaces

Definition 2. Denote by L1(J,R) the Banach space of functions f Lebesgues inte-

grable with the norm

‖f‖L1 =

∫ b

a

|f(t)|dt.

We denote by Lp(J,R) the space of Lebesgue complex-valued measurable functions f

on J for which ‖f‖Lp < 1, endowed with the norme (see

‖f‖Lp =

(∫ b

a

|f(t)|pdt
) 1

p

, (1 < p <∞).

In particular, if p =∞, we denote by L∞(J,R) the space of all functions u that are

essentially bounded on J with essential supremum

‖f‖L∞ = ess sup
t∈J
|f(t)| = inf{c > 0 : |f(t)| ≤ c for a.e.t}.

1.1.3 Xp
c (a, b) Space

Definition 3. We denote by Xp
c (J,R), (c ∈ R, 1 ≤ p ≤ ∞) the space of Lebesgue

complex-valued measurable functions f on J for which ‖f‖Lp < 1, endowed with the

norme (see

‖f‖Xp
c

=

(∫ b

a

|tcf(t)|pdt
t

) 1
p

<∞.

In particular, if c ∈ R, p =∞, we have

‖f‖X∞c = ess sup
t∈J
|tcf(t)| = inf{c > 0 : |tcf(t)| ≤ c for a.e.t}.

In particular, when c = 1/p, the space Xp
c (a, b) coincides with the Lp(a, b)-space:

Xp
1/p = Lp(a, b).

Remark 4. [17] Let p, c, T ∈ R?+ be such that p ≥ 1, c > 0 and T ≤ (pc)
1
pc . One

can easily see that ∀f ∈ C[0, T ]

‖f‖Xp
c

=

(∫ T

0

|scf(s)|pds
s

) 1
P

≤
(
‖f‖pc

∫ T

0

spc−1ds

) 1
P

=
TC

(pc)
1
p

‖f‖C ,

and if p =∞
‖f‖Xp

c
= ess sup

0≤t≤T
(tc|f(t)|) ≤ T c‖f‖C ,
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CHAPTER 1. PRELIMINARIES

which implies that C[0, T ] ↪→ Xp
c [0, T ], and ‖f‖Xp

c
≤ ‖f‖C for all T ≤ (pc) 1

pc
.

1.1.4 Ths space of functions absouletly continuous ACn[a, b]

Definition 5. We denote by ACn([a, b],R) the space of real-valued functions f(t)

which have continuous derivatives up to order n − 1 on [a, b] such that f (n−1) ∈
AC([a, b])(see [58, 92])

ACn([a, b]) =
{
f : [a, b]→ R, fk ∈ C[a, b], k = 0...n− 1, f (n−1) ∈ AC([a, b])

}
.

In particular, AC1[a, b] = AC[a, b].

A characterization of the functions of this space is given by the following.

In 1968, Kolmogorov and Fomin observed that the space AC(Ω) is in agreement

with the space of the primitives of the Lebesgue summable functions (see [58, 92]):

f ∈ AC([a, b])⇔ ∃φ ∈ L1([a, b]) such that f(t) = c+

∫ t

a

φ(t),

where φ(t) is called the Kolmogorov-Fomin condition.

We remark that, if an absolutely continuous function f(t) has a derivative f (1)(t) =

φ(t) almost everywhere on [a, b], then there are c = f(a) and f(t) ∈ AC([a, b]).

Lemma 6. A function f(t) ∈ ACn([a, b]), n ∈ N∗, if and only if it is represented of

the form

f(t) =
1

(n− 1)!

∫ t

a

(t− u)n−1f (n)(u)du+
n−1∑
k=0

f (k)(a)

k!
(t− a)k.

1.1.5 Opérateurs compacts

Definition 7. An operator T : E → E is called compact if the image of each bounded

set Ω ⊂ E is relatively compact i.e ( T (Ω) is compact). T is called completely

continuous operator if it is continuous and compact.

1.1.6 The criteria for compactness for sets in the space of

continuous functions C([a, b])

Theorem 8. (Arzela-Ascoli theorem). A set Ω ⊂ C([a, b],R) is relatively compact

in C([a; b],R) if and only if the functions in Ω are uniformly bounded and equicon-

tinuous on [a, b].
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We recall that a family of continuous functions is uniformly bounded if there

exists M > 0 such that

‖f‖ = max
x∈[a,b]

|f(x)| ≤M, f ∈ Ω.

The family Ω is equicontinuous on [a; b], if ∀ε > 0,∃δ > 0 such that ∀t1, t2 ∈ [a, b]

and ∀f ∈ Ω, we have

|t1 − t2| ≤ δ ⇒ |f(t1)− f(t2)| < ε.

1.2 Basic fractional calculus

In this section we give the definitions and some properties of fractional integrals

and fractional derivatives of different kinds, such as Riemann-Liouville, Caputo,

Liouville, Riesz-Caputo, Katugampola, Erdély-kober, ψ −Riemann− Liouville.

1.2.1 The contribution for generalized fractional calculus

and applications

The fractional calculus has found the important applications in fields of mathemat-

ics, science and applied engineering, including fluid flow, heat transfer, rheology,

electrical circuit, networks, electromagnetic theory, control theory and probability,

numerical analysis, economics and finance, engineering, physics, biology, , image

denoising, cryptography, controls, etc. for instance, phenomena of physics [108],

Applications in Engineering, Life and Social Sciences [20], Systems Decision and

Control [15], Control and Optimization [23], Viscoelasticity [44], Financial Eco-

nomics [42]. For the details of the history of the generalized fractional calculus,

readers refer to the results [58, 59, 70, 73, 79, 88].

1.2.2 Riemann-Liouville fractional integrals

Definition 9. The left-sided and right-sided Riemann-Liouville fractional integrals

of order α > 0 of a function f ∈ L1([a, b]) are defined as (see [58, 79, 82, 88, 92]).

Iαa+f(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, (t > a, α > 0). (1.1)
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and

Iαb−f(t) =
1

Γ(α)

∫ b

t

(s− t)α−1f(s)ds, (t < b, α > 0). (1.2)

where Γ(α) is gamma function (see[58, 79]).

Moreover, for α = 0, we set I0
a+f := f . That the Riemann-Liouville fractional

integral coincides with the classical definition of Ina in the case n ∈ N.

Lemma 10 ([58]). The following basic properties of the Riemann-Liouville integrals

hold:

1. The integral operator Iαa+ is linear;

2. The semigroup property of the fractional integration operator Iαa+ is given by

the following result

Iαa+(Iβa+f(t)) = Iα+β
a+ f(t), α, β > 0, (1.3)

holds at every point if f ∈ C([a, b]) and holds almost everywhere if f ∈
L1([a, b]),

3. Commutativity

Iαa+(Iβa+f(t)) = Iβa+(Iαa+f(t)), α, β > 0; (1.4)

4. The fractional integration operator Iαa+ is bounded in Lp[a, b] (1 ≤ p ≤ ∞);

‖Iαa+f‖Lp ≤
(b− a)α

Γ(α + 1)
‖f‖Lp . (1.5)

1.2.3 Riemann-Liouville fractional derivatives

Definition 11. The left-sided and the right-sided Riemann- Liouville fractional in-

tegrals of order α ∈ C, Re(α) > 0, of a continuous function f : (0,∞) → R are

defined as (see [79, 82, 88, 92]).

RLDα
a+f(t) =

(
d

dt

)n
(In−αa+ f)(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

f(s)

(t− s)α−n+1
ds,

and

RLDα
b−f(t) =

(
− d

dt

)n
(In−αb− f)(t) =

1

Γ(n− α)

(
− d

dt

)n ∫ t

a

f(s)

(s− t)α−n+1
ds,

where Re(α) ∈ (n− 1, n], n ∈ N.
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1.2.4 Caputo type fractional derivative

The Caputo (1967) fractional derivatives are closely related to the Riemann-Liouville

derivatives.

Definition 12 ([58]). For a function f ∈ ACn([a, b]), the left sided and right sided

Caputo fractional derivatives of order α are defined by (see [79, 82, 88, 92]).

cDα
a+f(t) = In−αa+ Dnf(t) (1.6)

=
1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds,

and

cDα
b−f(t) = (−1)nIn−αb− Dnf(t) (1.7)

=
(−1)n

Γ(n− α)

∫ b

t

(s− t)n−α−1f (n)(s)ds,

where n = [α]+1 and [α] denotes the integer part of the real number α. In particular,

when 0 < α < 1 and f(t) ∈ AC[a, b],

cDα
a+f(t) =

1

Γ(1− α)

∫ t

a

(t− s)−αf ′(s)ds = I1−α
a+ Df(t), (1.8)

and
cDα

b−f(t) =
1

Γ(1− α)

∫ b

t

(s− t)−αf ′(s)ds = −I1−α
b− Df(t). (1.9)

In the following, we give the proprieties of Caputo fractional derivative:

Lemma 13 ([58]). The following basic properties of the Caputo fractional derivative

hold:

1. The Caputo fractional derivative is linear.

2. Let α > 0 and let f(t) ∈ L∞ or f(t) ∈ C[a, b], if α /∈ N

CDα
a+I

α
a+f(t) = f(t) and CDα

b−I
α
b−f(t) = f(t). (1.10)

3. Let α > β > 0, and f ∈ L1([a, b]). Then we have:

cDβ
a+I

α
a+f(t) = Iα−βa+ f(t). (1.11)
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4. If f(t) ∈ ACn[a, b] or f(t) ∈ Cn[a, b], then

Iαa+
CDα

a+f(t) = f(t)−
n−1∑
k=0

fk(a)

k!
(t− a)k, (1.12)

and

Iαb−
CDα

b−f(t) = f(t)−
n−1∑
k=0

(−1)kfk(b)

k!
(b− t)k. (1.13)

5. In particular, if 0 < α ≤ 1 and f(t) ∈ AC[a, b] or f(t) ∈ C[a, b], then

Iαa+
CDα

a+f(t) = f(t)− f(a), and Iαb−
CDα

b−f(t) = f(t)− f(b). (1.14)

Example 14 ([58, 92]). The Caputo derivative of the power function (t−a)β−1, α >

0, β > 0, n = [α] + 1, then the following relation hold

cDα
a+(t− a)β−1 =

Γ(β)

Γ(β − α)
(t− a)β−α−1, (β > n), (1.15)

cDα
b−(b− t)β−1 =

Γ(β)

Γ(β − α)
(b− t)β−α−1, (β > n), (1.16)

In particular,
CDα

a+C = 0 and CDα
b−C = 0. (1.17)

The relation between the derivative of Caputo and that of Riemann-Liouville is

given by following remark

Remark 15. We note that if f ∈ ACn([a, b]), then

RLD
α

a+f(t) = cDα
a+f(t) +

n−1∑
k=0

f (k)(a)

Γ(1 + k − α)
(t− a)k−α. (1.18)

Clearly, we see that if f (k)(a) = 0, for k = 0, 1, . . . , n− 1 then we have

cDα
a+f(t) = RLD

α

a+f(t). (1.19)

1.2.5 Riesz-Caputo type fractional derivatives

In this section we present the definitions and some properties of the Riesz-Caputo

type fractional integrals and fractional derivatives.

Definition 16. ([43, 58]) Riesz-Caputo derivative of order α, of a function f ∈
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Cn([0, T ]) is defined by

RC
0 Dα

Tf(t) =
1

Γ(n− α)

∫ T

0

|t− u|n−α−1f (n)(u)du (1.20)

=
1

2

(
CDα

0+ + (−1)n CDα
T

)
f(t),

where CDα
0+ is the left Caputo derivative and CDα

T is right Caputo derivative.

Remark 17. In particular if f ∈ C2([0, T ]) and 0 < α ≤ 1, then

RC
0 Dα

Tf(t) =
1

2

(
CDα

0+ − CDα
T

)
f(t). (1.21)

If f ∈ C2([0, 1]) and if 1 < α ≤ 2, then

RC
0 Dα

Tf(t) =
1

2

(
CDα

0+ + CDα
T

)
f(t). (1.22)

Lemma 18. ([43, 58]) If f(t) ∈ Cn([0, T ]),Then

Iα0+
CDα

0+f(t) = f(t)−
n−1∑
k=0

f (k)(0)(t− 0)k

k!
(t− 0)k, (1.23)

and

IαT
CDα

Tf(t) = (−1)n

[
f(t)−

n−1∑
k=0

(−1)kf (k)(T )

k!
(T − t)k

]
. (1.24)

From the above definitions and lemmas, we have

0I
α
T
RC
0 Dα

Tf(t) =
1

2

(
Iα0+

CDα
0+ + IαT

CDα
0+

)
f(t) (1.25)

+
(−1)n

2

(
Iα0+

CDα
T + IαT

CDα
T

)
f(t)

=
1

2

(
Iα0+

CDα
0+ + (−1)n IαT

CDα
T

)
f(t).

In particular if 1 < α ≤ 2 and f ∈ C2([0, T ]), then

0I
α
T
RC
0 Dα

Tf(t) = f(t)− 1

2
(f(0) + f(T ))− 1

2
f ′(0)t+

1

2
f ′(T )(T − t). (1.26)

1.3 Generalized fractional integrals

In this section we present the definitions and some properties of the generalized type

fractional integrals such as Katugampola fractional integrals, Erdélyi-kober and ψ-

23



CHAPTER 1. PRELIMINARIES

Riemann-liouville fractionl integrals, ψ-Caputo derivative.

In the first we present the definitions and properties of Katugampola fractional

integrals introduced by Katugampola in 2011.

1.3.1 The Katugampola fractional integral

Definition 19. [76] The Katugampola fractional integral of order α > 0 and ρ > 0

of a function f(t) for all 0 < t <∞, is defined by

Iρ,α0+ f(t) =
ρ1−α

Γ(α)

∫ t

0

sρ−1

(tρ − sρ)1−αf(s)ds, t ∈ [0, T ], (1.27)

for ρ > 0. This integral is called left-sided integral.

Lemma 20. [76] Let be the constants ρ, q > 0 and p > 0. Then the following

formula holds:

Iρ,qtp =
Γ(p+ρ

ρ
)

Γ(p+ρq+ρ
ρ

)

tp+ρq

ρq
. (1.28)

Remark 21. [76] The above definition (19) of Katugampola fractional integral cor-

responds to the Riemann-Liouville fractional integral of order α > 0, when ρ = 1,

while the famous Hadamard fractional integral follows for ρ→ 0; that is:

lim
ρ→0

Iρ,α0+ f(t) =
1

Γ(α)

∫ t

0

(
log

t

s

)α−1
f(s)

s
ds. (1.29)

1.3.2 The Erdélyi-Kober fractional integrals

The conceptions of the Erdélyi-Kober type operators of fractional integration, as the

extensions of the Riemann-Liouville left-sided and right-sided fractional integrals,

are given as follows ([58]).

Definition 22. [58, 92] The Erdélyi-Kober fractional integral of order δ > 0 with

η > 0 and γ ∈ R, of a continuous function f : (0,∞)→ R is defined by :

Iγ,δη h(t) =
ηt−η(δ+γ)

Γ(δ)

∫ t

0

sηγ+η−1

(tη − sη)1−δh(s)ds, (1.30)

provided that the right-side is pointwise defined on R
+.

Remark 23. [58, 92] For η = 1 the above operator is reduced to the Kober operator

Iγ,δ1 h(t) =
t−(δ+γ)

Γ(δ)

∫ t

0

sγ

(t− s)1−δh(s)ds.
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That was introduced for the first time by Kober. For γ = 0, the Kober operator is

reduced to the Riemann-Liouville fractional integral with a power weight

I0,δ
1 h(t) =

t−δ

Γ(δ)

∫ t

0

h(s)

(t− s)1−δ ds, δ > 0. (1.31)

Lemma 24. [58, 92] Let δ, η > 0 and γ, q ∈ R . Then we have

Iγ,δη tq =
tqΓ(γ + ( q

η
) + 1)

Γ(γ + ( q
η
) + δ + 1)

. (1.32)

Theorem 25. The operator Jρ,αa+ is linear and bounded from C([a, b]) to C([a, b]),

then

‖Jρ,αa+ x‖C ≤ Kα,ρ‖x‖C , (1.33)

with Kα,ρ = ρ−α

Γ(α+1)
(bρ − aρ)α.

Proof. For any x ∈ C[0, T ]; one has∣∣∣∣ρ1−α

Γ(α)

∫ t

a

(tρ − sρ)α−1sρ−1x(s)ds

∣∣∣∣ ≤ ρ1−α

Γ(α)
‖x‖C

∫ t

a

(tρ − sρ)α−1sρ−1ds,

≤ ρ−α

Γ(α + 1)
(bρ − aρ)α‖x‖C .

