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Résumé,Abstract

Résumé

Dans ce travail, nous étudions l'existence d’une solution faible d’une
équation différentielle d’ordre fractionnaire avec conditions non locales et
un retard infini impliquant une condition de Lipschitz sur le terme ;.. Nous
nous appuierons sur un théoreme de points fixes en tout que la somme de
deux opérateurs I’'un une contraction I’auter completement continu du a Bur-
ton et Krik. Mots clés :(Dérivé fractionnaire; impulsif; Dérivé frac-
tionnaire de Caputo; existence; retard dépendant de 1’état; point

fixe.)
Abstract

In this work ,we study the existence of mild solution of some differential
equation of fractional order with nonlocal condition and an infinite delay
involving a Lipschitz condition on term [, .We shall rely on a fixed point
theorem for the sum of completly continuous and contraction operators due
to Burton and Krik. Key words(Fractional derivative ; impulsive;
Caputo fractional derivative jexistence jstate-dependent delay;fixed
-point .)
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General Introduction

Our goal interest in this work is to study the existence of mild solution defined on a
compact interval for some differential equation of fractional order with nonlocal condition
and infinite delay in separable Banach space E of the form :

“Dpy(t) = Ay(t)+ ftYpeyn)it €J:=1[0,0,k=0,1,...,m—1 (1)
Ay’y:yk = Ik(y(tl;))vk: L...om—1 (2)
y(t) +he(y) = ¢(t),t €] —00,0] 3)

where 0 < a < 1,f: J xD — FE is a given function , D is the phase space defined ax-
iomatically which contains the mapping from ] —oo, 0]intoE, ¢ € D, Al,—,, = y(t5)—y(t;),
where y(t;) = (tk + h) and y(t, ) = (tr + h) represent the right and left

limits of

y(t) at t =ty,A: D(A) C E — E is generator of analytic a—resolvant operator family
(a-ROF for short ) S,

O=to<t1 < ... <tm:b,fk:D—)E(/{?:LQ,...,m),

p:JxD —]—00,b,A: D(A) C E — E is a densely defined closed linear operator
on E , and E a real separable Banach space with norm |.|.For any function y defined on
(—o0,b] \ {t1,t2,...,tm} and any t € J , we denote by y; the element of D defined by

lim y lim y
h—0t h—s0+

yt(g) = y(t + 0)’9 E} - O0,0]

hi : PC(]—o00,T], E) — Eis given function ,where PC(]—00, T, E) = {y :]—00,T] — E :
y(t) is continuous every where except for some ¢ at which y(¢])
and y(t; ),k =1,...,m exist and y(t;) = y(t{) which is a Banach space equipped with
the norm

lyll = sup{[y(?)| : t €] — 00, T7}.
We assume as usual in the theory of impulsive differential equation that the solution of
(1) - (3) is such that at the point of discontinuity , ¢ satisfies y(tx) = y(t;)-
Note that the concept of non-local conditions was initiated by Byzewski, proved in [8] that
the non-local condition may be more helpful in describing certain physical phenomenon .
Since then a series of studies of problems with non-local condition started to apear .Deng
in |21] used the non-local condition to describe the phenomenon of diffusion of a small
amount of gas in tansparent tube where

hi(y) = ciy(t)
=1

The study of fractional differential equation is linked to the wide applications of frac-
tional calculus in physics , quantum mechanics ,signal processing , and electromagnitics .

1



Contents Contents

The theory of fractional differential equation has seen considerable devlopment using dif-
ferent technics .Some existence results were given in the book by Abbas at all [1§] and
the papers by Hammouche at all . [5], Wang at all . [14], Balachandran at all [15], Shu
at all. [21] and the references therien . The literature related to ordinary and partial
functional differential equations with delay for which p(t,v) = t is very extensive , see for
instance the books by Hale [9] , Hale and Verduyn Lunel [10] , Kolmanovskii , Myshkis [20]
and Wu [11] and the references therien .

This work is organized as follows : in chapter one , we will recall briefly some basic defi-
nition and preliminary facts which will be used thoughout the following sectins .In second
chaper we prove the existence of integral solution for the problem (1)-(3) .Our approach
will be based , for the existence of integral solutions, on a fixed point theorem of Burton
and Kirk for the sum of a contraction map and a completely continuous map .Finally in
third chapter we give an example of an application of our study.



Chapter

Preliminaries

In this chapter , we introduce notations , definitions ,Jemmas and fixed point theorem
which are used throughout this memory .

LetD the linear space of function mapping | — 00, 0] into E endowed with a semi-norm
II.|lp see [22] For ¢ € D, the norm of 1) is defined by

[¥llp = sup [1(6)[; 6 €] — 00, 0].
PC|J, E] is the banach space of all continuous function from J into E with the norm
|lul| = sup |u(t)|: t € J.

(A1) there exist a positive constante H and function K(.),M(.) : Rt — R" with K
continuous and M locally bounded , such that for any b > 0, if y : (—o0,b] — E,yo € D,
and y|; € PC(J, E),then for every t € [0,b] the following conditions hold :
(i) y¢ is inD;
(i) y(8)| < Hllyillo:
(iii) ||lyellp < K(t)sup|y(s)] : 0 < s <t+ M(t)|lyol|p, and H, K and M are independent of
y(.)
Denote

Ky =sup{K(t):t € J} and M, =sup{M(t):tec J}.

(A2) The space D is complete .
L'[J, E] is the Banach space of mesurable function u : J — FE which are Bochner
integrable normed by

b
Jullsr = [ (et

To consider the impulsive condition (3) ,it is convenient to introduce some additional
concepts and notations.Consider the following spaces

PC(J,E) = {y:[0,b] — E : yis continuous at t # tx,y(t;) = y(tx) and y(¢}) exists Vk = 1, ...

and
By ={y:] —00,b] = E : y|j—c,0 € Pandy|; € PC(J, E)}.

Let ||.||sbe the semi-norm in B, defined by
1lls = llgollp + sup{ly(s)] : 0 < s < b}, y € By

In this work .we use an axiomatic definition for the phase space D which is similar to those
introduced in |22 Sepecifically , D will be a linear space of function mapping (—oo, 0] into
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1.1. Fractionnal Calculus Chapter 1. Preliminaries

E endowed with a semi - norm ||.||p, and satisfies the following axioms introduced at first
by Hale and Kato in [7] Also B(F)denote the Banach space of bounded linear operators
from E to E , with norm

INlBm) = sup{IN(y)| : ly| = 1}.

Let K C E, denote by Conv(K) the closure of the convex hull of the set K.

1.1 Fractionnal Calculus

1.1.1 Riemann-Liouville fractional Integrel and derivatives :
1.1.2 Fractional Integral:

Definition 1.1. The a- Riemann - Liouville fractional -order derivative of f ,is defined
by

(I8 ) () = (¢ > a; Re(a)

1 /I f(t)dt
(o) Jo (z—t)t=e’
1.1.3 Fractional derivatives:

Definition 1.2. The a- Riemann - Liouville fractional -order derivative of f , is defined by

1 dar ot N
S —ayd . T (s,

where n = [a] + land|a] denotes the integer part of .

