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Abstract

The objective of this thesis is to give some existence results for various classes of initial
value problem and boundary value problems for nonlinear fractional differential equations
and coupled system involving a various kind of fractional-order derivatives in Banach Spaces.
For this purpose, the technique used is to reduce the study of our problem to the research of
a fixed point of an integral operator. The obtained results are based on some standard fixed
point theorems and mönch fixed point theorem combined with the technique of measures of
noncompactness, as well as the technique of topological degree theory. We have also provided
a illustrative example to each of our considered problems to show the validity of conditions
and justify the efficiency of our established results.
Key words and phrases : Fractional differential equation, Coupled fractional differential
system, Fractional q-difference equation, Caputo fractional derivative, Caputo-Hadamard
fractional derivative, Hilfer fractional derivative, fractional q-derivative, boundary value pro-
blems, initial value problem, Banach space, fixed-point, Kuratowski measure of noncompact-
ness, existence, uniqueness, topological degree theory, condensing maps
AMS Subject Classification : 26A33, 34A08, 34B15.
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Résumé

L’objectif de cette thèse est de donner des résultats d’existence pour diverses classes de
problèmes de valeurs initiales et de problèmes de valeurs aux limites pour des équations
différentielles fractionnaires non linéaires et un système couplé impliquant différents types
de dérivées d’ordre fractionnaire dans les espaces de Banach. Pour cela, la technique utilisée
est de réduire l’étude de notre problème à la recherche d’un point fixe d’un opérateur intégral.
Les résultats obtenus sont basés sur des théorèmes de point fixe standard et le théorème de
point fixe mönch combiné avec la technique des mesures de non-compacité, ainsi que la
technique de la théorie des degrés topologiques. Nous avons également fourni un exemple
illustratif à chaque de nos problèmes considérés pour montrer la validité des conditions et
justifier l’efficacité de nos résultats établis.
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 الملخص:

الهدف من هذه الأطروحة هو إعطاء بعض نتائج الوجود لفئات مختلفة من مشاكل القيمة الأولية ومشاكل 

القيمة الحدية للمعادلات التفاضلية الكسرية غير الخطية والنظام المقترن الذي يتضمن نوعًا مختلفاً من 

دراسة  حويلفإن التقنية المستخدمة هي ت المشتقات ذات الترتيب الكسري في فضاءات باناخ. لهذا الغرض ،

مشكلتنا إلى البحث عن نقطة ثابتة لمشغل متكامل. تستند النتائج التي تم الحصول عليها إلى بعض نظريات 

النقطة الثابتة القياسية ونظرية النقطة الثابتة مونش جنبًا إلى جنب مع تقنية مقاييس عدم التوافق ، بالإضافة 

درجة الطوبولوجية. لقد قدمنا أيضًا مثالًا توضيحياً لكل من مشاكلنا المدروسة لإظهار صحة إلى تقنية نظرية ال

 الشروط وتبرير كفاءة نتائجنا المقررة.



List of symbols

We use the following notations throughout this thesis

Acronyms
• FC : Fractional calculus.

• FD : Fractional derivative.

• FDE : Fractional differential equation.

• FI : Fractional integral.

• IVP : Initial value problem.

• BVP : Boundary value problem.

• FHDE : Fractional hybrid differential equation.

• MNC : Measure of noncompactness.

Notation
• N : Set of natural numbers.

• R : Set of real numbers.

• Rn : Space of n-dimensional real vectors.

• ∈ : belongs to.

• sup : Supremum.

• max : Maximum.

• n! : Factorial (n),n ∈ N : The product of all the integers from1 to n.

• Γ(·) : Gamma function.

• B(·, ·) : Beta function.

• Iα,ψ
a+ : The fractional ψ–integral of order α > 0.

• Iα

a+ : The Riemann-Liouville fractional integral of order α > 0.

• Iα
q : The q-Riemann-Liouville fractional integral of order α > 0 and 0 < q≤ 1.
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• HIα

a+ : The Hadamard fractional integral of order α > 0.

• ρ Iα

a+ : The Katugampola fractional integral of order α > 0, ρ > 0.

• Iα,δ
a+,η : The Erdélyi-Kober fractional integral of order δ > 0, η > 0, α ∈ R.

• HDα,β ;ψ
a+ : The ψ-Hilfer fractional derivative of orde α > 0 and type β .