1.3.3 ψ-Riemann-Liouville type fractional integrals

In this section we present the definitions and some properties of the ψ-Riemann-

Liouville type fractional integrals introduce by Almeida.

Definition 26 ([13, 15]). For α > 0, the left-sided ψ–Riemann-Liouville fractional

integral of order α for an integrable function f : [a, b] −→ R with respect to another

function ψ : [a, b] −→ R that is an increasing differentiable function such that ψ′(t) 6=
0, for all t ∈ J is defined as follows

Iα;ψ
a+ f(t) =

1

Γ(α)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1f(s)ds, (1.34)

where Γ(·) is the (Euler’s) Gamma function (see [58, 79]).

The following semigroup property is valid for fractional integrals: if α, β > 0, then

Iα;ψ
a+ Iβ;ψ

a+ f(t) = Iα+β;ψ
a+ . (1.35)
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1.4 Generalized fractional derivatives

1.4.1 The generalized Katugampola fractional derivative

In this part we give the definitions of Katugampola fractional derivative, introduced

by Katugampola in 2014.

Definition 27. [76] The generalized fractional derivative of order α > 0 correspond-

ing to the Katugampola fractional integral is defined for any 0 < t <∞ by:

Dρ,α
0+ f(t) =

(
t1−ρ

d

dt

)n (
Jρ,n−α0+ f

)
(t), (1.36)

=
ρα−n+1

Γ(n− α)

(
t1−ρ

d

dt

)n ∫ t

0

sρ−1

(tρ − sρ)α−n+1
f(s)ds, t ∈ [0, T ],

where n = [α] + 1 and ρ > 0 (when the integral exists).

Remark 28. [76] As a basic example, we quote for α, ρ > 0 and µ > −ρ

Dρ,α
0+ t

µ =
ρα−1Γ(1 + µ

ρ
)

Γ(1− α + µ
ρ
)
tµ−αρ. (1.37)

1.4.2 The generalized ψ-Riemenn-Liouville fractional deriva-

tive

Definition 29 ([13, 15]). Let n ∈ N and let ψ, f ∈ Cn([a, b],R) be two functions such

that ψ is increasing and ψ′(t) 6= 0, for all t ∈ J. The left-sided ψ–Riemann–Liouville

fractional derivative of a function f of order α is defined by

Dα;ψ
a+ f(t) =

(
1

ψ′(t)

d

dt

)n
In−α;ψ
a+ f(t)

=
1

Γ(n− α)

(
1

ψ′(t)

d

dt

)n ∫ t

a

ψ′(s)(ψ(t)− ψ(s))n−α−1f(s)ds,

where n = [α] + 1.

1.4.3 The generalized ψ-Caputo fractional derivative

In this section we present the definitions and some properties of the ψ-Caputo type

fractional derivarive introduce by Almeida in 2017.

Definition 30 ([13]). Let n ∈ N and let ψ, f ∈ Cn([a, b],R) be two functions such

that ψ is increasing and ψ′(t) 6= 0, for all t ∈ J. The left-sided ψ-Caputo fractional

26



CHAPTER 1. PRELIMINARIES

derivative of f of order α is defined by

cDα;ψ
a+ f(t) = In−α;ψ

a+

(
1

ψ′(t)

d

dt

)n
f(t),

where n = [α] + 1 for α /∈ N, n = α for α ∈ N.

To simplify notation, we will use the abbreviated symbol

f
[n]
ψ (t) =

(
1

ψ′(t)

d

dt

)n
f(t).

From the definition, it is clear that

cDα;ψ
0+ f(t) =


∫ t

0
ψ′(ψ(t)−ψ(s))n−α−1

Γ(n−α)
f

[n]
ψ (s)ds, ifα /∈ N,

f
[n]
ψ (t), ifα ∈ N.

(1.38)

We note that if f ∈ Cn(J,R) the ψ- Caputo fractional derivative of order α of f is

determined as

cDα;ψ
0+ f(t) = Dα;ψ

0+

[
f(t)−

n−1∑
k=0

f
[n]
ψ (0)

k!
(ψ(t)− ψ(0))k

]
.

Lemma 31 ([13]). . Let α, β > 0,and f ∈ L1(J,R). Then

Iα;ψ
0+ Iβ;ψ

0+ f(t) = Iα+β;ψ
0+ f(t), a.e.t ∈ J.

In particular, if f ∈ C(J,R), then Iα;ψ
0+ Iβ;ψ

0+ f(t) = Iα+β;ψ
0+ f(t), t ∈ J.

Lemma 32 ([13]). . Let α > 0,The following holds:

If f ∈ C(J,R), then
cDα;ψ

0+ I
α;ψ
0+ f(t) = f(t), t ∈ J.

If f ∈ Cn(J,R), n− 1 < α < n. Then

Iα;ψ
0+

cDα;ψ
0+ = f(t)−

n−1∑
k=0

f
[n]
ψ (0)

k!
[ψ(t)− ψ(0)]k , t ∈ J.

Lemma 33 ([13]). Let α, β > 0, and f ∈ C([a, b],R). Then for each t ∈ J we have

1. cDα;ψ
a+ I

α;ψ
a+ f(t) = f(t),

2. Iα;ψ
a+

cDα;ψ
a+ f(t) = f(t)− f(a), 0 < α ≤ 1,

3. Iα;ψ
a+ (ψ(t)− ψ(a))β−1 = Γ(β)

Γ(β+α)
(ψ(t)− ψ(a))β+α−1,
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4. cDα;ψ
a+ (ψ(t)− ψ(a))β−1 = Γ(β)

Γ(β−α)
(ψ(t)− ψ(a))β−α−1,

5. cDα;ψ
a+ (ψ(t)− ψ(a))k = 0, for all k ∈ {0, . . . , n− 1}, n ∈ N.

1.5 Some Fixed point theorems and their appli-

cations

In fractional differential equations, it would be necessary to introduce the distinc-

tion between quantitative and qualitative information in finding the solution, if all

fractional differential equations could be solved as easily, it would be unnecessary to

introduce the distinction between quantitative and qualitative information concern-

ing solutions. Most fractional differential equations, especially nonlinear equations,

must be studied with one technique to obtain quantitative information (using numer-

ical analysis), and by another technique to obtain qualitative information (nonlinear

analysis).

Currently, the numerical analysis of fractional differential equations is an active

field of research. Various numerical methods have been developed to solve nonlin-

ear fractional differential equations, such as, Adomian Decomposition Method [6],

New Iterative Method [33], predictorcorrector approach [37], Homotopy perturba-

tion method, for detail see [35, 66, 14, 16, 19].

1.5.1 Nonlinear Analysis and fixed point theory

Nonlinear Analysis is a very broad subject a useful in the study of boundary value

problems. The fundamental methods of nonlinear analysis and their efficient applica-

tion to nonlinear boundary value problems for fractional differential equations such

as, nonlinear operators (classes of nonlinear operators: compact, maximal monotone,

pseudomonotone, generalized pseudomonotone), no smooth analysis, fixed point the-

ory (Banach’s fixed point theory, was created and demonstrated in the year 1922 by

Stefan Banach (1892-1945), it guarantees the existence and uniqueness of solution),

degree theory (presents degree theories: Brouwer’s degree (1912), Leray-Schauder

degree (1934) and degree of set-valued maps), variational principles and critical

point theory, Morse theory, bifurcation theory, regularity theorems and maximum

principles, and a spectrum of differential operators for detail see [75].

In the following we give a description to use and the application of certain the-

orems of fixed point and topological methods (topological degree) in the study ex-

istence of solution for nonlinear fractional differential and integral equations.
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1.5.2 Application of fixed point theory

The most original and far-reaching the contributions made by Henri Poincaré to

mathematics was his introduction of the use of topological or ”qualitative” methods

in the study of nonlinear problems in analysis [24].

Fixed point theory is important tool for solving problems arising in various

branches of mathematical analysis such as in the existence of the theory of FDE

and PDE, integral equations and inclusions, nonlinaer matrix equations, stochastic

fractional differential equations, equilibrium problems, variational inequality prob-

lems, these problems can be solved by reducing them to an equivalent fixed point

problem. As example for applications of the fixed point theory in several areas such

as Optimal control theory, the approximation methods, economics to stochastic

game theory [80, 81]

1.5.3 Classification of fixed point theory

There is a rough classification of fixed point theorems into three basic classes:

• (a) Metric fixed point theory.

• (b) Topological fixed point theory.

• (c) Order fixed point theorems,

Metric Fixed Point Theory

We include all characteristics geometric of spaces and/or the maps, with use of

metric structures, including (Banach’s fixed point theory, Boyd and Wong, Scheafer,

Krasnoselskii’s, Shauder,...).

Topological fixed point theory

These theories are fundamentally based on the topological structure of space. The

first work given by Brouwer’s (1912), in the case of infinite dimensional subsets

of some function spaces. Brouwer’s-Schauder (1934), extended Brouwer’s theorem

to the case the space is compact and convex subsets of a normed linear space,

this theorem was extended to locally convex topological vector space by Tychonoff

(1935).
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Order fixed point theorems

This class belong all those fixed point results which exploit the order structure in-

duced by a cone. Of course this classification is not strict and there are no clear

boundaries separating the three classes see [78, 81].

When to apply fixed point and topological techniques No exact answer

to the question however

• Topological methods describe qualitative information such as the upper and

lower bounds of the solution values.

• The fixed-point theorem and local topological degree are closely connected.

They were developing by Leray, schauder, Nirenberg, Cesari and others.

• We can prove the fixed-point theorem without using any ”topological machin-

ery”.

• The topological degree it has an important advantage over the fixed-point the-

orem: it gives information about the number of distinct solutions, continuous

families of solutions, and stability of solutions [27]. The concept of degree of

mapping in all these forms is one of the most effective tools for studying the

properties of existence and multiplicity of solutions of nonlinear equations.

• In the finite-dimensional case, we use the classical topological degree as they

were explicitly formulated by Brouwer in 1912. In infinite dimensional its ex-

tension by Leray and Schauder [65] in 1934 to mappings in infinite-dimensional

Banach spaces of the form I − g, with g compact.

• The fixed point and the topological methods should be regarded as a last resort

or at least a later resort than analytical methods.

1.6 The Classical Fixed points theory

Fixed point theorems are the basic mathematical tools that help establish the ex-

istence of solutions of various kinds of equations. The fixed point method consists

of transforming a given problem into a fixed point problem. The fixed points of the

transformed problem are thus the solutions of the given problem. In this section,

we recall the famous fixed point theorems that we will use to obtain varied exis-

tence results. We start with the definition of a fixed point theorems which are used

throughout this thesis.
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Definition 34. Let f be an application of a set E in itself. We call fixed point of f

any point u ∈ E such that

f(u) = u.

1.6.1 Banach’s contraction principle

Banach’s contraction principle, which guarantees the existence of a single fixed point

of a contraction of a complete metric space with values in itself, is certainly the best

known of the fixed point theorems. This theorem proved in 1922 by Stefan Banach

is based essentially on the notions of Lipschitzian application and of contracting

application.

Theorem 35. [80, 46](Banach contraction principle)

Let E be a complete metric space and let T : E → E be a contracting application,

then T has a unique fixed point.

1.6.2 Schaefer’s Fixed-Point Theorem

Lemma 36. [80, 81] Let E be a Banach space. Assume that T : E → E is com-

pletely continuous operator and the set

Ω = {x ∈ E : x = µTx, 0 < µ < 1},

is bounded. Then T has a fixed point in E.

1.6.3 Leray-Schauder Nonlinear Alternative

Theorem 37. [46] (Leray-Schauder nonlinear alternative) Let K be a convex sub-

set of a Banach space E, and let U be an open subset of K with 0 ∈ U . Then

every completely continuous map N : U → K has at least one of the following two

properties:

1. N has a fixed point in U ;

2. there is an x ∈ ∂U and λ ∈ (0, 1) with x = λNx.

1.6.4 Boyd-Wong Nonlinear Contraction

Definition 38. [21, 12] Assume that E is a Banach space and T : E → E is a

mapping. If there exists a continuous nondecreasing function ψ : R+ → R
+ such
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that ψ(0) = 0 and ψ(ε) < ε for all ε > 0 with the property:

‖Tx− Ty‖ ≤ ψ(‖x− y‖),∀x, y ∈ E,

then, we say that T is a nonlinear contraction.

Theorem 39. (Boyd-Wong Contraction Principle)[21, 12] Suppose that E is a Ba-

nach space and T : E → E is a nonlinear contraction. Then T has a unique fixed

point in E.

1.6.5 Krasnoselskii’s Fixed-Point Theorem

Theorem 40. [80, 81] (Krasnoselskii’s) Let M be a closed bounded, convex and

nonempty subset of a Banach space E. Let A,B be two operators such that,

(a) Ax+By ∈M , whenever x, y ∈M ,

(b) A is compact and continuous,

(c) B is a contraction mapping.

Then there exists z ∈M such that z = Az +Bz.

1.6.6 Dhage’s Fixed Point in Banach Algebra

Definition 41. An algebra E is a vector space endowed with an internal composition

law noted by (·) that is, E× E −→ E

(x, y) −→ x · y,

which is associative and bilinear.

A normed algebra is an algebra endowed with a norm satisfying the following property

for all x, y ∈ E/ ‖x · y‖ ≤ ‖x‖‖y‖.

A complete normed algebra is called a Banach algebra.

The following hybrid fixed point theorem for three operators in a Banach algebra

E due to Dhage [77, 72] will be used to prove the existence result for the nonlocal

boundary value problem.
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Theorem 42. [34] Let S be a closed convex , bounded and nonempty subset of a

Banach algebra E, and let A,C : E −→ E and B : S −→ E be three operators such

that

1. A and C are Lipschitzian with Lipschitz constants δ and ξ , respectively;

2. B is compact and continuous,

3. x = AxBy + Cx⇒ x ∈ S for all y ∈ S,

4. δM + ξ < 1 where M =
∥∥B(S)

∥∥.

Then the operator equation AxBx+ Cx = x has a solution in S.
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Chapter 2
Existence Results for Nonlinear Neutral

Generalized Caputo Fractional Differential

Equations

2.1 Introduction

A differential equation is said to be neutral if the highest degree derivative of the

unknown function appears with and without delay. Neutral differential equations

are one of the most thoroughly studied classes of equations. It has many appli-

cations in technology and the natural sciences such as: the oscillatory behavior

problems of neutral differential equations have a number of practical applications

in the study of distributed networks containing lossless transmission lines that arise

in high speed computers where lossless transmission lines are used to interconnect

switching circuits, see [52, 74]. During the past few years there has been interest

in many researchers to study the oscillatory behavior of this type of equations, see

[7] Furthermore, many researchers are investigating the regularity and existence of

solutions of nonlinear neutral fractional differential equations see [50, 8].

This chapter is devoted to proving some existence and uniqueness of solutions to

a category of boundary value problems for a nonlinear neutral generalized Caputo

fractional differential equation with generalized Riemann-Liouville integral bound-

ary conditions. We apply a variety assort of fixed point theorems such as Kras-

noselskii’s and Banach. We also establish the Ulam-Hyers stability results for the

addressed problem. Further, an example illustrate our results.

In order to enrich the work on fractional BVPs involving generalized FD and gen-

eralized FI boundary conditions further, we study the existence and uniqueness of
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solutions for a nonlinear neutral ψ-Caputo type FDE with ψ-Riemann-Liouville FI

boundary conditions of the form
cDξ;ψ

0+

[
cDζ;ψ

0+ κ(τ)− Q(τ,κ(τ))
]

= F(τ,κ(τ)), τ ∈ J := [0, T ],

κ(χ) = 0, Iγ;ψ
0+ κ(T ) = 0, χ ∈ (0, T ),

(2.1)

where cDσ;ψ
a+ is the ψ-Caputo fractional derivative of order σ ∈ {ξ, ζ} ⊆ (0, 1), Iγ;ψ

0+

is the ψ-Riemann-Liouville fractional integral of order γ > 0, and F,Q : J× R→ R

are given functions.

2.2 Main Results

We denote by C(J,R) the Banach space of all continuous functions κ : J → R

endowed with a topology of uniform convergence with the norm defined by

‖κ‖ = sup{|κ(τ)| : τ ∈ [0, T ]}.

Before proceeding to the main results, we give the following lemma.