DG f(t) =

1.1.4 Caputo farctional derivative :

Definition 1.3. : For a fonction f define on the interval [a, b] , the Caputo fractional-order
derivative of order « of f , is defined by

W DENO = gy 90 o).

where n = [a] + 1] .
Therefore ,for 0 < o < 1,n = [a]+1 = 1 and for a = 0,the Caputo’s fractional derivative for
t € [0,b] is given by

0800 = s | (b= ) (s)ds,

I'n—«

In order to defined the mild solution to problem (1)-(3), we consider the following space :

PC = PC([~00,0],E) ={y : [-00,0] — E;y € C([0,b],E); K =0,1,2,...,m
such that y(t; ), y(t)) exist with y(tx) = y(t;),k =1,2,...,m}
PC is a Banach space equipped with the following norm :
lyllpc = maz||yklloo : k =1,2,...,m
Let us introduce the definition of Caputo’s derivative in each interval [0, ],
cDH« 1 ! —a g/
CDENW = =y L (=977 (5)ds

tg
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1.2. « -resolvant familly Chapter 1. Preliminaries

1.2 « -resolvant familly

Let A be a densely defined operator; A: D(A) : E — E

Definition 1.4. :A family (S,(t))=0 C B(F) of bounded linear operators in E is called
an a-resolvent operator function generatet by A if the following conditions hold:
a)(Sa(t))t=0 is strongly continuous on Ry and S,(0) = 1.
b)Sa(t)D(A) C D(A) and AS,(t)x = Su(t)Ax for all x € D(A) and t > 0.
c)For all z € E, IS, (t)x € D(A) and

Sa(t)x =x + AL Sy (t)z,t > 0.

d)z € D(A)andAz = y if only if

Sa(t)r =x + AI}S,(t)z,t = 0.
e)A is closed and densely defined.The generator A of (S(t)); = 0 is defined by

o L Sat)r—x
D(A) = {.’17 S X : tl_l>H5+ m exists }
and
Az = lim Saltjz - € D(A),

t—0+ wa+1(t) ’

a—1

where 1, (t) = (o)
where the function delta is defined by

for ¢ > 0 and ¥, (t) = 0 for ¢t < 0 and ¢4(t) — d(t)as « — 0,

do : D(2) — R; ¢ — ¢(a)
and
D(Q) = {¢p € C*(Q); suppp C Q is compact}

Definition 1.5. : An a-ROF (S,(t)):>0 is called analitic, if the function S, (¢) : Ry — B(E)
. . . T
admity analytic extension to a sector E (0, 8p)for some 0 < Oy < —.

An analytic «-ROF(S,,)is said to be of analyticity type (wo, 6p)if for each § < fpand w > wy
there exists M7 = Mj(w, 6) such that

|1Sa(2)]] < Mye” Rez
for z € Z(O, 6), where Rez denotes the real part of z and

Z(w,&) ={AeClarg(A—w|<0,wh € R}

Definition 1.6. : An a-ROF (S, (t))i>0 is called compact ¢ > 0 if for every ¢ > 0,5,(%)
is a compact operator .

Theorem 1.7. :( [23] ) Let A generate a compact analytic semigroup (T'(t))¢>0, then for any
a € (0,1),it also generates a compact analytic resolvent family (Su(¢))t>0

Lemma 1.1. : ( [25,24]) Assum that the a-ROF (S4(t)): > 0 is compact fort > 0
and analytic of type (wo,0o). Then the following assertions hold :
i) Jim || Sa(t+h) = Sa(t) =0, fort>0;

—

i) lim || Sa(t+h) — Sa(R)Sa(t) [|[= 0 , fort >0 ;
h—0+



1.3. Burton and Kirk fixed point Chapter 1. Preliminaries

Definition 1.8. : An a-ROF (S,(t)); > is said to be exponentially bounded if there exist constants
M > 1, w > 0 such that
| Sa(t) [|[< Me“t, fort > 0

in this case we write A € Co(M,w).

Proposition 1.1. :Let a > 0.A € Co(M,w)if and only if (w*, 00) C p(A)
and there exists a strongly continuous function S, : Ry — B(X) such that

| Sa(t) ||< Me¥t, fort>0

and

/ Me MSy(t)zdt = N> TR\, A)z, \ > wandz € E
0
Furthermore , (Sa(t))i>0 1is the a-ROF generated by the operator A.

Definition 1.9. A map f:[0,b] x D — E is said to be carathéodory if it satisfies the
following condition :

(1) the function t — f(¢,z) is measurable for each = € D;

(2) the function t — f(t,x) is continuous for almost all t € J :=[0,b],k =0,1,...,m.

1.3 Burton and Kirk fixed point

Theorem 1.10. Let E be a banach space and A, B : E — E be two operators satisfying

i) A is contraction

it) B is completely continuous

Then either:

a) the operator equation y = A(y) + B(y) has a solution , or
b) the set T ={u € E: AA(%) + AB(u) =u, A € (0,1)} is unbounded.

Note 1.1. the operator B is completly continuous if it is continuous and maps any bounded
subset of D into a relatively copmact subset of E.



Chapter

Study Of Existence Solution

2.1 Problems

We consider the problem of fractional differential equation in separable Banach space E :

‘Diy(t) = Ay@t) + f(typey)it € J:=10,0] (2.1)
Ayly—y, = Ik(y(tlz)%k: L...,m—1 (2.2)
y(t) +h(y) = ¢(t),t €] —o00,0] (2.3)

where 0 < a < 1,f : J x D — F is a given function , D is the phase space defined
axiomatically which contains the mapping from | — oo, 0]intoE, ¢ € D,

O=to<t1 <... <tm:b,fk:D—)E(/{Zl,Q,...,’I’)’L—l),

p:JxD —]—o00,b,A: D(A) C E — E is a densely defined closed linear operator
on E , and E a real separable Banach space with norm |.|.For any function y defined on
(—o0,b] \ {t1,t2,...,tm} and any ¢t € J , we denote by y; the element of D defined by

y(0) =yt +6),0 €] —o00,0]
hi : PC(]—00,T], E) — E is given function , where PC(]—o00,T|, E) = {y :]—00,T] — E : y(t)
is continuous everywhere except for some { t; at which y(t¢,) and ,
k=1,..,m—1exist and y(t,) = y(t;)} which is a Banach space equipped with the norm

lyll = sup{ly(®)| : t €], T1}.

Lemma 2.1. : A function y € PC([—00,0] is a mild solution of problem (2.1)-(2.3) if
y(t) = o(t) — he(y),t € [—00,0],Ayly = yp = Ik(y(t;)),k = 1..m — 1 and such that y
satisfies the fllowing integral equation :
t

Salt)O(0) ~ ho)) + [ Salt = ) (s, ytag)ds, 71 € [0,1]

k koo k-1
Sa(t —tr) [T Salti —ti1)(¢(0) = ho(y) + Y | Salt —t) [T Saltjts —t;)Salti —s)
y(t) = i=1 =171

t k k—1

f(57 yp(s,ys))ds + Sa(t - S)f(S, yp(s,ys))ds + Z Sa(t - tk) H Sa(tj—i-l - t])Il(y(tz_))a

tg

J=t

i=1 j=i

ift € (thstisr)-

Proof. For t € [0,t1] the previous problem is given:

‘Dpy(t) = Ay(t) + f(t,Ypey,))it € [0,t1]
y(t) + hie(y) = ¢(t),t €] —00,0]

7



2.1. Problems Chapter 2. Study Of Existence Solution

the solution of previous problems is :
t
(0) = sa(t = 0)(0(0) — ho(w) + | salt = )/ (5, Yoy ).t € 0,11

