
Tþyb`þþþþþþþK�� TþyV�rqþþþþþþþþþm§d�� Tþ§r¶�zþþþþþþþþþ��� Tþþþþ§Cwþhþmþþþþþþþþþ���
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

¨þmlþþþþþþþ`�� ��þþþþþþþþb�� ¤ ¨�Aþþþþþþþþ`�� �þyl`þþþþþþþþþþþþt�� ­C�E¤
Ministry of Higher Education and Scientific Research

Tþþþþþ§� rþþ� T`�Aþþþþþþþþ�
University of Ghardaia

Aþy�wþ�wnkt�� ¤ �wþþl`�� Tþyl�
Faculty of Science and Technology
¨�µ� �®�³� ¤ �AyRA§r�� �s�

Department of Mathematics and Computer Science

THESIS

Presented for the degree of Master

In: Computer Science Specialty: Intelligence System for Knowledge Extraction

By: Abderrahim Mokhtar Sehil

Theme

Image Classification using Deep
Learning

Jury members

M. Kerrache Chaker Abdelaziz Doctor Univ. Ghardaia President
M. Bouhani Abdelkader MAB Univ. Ghardaia Examiner
M. Adjila Abderrahmane MAB Univ. Ghardaia Examiner
M. Mahdjoub Youcef MAA Univ. Ghardaia Supervisor

College year : 2018/2019

Dedicated to
My Dear Mother

T
h�e �m�o�s��t 	p�r�e�c�i�o�u	s 	p�e�r	s��o�n� �t�o �m�e �a�n�d� �t
h�e 	p�u�r�e
s��t 	s��o�u�r�c�e �o�f �i�n	s�	p�i�r�a�t�i�o�n�
�a�n�d� 	p�o�s��i�t�i�v�i�t�y, �w�h�o 	s��t�o�o�d� �b�y �m�y 	s��i�d�e �w�h�e�n�e�v�e�r� I �f�e�l�l, I �r�e�a�l�l�y �c�a�n�'�t

�e�x
p�r�e
s�	s �h�o�w �m�u�c
h� I'�m� �r�e�a�l�l�y �g�r�e�a�t�e�f�u�l �t�o �h�a�v�e �y�o�u� ...
My Father

T
h�e 	p�e�r	s��o�n� �w�h�o �t�a�u�g
h�t �m�e �t�r�u	s��t �i�n� A�l�l�a�h� �a�n�d� �t�o �n�e�v�e�r� �g�i�v�e �u	p�, I
�r�e�a�l�l�y �c�a�n�'�t �f�i�n�d� �t
h�e 	p�r�o�p�e�r� �w�o�r�d	s �t�o �d�e
s��c�r�i�b�e �m�y �a	p	p�r�e�c�i�a�t�i�o�n� �a�n�d�
�g�r�a�t�i�t�u�d�e �t�o �t
h�e 	s��u	p	p�o�r�t �g�i�v�e�n� �b�y �y�o�u� �i�n� �l�i�f�e �a�n�d� �t
h�r�o�u�g
h� �a�l�l �m�y

�e�d�u�c�a�t�i�o�n�a�l �c�a�r�e�e�r�.
My Sisters and Brother

A�y�a�, Y�a�c�i�n�e �a�n�d� M�i�m�i� �t
h�e �g�r�e�a�t�e
s��t �g�i�f�t �o�f G�o�d�.
My squad

H�a�m�z�a� , �t
h�e �b�r�o�t
h�e�r� �f�r�o�m� �a�n�o�t
h�e�r� M�o�t
h�e�r� �a�n�d� �t
h�e �b�u�d�d�y �f�o�r� �l�i�f�e.
A�z�z�e�d�i�n�e , �t
h�e 	s��o�u�r�c�e �o�f �i�n	s��a�n�i�t�y �y�o�u�'�r�e �a�l
s��o �t
h�e �b�r�o�t
h�e�r� �f�r�o�m�

�a�n�o�t
h�e�r� �m�o�t
h�e�r� �d�o�n�'�t �g�e�t 	j�e�a�l�o�u	s �l�o�l.
C�o�u�l�d�n�'�t �h�a�v�e �a� �b�e�t�t�e�r� �l�i�f�e �w�i�t
h�o�u�t �y�o�u� �g�u�y
s, I �r�e�a�l�l�y �a	p	p�r�e�c�i�a�t�e �y�o�u�r�

	p�r�e
s��e�n�c�e �w�e�i�r�d� 	p�e�o�p�l�e.
My Special Friends

A�m�i�n�a� , H�a�d	j�e�r� �a�n�d� I�b�t�i	s�	s��e�m�, A�m�i�r�a� I'�m� �r�e�a�l�l�y �g�l�a�d� �t�o �h�a�v�e 	s��u�c
h�
�w�o�n�d�e�r�f�u�l 	p�e�r	s��o�n	s �a�n�d� �b�e�a�u�t�i�f�u�l 	s��o�u�l
s �a�r�o�u�n�d� , �m�u�c
h� �a	p	p�r�e�c�i�a�t�e�d� !!

and

M�y �c�o�l�l�e�g�u�e A�b�d�e�r�r�a�h�m�a�n�e, C
h�a�r�a�f, M�a�n�e�l & �e�v�e�r�y�o�n�e �w�h�o �w�i	s��h�e�d�
�m�e �t
h�e �g�o�o�d� �l�u�c
k� �a�n�d� �h�e�l
p�e�d� �m�e �e�v�e�n� �w�i�t
h� �a� �w�o�r�d�.

Cordially

Rahim.

Acknowledgment

“Words fly away, writings remain”

In the name of "ALLAH", The most beneficent and merciful who gave as strength and
knowledge to complete this thesis.

Firstly, I would like to express my sincere sense of gratitude to my supervisor Mister
Mahdjoub Youcef who offered his continuous advice and encouragement throughout
the course of this thesis. I thank him for the guidance and great effort he puts into
training me in the scientific field.

I am deeply grateful to all members of the jury for agreeing to read this manuscript
and to participate in the defense of this thesis.

I thank all the teachers who taught me in the five past years for the vast amounts of
information.

For all those who participated in the development of this work.

4

Rahim Sehil
Pencil

Abstract

Deep learning (DL) is a sub-domain of machine learning (ML), it consists of artificial
neural networks. The word (deep) refers to the number of layers in the network, the more
layers there are, the deeper the network. Advanced tools and techniques have significantly
improved Deep Learning algorithms to the point where they can outperform humans in
classifying images. Among artificial neural network architectures there are convolutional
neural networks (CNN). Image classification is a classic problem in the fields of image
processing and convolutional neural networks. Our work studies the images classification
by using an architecture of a convolutional neural network on the CIFAR-10 Dataset.

Keywords :
Machine Learning (ML), Deep Learning (DL), images classification, convolutional neural
networks (CNN), CIFAR-10.

5

Rahim Sehil
Pencil

Résumé

Le Deep Learning (DL) est un sous-domaine de Machine Learning (ML), il est constitué
des réseaux de neurones artificiels. Le terme Deep (profond) désigne le nombre de couches
dans le réseau, plus il y a des couches, plus le réseau est profond. Des outils et des tech-
niques avancés ont amélioré de façon spectaculaire les algorithmes du Deep Learning, au
point où ils peuvent surpasser les humains à classer les images. Parmi les architectures
de réseaux de neurones artificiels il y a le réseau de neurones convolutionnels (CNN). La
classification d’images est problème classique dans les domaines du traitement dimages
et les réseaux de neurones convolutionnels. Ce mémoire étudier la classification d’images
en employant le Dataset CIFAR-10 à partir d’une architecture d’un réseau de neurone
convolutionnel.

Mots-clés :
Machine Learning (ML), Deep Learning (DL), classification des images, réseau de neurone
convolutionnel (CNN), CIFAR-10.

6

Rahim Sehil
Pencil

P�l�

�A�wbO`�� �AkbJ �mSt§ ©@��¤ , (ML) ¨�µ� �l`t�� �� T·� , (DL) �ym`�� �l`t��
,�AqbW�� d� �E Aml�¤ , TkbK�� ¨� �AqbW�� d� Y�� (Tqym`��) Tmlk�� ryK� .Ty�AnW}¯�
�kK� �ym`�� �yl`t�� �Ay�EC�w� T�dqtm�� �Aynqt��¤ ��¤ ±�
ns� dq� .TkbK�� �m� �E
�AkbK�� Tyn�� �y� �� .CwO�� �ynO� ¨� rKb�� Yl� �wft�� �� �hnkm� T�C Y�� ryb�
CwO�� �ynO� rbt`§ .(CNN) Tyfy�®t�� TybO`�� �AkbK�� �An¡ Ty�AnW}¯� TybO`��
Anlm� xCd§ .Tyfy�®t�� TybO`�� �AkbK��¤ CwO�� T��A`� �¯A�� ¨� TykyF®� TlkK�
T�wm�� Yl� Tyfy�®� TybO� TkbJ Tyn� ��d�tFA� CwO�� �ynO� ­r�@m�� £@¡ ¨�

.CIFAR− 10 �A�Ay�

: Ty�Atfm�� �Amlk��

Tyfy�®t�� TybO`�� �AkbK�� , CwO�� �ynO� , (DL) �ym`�� �l`t�� , (ML) ¨�µ� �l`t��
. CIFAR− 10 , (CNN)

Contents

Introduction 1

1 Machine learning and Image classification 2
1.1 Introduction . 2
1.2 Machine learning . 2

1.2.1 What is Machine learning? . 2
1.2.2 The importance of machine learning 2
1.2.3 Types of machine learning . 3

1.2.3.1 Supervised machine learning 3
1.2.3.2 Unsupervised machine learning 3
1.2.3.3 Semi-supervised machine learning 4
1.2.3.4 Reinforcement machine learning 4

1.3 Image Classification . 5
1.3.1 Classification Definition . 5
1.3.2 Image classification motivations . 5
1.3.3 Types of classification algorithms 6

1.3.3.1 k-Nearest Neighbor . 6
1.3.3.2 K-means . 7
1.3.3.3 Fuzzy c-means . 7
1.3.3.4 Support Vector Machine 8
1.3.3.5 Decision Trees . 9

1.4 Image classification and Machine learning 10
1.5 Conclusion . 10

2 Deep learning and Convolutional Neural Network 11
2.1 Introduction . 11
2.2 Definition of deep learning . 11
2.3 Biological neural network . 12