Lemma 43. For given F,Q ∈ C and 0 < ξ, ζ ≤ 1, the solution of the boundary

value problem cDξ;ψ
0+

[
cDζ;ψ

0+ κ(τ)− Q(τ)
]

= F(τ), τ ∈ J = [0, T ],

κ(χ) = 0, Iγ;ψ
0+ κ(T ) = 0, χ ∈ (0, T ),

(2.2)

is given by

κ(τ) = Iζ;ψ0+ Q(u)(τ) + Iξ+ζ;ψ0+ F(u)(τ)

+
(ψ(τ)− ψ(0))ζ

ΩΓ(ζ + 1)

[
Iζ+γ;ψ

0+ Q(u)(T ) + Iξ+ζ+γ;ψ
0+ F(u)(T )

− Mγ

Γ(γ + 1)

(
Iζ;ψ0+ Q(u)(χ) + Iξ+ζ;ψ0+ F(u)(χ)

)]
+

1

Ω

[
M ζ+γ

Γ(ζ + γ + 1)

(
Iζ;ψ0+ Q(u)(χ) + Iξ+ζ;ψ0+ F(u)(χ)

)
− N ζ

Γ(ζ + 1)

(
Iζ+γ;ψ

0+ Q(u)(T ) + Iξ+ζ+γ;ψ
0+ F(u)(T )

)]
, (2.3)
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where

M = (ψ(T )− ψ(0)), N = (ψ(χ)− ψ(0)), (2.4)

Ω =
M ζNγ

Γ(ζ + 1)Γ(γ + 1)
− M ζ+γ

Γ(ζ + γ + 1)
. (2.5)

Proof. using lemma 33, the general solution of the nonlinear fractional differential

equation in (2.2) can be represented as

κ(τ) = Iζ;ψ0+ Q(u)(τ) + Iξ+ζ;ψ0+ F(u)(τ) +
(ψ(τ)− ψ(0))ζ

Γ(ζ + 1)
c0 + c1, (2.6)

where c0, c1 ∈ R are an arbitrary constants.

Applying the ψ-Riemann-Liouville integral of order γ to (2.6), we obtain

Iγ;ψ
0+ κ(τ) = Iζ+γ;ψ

0+ Q(u)(τ)+Iξ+ζ+γ;ψ
0+ F(u)(τ)+

(ψ(τ)− ψ(0))ζ+γ

Γ(ζ + γ + 1)
c0+

(ψ(τ)− ψ(0))γ

Γ(γ + 1)
c1.

(2.7)

By using the boundary condition in (2.7) and the above value of κ(τ) in (2.6), we

have

Iζ;ψ0+ Q(u)(χ) + Iξ+ζ;ψ0+ F(u)(χ) +
N ζ

Γ(ζ + 1)
c0 + c1 = 0, (2.8)

Iζ+γ;ψ
0+ Q(u)(T ) + Iξ+ζ+γ;ψ

0+ F(u)(T ) +
(ψ(T )− ψ(0))ζ+γ

Γ(ζ + γ + 1)
c0 +

(ψ(T )− ψ(0))γ

Γ(γ + 1)
c1 = 0.

(2.9)

Solving the above system for c0 and c1, we find that

c0 =
1

Ω

[
Iζ+γ;ψ

0+ Q(u)(T ) + Iξ+ζ+γ;ψ
0+ F(u)(T )

− M ζ

Γ(γ + 1)

(
Iζ;ψ0+ Q(u)(χ) + Iξ+ζ;ψ0+ F(u)(χ)

)]
,

c1 =
1

Ω

[
M ζ+γ

Γ(ζ + γ + 1)

(
Iζ;ψ0+ Q(u)(χ) + Iξ+ζ;ψ0+ F(u)(χ)

)
− N ζ

Γ(γ + 1)

(
Iζ+γ;ψ

0+ Q(u)(T ) + Iξ+ζ+γ;ψ
0+ F(u)(T )

)]
.

Finally, substituting the values of c0 and c1 in equation (2.6), we obtain the general

solution of problem (2.2) which is (2.3). Converse is also true by using the direct

computation. This completes the proof.
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Also, we define the notations:

θ1 =

{
M ξ+ζ

Γ(ξ + ζ + 1)
+

M ξ+2ζ+γ

|Ω|Γ(ζ + 1)Γ(ξ + ζ + γ + 1)
+

M ξ+ζN ξ+ζ

|Ω|Γ(ζ + 1)Γ(γ + 1)Γ(ξ + ζ + 1)

+
1

|Ω|

(
M ξ+2ζ+γ

Γ(ζ + γ + 1)Γ(ξ + ζ + 1)
+

M ξ+ζ+γN ζ

Γ(ζ + 1)Γ(ξ + ζ + γ + 1)

)}
(2.10)

θ2 =

{
M ζ

Γ(ζ + 1)
+

M2ζ+γ

|ΩΓ(ζ + 1)Γ(ζ + γ + 1)
+

M ζ+γN ζ

|Ω|Γ(ζ + 1)Γ(γ + 1)Γ(ζ + 1)

+
1

|Ω|

(
M2ζ+γ

Γ(ξ + ζ + 1)Γ(ζ + 1)
+

M ζ+γN ζ

Γ(ζ + 1)Γ(ζ + γ + 1)

)}
(2.11)

$ =

[
M ζ

Γ(ζ + 1)
+

M2ζ+γ

|Ω|Γ(ζ + 1)Γ(ζ + γ + 1)
+

M ζ+γN ζ

Γ(ζ + 1)Γ(γ + 1)Γ(ζ + 1)

+
M ζ+γN ζ

|Ω|Γ(ζ + γ + 1)Γ(ζ + 1)
+

M ζ+γN ζ

Γ(ζ + 1)Γ(ζ + γ + 1)

]
(2.12)

In the sequel, the following assumptions will be considered fulfilled:

(C1) The functions F,Q : J× R→ R are continuous.

(C2) There exist two constants L,K > 0 such that

|F(τ,κ(τ))− F(τ,κ(τ))| ≤ L|κ − κ|, for τ ∈ J ,κ,κ ∈ C(J),

and

|Q(τ,κ(τ))− Q(τ,κ(τ))| ≤ K|κ − κ|, for τ ∈ J ,κ,κ ∈ C(J).

(C3) There exist two functions p, q ∈ C(J,R+) with bounds ‖p‖, ‖q‖, respectively

such that:

|F(τ,κ)| ≤ p(τ) and |Q(τ,κ)| ≤ q(τ),

for all τ ∈ J and κ ∈ C(J).

In the following subsections, we prove existence (uniqueness) results for the

boundary value problem (2.1) by using a variety of fixed point theorems.

2.2.1 Existence result via Krasnoselskii”s fixed point theo-

rem

Theorem 44. Suppose (C1)− (C3) hold. If K$ < 1. Then the problem (2.1) has a

least one solution defined on J.
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Proof. We consider Bρ = {κ ∈ C(J) : ‖κ‖ ≤ ρ}, be a closed, bounded, convex, and

nonempty subset the Banach space C(J,R), where ρ is a fixed constant.

Choosing

ρ ≥ ‖p‖θ1 + ‖q‖θ2.

We define the operator H : C(J)→ C(J) as H = H1 + H2, where

(H1κ)(τ) = Iζ;ψ0+ Q(u,κ(u))(τ)

+
(ψ(τ)− ψ(0))ζ

ΩΓ(ζ + 1)

[
Iζ+γ;ψ

0+ Q(u,κ(u))(τ)− Mγ

Γ(γ + 1)
Iζ;ψ0+ Q(u,κ(u))(χ)

]
+

1

Ω

[
M ζ+γ

Γ(ζ + γ + 1)
Iζ;ψ0+ Q(u,κ(u))(χ)− N ζ

Γ(ζ + 1)
Iζ+γ;ψ

0+ Q(u,κ(u))(T )

]
,

(2.13)

and

(H2κ)(τ) = Iξ+ζ;ψ0+ F(u,κ(u))(τ)

+
(ψ(τ)− ψ(0))ζ

ΩΓ(ζ + 1)

[
Iξ+ζ+γ;ψ

0+ F(u,κ(u))(T )− Mγ

Γ(γ + 1)
Iξ+ζ;ψ0+ F(u,κ(u))(χ)

]
+

1

Ω

[
M ζ+γ

Γ(ζ + γ + 1)
Iξ+ζ;ψ0+ F(u,κ(u))(χ)− N ζ

Γ(ζ + 1)
Iξ+ζ+γ;ψ

0+ F(u,κ(u))(T )

]
.

(2.14)

Now, we show that the operators H1 and H2 satisfy the hypothesis of Krasnoselskii’s

theorem (40) in three steps.

The first step, we show that H1κ + H2κ ∈ Bρ for any κ,κ ∈ Bρ, we have

‖H1κ + H2κ‖ ≤ Iζ;ψ0+ |Q(u,κ(u))|(T ) + Iξ+ζ;ψ0+ |F(u,κ(u))|(T )

+
M ζ

|Ω|Γ(ζ + 1)

[
Iζ+γ;ψ

0+ |Q(u,κ(u))|(T ) + Iξ+ζ+γ;ψ
0+ |F(u,κ(u))|(T )

+
Mγ

Γ(γ + 1)

(
Iζ;ψ0+ |Q(u,κ(u))|(χ) + Iξ+ζ;ψ0+ |F(u,κ(u))(χ)

)]
+

1

|Ω|

[
M ζ+γ

Γ(ζ + γ + 1)

(
Iζ;ψ0+ |Q(u,κ(u))(χ) + Iξ+ζ;ψ0+ |F(u,κ(u))(χ)

)
+

N ζ

Γ(ζ + 1)

(
Iζ+γ;ψ

0+ |Q(u,κ(u))(T ) + Iξ+ζ+γ;ψ
0+ |F(u,κ(u))(T )

)]
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≤ ‖p‖
(

M ξ+ζ

Γ(ξ + ζ + 1)

+
M ξ+2ζ+γ

|Ω|Γ(ζ + 1)Γ(ξ + ζ + γ + 1)
+

M ξ+ζN ξ+ζ

|Ω|Γ(ζ + 1)Γ(γ + 1)Γ(ξ + ζ + 1)

+
1

|Ω|

(
M ξ+2ζ+γ

Γ(ζ + γ + 1)Γ(ξ + ζ + 1)
+

M ξ+ζ+γN ζ

Γ(ζ + 1)Γ(ξ + ζ + γ + 1)

))
+ ‖q‖

(
M ζ

Γ(ζ + 1)
+

M2ζ+γ

|ΩΓ(ζ + 1)Γ(ζ + γ + 1)
+

M ζ+γN ζ

|Ω|Γ(ζ + 1)Γ(γ + 1)Γ(ζ + 1)

+
1

|Ω|

(
M2ζ+γ

Γ(ξ + ζ + 1)Γ(ζ + 1)
+

M ζ+γN ζ

Γ(ζ + 1)Γ(ζ + γ + 1)

))
= ‖p‖θ1 + ‖q‖θ2 ≤ ρ.

Which implies that H1κ + H2κ ∈ Bρ.

Next step, is related to the compactness and continuity of the operator H2.

Continuity of the function F implies that the operator H2 is continuous.

Also, H2 is uniformly bounded on Bρ as

‖H2‖ ≤ ‖q‖θ1.

Now, we prove the compactness of the operator H2.

Let τ1, τ2 ∈ J, with τ1 < τ2 and κ ∈ Bρ. Then we obtain

|(H2κ)(τ2)− (H2κ)(τ1)|

≤ ‖p‖
Γ(ξ + ζ + 1)

[
2|ψ(τ2)− ψ(τ1)|ξ+ζ + |(ψ(τ2)− ψ(0))ξ+ζ − (ψ(τ1)− ψ(0))ξ+ζ |

]
+
‖p‖|(ψ(τ2)− ψ(0))ζ − (ψ(τ1)− ψ(0))ζ |

|Ω|Γ(ζ + 1)

[
M ξ+ζ+γ

Γ(ξ + ζ + γ + 1)
+

MγN ξ+ζ

Γ(γ + 1)Γ(ξ + ζ + 1)

]
,

which is independent of κ and tends to zeros as τ2 − τ1 → 0. Thus, H2 is equicon-

tinuous. So H2 is relatively compact on Bρ. Hence by the Arzela-Ascoli, H2 is

compact on Bρ.
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Finally, we show that the operator H1 is a contraction. By using assumption (C1),

‖H1κ −H1κ‖ ≤ Iζ;ψ0+ |Q(u,κ(u))− Q(u,κ(u))|(T )

+
M ζ

|Ω|Γ(ζ + 1)

[
Iζ+γ;ψ

0+ |Q(u,κ(u))− Q(u,κ(u))|(T )

+
Mγ

Γ(γ + 1)
Iζ;ψ0+ |Q(u,κ(u))− Q(u,κ(u))|(χ)

]
+

1

|Ω|

[
M ζ+γ

Γ(ζ + γ + 1)
Iζ;ψ0+ |Q(u,κ(u))− Q(u,κ(u))|(T )(χ)

+
N ζ

Γ(ζ + 1)
Iζ+γ;ψ

0+ |Q(u,κ(u))− Q(u,κ(u))|(T )(T )

]
≤ K

[
M ζ

Γ(ζ + 1)
+

M2ζ+γ

|Ω|Γ(ζ + 1)Γ(ζ + γ + 1)
+

M ζ+γN ζ

Γ(ζ + 1)Γ(γ + 1)Γ(ζ + 1)

+
M ζ+γN ζ

|Ω|Γ(ζ + γ + 1)Γ(ζ + 1)
+

M ζ+γN ζ

Γ(ζ + 1)Γ(ζ + γ + 1)

]
‖κ − κ‖

= K$‖κ − κ‖.

Thus all the assumptions of Krasnoselskii”s FPT are satisfied. So, Theorem 44

shows that (2.1) has at least one solution on J. The proof is finished.

2.2.2 Existence and uniqueness Result

Here we prove the existence and uniqueness result for the problem (2.1) and by using

the Banach’s contraction mapping principle.

Theorem 45. If the conditions (C1) and (C2) hold, then the problem (2.1) has a

unique solution on J, if ∆ := (Lθ1 + Kθ2) < 1.