For k = 2 we have that I (y(¢;)) = y(t{) —y(ty) © y(td) = L(y(t,)) + y(ty)
Then ,t € [t1, t2]

y(#) = Salt — toy(e]) + /ts ) (5, Uyt

— Sult — 1) (I (y(t +/ Sl (5, Yp(o.yn) ) s

= St — ta)y(t7) + / Salt = ) (5, Ypfog)ds + Salt — ) (D (y(17)
= Salt — 1) (Sa(t1) / (b1 — 5) (5, Up(spn) )5

b [ Salt = )5 (51 Up(ony s + Salt — ) Iyt 1>>)

t1

=5, (t — tl)sa(tl)((ﬁ((]) ho(y )) + Sa(t —t1) /Ot1 Sa (tl — s)f(s,yp(&ys))ds

[ St = )05 o) + Salt = 0B,
And for t € [to, t3]

y(8) = Salt — t2)y(ef) + /ts )5, Yyt

— St — ta)(Ia(y(t +/ S (5, Yp(o.yn) ) s

= Salt = ta)y(ts) + / St = ) F (. Ypu s + Salt — 2)(B(u()

= St~ t2) (Saltz — £)Sa(10)(6(0) — Rofu)) + Saltz — 1) [ Salts =) F(5, oy ds

1)

[ Salta 8175 Uyt s Sl T 6)+ [ Salt=9) 55, (5) +Salt—2) Dot

t1

=1

2 2 g k—1
= Sa(t—t2) [ [ Sa(ti—tz'—l)(¢(0)—ho(y))+z/ Sa(t—tk) H Sa(tj+1=15)Sa(ti—5) (8, Yp(s,y.))dS

[ Salt = (5, o) + St~ ) Da(17)
We can deduce that for ¢ € [tg, tx41]. the solution of our problems is :

k -1
y(t) :Sa(t_tk)HSa(ti_ti—l)( hO +Z/ S t tk HS (tj—Fl_tj)Sa(ti_s)f(Sayp(s7y5))d8
i=1 i=1""
¢ k-1
+ ) Salt =) F (S, Yp(sy.) ds—i—ZS (t —tr) T] Saltjrr —t;))L(y(t;,)), if t € (tp, tisr)
k i=1 j=i

Now assume that the result is realized for n € N

n

n t n—1
y(t) = Sa(t*tn) H Sa(ti*tifl)(¢(O)*h0(y>)+z /7 Sa(t*tn) H Soz(thrl*tj)Sa(ti*S)f(s’yp(s,ys))ds

=1

t n
[ Salt —5)f(8,Yp(sye))ds + D Salt —tn) H (tiv1 —t) Li(y(t))), if t € (tkytns1)

ln i=1 j=i



2.2. Existece study Chapter 2. Study Of Existence Solution

And proved its validity for n +1 € N
¢

Let y(t) = Salt = tusJy(ti ) + | Salt = (5, Upto s
n+1

t
= Salt — tn+1)[In+ly(t;+1) + y(t;+1)] + /t Salt —s)f(s, yp(S,ys))dS‘
n+1

t
= Sa(t —tns1)y(t 1) + /n+1 Salt = 8)f (8 Yp(s,ye))ds + Sa(t — tns1) L1 (y(t,41))-

n n—1

= Sa(t_tn+1)(5a(tn+1_tn) H Sa(ti_ti—l)( hO +Z/ tn+1 tn H S tj—l—l t])
=1 Jj=i
tnt1 n—1
Sa(ti—3)f(8; Yp(s,ys))ds+ t Sa(t_s)f(sayp(s,ys))ds+z Sa(tns1—tn) [ Sa(tj-i-l_tj)[i(y(ti_)))
t
+ ; Sa(t —s)f(s, yp(s,ys))ds + Sa(t = tn1) In+1(y(t41))-
n+1 n n 4
= Sa(t_thrl)Sa(thrl_tn) H Sa(ti_tifl)(¢(O)_h0(y))+sa(t_tn+l) Z/ ) Sa(tn+1_tn)
i=1 i=1"""
n—1 tn+l
H Sa(tj—i-l - tj)Sa(ti - S)f(sa yﬂ(s,ys))ds + Sa(t - tn+1) /t Sa(t o S)f(S, yp(s,ys))ds
j:l n

n—1

n t
+ Sa(t = tn1) > Saltngr — tn) [] Saltisr — t;)L(y(t;)) +/ Sa(t = 8)f(8,Yp(. s
=1 n+1

j=i
+ Sa(t = tns1) In1(y(t,11))-

Thus
n+1 n+1
y(t) = Sa(t—tni1) [ Salti—ti-1)(¢(0)—ho(y +Z / Sa(t—tnt1) H Sa(tjt1—t;)Sa(ti—s)
i=1
t n+1 n
f(svyp(s,ys))ds/t Sa(t—s)f(s, Yp(s,ys) ds—l—z Sa(t—tn+1) H Sa(tjr1—t; )In+1(y(t;+1)).
n+1 i=1 j=i
So the solution is verified for each natural number n O

2.2 Existece study

Set

R(p™) =A{p(s,0): (s,0) € J x D, p(s,$) < 0}.
We always assume that p : I X D — (—o00,b] is continuous .Additionally , we introduce
the following hypotheses :
(Hg) The function t — ¢; is continuous from R(p~) into D

and there existe a continuous and bounded function L? : R(p~) — (0, 00) such that

lgello < LO(t)l|¢llp for every t € R(p7).

(Hp) A generate a compact and analytic a-ROF (S, (t))t>0
which is exponentially bounded i.e .there exist constants M > 1, > 0 such that

1Sa(t)]| < Me*,t >0

(H2) The function f : J x D — E is continuous and there existes a constant N > 0 such
that
||f(t7 yl) - f(t7y2)H < NHyl - y2”7vylay2 €D

9



2.2. Existece study Chapter 2. Study Of Existence Solution

(H3) The function I : E — Fare Lipschitz .Let My for k =1,2,...,m be such that
1% (y) — Ix(x)|| < My|ly — x| for each y,z € E

and

k
1— Z Mk‘—i-‘rlew(b—ti)Mi >0

i=1

(Hy) The function f: J x D — E is Carathéodory ;
(Hs) The function h;: PC(]0,—o0], F) — E' is continuous with respect to t , and there
exists a constant G > 0 such that

he(y1) — he(y2)|| < Lllyr — y2l|, for all y1,y2 € PC(] — 00,0], E);

with
1 1
L+GN(=e" - =) <1
w w
and
(Hg) There existe a function p € L'(.J,R, )and a continuous nondecreasing function ¢ : [0, c0) — [0, c0)
© du o du
such that |f(t,y)| < p(t)¥(||ly||p).a.et € J,for ally € D with —— = ooand — = 00,
£t <p(OB(lylo) s o

where

Co = Me™(|¢(0) — ho(x(t) + (t))|I, C3 = min(Cy, Ca),

k k
o () = (Mk+l€wb"¢(0)—ho(x@)-i-gg(t))”-i-z Mk_i+16w(b_ti)‘fi(0)‘+z Mk—i-i-Qew(b—tk—l)
i=1 i=1

) k
x/t e_wsp(s)w(Kb]x(s)|+(Mb+L¢’+MKb)Hq§HD)ds>/<1—ZMk_i+lew(b_ti)KbMi>.

ti—1 =1
M wb
OCQ = % € .
1— Z Mk:—i-i—lew(b—ti)KbMi
i=1
(H7)

k
[LMk+1ewt + Z MiMkiiJrl@w(titi)]Kb < 1.
=1

Lemma 2.2. : [12]Ify : (—o0,b] — E is a function such that yo = ¢ and y|; € PC(J : D(A)), then
lysllp < (My + LO)|[¢llp + Kpsup{[[y(9) ;6 € [0,maz{0,s}]},s € R(p™) U J, where
L? = sup L°(t), My =sup M(t) and K, = sup K(t).

teR(p™) teJ teJ

Theorem 2.1. Assume that (Hy) and (Hy) — (Hz) hold .Then the problem (2.1)-(2.3)
has at least one mild solution on | — oo, 0].