2.3.1 Neurons . 12
2.3.2 Axons . 12
2.3.3 Dendrites . 12
2.3.4 Synapses . 13
2.3.5 Soma (Cell Body) . 13

2.4 Artificial Networks (ANNs) . 13
2.5 Different types of Neural Networks . 14

2.5.1 Feedforward Neural Network . 14
2.5.2 Radial basis function Neural Network 14
2.5.3 Kohonen Self Organizing Neural Network 15

i

2.5.4 Recurrent Neural Network (RNN) 16
2.5.5 Convolutional Neural Network (CNN) 16

2.6 Convolutional Neural Network Layers . 17
2.6.1 Convolutional Layer . 17
2.6.2 Pooling Layer . 17
2.6.3 Fully Connected Layer . 18
2.6.4 Dropout Layer . 18

2.7 Convolutional Neural Network Architectures 19
2.7.1 LeNet-5 - LeCun & al . 19
2.7.2 AlexNet . 20
2.7.3 VGG-16 . 21
2.7.4 GoogLeNet (Inception) . 21
2.7.5 ResNet-Kaiming He & al . 22

2.8 Training of an Artificial Neural Network 23
2.8.1 Image Preprocessing . 23
2.8.2 Loss Functions . 24

2.8.2.1 Cross Entropy . 24
2.8.2.2 Binary Cross Entropy . 24
2.8.2.3 Categorical Cross Entropy 24
2.8.2.4 Mean Squared Error (MSE) 25
2.8.2.5 Mean Squared Logarithmic Error (MSLE) 25
2.8.2.6 Mean Absolute Error (MAE) 25

2.8.3 Optimizers . 26
2.8.3.1 Stochastic Gradient Decent 26
2.8.3.2 Adagrad . 27
2.8.3.3 RMSprop . 27
2.8.3.4 Adam . 27

2.8.4 Activation Functions . 27
2.8.4.1 ReLU (Rectified Linear Unit) 27
2.8.4.2 Softmax . 28
2.8.4.3 Segmoid . 28

2.8.5 Regularization . 29
2.8.5.1 Dataset augmentation . 29
2.8.5.2 Early stopping . 29
2.8.5.3 Dropout . 30
2.8.5.4 Dense-sparse-dense training 30
2.8.5.5 Batch Normalization . 31

2.8.6 Transfer Learning . 31
2.9 Conclusion . 33

3 Implementation 34
3.1 Introduction . 34
3.2 Softwares and tools . 34

3.2.1 Python . 34
3.2.2 Tensorflow . 34
3.2.3 Keras . 35
3.2.4 Jupyter Notebook . 35
3.2.5 Google Colab . 36

ii

3.2.6 Hardware . 36
3.3 Dataset . 37
3.4 CNN’s Architecture . 38
3.5 Results . 40
3.6 Conclusion . 43

Conclusion 44

iii

List of Figures

1.1 Machine Learning subcategories . 3
1.2 Algorithms of supervised machine learning 4
1.3 KNN algorithm’s application example . 6
1.4 Fuzzy c-means algorithm’s example . 7
1.5 SVM’s application example . 8
1.6 Decision trees application example . 9

2.1 The relation between AI, machine learning and deep learning 11
2.2 Typical biological neuron . 12
2.3 A simple artificial neuron network . 13
2.4 Feedforward neuron network . 14
2.5 Architecture of an RBF Network . 15
2.6 Architecture of a SOM network . 15
2.7 Architecture of a Recurrent Neural Network 16
2.8 Convolution Operation . 17
2.9 Pooling Layer . 18
2.10 Dropout process . 18
2.11 LeNet-5’s Architecture . 19
2.12 AlexNt’s Architecture . 20
2.13 A figure that represents the architecture of VGG-16 CNN 21
2.14 GoogLeNet’s architecture . 22
2.15 Residual Network’s architecture . 23
2.16 ReLU function . 27
2.17 Segmoid function . 28
2.18 Early stopping process while training . 30
2.19 Dense-sparse-dense technique . 31

3.1 Jupyter Notebook interface . 35
3.2 Google Collab interface . 36
3.3 CIFAR10 dataset sample visualization . 37
3.4 The model’s architevture . 38
3.5 A random sample from the dataset . 40
3.6 Test Accuracy and Model Loss plots . 40
3.7 The confusion matrix of the model . 41
3.8 The error rate of the model . 41
3.9 The error rate of the model . 42
3.10 The effect of the model’s layers . 42
3.11 A sample of predicted images with their labels 43

iv

List of Tables

2.1 A list of pretrained neural network . 32

3.1 The hardware used to run the tests . 36
3.2 The architecture of the used model for my test 39
3.3 The resume of obtained results . 43

v

Introduction

Today’s world is characterized by the availability of enormous amounts of informa-
tion and data where they are stored, processed, indexed and searched for by artificial
intelligence-based systems. The success of these systems is due to the progress and evolu-
tion of computing power as well as the availability of international Data-Sets which made
the processing of these data a fast and a cheap task.

Machine learning (ML) is a subfield of artificial intelligence (AI), it is science and art
that studies how to develop algorithms that can learn from data. Machine learning and
its applications are omnipresent in many areas of our daily lives.

In this document, I am interested in supervised learning problems, and more specifi-
cally deep learning.

Among the problems encountered when handling large amounts of data is the struc-
turing and research, therefore the use of the classification can help reduce the size of these
problems. Classification is a systematic arrangement in groups and categories based on
its features. The classification of images allows to classify an image dataset into several
classes such as for example (animal class, human class, transport class, etc.), this catego-
rization allows a better exploitation of this dataset.

Image classification came into existence for decreasing the gap between the computer
vision and human vision by training the computer with the data.
in this thesis, I explore the study of image classification using deep learning, focusing
mainly on the construction of a convolutional neural network (CNN) model and its dif-
ferent layers, then applying this model on CIFAR-10 image dataset, after that I will try
to perform several optimizations by varying the different parameters that constitute the
model in order to understand the impact of each of them on the final result.

I have structured my manuscript in three main chapters:

• The first chapter begins with a definition of machine learning and its types. Then,
it introduces the basics of image classification.

• The second chapter is devoted to the description of neural networks, its different
types, the architecture of convolutional neural networks, as well as the different
properties that characterize the training of the neural network.

• The third and last chapter shows the experimental part of my work, it contains
the definition of the various tools and software used, the dataset, the architecture
of the convolutional neural network model and then the results.

1

Chapter 1

Machine learning and Image
classification

1.1 Introduction
This chapter spotlights and introduces the concepts and the basics of machine learning, I
will talk briefly about the importance of Machine Learning (ML) then I will pass through
its different types. At the second part of chapter I will highlight Image Classification
which is the main subject of this research.

1.2 Machine learning

1.2.1 What is Machine learning?
Machine Learning is a sub field of artificial intelligence, it’s a quite vast field that is
expanding rapidly, being continually partitioned and sub-partitioned into different sub-
specialties and types of machine learning .
There are some basic common threads, however, and the overarching theme is best
summed up by this oft-quoted statement made by Arthur Samuel way back in 1959:
“Machine Learning is the field of study that gives computers the ability to learn without
being explicitly programmed.”
“And more recently, in 1997, Tom Mitchell gave a “well-posed ” definition that has proven
more useful to engineering types”

“A computer program is said to learn from experience E with respect to some task T
and some performance measure P, if its performance on T, as measured by P, improves
with experience E.” [1]

1.2.2 The importance of machine learning
The machine learning field is constantly evolving. And along with evolution comes a rise
in the demand and importance. There is one crucial reason why data scientists need
machine learning, and that is: ‘High-value predictions that can guide better decisions and
smart actions in real time without human intervention’ [2]

2

CHAPTER 1. MACHINE LEARNING AND IMAGE CLASSIFICATION

1.2.3 Types of machine learning
Machine Learning solves problems that cannot be solved by numerical means alone.
Two of the most widely adopted machine learning methods are supervised ML and unsu-
pervised ML, but there are also other methods of machine learning. Here’s an overview
of the most popular types (check figure 1.1).

Figure 1.1: Machine Learning subcategories

1.2.3.1 Supervised machine learning

These algorithms are trained using labeled examples. For example, a piece of equipment
could have data points labeled either “F” (failed) or “R” (runs). The learning algorithm
receives a set of inputs along with the corresponding correct outputs, and the algorithm
learns by comparing its actual output with correct outputs to find errors. It then modi-
fies the model accordingly. Through methods like classification, regression and prediction
(check figure 1.2), supervised learning uses patterns to predict the values of the label on
additional unlabeled data. Supervised learning is commonly used in applications where
historical data predicts likely future events.

1.2.3.2 Unsupervised machine learning

This type of machine learning is used against data that has no historical labels. The
system is not told the "right answer". The algorithm must figure out what is being
shown. The goal is to explore the data and find some structure within. Unsupervised
learning works well on transitional data. Popular techniques include self-organizing maps,
nearest-neighbor mapping, k-means clustering and singular value decomposition. These
algorithms are also used to segment text topics, recommend items and identify data
outliers [3].

3

CHAPTER 1. MACHINE LEARNING AND IMAGE CLASSIFICATION

Figure 1.2: Algorithms of supervised machine learning

1.2.3.3 Semi-supervised machine learning

This subcategory is used for the same applications as supervised learning. But it uses
both labeled and unlabeled data for training, typically a small amount of labeled data
with a large amount of unlabeled data (because unlabeled data is less expensive and
takes less effort to acquire). This type of learning can be used with methods such as
classification, regression and prediction. Semi-supervised machine learning is useful when
the cost associated with labeling is too high to allow for a fully labeled training process.
Early examples of this include identifying a person’s face on a webcam [3].

1.2.3.4 Reinforcement machine learning

It’s often used for robotics, gaming and navigation. With reinforcement learning, the
algorithm discovers through trial and error which actions yield the greatest rewards. This
type of learning has three primary components: the agent (the learner or decision maker),
the environment (everything the agent interacts with) and actions (what the agent can
do). The objective is for the agent to choose actions that maximize the expected re-
ward over a given amount of time. The agent will reach the goal much faster by following
a good policy. So, the goal in reinforcement machine learning is to learn the best policy. [3]

In this document I will focus on the supervised machine learning precisely, the clas-
sification sub-category, and more precisely on the image classification sub-sub-category.

4

CHAPTER 1. MACHINE LEARNING AND IMAGE CLASSIFICATION

1.3 Image Classification

1.3.1 Classification Definition
Classifying an image is a task or a series of methods that a unified theory to use the

images for further analysis or for mapping, it is often important to translate the frequency
information contained in the images into a thematic information. There is usually a choice
between two approaches: supervised and unsupervised classification.