Proof. Let us fix F0 = supτ∈[0,T ] |F(τ, 0)|, Q0 = supτ∈[0,T ] |Q(τ, 0)|,
and choose r ≥ F0θ1+Q0θ2

1−Lθ1−Kθ2 . In the first step, we show that HBr ⊂ Br, we take
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κ ∈ Br = {κ ∈ C(J) : ‖κ‖ ≤ r} so that

‖(Hκ)(τ)‖ ≤ sup
τ∈[0,T ]

{
Iζ;ψ0+ |Q(u,κ(u))|(τ) + Iξ+ζ;ψ0+ |F(u,κ(u))|(τ)

+
|ψ(τ)− ψ(0)|ζ

|Ω|Γ(ζ + 1)

[
Iζ+γ;ψ

0+ |Q(u,κ(u))|(T ) + Iξ+ζ+γ;ψ
0+ |Q(u,κ(u))|(T )

+
Mγ

Γ(γ + 1)

(
Iζ;ψ0+ |Q(u,κ(u))|(χ) + Iξ+ζ;ψ0+ |F(u,κ(u))(χ)

)]
+

1

|Ω|

[
M ζ+γ

Γ(ζ + γ + 1)

(
Iζ;ψ0+ |Q(u,κ(u))|(χ) + Iξ+ζ;ψ0+ |F(u,κ(u))|(χ)

)
+

N ζ

Γ(ζ + 1)

(
Iζ+γ;ψ

0+ |Q(u,κ(u))|(T ) + Iξ+ζ+γ;ψ
0+ |F(u,κ(u))|(T )

)]}
≤ sup

τ∈[0,T ]

{
Iζ;ψ0+ |Q(u,κ(u))− Q(u, 0)|+ |Q(u, 0)|)(T )

+ I
ξ+ζ;ψ
0+ |F(u,κ(u))− F(u, 0)|+ |F(u, 0)|)(T )

+
|ψ(τ)− ψ(0)|ζ

|Ω|Γ(ζ + 1)

[
Iζ+γ;ψ

0+ |Q(u,κ(u))− Q(u, 0)|+ |Q(u, 0)|)(T )

+ Iξ+ζ+γ;ψ
0+ |F(u,κ(u))− F(u, 0)|+ |F(u, 0)|)(T )

+
Mγ

Γ(γ + 1)

(
Iζ;ψ0+ |Q(u,κ(u))− Q(u, 0)|+ |Q(u, 0)|)(T )(χ) + Iξ+ζ;ψ0+ |F(u,κ(u))(χ)

)]
+

1

|Ω|

[
M ζ+γ

Γ(ζ + γ + 1)

(
Iζ;ψ0+ |Q(u,κ(u))|(χ) + Iξ+ζ;ψ0+ |F(u,κ(u))− F(u, 0)|+ |F(u, 0)|)(χ)

)
+

N ζ

Γ(ζ + 1)

(
Iζ+γ;ψ

0+ |Q(u,κ(u))− Q(u, 0)|+ |Q(u, 0)|)(T )

+Iξ+ζ+γ;ψ
0+ |F(u,κ(u))− F(u, 0)|+ |F(u, 0)|)(T )

)]}
≤ (L‖κ‖+ F0)

{
M ξ+ζ

Γ(ξ + ζ + 1)
+

M ξ+2ζ+γ

|ΩΓ(ζ + 1)Γ(ξ + ζ + γ + 1)

+
M ξ+ζN ξ+ζ

|Ω|Γ(ζ + 1)Γ(γ + 1)Γ(ξ + ζ + 1)

+
1

|Ω|

(
M ξ+2ζ+γ

Γ(ζ + γ + 1)Γ(ξ + ζ + 1)
+

M ξ+ζ+γN ζ

Γ(ζ + 1)Γ(ξ + ζ + γ + 1)

)}
+ (K‖κ‖+ Q0)

{
M ζ

Γ(ζ + 1)
+

M2ζ+γ

|ΩΓ(ζ + 1)Γ(ζ + γ + 1)
+

M ζ+γN ζ

|Ω|Γ(ζ + 1)Γ(γ + 1)Γ(ζ + 1)

+
1

|Ω|

(
M2ζ+γ

Γ(ξ + ζ + 1)Γ(ζ + 1)
+

M ζ+γN ζ

Γ(ζ + 1)Γ(ζ + γ + 1)

)}
= (Lr + F0)θ1 + (Kr + Q0)θ2 ≤ r,

which implies that HBr ⊂ Br.
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Next, we let κ,κ ∈ C(J). Then, for τ ∈ J, we have

‖(Hκ)(τ)− (Hκ)(τ)‖

≤ sup
τ∈[0,T ]

{
Iζ;ψ0+ |Q(u,κ(u))− Q(u,κ(u))|(τ) + Iξ+ζ;ψ0+ |F(u,κ(u))− F(u,κ(u))|(τ)

+
|ψ(τ)− ψ(0)|ζ

|Ω|Γ(ζ + 1)

[
Iζ+γ;ψ

0+ |Q(u,κ(u))− Q(u,κ(u))|(T ) + Iξ+ζ+γ;ψ
0+ |Q(u,κ(u))− Q(u,κ(u))|(T )

+
Mγ

Γ(γ + 1)

(
Iζ;ψ0+ |Q(u,κ(u))− Q(u,κ(u))|(χ) + Iξ+ζ;ψ0+ |F(u,κ(u))− Q(u,κ(u))|(χ)

)]
+

1

|Ω|

[
M ζ+γ

Γ(ζ + γ + 1)

(
Iζ;ψ0+ |Q(u,κ(u))− Q(u,κ(u))|(χ) + Iξ+ζ;ψ0+ |F(u,κ(u))− F(u,κ(u))|(χ)

)
+

N ζ

Γ(ζ + 1)

(
Iζ+γ;ψ

0+ |Q(u,κ(u))− Q(u,κ(u))|(T ) + Iξ+ζ+γ;ψ
0+ |F(u,κ(u))− F(u,κ(u))|(T )

)]}
≤ sup

τ∈[0,T ]

{
M ζ

Γ(ζ + 1)
K‖κ − κ‖+

M ξ+ζ

Γ(ξ + ζ + 1)
L‖κ − κ‖

+
M ζ

|Ω|Γ(ζ + 1)

[
M ζ+γ

Γ(ζ + γ + 1)
K‖κ − κ‖+

M ξ+ζ+γ

Γ(ξ + ζ + γ + 1)
L‖κ − κ‖

+
Mγ

Γ(γ + 1)

(
M ζ

Γ(ζ + 1)
K‖κ − κ‖+

M ξ+ζ

Γ(ξ + ζ + 1)
L‖κ − κ‖

)]
+

1

|Ω|

[
M ζ+γ

Γ(ζ + γ + 1)

(
M ζ

Γ(ζ + 1)
K‖κ − κ‖+

M ξ+ζ

Γ(ξ + ζ + 1)
L‖κ − κ‖

)
+

N ζ

Γ(ζ + 1)

(
M ζ+γ

Γ(ζ + γ + 1)
K‖κ − κ‖+

M ξ+ζ+γ

Γ(ξ + ζ + γ + 1)
L‖κ − κ‖

)]}
= (Lθ1 + Kθ2)‖κ − κ‖.

As (Lθ1 + Kθ2) < 1, the operator H is a contraction. So, the problem (2.1) has a

unique solution on J.

2.3 UH stability analysis

In this section, we study the Ulam stability, and we adopt the definitions in ([89, 2])

of the UH and generalized UH stability of the problem (2.1). Let ε > 0. We consider

the following inequality:∣∣∣Dξ;ψ
a+

[
Dζ;ψ
a+ κ̃(τ)− Q(τ, κ̃(τ))

]
− F(τ, κ̃(τ))

∣∣∣ ≤ ε, τ ∈ J. (2.15)

Definition 46. The equation (2.1) is UH stable if there exists a real number cF > 0

such that, for each ε > 0 and for each solution κ̃ ∈ C(J) of inequality(2.15) there
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exists a solution κ ∈ C(J) of (2.1) with

|κ̃(τ)− κ(τ)| ≤ εcF, τ ∈ J.

Definition 47. The equation (2.1) is generalized UH stable if there exists CF :

C (R+,R+) with CF(0) = 0 such that, for each ε > 0 and for each solution κ̃ ∈ C(J)

of inequality (2.15), there exists a solution κ ∈ C(J) of (5.1) with

|κ̃(τ)− κ(τ)| ≤ CF(ε), τ ∈ J.

Lemma 48. A function κ̃ ∈ C(J) is a solution of inequality (2.15) if and only if

there exists a function σ ∈ C(J) (which depends on solution κ̃ ) such that

1.|σ(τ)| ≤ ε, τ ∈ J.

2.Dξ;ψ
a+

[
Dζ;ψ
a+ κ̃(τ)− Q(τ, κ̃(τ))

]
= F(τ, κ̃(τ)) + σ(τ), τ ∈ J.

Now, we discuss the UH stability of solution to the problem (2.1).

Theorem 49. Suppose that the assumption (C2) is fulfilled. Then the problem (2.1)

is UH stable on J and consequently generalized UH stable provided that ∆ < 1.

Proof. Let ε > 0 and let κ̃ ∈ C(J) be a function which satisfies the inequality (2.15)

and let κ ∈ C(J) the unique solution of the following problem
cDξ;ψ

0+

[
cDζ;ψ

0+ κ(τ)− Q(τ,κ(τ))
]

= F(τ,κ(τ)), τ ∈ J := [0, T ],

κ(χ) = 0, Iγ;ψ
0+ κ(T ) = 0, χ ∈ (0, T ).

(2.16)

By Lemma 43, we have

κ(τ) = Iζ;ψ0+ Q(u)(τ) + Iξ+ζ;ψ0+ F(u)(τ)

+
(ψ(τ)− ψ(0))ζ

ΩΓ(ζ + 1)

[
Iζ+γ;ψ

0+ Q(u)(T ) + Iξ+ζ+γ;ψ
0+ F(u)(T )

− Mγ

Γ(γ + 1)

(
Iζ;ψ0+ Q(u)(χ) + Iξ+ζ;ψ0+ F(u)(χ)

)]
+

1

Ω

[
M ζ+γ

Γ(ζ + γ + 1)

(
Iζ;ψ0+ Q(u)(χ) + Iξ+ζ;ψ0+ F(u)(χ)

)
− N ζ

Γ(ζ + 1)

(
Iζ+γ;ψ

0+ Q(u)(T ) + Iξ+ζ+γ;ψ
0+ F(u)(T )

)]
, (2.17)
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Indeed, by Remark 48, we conclude that
Dξ;ψ
a+

[
Dζ;ψ
a+ κ̃(τ)− Q(τ, κ̃(τ))

]
= F(τ, κ̃(τ)) + σ(τ), τ ∈ J = [0, T ],

κ̃(χ) = 0, Iγ;ψ
0+ κ̃(T ) = 0, χ ∈ (0, T ).

(2.18)

Again by Lemma 43, we have

κ̃(τ) = Iζ;ψ0+ Q̃(ũ)(τ) + Iξ+ζ;ψ0+ F̃(ũ)(τ)

+
(ψ(τ)− ψ(0))ζ

ΩΓ(ζ + 1)

[
Iζ+γ;ψ

0+ Q̃(ũ)(T ) + Iξ+ζ+γ;ψ
0+ F̃(ũ)(T )

− Mγ

Γ(γ + 1)

(
Iζ;ψ0+ Q̃(ũ)(χ) + Iξ+ζ;ψ0+ F̃(ũ)(χ)

)]
+

1

Ω

[
M ζ+γ

Γ(ζ + γ + 1)

(
Iζ;ψ0+ Q̃(ũ)(χ) + Iξ+ζ;ψ0+ F̃(ũ)(χ)

)
− N ζ

Γ(ζ + 1)

(
Iζ+γ;ψ

0+ Q̃(ũ)(T ) + Iξ+ζ+γ;ψ
0+ F̃(ũ)(T )

)]
+ Iξ+ζ;ψ0+ σ(τ) +

(ψ(τ)− ψ(0))ζ

ΩΓ(ζ + 1)

[
Iξ+ζ+γ;ψ

0+ σ(T )− Mγ

Γ(γ + 1)

(
Iξ+ζ;ψ0+ σ(χ)

)]
+

1

Ω

[
M ζ+γ

Γ(ζ + γ + 1)

(
Iξ+ζ;ψ0+ σ(χ)

)
− N ζ

Γ(ζ + 1)

(
Iξ+ζ+γ;ψ

0+ σ(T )
)]

On the other hand, we have, for each τ ∈ J

|κ̃(τ)− κ(τ)| ≤ Iζ;ψ0+

∣∣∣Q̃(ũ)(τ)− Q(u)(τ)
∣∣∣+ Iξ+ζ;ψ0+

∣∣∣F̃(ũ)(τ)− F(u)(τ)
∣∣∣

+
(ψ(τ)− ψ(0))ζ

ΩΓ(ζ + 1)

[
Iζ+γ;ψ

0+

∣∣∣Q̃(ũ)(T )− Q(u)(T )
∣∣∣+ Iξ+ζ+γ;ψ

0+

∣∣∣F̃(ũ)(T )− F(u)(T )
∣∣∣

− Mγ

Γ(γ + 1)

(
Iζ;ψ0+

∣∣∣Q̃(ũ)(χ)− Q(u)(χ)
∣∣∣+ Iξ+ζ;ψ0+

∣∣∣F̃(ũ)(χ)− F(u)(χ)
∣∣∣)]

+
1

Ω

[
M ζ+γ

Γ(ζ + γ + 1)

(
Iζ;ψ0+

∣∣∣Q̃(ũ)(χ)− Q(u)(χ)
∣∣∣+ Iξ+ζ;ψ0+

∣∣∣F̃(ũ)(χ)− F(u)(χ)
∣∣∣)

+
N ζ

Γ(ζ + 1)

(
Iζ+γ;ψ

0+

∣∣∣Q̃(ũ)(T )− Q(u)(T )
∣∣∣+ Iξ+ζ+γ;ψ

0+

∣∣∣F̃(ũ)(T )− F(u)(T )
∣∣∣)]

+ Iξ+ζ;ψ0+ σ(τ) +
(ψ(τ)− ψ(0))ζ

ΩΓ(ζ + 1)

[
Iξ+ζ+γ;ψ

0+ |σ(T )| − Mγ

Γ(γ + 1)

(
Iξ+ζ;ψ0+ |σ(χ)|

)]
+

1

Ω

[
M ζ+γ

Γ(ζ + γ + 1)

(
Iξ+ζ;ψ0+ |σ(χ)|

)
− N ζ

Γ(ζ + 1)

(
Iξ+ζ+γ;ψ

0+ |σ(T )|
)]
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Hence. Using part (i) of Remark 48 and (C1) we can get

|κ̃(τ)− κ(τ)| ≤
{

M ξ+ζ

Γ(ξ + ζ + 1)
+

M ζ

|Ω|Γ(ζ + 1)

[
M ξ+ζ+γ

Γ(ξ + ζ + γ + 1)
+

Mγ

Γ(γ + 1)

(
M ξ+ζ

Γ(ξ + ζ + 1)

)]
+

1

|Ω|

[
M ζ+γ

Γ(ζ + γ + 1)

(
M ξ+ζ

Γ(ξ + ζ + 1)

)
+

N ζ

Γ(ζ + 1)

(
M ξ+ζ+γ

Γ(ξ + ζ + γ + 1)

)]}
ε

+∆‖κ̃ − κ‖ := Ξε+ ∆‖κ̃ − κ‖

In consequence. It follows that

‖κ̃ − κ‖∞ ≤
Ξε

(1−∆)

If we let CF = Ξ, then, the UH stability condition is satisfied. More generally, for

CF(ε) = Ξε
(1−∆)

; CF(0) = 0 the generalized UH stability condition is also satisfied.

This completes the proof.

2.4 Application

This section is devoted to the illustration of the results derived in the last section.

Example 50. Consider the following BVP:

 CD
1
2

;eτ

0+

[
CD

3
4

;eτ

0+ κ(τ)− sin |κ(τ)|
(τ+50)

]
= 1

eτ+9

(
1 + |κ(τ)|

1+|κ(τ)|

)
, τ ∈ [0, 1]

κ(0) = 0, I
3
4

;eτ

0+ κ(1) = κ0,
(2.19)

In this case we take

ξ =
1

2
, ζ =

3

4
, T = 1, ψ(τ) = eτ ,

F(τ,κ) =
1

eτ + 9

(
1 +

|κ(τ)|
1 + |κ(τ)|

)
,

Q(τ,κ) =
sin |κ(τ)|
(τ + 50)

.

It is clear that assumptions (C1) and (C2) of the Theorem 45 is satisfied. On the

other hand, for any τ ∈ [0, 1],κ, y ∈ R we have

|F(τ,κ)− F(τ, y)| ≤ 1

10
|κ − y|,

45



CHAPTER 2. EXISTENCE RESULTS FOR NONLINEAR NEUTRAL
GENERALIZED CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS

|Q(τ,κ)− Q(τ, y)| ≤ 1

50
|κ − y|.

Hence condition (C2) holds with L = 1
10

and K = 1
50
. Also by simple calculations,

we find that ∆ = 0.5342 < 1. Then by Theorem 45, the BVP (2.19) has a unique

solution on [0, 1]. Moreover, Theorem 49 implies that the problem (2.1) is HU stable

and generalized HU stable.

Example 51. Consider the following BVP: In this case we take CD
2
3

;2τ

0+

[
CD

1
3

;2τ

0+ κ(τ)− Q(τ,κ(τ))
]

= F(τ,κ(τ)), τ ∈ [0, 1],

κ(0) = 0, I
3
4

;2τ

0+ κ(1) = κ0,
(2.20)

with

F(τ,κ(τ)) =
1

3(τ + 2)2

(
τ +
√

1 + τ 2
)
, (2.21)

Q(τ,κ(τ)) =
1

8
+

sin
√
|τ(τ)|

24
, (2.22)

It is clear that assumptions (C2) of the Theorem 45 are satisfied. On the other hand,

for any τ ∈ [0, 1],κ ∈ R we have

|F(τ,κ)− F(τ, y)| ≤ 1

12
|κ − y|,

|Q(τ,κ)− Q(τ, y)| ≤ 1

24
|κ − y|.

Hence condition (C2) holds with L = 1
12

and K = 1
24

. We shall check that condition

in Theorem 45 is satisfied. Indeed ∆ = 0.2014 < 1.

To explain Theorem 44, let us take F(τ,κ) given by (2.21). Clearly, the condi-

tions (C1)− (C3) holds with ‖p‖ = 1
12

and ‖q‖ = 1
24

. In addition, K$ ≈ 0.0723 < 1.

