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Abstract

The main objective of this thesis is to study the well-posedness and temporal regularity in
Gevrey spaces and anisotropic Gevrey spaces for some partial differential equations. This
thesis is divided into two parts:

First one is to study the local and global well-posedness for the Kawahara equation and
the m-Korteweg-de Vries system with the initial data in analytical Gevrey spaces. In addition,
the Gevrey regularity of the solutions in variable time is provided.

The second part consists in studying the local well-posedness and the time regularity
for the Kadomtsev-Petviashvili I equation and the global well-posedness for the Kadomtsev-
Petviashvili II equation with initial data in anisotropic Gevrey spaces.

Keywords

Approximate conservation law, Uniform radius of spatial analyticity, Well-posedness , Gevrey
spaces, Bourgain spaces, Time regularity.



Résumé

L objectif principal de cette these est d’étudier le probleme de Cauchy local et global dans
les espaces de Gevrey et les espaces de Gevrey anisotropique pour certaines équations aux
dérivées partielles. Cette these est divisée en deux parties :

La premiere consiste 4 étudier le probleme local et global pour I’équation de Kawahara et
le systeme m-Korteweg-de Vries avec des données initiales dans des espaces analytiques de
Gevrey . De plus, la régularité des solutions en temps est fournie.

La deuxieme partie consiste 4 étudier le probleme local et la régularité temporelle de la so-
lutions de 1’équation de Kadomtsev-Petviashvili I et étudier le probleme global de I’équation
de Kadomtsev-Petviashvili IT avec des données initiales dans des espaces de Gevrey anisotropiques.

Mots clés

Loi de conservation , I’analyticité , bien posé, les espaces de Gevrey, les espaces de Bourgain,
la régularité temporelle.



List of symbols

We use the following notations throughout this thesis

IVP: Initial value problem.

GOOs: Analytic Gevrey functions.

G%*: Analytic function spaces.

G°: Class of Gevrey functions of order o .
G912 : Anisotropic Gevrey space.

G%% here s =5, =0 :Anisotropic Gevrey space.

v

v

v

v

v

v

v' H*: Sobolev Spaces .
v' H*1’2: Anisotropic Sobolev Spaces .

v" X, »: Bourgain space.

v’ X555 Gevrey Bourgain space.

v’ Xs ¢ p: Analytic Bourgain space.

v’ X, s, » ‘Anisotropic Bourgain space.

v ng,’fz :Anisotropic Gevrey Bourgain space.
v

C([0,T],G%%%) : The space of continuous functions from the time interval [0, 7] into
GG’B’S.

v Z(f), f+Fourier transform.

Z~1(f): Inverse Fourier transform.

v G': Space of all analytic functions.



v ' (R%): The class of tempered distributions.
v L*: Lebesgue spaces.
v/ mKdV: modified Korteweg-de Vries equation.

v' KP: Kadomtsev-Petviashvili equation.

Notation
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v Let f,g € Cl?l(Q), Q be an open subset of RY, we may write the Leibniz formula
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v The Fourier transform on R?
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Introduction

The Gevrey classes play an important role in the theory of the linear partial differential equa-
tions as intermediate spaces between the spaces of the C* and the analytic functions. In
particular, whenever the properties of a certain operator differ in the C* and in the analytic
framework, it is natural to test its behaviour on the classes of the Gevrey functions .

The basic example, and first source of investigation [26], is the heat operator in R d>2

0 d 71
L%
whose fundamental solution is given by

(47rxd)(1’d)/zexp[—(x%—|—---+x621_1)/4xd] for xg >0,
E(xl,...,xd) =
0 for x4 <0.

The function E is not analytic for x; = 0, however E is in C*(R?\0), this reflects on the
solutions of the homogeneous equation Lu = 0 which are not analytic in general, though
always C™. A precise estimate of the regularity of E can be given by observing that for any
fixed compact subset K C R?, 0 ¢ K, we have for all & = (o, ..., 0)

0%E| < CIM(at)?, x€eK, (1)

where C depends only on K.
Generalizing (1), one defines G°(Q), Q open subset of RY, 1 < 0 < oo, as the set of all
functions f(x) in Q such that for any K C Q .

0% f| <@, xeKk,

for a suitable constant C .
The Gevrey classes G°, ¢ > 1, have numerous applications, a few of the main applications
being listed below.

1. Gevrey micro-local analysis see [71].

2. Gevrey solvability see [20, 27].
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3. Hyperbolic equations see [11, 13].

4. Divergent series and singular differential equations [60, 70].
5. Dynamical systems see [69, 28].

6. Evolution partial differential equations see [21, 22, 55].

Jean Bourgain has been the first to observe the local smoothing effect related to the bilinear
estimate and to establish the well-posedness result for low regularity. In [9], he showed
global well-posedness for initial data in H® for s > 0. More precisely, this has been the first
well-posedness result in H* with s < % for perdioc KdV. G. Kenig, C. E. Ponce and L. Vega
[46] improved this result states local well-posedness in H®, s > —%. Well-posedness for the
non-periodic gKdV equation in spaces of analytic functions has been proved by Gruji¢ and
Kalisch [30]. By using the analytic spaces G°* introduced by Foias and Temam [22] and
which are defined by the norm

17y = [ 29 @ IFEPE <

they showed that for given initial data that are analytic in a symmetric strip {z =x+iy: [y| < 0}
in the complex plane of width 28 there exists a time T such that the corresponding gKdV so-
lution is analytic in the same strip during the time period [0, 7']. In other words, the uniform
radius of spatial analyticity does not shrink as time progresses. Further results on the uniform
radius of spatial analyticity have been established by Bona, Gruji¢ and Kalisch [10]. This
thesis is structured as follows.

Chapter 1: We introduce the necessary function spaces and Gevrey classes will be used
throughout this thesis.

Chapter 2: We study in section 2.4 the local well-posedness for Kawahara equation

{ du+ adu+ BAdu+you+ pud.(u*) =0,
u(x,0) = uo(x),

in analytic Gevrey spaces G°9* s > —%, 6 > 1 and 0 > 0. We use the local result and a
Gevrey approximate conservation law to gradually extend the local solution for all time. The
solution to the corresponding Cauchy problem for Kawahara equation belongs to G~ i.e,
u(-,¢) € G°(R) in spacial variable and u(x,-) € G>°([0,T]) in time variable .

Chapter 3: In this chapter study the initial value problem associated with a system con-
sisting modified Korteweg-de Vries-type equations

du+du+d.(u?) =0,
v+ B3y + 9y (u?v) =0,
u(x,0) = uo(x), v(x,0) =vo(x),

we will prove this initial value problem is locally and globally well-posed. Also, Gevrey
regularity of the solution in time variable is provided.
Chapter 4: Is devoted to the local well-posedness for the fifth order Kadomtsev-Petviashvili
I equation
{ du+adu+ddu+ 8x_18y2u—|— udwu =0,
u(x,y,0) = f(x,y).

4
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In anisotropic Gevrey spaces G192 51,5, > 0, and 8 > 0. Furthermore, the solutions be-
longs to G°(R) in x,y and belongs to G°? ([0, T]) in time variable .

Chapter 5: The local and global well-posedness of the fifth-order Kadomtsev-Petviashvili
IT (KPII) equation is discussed in anisotropic Gevrey spaces G192,

{ Ou— 0 u+ 0, ' 9fu~+udu =0,
u(x,y,0) = f(x,).



Chapter 1

Preliminary

In this chapter, we introduce the spaces of functions and the Gevrey classes which we shall
use in the thesis.

1.1 The Gevrey classes

The Gevrey classes play an important role in various branches of partial and ordinary differ-
ential equations. In fact, the name is given in honour of Maurice Gevrey[26]. Since the scale
of spaces G° starts from the analytic functions (with ¢ = 1) and ends in the C*- category
(with 0 = o).

Class of Gevrey functions of order o

Let o > 1 be a fixed real number. We begin by recalling the definition of G°(Q), class of
Gevrey functions of order ¢ in Q.

Definition 1.1. The function f(x) is in G°(Q) if f(x) € C*(Q) and for every compact subset
K of Q there exists a positive constant C such that for all & and x € K

0% f(x)| < clelt (@),
It will be sometimes useful to refer to the equivalent estimates
0% (x)| < RCI*I (@),
where R and C are two positive constants independent of & and x € K.

In particular G'(Q) = A(Q) is the space of all analytic functions in Q. Obviously we
have G*(Q) C G'(Q) whenever s < . Take note that both the inclusions

A(Q)c (G°(Q),

o>1

and

are strict.



1.2. SOBOLEV AND GEVREY SPACES

1.2 Sobolev and Gevrey spaces

Let us now consider the class of Cauchy problems for nonlinear dispersive PDE on R; x ]Rff ,
of the form
wy=Lu+Nu), (reR,xeRY) u(0,x)=up(x), (1.1)

and for which local well-posedness for initial data uy in a range of the Sobolev spaces
H*(R?) = W$?(R?) can be proved using a contraction mapping argument based on esti-
mates for the nonlinear operator N(-) in the Bourgain spaces X;;(R x R?) (see subsection
1.3 ). Here we denote

and h(D) is the Fourier multiplier given by

h(D)f = Z ' [h(E) Ff ()],

where h(&) is a given function .

For example, the Kawahara equation is of the form (1.1) withd = 1, h(£) = a&> — BE3 +
vE and N(u) = — o, (u?).

We limit attention to nonlinear operators N(-) containing second order and higher order
terms and satisfying the following assumption.
N(u) is a finite linear combination of k—linear operators Ny (uy, ... ,u;) for k > 2, where Ny
is of the form

k
f/\Nk(ul,...,uk)(é) = /§1+v..+§k:§ mk(él...ék)guj(éﬁ,

for a given symbol my. Here we use the shorthand

k—1
/§]+...+§k:§f(§1"”’§k) - /(]Rd)klf (51,-~~a§k—1,§ —;§j> d&l-udék—l-

For example, for the Kawahara equation we have N (u) = N (u,u) withmy (&1, &) = —ip (& +
&) and

FNo(ur,2) (8) = ~in [ (&~ &)ia(&1)d

The Sobolev Spaces H*

Natural spaces to measure the regularity of the initial data in Cauchy problems are the classi-
cal Sobolev spaces H*(R?),s € R , which are defined as

ey = [, (1+12F)

in the line, where .#/(R%) denotes the class of tempered distributions. We can write

Il = ||48)°7&)

|

HY(RY) = {f e.7(RY); FE)FdE < w} ,

-
L



1.2. SOBOLEV AND GEVREY SPACES

Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Their impor-
tance comes from the fact that weak solutions of some important partial differential equations
exist in appropriate Sobolev spaces, even when there are no strong solutions in spaces of con-
tinuous functions with the derivatives understood in the classical sense.

Proposition 1.2. (Proposition 3.1, page 46 in [56]).
1. If0< s <, then H* (R?) C H%(RY).

2. H*(RY) is a Hilbert space with respect to the inner product {-,-) defined as follows

I f.g € HRD, then (.00 = [ (1+16P)" FEI+ I a(E)as

3. Forany s € R, the Schwartz space ./ (R?) is dense in H*(RY).

4. Ifs1 <s<sp withs =051+ (1—0)s2,0<0 <1, then
0 -0
1A s < (£ Gt 1 N o -

A really interesting fact is that for positive integer values of s, we can give a description
of H*® without using the Fourier transform.

Theorem 1.3. (Theorem 3.1, page 47 in [56]) If k is a positive integer, then Hk(]Rd) coincide.s
with the space of functions f € LZ(Rd) whose derivatives (in the distribution sense) f ()
belongs to L*(R?) for every j < k. In this case, the norms

2’

k .
Il and Y || 79
j=1

are equivalent.

Furthermore, the following proposition allows us to relate "weak derivatives" with deriva-
tives in the classical sense.

Theorem 1.4. (Embedding - Theorem 3.2, page 47 in [56]). If s > k+ %, then H*(RY) is
continuously embedding in CX, (]Rd), the space of functions with k continuous derivatives van-
ishing at infinity. In other words, if f € H*(RY),s > % + k, then (after a possible modification
of f in a set of measure zero) f € CK(R?) and

£ llee < N1 llas-

Proposition 1.5. (Sobolev Lemma). For s > % we have
Jullz= < Cllul| s,

for some positive constant depending only on s.



1.3. BOURGAIN SPACES

The Gevrey space G%*(RY)

A class of analytic functions suitable for our analysis is the analytic class G%*(R) introduced
by Foias and Temam [22].
Now consider (1.1) with data ug in the Gevrey space G%+ (Rd) defined, for 6 > 0 and
s € R, by
1) d
GO(RY) = { € PR+ | fllgosgpay < ==}

where

o~

PIle) £ (&)

1F 1l 6oy =
12(RY)

We record the fact that any f € G%+ has a uniform radius of analyticity 0.

Lemma 1.6. (/79]) Every f € G%%(R?) has a holomorphic extension to the strip
Ss = {x+iy€ C?:x,y e R and lyj| < 6 forj= 1,...,d} .

Observe that the norm || f|| ;s.s is obtained from the standard Sobolev norm

Y

Il = H (&) 7(E)

2
L

by the substitution
f— 0lPl 7,

Indeed,
pairall f

1fllgas =

HS

1.3 Bourgain spaces

The Bourgain spaces or X; ,-space turn out to be an appropriate space to establish a fixed
point argument in. In this work, we will mainly use these spaces in order to prove the well-

posedness results for the Kawahara, mKdV, KP equations.

=h(&
Xf,b (€)

operator J; — ih(D) is defined to be completion of .7 (R, x R%)with respect to the norm

luellx,,, = || (€ <T—h(5)>bﬁ(t,€)||L%’§,

For 5,b € R, the Bourgain space X; = (R, x RY) associated to the dispersive

where

A&, 1) = (Vam)tH! /R T s, (e REERY),

is the space-time Fourier transform.
The space X; j, is well-suited for capturing the dispersive smoothing effect of the operator
d; — ih(D) away from the characteristic hypersurface T = h(&) (see section 2.6 of [82]).



1.3. BOURGAIN SPACES

By analogy with the relation ship G = e 9IPll(H*), we define the Gevrey-modified
Bourgain space Xj ; 5, for 6 > 0 by

"

with norm

SIELEV (v —n(E)ou(E,T)

luallxs s, =

2
12,

Note that X ; , is well-defined, since e 0Pl = 7 —1e=9ll.Z who maps X p in to itself, for
0=>0.

The restriction of X; j, to a time-slab (0,7’ x R? is denoted XST - This is a Banach space
when equipped with the norm 7

HMHXST/; = inf{HvHXw :veXspandu=von (0,T) x Rd} :
The restriction X5TS » 18 similarly defined, and then we clearly have

T _58||D|[ (T
Xssp=€ | H<Xs,b)7

"y

hence the well-known properties of X; ; and its restrictions carry over to X  ; simply by
the substitution u —s 911Plly.

10



Chapter 2

Kawahara equation '

In this chapter, we study a Cauchy problem for the Kawahara equation with data in analytic
Gevrey spaces
{ O+ adRu+ Bou+ Yo+ 1o (u?) =0, 2.1)

u(x,0) = up(x),

For x € R and ¢t > 0 the parameters o # 0, 8, v and u are real numbers.

The model (2.1); is also called the fifth order shallow water equation and is also called
the modified Kawahara equation for the nonlinear term o, («*). It arises in study of the water
waves with surface tension, in which the Bond number takes on the critical value, where the
Bond number represents a dimensionless magnitude of surface tension in the shallow water
regime, cf. [50, 49].

First, by using linear and bilinear estimates in analytic Gevrey Bourgain spaces X; 5 (R?)
and analytic Gevrey spaces G""S*“(R), the local well-posedness of the Cauchy problem for
the Kawahara equation on the line is established for analytic initial data ug(x) that can be
extended as holomorphic functions in a strip around the x-axis. Next we use this local result
and a Gevrey approximate conservation law to prove that global solutions exist. Furthermore,
we obtain explicit lower bounds for the radius of spatial analyticity r(¢) given by r(¢) > ct 1.
Also, Gevrey regularity of the solution in time variable is provided.

2.1 Function spaces

In this section we will present the elementary spaces and lemmas used in this chapter.

Analytic Gevrey spaces

A class of analytic functions suitable for our analysis is the analytic class G%» (R), which
may be defined as

GP3(R) = {1 € PRY I ey = [ @101 +EDPIFERAE <f . 22)

I Aissa Boukarou, Kaddour Guerbati and Khaled Zennir , Local wellposedness and time regularity for a
fifth-order shallow water equations in analytic Gevrey-Bourgain spaces. Monatsh Math 193, 763-782 (2020).
https://doi.org/10.1007/s00605-020-01464-x
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2.1. FUNCTION SPACES

for § > 0 and s € R. In the particular case where 8 = 0, the space G**(R) is reduced to the
Sobolev space H*(IR). Our first step is to recall the embedding property of Gevrey spaces ,
forall 0 < 8’ < § and s,s” € R we have

G%*(R) c G¥* (R), (2.3)

Le|fllgsy < Coy 560 flgos
We define also the spaces of analytic Gevrey functions G%%(R) for ¢ > 1 by

GO (R) = {1 € R /ey = [ 78 (14 EDIFERAE <f . 24

If uy € G%95(R), then ug belongs to the Gevrey class G°(R). In the case when ¢ = 1, we
denote G'%(R) = G%*(R). Thus, if ug € G%*(R) then ug is analytic on the line and admits
a holomorphic extension ug on the strip Sg = {x — iy € C;|y| < d}. Hence, in this context,
we refer to the parameter > 0 as the uniform radius of analyticity of the function u.

Analytic Gevrey Bourgain spaces

As in Gruji¢ and Kalisch [30] we consider a space that is a hybrid between the analytic space
and a space of the analytic Bourgain. More precisely, for s,b € R and 6 > 0 define X; (R?)
to be the Banach space equipped with the norm

e = [0S AHEDP(+ e+ 0@ aE DPdEdT,  @5)
where ¢(&) = a&> — BE3 +y€ . For § =0, X57s,b(R2) coincides with the space X ;(RR?)

introduced by Bourgain [8], and Kenig, Ponce and Vega [48]. Also, for 7 > 0, X 5T ; b(]Rz)
denotes the restricted analytic Bourgain space defined by

lullxz &2 inf{||v||X6va(Rz):v:uon (0,T) xR} . (2.6)

We consider also a space that is a hybrid between the analytic Gevrey space and a space
of the analytic Gevrey Bourgain. For 6 > 1 define X; 5. 57,,(]1%2) with respect to the norm

Julf, ;. = [, AHED 1+ s+ 9 () * a8 7 PdEds, @)

The next lemma shows that X 5 ;,(R?) is continuously embedded in C <[O, T],G%9%* (]R)),
provided b > 1/2. For § = 0 the proof can be found, for instance, in [82], Section 2.6.