• RLDα

a+ : The Riemann-Liouville fractional derivative of orde α > 0.

• RLDα
q : The Riemann-Liouville fractional q-derivative of orde α > 0 and 0 < q≤ 1.

• CDα

a+ : The Caputo fractional derivative of orde α > 0.

• Dα
q : The Caputo fractional q-derivative of orde α > 0 and 0 < q≤ 1.

• Dα,β
a+ : The Hilfer fractional derivative of orde α > 0 and type β .

• HDα

a+ : The Hadamard fractional derivative of orde α > 0.

• C
HDα

a+ : The Caputo-Hadamard fractional derivative of orde α > 0.

• C(J,E) : Space of continuous functions on J.

• Cn(J,E) : Space of n time continuously. differentiable functions on J.

• Cγ;ψ(J,E) the weighted space of continuous functions on J.

• AC(J,E) : Space of absolutely continuous functions on J.

• L1(J,R) : space of Lebesgue integrable functions on J.

• L1(J,E) : space of Bochner integrable functions on J.

• Lp(J,E) : space of measurable functions u with |u|p belongs to L1(J,R).
• L∞(J,E) : space of functions u that are essentially bounded on J .
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Introduction

In understanding and developing of a large class of systems, it is now well clear that re-
searchers and scientists have taken their beginnings from nature. Natural things can be well
understood in two possible ways, quantitative and qualitative. Mathematics plays a central
role in this direction. It is the science of patterns and relationships. When we go back to un-
derstand the quantitative and qualitative behavior of nature, it seems that evolution is from
integer to fraction. Quantitative behavior can be well explained using number theory, which
started from integer and reached to fractional due to division operation and finally conver-
ged to real numbers. Calculus is a branch of mathematics describing how things change. It
provides a framework for modeling systems undergoing change, and a way to deduce the
predictions of such models. All these resulted in pointing a fact that integer order calculus is
a subset of fractional calculus.

Fractional calculus can be defined as the generalization of classical calculus to orders of
integration and differentiation not necessarily integer. The history of non-integer order deri-
vatives spans from the end of the 17th century to the present day. Specialists agree to trace its
beginning to the dated 30 September 1695 when L’Hospital raised a question to Leibniz by
questioning the meaning of dn f

dtn when n = 1
2 . Leibniz, in his response, wanted to initiate a re-

flection on a possible theory of not whole derivation and wrote to L’Hospital : "... this would
lead to a paradox from which, one day, we will have to draw useful consequences ". It was not
until the 1990s that the first "useful consequences" appeared. the first serious attempt to give
a logical definition for the fractional derivative is due to Liouville who published nine docu-
ments in this subject between 1832 and 1837. Independently, Riemann proposed an approach
which proved essentially that of Liouville, and it is since she wears the no "Riemann-Liouville
approach". Later, other theories appeared like that of Grunwald-Leitnikov, Weyl, Caputo, Hil-
fer, Hadamard, Caputo-Hadamard, ψ-Riemann-Liouville, ψ-Caputo . At that time there were
almost no practical applications of this theory. And over time, new derivatives and fractio-
nal integrals arise. These integrals and fractional derivatives have a different kernel and this
makes the number of definitions [89, 117, 75, 104, 83, 86] wide. Recently in 2017, Sousa and
Oliviera [129] proposed interpolator of ψ-Riemann-Liouville and ψ-Caputo fractional deri-
vatives in Hilfer’s sense of definition so-called ψ-Hilfer fractional derivative, ie, a fractional
derivative of a function with respect to another ψ-function. With this fractional derivative,
we recover a wide class of fractional derivatives and integrals. A detailed historical account
is given in the introduction of [115], more, this work is undoubtedly one of the first to collect
scattered results and also can surveys of the history of the fractional theory derivative can be
found in [65, 101, 105, 116, 118].
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TABLE DES MATIÈRES