1.3.2 Image classification motivations
Image classification consists in distributing images according to previously established

classes, classifying an image makes it correspond a class, and marking its relationship
with other images.
Generally, recognizing an image is an easy task for a human during his lifetime, he has
acquired knowledge that allows him to adapt to variations resulting from different con-
ditions of acquisition.it is for example relatively simple for him to recognize an object in
several orientations partially hidden by another from near or far and according to various
illuminations [4].

However, technological evolution in terms of image acquisition (cameras, sensors, mi-
croscopes) and storage are generating rich databases of information and multiplying the
domains of applications, it becomes difficult for the human to analyze the large number of
images. However, this is not necessarily easy for a computer program for which an image
is a set of numerical value.
The goal of image classification is to develop a system that can assign a class automati-
cally to an image. Thus, this system makes it possible to carry out an expertise task that
can be costly to acquire for a human being, particularly because of physical constraints
such as concentration, fatigue or the time required by a large volume of image data.
The applications of automatic image classification are numerous and range from docu-
ment analysis to medicine to the military field. Thus, I find applications in the medical
field such as the recognition of cells and tumors, handwriting recognition for checks postal
codes. In the field of biometrics such as face recognition, fingerprints, irises.[4]
The common point for all these applications is that they require the establishment of a
processing chain from the available images composed of several steps to attend to a deci-
sion. Each step of the implementation of such a classification system requires the search
for appropriate methods for optimal overall performance, namely the feature extraction
phase and the learning phase. Typically, I have image data from which I need to extract
relevant information translated in the form of digital vectors. This extraction phase allows
us to work in a digital space. It is then necessary to elaborate in the learning phase, from
these initial data, a decision function for deciding the membership of a new datum to one
of the classes in the presence.[4]

5

CHAPTER 1. MACHINE LEARNING AND IMAGE CLASSIFICATION

1.3.3 Types of classification algorithms
In machine learning and statistics, classification is a supervised learning approach in which
the computer program learns from the data input given to it and then uses this learning
to classify new observation. This data set may simply be bi-class (like identifying whether
the person is male or female or that the mail is spam or non-spam) or it may be multi-
class too. Some examples of classification problems are: speech recognition, handwriting
recognition, bio image classification, document classification etc.
There is a lot of classification algorithms available now but it is not possible to conclude
which one is superior to other. It depends on the application and nature of available data
set.

1.3.3.1 k-Nearest Neighbor

The k-nearest neighbor algorithm is a supervised classification algorithm. It takes a bunch
of labeled points and uses them to learn how to label other points. To label a new point, it
looks at the labeled points closest to that new point which are its nearest neighbors, and
has those neighbors vote. So whichever label, the most of the neighbors have is the label
for the new point. Here k in K-Nearest Neighbors is the number of neighbors it checks.
It is supervised because the objective is to try to classify a point based on the known
classification of other points. Usually KNN is robust to noisy data since it is averaging
the k-nearest neighbors.(check figure 1.3)

Figure 1.3: KNN algorithm’s application example

In the Figure 1.3 the picture on the left represents points in a 2D plane with three
possible types of labeling (red, green, blue). For the 5-NN classifier, the boundaries
between each region are quite smooth and regular. As for the N-NN Classifier, I note that
the limits are "chaotic" and irregular. The latter comes from the fact that the algorithm
tries to get all the blue dots in the blue regions, the red with the red . . . it is a case of
overfitting. [5]

6

CHAPTER 1. MACHINE LEARNING AND IMAGE CLASSIFICATION

1.3.3.2 K-means

The k-means algorithm is the best-known unsupervised clustering algorithm because of
its simplicity of implementation. It partitions the data of an image into K clusters. Unlike
other so-called hierarchical methods, which create a "cluster tree" structure to describe
groupings, k-means creates only one level of clusters. The algorithm returns a partition of
the data, in which the objects within each cluster are as close as possible to one another
and as far as possible from the objects of the other clusters. Each cluster of the partition
is defined by its objects and its centroid. The k-means is an iterative algorithm that
minimizes the sum of the distances between each object and the centroid of its cluster.[6]
The initial position of the centroids determines the final result, so that the centroids must
be initially placed as far as possible from each other in order to optimize the algorithm.
K-means changes cluster objects until the sum can no longer decrease. The result is a
set of compact and clearly separated clusters, provided that the correct K value of the
number of clusters is chosen. The main steps of the k-means algorithm are:

1. Random choice of the initial position of K clusters.

2. Re-Assign objects to a cluster according to a criterion of distance minimization
(usually according to a measure of Euclidean distance).

3. Once all the objects have been placed, recalculate the K centroids.

4. Repeat steps 2 and 3 until no more reassignments are made.

K-means is a simple algorithm that has been adapted to many problem domains.[7]

1.3.3.3 Fuzzy c-means

Figure 1.4: Fuzzy c-means algorithm’s example

7

CHAPTER 1. MACHINE LEARNING AND IMAGE CLASSIFICATION

Fuzzy C-Means (FCM) is a fuzzy unsupervised classification algorithm. Coming from
the C-means algorithm, he introduces the notion of a fuzzy set into the definition of
classes: each point in the dataset belongs to each cluster with a certain degree, and all
clusters are characterized by their centroid (check figure 1.4). Like other unsupervised
classification algorithms, it uses a criterion of minimizing intra-class distances and max-
imizing interclass distances, but giving a certain degree of membership to each class for
each pixel. This algorithm requires prior knowledge of the number of clusters and gen-
erates the classes by an iterative process by minimizing an objective function. Thus, it
makes it possible to obtain a fuzzy partition of the image by giving each pixel a member-
ship degree (between 0 and 1) to a given class. The cluster with a pixel is associated is
the one with the highest degree of membership [8] .

The main steps of the Fuzzy C-means algorithm are:

1. The arbitrary fixation of a membership matrix.

2. The computation of class centroids.

3. The readjustment of the membership matrix according to the position of the cen-
troids.

4. Calculation of the minimization criterion and return to Step 2 if there is no conver-
gence of criteria.

1.3.3.4 Support Vector Machine

Figure 1.5: SVM’s application example

The objective of the support vector machine algorithm is to find a hyperplane in an
N-dimensional space (N the number of features) that distinctly classifies the data points.

8

CHAPTER 1. MACHINE LEARNING AND IMAGE CLASSIFICATION

To separate the two classes of data points, there are many possible hyperplanes that could
be chosen. Our objective is to find a plane that has the maximum margin (check figure
1.5), i.e the maximum distance between data points of both classes. Maximizing the
margin distance provides some reinforcement so that future data points can be classified
with more confidence. [9]

1.3.3.5 Decision Trees

Figure 1.6: Decision trees application example

The tree is constructed in a top-down recursive divide-and-conquer manner. All the
attributes should be categorical. Otherwise, they should be discretized in advance. At-
tributes in the top of the tree have more impact towards in the classification and they are
identified using the information gain concept. (check figure 1.6)
A decision tree can be easily over-fitted generating too many branches and may reflect
anomalies due to noise or outliers. An over-fitted model has a very poor performance on
the unseen data even though it gives an impressive performance on training data. This
can be avoided by pre-pruning which halts tree construction early or post-pruning which
removes branches from the fully-grown tree. [10]

9

CHAPTER 1. MACHINE LEARNING AND IMAGE CLASSIFICATION

1.4 Image classification and Machine learning
Manual methods have proven very difficult to apply for seemingly simple tasks such as
image classification, object recognition in images, or voice recognition. The data coming
from the real-world samples of a sound or the pixels of an image are complex, variable
and tainted with noise. For a machine, an image is an array of numbers indicating the
brightness (or color) of each pixel, and a sound signal a sequence of numbers indicating
the air pressure at each moment. It is virtually impossible to write a program that will
work robustly in all situations. This is where machine learning comes in. It is the learning
that drives the systems of all major Internet companies. [11]
They have been using it for a long time to filter desirable content, order responses to a
search, make recommendations, or select information of interest to each user. A drivable
system can be seen as a black box with an entry, for example an image, sound, or text,
and an output that can represent the category of the object in the image, the spoken
word, or the subject of which the text speaks. This is called classification systems or
pattern recognition. In its most used form, the machine learning is supervised: at the
entrance of the machine is shown a picture of an object, for example a car, and it is given
the desired exit for a car. Then I show him the picture of a dog with the desired exit for a
dog. After each example, the machine adjusts its internal parameters to bring its output
closer to the desired output. After showing the machine thousands or millions of examples
labeled with their category, the machine becomes able to classify most of them correctly.
But what is more interesting is that it can also properly classify car or dog pictures that
it has never seen during the learning phase. This is called the generalization capacity. [12]

1.5 Conclusion
In this chapter I have presented the common types of machine learning, also I have
summarized its the types which are Supervised, Unsupervised, Semi-supervised and Re-
inforcement machine learning. I have parsed also some Image Classification’s algorithms.
Finally I set the relation between Machine Learning and Image Classification.

10

Chapter 2

Deep learning and Convolutional
Neural Network

2.1 Introduction
This chapter introduces the concept of Deep Learning (DL), I will talk about the the
original idea of its concept which is the Biological Neural Networks, then I will present
its projection in Deep Learning which are Artificial Neural Networks and its types. Then,
I will focus more on the Convolutional Neural Network and talk about its layers and
architectures and how I can train the network and how I can transfer the learning from a
network to another.

2.2 Definition of deep learning
Deep learning is a sub-field of machine learning dealing with algorithms inspired by the
structure and function of the brain called artificial neural networks (check figure 2.1). In
other words, it mirrors the functioning of our brains. Deep learning algorithms are similar
to how nervous system structured where each neuron connected each other and passing
information.

Figure 2.1: The relation between AI, machine learning and deep learning

11

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2.3 Biological neural network

2.3.1 Neurons
The neuron is not only the basic building block of intelligence but it also forms a

message passing and control system within multi-cellular organisms. The basic structure
of a neuron can be seen as a body, called the soma, with one or many processes, dendrites
or axons, branching out from it. The processes carry messages to and from the soma and
terminate in synapses (check figure 2.2).