1
Lemma 2.1. Let b > 7 S€ R, 6 > 1 and § >0, Then, for all u € X4 5, ,(R?) and some

constant Cy > 0 we have

ulr.6.65 = t:[‘épﬂ H”('af)||(;a-,5-,x(R) < COH“HXU’S’M(RZ)'

12



2.2. LINEAR ESTIMATES

Proof. First, we observe that the operator A% defined by

/\x o
A%y (&,1) =PI (E ), (2.8)
satisfies
lullx, 5, ,(r2) = IIA""SMHXV,,,(Rz) and ||ul| go.s.s gy = 1A% O ul| s ) (2.9)

where X; ;,(R?) is introduced in [44]. We observe that A°-%u belongs to C ([0, 7], H*(R)) and
for some Cy > 0, we have

1A% ulle(o,ry.es()) < Col AT ull, , (r2)- (2.10)
Thus, it follows that u € C ([0, T],GG*57S> and

lelle(po,r1.6005m)) = Collullx, 5.2 .11)

]

Remark 2.2. This will be of importance due to the fact that we will show that, given an initial
data ug(x) € GO95(R) there is a unique solution u € X(,?g,s,b(Rz)to the Cauchy problem

1
(2.1), for a certain b > 5 and therefore there is a solution to the Cauchy problem (2.1),

ueC([0,7],G9%(R)).

2.2 Linear estimates

Now we consider the linear Cauchy problem

{ du+ addu+ BAdu+you = F(x,t),

u(x,0) = up(x), (2.12)

by using Duhamel’s formula (Taking Fourier transform with respect to x in (2.12), solving
the resulting differential equation in ¢ and using inverse Fourier transform reduces the Cauchy
problem (2.12) to the following integral equation) we may write the solution

t
u(x, 1) = S(t)uo(x) — / S(t —1'\F (x, 1))t
0
where the unit operator related to the corresponding linear equation is
S(t) = yx—le—it(aés—ﬁﬁﬂi)yx,

here, the nonlinear terms F is given by ud,(u?) .

Next, we localize it in time variable by using a cut-off function y € C7’(R), with y =1
11

in [—3,5] , suppy C [—1,1] and define yr(r) = y(&). We consider the operator ®u given
by
t
D(u) (x.1) = Vi ()SOuo(x) i (0) [ Sle—)F () 213
0

Our goal is to solve the equation ®(u) = u. We estimate now the fist part in the right hand
side of (2.13).

13



2.2. LINEAR ESTIMATES

Lemma 2.3. (See [44].) Let s € R and 5 < b < 1. Then
w1 (0)S(1)uollx, ,w2) < C lluollms(r)- (2.14)
Lemma24. Let s€R, 3 <b< 1,8 >0and 6 > 1. Then
W1 (1)S(@)uollx, 5, w2) < C lluoll goss(w)- (2.15)

Proof. We observe, by considering the operator A%% in (2.8), that
lwi@S@uo I, w2y =C /R PO (14 1€ )P (14 [T+ 9(E) )
W+ 0(8)) Plao(€) |? dbde
= [ (1 £ (1 T+ 0(8) D
| W(e+0(8) Pl i(E) 2 dgdr

—C [ AH1ED* (14 | T+ 0(8)
R

.

W (T +9(8)) PlA%Pug(&) |? dédr

— ,0 2
= Vi(OSOAu0) [}, o)
Now, by using Lemma 2.3 , there exists C > 0 such that

1w (0)S () (A7 Puo) [, (r2) < € A7 uol s ) = C lluol| Goso )

O
We will estimate the integral part of ®(u).
Lemma 2.5. (See [44].) Let s€ER, § <b<1,0<T < 1. Then
t
Hu/l (t)/ S(t—1")F(x,t')dt’ <C|IFllx,, @) (2.16)
0 Xs,b(Rz)

Lemma 2.6. Let s € R, % <b<1,06>0and c > 1, then for some constant C > 0, we have

H i (1) /O Sl — )P (. )dr!

< CHF”Xo.S.s.bA(RZ)' (2.17)
X555 (R?) o

Proof. Define U = w(z) [§S(t —')F(x,')ds’. Let us consider the operator A% given by
(2.8), then we have

—_—X ~

t . !/ o
AT (E,1) =wy(t) / (e =119(8)) (BIEI° pr(e yar'
0

X

=) [ 1S6=aT3F)] (&1l
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2.3. BILINEAR ESTIMATE

Thus,

t
v (1) / S(t —1)ASSF (x,1')dt"
0

)
Ul . o) = AUy o) = \
o ' X, 5(IR?)

Using Lemma 2.5, we have

i

Lemma 2.7. Lets€R, 6 >1and 6 > 0. If% <b < b’1 < 1, then for any T > 0, we have,

vi(r) /OtS(t —1")AF (x,1)dt’

1)
< CHAG? FHXs,b—l(RZ) - C”FHXO'.E.X p—1(R?):
X,.5(R?) o

]

lwr()Fllx, ., @) <CTFllx , ) @), (2.18)
where C depends only on b and b'.

Proof. The proof of the Lemma 2.7 for 6 = 0 can be found in Lemma 2.11 of [82], for
8 > 0 as one merely has to replace F by A%9F where the operator define in (2.8).

O

2.3 Bilinear estimate

The next result provides the essential bilinear estimate needed for the proof of Theorem 2.12
and Theorem 2.18.

Corollary 2.8. (See [44].) If s > —%, let by > % be close enough to % and b’l > % Then
19k (uru2) Iy, , _, (r2) < Cllus HXS% (R2) Huz\lx&yb,1 (R2)- (2.19)
Remark 2.9. Setting

FE D) = (LHIED (L + [T+ (&) @m(E,7), i=1.2,

15



2.3. BILINEAR ESTIMATE

the estimate of Corollary 2.8 can be rewritten as

l9x(uru2) 1x, ., g2)

:H E(1+[E]"
(]t &)

sy (€,7)

12 (’)

T

_ S(1+18)° . ~
=C (EEGIE /Rzul(él,ﬁ)uz(ﬁ—51,T—T1)d51dn .
_ ol s+’ / AlELT) hE—&,t—m)
(T4 +9(E)D" = e (14 [E)*(1+ @ + ¢ (&N (1+]E = &) (1+]7— 71+ 9(§ — &))"

W (E—&,1—1)dédT

L2

£(R?)

<CllA ||Lér Hf2||LéT(R2)‘
’ ' (2.20)

Lemma 2.10. If's > _ZT’ letc>1,8 >0andb, > % be close enough to % and b} > % Then

19 (ur2)llx, 5,y e2) < Cllwnlly oy @2yl 5, 22 (2.21)
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2.3. BILINEAR ESTIMATE

Proof. We observe, by considering the operator A% in (2.8), that

[0rn)lx, 5., )

— |[eSIE (1 ED (1 + [T+ @ (&))" Fulunua) (€, 7)

Lér(w)
— (L[N (1 + |7+ @& 1S it (€, 7)
Lér(RZ)

= |1+ 1ED (1 + e+ 9 (&)1 E(Vam) 2Pl i <ty

1 (’?)

T

N

= (1€ (1 + T+ 9(E))" (AU A%0uy) (€, 7)

L; (R?)

T

= 8X(AG75u1AG’5u2)

Y

X5, -1(R?)

where 5|§]1/° < 0l —51]1/G+6]§1|1/°, Vo > 1.
Now, by using Corollary 2.8 , there exists C > 0 such that

|0 AZ S AT ) [y, rze) < CIA Pl ) 47000
=Cllunll ol 2 lx, 5, 52 -

O

Finally, for § >0 and ¢ = 1 we will need the restrictions of X; 5 , ,(R?) = X5, ,(R?) to

a time slab (0,7) x R. This space is denoted by X[ 5 ,(R?) = X! , (R?), and is a Banach
space when equipped with the norm /

||u||X§s7h(R2) = inf{||v||X67S1b(Rz) :v=uon[0,T] x R}.

Lemma 2.11. [75] Let s € R, 6 > 0, —% <b< % and T > 0. Then, for any time interval
I C [0,T], we have
06y, ) < Cllllyy - 222)

where y(t) is the characteristic function of I, and C depends only on b.
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2.4. LOCAL WELL-POSEDNESS

2.4 Local well-posedness

The previous sections provide all necessary statements to conclude the contraction argument
and to show local well-posedness. Y.Jia and Z.Huo [44] proved that the Cauchy problem of
Kawahara equation is locally well-posed for data in H®,s > —%. We improved this result,
states local well-posedness in G955, s > —%, o>1land o > 0.

Theorem 2.12. (Local well-posedness in G (R)) Let s > —%,G > 1,0 >0 and uy €
GOOs (R). Then there exist a real number b > %, which is near enough to % and a positive
time T depending only on &,0,s and ug, such that the Cauchy problem (2.1) is locally well-
posed in C ([O,T],GG"S’S(R)) :

From Theorems (2.12), we have the following Corollary (2.13).

Corollary 2.13. (Local well-posedness in G%* (R))) Let s > —%, 8 > 0 and uy € G%*. Then
there exist a real number b > %, which is near enough to % and a positive time T de-
pending only on 8,s and ugy, such that the Cauchy problem (2.1) is locally well-posed in

C ([(), T],G%* ) . Furthermore, the solution u satisfies the bound
lu(®)llgss < ellullxs,, <2Clluollgss, ¢ € 0,71, (2.23)

and

€0
T = : (2.24)
(14 [luoll gs.5 ()

for certain constants co = (8C22Y~?|u|)4, ¢o,C > 0 and a > 1.

2.4.1 Existence of solution

For the proof of local well-posedness in the analytic Gevrey spaces, we will use the standard
Banach contraction principle for functions chg’svb(Rz) in a given closed ball B. we define
again the integral operator

D(u)(x,1) = w1 (1)S(t)up(x) — y (t)/OtS(t — 1) uou® (x,1')dr'. (2.25)

If that is useful for the nonlinear estimates, as will be, one can also introduce additional
cut-off in dyu? and consider the equation

t
®(u)(x,1) = w1 (1)S (1o (x) — w1 (1) /0 S(t — ) yor (¢ wdud (x, £ )dr', (2.26)
which is actually identical with (2.25) since y>7 = 1 on support of yr.

Lemma 2.14. Let s > —2, 6 > 1, § > 0 and b > 3. Then, for all uy € G°95(R) and
0 < T < 1, with some constant C > 0, we have

1), 5,2 < Clluollgos.sry +Clul(2T)" _b"ul‘§c76,s,b(R2)’ (2.27)
and
1D(u) =Py, 4,2 < CIHICT)" Pllu—vlx, ;@ lutvly, ;@) (228

forall u,v e XG,&s?b(Rz).
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2.4. LOCAL WELL-POSEDNESS

Proof. To prove estimate (2.27), we follow

[y, , @ < lwi©SOull, , e

t
-1—‘ wl(t)/o S(t — 1" yor (f ) uowuPdr’

XG.S.s,b (RZ)

S CHUO ||GG767S(R2) + C|;u| H WZT (t>axu2

Xo‘,5.s‘l771 (RZ)

< Clutollgmas 2y +CIIT)! |

Xo550-1(R?)
< Clluollgossgez) +Clul T Pllully ;| g2

Here b; = b’ and b} = b, for the estimate (2.28), we observe that

v (1) /O S(— 1 )yr (1) (9 — 92 (3,

[900) - @0, ) =

Xc,&,s,b(Rz)
<C H ) (Ou® — A
l|fyar € >( ! * ) X5.5.55-1(R?)
<Clulr b’—bH duis? — O
m@T) ( xu xv) Xo.5.51/—1(R?)
< Clul @D Plutvlly, ) lu—vix, ;. )
Thus, from the previous results, we obtain (2.28).
O

We will show that the map & is a contraction on the ball B(0, r) to B(0,r).

Proposition 2.15. Let s > —%, oc>1,6>0andb > % Then, for all ug € G675’S(R), such
that

T = €0 (2.29)

(14 [[uoll go.s gy
the map ® : B(0,r) — B(0,r) is a contraction, where B(0,r) is given by

B(0,7) = {u € X5 5,5 ,(R?); ullx, 5., ,(m2) < 7} with r = 2Cl|uo]| go.5.5(w)-
Proof. From Lemma 2.14, for all u € B(0,r), we have

@G0y, 5,2 < Clliolgoss) +CIRICTY Pl oo

< S +Clu|@T)Y .

N~
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2.4. LOCAL WELL-POSEDNESS

If we define a = b,—l_b and ¢y = (8C22Y~?|1|)~“ then for T given as in (2.29), we have that
1

T < —,
(4clul2? ~br)7s

and hence,
| P(u) ||XG"5_’X’b(R2)§ r, YueB(0,r).

Thus, ® maps B(0, r) into B(0, r), which is a contraction, since

[ @)~ @), , 2 < CIHICTY Plu—vlly ;o lutvly,, )
< Clul @D Pllu—vllx, ) (Tl 5w+ 1V, . m2) -

S C|Au“|(2T)b _beru - VHXG,S,A‘J?(RZ)

<—|u—v me&sﬁh(Rz), Vu,v € B(0,r).

N | =

The proof is now complete.

2.4.2 The uniqueness

Uniqueness of the solution in C([0,7],G°%*(R)) can be proved by the following standard
argument.

Lemma 2.16. Suppose u and v are solutions to (2.1) in C([0,T],G%%5(R)) with u(-,0) =
v(-,0) in GF95(R), where 6 > 1,8 > 0 and s > —7 . Thenu=v.

Proof.
Setting w = u — v, we see that w solves the Cauchy problem

ow+ 0d>w+ BASw+yow + udw(u+v) =0, w(0)=0.
Multiplying both sides by w and integrating in space yield
wow + owd>w + Bwdiw + ywa, + uwdw(u+v) =0,

Thus, we have

1d ) B li 5 _/
ZdtHW(Ia )||L2(R) - Zdl/RW (l;x)dx— Rw(t,x)a,w(t,x)dx

(2.30)
-y /R w(t,x) 9 (u® —v?)dx,

since we have

/R w(t,x)3w(t, x)dx = /R w(t,2)3w(1,x)dx = /R w(t,x)dew(t,x)dx = 0.
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2.4. LOCAL WELL-POSEDNESS

Thanks to Equation (2.30) we have

d
I By = =20 [ wlex)aed —dx=—2u [ wlex)d1f(eowle, 0] dx,

where f = u+v. Integrating by parts the last integral we obtain

d
() oy = —n /R B (£, )W (¢, x)dx,
from which we deduce the inequality

d

(e ey | < N0 =712 WO 12y (2.31)

Since u,v € C([0,T],G°%%(R)) we have that u and v are continuous in 7 on the compact set
0,7] and are G°%*(R) in x. Thus, we can conclude that

|| Oxf 1l =0, xR) < € < oo (2.32)

Therefore, from (2.31) and (2.32) we obtain the differential inequality

d
e, ) sy

< c||w(z)||§2(R), 0<t<T.
Solving it gives
W ()72 < € Iw(O)Iog), O <T. (2.33)

Since ||w(0) H%Z(R) =0, from (2.33) we obtain that w(t) =0,0 <7 < T oru = v.

2.4.3 Continuous dependence of the initial data

To prove continuous dependence of the initial data we will prove the following.

Lemma 2.17. Let s > —%, 6 > 1, § > 0and b > 3. Then, for all ug,vo € G°95(R), ifu and
v are two solutions to (2. 1 ) corresponding to initial data uo and vo. We have

= VI1.6.5.5 < 2CoClluo —voll go.s.s(r)- (2.34)

Proof. If u and v are two solutions to (2.1), corresponding to initial data u( and vo, we have
from Lemma 2.1

u—vlrc6s= s;pT ] Ju( 1) =v(-, )l goss @y < Collu—vllx, ; , ®2) = Col|P(u) =PIk, 5 ,r2):
te|0, '
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2.5. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

By taking u,v € B(0,r) and T < ﬁ,
(4C | p[2?' ~br) P/ =b

[®() ~@lly,, @) < ViSO wo—vo)lx, , @)

t
v (1) /0 St =1 )yar (1) (da® — 90?) dt'lIx_, (o),

< Clluo —vollgossay + CRTY Plutvlly,, wlli—vx, , )

1
S CHMO - vO"GGv‘S‘X(R) + 5 Hu - VHXO'.S.X,/;(RZ).

Thus
@) - @)y, w2) < 2C]0— voll gos ey
then
u—=Vlr6.55s < 2C0C|luo —vollgo.ss(g)-

This completes the prove of Theorem 2.12.

2.5 Lower bound for radius of spatial analyticity

We shall state our second main result. For this, we need to recall an important property of the
space G%*(RR). For § > 0 and s € R, it is straightforward to show that if a function f belongs
to G®*(R), then it is the restriction to the real line of a holomorphic function f(x -+ iy) in the
strip

Ss={x+iyeC,ly| < d}.

This 6 > 0 is called the (uniform) radius of spatial analyticity of f.

In fact, the following Paley-Wiener theorem provides an alternative description of G%» (R)
(see [45)).

Paley-Wiener Theorem. f € G%* if and only if f(x) is the restriction to the real line of
a holomorphic function f(x+ iy) in the strip

Ss ={x+iyeC,|y| <8},

and satisfies the bound

sup || f(x+iy)||ms < oo
ly|<d

In the view of the Paley-Wiener theorem, it is natural to take initial data in G%* (R) and
obtain a better understanding of the behavior of solution as we try to extend it globally in
time. It means that given ug € G%*(R) for some initial radius & > 0 we want to estimate the
behavior of the radius of analyticity 6(7') as time 7 growth. This is our second novelty and
main goal in this chapter.
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2.5. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

In section 2.4 we have prove local well-posedness in the space G%*(R) with § > 0 and
s > —% (Corollary 2.13) i.e., the local solution is analytic in the spatial variable. In this
section, we use the local result and a Gevrey approximate conservation law to gradually
extend the local solution for all time. Furthermore, we obtain explicit lower bounds on the
radius of spatial analyticity r(z) at any time ¢ > 0, which is given by r(t) > ct~!, where
0 > 0 can be taken arbitrarily small and c is a positive constant, that will be described more
precisely later.

Our second main result for the Kawahara equation yields an estimate on how the width
of the strip of the radius of the spatial analyticity decay with time.

Theorem 2.18. (Lower bound for radius of spatial analyticity) Let s > —% and & > 0, and

assume uy € GH* (R), then the solution given by Corollary 2.13 extends globally in time and
forany T > 0, we have

ue C([0,7],G°T*(R)) with §(T) = min {50, %} :

where C1 > 0 is a constant depending on ug, & and s .

The method used here for proving lower bounds on the radius of analyticity was intro-
duced in [76] in the context of the 1D Dirac-Klein-Gordon equations. It was applied to the
modified Kawahara equation [66] and the non-periodic KdV equation in [77] improving an
earlier result of Bona et al. [10], to the dispersion-generalized periodic KdV equation in [35]
and to the quartic generalized KdV equation on the line in [78].

2.5.1 Approximate Conservation Law

We start by recalling that
S (u) = /uz(x,t)dx,

is conserved for a solution u of (2.1), since by using Riemman-Lebesgue’s lemma and inte-
gration by parts we have

1d ) 1d

1a _ld [, _
2dt”u(t)”L2(R) 2t Jo " (x,1)dx /Ru(x,t)a,u(x,t)dx

_ /R u(x,t) [—adlu(x,t) — BAu(x,t) — you(x,t) — pos(u?) (x,1)| dx
—u /R (e, 1) (u2) (3, 1)
:,I,L/Ruz(x,t)axu(x,t)

_ % /R 9e(18) (x,1)dx = 0.
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2.5. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

Our goal in this section is to establish an approximate conservation law for a solution to
(2.1) based on the conservation L?>(R) norm of solutions of the equation. Explicitly, we aim
at proving Theorem 2.19.