The theory of derivation and fractional integration has long been regarded as a branch
of mathematics without any real or practical explanation and it is for this reason that it was
considered as an abstract containing only little useful mathematical manipulations. During
the past three decades, considerable interest was carried to fractional calculus by the appli-
cation of these concepts in various fields of physics and engineering [115], the theory of
fractional derivatives developed mainly as a pure theoretical field of mathematics useful only
for mathematicians. Starting from the sixties, many authors and the researches in this do-
main pointed out that the non-integer order derivative revealed to be a more adequate tool
for the description of properties of various real materials as polymers. Various types of phy-
sical phenomena, in favor of the use of models with the help of fractional derivative, that
is, fractality, recursivity, diffusion and/ or relaxation phenomena are given in [57]. Recent
books [73, 89, 109, 117] provide a rich source of information on fractional-order calculus
and its applications. The book by M. Caputo [56], published in 1969, in which he systema-
tically used his original definition of fractional differentiation for formulating and solving
problems of viscoelasticity and his lectures on seismology [55]. The transition from pure
mathematical formulations to applications began to emerge since the 1990s, where fractional
differential equations appeared in several fields such as physics, engineering, biology, mecha-
nics ... For more details of fundamental works on various aspects of the fractional calculus
and fundamental physical considerations in favour of the use of models based on derivatives
of non-integer order we refer the monograph of Bagley [60], Engeita [66], Hilfer [76], Khare
[88], Kilbas [89], Magin [95], Mainardi [96], Miller and Ross [101], Nishitomo [102], Old-
ham [107], Oldham and Spanier [105], Petras [108], Podlubny [109], Sabatier et al. [119],
and the references therein.

It can be noted that most of the work on fractional calculus is devoted to the solvency
of boundary problems generated by fractional differential equations. The resolution of these
problems deals with the existence, the uniqueness of the solutions, and the multiplicity ...
etc ; several methods are applied for the resolution of these problems as iterative techniques,
degree topologies theory, hybrid fixed point theory, especially the methods based on the prin-
ciple of the fixed point, we refer the reader to [8, 61, 89, 101, 110, 109, 38, 37, 117, 96]

Fixed point theory provides the tools to have existence theorems for many different nonli-
near problems. Fixed point theorems are often based on certain properties (such as complete
continuity, monotony, contraction, etc.) that the application under consideration must satisfy.
The theory itself is a beautiful mixture of analysis, topology, and geometry. Over the last 80
years or so the theory of fixed points has been revealed as a very powerful and important
tool in the study of nonlinear phenomena. In particular, fixed point techniques have been ap-
plied in such diverse fields as Biology, Chemistry, Economics, Engineering, Game Theory,
and Physics. Fixed point theory plays an important role in functional analysis, approximation
theory, differential equations and applications such as boundary value problems etc. The fa-
mous fixed point theorems are Banach’s theorem, the nonlinear alternative of Leary-Schauder
and Schaefer’s theorem. Another fixed point theory, Monch’s fixed point theorem combined
with Kuratowski’s measure of non-compactness (the notion of a measure of noncompactness
(MNC) plays an important role in the study of many nonlinear phenomen. This concept was
introduced by Kuratowski [91] In 1955.).

In the other hand, the most commonly used techniques to study the existence of solutions
to functional equations are based on fixed-point arguments. Although there are many stan-
dard fixed point theorem to analyse, under suitable conditions, the existence and uniqueness
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of solution of various problems for fractional differential equations, But, in the absence of
compacity and the Lipschitz condition, the previously mentioned theorems are not applicable.
In such cases, the measure of noncompactness argument appears as the most convenient and
useful in applications. It is a method which was mainly initiated in the monograph of Banas
and Goebel [33], then developed and used in many articles, see, for instance, Banas and Sada-
rangani [32], Mönch [99], and Szufla [125], Akhmerov et al.[16], Alvàrez [26], Benchohra,
Henderson and Seba [36], Guo, Lakshmikantham and Liu [74], and the references therein.
We also refer the readers to the recent book [31], where several applications of the measure
of noncompactness can be found.

This thesis is arranged as follows :
In Chapter 1, we give a technically precise overview of definitions, notations, lemmas

and notions of fractional calculus, measures of noncompactness, fixed point theorems that
are used throughout this thesis.