Figure 2.2: Typical biological neuron

The neuron is only one cell, much like any other in the body. It has DNA code and is
generated in much the same way most cells are generated; One major difference between
neurons and most other cells in the human body is that neurons don’t regenerate. [13]

2.3.2 Axons
Axon, also called nerve fiber, portion of a nerve cell (neuron) that carries nerve impulses

away from the cell body. A neuron typically has one axon that connects it with other
neurons or with muscle or gland cells. Some axons may be quite long, reaching, for
example, from the spinal cord down to a toe. Most axons of vertebrates are enclosed in a
myelin sheath, which increases the speed of impulse transmission; some large axons may
transmit impulses at speeds up to 90 meters per second. [14]

2.3.3 Dendrites
Dendrites are really quite similar to axons. In vertebrates they have the function of

receiving signals from other axons or sensory organs. They are generally unidirectional,
transmitting to the soma, but they can also transmit signals as well.

12

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2.3.4 Synapses
Synapses are the points where neurons communicate with each other. There are two

main types of synapse, chemical and electrical.

• Chemical Synapses: commonly link axons to dendrites. They are asymmetric
and there is a small gap of approximately 200- to 300- Å between them.

• Electrical Synapses: in contrast to chemical synapses, are symmetric. The gap
between the cells is much smaller than the gap in chemical synapses. Ions can pass
through channels directly from one cell to the other. This makes for much faster
inter-cellular signaling. [15]

2.3.5 Soma (Cell Body)
Positive signals pass from the dendrites (and axons) to the soma where they increase

the neuron’s potential. If enough signals reach the soma to excite it (reach its action
potential), then it will fire the whole neuron. The rate of signals arriving at the soma is
important as the potential is constantly declining. The Soma also has many cell support
functions.

2.4 Artificial Networks (ANNs)
The idea of ANNs is based on the belief that working of human brain by making the

right connections, can be imitated using silicon and wires as living neurons and dendrites.
ANNs are composed of multiple nodes, which imitate biological neurons of human brain.
The neurons are connected by links and they interact with each other. The nodes can
take input data and perform simple operations on the data. The result of these operations
is passed to other neurons. The output at each node is called its activation or node value
[16].
Each link is associated with weight. ANNs are capable of learning, which takes place by
altering weight values. The Figure 2.3 . shows a simple ANN

Figure 2.3: A simple artificial neuron network

13

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2.5 Different types of Neural Networks

2.5.1 Feedforward Neural Network
This neural network is one of the simplest form of ANN, where the data or the input

travels in one direction. The data passes through the input nodes and exit on the output
nodes. This neural network may or may not have the hidden layers. In simple words, it
has a front propagated wave and no back propagation by using a classifying activation
function usually (check figure 2.4).

Figure 2.4: Feedforward neuron network

Application of Feed forward neural networks are found in computer vision and speech
recognition where classifying the target classes are complicated. This kind of Neural
Networks are responsive to noisy data and easy to maintain. [17]

2.5.2 Radial basis function Neural Network
The idea of RBFNs is derived from the theory of function approximation. The Eu-

clidean distance is computed from the point being evaluated to the center of each neuron,
and a radial basis function (RBF) (also called a kernel function) is applied to the distance
to compute the weight (influence) for each neuron. The radial basis function is so named
because the radius distance is the argument to the function. In other words, RBFs repre-
sent local receptors; its output depends on the distance of the input from a given stored
vector. That means, if the distance from the input vector ~x to the center ~uj of each RBF
ϕjforexample,‖~x− ~µj‖ is equal to 0 then the contribution of this point is 1, whereas the
contribution tends to 0 if the distance ‖~x− ~µj‖ increases [18]. As an example the figure
2.5 illustrate a typical architecture of a radial basis function neural network .

14

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

Figure 2.5: Architecture of an RBF Network

2.5.3 Kohonen Self Organizing Neural Network
Kohonen Self-Organizing feature Map (SOM) is a neural network which modifies itself

in response to input patterns. This property is called self-organization and it is achieved
using competitive learning. The basic competitive learning means that a competition
process takes place before each cycle of learning. In the competition process a winning
processing element is chosen by some criteria. Usually this criteria is to minimize an
Euclidean distance between the input vector and the weight vector. After the winning
processing element is chosen, its weight vector is adapted according to the learning law
used. SOM differs from the basic competitive learning so that instead of adapting only
the winning processing element also the neighbors of the winning processing element are
adapted. The self-organization property of SOM is based on the use of the neighborhood
of the winning processing element [19] . The figure 2.6 shows an example of Kohonn SOM.

Figure 2.6: Architecture of a SOM network

15

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2.5.4 Recurrent Neural Network (RNN)
Recurrent Neural Network (RNN) are a type of Neural Network where the output from

previous step are fed as input to the current step. In traditional neural networks, all the
inputs and outputs are independent of each other, but in cases like when it is required to
predict the next word of a sentence, the previous words are required and hence there is a
need to remember the previous words. Thus, RNN came into existence, which solved this
issue with the help of a Hidden Layer. The main and most important feature of RNN is
Hidden state, which remembers some information about a sequence (check figure 2.7).

RNN have a “memory” which remembers all information about what has been calcu-
lated. It uses the same parameters for each input as it performs the same task on all the
inputs or hidden layers to produce the output. This reduces the complexity of parameters,
unlike other neural networks. [20]
RNNs can be used in a lot of different places. For example, at language modelling and
generating text, machine translation, speech recognition, generating image descriptions
and video tagging.

Figure 2.7: Architecture of a Recurrent Neural Network

2.5.5 Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN) is a type of specialized neural network for pro-

cessing data with a grid-like topology. image type data, which can be considered as
a 2D grid of pixels. Convolutional networks have had considerable success in practical
applications. The name "convolutional neural network" indicates that the network uses
a mathematical operation called convolution. Convolution is a special linear operation.
Convolutional networks are simply networks of neurons that use convolution instead of
matrix multiplication in at least one of their layers. They have wide applications in image
and video recognition, recommendation systems and natural language processing.

16

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2.6 Convolutional Neural Network Layers

2.6.1 Convolutional Layer
The convolution layer is the core building block of the CNN. It carries the main portion

of the network’s computational load. This layer performs a dot product between two
matrices (check figure 2.8), where one matrix is the set of learnable parameters otherwise
known as a kernel, and the other matrix is the restricted portion of the receptive field. The
kernel is spatially smaller than an image, but is more in-depth. This means that, if the
image is composed of three (RGB) channels, the kernel height and width will be spatially
small, but the depth extends up to all three channels. During the forward pass, the kernel
slides across the height and width of the image producing the image representation of that
receptive region. This produces a two-dimensional representation of the image known as
an activation map that gives the response of the kernel at each spatial position of the
image. The sliding size of the kernel is called a stride. [21]
If I have an input of size W ×W ×D and Dout number of kernels with a spatial size of F
with stride S and amount of padding P , then the size of output volume can be determined
by the following formula:

Wout = W − F + 2P
S

+ 1 (2.1)

This will yield an output volume of size Wout ×Wout ×Dout

Figure 2.8: Convolution Operation

2.6.2 Pooling Layer
The pooling layer replaces the output of the network at certain locations by deriving

a summary statistic of the nearby outputs. This helps in reducing the spatial size of the

17

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

representation, which decreases the required amount of computation and weights. The
pooling operation is processed on every slice of the representation individually.
There are several pooling functions such as the average of the rectangular neighborhood,
L2 norm of the rectangular neighborhood, and a weighted average based on the distance
from the central pixel. However, the most popular process is max pooling, which reports
the maximum output from the neighborhood.
The figure 2.9 bellow shows the most common type of pooling the max-pooling layer, which
slides a window, like a normal convolution, and get the biggest value on the window as
the output. [22]

Figure 2.9: Pooling Layer

2.6.3 Fully Connected Layer
The term ”Fully Connected” implies that every neuron in the previous layer is con-

nected to every neuron on the next layer. The output from the convolutional and pooling
layers represent high-level features of the input image. The purpose of the Fully Con-
nected layer is to use these features for classifying the input image into various classes
based on the training dataset.

2.6.4 Dropout Layer
Dropout is a form of regularization that randomly drops some proportion of the nodes

that feed into a fully connected layer (check figure 2.10). Here, dropping a node means
that its contribution to the corresponding activation function is set to 0. Since there is
no activation contribution, the gradients for dropped nodes drop to zero as well.[23]

Figure 2.10: Dropout process

18

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2.7 Convolutional Neural Network Architectures
Discussing the commonly used architectures for convolutional networks, almost all

CNN architectures follow the same general design principles of successively applying con-
volutional layers to the input, periodically down sampling the spatial dimensions while
increasing the number of feature maps.
While the classic network architectures were comprised simply of stacked convolutional
layers, modern architectures explore new and innovative ways for constructing convo-
lutional layers in a way which allows for more efficient learning. Almost all of these
architectures are based on a repeatable unit which is used throughout the network.
These architectures serve as general design guidelines which machine learning practition-
ers will then adapt to solve various computer vision tasks. These architectures serve as
rich feature extractors which can be used for image classification, object detection, image
segmentation, and many other more advanced tasks. I’ll talk briefly about some of these
architectures later. The most common form of a CNN architecture stacks a few CONV-
RELU layers, follows them with POOL layers, and repeats this pattern until the image has
been merged spatially to a small size. At some point, it is common to transition to fully-
connected layers. The last fully-connected layer holds the output, such as the class scores.

2.7.1 LeNet-5 - LeCun & al
LeNet-5, a 7-layer Convolutional Neural Network, was deployed in many banking systems
to recognize hand-written numbers on cheques. [12]

Figure 2.11: LeNet-5’s Architecture

The hand-written numbers were digitized into grayscale images of pixel size—32× 32.
At that time, the computational capacity was limited and hence the technique wasn’t scal-
able to large scale images. The model contained 7 layers excluding the input layer(check
figure 2.11). Since it is a relatively small architecture, here are its layers:

1. Layer 1: A convolutional layer with kernel size of 5×5, stride of 1×1 and 6 kernels
in total. So the input image of size 32× 32× 1 gives an output of 28× 28× 6. Total
params in layer = 5× 5× 6 + 6 (bias terms)

19

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2. Layer 2: A pooling layer with 22 kernel size, stride of 2× 2 and 6 kernels in total.
The input values in the receptive were summed up and then were multiplied to a
trainable parameter (1 per filter), the result was finally added to a trainable bias
(1 per filter). Finally, sigmoid activation was applied to the output. So, the input
from previous layer of size 28×28×6 gets sub-sampled to 14×14×6. Total params
in layer = [1(trainableparameter) + 1(trainablebias)]× 6 = 12

3. Layer 3: Similar to Layer 1, this layer is a convolutional layer with same configu-
ration except it has 16 filters instead of 6. So the input from previous layer of size
14×14×6 gives an output of 10×10×16. Total params in layer = 5×5×16+16 =
416.