Theorem 2.19. Let k € [0,1] and 0 < T < Ty < 1, T} be as in Corollary 2.13, there exist
b e (1/2,1) and C > 0, such that for any 8 > 0 and any solution u € X}, ,(R?) to the
Cauchy problem (2.1) on the time interval [0,T], we have the estimate

sup u(t) g0y < 114(0) 1500 +CE*lull; -
te[07T] G9: 0 G9 O(R) X«;O,b (Rz)

Moreover, we have

sup (1) G50y < 14(0) 100y +C8* 1u(0) 150z
t€[0,T]

Theorem 2.19 is of fundamental importance as it guarantees, by combining it with Corol-
lary 2.8 and applying them repeatedly,we can glue intervals in a way to gradually extend the
local solution in time. This will lead to the global well-posedness of solutions in Gevrey
spaces, as in Theorem 2.18.

For the proof of Theorem 2.19, we require the following preliminary estimate.

Lemma 2.20. Given k € [0, 1], there exist b € (1/2,1) and C > 0, such that for all T > 0 and
uc X5’0’b(R2), we have

1Glx, o r2) < €8 llullx, , (r2): (2.35)
where G = 0, [(Al"su)2 —Al"s(u)z} and the operator A" given by (2.8).
Proof. LetL = [(Al"gu)2 —Alv‘s(u)z} . Then

o= gyt 69

= 145 ~ 5 )é
L% (R?) N </RZ (1+ |7+ ¢(&)])2(1-b) IL(E,T)|"dEdT | .
(2.36)

We shall calculate the Fourier transform of L:

L] = [@on? a1

= C|(Pllaxedl6ln) (&, 1) — Pl (@xn) (€, 7)

/Rz< S (E,, 1)e |~§—élﬁ(é_gm_ﬁ)_66€|ﬁ<g1,rl)ﬁ(§—él,r—n)>d€1drl

=C

< [ (eoledeal— ) atey, m)a(E — &7 - ) dEran.
R

We need the following estimate
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2.5. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

Lemma 2.21. For 6 >0, 6 € [0,1] and §,&; € R we have
31561l gd1811 _ o315l < 25 min(|& — &, |&])]® 815 —S1leBl5 (2.37)

Also, we have

(1+]6 = SN +[&1)
(1+16)) '

Proof. If & —&; and & have the same sign, then the left side of (2.37) equals zero and
the inequality holds trivially, therefore, we assume that £ — &; and &; have opposite signs.
Without loss of generality, assume § —&; >0and & <O0. If |§| < |E—&;|, thenE — &+ & >
0, and so the left side of (2.37) becomes

OIE—EBIEI| _ pBIEl  — pB(E—E1) =881 _ B((E—E1)+E)

min(|§ — &1,11]) <2 (2.38)

— 8((6=81)+81) (672661 — 1)
< (28]&)|)0e2051£0((6=50)+81)
= (28]&])8eS((E-8D)-4)

— (26|§1 |)966|‘§7§l ‘e"gl‘

Here, we have used the fact that, for x > 0, the inequalities ¢* — 1 < ¢* and e* — 1 < xe* both
hold, hence also ¢* — 1 < x%¢* forx > 0and 6 € [0,1].
On the other hand, if || > | — &, then & — & + &; <0, so the left side of (2.37) becomes

SIE—EIBIE] _ BIEl  — p8(E—E1),—881 _ ,—8((E—&1)+E)
— 36+ (28068 _ 1)
< (28]E —&|)9e20(6—61) e 0((6—C1)+¢1)
= (28|& — & |)Pe0((6=8)=8)

— (28]& — &1])0edIEG el
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2.5. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

For k € [0, 1], from Lemma 2.21, we write

()| <C/]Rz <ea|f:1|eae:—zsl| _eaa)m@m)ﬁ(é Eta)dedn,
< C/R2 [26 min(|& — &;|,]&; D]KeSIfSM|g(§l’fl)‘65\§f€1|m(g — &, 71— 1)|dEdTy

<C
R2

ot ‘éail'éﬂi* =] ", )l T(E &1 7l

< 0(45),(/]1%2 (1+1& zléjr||)g|()lx+ |§1|)’<65|§1\W@hm‘ea\é*éll‘g@ _gljf(;;?dg]dﬁ_

Setting v = (A"%u) and f(&,7) = (1+ |t + ¢(E)|)"W(E,T) we have el°1a(&E, 1) = (€, 1) =
FE, D)1+ |t+0(E)])~? and therefore we can write (2.39) as

-~

L(E,7)| <c<45>x/ (€ —&DSA+IEDE  |F(&,T)

o (rE)T (Fm @)y
R (2.40)
FE—&ne—m)
T fo—n o= Eypraed™
It follows from (2.36) and (2.40) that
1Gllx,, o :H S i)
ETGIE i
. % (416~ &5+ 1)
SCo) /Rz<1+\r+¢<5>r>2<lb></w (i
~ - 2 1
|f(&1,11)] If(E—&,T—1)| ’
'<1+m+¢<51>\>b<1+rr—n+¢<é—51>\>bd51d“> dﬁdr]

_ cus)" : JREEa -

(I+|t+o(E)NI? (1+1ED*

~ ~

5. N V(315 ek ) B

I+t +¢E)N" (A +[T—n+¢(E—&1)l)

12 (’?)

T
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2.5. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

Now by taking s = —k € [—1,0] we obtain

~

sl F&m)l
161k, vy < €A A BT /R (L& (L4 [z + o (&)
' f(E—E&,1—1)|
&) ri—a+oC & ", m

By Remark 2.9 we get

IGllxy, -z < CEE I, o

= C(48)M VI, e
| (2.41)
= CEAS)M A ull}, o
= C(A8) |l o
concluding the proof.
]

Proof of Theorem 2.19. Let x,0,T,b and u be as in the statement of Theorem 2.19. We
start by defining the auxiliary function V (r,x) = A'%u(r,x). Since u is real-valued we also
have V real-valued. Applying the exponential Al to Equation (2.1), it is easily seen that we
obtain

OV +addV + BV + vV +uA¥ou* =0,
which is equivalent to
AV +addV + BV +ydV +2uVaV = u(dV? — d.(A"2u?)).
Therefore, setting
G =0y [(AMPu)? — AV (u)?]

we obtain
OV +adV + BV +ydV +2uVaV = uG. (2.42)

Multiplying (2.42) by V and integrating in space we obtain

/ VoVds+ o / VSVdx+ / VOVdx+y / VoVdx+2p / V29,Vdx = / VGdsx.
R R R R R R (2 43)
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2.5. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

Integration by parts is justified, since we may assume that V (¢, x) decays to zero as |x| — oo,
and the same holds for all spatial derivatives.? Thus, (2.43) can be rewritten as

1d

2dt/V2dx+2/8 CR R dx+B/8 8V8de+y/8V2dx+ “/8v3dx ,u/Vde,

44)

and furthermore, the second, third, forth and fifth terms on the left side vanish

1d )
2dt/de ,LL/Vde

Now integrating the last equality with respect to ¢ € [0, 7] we obtain

[/szde /szde} ,,L/ /Vdedt (2.45)
Recall that

i) lgonge) = [ ENE NP = [ 17(E.0Pax= [ Vixna,

where in the last equality we used Plancherel theorem and the fact that we are assuming that
the solution u is real valued.
It follows from the last equality and from (2.45) that

/Vz(x,T)dx:/Vz(x,O)dx+2,u/ Xjo,r)(1)VG dxdt.
R R R2 ’

Thus,

(T Zs0 = N5 +20 [ 070V dr,

< @)oo+ 20| | o (VG dvar|. 246

Recalling that V is real-valued, it follows from Plancherel’s identity and Cauchy-Schwarz
inequality that

L xon@vedsd = [ Goom(V)(ED)on(I0)E 1deds

— [ (ton(IV)E Do ()G) & 1)ddx.

’Indeed, we are aiming to prove (2.35) for a given § > 0, but by the monotone convergence theorem, it
suffices to prove it for all & < & (the constant C being uniform). For U = A"%'u, we get by Cauchy-Schwarz
and by the assumption that u € X5 o, C LG5 o,

/|a,JU

where p = 8 — &' > 0and j € {0,1,---}. Therefore, by Riemann-Lebesgue, 97U — 0 as |x| — oo,

(E,1)|dé& :/|e(5l*5)‘§‘e‘s‘é‘§jﬁ(§7[)|d§ < (/gzjewlédg)% u(®)llGo < o,

28



2.5. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

Then, Holder’s inequality yields

‘/ %[0 T) (Z)VG dxdt
RZ 7

- ’/Rz(l + |T+¢(§)|)l_b(%[o,ﬂ(-)V)(§,1-)

(4]t 4+ 9E)) (xo.r ()G)(E, T)dEdT

VAN

‘(1+If+¢(€>|>1"’(m>(é,f)

(2.47)

LZ

2 (R2)

' (1474 0D (o (O)(E. )

2
Lér

(R?)
<||x0.17() me »(R2) 1 0,77(-) HXO,, | (R2)?

we have both —% <b-1< % and % <l-b< % Therefore, one can use Lemma 2.11 to
obtain

107100V 1y, ) < CIVIr, 22y
and
120.71)Cllx,, ) < ClNCxs, o

Since 0 < T < 1 and using the fact that yr = 1 for ¢ € [0,7]and the definition of || -
, (see (2.6)), it follows from (2.47) and from the last relation that

HXSTM(RZ)
[ xom@VG axar| <Vl o6l e
(2.48)
<CllyrVlly,, ,@llvrGlly, @)
Since —% <b-1< % and % <l-b< % it follows from Lemma 2.7 that
lwrVilyr, @) <ClVi, @) (2.49)
and
wrGlly e <CllGlhg, e 250)
Noticing that
Vi, e =l @) < ey 2y (2.51)

since we have 1 —b < b, we can conclude from it and Lemma 2.20 that for any x € [0, 1]
there exists a constant C such that

161y, (r2) < CO*lully, ,, (r2)- (2.52)
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2.5. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

Therefore, we conclude from (2.46) and (2.48)-(2.52) that

sup |lu < [Ju(0)|? +C8"ull; :
te[OPT]H (OG0 < 11(0) G50z, el 2)

Finally, by using the condition (2.23) we conclude that

S[up () G50y < 1(0) G50 +C8* (0 )H(;So
tel0

The proof is now complete.

2.5.2 Global extension and radius analyticity —Proof of Theorem 2.18
Fix 8y > 0,5 > —7, k € (0,1), and ug € G%S(R). It suffices to prove that the solution u(r)
to (2.1) satisfies
ueC([0,7),G°T4(R))  forall T >0,

where

§(T) =min {&,C;T~ ¥},

and C; > 0 is a constant depending on uy, &, s, and K.
By Corollary 2.13, there is a maximal time 7* = T*(ug, 8, s) € (0,c|, such that

ueC([0,77),GM(R)).

If T* = oo then r(t) = & and we are done.
If T* < oo, as we assume henceforth, it remains to prove

1

uGC([O 7),697 (R )), forall T >T*. (2.53)

We first prove this in the case s = 0. Then, at the end of this section, we do the general case,
which essentially reduces to s = 0.
The case s=0

Fix T > T*, we will show that, for 0 > 0 sufficiently small
()l Gaogmy < 2114(0)[Garogy: fort €10,T]. (2.54)

We need to set the following time-step

co < €0
(14 2@l gavsqgy)* (O + 40l Gaos gy )

where ¢ > 0 and a > 1 are as in Corollary 2.13 (with s = 0). The smallness conditions on 0
will be

<1, (2.56)

2T 3
6 <& and TOC5K22 || u(0) HG%O(R)
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2.5. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

where C > 0 is the constant in Theorems 2.19. Proceeding by induction, we will verify that

sup. (1)1 250y < 000y +1CE*23 [1u(O) [ gy 0 (2.57)
t€[0,nTp)
sup [|u(t)[Gs0(2) < 214(0)[[Ga0.5 (2.58)
1€[0,nTp)

forn € {1,---,m+ 1}, where m € N is chosen, so that T € [mTy,(m+ 1)Tp). This m does
exist, since by Corollary 2.13 and the definition of 7*, we have

o
(14 [[u(0)[| a0 ) )*

Ty < <T*, hence Ty <T.

In the first step, we cover the interval [0, Tp], and by Theorem 2.19, we have

sup [[u(®)lIgsogmy < 1(0)1Fs500m) + CEX (0350
IE[O,T()]

< [|u(0 )Ilcao +C6"||u(0 )||G500
where we used that
(0)llgsozy < I14(0) g0z (2.59)

since & < &y. This verifies (2.57) for n = 1 and now, (2.58) follows using again (2.59) as
well as

C8* |u(0)]| gy < 1.
The latter follows from (2.56), since Ty < T'.

Next, assuming that (2.57) and (2.58) hold for some n € {1,---,;m}, we will prove that
they hold for n 4 1. We estimate

sup [lu(t)[[Z50
ZE[VZTQ,(VZ‘FI)TQ]

< Hu(nT())HZG&O—i—CSKH u(nT)|? by Theorem 2.19

G9.0
3
< [[u(nTo) 750 +C8*22[|u(0)25,0 by (2.58)
3 3
< [[u(0)[[Z50 +nCE*22[|u(0) | 5,0 +CE*22[u(0)[2 50, by (2.57)

verifying (2.57) with n replaced by n+ 1. To get (2.58) with n replaced by n+ 1, it is then
enough to have

(n+1)C8%23 [[u(0) | gay0 < 1,
but this holds by (2.56), since

+1< —|—1<T+1<2T
n m T T
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2.6. TIME REGULARITY

We have thus proved (2.54) under the smallness assumptions (2.56)on 8. Since T > T*,
the condition (2.56) must fail for & = &, that is, the left side must be strictly larger than
1, since otherwise we would be able to continue the solution in G%*(RR) beyond the time
T, contradicting the maximality of 7*. Therefore, there must be some & € (0, & )for which
equality holds in (2.56),and using (2.55), we get

(4200l g0z
€0

a
3
C8"22[|u(0) [l gapogy =1

Y

):

hence,

A=

§=C1" ),
where
o
C23 1(0) | a0z (1+ 2[14(0) 02 )P

We have proved that (2.54) holds for this &, hence [[u(t)||gso(r) < e for t € [0, 7], and this
completes the proof of (2.53) for the case s = 0.

The General Case

For general s, we use the embedding (5.3) to get
o € GY*(R) c GY/2O(R).
The case s = 0 already being proved, we know that there is a 77 > 0, such hat
ueC([0,1y),GY/>0),

and B
ueC([0,7),G*7°), forT >,

where p > 0 depends on ug, &y and k. Applying again the embedding (5.3), we now conclude
that
ueC([0,1y),GY*),

and .
u EC([O,T],G’)T ’S>, forT >T,

and these together imply (2.53). The proof of Theorem 2.18 is now completed.

2.6 Time regularity

Our next goal is to study Gevrey’s temporal regularity of the unique solution obtained in the
Theorem 2.12. A non-periodic function f(x) is the Gevrey class of order o i.e, f(x) € G°, if
there exists a constant C > 0 such that

2Lf(x)| <CHane 1=0,1,2,.... (2.60)
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Here we will show that for x € R, for every ¢t € [0,T] and j,/ € {0,1,2,...}, there exist
C > 0 such that,

10/ dlu(x,r)| < CIHH (1o (11)°. (2.61)
i.e, u(-,t) € G°(R) in spacial variable and u(x,-) € G°°([0,T]) in time variable .

Theorem 2.22. Let s > —%, 6>1,6>0andB=y=pu=a=1 Ifuyc G%%(R), then
the solution u € C ([O,T],ch‘s'fs (]R)) given by Theorem 2.12 belongs to the Gevrey class
G>9(]0,T)) in time variable.

Now the regularity of the unique solution obtained in the Theorem 2.18. A non-periodic
function f(x) is the Gevrey class of order 1 i.e,f(x) € G! here 6 = 1, if there exists a constant
C > 0 such that

10l <c* 1) 1=0,1,2,.... (2.62)

Here we will show that for x € R, for every ¢ € [0,T] and j,/ € {0,1,2,...}, there exist
C > 0 such that,

10/ 0l u(x,1)| < CIHHL(N (1). (2.63)
i.e, u(-,t) € G'(R) in spacial variable and u(x,-) € G°([0,T]) in time variable .

Corollary 2.23. Lets > —1 and § > 0. Ifug € G%3(R), then the solution u € C ([0, T],G(T)s (]R))
given by Theorem 2.18 belongs to the Gevrey class G°([0,T)) in time variable.

2.6.1 G°-regularity in the spacial variable

Proposition 2.24. Let s > —% andlet6 >0, 0> 1, ucC ([0, T];GG’S"‘(]R)) be the solution
of (2.1). Then
ueG®inxVtel0,T],

i.e., for some C > 0, we have
10 u(x,1)| < (IN°,1€{0,1,---}, VxeR,r€l0,T). (2.64)

Proof. V€ [0,T], we have

1950 ) 1 /!5\2’ (1+1E)> [ (8, )*d&

_os|E|l/e s /o~
= [[1EPe I (1 e (g ) Pae.

We observe that

e?lél/g_ﬁ)ﬁ(_m >’é&<@> l;g\%, Vie{0,1,..},E €R.
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This implies that
EPle 21 < (anye.

Thus,
IOt ) ey < CLa@D! [ (14D (6 ) P
= 3o @D Nu(s1) 055 -
Since (21)! < A%l(l!)z, for some A; > 0, one conclude that, if s > 0,
|0u(x,1)] < [|9gu-,1) |2y < |fu(-0)|msmy < CoCL(D)!° Vi€ [0,T],

here Cy = ||u(-,1) ||Gg,a,s(R) and C; = A1Cg 5, this implies that u is Gevrey of order ¢ in x, for

s> 0.
Now, for —% < s <0, and for any 0 < € < 9, there exists a positive constant C = C; ¢ > 0
such that
28\§|‘ °
_ /o _ /o,
e g pag <c [ (021 (e 1) Pag
R (1+|E)~2

(2.65)
—c /R A1 (14 E > @(E, 1) PdE.

This implies that if u € C ([0,7];G%95(R)) and 5 < 0, then u € C ([0,T);G¥~¢(R)),

which allows us to conclude that u is in G in x, for all s > _ZT'

O
2.6.2 G°°-regularity in the time variable
We will now prove the temporal regularity of solution.
Let us consider as in [39], for € > 0, the sequences
¢(q)°
my = ,(g=0,1,2,...), 2.66
and
M, =€""mye>0 and (¢=1,2,3,...), (2.67)
where ¢ will be chosen (see [2]) so that the next inequality holds
k
Z ( )mlmk_l < mi. (268)
o<rek \!
Removing the endpoints 0 and k in the left hand side of (2.68) and using the sequence M,
we obtain
k
Z ( >M1Mk—l <M, Ve > 0. (2.69)
0<rek \!
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2.6. TIME REGULARITY

Next, one can check that for any € > 0 the sequence M, satisfies the following inequality
Mj < 8Mj+1, fOl’ j=> 2. (2.70)

Also, one can check that for a given C > 1, there exists & > 0 such that for any 0 < € < &
we have

Cr < M;, for j>2. (2.71)
For some C > 0, we define the following constants
8C 4C?
Moy = % and M = max {2 8¢ ﬁ} (2.72)
c’' c

The next lemma is the main idea for the proof of Theorem 2.22.