Hence, all hypotheses of Theorem 70 are satisfied. So, the problem (2.20) has an

existence of a solution on [0, 1].
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2.5 Concluding Remarks

In this chapter, we have given some results of the existence and uniqueness of so-

lutions for BVPs of nonlinear neutral FDEs involving the generalized Caputo FD

and the generalized Riemann-Liouville FI boundary conditions. As a first step, the

BVP is turned to a fixed point problem. Based on this, the existence results are

established via the Krasnoselskii’s and Banach’s fixed point theorems. On other

hand discusses the Ulam-Hyers stability result of the considered problem. We give

an example to justify the theoretical results.

We confirm that the results of this work are novel and generalize some previous

works. For example, by taking ψ(τ) = τ in the obtained results, which can be

considered a special case studied by [11]. In addition to this, when taking different

values for the function ψ, our studied problem covers many problems that contain

classical operators, which are incorporated into the operators used in our study.
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Chapter 3
Existence results for Langevin equation

with Riesz-Caputo fractional derivative

3.1 Introduction

The Langevin equation is a stochastic differential equations which describes the

Brownian motion, it was first formulated in the work of Paul Langevin 1908. This

Scientist prepared a detailed and accurate of Brownian motion. In physics the

Langevin equation is utilized as a modeling of physics phenomena such that: study

of the random motion of a small particle in a fluid due to collisions with the sur-

rounding molecules in thermal motion, analyzing the stock market, photo electron.

Therefore, the generalized of the Langevin equation can be used to formulate many

various problems featuring molecular motion in condensed matter, for example com-

plex systems. An important characteristic of the generalized Langevin equation is

that it involves an aftereffect function, which is named a memory function. As ex-

amples for applications of nonlinear Langevin equation, one many refer to modeling

the financial market (SPW), Fractional Langevin equation to describe anomalous

diffusion [60], fractional Brownian motion (JHMR), single-file diffusion [40] and ap-

plications to stochastic Problems in Physics, Chemistry and Electrical Engineering

[28].

The most current work related to fractional differential equations of the Caputo

derivative which are unilateral factors unfortunately only reflect the influence of

past and future memory. The Riesz-Caputo derivative is a two-sided fractional op-

erator, including the right and left derivative, which can reflect both past and future

memory effects. This function is particular for partial modeling on a finite body.

Some recent applications of this derivative concern abnormal diffusion.
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Many researchers studied existence and uniqueness solution for fractional nonlinear

Langevin equation with fractional derivatives ([56, 106, 9]).

The objective of this chapter is to develop the existence and uniqueness of solutions

for nonlinear Langevin equation involving Riesz-Caputo fractional derivatives, with

a class of anti-periodic boundary conditions of the form:{
RC
0 Dα

T (RC0 Dβ
T + χ)x(t) = f(t, x(t)) ,0 < t < T ,

x(0) + x(T ) = 0 , x′(0) + x′(T ) = 0,
(3.1)

where RCDα is the Riesz-Caputo fractional derivatives of order 1 < α ≤ 2 and

0 < β ≤ 1, χ ∈ R and f : [0, T ]× R→ R is a continuous function with respected to

its both variables, t and x. We aim to establish an existence and uniqueness result

of the problem 3.1.via Banach , Schaefer (Theorem 36) and Krasnoselskii’s FPT

(Theorem 40). Three examples are given to illustrate main results.

Let α > 0, and n − 1 < α ≤ n, n ∈ N and n = [α], where [·] is The integer part of

the real number α.

3.2 Existence of solutions

Before proved the existence of solution for Langevin fractional differential equations

with Riesz-Caputo derivative, we first shall present and prove the following lemma.

Lemma 52. Let g ∈ C([0, T ],R) and x ∈ C2([0, T ],R). Then the problem{
RC
0 Dα

T (RC0 Dβ
T + χ)x(t) = g(t), 0 < t < T ,

x(0) + x(T ) = 0 , x′(0) + x′(T ) = 0,
(3.2)

is equivalent to the integral equation given by

x(t) =
−χ

Γ(β)

∫ t

0

(t− s)β−1x(s)ds− χ

Γ(β)

∫ T

t

(s− t)β−1x(s)ds (3.3)

+
χ2T (tβ − (T − t)β)

βΓ(β − 1)(2Γ(β) + χT β)

∫ T

0

(T − s)β−2x(s)ds

− χT (tβ − (T − t)β)

βΓ(α + β − 1)(2Γ(β) + χT β)

∫ T

0

(T − s)α+β−2g(s)ds

+
1

Γ(α + β)

∫ t

0

(t− s)α+β−1g(s)ds

+
1

Γ(α + β)

∫ T

t

(s− t)α+β−1g(s)ds
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Also, we define the notations:

φ1 =
2|χ|T β

Γ(β + 1)
+

χ2T 2β

Γ(β + 1)|2Γ(β) + χT β|
(3.4)

+
|χ|L1T

α+2β

βΓ(α + β)|2Γ(β) + χT β|
+

2L1T
α+β

Γ(α + β + 1)
,

k1 =

(
2|χ|T β

Γ(β + 1)
+

χ2T 2β

Γ(β + 1)|2Γ(β) + χT β|

)
, (3.5)

k2 =

[
|χ|Tα+2β

βΓ(α + β)|2Γ(β) + χT β|
+

2Tα+β

Γ(α + β + 1)

]
, (3.6)

Proof. Applying the integral operator 0I
α
T to both sides of (3.2)and by using Lemma(18),

we get

RC
0 Dβ

Tx(t) + χx(t) +
RC
0 Dβ

Tx
′(T )T

2
+

1

2
χx′(t)T =0 I

α
T g(t). (3.7)

Applying the integral operator 0I
β
T to the both sided of (3.7)and using the Lemma

(18), we obtain

x(t) =
1

2
(x(0) + x(T ))− χ0I

β
Tx(t)− 1

20
IβTx

′(T )T +0 I
α+β
T g(t). (3.8)

Rewriting equation (3.8) under the form

x(t) =
−χ

Γ(β)

∫ t

0

(t− s)β−1x(s)ds− χ

Γ(β)

∫ T

t

(s− t)β−1x(s)ds (3.9)

− χTx′(T )

2Γ(β + 1)
tβ +

χTx′(T )

2Γ(β + 1)
(T − t)β +

1

Γ(α + β)

∫ t

0

(t− s)α+β−1g(s)ds

+
1

Γ(α + β)

∫ T

t

(s− t)α+β−1g(s)ds.

Then taking the derivative of (3.9), we get

x′(t) =
−χ

Γ(β − 1)

∫ t

0

(t− s)β−2x(s)ds+
χ

Γ(β − 1)

∫ T

t

(s− t)β−2x(s)ds

− χTx′(T )

2Γ(β)
tβ−1 − χTx′(T )

2Γ(β)
(T − t)β−1

+
α + β − 1

Γ(α + β)

∫ t

0

(t− s)α+β−2g(s)ds− α + β − 1

Γ(α + β)

∫ T

t

(s− t)α+β−2g(s)ds.
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Using the boundary conditions of (3.1), we deduce

x′(T ) =
−2χ(β − 1)

2Γ(β) + χT β

∫ T

0

(T − s)β−2x(s)ds (3.10)

+
2Γ(β)

Γ(α + β − 1)(2Γ(β) + χT β)

∫ T

0

(T − s)α+β−2g(s)ds.

Substituting the value of (3.10) in (3.9), we obtain (3.3). The proof is complete.

By lemma(52), we define an operator H : C([0, T ]) → C([0, T ]), associated to

(3.1)

(Hx)(t) =
−χ

Γ(β)

∫ t

0

(t− s)β−1x(s)ds− χ

Γ(β)

∫ T

t

(s− t)β−1x(s)ds (3.11)

+
χ2T (tβ − (T − t)β)

βΓ(β − 1)(2Γ(β) + χT β)

∫ T

0

(T − s)β−2x(s)ds

− χT (tβ − (T − t)β)

βΓ(α + β − 1)(2Γ(β) + χT β)

∫ T

0

(T − s)α+β−2f(s, x(s))ds

+
1

Γ(α + β)

t

0

(t− s)α+β−1f(s, x(s))ds

+
1

Γ(α + β)

∫ T

t

(s− t)α+β−1f(s, x(s))ds.

In the next, we obtain some existence and uniqueness results or the boundary value

problem(3.1) by using a variety of fixed point theorems.

3.2.1 Existence and uniqueness result via Banach fixed point

theorem

Theorem 53. Let f : [0, T ]× R→ R be a continuous function. Assume that:

(H1) There exists a constant L1 > 0 such that

|f(t, x)− f(t, y)| ≤ L1 |x− y| ,

for each t ∈ [0, T ] and x, y ∈ R.
Then the boundary value problem (84) has a unique solution on [0, T ] if

φ1 < 1,

where φ1 is defined by (3.4).
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Proof. By using operator H, which is defined by (3.11), we have

|(Hx)(t)− (Hy)(t)| ≤ |χ|
Γ(β)

∫ t

0

(t− s)β−1|x(s)− y(s)|ds+
|χ|

Γ(β)

∫ T

t

(s− t)β−1|x(s)− y(s)|ds

+
χ2T |tβ − (T − t)β|

βΓ(β − 1)(|2Γ(β) + χT β|

∫ T

0

(T − s)β−2|x(s)− y(s)|ds

+
|χ|T |tβ − (T − t)β|

βΓ(α + β − 1)|2Γ(β) + χT β|

∫ T

0

(T − s)α+β−2|f(s, x(s))− f(s, y(s))|ds

+
1

Γ(α + β)

∫ t

0

(t− s)α+β−1|f(s, x(s))− f(s, y(s))|ds

+
1

Γ(α + β)

∫ T

t

(s− t)α+β−1|f(s, x(s)− f(s, y(s))|ds,

≤ |χ|T β

Γ(β + 1)
‖x− y‖+

|χ|T β

Γ(β + 1)
‖x− y‖+

χ2T 2β

Γ(β − 1)(|2Γ(β) + χT β|
‖x− y‖

+
L1|χ|Tα+2β

βΓ(α + β − 1)|2Γ(β) + χT β|
‖x− y‖+

L1T
α+β

Γ(α + β + 1)
‖x− y‖+

LTα+β

Γ(α + β + 1)
‖x− y‖

≤
{

2|χ|T β

Γ(β + 1)
+

χ2T 2β

Γ(β + 1)|2Γ(β) + χ|T β
+

|χ|L1T
α+2β

βΓ(α + β)|2Γ(β) + χT β|
+

2L1T
α+β

Γ(α + β + 1)

}
‖x− y‖,

≤ φ1‖x− y‖,

for any x, y ∈ C([0, T ]), and for each t ∈ [0, T ]. Thus implies that ‖Hx − Hy‖ ≤
φ1‖x − y‖. As φ1 < 1, the operator H : C([0, T ]) → C([0, T ]) is a contraction

mapping. Consequently, the boundary value problem (3.1) has a unique solution on

[0, T ].

3.2.2 Existence result via Scheafer fixed point theorem

Theorem 54. Assume that there exists a positive constant L2 > 0, such that

|f(t, x)| ≤ L2, for t ∈ [0, T ], x ∈ R. Then the boundary value problem (3.1) has

at least one solution on [0, T ].

Proof. Step 1: We show that the operator H defined by (3.11) is completely con-

tinuous. Observe that the continuity of H follows from the continuity of f .

For a positive constant d, let

Bd = {x ∈ C([0, T ]) : ‖x‖ ≤ d} ,

be a closed bounded subset in C([0, T ]).

Step 2: H maps bounded sets into bounded sets in C([0, T ]) .
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For each x ∈ Bd and t ∈ [0, T ], we have

|(Hx)(t)| ≤ |χ|
Γ(β)

∫ t

0

(t− s)β−1|x(s)|ds+
|χ|

Γ(β)

∫ T

t

(t− s)β−1|x(s)|ds

+
χ2T |tβ − (T − t)β|

βΓ(β − 1)|2Γ(β) + χT β|

∫ T

0

(T − s)β−2|x(s)|ds

+
|χ|T |tβ − (T − t)β|

βΓ(α + β − 1)|2Γ(β) + χT β|

∫ T

0

(T − s)α+β−2|f(s, x(s))|ds

+
1

Γ(α + β)

∫ t

0

(t− s)α+β−1|f(s, x(s))|ds

+
1

Γ(α + β)

∫ T

t

(s− t)α+β−1|f(s, x(s))|ds

≤ 2|χ|T β

Γ(β + 1)
‖x(s)‖+

χ2T 2β

Γ(β + 1)|2Γ(β) + χT β|
‖x(s)‖

+
|χ|Tα+2β

βΓ(α + β)|2Γ(β) + χT β|
L2 +

2Tα+β

Γ(α + β + 1)
L2 := K.

Then K is a constant and ‖H(x)‖ ≤ K, which implies that H maps bounded sets

into bounded sets in C([0, T ]).

Step 3: H maps bounded sets into equicontinuous sets of C([0, T ]) (H is completely

continuous). Let t1, t2 ∈ [0, T ], with t1 < t2, and x ∈ Bd. Then we have

|(Hx)(t2)− (Hx)(t1)| ≤ |χ|
Γ(β)

∫ t1

0

∣∣(t2 − s)β−1 − (t1 − s)β−1
∣∣ |x(s)|ds

+
|χ|

Γ(β)

∫ t2

t1

|(t2 − s)β−1 − (s− t1)β−1||x(s)|ds

+
|χ|

Γ(β)

∫ T

t2

∣∣(s− t2)β−1 − (s− t1)β−1
∣∣ |x(s)|ds

+
1

Γ(α + β)

∫ t1

0

∣∣(t2 − s)α+β−1 − (t1 − s)α+β−1
∣∣ |f(s, x(s))|ds

+
1

Γ(α + β)

∫ t2

t1

∣∣(t2 − s)α+β−1 − (s− t1)α+β−1
∣∣ |f(s, x(s))|ds

+
1

Γ(α + β)

∫ T

t2

∣∣(s− t2)α+β−1 − (s− t1)α+β−1
∣∣ f(s, x(s))|ds

+
χ2T

(
|(T − t2)β − (T − t1)β|+ |tβ2 − t

β
1 |
)

βΓ(β − 1)|2Γ(β) + χT β|

∫ T

0

(T − s)β−1|x(s)|ds

+
|χ|T

(
|(T − t2)β − (T − t1)β|+ |tβ2 − t

β
1 |
)

βΓ(α + β − 1)|2Γ(β) + χT β|

∫ T

0

(T − s)α+β−2|f(s, x(s))|ds
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≤ |χ|ρ
Γ(β + 1)

∣∣∣(t2 − t1)β + (tβ2 − t
β
1 )
∣∣∣+

|χ|ρ
Γ(β + 1)

∣∣(t2 − t1)β + (t2 − t1)β
∣∣

+
|χ|ρ

Γ(β + 1)

∣∣(t2 − t1)β − (t1 − t2)β
∣∣

+
L2

Γ(α + β + 1)

∣∣(t2 − t1)α+β + (t2 − t1)α+β
∣∣

+
L2

Γ(α + β + 1)

∣∣(t2 − t1)α+β − (t1−2)α+β
∣∣

+
L2

Γ(α + β + 1)

∣∣(T − t2)α+β − (T − t1)α+β − (t2 − t1)α+β
∣∣

+
χ2T β

∣∣∣(T − t1)β − (T − t2)β|+ (tβ2 − t
β
1 )
∣∣∣

Γ(β + 1)|2Γ(β) + χT β|

+
|χ|Tα+β

∣∣∣(T − t2)β − (T − t1)β + (tβ2 − t
β
1 )
∣∣∣

βΓ(α + β)|2Γ(β) + χT β|

As t2 − t1 → 0, the right-hind side of the above inequality tends to zeros indepen-

dently of x ∈ Bd. That means H is equicontinuous and by Arzela-Ascoli theorem

the operator H : C([0, T ])→ C([0, T ]) is completely continuous.

Step 4: Finally, we consider the set V defined by:

V = {x ∈ C([0, T ])/x = µHx, 0 < µ < 1} ,

and show that V is bounded.

For x ∈ V and t ∈ [0, T ], we have

|x(t)| ≤
(

2|χ|T β

Γ(β + 1)
+

χ2T 2β

Γ(β + 1)|2Γ(β) + χT β|

)
‖x(s)‖

+
|χ|Tα+2β

βΓ(α + β)|2Γ(β) + χT β|
L2 +

2Tα+β

Γ(α + β + 1)
L2

≤
(

2|χ|T β

Γ(β + 1)
+

χ2T 2β

Γ(β + 1)|2Γ(β) + χT β|

)
d

+

(
|χ|Tα+2β

βΓ(α + β)|2Γ(β) + χT β|
+

2Tα+β

Γ(α + β + 1)

)
L2.