4. Layer 4: Again, similar to Layer 2, this layer is a pooling layer with 16 filters
this time around. Remember, the outputs are passed through sigmoid activation
function. The input of size 10 × 10 × 16 from previous layer gets sub-sampled to
5x5x16. Total params in layer = (1 + 1)× 16 = 32

5. Layer 5: This time around I have a convolutional layer with 55 kernel size and 120
filters. There is no need to even consider strides as the input size is 5x5x16 so I will
get an output of 1× 1× 120. Total params in layer = 5× 5× 120 = 3000

6. Layer 6: This is a dense layer with 84 parameters. So, the input of 120 units is
converted to 84 units. Total params = 84 × 120 + 84 = 10164. The activation
function used here was rather a unique one. I’ll say you can just try out any

7. Output Layer: Finally, a dense layer with 10 units is used. Total params =
84× 10 + 10 = 924.

2.7.2 AlexNet
AlexNet was developed by Alex Krizhevsky et al. in 2012 to compete in the ImageNet
competition. The general architecture is quite similar to LeNet-5, although this model is
considerably larger (check figure 2.12). The success of this model (which took first place
in the 2012 ImageNet competition) convinced a lot of the computer vision community
to take a serious look at deep learning for computer vision tasks. [24]

Figure 2.12: AlexNt’s Architecture

20

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2.7.3 VGG-16
The VGG network, introduced in 2014, offers a deeper yet simpler variant of the con-
volutional structures discussed above. At the time of its introduction, this model was
considered to be very deep (check figure 2.13). [25]

Figure 2.13: A figure that represents the architecture of VGG-16 CNN

2.7.4 GoogLeNet (Inception)
In 2014, researchers at Google introduced the Inception network which took first place in
the ImageNet competition for classification and detection challenges.

The model is comprised of a basic unit referred to as an "Inception cell" in which I
perform a series of convolutions at different scales and subsequently aggregate the results.
In order to save computation, 1 × 1 convolutions are used to reduce the input channel
depth. For each cell, I learn a set of 1 × 1, 3 × 3, and 5 × 5 filters which can learn to
extract features at different scales from the input. Max pooling is also used, albeit with
"same" padding to preserve the dimensions so that the output can be properly concate-
nated (check figure 2.14). [26]

Reasons for using these inception modules:

1. Each layer type extracts different information from input. Information gathered
from a 3× 3 layer will differ from information gathered from a 5× 5 layer. How do
I know which transformation will be the best at a given layer? So, I use them all!

2. Dimensionality reduction using 1×1 convolutions! Consider a 128×128×256 input.
If I pass it through 20 filters of size 1× 1, I will get an output of 128× 128× 20. So,

21

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

I apply them before the 3× 3 or 5× 5 convolutions to decrease the number of input
filters to these layers in the inception block used for dimensionality reduction.

Figure 2.14: GoogLeNet’s architecture

2.7.5 ResNet-Kaiming He & al
The 2015 ImageNet competition brought about a top-5 error rate of 3.57% , which is
lower than the human error on top-5. This was due to ResNet (Residual Network) model

22

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

used by microsoft at the competition. The network introduced a novel approach called
”skip connections”.

The idea came out as a solution to an observation—Deep neural networks perform
worse as I keep on adding layer. But intuitively speaking, this should not be the case. If
a network with k layers performs as y, then a network with k + 1 layers should at least
perform y.

Figure 2.15: Residual Network’s architecture

The observation brought about a hypothesis: direct mappings are hard to learn. So
instead of learning mapping between output of layer and its input, learn the difference
between them—learn the residual.
Say, x was the input and H(x) was the learned output. So, I need to learn F (x) =
H(x)− x. I can do this by first making a layer to learn F (x) and then adding x to F (x)
hence achieving H(x). As a result, I am sending the same H(x) in next layer. This gave
rise to the residual block I saw above.
The results were amazing as the vanishing gradients problem which usually make deep
neural networks numb to learning were removed. The skip connections or the shortcuts,
as I might say them, gave a shortcut to the gradients to the previous layers, skipping
bunch of layers in between. [27]

2.8 Training of an Artificial Neural Network
Once a network has been structured for a particular application, that network is ready
to be trained. To start this process the initial weights are chosen randomly. Then, the
training, or learning, begins.

2.8.1 Image Preprocessing
There are a number of pre-processing steps I might wish to carry out before using this in
any Deep Learning project. (I’ll be sitting below a list some of the most common steps).

• Uniform aspect ratio: One of the first steps is to ensure that the images have the
same size and aspect ratio. Most of the NN models assume a square shape input

23

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

image, which means that each image needs to be checked if it is a square or not, and
cropped appropriately. Cropping can be done to select a square part of the image,
as shown. While cropping, I usually care about the part in the center. [28]

• Image Scaling: Once that all images are square, it’s time to scale each image
appropriately. I have decided to have images with width and height of 100 pixels.
Starting to scale the width and height of each image by a factor x . There are a
wide variety of up-scaling and down-scaling techniques, usually a library function is
used to do this. [28]

• Dimensional reduction: by collapsing the RGB channels into a single gray-scale
channel. There are often considerations to reduce other dimensions, when the neural
network performance is allowed to be invariant to that dimension, or to make the
training problem more tractable. [28]

2.8.2 Loss Functions
2.8.2.1 Cross Entropy

The Cross-Entropy Loss (CE) is defined as:

CE = −
C∑
i

tilog(si) (2.2)

Where ti and si are the groundtruth and the CNN score for each class i in C. As usually
an activation function (Sigmoid / Softmax) is applied to the scores before the CE Loss
computation, we write f(si) to refer to the activations. [29]

2.8.2.2 Binary Cross Entropy

Binary cross entropy is a loss function used on problems involving yes/no (binary) de-
cisions. For instance, in multi-label problems, where an example can belong to multiple
classes at the same time, the model tries to decide for each class whether the example
belongs to that class or not.

L(y, ŷ) = − 1
N

N∑
i=0

(y × log (ŷi) + (1− y)× log (1− ŷi)) (2.3)

Binary cross entropy measures how far away from the true value (which is either 0 or 1)
the prediction is for each of the classes and then averages these class-wise errors to obtain
the final loss. The block before must have a Sigmoid as activation function. [29]

2.8.2.3 Categorical Cross Entropy

Categorical cross entropy is a loss function that is used for single label categorization.
This is when only one category is applicable for each data point. In other words, an
example can belong to one class only.

L(y, ŷ) = −
M∑
j=0

N∑
i=0

(yij ∗ log (ŷij)) (2.4)

24

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

Categorical cross entropy will compare the distribution of the predictions (the activations
in the output layer, one for each class) with the true distribution, where the probability
of the true class is set to 1 and 0 for the other classes. To put it in a different way, the
true class is represented as a one-hot encoded vector, and the closer the model’s outputs
are to that vector, the lower the loss. [29]

2.8.2.4 Mean Squared Error (MSE)

Mean Squared Error (MSE), or quadratic, loss function is widely used in linear regression
as the performance measure, and the method of minimizing MSE is called Ordinary Least
Squares (OSL), the basic principle of OSL is that the optimized fitting line should be a line
which minimizes the sum of distance of each point to the regression line, i.e., minimizes
the quadratic sum. The standard form of MSE loss function is defined as

L = 1
n

n∑
i=1

(y(i) − ŷ(i))2 (2.5)

Where (y(i) − ŷ(i)) is named as residual, and the target of MSE loss function is to
minimize the residual sum of squares. However, if using Sigmoid as the activation function,
the quadratic loss function would suffer the problem of slow convergence (learning speed),
for other activation functions, it would not have such problem.[30]

2.8.2.5 Mean Squared Logarithmic Error (MSLE)

Mean Squared Logarithmic Error (MSLE) loss function is a variant of MSE, which is
defined as

L = 1
n

n∑
i=1

(
log(y(i) + 1)− log(ŷ(i) + 1)

)2
(2.6)

MSLE is also used to measure the difference between actual and predicted. By taking
the log of the predictions and actual values, what changes is the variance that you are
measuring. It is usually used when you do not want to penalize huge differences in the
predicted and the actual values when both predicted and true values are huge numbers.
Another thing is that MSLE penalizes under-estimates more than over-estimates. [30]

1. If both predicted and actual values are small: MSE and MSLE is same.

2. If either predicted or the actual value is big: MSE > MSLE.

3. If both predicted and actual values are big: MSE > MSLE (MSLE becomes almost
negligible).

2.8.2.6 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a quantity used to measure how close forecasts or predic-
tions are to the eventual outcomes, which is computed by

L = 1
n

n∑
i=1

∣∣∣y(i) − ŷ(i)
∣∣∣ (2.7)

25

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

where |·| denotes the absolute value. Albeit, both MSE and MAE are used in predic-
tive modeling, there are several differences between them. MSE has nice mathematical
properties which makes it easier to compute the gradient. However, MAE requires more
complicated tools such as linear programming to compute the gradient. Because of the
square, large errors have relatively greater influence on MSE than do the smaller error.
Therefore, MAE is more robust to outliers since it does not make use of square. On
the other hand, MSE is more useful if concerning about large errors whose consequences
are much bigger than equivalent smaller ones. MSE also corresponds to maximizing the
likelihood of Gaussian random variables. [30]

2.8.3 Optimizers
Optimizers help us to minimize (or maximize) an Objective function (another name for
Error function) E(x) which is simply a mathematical function dependent on the Model’s
internal learnable parameters which are used in computing the target values(Y) from the
set of predictors(X) used in the model.
Gradient descent is an optimization algorithm used to minimize some function by it-
eratively moving in the direction of steepest descent as defined by the negative of the
gradient. I will talk about the variants of Gradient Decent

2.8.3.1 Stochastic Gradient Decent

SGD (stochastic gradient descent) updates the parameters for each sample in the dataset
x(i) and label y(i)

θ = θ − η.∇θ.J
(
θ;x(i); y(i)

)
(2.8)

In Gradient Descent optimization, I compute the cost gradient based on the complete
training set; hence, I sometimes also call it batch gradient descent. In case of very large
datasets, using Gradient Descent can be quite costly since I are only taking a single
step for one pass over the training set – thus, the larger the training set, the slower our
algorithm updates the weights and the longer it may take until it converges to the global
cost minimum. This method is faster but the updates of too frequent parameters cause
the objective function of the swings, these swings on one hand allow to land in potentially
better local minima but on the other hand make the convergence more difficult. However,
it has been shown that by lowering the learning rate , SGD shows the same convergence
as the gradient gradient descent.[31] [32]

Momentum Momentum is a method that helps accelerate the optimizer in the rel-
evant direction and dampens oscillations. The momentum term increases for dimensions
whose gradients point in the same directions and reduces updates for dimensions whose
gradients change directions. As a result, I gain faster convergence and reduced oscillation.