Proof. Transform the problem (2.1)-(2.3) into a fixed point problem .Consider the operator

10
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N : PC(] — 00,0}, E) — PC(] — 00,0], E') defined by :

o(t) — he(y), t if t €] — 00, 0]
Sa(t)(¢(0) - hO(Z/) +/0 Sa t - S)f(s Yo(s,ys ))ds if t€ [Oatl];
k k—1
Sa - Sa i — bi— - Sa j — U
NGE) = @twg (t tnwt +211 ttwg (tj1 — 1)
Sa(ti - S)f(s? yp(s7y5))d8 + ] Sa(t - S)f(87 yp(s,ys))ds
k k—1
+Y Salt —t) [T Saltjsr —t) Liy(t)), if t € (thytrs1)-
i—1 j=i

Let ¢(.) :] — 00,b] — E be the function defined by

- o(t) — hu(y), t € (—00,0]
o) = Sa(t)((0) — ho(y +/ Sa(t —8)f(5,Yp(s,ys))ds if t€[0,t1]
Then ¢y = ¢(t) — he(y). For each z € By, with x(0) = 0, we denote by T the function
defined by

_ o Oat € (_007 0]

T(t) = {x(t),t €.

Ify(.) satisfies (lemma 2.2) , we can decompose it as y(t) = o(t)+x(t),0 < t < b which implies
Yyt = x¢ + ¢¢, for every 0 < t < b and the function z(.) satisfies
For ¢t € [0, t4]

2(t) = Sa(t)(6(0) — holy +/ Salt = ) £(5, Yp(syny)ds if t€ [0,11]

For t € [tk, tk+1]

k
.T(t) - Sa(t - tk) H Sa(tz - tz—l)(¢(0) o ho(xp(svws'ﬂf;s) + gz;p(svxs'f'(lgs))

=1
k-1

+ Z/ Salt =) T Saltivr = t)Salti = $)f (5% e w150y T Pps ey )48
=177 j=i
k

t -
+ ) Salt = 8) (8,0 (5 un i a0y T Pps etde))dS + > Salt —ty)
k =1

HS tiv1 —tj)i(z, +¢t)z'ft€J.

Let

Bg={$€Bb:x0=0€D}.

For any = € By we have
[z]ly = llzollp + sup{l(s)] : 0 < s < b} sup{[z(s)] : 0 < s < b}

11
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Thus (B}, ].][s) is a Banach space . We define the operators A, B : B) — B by :

¢(0) — ho(y), if t €] — 00,0 t
Sa(t)(@(0) = ho(z s .+ a,) T+ ép(&xs_i_(gs))) + /0 Salt =) f (8,050 15+ g)p(s,xsﬂ;))dsv
A(y)(t) — if te [O,tkl]

Sa(t —tk) H Sa(ti = tim1)(9(0) = ho(y)) Zk: Sa(t —tk) kl:[l Sa(tjr1 — ) Li(y(t;)),
- - FZ if t € (t, thet)-
and
0,ift €] — o0 O]
/S t—s)f(s, p(%%ﬂi (ss b)) 055 if t € [0,t];
B(y)(t) = zzl - S (t —tx) jl_[Z Sa(tj+1 —t)Sa(ti — 8) (8% o gy T+ ép(s@ﬁd;s))ds
), ' Sult — 5) F(5:2 p(a st e T Ppsmasdn) )45 if t € (ths trsr)-

Then the solution of the problem (2.1)-(2.3) is reduced to finding the solution of operator
equation A(y)(t) + B(y)(t) = y(t),t € [—o0,0] ,We shall show that the operators A and
Bsatisfy all conditions of Theorem (1.10) we give the proof into a sequence of steps .

step 1. B is continous

Let (,)n>0 be a sequence such that z,, — 2 in BY then for w > 0(ifw < Oone hase”! < 1).
At first , we study the convergence of the sequence (acg(s@?))neN, s € J . We distinguish
two cases . Let s € J be such that p(s,z7) > 0 for every n > N. In this case , for n > N
we see that

255, 2m) = Tpsam D + [ Zp(s,am) = Tps,en) D

Epllzn = @llp + 2o(s,02) = Zp(s,20) 12

[%5(s.0m) = Tp(s,z)lD <
<

which prove that xz(syxn) — Tp(sz,) In D as n — oo for every s € J such that p(s,xs) > 0.
Similarly , if p(s,zs) < 0 and n inN is such that p(s,z}) < 0 for every n > N we get

15s,2m) = To(s,en) 1D = [1Pp(s.07) = Po(s.ae) D = 0

which also shows that z, ) — Zp(sz,) In D as n — oo for every s € J such that
p(s,zs) < 0. Combining the previous argument , we can prove that @ ,ny — &

for every s € J such that p(s,zs) = 0.
Finally
(i) For t € [0, t1],we have

|B(z)(t) — B(x)(t)]
t n - t ~
=] Salt = 05+ Dy} = [ Salt = (5,20 8) + Gy

t ~
< /0 [Sa(t — 5)|||f(3737z(57x?+(55) + ¢p(s,zg+q§s)) — f(s,2)) p(s,zetds) T ¢ (5,27 +ps) )‘ds

t ~
g Mewt‘/() wS|f(s xP(S $n+¢s + ¢ S $”+¢s)) o f(57 xp(s,],‘s—‘rq’;s) + ¢p(57$3+$3))|ds — 0

12
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since f is continuous , and f (s, yn)) —> F(5, Tp(s.2,))-
(ii) For t € [tk>tk+1]

1B(yn)(t) — B(y) (1)
71

= Z/ a(t —tk) o Sa(tj-i-l — t;)Sa(ti — s)[f (s, a:p(s ontds) T &p(s,xg-l-(gs))

- f(svxp(s,str(;ﬁs)) + (bp(s T4 s ))]ds + S (t - 3)[f(8 xp(s T+ s) + ¢p(s,x§”+¢~5s))

o f(S, xp(s,xs+q35 + ¢P(5:Ws+$5))]ds‘

k t; k—1
< Zl/tl 1Sa(t — )] H 1Sa(tjs = )l Salts = $)IIF (520 sn i) T Possansan)

S (C TRt S \ds—s—/ 1Salt = $)1F(5,2 s 1, + Bpisinnsay)lds

k
Z/ 1Me wlt=te) HMe L=t pe 9| £ (s, T s antde +¢(sx”+¢ )
ti— ] =1

7 w(t—s n
RRACEA NS +¢p(s,zs+&s>)ds+/tk M 1 (8,85 an sy + ptspin)

= F (5.2 20180) F Doz, 40148
k t;
< Z Mew(t_kk)[ew(ti+1—ti)Mew(ti+2—ti+l)Mew(ti+3—ti+2) X % Mew(tk—tkﬂ)]
i=171"1

Mew(ti—3)|f(5 :L‘n S:E"“r(i;s) + $p(s7x?+és)) — f(S, zp(87x5+¢5 ¢ S x5+¢;5))|d5

Me t S|f(s LIZ‘ sx”+¢ +¢ an+¢ )) f(’ P(S$s+¢s +¢; S$S+¢s )|d8

ty

i wt k—1—i+1 —ws n 7 B ~ g _
<Z/ Me™ (M IMe™™|F (8,27 ini5) T Potsantda) =T (558 o5 wor gy TPp(s.watdn) |08

t
wt —ws 1
e / £ (300 an )+ Potonsdn) = T T pomirde) T ptomsrd0)lds

tg
k t
k—i+2 wt - 7 : - 5 -
S e /tke U T i F Potoanisn) T I Towra) ¥ oordn)ldS
1=

t
t —ws 7
+Me" / e (820 an 180 T Potsan+an) ~ F 8 To(sm,4d, T psaatdn)lds — 0.