Consequently

‖x(t)‖ ≤ (k1d+ k2L2) = G.

Then

‖x‖ ≤ G.
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Therefore, V is bounded. Hence, by theorem (54), the boundary value problem (3.1)

has at least one solution on [0, T ].

3.2.3 Existence result via Krasnoselskii’s fixed point theo-

rem

Theorem 55. Let f : [0, T ] × R → R be a continuous function, and suppose that

condition (H1) holds.

In addition, we assume that the function f satisfies the assumptions:

(H3) There exists a nonnegative function Ω ∈ C([0, T ],R+) such that

|f(t, x(t))| ≤ Ω(t) for any (t, x) ∈ [0, T ]× R.

(H4) L1k2 < 1, where k2 is defined by (3.6).

Then the boundary value problem (3.1) has a least one solution in [0, T ].

Proof. We first define two new operators H1 and H2 by:

(H1x)(t) =
−χ

Γ(β)

∫ t

0

(t− s)β−1x(s)ds− χ

Γ(β)

∫ T

t

(s− t)β−1x(s)ds

+
χ2T (tβ − (T − t)β)

βΓ(β − 1)(2Γ(β) + χT β)

∫ T

0

(T − s)β−2x(s)ds, (3.12)

(H2x)(t) = − χT (tβ − (T − t)β)

βΓ(α + β − 1)(2Γ(β) + χT β)

∫ T

0

(T − s)α+β−2f(s, x(s))ds

+
1

Γ(α + β)

∫ t

0

(t− s)α+β−1f(s, x(s))ds

+
1

Γ(α + β)

∫ T

t

(s− t)α+β−1f(s, x(s))ds, t ∈ [0, T ]. (3.13)

We consider a closed, bounded, convex and nonempty subset of Banach space defined

by C([0, T ]) as Bρ = {x ∈ C([0, T ]), ‖x‖ ≤ ρ},with supt∈[0,T ]|Ω(t)| = ‖Ω‖. We take

ρ ≥ k2‖Ω‖
(1− k1)

,

where k1 < 1 and k1, k2 are given by (3.5) and (3.6) respectively.
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Now, we show that H1x+H2y ∈ Bρ, indeed for any x, y ∈ Bρ, we have

|H1x(t) +H2y(t)| ≤ |χ|
Γ(β)

∫ t

0

(t− s)β−1|x(s)|ds+
|χ|

Γ(β)

∫ T

t

(s− t)β−1|x(s)|ds

+
χ2T (tβ − (T − t)β)

βΓ(β − 1)(2Γ(β) + χT β)

∫ T

0

(T − s)β−2|x(s)|ds

+
χT (tβ − (T − t)β)

βΓ(α + β − 1)(2Γ(β) + χT β)

∫ T

0

(T − s)α+β−2|f(s, y(s))|ds

+
1

Γ(α + β)

∫ t

0

(t− s)α+β−1|f(s, y(s))|ds

+
1

Γ(α + β)

∫ T

t

(s− t)α+β−1|f(s, y(s))|ds

≤
(

2|χ|T β

Γ(β + 1)
+

χ2T 2β

Γ(β + 1)|2Γ(β) + χT β|

)
‖x(s)‖

+

(
|χ|Tα+2β

βΓ(α + β)|2Γ(β) + χT β|
+

2Tα+β

Γ(α + β + 1)

)
‖Ω‖

= k1ρ+ k2‖Ω‖ ≤ ρ.

which implies that ‖H1x+H2y‖ ≤ ρ. This shows that H1x+H2y ∈ Bρ.

The next step is related to the compactness and continuity of the operator H1.

Continuity of f implies that the operator H1 is continuous, also H1 is uniformly

bounded on Bρ as

‖(H1x)(t)‖ ≤
(

2|χ|T β

Γ(β + 1)
+

χ2T 2β

Γ(β + 1)|2Γ(β) + χT β|

)
‖x(s)‖

≤
(

2|χ|T β

Γ(β + 1)
+

χ2T 2β

Γ(β + 1)|2Γ(β) + χT β|

)
ρ

= k1ρ.

Now we will prove the compactness of the operator H1.

For t1, t2 ∈ [0, T ], t1 < t2 we have

|(H1x)(t2)− (H1x)(t1)| ≤ |χ|
Γ(β)

∫ t1

0

|(t2 − s)β−1 − (t1 − s)β−1||x(s)|ds

+
|χ|

Γ(β)

∫ T

t2

|(s− t2)β−1 − (s− t1)β−1||x(s)|ds

+
|χ|

Γ(β)

∫ t2

t1

|(t2 − s)β−1 − (t1 − s)β−1||x(s)|ds
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+
χ2T

(
|(T − t2)β − (T − t1)β|+ |tβ2 − t

β
1 |
)

βΓ(β − 1)|2Γ(β) + χT β|

∫ T

0

(T − s)β−2|x(s)|ds

≤ |χ|
Γ(β + 1)

|(tβ2 − t
β
1 )− (t2 − t1)β|‖x(s)‖

+
|χ|

Γ(β + 1)
|(T − t2)β − (T − t1)β + (t2 − t1)β|‖x(s)‖

|χ|
Γ(β + 1)

|(t2 − t1)β − (t1 − t2)β|‖x(s)‖

+
χ2T

(
|(T − t1)β − (T − t2)β|+ (tβ2 − t

β
1 )
)
|

βΓ(β + 1)|2Γ(β) + χT β|
‖x(s)‖,

we see that the right-hand side of the above inequality tends to zero independently

of x ∈ Bρ, as t2 → t1. Thus H1 is equicontinuous, so H1 is relatively compact on

Bρ. Therefore, by the conclusion of the Arzela-Ascoli theorem, the operator H1 is

continuous and compact on Bρ.

Now, we prove that H2 is contraction mapping.

Let x, y ∈ C([0, T ]), and for each t ∈ [0, T ], we have

|H2x(t)−H2y(t)| ≤ |χ|T |tβ − (T − t)β|
βΓ(α + β − 1)(2Γ(β) + χT β)

∫ T

0

(T − s)α+β−2|f(s, x(s))− f(s, y(s))|ds

+
1

Γ(α + β)

∫ t

0

(t− s)α+β−1|f(s, x(s))− f(s, y(s))|ds

+
1

Γ(α + β)

∫ T

t

(s− t)α+β−1|f(s, x(s))− f(s, y(s))|ds

≤
(

|χ|Tα+2β

βΓ(α + β)|2Γ(β) + χT β|
+

2Tα+β

Γ(α + β + 1)

)
L1‖x− y‖

= k2L1‖x− y‖.

Thus all the assumptions of theorem (55) are satisfied. So the boundary value

problem (3.1) has at least one solution on [0, T ].
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3.3 Examples

Example 56. Consider the following nonlinear Langevin equation with Riesz-Caputo

fractional derivative:{
RC
0 D

3
2
T (RC0 D

1
3
T + 1

7
)x(t) = π|x(t)|

|x(t)|+5
cos2 t

(π+t2)
,0 < t < 1,

x(0) + x(T ) = 0 , x′(0) + x′(T ) = 0,
(3.14)

Here, α = 3
2
, β = 1

3
, χ = 1

7
, L1 = 1

5π
. Moreover,

f(t, x) =
π|x(t)|
|x(t)|+ 5

cos2 t

(π + t2)
.

Hence, we have

|f(t, x)− f(t, y)| ≤ 1

5π
‖x− y‖.

The condition (H1) is satisfied with L1 = 1
5π
, φ = 0, 4032. So φ1 < 1.

Then by using theorem (53) the boundary value problem (3.14) has a unique solution

on [0, 1].

Example 57. Consider the following nonlinear Langevin equation with Riesz-Caputo

fractional derivative:{
RC
0 D

11
6
T (RC0 D

1
5
T + 1

9
)x(t) = cos2 t+1

3
sin−1

(
|x|
|x|+1

)
,0 < t < 1

2
,

x(0) + x(T ) = 0 , x′(0) + x′(T ) = 0,
(3.15)

Here, α = 11
6
, β = 1

5
, χ = 1

9
, L1 = 2

3
, φ1 = 0, 3781. Also we have |f(t, x)| ≤ π

3
, with

L2 = π
3
. Clearly the hypothesis of theorem (54)is satisfied. Thus boundary value

problem (3.15)admits at least a solution on [0, 1
2
] .

Example 58. Consider the following nonlinear Langevin equation with Riesz-Caputo

fractional derivative:{
RC
0 D

9
5
T (RC0 D

1
2
T + 1

12
)x(t) = 1√

t2+121

(
|x|

(1+|x|)

)
+ et

2
,0 < t < 2,

x(0) + x(T ) = 0 , x′(0) + x′(T ) = 0,
(3.16)

Here, α = 9
5
, β = 1

2
, χ = 1

12
,

f(t, x) =
1√

t2 + 121

|x|
(1 + |x|)

+
et

2
.
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Moreover,

|f(t, x)| ≤ 1√
t2 + 121

+
et

2
.

Hence, we have

|f(t, x)− f(t, y)| ≤ 1

11
‖x− y‖,

with L1 = 1
11
, k2 = 0, 3584, L1k2 = 0, 0326. So L1k2 < 1.

Then by using theorem (55) the boundary value problem (3.16) has at least a solution

on [0, 2].
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Chapter 4
Katugampola fractional differential

equation with Erdélyi-Kober integral

boundary conditions

4.1 Introduction

This chapter investigates the following Katugampola fractional differential equation

with Erdélyi-Kober fractional integral boundary conditions:
Dρ,αu(t) + h(t, u(t)) = 0, 0 < t < T,

u(0) = 0,

u′(T ) = λIγ,δη u′(ξ), 0 < ξ < T,

(4.1)

where Dρ,α is the Katugampola derivative of order 1 < α < 2, ρ > 0 and h :

[0, T ]×R→ R is a continuous function, Iγ,δη denotes Erdélyi-Kober fractional integral

of order δ > 0, η > 0, λ, γ ∈ R. Some new existence and uniqueness results

are obtained using nonlinear’s contraction principle and Krasnoselskii’s and Leray-

Schauder’s fixed point theorems. Four examples are given in the last section to

illustrate the obtained results.

4.2 Existence of solutions

For the existence of solutions for the problem (4.1), we need the following auxiliary

lemma.

Lemma 59. [?] Let α, ρ > 0, if u ∈ C[0, T ], then we have the following properties.
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(i) The fractional differential equation Dρ,α
0+ u(t) = 0 admits a solution defined by:

u(t) = c0 + c1t
ρ + c2t

2ρ + ...+ cnt
(n−1)ρ,

where ci ∈ R, with i = 0, 1, 2, ..., n, n = [α] + 1.

(ii) Let α > 0, then

Iρ,αDρ,α
0+ u(t) = u(t) + c0 + c1t

ρ + c2t
2ρ + ...+ cnt

(n−1)ρ,

where ci ∈ R and n = [α] + 1.

Lemma 60. Let 1 < α < 2 and λ ∈ R. A function u ∈ C([0, T ],R) is a solution of

nonlinear Katugampola fractional integral equation

u(t) =
−T ρ−1tρ

A
Iρ,α−1g(T ) +

tρλ

A
Iγ,δη ξρ−1Iρ,α−1g(ξ)− Iρ,αg(t), (4.2)

if and only if u is a solution of the Katugampola fractional differential equation with

Erdélyi-Kober fractional integral conditions
Dρ,αu(t) + g(t) = 0, 0 < t < T,

u(0) = 0,

u′(T ) = λIγ,δη u′(ξ), 0 < ξ < T.

(4.3)

Proof. Applying Lemma (59) to equation (4.3), we obtain

u(t) = −c0 − c1t
ρ − Iρ,αg(t), (4.4)

with c0, c1 ∈ R. The condition u(0) = 0 implies that c0 = 0.

Thus

u′(t) = −ρc1t
ρ−1 − tρ−1Iρ,α−1g(t) (4.5)

Combining the Erdélyi-Kober fractional integral with (4.5), we get

λIγ,δη u′(ξ) = −ρc1λξ
ρ−1

Γ(γ + (ρ−1
η

) + 1)

Γ(γ + (ρ−1
η

) + δ + 1)
− λIγ,δη ξρ−1Iρ,α−1g(ξ).

u′(T ) = −ρc1T
ρ−1 − T ρ−1Iρ,α−1g(T ),

= −ρc1λξ
ρ−1

Γ(γ + (ρ−1
η

) + 1)

Γ(γ + (ρ−1
η

) + δ + 1)
− λIγ,δη ξρ−1Iρ,α−1g(ξ).

61



CHAPTER 4. KATUGAMPOLA FRACTIONAL DIFFERENTIAL EQUATION
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Solving the above equation for c1 and choosing

A = ρλξρ−1
Γ(γ + (ρ−1

η
) + 1)

Γ(γ + (ρ−1
η

) + δ + 1)
− ρT ρ−1,

we obtain

c1 =
T ρ−1

A
Iρ,α−1g(T )− λ

A
Iγ,δη ξρ−1Iρ,α−1g(ξ).

Substituting the constant c1 into (4.2), we find (4.2).

Also, we consider the notations:

φ =
ρ1−α

AΓ(α)
T ρ(α+1)−1 +

ρ1−α|λ|Γ(γ + (ρ−1
η

) + 1)

AΓ(α)Γ(γ + (ρ−1
η

) + δ + 1)
T ρ(α+1)−1 +

ρ−α

Γ(α + 1)
T ρα,

(4.6)

Ω1 =
ρ1−α

AΓ(α)
T ρα +

ρ1−α|λ|Γ(γ + (ρ−1
η

) + 1)

AΓ(α)Γ(γ + (ρ−1
η

) + δ + 1)
T ρ(α+1)−1. (4.7)

In the following section, we investigate existence and uniqueness results for the

boundary value problem (4.1).

4.2.1 Existence and Uniqueness Result via Banach’s Fixed

Point Theorem

We defined the operator H : C([0, T ]) → C([0, T ]) associated to the problem (4.1)

as

(Hu)(x) = −T
ρ−1tρ

A
Iρ,α−1h(s, u(s))(T )+

tρλ

A
Iγ,δη ξρ−1Iρ,α−1h(s, u(s))(ξ)−Iρ,αh(s, u(s))(t).

(4.8)

We use the following expressions:

Iρ,αh(r, u(r))(ξ) =
ρ1−α

Γ(α)

∫ ξ

0

(ξρ − rρ)α−1rρ−1h(r, u(r))dr,

Iγ,δη Iρ,αh(r, u(r))(ξ) =
ηξ−η(γ+δ)ρ1−α

Γ(α)Γ(δ)

∫ ξ

0

∫ r

0

rηγ+η−1(rρ − tρ)α−1tρ−1

(ξη − rη)1−δ h(t, u(t))dtdr,

where ξ ∈ [0, T ].

Theorem 61. Let h : [0, T ]→ R be a continuous function. Assume that:
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(H1) there exists a positive constant L such that

|h(t, u)− h(t, v)| ≤ L‖u− v‖,

for each t ∈ [0, T ] and u, v ∈ R.

(H2) Lφ < 1, where φ is defined by 4.6.

Then the boundary value problem (4.1) has a unique solution on [0, T ].

Proof. By using the operator H defined by the formula (4.8) and applying the

Banach contraction mapping principle, we will show that the operator H has a

unique fixed point.

For any u, v ∈ C([0, T ]) and for each t ∈ [0, T ], we have

|Hu(t)−Hv(t)| ≤ T 2ρ−1

A
Iρ,α−1|h(s, u(s))− h(s, v(s))|(T )

+
T ρ|λ|
A

Iγ,δη ξρ−1Iρ,α−1|h(s, u(s))− h(s, v(s))|(ξ)

+ Iρ,α|h(s, u(s))− h(s, v(s))|(t),

≤ L‖u− v‖T 2ρ−1

A
Iρ,α−1(1)(T )

+
L‖u− v‖T ρ|λ|

A
Iγ,δη ξρ−1Iρ,α−1(1)(ξ)

+ L‖u− v‖Iρ,α(1)(T ),

≤ L‖u− v‖

{
ρ1−α

AΓ(α)
T ρ(α+1)−1 +

ρ1−α|λ|Γ(γ + (ρα−1
η

) + 1)

AΓ(α)Γ(γ + (ρα−1
η

) + δ + 1)
T ρ(α+1)−1

+
ρ−α

Γ(α + 1)
T ρα
}
,

= Lφ‖u− v‖.