The ball accumulates momentum as it rolls downhill, becoming faster and faster on
the way. If I don’t use momentum the ball gets no information on where it was before
each discrete calculation step. Without momentum, each new calculation will only be
based on the gradient, no history. [33]

In this way, momentum helps the optimizer not to get stuck in local minima.

26

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2.8.3.2 Adagrad

Adagrad adapts the learning rate specifically to individual features: that means that some
of the weights in the choosen dataset will have different learning rates than others. This
works really well for sparse datasets where a lot of input examples are missing. Adagrad
has a major issue though: the adaptive learning rate tends to get really small over time.
Some other optimizers below seek to eliminate this problem. [34]

2.8.3.3 RMSprop

RMSprop is a special version of Adagrad developed by Professor Geoffrey Hinton in his
neural nets class. Instead of letting all of the gradients accumulate for momentum, it
only accumulates gradients in a fixed window. RMSprop is similar to Adaprop, which is
another optimizer that seeks to solve some of the issues that Adagrad leaves open.

2.8.3.4 Adam

Adam stands for adaptive moment estimation, and is another way of using past gradients
to calculate current gradients. Adam also utilizes the concept of momentum by adding
fractions of previous gradients to the current one. This optimizer has become pretty
widespread, and is practically accepted for use in training neural nets. [35]

2.8.4 Activation Functions
2.8.4.1 ReLU (Rectified Linear Unit)

Figure 2.16: ReLU function

The ReLU (Rectified Linear Unit) is the go-to function for many neural networks since
it is cheap to compute and still works well enough for many applications. It’s defined by

f(x) = max(z, 0) (2.9)
. It is a non-linear function that gives the same output as input if the input is above 0,
otherwise the output will be 0. that is,
• Output = input, if input is above 0

• Output = 0, if input is below 0
The ReLU function also helps with the problem of vanishing gradients in deep networks
by not squashing in both ends. [36]

27

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2.8.4.2 Softmax

Softmax function calculates the probabilities distribution of the event over ‘n’ different
events. In general way of saying, this function will calculate the probabilities of each target
class over all possible target classes. Later the calculated probabilities will be helpful for
determining the target class for the given inputs. It’s defined by

σ (xj) = exj∑K
k=1 e

xk
(2.10)

The main advantage of using Softmax is the output probabilities range. The range
will be between 0 to 1, and the sum of all the probabilities will be equal to one. If the
softmax function used for multi-classification model it returns the probabilities of each
class and the target class will have the high probability.
The formula computes the exponential (e-power) of the given input value and the sum of
exponential values of all the values in the inputs. Then the ratio of the exponential of the
input value and the sum of exponential values is the output of the softmax function. [37]

2.8.4.3 Segmoid

Figure 2.17: Segmoid function

A sigmoid function or logistic function is defined mathematically as

σ(z) = 1
1 + e−z

(2.11)

The value of the function tends to zero when z or independent variable tends to negative
infinity and tends to 1 when z tends to infinity (check figure 2.17). It needs to be kept
in mind that this function represents an approximation of the behavior of the dependent
variable and is an assumption. Now the question arises as to why use the sigmoid function
as one of the approximation functions [37]. There are certain simple reasons for this :

28

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

1. It captures non-linearity in the data. Albeit in an approximated form, but the
concept of non-linearity is essential for accurate modeling.

2. The sigmoid function is differentiable throughout and hence can be used with gra-
dient descent and backpropagation approaches for calculating weights of different
layers

3. The assumption of a dependent variable to follow a sigmoid function inherently
assumes a Gaussian distribution for the independent variable which is a general
distribution I see for a lot of randomly occurring events and this is a good generic
distribution to start with.

2.8.5 Regularization
Regularization is a technique which makes slight modifications to the learning algorithm
such that the model generalizes better. This in turn improves the model’s performance
on the unseen data as well.

2.8.5.1 Dataset augmentation

An overfitting model (neural network or any other type of model) can perform better
if learning algorithm processes more training data. While an existing dataset might be
limited, for some machine learning problems there are relatively easy ways of creating
synthetic data. For images some common techniques include translating the picture a few
pixels, rotation, scaling. For classification problems it’s usually feasible to inject random
negatives—e.g. unrelated pictures.[38]
There is no general recipe regarding how the synthetic data should be generated and it
varies a lot from problem to problem. The general principle is to expand the dataset by
applying operations which reflect real world variations as close as possible. Having better
dataset in practice significantly helps quality of the models, independent of the architec-
ture. In keras, I can perform all of these transformations using ImageDataGenerator. It
has a big list of arguments which can be used to preprocess the training data. [39] Here
is a sample code to implement it.

from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(horizontal flip=True)
datagen.fit(train)

2.8.5.2 Early stopping

Early stopping is a kind of cross-validation strategy where I keep one part of the training
set as the validation set. When I see that the performance on the validation set is getting
worse, I immediately stop the training on the model. This is known as early stopping
(check figure 2.18).

29

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

Figure 2.18: Early stopping process while training

In keras, I can apply early stopping using the callbacks function. Here is a sample code
to implement it.

from keras.callbacks import EarlyStopping
EarlyStopping(monitor=’val_err’, patience=5)

Here, monitor denotes the quantity that needs to be monitored and ‘valerr′ denotes
the validation error. After the dotted line, each epoch will result in a higher value of
validation error. Therefore, 5 epochs after the dotted line (since our patience is equal to
5), my model will stop because no further improvement is seen. [38]

2.8.5.3 Dropout

This is one of the most interesting types of regularization techniques. It also produces
very good results and is consequently the most frequently used regularization technique in
the field of deep learning. At every iteration, it randomly selects some nodes and removes
them along with all of their incoming and outgoing connections as the figure 2.10 shows.
The probability of choosing how many nodes should be dropped is the hyperparameter of
the dropout function. In keras, it can be implemented by using the keras core layer.

from keras.layers.core import Dropout
model = Sequential([
Dense(output_dim = hidden1_num_units, input_dim=input_num_units, activa-
tion=’relu’),
Dropout(0.25),
Dense(output_dim=output_num_units, input_dim=hidden5_num_units,
activation=’softmax’),
])

In the previous example I have defined 0.25 as the probability of dropping. I can tune
it further for better results using the grid search method. [23]

2.8.5.4 Dense-sparse-dense training

The technique consists in 3 steps (check figure 2.19):

1. Perform initial regular training, but with the main purpose of seeing which weights
are important, not learning the final weight values.

30

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2. Drop the connections where the weights are under a particular threshold. Retrain
the sparse network to learn the weights of the important connections.

3. Make the network dense again and retrain it using small learning rate, a step which
adds back capacity. [40]

Figure 2.19: Dense-sparse-dense technique

2.8.5.5 Batch Normalization

Training Deep Neural Networks is complicated by the fact that the distribution of each
layer’s inputs changes during training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning rates and careful parameter
initialization, and makes it notoriously hard to train models with saturating nonlinearities.
Batch normalization provides an elegant way of reparametrizing almost any deep network.
The reparametrization significantly reduces the problem of coordinating updates across
many layers.
BatchNorm impacts network training in a fundamental way: it makes the landscape of
the corresponding optimization problem be significantly more smooth. This ensures, in
particular, that the gradients are more predictive and thus allow for use of larger range
of learning rates and faster network convergence. [41]

2.8.6 Transfer Learning
Transfer learning is the process of taking a pre-trained model (the weights and parameters
of a network that has been trained on a large set by somebody else) and “fine-tuning” the
model with your own dataset. The idea is that this pre-trained model will act as a feature
extractor. You will remove the last layer of the network and replace it with your own
classifier (depending on what your problem space is). You then freeze the weights of all
the other layers and train the network normally (Freezing the layers means not changing
the weights during gradient descent/optimization). [42] [43]

Transfer learning has the benefit of decreasing the training time for a neural network
model and can result in lower generalization error. The weights in re-used layers may be
used as the starting point for the training process and adapted in response to the new
problem. This usage treats transfer learning as a type of weight initialization scheme.
This may be useful when the first related problem has a lot more labeled data than the

31

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

problem of interest and the similarity in the structure of the problem may be useful in
both contexts. The use of a pre-trained model is about how model may be downloaded
and used as it is into an application and used to classify new images. [44]

The pre-trained model can be used as a separate feature extraction program, in which
case input can be pre-processed by the model or portion of the model to a given an output
(e.g. vector of numbers) for each input image, that can then use as input when training a
new model. And the pre-trained model or desired portion of the model can be integrated
directly into a new neural network model. In this usage, the weights of the pre-trained
can be frozen so that they are not updated as the new model is trained. Alternately,
the weights may be updated during the training of the new model, perhaps with a lower
learning rate, allowing the pre-trained model to act like a weight initialization scheme
when training the new model.
this approach can be effective and save significant time in developing and training a deep
convolutional neural network model.

The following table 2.1 lists some pretrained networks trained on ImageNet and some
of their properties. The network depth is defined as the largest number of sequential
convolutional or fully connected layers on a path from the input layer to the output layer.
The inputs to all networks are RGB images

Network Depth Size Parameters
(Millions)

Image Input
Size

alexnet 8 227 MB 61.0 227-by-227
vgg16 16 515 MB 138 224-by-224
vgg19 19 535 MB 144 224-by-224

squeezenet 18 4.6 MB 1.24 227-by-227
googlenet 22 27 MB 7.0 224-by-224
inceptionv3 48 89 MB 23.9 299-by-299
densenet201 201 77 MB 20.0 224-by-224
mobilenetv2 53 13 MB 3.5 224-by-224
resnet18 18 44 MB 11.7 224-by-224
resnet50 50 96 MB 25.6 224-by-224
resnet101 101 167 MB 44.6 224-by-224
xception 71 85 MB 22.9 299-by-299
shufflenet 50 6.3 MB 1.4 224-by-224

nasnetmobile * 20 MB 5.3 224-by-224
nasnetlarge * 360 MB 88.9 331-by-331

Table 2.1: A list of pretrained neural network

* The NASNet-Mobile and NASNet-Large networks do not consist of a linear sequence
of modules. [45]

32

CHAPTER 2. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORK

2.9 Conclusion
In this chapter, I have discussed the origin idea of Deep Learning and its concept, its
different types, and I have detailed the Convolutional Neural Network (CNN), I also have
summarized its conception and cited some of architectures, the training part of the CNN is
also has an important weight when talking about it, I discussed the image pre-processing,
loss functions, some of the important optimizers, activation functions and I cited also
regularization. Finally, I closed the chapter by talking about Transfer learning and I have
referenced some of the well known pretrained models.