173

Since f is continuous then f(s, 2}, .n) —> (5, Zp(s2,)) » we have [[B(yn) — B(y)[lco — 0
as n — 00.

Thus B is continuous.

Step2. B maps bounded sets into bounded sets in PC(] — 00, 0], E).

it is enough to show that for any g > 0,there exists a positive constant lx;k = 1...m
such that for each y € B, = {y € PC(] — 00,0], E) : |ly|| < ¢}, we have || B(y)|| < l.

Let y € B4. Then from Lemma 3.1 it fllows that

12 s o5, Byansillp < Kog + (M + L 6(1) — he(w)llp + KoM |&(0)ho(y)] = a..

13
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Then we have

t ~
1St = 5. 80) + Fyperan)ls ift € 0. 41);
k t; k—1
> [ Usatt =0l % IT I1Sa(tir = ) l1Salti = )]
=17 "ti—1 j=i

£ (s, Lo(s,zstds) + (Z;p(s,zs+cz~ﬁs))|d8
t ~
+/ HSCY(t - S)H‘f(saxp(s,strd;S) + (Z)p(s,strd;S))‘dS? if ¢ € (tk7tk+1)‘

ty

N

1B(y)(1)]

Since [[Sa(H)]| < Me™" and |£(t,y) < p(t)(|lyl|p), we have

¢
| e =p(s) g if £ € [0.11];
12 t; k—1
Bu®) < A3 [ Mt T et e (s a.)ds
i=1"ti-1 j=i
¢
+ | Mep(s)i(g)ds, ift € (t, tis)-
tr
Which gives
¢
Mewtlw(q*)/ e p(s)ds =1, if t € [0,t1];
0
k

Z[Mew(t*tk) [Mew(tiJrlftiMew(ti+2*ti+l) L MeV(tk—1—tk—2)
Bo@l < (&
x MeW b= prewt) Q,Z)(q*)/ p(s)e ) ds

i—1

+Me My (q,) /t p(s)e @ ds, ift € (t, ths)-
A
Then
MeP ) i(q,) /Ot e p(s)ds =, ift € [0,¢4];
\B(y)(t)I < iMkiJrQew(tthrtiHt¢+ti+2t¢+1+...+tk1tk2+tktk1+ti)
() [ P s M) [ ploje s, i ¢ € (i),

Using characteristic of the exponential function ,we get

Me "*p(s)ds = Iy, ift € [0,t1];
k t;
Mk—i+2€w(t—tk_1) % w 0 / p(s €_w(8)d3
B < > @ [ 9o

t
+Mew<t>w<q*>/ p(s)e ™ Ods, ift € (ty, tisr).
ti

14
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Finally ,we obtain

t
Me“’(“)@b(q*)/o e "p(s)ds =i, ift €[0,t1];
k . t;
IB(t)| < ZMk7Z+2€w(tk+1*tk71) % ?,b(q*)/ p(s)efw(s))ds + Mew(t"+1¢(q*)
ti—1 ti—1
t
X / p(s)e ®ds =1, k=2..m, ift € (t,ths1)-
12

Step3. B maps bounded sets into equicontinuous sets of PC(] — 00, 0], E).

Let 71,19 € J\ t1,t2,...t,, With 71 < 79, let B, be a bounded set in PC(] — 00,0], E) as
in Step 2,and let y € B,

olf 7,7 € [0,t1] , we have

T2 ~ 1
1B(y(r2)) — Bly(m))| = | /0 Sa(2 = ) (5, % p(a 60 F Pplonmasdn))d5 = /0 Sl =)
‘f(87 xp(s,rs+¢~>s) + (gp(svzs+(£s))d8|

Using the linearity of the integrale operator and hypotheses (Hy) , we get
1B(y(72)) (m)l =
|/ Sa(72 = ) F(5,T s 0150 + Botsmridn) ds—i—/ (72— 3)
P Tt Pplsimatd)) 45 /OTI(S a1 = (5,2 (s g3 + Pos.aatd)) 451
1 [ Sl = 9) = (Sl = NI 5s21) + s}
+ / (T2 — ) (S7xp(s,zs+¢~>s) + qu(&xsﬂ;s))ds\
< [ 18alr2 = 9) = Saln = (512 00,25y + By i)

+ / 1Sa(rs = S)I1F(: 2o 08y + FpioinnsiyNds

T2

<0(@) [ 18a(r = 5) = Sa(m = 8)[p(s)ds + Me" () [ p(s)ds

T1

If 71 = 0, the right-hand side of the previous inequality tends to zero as 79 — 0
uniformly for y € PC
if 0 <71 <1 for e <m <79, we have

T1—€ -
By(r2)) = B < [ 18a(ra = 5) = Salri = )1 (5,20 0,4 + Fyge )
T1 ~
[ USalr2 = 8) = Salmr = (5130 60) + ¢p(s,xs+$3)\ds
T1—E€

T2 ~
U616+ Bt il
T1

T1

<vla) [ 1Sa(r =)= Salma =) Ip()ds(an) [ [1Sa(ma—5) = Salri—)lp(s)ds

+ Me"™9(qx) / e”""p(s)ds.

T1

15
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From Lemma 1.1 , the operator S,(¢) is a uniformly continuous operator for ¢ € [e, t1].
Combining this and the arbitrariness of € with the above estimation on |B(y(m2))—B(y(m1))|,
we can conclude that

lim(B(y(r) = Bly(m))] = 0.

Thus the operator B is equicontinuous on [0, ¢1].
o if T, T2 € [tk,tk + 1]

k t; k—1 ~
B2 =By = | 32 [ Sar2t) [T Salts11-6)80(065) 2 i@
= e J=

kot k—1 B
=3 [ Salr =) T Saltyn = 6)Salts = )15 00,4 + Dyt s
i=1"ti-1 j=i

T ~

2
+ Sa(TQ - S)f(87 xp(s,x5+(]~55) + ¢P(8,ms+¢~55))d8

tk
T1 ~
— ‘/t Sa(Tl — S)f(87xp(s,xs+¢~>s) + ¢p(s,xs+¢~>s)>ds .
k
Then
|B(y(72)) — B(y(m1))|
koo k—1
<y / 1Sa (72 = ti) = Sal(r1 — ti)|| T Sa(tisr — t:)l]
j=1"ti—1 Jj=t

T1
t Sa(TQ_S)f(S’xP(S:fES"‘QES)+¢P(S’ms+‘55))ds
k

X || Sa(ti—s)||| f (s, a:p(&xsﬂ;s)+<]3p(s’rs+¢~ss)ds+’

T2 ~ T1 ~
+/T1 Sa(Tz_s)f(s’xp(svms+¢~58)+¢P(vas+¢~’5))d8_/tk Sa(Tl_S)f(S’xp(svxs+€55)+¢p(5:xs+(z)8))ds ’

Which gives

k t; k—1
1B(y(72)) — B(y(m))| < Z/tv 10 (2 = tr) = Sl — ta) || T] 1Sa(tivs — )|l
i=1"vti-1 Jj=t

< 1Salts = )17 (5,55 Yp(s) s
T1
+ [ 1S (r2 = 9) = Salry = )1 (5, Yyl
k

T2
[ USa(r2 = 5) 15, Uy ds:
T1

Under the hypothesis (Hg),we obtain

Bu(r)) ~ Byl < 206) [ 1Sa(m ~14) ~ Salr )]

=1 i—1
k-1 T1—€
x [T ISa(tis = t)l1Sa(ti — s)Ip(s)ds + w(q*)/t 1Sa(m2 = 8) = Sa(m1 = 5)[lp(s)ds
j=i b

71

F000) [ 1Sa(r = 5) = Saln — 8)[p(s)ds

+ M1p(gs)e’™ / e”""p(s)ds.