This implies that ‖Hu−Hv‖ ≤ Lφ‖u− v‖ because Lφ < 1.

The operator H : C([0, T ]) → C([0, T ]) is a contraction mapping, therefore, we

deduce by Banach’s contraction principle mapping, that the operator H has a fixed

point which is the unique solution of problem (4.1) on [0, T ].

4.2.2 Existence and Uniqueness Result via Boy-Wong Fixed

Point Theorem

Theorem 62. [12] Let h : [0, T ] × R → R be a continuous function such that the

following condition holds:
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(H3) |h(t, u)−h(t, v)| ≤ k(t) ‖u−v‖
B+‖u−v‖ , for t ∈ [0, T ], where k : [0, T ]→ R

+ is a given

function.

Then the problem (4.1) has a unique solution on [0, T ].

Proof. Let us define the continuous and nondecreasing function, ϕ : R+ → R
+ by{

ϕ(r) = Br
B+r

, ∀r > 0,

ϕ(0) = 0, ϕ(r) < r,

where B := T 2ρ−1

A
Iρ,α−1k(T ) + T ρ|λ|

A
Iγ,δη ξρ−1Iρ,α−1k(ξ) + Iρ,αk(T ).

For any u, v ∈ C([0, T ]) and for each t ∈ [0, T ], one has

|Hu(t)−Hv(t)| ≤ T 2ρ−1

A
Iρ,α−1|h(s, u(s))− h(s, v(s))|(T )

+
T ρ|λ|
A

Iγ,δη ξρ−1Iρ,α−1|h(s, u(s))− h(s, v(s))|(ξ)

+ Iρ,α|h(s, u(s))− h(s, v(s))|(t),

≤ T 2ρ−1

A
Iρ,α−1

(
k(s)

‖u− v‖
B + ‖u− v‖

)
(T )

+
T ρ|λ|
A

Iγ,δη ξρ−1Iρ,α−1

(
k(s)

‖u− v‖
B + ‖u− v‖

)
(ξ)

+ Iρ,α
(
k(s)

‖u− v‖
B + ‖u− v‖

)
(T ),

≤ ϕ(‖u− v‖)
B

{
T 2ρ−1

A
Iρ,α−1k(T ) +

T ρ|λ|
A

Iγ,δη ξρ−1Iρ,α−1k(ξ) + Jρ,αk(T )

}
.

= ϕ(‖u− v‖).

This implies that ‖Tu−Tv‖ ≤ ϕ(‖u− v‖). Therefore T is a nonlinear contractions.

Hence by Theorem(62) the operator T has a fixed point which is solution of the

problem (4.1), which completes the proof.

4.2.3 Existence Result via Krassnoselskii’s Fixed Point The-

orem

Theorem 63. Let h : [0, T ]×R→ R be a continuous function and suppose that the

condition (H1) holds and the function h satisfies the assumptions:

(H4) There exists a nonnegative function Θ ∈ (C[0, T ],R) such that |h(t, u(t))| ≤
Θ(t) for any (t, u) ∈ [0, T ]× R,
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(H5) LΩ1 < 1, where Ω1 is defined by (4.7).

Then the boundary value problem (4.1) has a least one solution in [0, T ].

Proof. We first define two new operators T1 and T2 as

(T1u)(t) = −T
ρ−1tρ

A
Iρ,α−1h(s, u(s))(T ), (4.9)

(T2u)(t) =
tρλ

A
Iγ,δη ξρ−1Iρ,α−1h(s, u(s))(ξ)− Iρ,αh(s, u(s))(t), t ∈ [0, T ]. (4.10)

Then we consider a closed, bounded, convex and nonempty subset of the Banach

space X as Bd = {u ∈ C([0, T ]), ‖u‖ ≤ d} with, ‖Θ‖φ ≤ d, where φ is defined by

(4.6).

Now for any u, v ∈ Bd, we have

|T1u(t) + T2v(t)| ≤ T 2ρ−1

A
Iρ,α−1|h(s, u(s))|(T )

+
T ρ|λ|
A

Iγ,δη ξρ−1Iρ,α−1|h(s, u(s))|(ξ)

+ Iρ,α|h(s, u(s))|(T )

≤ T 2ρ−1‖Θ‖
A

Iρ,α−1(1)(T )

+
T ρ|λ|‖Θ‖

A
Iγ,δη ξρ−1Iρ,α−1(1)(ξ)

+ ‖Θ‖Iρ,α(1)(T )

≤ ‖Θ‖

{
ρ1−α

AΓ(α)
T ρ(α+1)−1 +

ρ1−α|λ|Γ(γ + (ρα−1
η

) + 1)

AΓ(α)Γ(γ + (ρα−1
η

) + δ + 1)
T ρ(α+1)−1

+
ρ−α

Γ(α + 1)
T ρα
}

= ‖Θ‖φ ≤ d.

Therefore, it’s clear that ‖T1u(t) + T2v(t)‖ ≤ d. Hence T1u(t) + T2v(t) ∈ Bd.

The next step concerns the compactness and continuity of the operator T1. Conti-

nuity of h implies that the operator T1 is continuous and uniformly bounded on Bd

as

‖T1‖ ≤ ‖Θ‖
ρ1−αT ρ(α+1)−1

Γ(α)
.

Now we prove the compactness of the operator T1. For t1, t2 ∈ [0, T ], t1 < t2, we
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have

|T1u(t2)− T1u(t1)| ≤ ‖Θ‖ρ
1−αT ρα−1

Γ(α)
|tα2 − tα1 |,

which is independent of u and tends to zero when t2 − t1 → 0. Thus T1 is equicon-

tinuous. By Arzela-Ascoli theorem, T1 is compact on Bd.

Now, we prove that T2 is a contraction mapping.

For u, v ∈ C([0, T ]) and for each t ∈ [0, T ], we have

|T2u(t)− T2v(t)| ≤ Iρ,α−1|h(s, u(s))− h(s, v(s))|(T )

+
T ρ|λ|
A

Iγ,δη ξρ−1Iρ,α−1|h(s, u(s))− h(s, v(s))|(ξ)

≤ L‖u− v‖Iρ,α−1(1)(T )

+
T ρ|λ| ≤ L‖u− v‖

A
Iγ,δη ξρ−1Iρ,α−1(1)(ξ)

≤ ρ−αL‖u− v‖
AΓ(α + 1)

T ρα + L‖u− v‖
ρ1−α|λ|Γ(γ + (ρα−1

η
) + 1)

AΓ(α)Γ(γ + (ρα−1
η

) + δ + 1)
T ρ(α+1)−1,

= L‖u− v‖

{
ρ−α

AΓ(α)
T ρα +

ρ1−α|λ|Γ(γ + (ρα−1
η

) + 1)

AΓ(α)Γ(γ + (ρα−1
η

) + δ + 1)
T ρ(α+1)−1

}
,

which implies that ‖T2u(t)−T2v(t)‖ ≤ LΩ1‖u−v‖. As LΩ1‖u−v‖ < 1, the operator

T2 is a contraction. Thus all the assumption of Theorem (40) are satisfied. So this

implies that the problem (4.1) has at least one solution on [0, T ].

4.2.4 Existence Result via Leray-Schauder’s Nonlinear Al-

ternative

Theorem 64. Let f : [0, T ]× R→ R be continuous function. Assume that

(H6) There exist a nonnegative function z ∈ C([0, T ],R) and a continuous nonde-

creasing function Θ : [0,∞)→ [0,∞) such that |f(t, u)| ≤ z(t)Θ(‖u‖), for all

(t, u) ∈ [0, T ]× R,

(H7) There exists a constant N > 0 such that

N

φ‖z‖Θ(N)
> 1,

where φ is defined as in (4.6). Then the problem (4.1) has a least one solution

on [0, T ].
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Proof. LetBR = {u ∈ C([0, T ])/‖u‖ ≤ R} be a closed bounded subset in C([0, T ],R).

Let H be the operator defined by (4.8). As a first step, we show that the operator

H maps bounded sets into bounded sets in C([0, T ],R). Then for t ∈ [0, T ], we have

|Hu(t)| ≤ T 2ρ−1

A
Iρ,α−1|h(s, u(s))|(T )

+
T ρ|λ|
A

Iγ,δη ξρ−1Iρ,α−1|h(s, u(s))|(ξ)

+ Iρ,α|h(s, u(s))|(T ),

≤ T ρα−1Θ(‖u‖)
A

Iρ,α−1z(s)(T )

+
T ρ|λ|Θ(‖u‖)

A
Iγ,δη ξρ−1Iρ,α−1z(s)(ξ)

+ Θ(‖u‖)Iρ,αz(s)(T ),

≤ T 2ρ−1Θ(‖u‖)
A

Iρ,α−1‖z‖(T )

+
T ρ|λ|Θ(‖u‖)

A
Iγ,δη ξρ−1Iρ,α−1‖z‖(ξ)

+ Θ(‖u‖)Iρ,α‖z‖(T ),

≤ Θ(‖u‖)‖z‖

{
ρ1−α

AΓ(α)
T ρ(α+1)−1 +

ρ1−α|λ|Γ(γ + (ρ−1
η

) + 1)

AΓ(α)Γ(γ + (ρ−1
η

) + δ + 1)
T ρ(α+1)−1 +

ρ−α

Γ(α + 1)
T ρα

}
,

= φΘ(‖u‖)‖z‖.

Consequently, ‖Hu(t)‖ ≤ φΘ(‖u‖)‖z‖. Next, we show that the map H : C([0, T ])→
C([0, T ]) is completely continuous. Therefore, we will prove that the operator H

maps bounded sets into equicontinuous sets of C([0, T ],R). Indeed let t1, t2 ∈ [0, T ],

with t1 < t2 and u ∈ BR, then we have

|Hu(t2)−Hu(t1)| ≤ T ρ−1|tρ1 − t
ρ
2|

A
Iρ,α−1|h(s, u(s))|(T ) + |Iρ,αh(s, u(s))(t2)− Iρ,αh(s, u(s))(t1)|

+
|λ||tρ1 − t

ρ
2|

A
Iγ,δη ξρ−1Iρ,α−1|h(s, u(s))|(ξ)

≤ T ρ−1|tρ1 − t
ρ
2|

A
Θ(‖u‖)z(s)Iρ,α−1(1)(T ) + Θ(‖u‖)z(s)|Iρ,α(1)(t2)− Iρ,α(1)(t1)|

+
|λ||tρ1 − t

ρ
2|

A
Θ(‖u‖)z(s)Iγ,δη ξρ−1Iρ,α−1(1)(ξ)
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≤ |t
ρ
1 − t

ρ
2|

A
Θ(‖u‖)‖z‖ρ

1−α

Γ(α)
T ρα−1 + Θ(‖u‖)‖z‖ ρ−α

Γ(α + 1)
|(tρ(α−1)

2 − tρ(α−1)
1 )|

+
|λ||tρ1 − t

ρ
2|

A
Θ(‖u‖)‖z‖

ρ1−αΓ(γ + (ρα−1
η

) + 1)

Γ(α)Γ(γ + (ρα−1
η

) + δ + 1)
T ρα−1,

≤ |t
ρ
1 − t

ρ
2|

A
Θ(R)‖z‖ρ

1−α

Γ(α)
T ρα−1 + Θ(R)‖z‖ ρ

−α

Γ(α)
|(tρ(α−1)

2 − tρ(α−1)
1 )|

+
|λ||tρ1 − t

ρ
2|

A
Θ(R)‖z‖

ρ1−αΓ(γ + (ρα−1
η

) + 1)

Γ(α)Γ(γ + (ρα−1
η

) + δ + 1)
T ρα−1.

It is clear that the right-hand side of above inequality tends to zero independently

of u ∈ BR as t2 − t1 → 0. Therefore by the Ascoli-Arzela theorem, the operator

H : C([0, T ])→ C([0, T ]) is completely continuous.

In the last step we show that the operator H has a fixed point. Let u be a solution

of H(u) = u, then for each t ∈ [0, T ],

‖Hu‖ = ‖u‖ ≤ φ‖z‖Θ(‖u‖),

which implies that
‖u‖

φ‖z‖Θ(‖u‖)
≤ 1.

From (H7), there exists N > 0 such that ‖u‖ 6= N . Let us set G = {u ∈ C([0, T ]) :

‖u| < N}.
Then the operator H : G → C([0, T ]) is continuous and completely continuous.

Consequently, there doesn’t exist any u ∈ ∂G such that u = µHu for some µ ∈ (0, 1).

Assume that there exists u ∈ ∂G such that u = µHu for some µ ∈ (0, 1). Then

‖u‖ = ‖µHu‖ ≤ ‖Hu‖ ≤ φ‖z‖Θ(‖u‖),

‖u‖
φ‖z‖Θ(‖u‖)

≤ 1.

This contradicts ‖u‖
φ‖z‖Θ(‖u‖) > 1. Consequently, by nonlinear alternative Leray-Schauder

principal, we conclude, that H has a fixed point u ∈ G, which is a solution of problem

(4.1), this completes the proof.
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4.3 Examples

Example 65. Consider the following nonlinear Katugampola fractional differential

equation with Erdélyi-Kober fractional integral conditions:
D1, 3

2u(t) =
(
|u|
|u|+1

)
e− sin t

π+2
+ 1

2
, t ∈ [0, 1],

u(0) = 0 ,

u′(1) = 3
5
I

3
4
,
√
2

2
1
5

u′(1
2
).

(4.11)

Here, α = 3
2
, ρ = 1, γ = 3

4
, η = 1

5
, δ =

√
2

2
, ξ = 1

2
, λ = 3

5
.

f(t, u) =

(
|u|
|u|+ 1

)
e− sin t

π + 2
+

1

2
.

Hence, we have

|f(t, u)− f(t, v)| ≤ 1

π + 2
‖u− v‖.

Assumption (H1) is satisfied with L = 1
π+2

. Using the given value, we get φ = 3, 3839.

Therefore Lφ = 0, 6581 < 1, which implies that assumption (H2) holds. Using

theorem (61), we deduce that the boundary value problem (4.11) has a unique solution

on [0, 1].

Example 66. Consider the following nonlinear Katugampola fractional differential

equation with Erdélyi-Kober fractional integral conditions:
D1, 7

4u(t) = t2

π
√
t2+9

(
|u|
|u|+5

)
+ et+t

2
, t ∈ [0, 1

2
],

u(0) = 0 ,

u′(1
2
) = 8

3
I

√
5
3
, 1√

6
12
7

u′( 3
11

) ,

(4.12)

Here, α = 7
4
, ρ = 1, γ =

√
5

3
, η = 12

7
, δ = 1√

6
, ξ = 3

11
, λ = 8

3
, B = 0, 0245 and

f(t, u) =
t2

π
√
t2 + 9

(
|u|
|u|+ 5

)
+
et + t

2
.

Choosing k(t) = t2

3π
, we get

|f(t, u)− f(t, v)| ≤ t2

3π

(
|u− v|

0, 0751 + |u− v|

)
.

Clearly, all the assumptions of Theorem (62) are satisfied, witch implies that the
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problem (4.12) has at least one solution on [0, 1
2
].

Example 67. Consider the following nonlinear Katugampola fractional differential

equation with Erdélyi-Kober fractional integral conditions:
D2, 9

5u(t) = sin
(
|u|
|u|+1

)
e−2t

3(π+7)
+ t2+1

2
, t ∈ [0, 2]

u(0) = 0,

u′(2) = 3
8
I

√
2

2
, 1
4

7
3

u′(3
2
).

(4.13)

Here, α = 9
5
, ρ = 2, γ =

√
2

2
, η = 7

3
, δ = 1

4
, ξ = 3

2
, λ = 3

8
, and

|f(t, u)− f(t, v)| ≤ 1

3(π + 7)
|u− v|,

|f(t, u)| ≤ e−2t

3(π + 7)
+
t2 + 1

2
,

with L = 1
3(π+7)

, φ = 8, 4101, Lφ = 0, 2764, Ω1 = 3, 8622, LΩ1 = 0, 1269 < 1.

Again, the hypothesis of Theorem (63) are satisfied and, as a consequence, the

problem (4.13) has at least one solution on [0, 2].

Example 68. Consider the following nonlinear Katugampola fractional differential

equation with Erdélyi-Kober fractional integral conditions :
D3, 11

6 u(t) =
(
u2(t)
|u|+1

+ 1
)(√

t+1
8

)
, t ∈ [0, 9

16
],

u(0) = 0,

u′( 9
16

) = 5
11
I

4
13
, 1
5

1
9

u′(3
7
).