Lemma 2.25. Let u be the solution of (2.1) satisfying (2.64), then there exists & > 0 such
that for any 0 < € < & we have

10/ 0l u(x,1)] < MY+ Myy s, € {0,1,2,...},1 € {0,1,2,...}, (2.73)
forallxeR,t€]0,T)
In order to prove Lemma 2.25 we shall need the following key result.

Lemma 2.26. Given n,k € {0,1,2,...} we have

2o (m
Z Z < > < ) (n—p)+5(k—g) Lp+5g+1 < ) (F>LVL'"“ (2.74)
p=0g=0 r=1

where Lj, j=0,1,...,m positive real numbers withm = n+ 5k + 1

Proof. Forn,ke€{0,1,2,...} givenletm =n+5k+ 1. For k = n = 0 inequality (2.74) reads
LoL; < LoLy, which is true. Therefore, we assume that either k > 1 or n > 1. Then, changing
the order of the summations and making a change of variables gives

n k
n k
) ( » > ( q >L(n—p)+5(k—q)Lp+1+5q
k n
n k
= Z Z ( » ) < q )L(n—p)+5(k—q)Lp+1+5q

with iy(r) = max{O (==L iy (r) = min { [=51] 5k}, where [x] is the integer part of a
number x and [[x]] is the lesser integer that is greater than or equal to x. To complete the proof
of inequality (2.74) we must to show that

Y () ()<

g=io(r)
This is a consequence of the following result.
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2.6. TIME REGULARITY

Lemma 2.27.

20 )G, @)

g=io(r)
forall ip(r) < 0 <ii(r).

In fact, using (2.75) with 8 =i (r) it suffices to show that

< m— 4k + 4iy (r) ) < < m ) (2.76)

r r

For i) (r) = k relation (2.76) holds as an equality. If 0 < i;(r) < k then 1 <4 (k—i;(r)) and
therefore m — 4k +4i;(r) < m — 1 < m, which shows that (2.76) holds as a strict inequality.
This completes the proof of Lemma 2.26.

]
Proof. ( Of Lemma 2.27)
We prove it by induction on 8. For this, we use the following elementary inequality: If

a,b,c € N,b < athen
a a-+c
( b ) S < b+c )

Witha =n,b=r—1-5iy(r),c = 14 2iy(r) and using the definition of m gives

( r—1 —nSio(r) ) - ( 1”7—11_—1 5_105(];) > S ( m_rsf:(;(éll”i)()(r) >

Now, since for «, 3,7,6 € N with o < 8 and ¥ < 6 we have that

()(7)=(e)-

< r—l—nSiO(r) >< io/gr) ) . ( m—rs_kgéi)o(r) )( iol(cr) >< ( m—4kj4io(r) )

which proves (2.75) for 6 = ip(r). Next, we assume that (2.76) holds for ig(r) < 6 < i(r)
and we will prove it for (6 4 1). By using the induction hypotheses we obtain

Of (r—ln—5q>( ) 29: <r—1—5q><f]>+<l’—1—g(9+1)>(9f‘1)

q=io(r) -
( T )*( o 1-5(0+1) )( Gf—l )

Now witha=n,b=r—1-5(0+1),c=4(6+1) we get
( n ><(n+4(6+1)>
r—1-560+1) /) = r—0-2 J°
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Now, using the last inequality together with

<L>+(u11>:(:;11>’

we have
0+1
Z ( n )(k)<<m—4k+49)+(n+4(9+1)>( k >
=l r—1—>5¢q q r r—6-—2 0+1
< ( m—4k+46 )+< n+k+46+4 >
r I’—l
B < m—4k+46 )+< m—1—4k+46+4 >
B r r—1
< ( m—4k+40 )+< m—4k+460 +3 >+< m— 4k +460 >
r r—1 r—1
( m—4k+40 +1 >+( m—4k+460 +3 )
r 7‘—1
< ( m—4k+460 +3 >+< m—4k+46 +3 )
r 7‘—1
o ( m—4k+4(0+1) )
~ r )

which completes the proof of Lemma 2.27.

Now we are ready to complete the proof of the estimates (2.73) for 9/ dlu(x,1).
Proof. (Of Lemma 2.25)
We will prove (2.73) by induction. Let j = 0, for [ = 0, it follows from (2.64) and the
definition of M in (2.72) that

lu(x,t)| <C< MMy, VxeR,te€]0,T].
Similarly, for / = 1, we have
|Qeu(x,1)| < C* < MMy, ¥x € R, 1 € [0,T].
By (2.64) and (2.70), for [ > 2, there exists & > 0 such that for any 0 < € < &, we have
|0lu(x, )| <IN < M; < MM;, VxR, 1 €[0,T].

This completes the proof of (2.73) for j=0and [ € {0,1,...}.
Next, we will assume that (2.73) is true for 0 < g < jand [ € {0,1,...} and we will prove it
forg=j+1landl€{0,1,...}.
We begin by noting that

1071 Alu(x,1)| =10/ 9L (du(x,1))|
<1070 u(x, )| + 10/ 93 u(x, 1) + 97 9+ u(x, 1) | + 6/ 9L (9t (x,1)).
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2.6. TIME REGULARITY

Using the induction hypotheses and the condition M > 2, we estimate the second term

97 05 u(x,1), 9/ 913u(x,1) and 9/ 9!+ u(x,1) as follows

1070 Pu(x, )| < MPHMyysysj=M2MPUTUHM, )

1 .
< ZM2(1+1)+1MI+5(j+1)a

and .
19/ 9 u(x,1)] <M2J+1Ml+3+5j:M_2M2(1+1)+1M1+5j+3)
e’ 2(j+1)+1
S M Myys ),
and

4
. ) e .
10/ 91 u(x,)| <M My 1ys; < ZMz(JH)“MHS(jH)-

(2.77)

(2.78)

(2.79)

Next, we estimate the non-linear term , using Leibniz’s formula we write ;9! (dxu?(x,1)) as

p

o EE()

)‘3J Qal—H pu||aq8pu‘
p=0g=0

+1 j
<Y Y (TN ()2t M2 M,
= p +1=p+5(j—q) P59

p=0g=0 pP
=Mt Z ( ) ( Mi1—pis(ji-gMp+5q-
p=0g=0\ P J\P

Next, using Lemma 2.26, withn =1+ 1,k= j,L; =M;,m =1+ 1+5j, we obtain

+1 j l_'_l ]
Yy ( ) ( )Ml+1p+5(jq)Mp+5q

p=0¢=0 \ P p

no(m
< L,L Mo+ €)M,
Z:l , m—r (0+)

= (Mo+€)Mjy5j41,

then .
10/ 911 (u?)| <M2(1+1)(M0+8)Ml+5j+1

g M_2M2(j+l)+184(M0+8)Ml+5(j+1)

4
€ (My+¢€)

2(j41)+1
< 1 MPUFDTIM) ).
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2.6. TIME REGULARITY

Noting that in the last inequality we have used the fact that [ + 554 1 > 2, since we are
assuming that either j # 0 or [ # 0.

1 7
Now, choosing € < g = <m> < 1 to obtain
0

e*(My+e) <e*(My+1) < (Mo+1) (m) =1.

Hence,
. 1 .
810 W) < MRV My . (230
Combining this estimate with the estimates (2.77),(2.78) and (2.79) yields
. ,
10/ Ofu(x,1)| = M2(1+1)+1M1+5(j+1)-

Which completes the proof of Lemma 2.25.

O
2.6.3 Proof of Theorem 2.22
By Lemma 2.25, we have
10/ 0Lu(x,1)| < M¥ M55, j€{0,1,2,...}, 1 €{0,1,2,...},
where (@)°
_, c(q!
M, =¢g'"1 Lg=1,2,....
! (g+12 4
Applying this inequality for j € {1,2,...} and [ = 0 gives
- - 1sel(50))°
o/ u(x,1)] <M¥*'M — w251\
| tu(xa )| 5j . (5j+1)2
MmN’
. 2.81
< LoLi((5))° 280
< LoL/A((j1)°)°
<Ay (e,
M? .
where Ly = Mec, L = =~ since (57)! < A%(j!)° for A > 0 and Ag = max{Ly,LA>°}. We
also have from (2.73) for [ = j =0, that
lu(x,1)| < MMy = M%, Vx€R, £ €[0,T]. (2.82)

Setting C = max{M%,Ao}, it follows from (2.81) and (2.82) that for j € {0, 1,2,...}, we have

10/ u(x,1)| <CTH(j1)°, VxeR,:e(0,T].

Hence, u € G int.
Which completes the proof of Theorem 2.22.
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Chapter 3

Coupled system of m-KdV equations'

3.1 Introduction

In this chapter, we study the initial value problem associated with a system consisting modi-
fied Korteweg-de Vries-type equations

du+ddu+ad (u?) =0,
v+ B2y + o (u?v) =0, (3.1)
u(x,O) = uo(x), V(xao) = V()(x),

where (x,¢) € R x RY, u = u(x,t) and v = v(x,1) are real-valued functions and 0 < 8 < 1 is
a constant.

This system was derived by Gear and Grimshaw [23] as a model to describe the strong
interaction of two long internal gravity waves in a stratified fluid, where the two waves are
assumed to correspond to different modes of the linearized equations of motion. It has the
structure of a pair of Korteweg-de Vries equations with both linear and nonlinear coupling
terms.

For B =1, the system (3.1) reduces to a special case of a broad class of nonlinear evolution
equations considered by Ablowiz et al. [1] in the inverse scattering context. In this case, the
well-posedness issues along with the existence and stability of solitary waves for this system
are widely studied in the literature.

3.2 Function spaces

The completion of the Schwartz class S(R?) is given by X g 5 M(Rz), fors,p € R, 6 >0 and
o > 1, subjected to the norm o

= [ EDP (- BN (g 7) P dgdr,

2
w
Il o

and
/o s ~
W3, 5,00 = [, " (118D 1+ e = &) | #(E.7) P dgde.

I A. Boukarou, K. Guerbati, Kh. Zennir, S. Alodhaibi, S. Alkhalaf. WellPosedness and Time Regularity for
a System of Modified Kortewegde Vries-Type Equations in Analytic Gevrey Spaces. Mathematics 2020, 8§,
809,doi.org/10.3390/math8050809.
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3.3. LINEAR ESTIMATES

For any interval /, we define the localized spaces X g (IS =X p (R x I') with norm

0,0,5,b
olp gy =0 (Wl Wlss =}
and Xéﬁ’s’b with norm

Wllxy ., Rty = inf {IW llxs, s WlRsr = w} -

It is well known that the spaces X g 5.5 1 continuously embedded in C <[O, T],Go9%5 (R)),
provided b > 1/2. /

3.3 Linear Estimates

By using Duhamel’s formula of the Cauchy problems (3.1), we define the following applica-
tion with the use of cutoff functions satisfying y € Ci, = 1in [—1,1] and suppy C [-2,2],
yr(t) = w(57), we consider the operator A, I given by

t
Al v](6) = w(OS(huo — wr (e) [ (e —1)R (W)
0
3.2)
t
Clu,v](t) = y(t)Sp(t)vo — y/T(t)/O Sg(t—1" )R (t')dr',
where S(r) = e~ % and S g(t)=e" B9 are the unitary groups associated with the linear prob-
lems. The nonlinear terms define by Fi = d,(uwv?), F> = ox(u?v) .

Remark 3.1. The evidence for linear estimates is the same as in Chapter 2.

Lemma 3.2. ([18]). Let s,b € R, § > 0 and ¢ > 1. For some constant C > 0, we have
Iw)S@uollx, , ) < C lollgoss e,

Iw©Ss@olly, ;.2 < C 0l o)

Lemma3.3. ([18]). Lets€ R, -1 <b' <0<b<b +1,0<T <1, 8§ >0and 6 > 1, then
for some constant C > 0, we have

t !/
wrlt) [ S(e=1)F (o <CT" PRIl )

Xo’,ﬁ,sﬁb(Rz)
and .
t t —t" B (x,t)dt <CcrihY R .
o) [spe-rmenar| - <er iRl o
XG.(S.s,b(R ) 7'7
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3.4. TRILINEAR ESTIMATES

Lemma 3.4. Let © € S(R) be a Schwartz function in time, s € R and 6 > 0. If —% <b<
b < % then for any T > 0, we have,

b'—b
1©7 (Owllx, ,,®2) < CT” lIwllx; , ®2);

and

1©7 (t)w| <CT?||w]|

X§ (B2 X5 @)

where C depends only on b and b'.

Lemma 3.5. ([77]) Let s € R, § > 0, —% <b< % and T > 0. Then, for any time interval
I C [0,T], we have

1200wl ) < Clwllg

and
21l gy < Cllwlypr

where X;(t) is the characteristic function of I, and C depends only on b.

3.4 Trilinear estimates

The following Lemma states the desired trilinear estimate.

Lemma 3.6. ([18]). Let s > —%, b > % and b’ be as in Lemma 3.3. Then

1 0xv?) Ilx, , @) < C 1w llx,, |l v Hxﬁ  R2)’

and

1 0:Gv) | <Clullz, v

XB (R2) xP (r2) -

Remark 3.7. Setting
[iE,0) =L+ IE) (1 + ]t =& NMia(§, 1), i=1.2,

and
gi(&,t) = (1+ &) (1+]t—BE)Wi(E,7), i=1.2,

the estimate of Lemma 3.6 can be rewritten as
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3.4. TRILINEAR ESTIMATES

|9 (urviva)lx ,, w2)

1 s
o ey

L%‘T(Rz)
= e G e & 8t n - mdtdgdndn|
ET
_dl_ga+iEy / A, g6 )
(T [r =& Jrs (1+[EN(1+m = &N (1+ ] (1+ 22— BE

2E-&-&,1—11—1n)

THE— &Gt l-1—n-BE— & &ymoiedndn

12 ()

<Cllfillz gy lenllz e lg2llzz ooy

and

e (”1”2V1)||Xﬁ (®2)

L+|EDS
- H (1 Jgr(|r— Egﬂ)b'”l”ﬂl(éaf)

L%,T(RZ)
=C (lf_ﬁitfé);nb/ /RJ‘Al(ﬁhfl)fz(iz,Tz)VAl(f—ﬁl—5277—’51—Tz)dﬁldﬁzdﬁdfz .

E(1+]E])° / fi&,m) F2(&, 1)
(1+]7—BENY Jrs (1 +|E)5(1+ |11 — EF)or (1+[E])(1+ |7 — &3P

) g16—-&—-&,7-11—-m)
I+ =& -&) A+ |t—t1—n—B(E & —&)3)n

d&1d&dTidn

L%’T(Rz)

<ClAfillg @Al @llsilz @)
Lemma 3.8. Lets > —%, 0c>1,6>00b> % and b’ be as in Lemma 3.3. Then

9c@®) llx, 5 ey < Cllullxg @) 1V s o

Gsb

and
100 sy = C el V-
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3.4. TRILINEAR ESTIMATES

Proof. .
Asow (&,1) = P11 TH(E ), (3.3)
Sy = (vam) 238 G v

< (Va2 [ T - gt o)l G — G )

1%l 75(&y, 1) dE dErdT d Ty

= A%.0yAd.0pAS.0y,

and
1o o~~~
S i = (v2m) 26815l " R ixy

< (Va2 [ P51 a(E gy p ) (G )

68‘§2|I/6{/\((§’2, Tz)d@ldézdfldfz

:AstuA&"uASva,

since 8 [ & [V0<S1E & |7 +8]& ~& [V +8 (& [V°, Vo >1. Then

/o s WY
a2 I, ., m2y =1 P8 (T ED L+ |7 = €80 (0] (6,7) 2 e

<[l 9(A%TuUA®OVAZOY) Ik (o),

and

=] 7 (14 €)1+ 7~ &) aan) (€. 7) 1z oo

10 s e

<I| AP CuAD TS ) [ o

Now, by using Lemma 3.6, there exists C > 0 such that
| 2:(A%TuA®OvA%V) |y g2y < C | A%Cux,, || AV H2 ! (&)

=Cllullx,s,,llv
G(Ssb

(R2)’
and

| 9:(A>CuA® CuA® V) |y, gy <C | A%Cullg I A% Vlxe e

=C|lu H)Z(m&x,bH v HXfié,s,b(Rz) ‘
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3.5. LOCAL WELL-POSEDNESS

3.5 Local well-posedness

Xavier Carvajal and Mahendra Panthee [18] proved the IVP (3.1) is locally well-posed for
datain (up,vo) € H*(R) x H*(R),s > —%. We improved this result, states local well-posedness

in Go95(R) x GO%%(R),s > —1,06 > 1and § > 0.

Theorem 3.9. Let s > —5,0 < < 1,6 > 1,8 > 0 and (up,vo) € G%95(R) x G95(R),
Then for some real number b > % and a constant T =T (|| (u0,v0) || go.55(r)xGos.5(r))» Such
that (3.1) admits a unique local solution (u,v) € C ([(), T],GG’&S(R)) x C ([O, T],G""S’S(]R))
Moreover, the map (ug,vo) — (u,v) is Lipschitz continuous from G®%3(R) x Go95(R) o
C([0,7],G%%5(R)) x C ([0,T],G%(R)).

Corollary 3.10. Let § > 0 and s > —3. Then for any (ug,vo) € G%(R) x G®*(R), there
exists T =T (|| (u0,v0) || gs.s(r) x gos(R)) and unique solution (u,v) of (3.1) on [0,T] such that

(u,v) €C([0,7),G°*(R)) xC([0,T],G**(R)) .

Moreover the solution depends on (ug,vo), where

T— <0 . (3.4)

1
<1+ || (uoavO) ||2G6’S(R)XG615(R))S

Furthermore, the solution satisfies

1
H(u’V>||X5,S,,(R2)><X§vh(R2) < 2C|’(u0>VO)HG‘S-»V(R)XG&S(R)a b= 5 + €, (3.5)

with constant co, and C > 0 depending only on s and b.

3.5.1 Existence of solution

We are now ready to estimate all the terms in (3.2) by using the trilinear estimates in the
above Lemmas. We define spaces

BG,S.,SJJ = XG,S.,S,b(RZ) X Xﬁ

0’6’”}([&2) and NC9Os — GG,B,S(R) X GG,B,S(R)

with norms

1) =m0l 0Vl o

and similar for N9+

Lemma 3.11. Let s > —%, c>1land 6 >0, b > % Then, for all (ug,vo) € N®%% and
0 < T < 1, with some constant C > 0, we have

I (AL Tl 1, 5., < € (I @0.90) llyoss #7611 @) I 5,) . G6)
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3.5. LOCAL WELL-POSEDNESS

and

(Al v] = Alu®,v7], Elu v] = Tl v D . 5.

2
<t u—u' v =), 5, (I, 5., 3.7)
110 1B g, 10 3 5+ 1075, )

forall (u,v),(u*,v*) € Bs 5 5 p-

Proof. To prove estimate (3.6), we follow

I ALY x5, 2 <Cllto lgossmy +CTE Nl ullx, 5, @)1V I

65 vb(Rz)
(3.8)
< C | (u0,90) llywos +CTE || () 3,
and
€ 2
H F[u7v] ng,é,s,b(Rz) <C H Vo "G‘fﬁ‘s»S(R) +CT ” u ”XG’&SJ)(RZ)” v ng,é,s,b(Rz)
(3.9)
< C (0.v0) llyos +CT% || (e) [, -
Therefore, from (3.8) and (3.9), we obtain
| (Al v, Tl v]) s, 5, < € (I (0,v0) llyess +T° I (w,v) [13, ., )
For the estimate (3.7), we observe that
t
Afi,v] = Al v¥] = wr (1) / St 10, (0 —u'v™2) (x, ')
0
and
t
Tu,v] — Tl v*] = wr (1) / Sp(t—1")0x (v —u™v") (x,r)ar,
0
where
o = o (v — u*v*) = 9, [v(u +u ) (u—u*)+u (v — v*)} ;
and
o' = o (uv* — u*v*?) = 9, [u(v—f— V(=) v (u— u*)} .
]

We will show that A x I" is a contraction on the ball B(0,R) to B(0,R).