Chapter 2, is reserved to expose some results of existence and uniqueness of solutions
concerning a boundary problem for a fractional differential equation of the Caputo-Hadamard
type. The first results are provided by the fixed point theorems of (Banach, Schaefer, Boyd
and Wong and Leary-Schauder). The second result is proved by the fixed point theorem of
mönch and the measure of noncompactness of Kuratowski. We are interested in the existence
and uniqueness of solutions for the following fractional boundary value problem

C
HDr

1+x(t) = f (t,x(t)), t ∈ J := [1,T ], (1)

with fractional boundary conditions :

αx(1)+βx(T ) = λ HIq
1+x(η)+δ , q ∈ (0,1]. (2)

where C
HDr

1+ denote the Caputo-Hadamard fractional derivative of order 0 < r ≤ 1 and HIq
1+

denotes the standard Hadamard fractional integral. Throughout this paper, we always assume
that 0< r,q≤ 1, f : J×E→E is continuous. α,β ,λ are real constants, and η ∈ (1,T ), δ ∈E.

Finally, an example is given at the end of each section to illustrate the theoretical results.
In Chapter 3, we study the existence of solutions for certain classes of fractional hybrid

differential equations. Our results are based on fixed point theorem for three operators in a
Banach algebra due to Dhage. In Section 3.2 we look into the existence of solutions for the
following hybrid Caputo-Hadamard fractional differential equation :



C
HDr

1+

ñ
x(t)−

∑m
i=1 H Iqi

1+
fi(t,x(t))

g(t,x(t))

ô
= h(t,x(t)), t ∈ J := [1,T ], 1 < r ≤ 2,

α1

ñ
x(t)−

∑m
i=1 H Iqi

1+
fi(t,x(t))

g(t,x(t))

ô
t=1

+β1
C
HDp

1+

ñ
x(t)−

∑m
i=1 H Iqi

1+
fi(t,x(t))

g(t,x(t))

ô
t=1

= γ1,

α2

ñ
x(t)−

∑m
i=1 H Iqi

1+
fi(t,x(t))

g(t,x(t))

ô
t=T

+β2
C
HDp

1+

ñ
x(t)−

∑m
i=1 H Iqi

1+
fi(t,x(t))

g(t,x(t))

ô
t=T

= γ2.

(3)

where C
HDε

1+ and Iqi
1+ denotes the Caputo-Hadamard fractional derivatives of orders ε ,ε ∈

{r, p}, 0 < p ≤ 1 and Hadamard integral of order qi,respectively, αi,βi,γi, i = 1,2, are real
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constants, g ∈C(J×R,R−{0}), and f ,h ∈C(J×R,R).

Finally, an example is also constructed to illustrate our results.
In Chapter 4, we give existence and uniqueness results of solutions to two boundary

problems concerning fractional differential equations with the Hilfer derivative, one subject
to Riemman-Liouville integral boundary conditions and the other subject to a Multi-point
Katugampola integral boundary conditions of multiple points, based on standard fixed point
theorems and fixed point theorem of Mönch’s combined with the Kuratowski measure of non-
compactness. More specifically, in Section 4.2 we are interested in the existence of solutions
for the following fractional differential equation

Dα,β
0+ x(t) = f (t,x(t)), t ∈ J := [0,T ], (4)

supplemented with the boundary conditions of the form :

aI1−γ

0+ x(0)+bx(T ) =
m∑

i=1
ci

ρiIqix(ηi)+d. (5)

where Dα,β is the Hilfer fractional derivative 0 < α ≤ 1,0 ≤ β ≤ 1, γ = α +β −αβ , ρiIqi
0+

is the Katugampola integral of qi > 0 and I1−γ

0+ is the Riemann-Liouville integral of order
1− γ , f : J×R→ R is a continuous function, a,b,d,ci, i = 1, ...,m are real constants, and
0 < ηi < T, i = 1, ...,m.

This is followed in section 4.3 by another boundary value problem but this time with
Katugampola integral boundary conditions of the form

Dα,β
0+ y(t) = f (t,y(t)), t ∈ J := [0,T ]. (6)

with the fractional boundary conditions

I1−γ

0+ y(0) = y0, I3−γ−2β

0+ y′(0) = y1,

I1−γ

0+ y(η) = λ (I1−γ

0+ y(T )), γ = α +β −αβ .
(7)

where Dα,β
0+ is the Hilfer fractional derivative, 0 < α ≤ 1,0 ≤ β ≤ 1, 0 < λ < 1, 0 < η < T

and let E be a Banach space space with norm ‖.‖, f : J×E→ E is given continuous function.
Finally, to illustrate the theoretical results, an example is given at the end of each section.
In Chapter 5, Sufficient conditions are established ensuring the existence and the uni-

queness of solutions of the boundary problem for Caputo type Fractional Differential Equa-
tion with fractional integral boundary conditions. The first results are based on the fixed
point theorem of Banach, Boyd and Wong, Schaefer and the nonlinear alternative of Leary-
Schauder, the second result is obtained by using the Mönch’s theorem combined with the
measure of noncompactness of Kuratowski. More specifically, in Section 5.2 we are interes-
ted in the existence and uniqueness of solutions for the following fractional boundary value
problem

cDα

0+x(t) = f (t,x(t)), t ∈ J := [0,T ], 1 < α ≤ 2. (8)