T1
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As 71 — 7 and e becomes sufficiently small, the right -hand side of the a bove inequality
tends to zero , since S, is an analytic operator and the compactness of

Sa(t) for t > 0 implies the continuity in the uniform operator topology [23,24] .

This proves the equicontinuity for the case where ¢t #£ t;,i = 1....,m + 1.

Now ,it remains to examine equicontinuity at ¢ = ¢;.We have for y € B,

for each t € J.

First, we prove equicontinuity at ¢t =¢; .

Fix 61 > 0 such that {tk,k #* l} N [tl —01,t + (51] = {}

For 0 < h < 61 we have

eifl=11ie 11— h,tl € [O,tl]

B(y)(t — h) — B(y) (1))
t1—h
< (s /0 1Sa(ts — 5) — Salts — b — )|[p(s)ds

t1
Metp(q,) [ e p(s)ds,
t1—h

which tends to zero as h — 0 since S, (t) is a uniformly continuous operator for ¢ € [0, ¢;]
thus the operator B is equicontinuous at ¢t = ¢]

o if ty— ha lr € [tkutk-‘rl]'

Then:

k t;
Bly(t — b)) - <Y vla) [ lSalt =) = Saltin — )]
=1

ti1
k-1

H 1Sa(tirs — )| Salti — s)llp(s)ds

—h

T (e) / 10t — ) — Salti — b — s)llp(s)ds

t
F Mg [ ()

t;—h

The right -hand side of the privious enequality tends to zero as h — 0.
So the operator B is equicontinuous at ¢; .

Now , define
Bo(y)(t) = B(y)(t),itt € [0,14]
and
B0 = (g )

Next ,we prove equicontinuity at ¢ = t;r.

Fix d9 > 0 such that {tk, k # Z} N [ti — 9, t; + 52] = 0.
First , we study the equicontinuity at ¢t = 0.

If t € [0, t1],we have

Boly)(h) = {0’3%2 iteei.

17
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For 0 < h < §2 , we have
| Bo(y)(t) — Bo(y)(t)| = B(y)(h)|

Yy
h ~
= /0 Sa(h — S)f(S, Ip(s7$s+(£5) + ¢p(57x5+(£5))d8

h ~
< /0 ||Sa(h - S)Hf(S, xp(s,$s+(z~55) + ¢P(S,$s+¢~58))d8

h
<¢@hkwf/ e "*p(s)ds.
0
The right -hand side to tends to zero as h — 0.
+

Now,we study the equicontinuity at ¢;,t3, ........ it (ie. at t;“, 1<l <m).
For 0 < h < §2, we have

1B(y)(t1 + ) = B(y) ()]

k t k—1
<300 [ 1a(n) = Sa)) TT I1Sa(ts1 = ) 1Salt: = 9)Ip(s)ds
i=1 i-1 j=i

ti+h
Mg e [T emvp(s) s,
4
It is clear that the right hand-side tends to zero as h — 0.
Then B is equicontinuous at tl+, (1<l <m).
The equicontiuity for the cases 71 < 79 < 0 and 71 < 0 < 7 follows from the uniform
continuity of ¢ on the interval | — oo, 0],
as a consequence of Setpsl and 3 together with Arzel-Ascoli Theorem it suffices to show that B
maps B, into a precompact set in E i.e: we show that the set B(y)(t);y € B, is percompact in
E for every t € [0,D].

Now,letz € B, and let € be apositive real number satisfiying 0 < e <t < b.
For y € B, and t € [0,t4].
We have if t =0 the set {B(y)(0);y € By} = {0{ which is precompact as a finite set.
For 0 < e <t < t1, we have

t ~
B(y)(t) = /0 Sa(t - S)f(sv xp(s,ms-‘r(z)s) + (bp(s,ms-l-(l;s))ds
t—e ~
=) Salt=9)f (5T a 15 T Ppsitdn))d8
t

+ t—e Sa (t N S)f(S’ $p(57$s+<£s) + ¢p(57xs+(£5))d8'
Set Fo ={Sa(t—8)f(0,y(0));6 € [0,t— €],y € By}, from the mean value Theorem for the
Bochner integrable we have

t—e

; Salt = 8)f(s, 25,5+ qu(s?xﬁq;s))ds € (t — e)Conv(Fp) (2.4)

On the other hands , using hypotheses (H;) and (Hg), we obtain

t _ t
/t |Sa(t B 8)f($7 xp(svxs‘i“l;s) + qsp(svws‘f‘q;s”)ds < MGWtw(q*) / eiwsp(S)dS

—€ t—e
t

<Mwww/p@®

t—e

18
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Let C? the circle who'’s diameter
t
d? < MCth/}(q*)/ e "p(s)ds. (2.5)

t—e

As a consequence of (2.4) and (2.5), we conclude that
B(y)(t) € (t — €)Conv(Fp) — CP, V0 < e < t < ty. (2.6)

For t;, < e <t < tpy1 and y € B, we have

k t k—1 B
B(y)(t) = Z/t Sa(t —t) x [T Saltjrr —;)Sa(ti =) (8,7 no v 50y T Ppswardn))ds
i=17ti-1 j=i
t—e ~ t -
+ Sa(t—s)f(s, xp(s,xs_;_qzs)+¢p(57x5+q§5))d5+ Sa(t—s)f (s, fp(57$s+(;s)+¢p(57ws+(gs))ds

tr t—e

2.7)

Set F, = {Sa(t—0)f(0,y(0));0 € [ty,t — €],y € B},from the mean value Theorem for
Bochner integral , we have

t—e

) Salt =) f (8, 5 ntd0) T Posaetdn))ds € (t =ty — €)Conv(Fy). (2.8)
k

From (H;), (Hg), we obtain

k t k-1 t ~
3 /t Sa(t—t1)x [T Saltii—t))Salti=s)dst [ Salt=5)F(5: 2y 0150+ Fpomsd)ds
i=1"7ti-1 j=i

t—e

k

. t
< w(Q*) ZMk—z+2ew(t—tk_1)/

i=1 tia

t
e p(s)ds + Mw(q*)ewt/ e " p(s)ds.
t—e

Let C¥ the circle who’s diameter d” is such that

t;

k
d]: < w(q*) ZMk—i-i-Qew(t—tk_l)/

i=1 ti—1

e Sp(s)ds + Mp(qi)e™ /tt e p(s)ds. (2.9)

From (2.8) and (2.9),it follows that
B(y)(t) € (t —t, — €)Conv(Fy,) + CF Wty < € <t < tpy1. (2.10)

From (2.6) and(2.10) , we conclude that B(y)(t) is precompact in E.

From Stepl-Step3,we deduce that B : PC(] — 00,0], E) — PC(] — o0,0], E) is com-
pletely continuous.

Step4. A is a contraction

For ¢t € [—00,0], we have

[A(y1)(t) — Aly2) (?)] [[ho(y1) — ho(y2)|

< Ly — el

from hypothes (H5) , the previous inequality implies tha 4 is contraction on ¢ €] — o0, 0].
For t € [0,t1] we have

|A(y1)(t) = Aly2) (?)]

Sa(t) (ot + &) — hoa} + 1))
ISa(®) I (hol} + 61) = ho(a? + 1)
Mev L (1) = (w2

NN
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From hypotes (H5) we have M Le™™ < 1. Is follows that A is contraction when ¢ € [0, 4].