Lemma 3.12. Lets > —%, 6 > 1, 8 > 0 and b > %. Then, for all (uo,vo) € N°°%, such that
the map A xT":B(0,R) — B(0,R) is a contraction, where B(0,R) is given by

]B(OaR) = {(M,V) € BG,S,S,b; H(u7v)||Ba,5,s,b < R}’
with R = 2C||(u0,vo0) || yo.s.-
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3.5. LOCAL WELL-POSEDNESS

Proof. From Lemma 3.11, for all (u#,v) € B(0,R), we have
€ 3 R £p3
H (A[M,V],F[M,V]) ||B(;7573,b§ C ” (M(),V()) HNU@W +CT H (M,V) HB(,’(gvs,bS §+CT R .

1
4CR?’

<R, Y(u,v)€B(0,R).

0,6,5,b —

We choose T sufficiently small such that 7¢ < hence,
| (Al v), Tl v]) ||
Thus, A x I" maps B(0, R) into B(0,R), which is a contraction, since

” (A[uav] _A[u*7V*]7r[u7v] - F[u*7V*]) ||Bo'76,s,b

< T | w—uv =) 5,5, (1 00) By, + 1 060) ) @) s,

107 1,500 )

S 3CT£R2 || (I/l - M*,V - V*) ||Bo'.,5.x.,b

3
<2l w—u =)

for all (u,v) € B(O,R).

||BG757S71,7

To proof of the uniqueness see [6].

3.5.2 Continuous dependence of the initial data

To prove continuous dependence of the initial data we will prove the following.

Lemma 3.13. Let s > —% andc>1,6>0,b> % Then, for all (ug,vo), (u,v) € N9, if
(u,v) and (u*,v*) are two solutions to (3.1) corresponding to initial data (ug,vo) and (ug,v;),
We have

1 ="y =yl co.11.6005 ()2 < 2CoC | (o — s, v0 = v§) [l yo.o.s-

Proof. If (u,v) and (u*,v*) are two solutions to (3.1), corresponding to initial data (ug, vo)
and (ug,v;), we have

e = lle(o,77,Go05 () < Collu—ullx 5, (m2):

and
v =vlle(o,r),gossm)) = Collv—v ”Xf,a,s,b(Rz).

By taking (u,v), (u*,v*) € B(0,R) and T¢ < 27,

3
= g, < C I 0 =00 =) lyoss +5 Il (= 'v =) g, 5,
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

And
3
|| V—V* ||Xﬁ5 b(RZ) S C || (”O_“87V0_V3) ||NG’5’J +Z || (M—M*,V—V*) ||Ba,5,.v.b :
7,0,5,

Thus

| (u—u*v=v") B, s, <A4C || (o —ug,vo—1p) llyosss
then

H (I/t — M*,V — V*> HC([(),T],GO"S’s(R))z < 4C0C|| (I/l() - uEk)7v0 - Vé) ||N°'=5=5'

This complete the prove of Theorem 3.9.

3.6 Lower bound for radius of spatial analyticity

3.6.1 Approximate Conservation Law

In the view of the Paley-Wiener Theorem, it is natural to take initial data in G%*(R) x G%*(R)
to obtain the best behavior of solution and may be extended to be globally in time. It means
that given (ug,vg) € G*(R) x G%*(R) for some initial radius § > 0, we then estimate the
behavior of the radius of analyticity 6(7) over time.

The second result for problem (3.1) is given in the next Theorem.

Theorem 3.14. Let s > —%,0 < B < 1and & > 0. Assume that (ug,vo) € G%*(R) x G5 (R),
then the solution in Corollary 3.10 can be extended to be global in time and for any T > 0,
we have
(u,v) €C([0,7),G°M*(R)) x € ([0,7],G°T*(R))
with
8(T) = min {&,C, 7~}

where o6y > 0 can be taken arbitrarily small and Cy > 0 is a constant depending on wy, &, s
and oy.

We start by recalling that
I (u,v) = / (u* +v*)dx,
R
is conserved for a solution (u,v) of (3.1). Our goal in this section is to show an approximate
conservation law for a solution to (3.1) based on the conservation the L?(R) norm of solution.
Theorem 3.15. Let k € [0,3) and 0 < Ty < T < 1, T be as in Corollary 3.10 with s = 0,

there exist b = % +¢& and C > 0, such that for any 8§ > 0 and any solution (u,v) € BY

5.0 10

the Cauchy problem (3.1) on the time interval [0,T;], we have the estimate

e (), vO) 350 < 11((0),v(0))[Is0 +CE¥||(u,v) |55,
te|0,17

Moreover, we have

e 1Gu(0), V()50 < 11(12(0), v(0) [R50 +CE*[1(1(0), v(0) [[35,-
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

We need the following estimate.

Lemma 3.16. Given k € [0, —%), there exist b = %4— g, C>0and (u,v) € Bs o, we have

1(G1,G2)lly,-y < CE (1)l

where
G| = o, [(Aﬁ’luA‘s’]vAa’]v) —Aa’l(uvz)} ,

and
Gy = Oy [(A%1uA® ua®1v) — A% (uPv)] .

Proof. LetL; = (A%1vA%!1uA%1v) — A%1(1n?). Then

—~ ) -
: 1 L (R?) N </RZ (1+ |r|—§§|3|)2(1—b) | Li(E,7) |2 dgdf) _

G = H Li(&,T
We shall calculate the Fourier transform of L

’LAI(QT)’ = ‘(A‘S’IVA‘SJMA‘S’IV) —Aavl(uvz)’ = C‘(e‘smﬁ* Pl3ine e5|5‘\7*)(§,1:)

G (]

=C / (PlaEr, 7)1, m)ed S0 RI5E — g — &, 17 - )
R

—66|€|il\(§1 TV, V(-8 -6, t—T1 — Tz))d&ldﬁzdﬁdh

<C (e5|§1\e5léz\65lé—€1—€z\ _ e&él)
R4

X[u(&, t)v(&, m)V(E - & — &, 71— 11 — »)|dE1dErd T d .
We will use Lemma 2.21 to prove the following corollary.

Corollary 3.17. For 6 >0, 0 € [0,1] and £,&1,& € R we have

0
BIElEl 3lE-E—&l _ BlEl 45<1+|5_51_(52”('%‘51')(”‘52') 1611162l 316618l
- 1+

Proof. If &;,& and & — &) — &, have the same sign, there is nothing to prove. Without any
loss of generality, suppose & > 0 and & < 0. If & <0 and & > 0, the change 81 =&
and 52 = & will reduce the result to the previous case. If & — & — & > 0, writing o =
El+(E—&E —&)=E&—& wehave a > Osince & — & — & > 0implies that E — &, > & > 0.
Using Lemma 2.21, we obtain
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

B1E1] B1E pBIE—E1—Eal _ BIEl — Blal 1] _ Slatél

< RS min{|& — &), |&]}]° 9161l Bzl D161l

Analogously, if £ — & — & < 0, then taking A = &+ (§ — & — &) = & — & <0 we have
0161101520816 =C1 =Gl _ o8IE]  — BIA8181] _ o8IA+Ei]

< RS min{|E — &1, |E1]}]° 0161l B2l D112l

Therefore, for

{ min{|§ — &, [&|}, if E =& — & >0,
A=
min{|§ —&|,|&1]}, if E —& —& <0,

we can write

918110181018 -81=6| _ p8I8] < [25A]965\§1|e5\§2|e5\§—§1—§2|_

Using this inequality (see Lemma 2.21)

(1+[8=&iD(A+181)
(1+16) '

And now we can estimate A in the following way. If £ — & — &, > 0, then

(1+1]6 =& +[&)
(1+15)) '

min(|§ —&;],1&1]) <2

A =min{|§ - &],[5[} <2

Now observe that

L+ =& =1+[6-8—&+&| <1+ |8 -& =& +1&]
=(1+[E =& =& +[8&]) — 18— & —&l&]
ST+ =& = &) (1 +]&1]),

which implies that

(I+[6 =G =& +[&)( +]S))
(1+1c]) '
On the other hand, if £ — & — & < 0, we have

(1+[E =D +1&il)
(1+16)) '

A<L2

A=minf{|¢ —&[,|&[} <2
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

And the same procedure as above tells us that 1 +|§ — &;| < (1+1§ — &1 — &) (1 +&;|) and

we can write
(1416~ &1~ S +[&])(1+]5])

A=z (1+]E)

In other words, we conclude that

(1+16 =81 =)+ [& (1 +[&))

AL2

(1+1c]) ’
and the result is proven.
O]
For k € [0, %) C [0, 1], one can see that
: 2
IG5, ) = —Li(&,7)
G [ERACES T )

« &P (146 & -&DU+IEDO+IED "
< (C468)? /Rz (1+ |t — E3)20-D) [/R4 ( (1+&]) )

w 916110182 ,01E—E1 =&

2
X |w(G1, T)V(&2, )V(E — 81 — 62, T— Ty — Tz)\dildizdndb] d&dt

1 " K o Koy
= C(48)™ (f_ﬁ|f_'?3,>1_b LB+ ) aE, )l (14 (&) 9(E. )
2
xede=S-8l(1 4 |E — & — &) TE — & — &, T— 1) — T)dE dEdTd T
1% (R2)
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

Now by taking s = —k € (—%,O], we obtain

S(I+|sh~™ Olli(&, 1) e219219(&, 1)
G HXO,bfl(Rz) < C(45)" /]1%4

(I+|z=&3)t* (I+1&D (1+[&))°

Dl (S T T

(1+8 =& = &l) rdnde L (R)
- i} §(1+|§|)7K eS‘é]'(l‘i‘|T1_§]3|)bit\<§lyfl)
= C(48) (1+Ir—§3|)”’/ﬂz<4 (1 1& ) (1 7 = &P

I+ |5 - BE TG, )
(I |&) (1 + |1 — BEI)P

St —n—BE-& &) PTE -G T —D)
(I8 =& =& (I+t—n—n-B(E-&—&))

~d§1d§2df]d’1’2

Lz (R?)

,T

Setting

w= (A1), f(§,7) = (1+§ — 7°|)"W(&,7) we have ® (&, 7) = W(&,7) = f(§,7)(1+
li(i— )7,

o= (A1), g(§,7) = (148 — B73))*®(&, 7) we have 2I5(8, 7) = B(&,7) = ¢(&, ) (1+
|& — B73|) " therefore we get

~

ClEA+IE])TE f&,m)
1l 1cm2) - < C(40) <1+|r—53|>1—b/m4<1+r&r>s<1+\n—§f|>b
4(& )

(14160 (1 +]7 — BE|)P

g€—-&—&.1—11—m)
I+ =& -&)(+[t—t1—n—B(E - —&)3|)°

~d§1d(§2d”€1d’€2

L2

£(R?)
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

By Remark 3.7 we get

2
1G1llxy,1m2) - = COFIIflleg )8l me

= 8% Wl 0125 o

= C8 A% ully, ,m2) 1A% V]2 (3.10)

X5, (R2)

_ K 2
= O3 ullxyy, e Mg

< COM|(u,v)I3

||B§,O7b'

Now let Ly = (A% 1A% uA%1v) — A%1(42v). Then

(G2l o= o syl e

_ 1§ 7 —~
1) (/Rz (14|t —B&3|)x1-b) [ Li(&,7) \Zdédf) :

We shall calculate the Fourier transform of L,

’l/,\z(?;,f)) = ‘(AS’IMAS’I A%ly) —Ad1(y ‘—C‘ (%1517 915175 £91515%) (€, 7)

_eélél(ﬁ*ﬁ*ﬁ*)(ﬁaf)‘

:c/ <86|51\g(51,Tl)eémg@’m Be-6-8l5E — & — &, 1— 1) — )
R4

—2lEla(&), )&, )W — &1 — &t — T — Tz))dﬁldézdﬁdfz

<C <65|§1‘65|52‘65|5*§1*§2‘ _ e&él)
R4

x|a(&r,1)u(&2, )& — &1 — &, 71— 11 — 1) |dE1dErdTid .
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

For k € [0,%) C [0, 1], one can see that

2
é —~
”Gznff&,l(w) :‘ (1+If—ﬁ€3l>1‘bLZ(§’ﬂ 13 (R?)
K P (+]E &~ &N+ EDA+IED )
< (C45)2 /]Rz (1+|T_Bf€f3|)2(l—b) [/R“ < <1+|§|> )

x 9151161821 o816 =81 -G

2
x[u(&1,71)u(E2, 2)V(E — &1 — &2, T —T1 — Tz)|d51d52df1d7?2] dédr

1 - K ) K
—cedr| S s LD G @) (14 ) e )
2
xede=81-8l(1 4-|& — & = &)VE - & — &, 1 — 11 — n)dEdéEdTdr,
L%’T(Rz)
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

Now by taking s = —k € (—%,O], we obtain

E(1+E)°F /€6|§1|L7(§1,Tl)ealézm(ﬁz,fz)
(I+|e=BENIP Jre (14+1[&])  (1+]&])

D (T T )
(1+16 =& —&f)*

K
HGZHX(E})_I(RZ) < C(46)

d§id&dridn

2
Li,f

s(1+1[6h~" /65'51'(1+|ﬁ—ﬁfl)”ﬁ(iuﬂ)
(I+[e=BEN0 Jre (1+1&1])(1+ |7 — &)

ALl +n - &)Pilg, n)
(1+ &) A+ |0 —&|)?

il (kS (St R 2 (S 9 T Y
(I+1E =& =& (+]t—t1—n—B(E—E - &)*)P

(R?)

— C(48)"

-d&1d&rdTidn

2
Lé,r

E(1+E])°F / f(&i,m)
(I+ |t =BEN'P Jrs (14 &1 (14|71 — & )P

(R?)

— C(48)"

~

f(€2a7:2)
(1+ &) (1+ [ - &)

g&—-8,i—&,1—11—1m)
(I+IE-&—&)(I+t—t11—1—B(E & —&)3)P°

-d€1dérdtidT

Lz (R?)

T

By Remark 3.7 we get

HGZHX(?,bfl(Rz) < CSKHf”%éT(RZ)”gHLéT(]Rz)

_ K 2
=Co HWHX(),;,(]RZ)HwHX(ﬁb(]W)

= CON A% U3 oy A%V 3.11)

X5, (R2)
=C9 ||u||X6,0,b(R2)”v“Xgo.b(Rz)

< C8%|(u,v) 13,
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

By (3.10) and (3.11) we have

3
1(G1,Ga)llBo,1 < CE5[[(u,v) 135,
]
Proof. (Of Theorem 3.15) Let U(t,x) = A% u(t,x),V(t,x) = A%®'v(t,x) which are real-
valued since the multiplier A% is even and u, v are real-valued. Applying A% to (3.1), we

obtain
U + 32U + 3, (UV?) = Gy, (3.12)

U 43U + 0, (U*V) = Ga, (3.13)

where G| = dy [(AS’luA‘S’lvA‘s’lv) —A‘S’l(uvz)] , Gy = 0y [(A‘S’luA‘s’luA‘s’lv) —A‘S’l(uzv)}.
We multiply both sides of (3.12) by U, (3.13) by V and integrate with respect to space vari-
able, we get

/ Uo,Udx+ / UdlUdx + / U (UV?)dx = / UG, dx,
R R R R

/ Vo,Vdx+ / VaSVdx+ / Vo (U?V)dx = / VGadx.
R R R R

Next, we have
/R (UAU +Va,V)dx+ /R (UU +VaV)dx + /R U (UV?) + Vo (UV)]dx
_ /R (UGy +VG)dx.
Then, we conclude that
/R (UQU +VIV)dx + /R 9 (AUAU + AV AV )dx + /R 9 (UV?)dx

:/(UG1—|—VG2)dx.
R

Noting that 9{U (x,t) — 0 as |x| —> oo, we use integration by parts to obtain

1d

~ LW vyax = / (UGy +VG)dx.
2dt Jr R

Integrating the last equality with respect to z € [0, T;], we obtain
L@@+ Tadx = [ 030+ V2(0.0)dx
R R
L2 /]R Xon) (UG +VGa)daxdr.

Thus

T gy + VD30 ) = 1600) o)+ MO sz, +2| [, 2o (/UG +V Ga)dar
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

By using Holder’s inequality, Lemma 3.5, Lemma 3.4 and the fact that

1 1 1 1

Since b > %, we obtain

'/RZX[O,T]}U)(UG1+VG2)dxdt

IN

110,71 (DU 1x, . r2) 120,73 () G|, ., 2

+ 2om@Vilge g lXor)(OG2llyp o

IN

C\|\U G C||V G
I ||X(§11_b(Rz)|| 1||X({117_1(R2)+ | ||X<file(R2)|| ZHX(ﬁf,;TJI(W)

IA

ClonUllx,, ,&2)101,Gillx,, &2 +C”®T1V”x§,_b(R2) 1O, Gszgb_](RZ)

IA

ClU llxyy (221G I3y + CIV g 5 1Gall s g

where ®7, = 1 for ¢ € [0, 7;], we can conclude from Lemma 3.16

|/IRZ Xjo,r;](t) (UG +V Gy)dxdt

< C”UHXOJ,;,(RZ)HGlHXo,bfl(Rz)+C||VHX£1,Z,(R2)HGZHXOB.bfl(RZ)
K 2 2 K 2 2
< G HuHXs,o,b(Rz)”v”Xgo,h(RZ)+C6 HMHX&o.b(Rz)anxg,o,h(Rz)
= 205 |ul? V|2
| ng,ovb(RZ)H ngoﬁb(RZ)
< 2C5K‘|(”7V)||?33,07b'

Therefore,
(T, + VT Resiogy < IO sy + VO B0 +2C85 1w 3,
and
21| (u(T1),v(T1) [0 < 211 (u(0),(0) [0 +2C8% | (,v) 135,

and

e 1 Ca(e), () Iys0 < 11((0),v(0) 150 +CE | (w,v)][3,,,-
te|0,1
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

Finally, by using condition (3.5), we conclude that

o 1Cu(@), v () [3s0 < 11(2(0),v(0) 5.0 +C8¥[|(1(0),v(0)) I 50-

3.6.2 Global extension and radius analyticity —Proof of Theorem 3.14

Let 8 >0, s > —%, x € (0, %) be fixed, and (up,vo) € N%:5_ Then, we have to prove that the
solution (u,v) of (3.1) satisfies

(u,v) € C([0,7],G°M*(R)) x € ([0,7],°T*(R))

where |
5(T) =min {8&,CT "}, forallT >0,

and C; > 0 is a constant depending on ugp,vg, dy,s and k. By Corollary 3.10, there is a
maximal time 7™ = T*(ug, vo, 8y, s) € (0,o0], such that

(u,v) €C([0,77),G**(R)) x € ([0,T%),GY*(R)) .