Subject with the integral boundary conditions

x(0) = 0, Iβ

0+x(ε) = δ
ρJγ

0+x(T ). (9)
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where cDα

0+ denote the Caputo fractional derivative 1 < α < 2, Iβ

0+ denotes the standard
Riemann-Liouville fractional integral and ρ Iγ

0+ Katugampola fractional integral γ > 0, ρ > 0,
and let E is a reflexive Banach space with norm ‖.‖, f : J×R→ R is a continuous function,
δ are real constants.

As a second problem, we discuss in Section 5.3 the existence of solutions for the following
boundary value problem

CDα

0+x(t) = f (t,x(t)), t ∈ J := [0,T ], (10)

associated with the following Erdélyi-Kober fractional integral boundary conditions :

x(T ) =
m∑

i=1
aiJ

γi,δi
ηi x(βi), 0 < βi < T,

x′(T ) =
m∑

i=1
biJ

γi,δi
ηi x′(σi), 0 < σi < T,

x′′(T ) =
m∑

i=1
diJ

γi,δi
ηi x′′(εi), 0 < εi < T,

(11)

where CDα

0+ is the Caputo fractional derivative of order 2 < α ≤ 3 and Jγi,δi
ηi denote Erdélyi-

Kober fractional integral of order δi > 0, ηi > 0, γi ∈R. f : J×E→E is a continuous function,
ai,bi,di, i = 1,2, ...,m are real constants. Recall that Erdélyi-Kober fractional integral opera-
tors play an important role especially in engineering, for more details on the Erdélyi-Kober
fractional integrals, see [90, 67].

Finally, to illustrate the theoretical results, an example is given at the end of each section.
Chapter 6, is devoted to the existence results of solutions for certain classes of nonlinear

Langevin fractional q-difference equation involving Caputo q-derivative in Banach space.
The arguments are based on Mönch’s fixed point theorem combined with the technique of
kuratowski measures of noncompactness. More specifically, in Section 6.3 we are interested
in the existence of solutions for the following Langevin fractional q-difference equation{

Dβ
q (Dα

q +λ )x(t) = f (t,x(t)), t ∈ J = [0,1],
x(0) = γ, x(1) = η ,

(12)

where 0 < α,β ≤ 1 and Dq is the fractional q−derivative of the Caputo type. f : J×E→ E
is a given function satisfying some assumptions that will be specified later and E is a Banach
space with norm ‖x‖, λ is any real number.

In Section 6.4, we give similar result to the following coupled fractional Langevin q-
difference system 

Dβ1
q (Dα1

q +λ1)x1(t) = f1(t,x1(t),x2(t)),
t ∈ J,

Dβ2
q (Dα2

q +λ2)x2(t) = f2(t,x1(t),x2(t)),
(13)

with the Dirichlet boundary conditions®
x1(0) = γ1 ,x1(1) = η1
x2(0) = γ2 ,x2(1) = η2.

(14)
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where J := [0,1], 0 < α,β ≤ 1, and Dq is the fractional q−derivative of the Caputo type.
fi : J×E2→ E are given functions satisfying some assumptions that will be specified later,
and E is a Banach space with norm ‖ · ‖, λi,i = 1,2, is any real number.

Finally, to illustrate the theoretical results, an example is given at the end of each section.
Chapter 7, we study existence and uniqueness results for a coupled system of nonlinear

fractional q-difference subject to nonlinear more general four-point boundary condition. Our
analysis relies on the topological degree for condensing maps via a priori estimate method
and the Banach contraction principle fixed point theorem.