33

Chapter 3

Implementation

3.1 Introduction
In this chapter, I will define the architecture of the model I have created and then I
will apply this model on the image dataset CIFAR 10. To achieve this goal, I will use
some libraries, Tensorflow and Keras for learning and classification and to improve the
performance of the model I will use some simple and effective techniques such as dropout.

3.2 Softwares and tools

3.2.1 Python
Python 1 is an interpreted, object-oriented, high-level programming language with dy-
namic semantics. Its high-level built in data structures, combined with dynamic typing
and dynamic binding, make it very attractive for Rapid Application Development, as
well as for use as a scripting or glue language to connect existing components together.
Python’s simple, easy to learn syntax emphasizes readability and therefore reduces the
cost of program maintenance. Python supports modules and packages, which encourages
program modularity and code reuse. The Python interpreter and the extensive standard
library are available in source or binary form without charge for all major platforms, and
can be freely distributed.

3.2.2 Tensorflow
TensorFlow 2 is an open source software library for numerical computation using data
flow graphs. The graph nodes represent mathematical operations, while the graph edges
represent the multidimensional data arrays (tensors) that flow between them. This flex-
ible architecture enables you to deploy computation to one or more CPUs or GPUs in a
desktop, server, or mobile device without rewriting code. TensorFlow also includes Ten-
sorBoard, a data visualization toolkit.
TensorFlow was originally developed by researchers and engineers working on the Google
Brain team within Google’s Machine Intelligence Research organization for the purposes
of conducting machine learning and deep neural networks research. The system is general
enough to be applicable in a wide variety of other domains, as well. TensorFlow provides

1https://www.python.org/doc/essays/blurb/
2https://www.analyticsindiamag.com/10-popular-machine-learning-projects-github/

34

CHAPTER 3. IMPLEMENTATION

stable Python and C APIs as well as non-guaranteed backwards compatible API’s for
C++, Go, Java, JavaScript, and Swift.

3.2.3 Keras
Keras3 is a high-level neural networks API, written in Python and capable of running on
top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast
experimentation. Being able to go from idea to result with the least possible delay is key
to doing good research.
Keras was created to be user friendly, modular, easy to extend, and to work with Python.
The API was ”designed for human beings, not machines,” and “follows best practices for
reducing cognitive load.” Neural layers, cost functions, optimizers, initialization schemes,
activation functions, and regularization schemes are all standalone modules that you can
combine to create new models. New modules are simple to add, as new classes and
functions. Models are defined in Python code, not separate model configuration files.

3.2.4 Jupyter Notebook
The Jupyter Notebook 4 is an open-source web application that allows you to create
and share documents that contain live code, equations, visualizations and narrative text.
Uses include: data cleaning and transformation, numerical simulation, statistical model-
ing, data visualization, machine learning, and much more. It allows editing and running
notebook documents via a web browser (check figure 3.1). The Jupyter Notebook App
can be executed on a local desktop requiring no internet access (as described in this doc-
ument) or can be installed on a remote server and accessed through the internet.

In addition to displaying/editing/running notebook documents, the Jupyter Notebook
App has a ”Dashboard” (Notebook Dashboard), a ”control panel” showing local files and
allowing to open notebook documents or shutting down their kernels.

Figure 3.1: Jupyter Notebook interface
3http://keras.io/
4https://jupyter.org/

35

CHAPTER 3. IMPLEMENTATION

3.2.5 Google Colab
Google Colab 5 is a free cloud service and now it supports free GPU, the user can improve
his Python programming language coding skills, develop deep learning applications using
popular libraries such as Keras, TensorFlow, PyTorch, and OpenCV, it can be related
to google drive to store all projects, and the most important feature that distinguishes
Colab from other free cloud services is that Colab provides GPU and is totally free.

Figure 3.2: Google Collab interface

3.2.6 Hardware
The hardware used during the execution of the whole project can be defined in the table
3.1.

CPU i5-4200H (2.8Ghz)
GPU Nvedia GTX850M 4 Gb
Ram 8GB
OS Windows 8.1 Pro

Table 3.1: The hardware used to run the tests

5https://colab.research.google.com/

36

CHAPTER 3. IMPLEMENTATION

3.3 Dataset
The CIFAR-10 dataset 6 consists of 60000 32x32 color images in 10 classes (check figure
3.3), with 6000 images per class. There are 50000 training images and 10000 test images.
The dataset is divided into five training batches and one test batch, each with 10000
images. The test batch contains exactly 1000 randomly-selected images from each class.
The training batches contain the remaining images in random order, but some training
batches may contain more images from one class than another. Between them, the training
batches contain exactly 5000 images from each class.

Figure 3.3: CIFAR10 dataset sample visualization

6https://www.cs.toronto.edu/ kriz/cifar.html

37

CHAPTER 3. IMPLEMENTATION

3.4 CNN’s Architecture
The studied model is composed of 18 layers (6 convolutions , 3 maxpooling, 4 batch nor-
malization , 2 dropouts , 1 flatten ,2 dense).
The input image sized 32*32, the image passes through these hidden layers in order to get
classified into one of the 10 classes of the dataset. here is the architecture (check figure 3.4)

Figure 3.4: The model’s architevture

38

CHAPTER 3. IMPLEMENTATION

This table (the table 3.2) shows the detailed architecture (summary) of the model.

Layer (type) Output Shape Param #

conv2d_1 (Conv2D) (None, 32, 32, 32) 896
batch_normalization_1 (Batch

Normalizatation) (None, 32, 32, 32) 128

conv2d_2 (Conv2D) (None, 32, 32, 32) 9248
max_pooling2d_1 (MaxPooling2D) (None, 16, 16, 32) 0

conv2d_3 (Conv2D) (None, 16, 16, 64) 18496
conv2d_4 (Conv2D) (None, 16, 16, 64) 36928

batch_normalization_2 (Batch
Normalizatation) (None, 16, 16, 64) 256

max_pooling2d_2 (MaxPooling2D) (None, 8, 8, 64) 0
conv2d_5 (Conv2D) (None, 8, 8, 128) 73856
conv2d_6 (Conv2D) (None, 4, 4, 128) 147584

batch_normalization_3 (Batch
Normalization) (None, 8, 8, 128) 512

max_pooling2d_3 (MaxPooling2D) (None, 4, 4, 128) 0
dropout_1 (Dropout) (None, 4, 4, 128) 0
flatten_1 (Flatten) (None, 2048) 0
dense_1 (Dense) (None, 128) 262272

batch_normalization_4 (Batch
Normalization) (None, 128) 512

dropout_2 (Dropout) (None, 128) 0
dense_2 (Dense) (None, 10) 1290

Total params: 551,978
Trainable params: 551,274
Non-trainable params: 704

Table 3.2: The architecture of the used model for my test

39

CHAPTER 3. IMPLEMENTATION

3.5 Results
At the beginning, I started my tests by viewing a random sample from the dataset (check
figure 3.5).

Figure 3.5: A random sample from the dataset

By executing the tests I have reached some results. It can be resumed by the plots in
figure 3.6 which represents the model training and the validation accuracy.

Figure 3.6: Test Accuracy and Model Loss plots

From figure 3.6 at the ”Model Accuracy” part , The training increases rapidly than
validation with the number of epochs. Therefore the training rate decreases rapidly than
validation at the Model loss. this reflects that at each time the model learns more infor-
mation.

40

CHAPTER 3. IMPLEMENTATION

The confusion matrix allows us to evaluate the performance of our model, since it
reflects the metrics of True positive, True negative, False positive and False negative. the
figure 3.7 closely illustrates the position of these metrics for each class. As an example,
the model classified the images bird, cat and truck and misclassified the images of dog,
frog and automobile

Figure 3.7: The confusion matrix of the model

the figure 3.8 illustrates the rate of the error of classified and misclassified picture
by the trained model. by observation I can say that the model got an acceptable accu-
racy since the misclassification isn’t more than the 1/4 of the whole data (check figure 3.9).

Figure 3.8: The error rate of the model

41

CHAPTER 3. IMPLEMENTATION

From Figure (check figure 3.9). I notice that all misclassified images are 2122 images,
an error rate of 21.22% and the totality of the well classified images is 7874 a precision
rate of 78.74%.

Figure 3.9: The error rate of the model

In addition, the figure 3.10 shows how a sample of images had been effected by the
previous layers of the model, more precisely at the last dense layer.

Figure 3.10: The effect of the model’s layers

42

CHAPTER 3. IMPLEMENTATION

At the end of the tests, the model was able to classify images with a Test Accuracy
equals to 0.7874. the figure 3.11 shows a sample of images with their predicted class and
validation accuracy and the true class.

Figure 3.11: A sample of predicted images with their labels

The table 3.3 shows the execution time as well as the number of epochs. The results
obtained are expressed in terms of test accuracy and execution time. The execution time
is kind of expensive. In general, a large and deep convolutional neuron network gives
good results and the performance of the model used in this study is acceptable. Batch
normalization operation improved and reduced the execution time alot. I noticed a
huge gap in the execution time comparing when it is used and when it is not.

Personal Laptop Google Colab

Execution time 5502 s (91.7 minute) 660 s (11 minute)
epochs 20 20

Test Accuracy 78,74% 77,91%

Table 3.3: The resume of obtained results

By executing the same model with the same epochs in Google Colab, the table 3.3
shows the results. Knowing that I have runned the tests usig the GPU provided by this
cloud service (ram: 12Gb and storage: 358Gb)

3.6 Conclusion
I have presented in this chapter an Image Classification approach based on Convolutional
Neural Networks, for which I used a model with a 18 layers architecture and I have showed
the different results obtained in terms of test accuracy.
According to the result found, I have noticed that there is two antagonist options, either
I increase the number of epoch and the depth of the network to give a good result but it
will cause an increase of the training time.

43

Conclusion

I have presented in this work the basics of convolutional neural networks and their
use in image classification. I have also introduced the different types of layers used in
the classification: the convolutional layer, the pooling layer and the fully connected layer.
Subsequently, I presented the best-known convolutional architectures and training pa-
rameters of a CNN model such as optimizers, loss functions, activation functions and
regularizations.