If T* = oo, then we are done since the solution is defined for ¢ € [0, ) .
If T* < oo, as we assume henceforth, it remains to prove

(u,v) €C <[o, T],GCIT’I“S(R)) «C ([O,T],GC‘T'I‘7S(R)> foraliT>T*.  (3.14)

The case s=0

Fixed T > T*, we will show that, for 6 > 0 sufficiently small

sup | ((0),v(0))[|350 < 21[(1(0),v(0))]1250-
+€[0,T]

In this case, by Corollary 3.10 and Theorem 3.15 with

1
TO - 3 3 2 1
(16C° +32C° || (u(0),v(0)) [} 5.0)¢
the smallness conditions on & will be
2T 2 2
0 <& and —C6 27 || (u(0),v(0)) || 5.0 1, C>0. (3.15)
T() N
Here C is the constant in Theorems 3.15.
By induction, we check that
sup | ((1),v(1) x50 < [1((0),v(0)) 1350 +nCE*2% (| ((0),v(0)) 1} 40- (3.16)

t€[0,nTp)
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3.6. LOWER BOUND FOR RADIUS OF SPATIAL ANALYTICITY

And
sup || (u(6), v(1)) 350 < 2[1(1(0),v(0))I[2 400, (3.17)

t€[0,nTy)
forn € {1,...,m+ 1}, where m € N is chosen so that T € [mTp,(m+ 1)Tp). This m does
exist, by Corollary 3.10 and the definition of 7*, we have
1
(16C° +16C3 || (u(0),v(0))

Th < <T*, hence Ty <T.

FEE

In the first step, we cover the interval [0, Tp], and by Theorem 3.15, we have

sup | (u(t),v(1))llys0 < 11((0),v(0)) 150 +CE¥[|(1(0),v(0)) [ s

1€[0,Tp)

< [1((0),v(0)) 350 +CE1((0),v(0)) [0

since 0 < &, we used

[((0),v(0)) [ ys0 < [[((0),v(0)) ]| ys0-
This satisfies (3.16) for n = 1 and (3.17) follows using again || (1(0),v(0)) | ys.0 < [|(2(0),v(0))][ yé0.0

as well as
C8|((0),v(0))[I 500 <

Suppose now that (3.16) and (3.17) hold for some n € {1,...,m} and we prove that it holds
for n+ 1. We estimate

sup | (u(r), V(1)) 350

t€[nTy,(n+1)Tp)
< N((nTo),v(nTo)) |30 + C8¥||(u(nTy), v(nTy)) 150

< [I((nTo), v(nTo)) 5.0 +C 82| (u(0), v(0)) [ y50
< [1((0),v(0)) 350 +nCE*22]| (1(0),v(0)) Iy 50

+ C8%2%||(u(0),v(0))l 4500

satisfying (3.16) with n replaced by n+ 1. To get (3.17) with n replaced by n+ 1, it is then
enough to have

(n+1)C8%2%(|(u(0),v(0)) || ,0 < 1,
but this holds by (3.15), since

+1< —|—1<T—|—l<2T
n m —_— e
Tp Ty

Finally, the condition (3.15) is satisfied for & € (0, &) such that
2T
Z-C8 2% || (u(0),v(0)) [[350=1
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3.7. REGULARITY OF THE SOLUTION TO COUPLED SYSTEM (??)

Thus,
1
0=CT &,
where
1
C ! '
1= .
C23 || (u(0),v(0)) |12 5,0 (16C3 +32C3 || ((0),v(0)) 17 4,0)"/¢
The General Case

For all s, by (5.3), we have ug, vy € G%*(R) c G%/20(R).
For case s = 0, it is proved that there is a 7> > 0, such hat

(u,v) €C([0,12),GX*O(R) ) x € ([0,12), GX*O(R)),

and
_1, _1
(u,v)ec([o,T],GW ® 70(R)> xC([O,T],GzGT "7O(R)>, forT' > Ty,

where 6 > 0 depends on ug, vy, &y and K.
Applying again the embedding (2.32), we now conclude that

(u,v) € C([0,12),GY**(R) ) x C ([0, T2), G¥/**(R)),
and

(u,v) €C ([O,T],G“T_’IC"Y(R)> xC ([O,T],GGT_’IC"‘(RO . forT >,

which imply (3.14). The proof of Theorem 3.14 is now completed.

3.7 Regularity of the solution to coupled system (3.1)

In this section we will show that for x € R, for every ¢ € [0,T] and j,I € {0,1,2,...}, there
exist C > 0 such that,

10/ dfu(x,1)] < CTHH(jH*(11)°,

10/ 9gv(x, )| < T (i (1)°.

ie, (u(-,t),v(-,1)) € G°(R) x G°(R) in spacial variable and (u(x,-),v(x,-)) € G*([0,T]) x
G*([0,T]) in time variable .

Theorem 3.18. Lets > —1,0< B < 1,6 > 1 and § > 0. If (ug,vo) € G%%4(R) x GZ%3(R),
then the solution (u,v) € C ([O, T],GG75’S(R)) x C ([O, T],G(”‘S?S(R)) given by Theorem 3.9
belongs to the Gevrey class G°° ([0,T]) x G3°([0,T)) in time variable. Furthermore, it is not
belong to G4([0,T]) x G4([0,T]), 1 <d <30 int.

Corollary 3.19. Let s > —%, 0 < B < 1 and § > 0. If (up,vo) € G%*(R) x GO*(R), then
the solution (u,v) € C ([O,T],G‘S(T)’S(R)) x C <[O,T],G5(T)’S(]R)) given by Theorem 3.14

belongs to the Gevrey class G*([0,T]) x G*([0,T]) in time variable. Furthermore, it is not
belong to G4([0,T]) x G4([0,T]), 1 <d < 3int.
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3.7. REGULARITY OF THE SOLUTION TO COUPLED SYSTEM (??)

3.7.1 G3°-regularity in the time variable

We will now prove the temporal regularity of solution on the line.

Proposition 3.20. Lets > —1, § >0, 6> Land (u,v) € C ([0,T]:G%4*(R) ) x C ([0, T}: G¥%*(R)
be the solution of (3.1). Then (u,v) € G°(R) x G°(R) in x,Vt € [0,T), i. e., for some C >0,
we have

|0lu) < TN (1)°,1€40,1,...}, VxeR,tel0,T], (3.18)

and

ol <c*lane 1€ {0,1,...}, VxeR,tel0,T]. (3.19)

Proof. See proof of Proposition 2.24

[
The sequences m, and M, are the same as in the first chapter. For some C > 0, we define
the following constants

4 2
and M = max{\/2, 8¢ i}. (3.20)

3
C C

¢
8

The next Lemma is the main idea for the proof of Theorem 3.18.

My =

Lemma 3.21. Let (u,v) be the solution of (3.1) satisfied (3.18) and (3.19), then there exists
& > 0 such that for any 0 < € < & we have

10/ 0lu| < MP My 55,7 € {0,1,2,..},1€{0,1,2,..}, (3.21)

and
10/ v < M¥ My 55,7 €{0,1,2,...},1 € {0,1,2,...}, (3.22)

forallxeR, t€]0,T).
For this end, we need the next results

Lemma 3.22. Given 1,k € {0,1,2,...} we have

n— — 3g > r~m—r»
s ul)\g (n=p)e3k-a)Tpie = L

where L;j, j=0,1,...,m positive real numbers with m = n+ 3k.

Proof. (Of Lemma 3.21)
We will prove (3.21) and (3.22) by induction. Let j = 0, for [ = 0, it follows from (3.18),
(3.19) and the definition of M in (3.20) that

lul <C< MMy, VxeR,rel0,T],

and
v| <C<MMy, VxeR,tel0,T].

Similarly, for / = 1, we have

|du| < C* < MM,,¥x eR,t € [0,T],
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3.7. REGULARITY OF THE SOLUTION TO COUPLED SYSTEM (??)

and
0cv| < C? < MM, VxRt €[0,T].

By (3.18), (3.19) and (2.70), for [ > 2 there exists & > 0 such that for any 0 < € < &), we
have
|0lu) < C!TH1)° <My < MM, ¥x e Rt € [0,T],

and
lalv] < CHH(11)° < M; < MM, Vx e R,r €[0,T].

This completes the proof of (3.21) and (3.22) for j=0and/ € {0,1,...}.
Next, we will assume that (3.21) and (3.22) is true for 0 < ¢ < jand / € {0,1,...} and we
will prove it for g = j+ 1 and [ € {0, 1,...}. We begin by noting that

107" 0lul = 19/ 9}(Au)| < 10/ 9ful + 9/ o (w?),

and

|8j+1al\/] _ |ajal<atv>‘ < |ajal+3v| + ‘ajalﬂ(uzv)‘.

Using the induction hypotheses and the condition M > V2, we estimate the second term
9793y and 9/ 9!+3 as follows

107913 u] < MMy 555 =M72MPUOTIM, G

| (3.23)
< ;M 2UHDFIM, 34
and |
9/ 913y g§M2(1+1>+1M,+3(j 1) (3.24)

All this estimates are taken for the linear terms. For the nonlinear terms F; and F>, using
Leibniz’s rule twice and the induction hypothesis, we have a different cases
For the nonlinear terms F; = d,(uv?)

AEEEEG)G)GE)

J=q1 yl+1=p1. 3q1—q2 3pP1—P2,,792 P2
.97 oy uo os va,?dx *v

L EEE()G)E)E)

. |atijl a)£+lfplu| |atq1 %128){71*1?2‘}' |atq28)£72v| .

107 9! (un?
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3.7. REGULARITY OF THE SOLUTION TO COUPLED SYSTEM (??)

Thus, using the induction hypotheses the last equality gives

I+1 p1 I+1\(p1\(J\(Pm
J Y+ (2
|9/ 9 (w?)| < Zopzzoqlzoq;()< pi )(Pz) (Pl) <P2>

3.25
Mz(j_ql)+1Ml+l—p1+3(j—q1)Mz(ql_q2)+1 (3:25)

2g7+1
MPl*P2+3(£11*fJ2)M My, 43¢, -

Next, using Lemma 3.22 with p = p>,l = p1,qg = g2,k =q1,Lj = Mj,m = p; +3q;, we obtain

P1 q1 D1
Z Z( )( >M(Pl—P2)+3(tIl—612)MP2+3q2

p2=04>=0

o (m (3.26)
< ; (F)MrMm—r < (MO‘Jl‘g)Mm

= (Mo +€)Mp, 134,
Similarly, using Lemma 3.22 with p = p1,l =1+ 1,q=q1,k= j,Li=M;m=1+3j+1,

we obtain
+1 j I+1
Z Z a M(l+1—P1)+3(j—611)MP1+3611

p1=041=0

m (3.27)
< ; (F)MrMm—r < (MO‘Jl‘S)Mm

= (Mo+ €)My 1311
Continuing this way we obtain all possible inequalities as (3.25), (3.26) and (3.27). we obtain

+1 p1 J I+1 j Iy
S GGG
plZ:O pzz:O qlz:0 qZZ:O P2 P1 D2

Mz(jiql)HMlH—p,+3(j—q1)M2(qliq2)+l

2g7+1
MPl—P2+3(41—Q2)M Mp, 134,

SMz(j+1)+l(M0+8>2Ml+3j+1

SA/Iz(jJrl)ng(]V[OJrg)zj‘,[l%(j“)_

Noting that in the last inequality we have used the fact that / +3j 41 > 2, since we are
assuming that either j # 0 or [ # 0.

1
Now, choosing € < gy = (W) ’ < 1, to get

e2(My+¢€)* < e2(My+1)* < (My+1)? <W) = %
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3.7. REGULARITY OF THE SOLUTION TO COUPLED SYSTEM (??)

Hence, .
o .
10/ 0: ! (w?)] < §M2(J+1)+1Ml+3(j+l)-
Next for the nonlinear terms F> = o, (u%v) , we get
. 1
I+1¢,2 2(j+1
9/ )] < SMPUTHM

Which completes the proof.

O
Proof the first part of Theorem 3.18.
By Lemma 3.21, we have
10/00u| < M¥ My 55, j€{0,1,2,..}, 1€{0,1,2,...},
and ' .
10/ dlv| < M* My 55, j€1{0,1,2,..}, 1€{0,1,2,..}.
Applying this inequality for j € {1,2,...} and [ = 0 gives
10/ u| <M21'+1M3~:MM2/’£1_3J'—C((3].)!)cr
T T (3j+1)?
M2\’
. 2
< LoL/((3])1)° 29
< LoLIA%I(j1)%)°
<Agt (e,
and . .
9/v] <Al (1), (3.29)

M? .
where Lo = Méec, L = = since (3)! < A3 (j!)? for A > 0 and Ag = max{Ly,LA3°}. We

also have from (3.21) and (3.22) for [ = j =0, that

lu| < MMy = M%, VxRt €[0,T], (3.30)
and c
lv| < MM :Mg, VxeRt€[0,T]. (3.31)

Setting C = max{M%,Ao}, it follows from (3.28) and (3.30) that for j € {0, 1,2,...}, we have
10/u| < CIH(j1)3°, VxeRre[0,T).

And from (3.29) and (3.31) that for j € {0,1,2,...}, we have
10/v| <IN, vxeRtel0,T).

Hence, (u,v) € G3°(R) x G*°(R) in ¢.

Which completes the proof of first part of Theorem 3.18.
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3.7. REGULARITY OF THE SOLUTION TO COUPLED SYSTEM (??)

3.7.2 Failure of Gevrey-d regularity in time

In this sub-section, we prove the second part of the Theorem 3.18. Replacing r with —t we
can write our system as follows

du = Au+ A (w?),

ov =B +ad.(u*v), 0<B<I,
u(x,0) = uo(x),

v(x,0) = vo(x).

The following Lemma will be used to estimate the higher-order derivatives of a solution with
respect to .

(3.32)

Lemma 3.23. ([37]) If (u,v) is a solution to (3.32) then for every j € {1,2,...} we have
, , J
Hu=du+y Y crbu)--- (k) (3.33)
m=1|A|+2m=3

and

. o
dv=0a}v+Y Y cpbu)---(9fm). (3.34)
m=1|A|+2m=3j

Definition 3.24. Let { @, } be a sequence of positive numbers. We denote by €' (wy) the class
of all functions g(x), infinitely differentiable on [—1, 1], for each of which there is an C > 0
such that

1g® ()| < ey, xe[-1,1]and k=0,1,2,...

Lemma 3.25. ([39]) For every ¢ > 1 and every sequence of complex numbers { @y}, satisfy-

ing
o] < CHHRE,

for some Cy > 0, there exists a function g(x) € € (k*°) for which g (0) = ¢y.
We will use this result for the sequence of real numbers
Ig(k)(x)| < CkHlpko < Ck—i—l(k!)cekc’ k=0.1,2,..

where g(x) € € (k*®) such that g¥) (0) = @, = (k!)°.
We choose a cut-off function ug, vy € GZ(—2,2) such that

0(x)=1 for |x|<1,
and

0(x) =0 for |x|>2,

by modifying g(x) to become having a compact support in .
If up and vq are extension of 6g, then by the algebra property for Gevrey functions we have
ug,vo € G°(R). We have then the relation by g(x)

uy) (0) = g% (0) = (k)° and v((0) = g (0) = (k)°. (339)
We will show that (u,v) need not be G¥(R) x G¥(R), with 1 < d < 30, in the time variable ¢.
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3.7. REGULARITY OF THE SOLUTION TO COUPLED SYSTEM (??)

Theorem 3.26. Let s > —%, 0<B<1,0>1andd > 0. The real-valued solution to (3.32)
with real-valued initial data (ug,vo) € G%%5(R) x GO95(R) may not be in G*(R) x G4(R),
with 1 < d < 30, in the time variable t.

Proof. By using (3.33), (3.34) and (3.35) we get
. . J
o/ u(0,0) =3u0,00+Y Y c(lu(0,0))- - (92(0,0))
m=1|A|4+2m=3

O+ Y Y M ul0) - (9(0)
m=1|A|+2m=3
> uy’ (0) = ((3)1)° = (j)°°,
and

) . J
97v(0,0) = 937v(0,0) + Y Y 0Mu(0,0)) - (94v(0,0))
m=1|A|+2m=3;

. J
=/ O+ Y X GO u0(0)) (Fv0(0))
m=1|A|+2m=3
>/ (0) = ((3))° = (1),
we have proved that (u(0,-),v(0,-)) ¢ G*(R) x GY(R) for 1 < d < 3¢ and for ¢ near 0.

]
Which completes the proof of Theorem 3.18.
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Chapter 4

Fifth order Kadomtsev-Petviashvili I
equation '

4.1 Introduction

The Kadomtsev-Petviashvili equation (or simply the KP equation) originates from a 1970
paper by two Soviet physicists, Boris Kadomtsev (1928-1998) and Vladimir Petviashvili
(1936-1993). The two researchers derived the equation that now bears their name as a model
to study the evolution of long ion-acoustic waves of small amplitude propagating in plasmas
under the effect of long transverse perturbations. In the absence of transverse dynamics, this
problem is described by the Korteweg-de Vries (KdV) equation. The KP equation was soon
widely accepted as a natural extension of the classical KdV equation to two spatial dimen-
sions, and was later derived as a model for surface and internal water waves by Ablowitz and
Segur (1979), and in nonlinear optics by Pelinovsky, Stepanyants and Kivshar (1995), as well
as in other physical settings.

We consider a class of Cauchy problem for fifth-order Kadomtsev-Petviashvili I equation

{ du+ 0t u+du+ 9, ' 0fu+udu =0
u(x,y,0) = f(x,y),
where u = u(x,y,t), (x,y,a) € R®t ¢ R,

(4.1)

4.2 Function spaces

Now, we will define the anisotropic Gevrey space that contains the initial data of the consid-
ered IVP (4.1). For 51,50 € Rand § > 0, let

GH 2 (B2) = {1 € R ghasuny < =} 2
where

I Bsspsany = [, @D (14 £ (1 22 (6 ) Pty

' A. Boukarou, Kh. Zennir, K. Guerbati and S. G. Georgiev.Wellposedness and regularity of the fifth
order KadomtsevPetviashvili I equation in the analytic Bourgain spaces. Ann Univ Ferrara (2020),doi
:10.1007/s11565-020-00340-8.
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4.2. FUNCTION SPACES

In the particular case where § = 0, the space G%*12(R?) is reduced to the anisotropic
Sobolev space H*1*2(R?), defined by the norm

I ey = [, (LHIED 1+ D22 F(E ) PdEd.

Then, we define the analytic Bourgain spaces related to the fifth-order Kadomtsev-Petviashvili
I equation. The completion of the Schwartz space S(R?) is given by X X' (]R3) for s,b € R

and 0 > 0, defined as
where

252y = [ 2D )2 (1 ]2+ o= 0(E W) | (8. 1. 7) P dEdud,

2

with 9 (&, 1) = —&5 + a3 — %

Lemma 4.1. Let b > %, 51,52 € Rand & > 0. Then, for all T > 0, we have

Xglbsz —C ([0 T] G6 Sl,Sz(RZ))

Proof. First, we observe that the operator A%, defined by

——X,y

Adu (&, ) = USRI (& i r), (4.3)

satisfies
o
il = 1A%l sy and Nlgoun ey = A%y, 44)

where Xj, 5, »(R?) is introduced in [58]. We observe that Au belongs to C ([0, T], H*12(R?))
and for some Cy > 0, we have

1)
| A% oo 7y o2 ey < Co | A%l e - @4.5)
Thus, it follows that u € C ([07 T1],Gos1% (]RZ)> and
| u Hc([(xT],GS»Sl»Sz(RZ))S Co || u ”X;ZXZ(R*%) . (4.6)
This completes the proof.
]
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4.3. LINEAR ESTIMATES

4.3 Linear Estimates

Lemma 4.2. Let 51,50 > 0, % < b < 1and b > 0. For some constant C > 0, we have
WSO sy s < Ol gy @

for all f € G%5152(R?),
Proof. We have

VOSOf =Cylr) [ OEmEn e

R2

=C | I (- 9 (8, ) f (8, p)dEduds.