Dq1
q u1(t) = f1(t,u1(t),u2(t)),

, t ∈ J := [0,1],
Dq2

q u2(t) = f2(t,u1(t),u2(t)),
(15)

with the fractional boundary conditions

u1(0) = a1 Iβ1
q u(η1), 0 < η1 < 1, β1 > 0,

u1(1) = b1 Iα2
q u(σ1), 0 < σ1 < 1, α1 > 0,

u2(0) = a2 Iβ2
q u(η2), 0 < η2 < 1, β2 > 0,

u2(1) = b2 Iα2
q u(σ2), 0 < σ2 < 1, α2 > 0,

(16)

For all i = 1,2 where Dqi
q is the fractional q-derivative of the Caputo type of order 1 < qi ≤ 2,

and f : J×R2 −→ R is a given continuous function, ai,bi, i = 1,2 are suitably chosen real
constants.

Finally, an illustrative example is presented to show the validity of the obtained results.
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Chapitre 1
Preliminaries and Background Materials

In this chapter, we introduce the necessary concepts for the good understanding of this
thesis. We provide some essential properties of fractional differential operators. We also re-
view some of the basic properties of coincidence degree theory for condensing maps and
measures of noncompactness and fixed point theorems which are crucial in our results regar-
ding fractional differential equations.

1.1 Functional spaces
Let E be a Banach space endowed with the norm ‖.‖E and let J := [a,b] be a compact

interval of R. We present some functional spaces :

1.1.1 Space of Continuous Functions
Definition 1.1. Let C(J,E) be the Banach space of vector-valued continuous functions u :
J−→ E, equipped with the norm

‖u‖∞ = sup{‖u(t)‖/t ∈ J} .

Analogously, Cn(J,E) is the Banach space of functions u : J −→ E, where u is n time
continuously differentiable on J.

‖ f‖Cn :=
n∑

k=0

∥∥∥ f (k)
∥∥∥

C
:=

n∑
k=0

max
t∈J

∣∣∣ f (k)(t)∣∣∣ ,n ∈ N

In particulier if n = 0, C0(J,E)≡C(J,E).

1.1.2 Spaces of Lebesgue’s Integrable Functions Lp

Denote by L1(J,R) the Banach space of functions u Lebesgues integrable with the norm

‖x‖L1 =
∫

J
|x(t)|dt.

8
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while Lp(J,R) denote the space of Lebesgue integrable functions on J where |u|p belongs to
L1(J,R), endowed with the norm

‖u‖Lp =

ñ∫ T

0
|u(t)|pdt

ô 1
p
, 1 < p < ∞.

In particular, if p = ∞, L∞(J,R) is the space of all functions u that are essentially bounded on
J with essential supremum

‖u‖L∞ = esssup
t∈J
|u(t)|= inf{c≥ 0 : |u(t)| ≤ c for a.e. t}.

1.1.3 Spaces of Absolutely Continuous Functions
Definition 1.2. A function u : J→ E is said to be absolutely continuous on J if for all ε > 0
there exists a number δ > 0 such that ; for all finite partitions [ai,bi]

n
i=1 ⊂ J then

∑n
k=1(bk−

ak)< δ implies that
∑n

k=1 | f (bk)− f (ak)|< ε

We denote by AC(J,E) (or AC1(J,E)) the space of all absolutely continuous functions
defined on J. It is known that AC(J,E) coincides with the space of primitives of Lebesgue
summable functions :

u ∈ AC(J,E)⇔ u(t) = c+
∫ t

a
φ(s)ds, φ ∈ L1(J,R), (1.1)

and therefore an absolutely continuous function u has a summable derivative u′(t) = φ(t)
almost everywhere on J. Thus (1.1) yields

u′(t) = φ(t) and c = u(0).

Definition 1.3. For n ∈ N∗ we denote by ACn(J,E) the space of functions u : J−→ E which
have continuous derivatives up to order n−1 on J such that u(n−1) belongs to AC(J,E) :

ACn(J,E) =
{

u ∈Cn−1(J,E) : u(n−1) ∈ AC(J,E)
}

=
{

u ∈Cn−1(J,E) : u(n) ∈ L1(J,E)
}
.

The space ACn(J,E) consists of those and only those functions u which can be represented in
the form

u(t) =
1

(n−1)!