To save computational time and to avoid overfitting problem, the hyper parameters of
the network have been studied like dropout that removes some nodes randomly at every
iteration.

The training time was too expensive because of the large size of the dataset which
requires the use of the graphics processor GPU in addition to CPU.

The learning dataset is also a critical element in convolutional neural networks, so I
need to have a large dataset to achieve better results.

In order to achieve this work, I spent a lot of time reading and studying the documents
to see what is best about classification and to design our own model. This work allowed
us to put our knowledge of neural networks into practice and to acquire other knowledge,
and the time spent reading articles served as a good introduction to research.

As perspectives I am planning to study my experiments on other datasets and use the
notion of transfer learning on some pretrained models.

44

Bibliography

[1] Tom M. Mitchell. Machine learning. McGraw Hill series in computer science.
McGraw-Hill, 1997.

[2] Daniel Faggella. What is machine learning? https://emerj.com/ai-glossary-
terms/what-is-machine-learning/, Mars 2019.

[3] Thomas H. Davenport. Machine learning. https://www.sas.com/en_us/insights/
analytics/machine-learning.html.

[4] Desir C. and L. H. Classification automatique d’images, application à l’imagerie du
poumon profond. 2013.

[5] Klaus Hechenbichler and Klaus Schliep. Weighted k-nearest-neighbor techniques and
ordinal classification. 2004.

[6] Guojun Gan, Chaoqun Ma, and Jianhong Wu. Data clustering: theory, algorithms,
and applications, volume 20. Siam, 2007.

[7] James MacQueen et al. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[8] Weina Wang, Yunjie Zhang, Yi Li, and Xiaona Zhang. The global fuzzy c-means clus-
tering algorithm. In 2006 6th World Congress on Intelligent Control and Automation,
volume 1, pages 3604–3607. IEEE, 2006.

[9] Rohith Gandhi. Support vector machine—introduction to machine learning
algorithms. https : / / towardsdatascience.com / support - vector - machine -
introduction-to-machine-learning-algorithms-934a444fca47.

[10] Sidath Asiri. Machine learning classifiers. https://towardsdatascience.com/
machine-learning-classifiers-a5cc4e1b0623.

[11] Neil D. Lawrence. Machine learning motivation.

[12] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[13] John Bryden. Biologically inspired computing: The neural network.

[14] Yamini Chauhan. Axon anatomy. https://www.britannica.com/science/axon.

[15] B Rudy. Diversity and ubiquity of k channels. Neuroscience, 25(3):729–749, 1988.

45

https://emerj.com/ai-glossary-terms/what-is-machine-learning/
https://emerj.com/ai-glossary-terms/what-is-machine-learning/
https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://towardsdatascience.com/support-vector-machine-introduction- to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction- to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://www.britannica.com/science/axon

BIBLIOGRAPHY

[16] Tutorials Point. Artificial intelligence neural networks.
https : / / www.tutorialspoint.com / artificial_intelligence /
artificial_intelligence_neural_networks.htm, May 2019.

[17] KISHAN MALADKAR. Types of artificial neural networks. https :
/ / www.analyticsindiamag.com / 6 - types - of - artificial - neural - networks -
currently-being-used-in-todays-technology/, JAN 2019.

[18] Ch Sanjeev Kumar Dash, Ajit Kumar Behera, Satchidananda Dehuri, and Sung-Bae
Cho. Radial basis function neural networks: a topical state-of-the-art survey. Open
Computer Science, 6(1), 2016.

[19] Markus Törmä. Kohonen self-organizing feature map in pattern recognition. Pho-
togramm. J. Finland, 15:1, 1995.

[20] Aish Warya. Introduction to recurrent neural network. https : / /
www.geeksforgeeks.org/introduction-to-recurrent-neural-network/.

[21] : Mayank Mishra. Convolutional neural networks. https://www.datascience.com/
blog/convolutional-neural-network.

[22] Patduc Jacque. Cnn (convolution neural network). https : / /
patducjacquet.wordpress.com/2017/07/04/cnn-convolution-neural-network-
une-introduction/, May 2019.

[23] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[25] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Computer Vision and Pattern Recognition (CVPR),
2015.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[28] Nikhil B. Image data pre-processing for neural networks. https :
/ / becominghuman.ai / image - data - pre - processing - for - neural - networks -
498289068258, June 2019.

[29] Raul Gomez. Understanding categorical cross-entropy loss - binary cross-entropy
loss - softmax loss and logistic loss. https://gombru.github.io/2018/05/23/
cross_entropy_loss/, May 2019.

46

https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.htm
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.htm
https://www.analyticsindiamag.com/6-types-of-artificial-neural-networks-currently-being-used-in-todays-technology/
https://www.analyticsindiamag.com/6-types-of-artificial-neural-networks-currently-being-used-in-todays-technology/
https://www.analyticsindiamag.com/6-types-of-artificial-neural-networks-currently-being-used-in-todays-technology/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.datascience.com/blog/convolutional-neural-network
https://www.datascience.com/blog/convolutional-neural-network
https://patducjacquet.wordpress.com/2017/07/04/cnn-convolution-neural-network-une-introduction/
https://patducjacquet.wordpress.com/2017/07/04/cnn-convolution-neural-network-une-introduction/
https://patducjacquet.wordpress.com/2017/07/04/cnn-convolution-neural-network-une-introduction/
https://becominghuman.ai/image-data-pre-processing-for-neural-networks-498289068258
https://becominghuman.ai/image-data-pre-processing-for-neural-networks-498289068258
https://becominghuman.ai/image-data-pre-processing-for-neural-networks-498289068258
https://gombru.github.io/2018/05/23/cross_entropy_loss/
https://gombru.github.io/2018/05/23/cross_entropy_loss/

BIBLIOGRAPHY

[30] Isaac Changhau. Loss functions in neural networks. https : / /
isaacchanghau.github.io/post/loss_functions/, June 2019.

[31] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the
trade, pages 421–436. Springer, 2012.

[32] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[33] Sebastian Ruder. An overview of gradient descent optimization algorithms. http:
//ruder.io/optimizing-gradient-descent/, June 2019.

[34] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[36] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on machine
learning (ICML-10), pages 807–814, 2010.

[37] Saimadhu Polamuri. Difference between softmax function and sigmoid func-
tion. http://dataaspirant.com/2017/03/07/difference-between-softmax-
function-and-sigmoid-function/, June 2019.

[38] SHUBHAM JAIN. An overview of regularization techniques in deep learn-
ing. https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-
learning-regularization-techniques/, June 2019.

[39] Bharath Raj. Data augmentation : How to use deep learning when you have limited
data. https://medium.com/nanonets/how-to-use-deep-learning-when-you-
have-limited-data-part-2-data-augmentation-c26971dc8ced.

[40] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Shijian Tang, Erich Elsen, Bryan
Catanzaro, John Tran, and William J Dally. Dsd: regularizing deep neural networks
with dense-sparse-dense training flow. arXiv preprint arXiv:1607.04381, 3(6), 2016.

[41] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How
does batch normalization help optimization? In Advances in Neural Information
Processing Systems, pages 2483–2493, 2018.

[42] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Advances in neural information processing
systems, pages 3320–3328, 2014.

[43] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual
recognition. In International conference on machine learning, pages 647–655, 2014.

47

https://isaacchanghau.github.io/post/loss_functions/
https://isaacchanghau.github.io/post/loss_functions/
http://ruder.io/optimizing-gradient-descent/
http://ruder.io/optimizing-gradient-descent/
http://dataaspirant.com/2017/03/07/difference-between-softmax-function-and-sigmoid-function/
http://dataaspirant.com/2017/03/07/difference-between-softmax-function-and-sigmoid-function/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

BIBLIOGRAPHY

[44] Jason Brownlee. How to use transfer learning when developing convolutional neural
network models. https://machinelearningmastery.com/how-to-use-transfer-
learning- when- developing- convolutional- neural- network- models/, May
2019.

[45] Matlab. Pretrained deep neural networks. https://www.mathworks.com/help/
deeplearning/ug/pretrained-convolutional-neural-networks.html, 2019.

[46] Arnaud De Myttenaere and Golden. Mean absolute percentage error for regression
models. Neurocomputing, 192:38–48, 2016.

[47] Ching-Pei Lee and Chih-Jen Lin. A study on l2-loss (squared hinge-loss) multiclass
svm. Neural computation, 25(5):1302–1323, 2013.

48

https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/
https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/
 https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
 https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html

	Introduction
	Machine learning and Image classification
	Introduction
	Machine learning
	What is Machine learning?
	The importance of machine learning
	Types of machine learning
	Supervised machine learning
	Unsupervised machine learning
	Semi-supervised machine learning
	Reinforcement machine learning

	Image Classification
	Classification Definition
	Image classification motivations
	Types of classification algorithms
	 k-Nearest Neighbor
	K-means
	Fuzzy c-means
	Support Vector Machine
	Decision Trees

	Image classification and Machine learning
	Conclusion

	Deep learning and Convolutional Neural Network
	Introduction
	Definition of deep learning
	Biological neural network
	Neurons
	Axons
	Dendrites
	Synapses
	Soma (Cell Body)

	Artificial Networks (ANNs)
	Different types of Neural Networks
	Feedforward Neural Network
	Radial basis function Neural Network
	Kohonen Self Organizing Neural Network
	Recurrent Neural Network (RNN)
	Convolutional Neural Network (CNN)

	Convolutional Neural Network Layers
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer
	Dropout Layer

	Convolutional Neural Network Architectures
	LeNet-5 - LeCun & al
	AlexNet
	VGG-16
	GoogLeNet (Inception)
	ResNet-Kaiming He & al

	Training of an Artificial Neural Network
	Image Preprocessing
	Loss Functions
	Cross Entropy
	Binary Cross Entropy
	Categorical Cross Entropy
	Mean Squared Error (MSE)
	Mean Squared Logarithmic Error (MSLE)
	Mean Absolute Error (MAE)

	Optimizers
	Stochastic Gradient Decent
	Adagrad
	RMSprop
	Adam

	Activation Functions
	ReLU (Rectified Linear Unit)
	Softmax
	Segmoid

	Regularization
	Dataset augmentation
	Early stopping
	Dropout
	Dense-sparse-dense training
	Batch Normalization

	Transfer Learning

	Conclusion

	Implementation
	 Introduction
	Softwares and tools
	Python
	Tensorflow
	Keras
	Jupyter Notebook
	Google Colab
	Hardware

	Dataset
	CNN's Architecture
	Results
	Conclusion

	Conclusion