Then, it follows that
2
WSO s

=C [ I e [E NP (o [ ) (1 [ £= (6 ) )7 | Wz +9(8,1) PIF(E,) [ dEdpdz

=C | PRI & D2 (U | )22 | 7(E ) P

< (Ju | W(t—0(E ) 2 (14 1= (& u) ) dr)dEdp.

By the fact that b > 1/2, we get

L 10 =0(E ) P (14| 7= 9(E.m) ) dr

< [we—oEw) Pae+C [ [9(r=9(Em) Plr—0(.u) [ dv
R R

<C.

This completes the proof.
]

Proposition 4.3. ([58]) Let 51,55 > 0, —% <V <0<b<b+1and0<T < 1. Then for
some constant C > 0, we have

’ wr (1) /0 Sl — VP (x, )

Lemma 4.4. Let 51,55 > 0, —% <b <0<b<b+1,0<T<1and b > 0. Then for some
constant C > 0, we have

1—b+0'
<CT 1Fllx, @
Xsl 52,0 (R3)

wr (1) /O St — )P (x,y,1)dr’

1—-b+b'
<CT HFHX;lbfZ(R%)

S1,8
Xsy - (R3)
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4.4. BILINEAR ESTIMATE

Proof. Define U = wr(z) 3 S(t —t')F(x,y,t')dr’. Let us consider the operator A% given in
(4.3). Then we have

—X,y

t . / ~
ASU (&1 = wr() /0 (e =0E ) B Pro(g 1, yar’

Xy

=vrlo) [ Sa—1)AF)] (& )t
Thus,

t
10 e = AU 0= @) [ SC0= )N F Gyt

Xs b :
1%25
Xsl X,b (RS)

Using Proposition 4.3, we get

t
wr(o) [ St~ )AF (.t
0

<CT" P YIASF |y (o)
le,xz,b(R?,) e

O
4.4 Bilinear estimate
Theorem 4.5. ([58]) If 1,50 > 0, b/ = —3 +2¢, b= % +¢€, then
H ax(uluz) HXX].XQ‘I:’(RS)S C H u HXsl,sz,b/(R3) H u2 HXY],Xz.,h/(R:S) ’
Lemma 4.6. If 51,50 >0, let § > 0,b' = —1+2¢, b=1+¢, then
I OCanriea) llgoven gy < C llun llggron oy | 02 Mgy ey (4.8)

Proof. We observe, by considering the operator A% in (4.3), that

SN s = (V2r) 3B « i3

< (v2m)? /RS SUE-GIHI— D & _ 81—yt — 1)

w SUEIHIMD TS (£, 1, 7)dE dpdy

= A5u1A5u2.
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4.5. LOCAL WELL-POSEDNESS

Then

| Ox(uru2) "x(‘;}b’fz(RS)

=[] €S (14 (E)21 (14 [12]2 (14|~ 9 (&, 1)) Delwr2) (€. 11, 7) Iz, e

=[| (L4112 (L4 ) (1|7 = 9 (&, p)) PP UMD Eiruy (€, e, 7) Iz, @)

<[P+ IENZ (1 + )2 (1+ |7 = 9 (&, 1)) (OeAPu1 APuz) (€, i) Iz, @)

= %A A%w) [y, s -
Now, by using Theorem 4.5, there exists C > 0 such that

| 9(A2ui APus) |y y®) =C| Adu, I,y (3 Alu, x,, ., (R

= Cllun g eyl v Nl gy -

4.5 Local well-posedness

Junfeng Li and Jie Xiao establish the local and global well-posedness of the real valued fifth
order Kadomtsev-Petviashvili I equation in the anisotropic Sobolev spaces H*!*2(R?) with
nonnegative indices. In particular, they are improves Saut-Tzvetkov’s one and our global
well-posedness gives an affirmative answer to Saut-Tzvetkov’s L?(R?)-data conjecture. We
improved this result, states local well-posedness in G%%152, 51, 5,(R?) >0, and § > 0.

Theorem 4.7. Let si,s0 > 0,6 > 0 and b = %—l— . Then, for any f € GO (R?) and

IE|71F(E, 1) € L2(R2), the problem (4.1) with the initial condition f has a solution u, satis-
Jying
ueC([0,7],G°*(R?)).

Moreover the solution depends continuously on the data f.

4.5.1 Existence of solution

By Duhamel’s formula, (4.1) can be reduced to the integral representation below:

u(t) = SV f — % /0 St — ) (9 ()t

where the unit operator related to the corresponding linear equation is given by

M(t)(x,y)Z(S(t)f)(x,y)z/]Rgz 0 £(&, p)dEdp.
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4.5. LOCAL WELL-POSEDNESS

We localize it in ¢ by using a cut-off function satisfying y € C7’(R), suppy C [-2,2] y =1
in (1, 1] and v (1) = (%),

() = y(1)St)f — "’TT@ /0 "S- (2ul(t"))dr'. 4.9)

We are now ready to estimate all the terms in (4.9) by using the bilinear estimates in the
above Lemmas.

Lemma 4.8. Let sy, >0, 8 >0and b > % Then, for all f € G915 (Rz) and 0 < T < 1,

with some constant C > 0, we have

| @) a2 gy <€ (H F llgonsn ey +T170H (B [l s (R3)> Sorall ue X3 (R?),

(4.10)
and

1—b+b 51,8 3
| ®(u) —D(v) “X(;}lfz(W)S CcT |lu—v HX;}b,Sz(Rs)H u+v ”Xéf,fz(R3)’f0rall u,v EXgibz(R ).

(4.11)
Proof. To prove estimate (4.10), we have
t
I 20,0 !
19 e < IVOSOSlgen + [wro [0 (que)ar]
b
S C || f ||G§"Y1“Y2(R2) +CT1_b+b, H a)CM2 "Xslvs2(R3)
8.0
<C o CTl_b+b/ 2S i ]
<C| fligss. 2Rr2) T [RZ HXE}[; 2(R3)
For the estimate (4.11), we observe that
t
®(u) — D(v) = yr (1) / S(t—1') (3 = 30?) (xy,t' ',
0
where @ = d,u”> — d,v? is now given by
o= 8x(u2 —?) = Ol(u+v)(u—v)],
Thus, from the previous results, we obtain (4.11).
O

We will show that the map @ is a contraction on the ball B(0,r) to B(0,r).

Lemma 4.9. Let s;,s0 > 0 and 6 >0, b > % Then, for all f € G%'52(R?), the map
@ :B(0,r) — B(0,r) is a contraction, where B(0,r) is given by

B(O,I") = {M S Xglbsz(R?’), ||u||X;1b,s2(R3) S r,with r= 4C||f||G6*Sl*S2(R2)}'
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4.6. TIME REGULARITY

Proof. From Lemma 4.8, for all u € B(0,r), we have
1—b+b' 2 r 1—b+b' 2
196 g2y < € (1 g +7 +Hw@fwggz+a~+r.

We choose T sufficiently small such that 71~ e < ¢, Hence,

| ®(u) ||Xfl SZ(R3)< r, Yuc B(O,r).
Thus, ® maps B(0, r) into B(0, r), which is a contraction, since

1—-b+b'
| @) = ®(0) sy < TV = gy 4 v s

1—b+b
S CcT 2r || u—v ||X§}Z;S2(R3)

u—v HX;EQ(R3), Yu,v € B(0,r).

| =

The rest of the proof follows the standard argument.

4.6 Time regularity

Theorem 4.10. Let 51,50 > 0,8 > 0 and oo = 1. If f € G®*152(R?) then the solution u €
C ([O, T],Go1:%2 (R2)>, given by Theorem 4.7, belongs to the Gevrey class G°([0,T]) in time
variable.

This section is devoted to the proof of Theorem 4.10, we study the Gevrey’s regularity in
t of the unique solution of the problem (4.1). The proof of time regularity on the circle and
on the line is analogous.

Proposition 4.11. Let 51,50 >0, 6 >0 and u € C ([O,T],G‘S’Sl’s2 (Rz)) be the solution of
(4.1). Then u is analytic in x,y for all t near the zero. More precisely,

|8)£8y"u(x,y,t)| < (), (4.12)
forall (x,y) €eR?, t€[0,T], (I,n)€{0,1,..}%, and C > 0.

Proof. Forany € [0,T], we have

19805, ) sy 2 g2 / S (18D (14 )2 (&, p1) PdEdp

—/ &1 e 2SR (1 18 )21 (14 |l 222D G, 1) Pag dp.

We observe that

2=y L osley >

21 21
j:0] (21) (871", VIie{o,1,..},& eR.
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4.6. TIME REGULARITY

And

=1 ; 1
e28Iul — Z 7(23|,u|)f >

2n 2n
j=0J (2n)!(6) ul™, vne{0,1,..LueR.

This implies that
& Me 2l < 3y,
|u|?e= 20l < 2 (2n)1.
Thus,
10000, 1) o ey < C§l+2n(21)!(2n)!/R2626(§|+“)(1+|5|)2S1(1+|H|)2sz|ﬁ(éaﬂ,t)|2d§dﬂ

= I D ) )y g

Since (21)! <A (1!)? and (2n)! < A3"(n!)?, for some A1, A, > 0, by Sobolev Lemma (I-l2m2) <
[[-[[ 5152 2y ), we have for all (/,n) € {0,1,2,... }?

10405 u(x, . )] < 19205 uC,ws 1) 2(gey < 10RO )l m ey < CoCLH (1)),

where Cy = ||u(-,-,1) HG‘S‘SI*SZ(RZ) and C; = AjCs and Ag = max(A1,Ay). This implies that u is
analytic in x, y for all ¢ near zero and s1,s, > 0. This completes the proof.

]
Lemma 4.12. For (j,1,n) € {0,1,2,...}> the following inequality
10/ 3Lamu| < CIHM L (14 n+57)1L7, (4.13)
holds, where L = C*+- g—(z) + g+ S forall (x,y) €eR%, t €[0,T).
Proof. We will prove it by using induction on j.
Firstly, for j =0 and (I,n) € {0,1,2,...}2, by (4.12), we have
0L u(x,y,1)| < CH (1) (nt) < CHHL (1)1 (4.14)
Secondly, for j = 1 and (I,n) € {0,1,2,...}2, we get
10,0, u| < |92 9)tu| + |9F 39 u| + 9L 9 2 u| + |0 ) (udw) .
We estimate these terms as
‘a}g-i—Sa)I}u’ < Cl+5+n+1 (l +5 —|—I/l)'
(4.15)
S Cl+n+l+1 (l —|—I’l—|—5 . 1)'C4,
|8)€+3aynu| S Cl+3+n+1(l+3 +I’l)'
1
< Cl+n+l—|—1 / 5.1 !C2
- (+n+5-1) (I+n+4)(1+n+5) (4.16)
C2
S Cl+n+1+1(l+n+5 . 1>y%
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4.6. TIME REGULARITY

Where
1 1

<
(I+n+4)(I+n+5) ~ 20’

and
|8)£_18y"+2u| §C1_1+”+2+1(l—1+n—|—2)!

1

<Cl+n+1+1 l—l— +51 ]
= S ) T nt )T nt 8T nL5)

1
< Cl+n+1+1 |
<c (1+n+5-1)!—.

4.17)

where
1 1

<
(I+n+2)(I+n+3)(+n+4)(I4+n+5) ~ 120

For the nonlinear terms

910y (wdar)| = | Z:, ; ( ) (Z) (o rayu) (971 0fu) |

We shall recall that for p <[ and k < n, we have the following inequality

[ n [+n
< . 4.18
(P) (k> - (P+k> 9
Now, using (4.18), to get

Ian L& (1+n I—p An—k P10k
910y (udan)| < ]ZZ i (o Paytu) (97" 0fu) |

0k=0

IN

p:
Il n
(I+n)! I—ptn—k+1
ZZ G+ +n—p—i)© (I+n=p=k)!

Cp+1+k+l(p+1_|_k)!

n

= C’+”+3(z+n)!i2(p+1+k).

p=0k=0
Now we use the fact that
[ n
[+ (n+1D)(l+n+2
ZZ(p+1+k)=( ) 2)( n+2). (4.19)

p=0k=0
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4.6. TIME REGULARITY

Next,

(+1)(n+1)(I+n+2)

|8)£8y”(u8xu)| < CHM3(14-n)! >

SCl+"+l+1(l+n)!(l+n+3)(l+n—|—4)(l+n—|—5)§
(4.20)

1 C
:Cl+n+1+1 / )1 e
(I+n+5) 3

(I+n+1)(l+n+2)
I+n+1+41 ¢

<C (I+n+5) !Z.

From (4.15), (4.16), (4.17) and (4.20), it follows that
10,9, u| < T (14 n+5- 1)L
for all (x,y) € R%,t € [0,T].
Now, we will assume that (2.73) is correct for 1 < m < j where (I,n) € {0,1,2,...}? and we
will prove it for m = j+4 1 and (I,n) € {0,1,2,...}?. We have
1071910k u| < 1979139 u| 4197 L3 ul +197 L7197 ul + |9/ 919 (udu) .

We estimate these terms as

’&tja)g-l—Saynbd Scj+l+5+n+1(l+5+n+5])1Lj

“4.21)
< CUDHERHL(] 4 4 5(j+1))ICHLI,
and
]8,j8)f+38y”u] SCj+l+3+”+1(l—|—3+n+5j)!Lf
. . 1
<Cj+l+n+1+l I 5(j+1 !CZLJ
< (S U+ L e T 9) (4.22)
. c? .
SC(J+1)+l+n+l<l+n+5(j_|_1))!%LJ7
and
|atja)£—18;t+2u’ Scj+l—1+n+2+1(l_1+n+2_|_5j)!Lj
. 1 .
< G (4 n 5+ 1)1 L

(I+n+2)(l+n+3)(I+n+4)(l+n+5)

< U+ D)+ +n+1 IR )
<C (I+n+5(j+1)) (120)

(4.23)
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4.6. TIME REGULARITY

For the nonlinear terms, we have

8’818” udu)

- zl: Z ( )(") (9/0l7Par*u) (9P ofu)
< >< )(a’ POy u) (9790 ofu) (4.24)

g ; < ) < ) (Z) CRESZEDICE NS

Using (4.18), we estimate the first term of (4.24)

(l+n—

33 (0)(1) @arrar ) (o1t

[+n N TS
< Z Z( >C]+l p+n k+1(l+n_p_k+5J)!chp+l+k+l(p_|_1_|_k)!

l-l—n)
Cj+l+n+3L] p+1+k !
R L
p—k+5j)!
[ n

=S+ Y Y (p+ 14k (I +n—p—k+1)

(I+n—

p=0k=0

p—k+2)---(I+n—p—k+5j).

Since p <[, k < n, for any m € N, we have

and

p+k+m<Il+n+m,

l+n—p—k4+m<Il+n+m.
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4.6. TIME REGULARITY

From these inequalities and from (4.19), we obtain

£ ()0 e

<CHIBLII4n) (1 +n+1)(1+n+2)--- (I+n+5j)

(D) (n+ DI +n+2)
2

(4.25)
. 1
< OB LIS (14 n 4 SHNI+n+ 5]+ DI +n+5j+2)(1+n+5]+3)

= CUTDHHH (] L 4 5 4-5)1 —L
e n SIS S 7 T n T 5 15) 2

< C(J+1)+’+"“(l+n+5(j+1))!%LJ’.

W[ =

The (4.24), is estimated as

33 (5) (1) (@t vas) (2o ata)

P

I
[+n o ; Ny
SZZ( )Cl pt+n k+1(l+n_p_k)!cj+p+l+k+l(p+1+k+5j)!Lj

p=0i=0 \P Tk
= ZI: zn: (+n). MBI — p— k)1 (p+ 1+ k+5))!
S 5 (p+ R +n—p—k)!
Il n
=B+ Y Y (p+k+ 1D)(p+k+2) - (p+1+k+5)).
p=0k=0

Since p <[, k < n, for any m € N we have p+k+m < [+n-+m. From these inequalities and
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4.6. TIME REGULARITY

from (4.19), we get

£ ()() e

p=0k=0

(4D (1) +n+2)
2

< CIHHELI(14-n)! (I+n+2)(I+n+3)

- (I+1+n+5j)

. 1
gC-’+l+"+3LJ§(l+n+5j+1)!(1+n+51+2)(1+n+51+3) (4.26)

= CUDHAn+L (] Ly 4 574 5)! —L
( I s 9 TnT5515) 2

SC(j+1)+l+n+l(l+n+5(j+1))!%Lj

< C(]+1)+l+n+1(l—|—n—{—5(]—|—1))‘%[,]

W =

To estimate (4.24)3, we shall recall that for ¢ < j, p <[ and k < n, we have the following

inequality
j I\ (n < j+l+n
q)\r)\k) ~\a+p+tk)

1 _ ‘
. £0)()0) o s
qg=1p=0k=0

=11 i1l . .
< Z Z Z <]+ +n)cj—q+l—p+n—k+l(l_p+n_k+5(j_q))!Lj—q

Cq+p+1+k+l(p—|—l+k—|—5q)!l,q

Vit S (j+1+n)!

< i3 l+n—p—k+5(j—q))!
qz’lpZOkZ{) (g+p+k)! (]—q+l+n—p—k)!( Fn=p=k+5(j=q))

(p+1+4+k+5q)!

j—1 1 n
= I LI(j 41+ n)! Z Z Z q+p+k+1)(g+p+k+2)---(g+p+k+1+4q)

(=) +l+n—p—k+1)((j—q)+l+n—p—k+2)---((j—q)+1+n—p—k+4(j—q)).
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4.6. TIME REGULARITY

Since g < j—1, p <1, k <n, for any m € N, we have

gt+p+kt+m<j+l+n+m—1, j+l+n—qg—p—k+m< j+l+n+m—1,

j—1 1 n . )
Y Y ) (é) (;) (Z) (9/90l=Par*u) (9 0r+' ofu)
q=1p=0k=0

Il n
< CIHHME3LI(j+1+n)! Z Z Z q+p+k+1)(j+I+n+1)(j+I+n+2)

~.

~(JHl+n+49)(j+HI+n)(j+I+n+1) - (jHI+n+4(j—q)—1).
Since j+l+n+m< j+I1+n+m+4qg+ 1, for any m € N, we have

j-1 1 ;
AYRAYAL g Al p A
LEE()C) @)oo

[ n
< O (4 1+ ) Z Z Z q+p+k+1)(j+l+n+1)(j+1+n+2)

\A.