(4.14)

Here α = 11
6

, ρ = 3 , γ = 4
13

, η = 1
9

, δ = 1
5
, ξ = 3

8
,λ = 5

11
.

Moreover

|f(t, u)| =
∣∣∣∣( u2(t)

|u|+ 1
+ 1

)(√
t+ 1

8

)∣∣∣∣ ≤ √t+ 1

8
(|u|+ 1).

We choose z(t) =
√
t+1
8

and Θ(‖u‖) = ‖u‖ + 1. We have ‖z‖ = 7
32

and φ =

0, 0115. Now, we need to show that there exists N > 0 such that

N

Θ(N)‖z‖φ
> 1,

and such N > 0 exists if 1 − ‖z‖φ > 0. A straightforward calculus give ‖z‖φ =

0, 0025 < 1, assumption H7 is satisfied. Hence using Theorem (64), the boundary
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value problem (4.14) has at least one solution on [0, 9
16

].

4.4 Conclusion

In this chapter with the help of standard fixed point theorems type, we obtained

conditions for existence of at least one solution of a Katugampola fractional differ-

ential equation with Erdélyi-Kober fractional integral boundary conditions. In the

future it seems interesting to obtain sufficient conditions to ensure Ulam-Hyers and

Ulam-Hyers-Rassias stabilities.
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Chapter 5
Existence results for generalized Caputo

hybrid fractional integro-differential

equations

5.1 Introduction

The class of fractional differential equations includes an unknown derivative and a

nonlinear hybrid function. The importance of hybrid fractional differential equations

is that they involve different dynamical systems in mathematics and applied physics,

for example, in the deflection of a curved beam having a constant or varying cross

section, a three-layer beam, electromagnetic waves or gravity driven flows [72, 77].

In this chapter,we prove the existence of solutions for hybrid fractional integro-

differential equations involving ψ-Caputo derivative of the form
cDν;ψ

a+

[
z(τ)−

∑m
k=1 I

σk;ψ

a+
Fk(τ,z(τ))

G(τ,z(τ))

]
= H(τ, z(τ)), τ ∈ J = [a, b],

z(a) = 0,

(5.1)

where cDν;ψ
a+ is the ψ-Caputo fractional derivative of order ν ∈ (0, 1], Iθ;ψa+ is the

ψ-Riemann-Liouville fractional integral of order θ > 0, θ ∈ {σ1, σ2, . . . , σm}, σk >
0, k = 1, 2, . . . ,m. G ∈ C(J× R,R \ {0}) and Fk,H ∈ C(J× R,R),(k = 1, 2, . . . ,m).

We use an hybrid fixed point theorem for a sum of three operators due to Dhage for

proving the main results. An example is provided to illustrate main results.

We denote by C([a, b],R) the Banach space of all continuous functions z from [a, b]
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into R with the supremum norm

‖z‖C = sup
τ∈[a,b]

|z(τ)|,

and the multiplication in C(J) by

(zy)(τ) = z(τ)y(τ).

Clearly, C(J) is a Banach algebra with respect to the supremum norm and multi-

plication in it.

5.2 Existence Theorem

In this section,we establish an existence result for the problem (5.1). Firstly, we

need the following lemma.

Lemma 69. Let ν ∈ (0, 1] be fixed and functions Fi, (i = 1, · · · , n),G,H satisfy

problem (5.1). Then the function z ∈ C([a, b],R) is a solution of the hybrid fractional

integro-differential problem (5.1) if and only if it satisfies the integral equation

z(τ) = G(τ, z(τ))
[
Mψ + Iν;ψ

a+ H(τ, z(τ))
]

+
m∑
k=1

Iσk;ψ
a+ Fk(τ, z(τ)), τ ∈ [a, b], (5.2)

where

Mψ =
−
∑m

k=1 I
σk;ψ
a+ Fk(a, 0)

G(a, 0)
(5.3)

For the proof of Lemma 69, it is useful to refer to [72, 77].

Theorem 70. Assume that:

(H1) Let the functions G : J×R→ R \ {0} and, Fk,H : J×R→ R, k = 0, 1, 2, ...,m

are continuous

(H2) There exists two positive functions LFk ,LG, k = 0, 1, 2, ...,m with bounds ‖LFk‖
and ‖LG‖, k = 0, 1, 2, ...,m, respectively, such that

|Fk(τ, z(τ))− Fk(τ, z(τ))| ≤ LFk(τ)|z − z|, k = 0, 1, 2, ...,m, (5.4)
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and

|G(τ, z(τ))− G(τ, z(τ))| ≤ LG(τ)|z − z|, (5.5)

for all (τ, z, z) ∈ J× R× R.

(H3) There exist a function p ∈ C(J,R+) and a continuous nondecreasing function

Ω : [0,∞)→ (0,∞) such that

|H(τ, z(τ))| ≤ p(τ)Ω(|z|), (5.6)

for all τ ∈ J and z ∈ R.

(H4) There exists a number r > 0 such that

r ≥
G
∗Λ + `σkψ F

∗
k

1− ‖LG‖Λ− `σkψ ‖LFk‖
, (5.7)

and

‖LG‖Λ + lσkψ F
∗
k < 1, (5.8)

where F∗k = supτ∈J|Fk(τ, 0)|, and G
∗ = supτ∈J|G(τ, 0)|, k = 0, 1, 2, ...,m, and

Λ = |Mψ|+ Ω(r)‖p‖lνψ, (5.9)

Then hybrid fractional integro-differential problem (5.1) has a least one solution

defined on J.

Proof. In order to use Dhage’s fixed-point theorem to prove our main result, we

define a subset Sr of C(J) by

Sr = {z ∈ C(J) : ‖z‖C ≤ r} ,

with r is a constant defined by hypothesis H4.

Notice that Sr is closed, convex and bounded subset of C(J). Define three operators

A,C : C(J) −→ C(J) and B : Sr −→ C(J) byAz(τ) = G(τ, z(τ)),

Bz(τ) = Mψ + Iν;ψ
a+ H(τ, z(τ)),

τ ∈ J,
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and

Cz(τ) =
m∑
k=1

Iσk;ψ
a+ Fk(τ, z(τ)), τ ∈ J.

Then (5.2) in operator form becomes

z(τ) = Az(τ)Bz(τ) + Cz(τ), τ ∈ J.

We shall prove that the operators A,B and C satisfy the conditions of Theorem 42.

For the sake of clarity, we split the proof into a sequence of steps.

Step 1: First, we show that A and C are Lipschitzian on C(J). Let z, z̄ ∈ C(J).

then by (H2), for τ ∈ [a, b], we have

|Az(τ)− Az̄(τ)| = |G(τ, z(τ))− G(τ, z̄(τ))|
≤ LG(τ)‖z(τ)− z̄(τ)‖C.

Taking supremum over τ ∈ [a, b], we obtain

‖Az − Az̄‖C ≤ ‖LG‖‖z(τ)− z̄(τ)‖C,

for all z, z̄ ∈ C(J). Therefore, A is a Lipschitzian on C(J) with Lipschitz constant

LG. Also, for any z, z̄ ∈ C(J), we have

|Cz(τ)− Cz̄(τ)| ≤
m∑
k=1

Iσk;ψ
a+ |Fk(τ, z(τ))− Fk(τ, z̄(τ))|

≤
m∑
k=1

Iσk;ψ
a+ LFk(τ)‖z(τ)− z̄(τ)‖C

≤
m∑
k=1

(ψ(b)− ψ(a))σk

Γ(σk + 1)
‖LFk‖‖z(τ)− z̄(τ)‖C.

Hence, we have

‖Cz − Cz̄‖C ≤ `σkψ ‖LFk‖‖z(τ)− z̄(τ)‖C.

Which means that C is a Lipschitzian on C(J) with Lipschitz constant `σkψ ‖LFk‖.
Step 2: We show that B is completely continuous on Sr. The continuity of B follows

by the continuity of H. Now, it is sufficient to show that B is uniformly bounded

and equicontinuous on Sr. On the other hand, Keeping in mind the definition of the
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operator B on [a, b] together with assumption (H3). For any z ∈ Sr we can get

|Bz(τ)| ≤|Mψ|+
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
|H(s, z(s)|ds

≤|Mψ|
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
Ω(r)p(s)ds

≤|Mψ|+ Ω(r)‖p‖
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
ds

≤|Mψ|+
(ψ(b)− ψ(a))ν

Γ(ν + 1)
Ω(r)‖p‖

=|Mψ|+ Ω(r)‖p‖`νψ.

Hence

‖Bz‖C ≤ |Mψ|+ Ω(r)‖p‖`νψ.

Thus ‖Bz‖ ≤ Λ with Λ given in (5.9), for all z ∈ Sr. This shows that B is uniformly

bounded on Sr.

Now, we will show that B(Sr) is an equicontinuous set in C(J).

Let τ1, τ2 ∈ J with τ1 < τ2 . Then for any z ∈ Sr, by (5.6) we get

|Bz(τ2)− Bz(τ1)| ≤
∣∣∣∣∫ τ2

a

ψ(s)(ψ(τ2)− ψ(s))ν−1

Γ(ν)
H(τ, z(τ))ds

−
∫ τ1

a

ψ(s)(ψ(τ1)− ψ(s))ν−1

Γ(ν)
H(τ, z(τ))ds

∣∣∣∣
≤ Ω(r)‖p‖

Γ(ν)

∫ τ1

a

ψ′(s)
[
(ψ(τ1)− ψ(s))ν−1 − (ψ(τ2)− ψ(s))ν−1

]
ds

+
Ω(r)‖p‖

Γ(ν)

∫ τ2

τ1

ψ′(s) (ψ(τ2)− ψ(s))ν−1 ds. (3.9)

It is clear that the right-hand side of (3.9) is independent of z. Therefore, as τ2 → τ1,

inequality (3.9) tends zeros. As consequence of the Arzela-Ascoli theorem, B is a

completely continuous operator on Sr.

Step 3: The hypothesis (c) of Theorem 42 is satisfied.

Let z ∈ C(J) and y ∈ Sr be arbitrary elements such that z = AzBy + Cz.
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Then we have

|z(τ)| ≤ |Az(τ)| |By(τ)|+ |Cz(τ)|

≤ |G(τ, z(τ))|
{
Mψ + Iν;ψ

a+ |H(τ, y(τ))|
}

+
m∑
k=1

Iσk;ψ
a+ |Fk(τ, z(τ))|

≤
(
|G(τ, z(τ))− G(τ, 0)|+ |G(τ, 0)|

){
Mψ + Iν;ψ

a+ |H(τ, y(τ))|
}

+
m∑
k=1

Iσk;ψ
a+ |

(
|Fk(τ, z(τ))− Fk(τ, 0)|+ |Fk(τ, 0)|

)
≤
(
‖LG‖‖z‖C + G

∗)[|Mψ|+ Ω(r)‖p‖`νψ
]

+ `σkψ
(
‖LFk‖‖z‖C + F

∗
k

)
.

Thus,

|z(τ)| ≤
(
‖LG‖‖z‖C + G

∗)Λ + `σkψ
(
‖LFk‖‖z‖C + F

∗
k

)
.

Taking the supremum over τ ,

‖z‖ ≤
G
∗Λ + `σkψ F

∗
k

1− ‖LG‖Λ− `σkψ ‖LFk‖
≤ r.

Step 4: Finally we show that δM + ξ < 1, that is, (d) of Theorem 42 holds.

Since

M = ‖B(S)‖ = sup
z∈S

{
sup
τ∈J
|Bz(t)|

}
≤ Λ,

and so

‖LG‖M + `σkψ ‖LFk‖ ≤ ‖LG‖Λ + `σkψ ‖LFk‖ < 1,

with δ = ‖LG‖, ξ = `σkψ ‖LFk‖. Thus all the conditions of Theorem 42 are satisfied

and hence the operator equation z = AzBz + Cz has a solution in Sr. As a result,

problem (5.1) has a solution on J.

5.3 Application

In this section, we present an example to show the applicability of the main result.

Example 71. Consider the following hybrid fractional integro-differential equation:
c
D

1
2

;ψ

a+

[
z(τ)−

∑m
k=1 I

σk;ψ

a+
Fk(τ,z(τ))

G(τ,z(τ))

]
= 1√

25+t2

(
|z|

(4|z|+1)
+ z2

|z|+1
+ 1

4

)
, τ ∈ J := [0, 1],

z(a) = 0,

(5.10)
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We take

ν =
1

2
, m = 3, σ1 =

1

2
, σ2 =

3

2
, σ3 =

5

2
,

3∑
k=1

I
σk;ψ
a+ Fk(τ, z(τ)) = I

1
2

;ψ

a+
τ

10

(
z(τ) + e−τ

)
+ I

3
2

;ψ

a+
τ cos τ

12(1 + eτ )

(
|z(τ)|

1 + |z(τ)|
+

τ

τ + 1

)
+ I

5
2

;ψ

a+
3 sinπτ

4 + τ

(
|z(τ)|

5 + |z(τ)|
+ cos τ

)
,

ψ(τ, z(τ)) =
τ

2
(τ + 1), τ ∈ [0, 1],

G(τ, z(τ)) =
6
√
π sin2(πτ)

(τ + 5)

z(τ)

1 + z(τ)
+

1

2
,

H(τ, z(τ))) =
1√

36 + t2

(
|z|

(4|z|+ 1)
+

z2

|z|+ 1
+

1

4

)
.

We can show that

|F1(τ, z(τ))− F1(τ, z(τ))| ≤ τ

10
|z − z|,

|F2(τ, z(τ))− F2(τ, z(τ))| ≤ τ

12(1 + eτ )
|z − z|,

|F3(τ, z(τ))− F3(τ, z(τ))| ≤ 3

20 + 5τ
|z − z|,

|G(τ, z(τ))G(τ, z(τ))−| ≤ 6
√
π

(τ + 5)
|z − z|,

|H(τ, z(τ)))− H(τ, z(τ)))| = 1√
36 + t2

(|z|+ 1

2
),

where

Ω(|z|) = |z|+ 1, p(τ) =
1√

36 + t2
.

Hence we have

LG(τ) =
6
√
π

(τ + 5)
, F1 =

τ

10
, F2 =

τ

12(1 + eτ )
, F3 =

3

20 + τ
.

Then
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‖LG‖ =
6
√
π

5
, ‖LF1‖ =

1

10
, ‖LF2‖ =

1

12(1 + e)
, ‖LF3‖ =

3

20
, ‖p‖ =

1

6
, lνψ =

2√
π
,

lσkψ ‖LFk‖ =
81(1 + e) + 25

450
√
π(1 + e)

, lσkψ F
∗
k =

58

75
√
πe2

, Mψ =
234(1 + e) + 100

225
√
π(1 + e)

,

and

F
∗
k = sup

z∈J
|Fk(τ, 0)| = 1

5e2
, G

∗ = sup
z∈J
|G(τ, 0)| = 1

2
, k = 1, 2, 3.

By using Matlab program, it follows by (5.7) and (5.8) that the constant r satisfies

the inequality 0.7411 < r < 0.9970. As all the assumptions of Theorem (70) are

satisfied then the problem (5.10) has at least one solution on J.
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Conclusion and Perspective

The main goals of this thesis is to investigate the existence and uniqueness of so-

lutions to certain boundary value problems for of a class of fractional differential

equations is established by using some fixed point theorems, Banach contraction

principal theorem, Krasnoselskii’s, Scheafer, D’hage, Leray-Shouder fixed point the-

orem, stability Ulam-Hayers

In the future researches, a first we intend to study some boundary problems,

the application of certain other methods by combining the technique of measure of

noncompactness, topological degree, monotone iterative technique.

Concerning the second research is concerned dynamics fractional systems, we

propose the models mathematical biology such as: Endemic model (covid-19), and

models in mathematical ecology, by combin numerical methods of resolution, Ho-

motopy perturbation methods, ADM method.

Concerning the third research, is concerned of application the fractional calculus

in machine learning, such as the dynamics of Hopfield-type natural networks.
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functions (Russian). Dokl. Akad. Nad SSSR, 254, No. 5, 1085- 1087, 1980.

[97] K. Skornik, On tempered integrals and derivatives of non-negative orders. An-

nales Polonici Mathematici, 1(40), pages 47-57, 1981.

[98] I. N. Sneddon, The use in mathematical physics of Erdélyi-Kober operators
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