It remains to prove that A is a contraction operator for ¢t € [tg, tg+1],k > 1

[A(y1)(1) — Aly2) (1))

k
= [[Sa(t = t) [[ Sa(ti — tic1)|ho(zf + B(t)) — ho(a} + 6(t))|
; .
+ > Salt —tg) Sa(tm—tj)[l(xfwt ) — (ﬂ:fﬂbt I
=1 7=t
k
< 1Salt — to)|| T[] Me =0 |ho (2] + ¢(t) — holaf + 6(t))]
=1
k k
+ 3 1ISalt — i) | ] Me =) |1 (2 +¢t ) — (ac—+¢1t )l
i=1 J=i

k
< Mew(t—tx) H Mew(ti—tifl)‘ho(x% 4 ¢(t)) _ ho([]j? + ¢(t))\

=1
k—1 7
+ZMe ) [T M5 Ly + 6,-) = Li(wa(Li(2]- + )|
=1 Jj=t Z Z

g Me (tftk)[ew(fq to)Mew(tgftl)Mew(tgftQ) Mew(tkflftk—Q)Mew(tk*tkfl)]

ol + 3(0) = ho(a? + G| + 3 Mt vl =0 pfertaio
=1

M te1mte2) s ppewteTte-1)] s |1 (a: _+ ¢t ) — (x -+ qSt )|

< Me“’te_wtk [Mke_w(to)ew(tk) X |ho($t + ¢( ) — hO(xt + (b( )|

+ZMewt —witg Mk 7 —wtzewtk]u (567 +¢t ) ($7 +¢t )|

< M* e [ho(zf +6(t)) — ho (2} + (1) |+2Mk HLwli=t) |f(~’v +6,-)— (x +6,-)l.
=1
Since t € J :=[0,b], and the function Ij;k = 1,2, ...m. are Lipschitz ; then

[A)(®) = A@) ()] < LM e o — af|| + MP e O iz, ) — L))o
< LMMe||(p + (1)) — (27 + (1) ||+ZMMk R (€5

k
< [LMFT et 4 YT MME e G | (1) — (29)|p-
i=1

Thus the operator A is a contraction , since

k
[LMk+1ewt + Z MiMk*i+1ew(t7ti)]Kb < 1.
i=1

Step 5. A priori bounds.
Now it remains to show that the set T = {y € PC(] — 00,0], E) : y = AB(y) + )\A(g>},
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2.2. Existece study Chapter 2. Study Of Existence Solution

for some 0 < A\ < 1} is bounded .
Let y € T be any element , then y = {A\B(y) + )\.A( )} for some 0 < X\ < 1.
First , for each ¢ € [0, 4],

ly(t)] =
’ /5 (t= )5,y + By os)ds + A(Sh ()(cb(O)—ho(x;t)-Hf;))‘
< A(bre™||(0) — b ((—+¢ ®)) + (Me‘”t/ T T, F Do) S)
g)\(Mewt|]¢(0)—ho<(—)+¢() H+AM/ =) p(s)b([lys ) ds
<M 0o (B246(0) I [ Iplsb (ot (ML) (0 [o+ KbMI6(0)]ds

On the other hand, for each t € (¢, tx+1], we have

ly(t) H (Z/ Sa(t—tg) XHS (tj+1—1t5)Salti— )f(s’xp(s,xs%s)+(5P(s,xs+435))d3

k

+ S (t=8) (83 %p 5+ Porenss, ))ds> +)\<Sa(t—tk)HSa(ti —ti 1)

t i=1

(6(0) — ho(52 +3) + Y- Salt = t4) [T Saltyn — t)L(5= +0,-)

(t) b - T, ||
i=1 j=i

From(H;), (H3) and since A < 1, we obtain

Hy(t)H < )\(Mk+1ewt“¢(0) _ho(xg\t) )HZMk i+2 w(t tg— 1)/t' efwsp(s)

ti—1

- t -
V050 F B 8) M [ D05 By, )
)l

t.
k 7 k— — 7
< M +16thx’D<S»TS+QES>+¢p (s,xs+¢s )||+Z M i w(t i 1) / € wsp(s)lb(nxp(s,szrq;s)+¢p(5,zs+<¥;s) H)dS

tz+l

+ZMI<; i+1 gw(t— t)u(
=1

t
+M€wt/t e_wsp(S)w(pr(S,:cs+¢s)+¢p(s zs+ds) ds+z Mk s w(t b )
k

(5 4+, ) - 10)

+ Z Mk—i—lew(t—ti) |Iz(0)|
i=1

k
t —1 w(t—
< Mk+16th¢(0) o hO( ( ) ) |+ZMI<: i+1 wt t;) ‘I )| +ZMk +2, (t—tr—1)

A =1 i=1

ti - t ~
—ws wt —ws
~/t1 1 ‘ p(S)w(Hmp(s,szrgw)+¢p(s,zs+¢~5s)) ||)dS+M€ /t € p(5)¢<||xp(5@s+q§s)+¢’0(5»Is+¢35>

i— k

)ds

k
i Z ML gw(t—t)
i=1
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Sincel; are Lipschitz, then

w x(t) 7 i —1 w(t—t;
O < M¥e [ ¢(0) — ho (= + 6(0)) [l + 30 MF e 4|1 (0)
i=1
k 3 t;
—i4+2 w(t—ti— —ws 7
i ; M i ‘ (t " 1) /tz'—l ‘ p(S)w(pr(S@s‘Hzgs) + ¢p(s,x3+$s) )dS
SL‘ti—

t k
M vt - 7 k—it1 w(t—t;
L Mev / e wsp(5)¢(’|xp(s,zs+q‘as)+¢p(s,zs+q§s)H)ds_'_E M=t gw(i=ts)
1=

173

L((5 +6,.)) — 00)

k
< Mk+lewt‘|¢(0) _ ho(xg\t) é(t)) H + Z Mk—i-&-lew(t—ti)‘[i(o)‘
=1

k ti
i . _ ~
+ Z M z+26w(t te—1) / e wsp(s)w(Hﬁp(s’szr&s) + ¢p(s,zs+q§5) ||)d8

i=1 ti—1

t 5 k ‘
+ Met / e ()P (120, ., 50y F PooayyanDds+ MF=HL ) B My (8]
=1

tg

Now , we consider the function u(t) defined by
ult) = sup { Kolar(s)| + (My + L + MEy)[[6]lp: 0 < s < 1} .0 <t <b.

Then , we have ||ys|| < w(t) for all ¢ € J, and there is a point £ € [0,¢] such that
p(t) = ly(&)].if £ € [0,b], by the previous inequality, we have for t € [0,b] (note § < t).
eift € [O,tl]

p(t) < M o(0) — hola(t) + 610N+ Me* [ e ps)uu(s)) s,

t
< Co+ Mt /0 e~ p(s)b(u(s))ds,

where

Co = Me"*[[$(0) — ho(x(t) + 6(1))]|-

ot c [tk,tk+1]

k k
ult) < MPF1e|6(0) —ho(x(t) +6 () |+ MF Ot L(0) [+ MF— 2t
i=1 i=1

% /ti e p(s)h(Kply(s)| + (Mp + L? + MKy)| ¢l p)ds+

ti—1

t k .
Me™? / e p(8)h(Kp|z(s)|+ (Mp+ L+ MKy)|| ¢l p)ds+> | MF= e O=t) joy Mp(t).

ty =1
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Then

k
1— Z Mki+lew(bti)KbMi‘| ,Lt(t)
=1

k k
< Mk+1€wb||¢(0) _ ho(.ﬁ(t) + ¢(t))|’ + Z Mk—z+1€w(b—ti)|1i(0)| + ZMk—z—l—Qew(b—tk_l
i=1 =1

t;
X/ e p(s)p(Kp|z(s)| + (M + L + MK,)||¢]|p)ds

ti—1
t
n Mewb/t p(s)U(Kply(s)| + (My + L? + MKy)||¢||p)ds.