(A l+n+4q)(j+1+n+49+1)(j+1+n+4q+2) - (j+1+n+4))

=D+ D+ D(+1+n+2) (4.27)
2

:Cj+l+n+3Lj(l_|_n+5j)!(

-1

<ML (14 n+5)(1+n+5j+1)([+n+5j+2)([+n+5j+3) 3

=1 1

= OB LI 4 n4-5(j+1))! (I+n+5j+4)(I+n+5j+5)2

< C(j+1)+l+”+1(l—l—n+5(j+1))!%Lf.

W[ =

Finally by using (4.21), (4.22), (4.23), (4.25), (4.26) and (4.27) we arrive at
10/ 0ok ul < UtV (| pp 5(j 4 )L,

for all (x,y) € R%,t € [0,T].
This completes the proof.
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Chapter 5

Fifth order Kadomtsev-Petviashvili 11
equation’

5.1 Introduction

The fifth-order Kadomtsev-Petviashvili II equation is the partial differential equation
{ Ohu—u+ 8x_1(9y2u +udu=0
u(x,y,0) = f(x,y),
where u = u(x,y,t) and (x,y,t) € R> x R,
In the present work, we will consider the Cauchy problem for equation (5.1) with initial

data in an anisotropic Gevrey space G51752(R2), which we define as the completion of the
Schwartz functions with respect to the norm

17 By = [, 2 122178 ) PdEan.

The primary reason for considering initial data in these spaces is because of the following
theorem:

5.1)

Proposition 5.1 (Paley-Wiener Theorem). Let § > 0, and suppose f € L>(R). Then the
following are equivalent:

1. The function f is the restriction to the real line of a function F which is holomorphic
in the strip
Ss={x+iyeC: |yl <},
and satisfies

sup [|F(x+iy)[l2m) < ee.
ly|<o

2. SLIFE) € L;(R).

In addition to the holomorphic extension property, Gevrey spaces satisfy the embeddings
G192 (R?) — G%:%(R?) for 8/ < &, which follow from the corresponding estimates

11 g3t g < €Ml vy 52)

I Boukarou, A.; Oliveira da Silva, D; Guerbati, Kh.; Zennir, Global well-posedness for the fifth-order
Kadomtsev-Petviashvili II equation in anisotropic Gevrey Spaces, http://arxiv.org/abs/2006.12859v1.
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5.2. LOCAL AND GLOBAL WELL-POSEDNESS

5.2 Local and global well-posedness

Saut and Tzvetkov [74] proved that problem (5.1) is locally well-posed for initial data in
HY9(R?) = L*(R?). This result was improved in [42] by Isaza, Lépez and Mejia, who re-
duced the minimal regularity for initial data to s; > —5/4 and s, > 0. They also showed that
the problem is globally well-posed in H*'O(R?) with s; > —4/7.

The first result relates to the short-term persistence of analyticity of solutions.

Theorem 5.2. Let 8§ > 0 and &, > 0. Then for all initial data f € G‘SI’SZ(RZ), there exists
T=T(f ||G‘31*52(R2)) > 0 and a unique solution u of (5.1) on the time interval T > 0 such

that
ueC([0,7],G*(R?)).

Moreover the solution depends continuously on the data f. In particular, the time of existence

can be chosen to satisfy
o

(U [ llgoreng)?

for some constants cy > 0 and 'y > 1. Moreover, the solution u satisfies

sup [u(t)]] govs g2y < 2C11 Sl govos 2
t€[0,T]

Our second main result concerns the evolution of the radius of analyticity for the x-
direction.

Theorem 5.3. Let 8 > 0 and 8, > 0, and assume f € G%%(R?). Then the solution u given
by Theorem 5.2 extends globally in time, and for any T > 0, we have

ueC([0,7),G°MOR?))  with 8(T)=min{8,CT"'},

where C > 0 is a constant which does not depend on T.

5.3 Function spaces and bilinear estimate

To simplify the notation, we introduce some operators which will be useful later. We first
introduce the operator A51’52, which we define as

/@x’y _ e5l|§\e52|n|fx7Y_ (5.3)

With this, we may also define another useful operator by
N(f) = O [(A%2 )2 — A2 (f2)] (5.4)
Since our proofs will rely heavily on the theory developed by Isaza, Lépez and Mejia, let

us state the function spaces they used explicitly, so that we can state their useful properties
which we will exploit in our modifications of their spaces.

il ipoer) = [, F3(s1.52.b.) (8. 7) P&andr.
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5.4. PROOF OF THEOREM ??

Where

Hrsaib.e) = ()" )2 —m(Emy? (ST

with m(&, 1) = &>~ and<> (L[>

We remark that we w111 not need to make use of the case € # 0. Thus, we will employ the
simplified notation X*12:/(R3) = Xs1520:0(R3),

Since our interest is in constructing analytic solutions, we will require a version of the

Bourgain spaces which are adapted to the Gevrey spaces. For this, we define the spaces
y %926 (R3) by the norm

)
H”HY‘SD%”(]R@) = ||A 1’62M||X0.0,b(R3).

As is well-known, the spaces X*12%(R?) satisfy the embedding X*12% — C (R; H*1*2(R?))
for b > 3. An immediate consequence of this is that Y926 (R3) < C(R; G%+%(R?)) when
b > % Thus, solutions constructed in ¥ 9% (R3) belong to the natural solution space.

The final preliminary fact we must state, is the following bilinear estimate, which is
Lemma 1.1 of [42]:

Lemma 54. Lets) > —5/4, s >0, b > 1/2, and define s = max{0,—s }. If € and B satisfy

the inequalities
0<e<m'n{2<5 ) 3}
1 f— —_—— —
- s5\a °) 20"

and

then
190(09) 5y < Clll sy IV s

This estimate yields the following result as a lemma

Lemma 5.5. For 8§ >0, 6, > 0, and b > 1/2, we have

||8x(uv)||Y51,52,79/20(R3) < C||“Hy51-ﬁz-,h(R3)HVHy&ﬁz-h(RS)-

5.4 Proof of Theorem 5.2

We may now begin the proof of Theorem 5.2 by Picard iteration, where the iteration space is
y%:%2:b(J) and I = [0, T]. Since this is a modification of the proof of Isaza, Lopez, and Mejia
in [42], we will merely outline the essential steps. To begin, consider the linear problem

du—9u+9; 'oju="F.
u(0) = f.

By Duhamel’s principle the solution can be written as

u(t) f——/St—t (5.5)



5.4. PROOF OF THEOREM ??

Where
S()f(E,1) = EMF(E ).

Rather than work directly with the integral formulation in equation (5.5), we instead use
the following modified form: let y € Ci’(R) be supported in the interval [—2,2] such that

0<y(t)<1and y =1on[~1,1],and let ¢7 € C3(R) be supported on (—27 /2 27-1/2)
such that 0 < ¢r(r) < 1 and ¢7 = 1 on [T~ 1/2,T~1/2]. Then, we observe that we may
decompose the integral operator on the right-hand side of equation (5.5) in the form

3 [ SU— W = oy ()4 oy (1) + e (1), 56)

where

eitp(E:m,7) _ 1

I :C/ei(xéﬂn)eitm(ém) .
or ) ip(E.1.7)

‘PT(P(&T?»T))J?(&,TI? T) dgdndf,

oy (£) = C [0 (1 = 07 (p(&,m, ) f(&, 1, 7) dEdnds,

n’v)

i itm(&, 1 — s 1 2
1y, (f) = —C/el(X§+yn)ez &m l?;T(éI?f’ T’; T))f(é,n,r) dedndr.

Here, p(§,m,7) =t—m(&,n). Then, we define a modification G7(f) of the integral operator
in (5.6),
Gr(f) = w(t/T)ly, (f) + 1oy (f) + y(t/T) Mz, ().

It can be shown that if 0 < 7 < 1 and ¢ € [T, T}, then

1 t
——/ S(t—1)F(t"at
2 Jo

The next step is to define a sequence {u,}; _, of functions which are solutions to the
equations

oo — 8)§u0 + ax_layzuo =0, oy, — 8)§un + a;layzu,, = —Uy_104lp_1,
uo(x,,0) = f(x,y). un(x,,0) = f(x,y).

By the discussion above, for 1 € (0,7T), we have the identity u,(x,y,t) = ®(u,—1(x,y,1)),
where

D(u) = Y(1)S(0)f +Gr (3:()) .
Using this decomposition, we obtain the following estimate, which will be crucial to our
iteration argument:

Lemma5.6. Let 8, >0, 8 >0, 1 <b<1,B€(0,1—b), and0<T < 1. Then

el o150 3y < CILf Nl o152y + CT M9tz 1) 1.8, oy

for some 0 <y < 1.
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5.4. PROOF OF THEOREM ??

Proof. Since u, = ®(u,_) forr € (0,T], it suffices to show that

1) llys800 sy < ClLFll gy + CT0(v) a5 )
(R%) (R?) (R%)

for any function v. To show that this estimate holds, we recall equations (1.2) and (1.4) of
[42], which state that

WS Flgmae gy < i sngey:
for s1,s57,b € R and € > 0, and
||GT(F)||X31»52vb7£(R3) < CT}/||F||XS1-,827—ﬁ«8(R3)7
forsi,s» €eR, b € (%, 1), € >0,and B € (0,1 —b). From these estimates, it follows that
1)
900 oy 6 = A% #0(0) | 00m02

< CHASI’SZfHHO.O(RZ) +CTYHax(u;%71)HXo,O.fﬁ,()(RS)
< Clfll g ey +CTIOE 1) yvon s

as desired.
O
If we now apply Lemma 5.5, it is a simple matter to show that
H”n”yﬁpﬁzwh(u@) < CHf||051-5z(R2) "‘CTyH“n—l Hishabb(m)-
Using a simple proof by induction, one may show that
H“nHyﬁpﬁz:b(Rﬂ < 2CHf||G51!52(R2)5
for all n € NU{0}, if we choose T such that
1
(5.7)

T < .
(AC7 lgovan )7

The final step is to show that the sequence converges. Applying Lemmas 5.6 and 5.5 once
again, a similar computation will show that

[t — tn—1 ||y61~,52-,b(R3) = || ®(un) — P(un-1) ||Y517827b(R3)
< CT Myt |lun—1 — un—2llys, 6,0 g3
<ACPTY| £l 681 82 gy litn—1 = ttn—2lly .85, )
where
My -1 = |lun—1llys.60 g3+ lun—2llys; 80 g3
Thus, the sequence will converge if T satisfies

1
8C2HfHG51-,52(R2))1/7'

T < ( (5.8)
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5.5. PROOF OF THEOREM ??

Sufficiently small. Thus, the sequence converges in Y 01,02,b (R?) to a solution
u e Yo2b(RY)  C([0,T],G%%(R?)).

As a concluding remark, we observe that for later convenience, we may choose the time

of existence to be c
T = 0 (5.9)

(Tt 1Tl g ongee) 7
For appropriate choice of ¢, this will satisfy inequalities (5.7) and (5.8).

5.5 Proof of Theorem 5.3

In this section, we begin the proof of Theorem 5.3. The first step is to obtain estimates on
the growth of the norm of the solutions. For this, we will need the following approximate
conservation law

Theorem 5.7. Let 8; > 0. Then there is a b € (1/2,1) and a C > 0, such that u € Y90 (I)
is a solution to the Cauchy problem (5.1) on the time interval [0,T), we have the estimate

sup [|u(t)llgs,.0 < 1 ga0 +C1llullys,00 - (5.10)
t€[0,T)
Before we may state the proof, let us first state some preliminary lemma. This will be used
to prove the following key estimate

Lemma 5.8. Let N(u) be as in equation (5.4) for 8y > 0 and 8, = 0. Then for b and B as in
Lemma 5.4, we have
IN)[lyoo—p < Cillull}5,05-

Proof. We first observe that the inequality in Lemma 5.4, for the case € = 0, is equivalent
to

B fE-&.n—m,t—1)
[ers152 -8 [ gy o
§(S1,m1,71)

X BT 0 E, m )y derdmdn ”

where we denote ¢(7,&,1) = (t—m(&,n)). With this in mind, we observe that the left side
of the inequality in Lemma 5.8 can be estimated by Lemma 2.21 as

E)! /66”5é'ﬁ(é—ghn—ﬂhf—fl) "
(¢(7.&,m))P (&—¢&)!

< Clfllez, Nglzz,

IN ()| yoo—p < C&y

lSlia(E,m, )
(&)1

d&idn

2
If we apply Lemma 5.4 with 51 = —1, s = 0, it will follow that

IN () [[yo0. 5 < C81l|ull} 5,00
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5.5. PROOF OF THEOREM ??

5.5.1 Proof of Theorem 5.7

Begin by applying the operator A%0 to equation (5.1). If we let U = A%:0y, then equation
(5.1) becomes
Ut - Uxxxxx + a;lUyy + UUX = N(u),

where N(u) is as defined in Lemma 5.8. Multiplying this by U and integrating with respect
to the spatial variables, we obtain

/ UU; — UUyyere + U0y ' Uyy + U U, dxdy = / UN(u) dxdy.
If we apply integration by parts, we may rewrite the left-hand side as
Ny R UUrndxd Uyd, 'Uy dxd U*Uy dxd
al 2 xay + [ UxUxndxdy — yOx Uy dxdy+ x axay,
which can then be rewritten as
EEZ/U'dMy+§/QAdeMy—E/&ﬂ@ U,)?) dxdy
1
+ g/ax(U3) dxdy.

To proceed, we observe that U and its derivatives vanish at infinity. We thus obtain the
formal identity

%/Uz(x,y,t) dxdy = 2/U(x,y,t)N(u)(x,y,t) dxdy.
Integrating with respect to time yields
/Uz(x,y,t) dxdy = /Uz(x,y, 0) dxdy
+2/0t/U(x,y,t')N(u)(x,y,t') dxdydt'.
Applying Cauchy-Schwarz and the definition of U, we obtain

() 15,0 < 1 NG00 + lelly.00 IN ) 005 )

where f is as defined previously. If we now apply Proposition 5.7 and the fact that f < 1/2 <
b, we can further estimate this by

(750 < 117500 +Cillull3 600 (5.11)

as desired.
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5.5. PROOF OF THEOREM ??

5.5.2 Proof of Theorem 5.3

With the tools established in the previous section, we may begin the proof of Theorem 5.3.
By the embedding in equation (5.2), it suffices to consider the case & = 0. To begin, let us
first suppose that 7* is the supremum of the set of times 7 for which

ue C(0,T];G3).

If T* = oo, there is nothing to prove, so let us assume that 7* < co. In this case, it suffices to
prove that

ue([0,7],G°10), (5.12)

for some 6(7) > 0 and all T > T*. To show that this is the case, we will use Theorem 5.2
and Proposition 5.7 to construct a solution which exists over subintervals of width 7p, using
the parameter O; to control the growth of the norm of the solution. Thus, the desired result
will follow from the following proposition

Proposition 5.9. Let T > 0 and Ty > 0 be numbers such that nTy < T < (n+ 1)Ty. Then the
solution u to the Cauchy problem (5.1) satisfies

sup [[u(6) | Gairro < F I Garo +2°CE(Tnllf1I5 0, (5.13)
lE[OﬂTQ]
and
sup [u(t)[1 250 < 4lu(®)][25,0 (5.14)
tE[O,nTO}
if

0(T)< 68, and O(T)<

S

for some constant C > (.

Proof. By induction on n. The base case n = 1 follows from equation (5.11), Theorem 5.2,
and the embedding G%1:% < G915 when 0; < &y and 8} < &,. Suppose, then, that the result
holds for n < k. The inductive hypothesis then tells us that

sup [u()llgsino < £ 175010 +CETF 50
t€[0,kTp)]

and

sup |u(t)|| 250 < 4l1f1%s, 0-
1€[0.ATy) ¢ o

If we apply the inductive hypothesis on the interval [kTp, (k+ 1)Tp], then

sup —u(®)llgaeryo < [|u(kTo) [ Gsryo +CS(T) ulkTo) |25, 0-
tekTo,(k+1)Tp]

and

sup ||M(t)H2G5(T),0 < 4||”(kTO)Hi;51,o-
t€[kTy, (k+1)To]

88



5.5. PROOF OF THEOREM ??

If we apply equations (5.13) and (5.14) to these, we get

lu(kTo) | garro < NlFNZsery0 +2°CkS (T f 1175, 05

and
[ (kTo) 1750 < 4I1F125,0-

Combining these together, we obtain

sup  [|u(®)llgoro < (11250 +23CRS (T) | f115,0) +22CE(T) 1 f125,0
tE[kTo,(kﬁ’l)To}

= [|fllgsiro +2°Clk+1)S(T)|f1125,0-

It follows that

sup ()l gsiro < 1 £l1Gsm0 +2°Clh+1)S(T)I£125,0-
t€[0,(k+1)Tp]

To complete the proof, we need to show that

sup  [u(®) 12500 < 41 f NI Ge,0- (5.15)
t€[0,(k+1)Tp)

Next, we observe that the assumption n7p < T < (n+ 1)T implies that

<T< +1<T+1<2T
E— n E— [EN—
=T T T
Since k+1 <n+ 1, we have
2T
2Clk+1)8(T )||f||G610<23 6(T)If1gs10-

Recalling the definition of 7 in equation (5.9), we can rewrite this as

2T
- O()fllgaro =2%C|| fllgaro (1 + [ fllgar0) /1T 8(T)

< C(1+]|fll go0) T TS(T).
Thus, for equation (5.15) to hold, it suffices to have

C
o(T) < =
( ) — T7
where C is a constant that depends on the norm || f{| -, o-
Since we have shown that the result holds for n» = 1, and we have shown that the result
for n = k implies it for n = k+ 1, then the result holds for all n. This completes the proof of
Proposition 5.9, from which Theorem 5.3 follows as an immediate corollary.

]
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Conclusions.

We have discussed the local well-posedness for Kadomtsev-Petviashvili I, II equation in an
anisotropic Gevrey space and the local well-posedness for the Kawahara equation and the
m-Korteweg-de Vries system with the initial data in analytical Gevrey spaces. We proved
the existence of solutions using the Banach contraction mapping principle. This was done by
using the bilinear and trilinear estimates in Gevrey-Bourgain. We used this local result and
a Gevrey approximate conservation law to prove that global solutions exist. These solutions
are Gevrey class of order m in the time variable with m = 36,50, 5.
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Open Question’

Open Question : Does the KdV radius of analyticity persist for all time?

The best result in the references shows that the analytic radius has a polynomial decay lower
bound, which means that analytic radius may shrink to zero as time goes to infinity. In this
note, Ming Wang® proved that, for the KdV equation with some damping, the analytic radius
has a fixed positive lower bound uniformly for all time.

ZHimonas, A.A., Petronilho, G. Analyticity in partial differential equations. Complex Anal Synerg 6, 15
(2020)

3Ming Wang, Nondecreasing analytic radius for the KdV equation with a weakly damping February 2022
Nonlinear Analysis 215(1):112653
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Numerical analysis applications

As an extension of the theoretical works, we will have to prove the exponential convergence
rate for a spectral projection of the initial value problem for some partial differential equa-
L0456
tions™ ",

“M. Bjorkavag and H. Kalisch. Exponential convergence of a spectral projection of the KdV equation.
Physics Letters A, 365:278-283, 2007.

M. Bjorkavag and H. Kalisch. Radius of analyticity and exponential convergence for spectral projections
of the generalized KdV equation. C N S Numer Simulat, 15:869-880, 2010.

®M. Bjorkavag and H. Kalisch. Wave breaking in Boussinesq models for undular bores. Physics Letters A,
375:1570-1578, 2011.
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