∫ t

0
(t− s)n−1

φ(s)ds+
n−1∑
k=0

cktk, (1.2)

where φ ∈ L1(J,R),c j (k = 1, . . . ,n−1) ∈ R.
It follows from (1.2) that

φ(t) = u(n)(t) and ck =
u(k)(0)

k!
, (k = 1, . . . ,n−1).

and
ACn

δ
([a,b],E) =

¶
h : [a,b]→ E : δ

n−1h(t) ∈ AC([a,b],E)
©
.

where δ = t d
dt is the Hadamard derivative.

Interested reader can find more details in [83, 89].
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1.1.4 Spaces of Weighted Continuous Functions Cγ;ψ(J,E)
Definition 1.4. [129] Let J be a finite interval and 0 ≤ γ < 1, we introduce the weighted
space Cγ;ψ(J,E) of continuous functions f on J. Also let ψ(t) be an increasing and positive
monotone function on (a,b], defined as follows

Cγ;ψ(J,E) =
¶

f : (a,b]→ E : (ψ(t)−ψ(a))γ f (t) ∈C(J,E)
©
.

Obviously, Cγ;ψ(J,E) is a Banach space endowed with the norm

‖ f‖Cγ;ψ (J,E) = ‖ψ(t)−ψ(a))γ f (t)‖C(J,E) = max
t∈J
|(ψ(t)−ψ(a))γ f (t)|

In particular,
. If ψ(t) = t then Cγ;ψ(J,E) =Cγ(J,E),
. If ψ(t) = t and γ = 0 then Cγ;ψ(J,E) =C(J,E).
Definition 1.5. [129] The weighted space Cn

γ;ψ(J,E) of function f on J is defined by

Cn
γ:ψ(J,E) =

{
f : J→ E; f (t) ∈Cn−1(J,E); f (n)(t) ∈Cγ;ψ(J,E)

}
,0≤ γ < 1

with the norm

‖ f‖Cn
γ:ψ (J,E) =

n∑
k=0

∥∥∥ f (k)
∥∥∥

C(J,E)
+
∥∥∥ f (n)

∥∥∥
Cγ:ψ (J,E)

respectively. In particular, if n = 0,we have C0
γ;ψ(J,E) =Cγ;ψ(J,E)

Definition 1.6. [129] Let 0 < α < 1, 0≤ β ≤ 1, the weighted space Cα,β
γ (J,E) is defined by

Cα,β
γ;ψ (J,E) = { f ∈Cγ;ψ(J,E) : HDα,β ;ψ

a+ f ∈Cγ;ψ(J,E)},γ = α +β −αβ .

Moreover, Cγ;ψ(J,E) is complete metric space of all continuous functions mapping J into
E with the metric d defined by

d(u1,u2) = ‖u1−u2‖Cγ;ψ (J,E) := max
t∈J
|(ψ(t)−ψ(a))γ [u1(t)−u2(t)]|

For details see [129, 20, 71, 76].

1.2 Bochner Integral
Let E be a Banach space provided with the norm ‖.‖, (a,b) an interval of R and µ a

measure on (a,b) given by dµ(t)=ω(t)dt where ω is a continuous positive function on (a,b)
{A1, . . . ,Ak} is a finite collection of mutually disjoint subsets of (a,b) with finite measures µ

and {x1, . . . ,xk} is a set of elements of E
Definition 1.7. A function φ defined by

φ(t) =
n∑

i=1
χAi(t)xi, a < t < b

is called a simple function. We define the integral of φ with the measure µ on (a,b) by∫ b

a
φ(t)dµ(t) =

∫ b

a

n∑
i=1

χAi(t)xi =
n∑

i=1

Ç∫
Ai

ω(t)dt
å

xi

10
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Definition 1.8. A function f : J→ E is called strongly measurable if there exists a sequence
of simple functions {φn} of supports included in J such that

lim
n→∞
‖ f (t)−φn(t)‖E = 0,

for almost all t ∈ J.

Definition 1.9. A function f : J→ E is Bochner integrable on J if it is strongly measurable
and such that

lim
n→∞

∫ b

a
‖ f (t)−φn(t)‖dµ(t) = 0,

for any sequence of simple functions {φn}.
In this case the Bochner integral on (a,b) is defined by

∫ b

a
f (t)dµ(t) = lim

n→∞

∫ b

a
φn(n)dµ(t)

Theorem 1.10. A strongly measurable function f : J→ E is Bochner integrable if and only
if ‖ f‖ is integrable.