Thus, we have

k k
N(t) < (Mk+18wbH(ﬁ(O)—ho(.ﬁC(i)—l—(ﬁ(t))”—i—z Mkfz+lew(b7ti)|[i(0)|+z Mk72+26w(b7tk,1)
=1 =1

X /tt e_wsp(8)¢(u(8))d5> / <1 —zk:Mk_iHe“’(b_ti)KbMi)

1—1 i—1
Mewb t s
— | e sy tut)as
[1 _ Z Mk_1+1ew(b_ti)Mi]

=1 .
<O +C /t =5 p(s)b(1u(s))ds.

where
[ ]

k k
C, = (M’f+lewb||¢(0) —ho(z(t) + ()| + 3 MFTHLe )| L (0) |+ 3 METiT2ew(bt)
=1 =1

) k
x / t e () (Kp|a(s)| + (My + L® + MKb)|y¢HD)ds> / (1 - ZM’“”lew(bti)MZ).

ti-1 i=1
[ ]

M wb
Cy = c

A .
1— Z Mk—i-‘—lew(b—ti)KbMi

=1
Tt follows that

t
um<%+M&j}wmwmeﬂ+wmiwwuwwmwﬁmmmL
t
u@éCrHEAew%@meﬁﬂ+MQ+W+NMEW%M&UMHMMHL

k

Let us take the right - hand side of the above inequality as 9(t).

Then, we have for all t € J
p(t) < ¥(t)
and .
plt) = Co+ Me™® [ ™ pla)(y(s))ds.ift € [0.ta),

p(0)= 1+ C [ € pls)p(s))ds,ift € (1, sl

tg
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©(0) = Co
(p(tk) = Cl, k= 1, ...... ,m.

And differentiating both sides of the above equality , we obtain

{ﬂ’(t) = M Dp(t)yp(u(t)),ift € [0, 4],
V' (t) = Coe™ ' p(t)1h(u(t)), i ft € (th, thia]-

Using the non decreasing character of the function ¢ , i.e. (u(t) < ¥(t) = ¥(u(t)) < P(¥(t)).

We h
o P(t) < Mev®-Dp(t)p(0(t)), ift € [0, 1]
V'(t) < Coe™'p(t)(I(t)),ift € (i, thi)-
It gives /
wg/((?)) < Me* O (), ift € [0, 1],
s < G B0, € (1t
<« Integrating from 0 to t , if ¢ € [0, 1], we get
t 19,(5) wb t —ws * du
[t M e < [

Hence , there exists a canstant n; such that
p(t) < e(t) <m,t € [0,4].

< Now, integrating from ¢ to t if t € [tg, tp41], we get

t /<8> ’ »
" 1/1(19(3))d8 <O /tke p(s)ds.

By a change of variable (¥(s) = u)(s : tx, —> t;u: 9(t) = C1 — 9(t)) :

9(t) du t Cws < du
L o <G f s < [,

where C5 = min(C1,Cy) Hence, there exists a constant 7y such that

N

p(t) < I(t) < m2,t € [te, try]
Now from definitin of u it follows that
lyll = suply(t)| : t € J < p(b) <, forally € T.

This shows that the set T is bounded .
As a consequence of Theoreme 1.10 , we deduce that A+ B has a fixed point which is mild
solution of the problem (2.1)-(2.3). O
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Chapter

Application

consider the following impulsive fractional differential equation :

°Diz(t,x)

x € [0,m],t €[0,b],t # tg
2(tf x) — 2(t;, , @)

z(t,0)

m+1

z(t,z) + ;/0 hi(s)z(s,x)ds

where r > 0,1 > 0,k =1,2,..

0?z(t, x)

o2 —{—Q(t,z(t—r),x)),

brz(tg, x),x € [0,7]),k =1,2,...

z(t,m) =0,t € [0, 0]

o(t,x),t €] — 00,0],z € [0, 7]

(3.3)

.,m,Q :[0,b] x R — R is a given function ,¢p € D where

D = {¢ ] — 00,0] — R}; such that ¢ is continuous everywhere except for a countable

number of point at which v¥(s7),1(s")

existe with 1(s7) = (s),0 =1ty < t1 < ... <ty <tmp1 =b,2(t]) = hlimoz(tk + h,x),
—

2(ty,x) = h%_ 2(tg + h,x),h; € L*([0,b];R) s foral i =1,...,m +1

Let

Z(t,flf),t S [O,b] 75 {tl,tg, -

ytm}

brz(tg,x),x € [0,7],k=1,...,m
Q(ta ¢(97$))a$ € [0,71'],0 6] - 0070}
¢(0,x),z €10,7],0 €] — 00, 0]

m-+1

[ nitt)ads.
0

Let E = L*[0, 7] and define the operator A : D(A) ¢ E — E by :

D(A) = {u € E,u,u areabsolutelycontinuous,u” € E,u(0) = u(r)

and

Au=u

"

=0}

It is well known that A generates a compact analytic semigroup (7(¢)) for ¢ > 0 on E

given by

oo

T(t)w = Z e_"2t<w,wn)wn,w €EFE

n=1
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Chapter 3. Application

where (,) is the inner product in L? and w,(s) = ¢/msinns,n = 1,2, ... is the orthogonal
set of eigenvectors of A .From Theorem 2.1 the operator A also generates an a-resolvent
family which is compact for ¢ > 0, given by [12]

1 N _
— A — A)"1dAt
Sa — 27T1 /1_‘9 € ( ) ) > O
I, t=0
where 0 € (m, g) and Ty is the contour {re?;r > 0} U {re " r > 0}.

1 m+1
also there exist constant M > 1G = 3 Z [hill2(jo,t,]) such that [|Sa(t)[] < M and
i=1

lg:(y1) = ge(y2)ll < llyr — w2l
Assume that there exist an integrable function ¢[0,b] — R™ such that

Q(t, g(t =) < o (D)L (g));

where I' : [0, 00[—) is continuous and nondecreasing . Using the previous change of vari-
ables , we can reformulate the fractional partial differential equation (3.1)-(3.3) as the
abstract problem (2.1)-(2.3)

DEat) = Ax(t) +Qtyps)it € = [0,1],
Aylo—r, = bip(z(ty)),k=1,....m
z(t) +oe(y) = ¢(t),t €] —o00,0]

where 0 < a < 1,f: J xD — FE is a given function , D is the phase space defined ax-

iomatically which contains the mapping from ] —oo, 0]intoE, ¢ € D, Al,—,, = y(t5)—y(t;),
+ _ . — _ .

where y(t]) = hg%Jr y(tp+h)and y(t, ) = hhjﬂlﬁ y

t=ty, A: D(A) C E — FE is generator of analytic a—resolvant operator family («—ROF

for short ) S,

O=to<t1 <... <tm:b,fk:D—)E(k:LQ,...,m),

p:JxD —]—o00,b,A: D(A) C E — E is a densely defined closed linear operator

on E , and E a real separable Banach space with norm |.|.For any function y defined on

(—00,b] \ {t1,t2,...,t} and any t € J , we denote by y; the element of D defined by

yt(a) = y(t + 0)79 E} - 0070]

Therefore under appropriate condition on ¢(f), in view of theorem (2.1) the problem
(3.1)-(3.3) has a mild solution .
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