1.2.1 Spaces of Bochner Integral Functions
Let L1(J,E) be the Banach space of measurable functions u : J→ E which are Bochner

integrable, equipped with the norm

‖x‖L1 =
∫

J
‖x(t)‖dt.

Interested reader can find more details about Bochner integral in many books, e.g. [98,
131].

1.3 Elements From Fractional Calculus Theory

1.3.1 Introduction
Fractional calculus generalizes the integer-order integration and differentiation concepts

to an arbitrary(real or complex) order. Fractional calculus is one of the most emerging areas of
investigation and has attracted the attention of many researchers over the last few decades as
it is a solid and growing work both in theory and in its applications [89, 117]. The importance
of fractional calculus growth is notable not only in pure and applied mathematics but also in
physics, chemistry, engineering. biology, and other [76, 77, 115, 89].

since the beginning of the fractional calculus in [94]1695, there are numerous definitions
of integrals and fractional derivatives, and over time, new derivatives and fractional integrals
arise. These integrals and fractional derivatives have a different kernel and this makes the
number of definitions [89, 117, 75, 104, 83, 86] wide. On the other hand, we mention some
recent formulation of the fractional derivative [20, 72, 104, 83].
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With the wide number of definitions of integrals and fractional derivatives, it was ne-
cessary to introduce a fractional derivative of a function f with respect to another function,
making use of the fractional derivative in the Riemann-Liouville sense, given by [89]

RLDα;ψ
a+ f (t) =

Ç
1

ψ ′(t)
d
dt

ån
In−α;ψ
a+ f (t)

where n− 1 < α < n,n = [α] + 1 for α /∈ N and n = α for α ∈ N. However, such a
definition only encompasses the possible fractional derivatives that contain the differentiation
operator acting on the integral operator.

In the same way, recently, Almeida [20] using the idea of the fractional derivative in the
Caputo sense, proposes a new fractional derivative called ψ-Caputo derivative with respect
to another function ψ . which generalizes a class of fractional derivatives, whose definition is
given by

CDα:ψ
a+ f (t) = In−a:ψ

a+

Ç
1

ψ ′(t)
d
dt

ån
f (t)

where n−1 < α < n,n = [α]+1 for α 6= N and n = α for α ∈ N
Although the definitions of fractional derivative ψ-Riemann-Liouville and ψ-Caputo are

very general, there exist the possibility of proposing a fractional differentiable operator that
unifies these above operators and can overcome the wide number of definitions. Motivated by
the definition of Hilfer [76] fractional derivative that contains, as particular cases, the classical
Riemann-Liouville and Caputo fractional derivative. Recently in 2017, Sousa and Oliviera
[129] proposed interpolator of ψ-Riemann-Liouville and ψ-Caputo fractional derivatives in
Hilfer’s sense of definition so-called ψ-Hilfer fractional derivative, ie, a fractional derivative
of a function with respect to another ψ function. With this fractional derivative, we recover
a wide class of fractional derivatives and integrals, as we will show in Subsubsection 1.3.2
and 1.3.4. It’s important to note that, a corresponding fractional integral is also discussed
which generalized the Riemann-Liouville fractional integrals. Properties are presented and
discussed ; some of them are also proven.

The advantage of the fractional operator ψ–Hilfer proposed here is the freedom of choice
of the classical differentiation operator and the choice of the function ψ , i.e., from the choice
of the function ψ , the operator of classical differentiation, can act on the fractional integration
operator or else the fractional integration operator can act on the classical differentiation ope-
rator. This makes it possible to unify and obtain the properties of the two fractional operators
mentioned above.

There are some definitions in fractional calculus which are very widely used and have im-
portance in proving various results of fractional calculus. In this section, We will see a new
class of integrals and fractional derivatives. Due to the huge amount of definitions, i.e., frac-
tional operators, the following definition is a special approach when the kernel is unknown,
involving a function ψ . That generalized all definitions of fractional integral and fractional
differential operators that we use throughout this thesis.

1.3.2 Fractional ψ-Integral
Definition 1.11. [129] Let (a,b)(−∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real
line R and α > 0. Also let ψ(t) be an increasing and positive monotone function on (a,b),
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having a continuous derivative ψ ′(t) on (a,b). The left and right-sided fractional integrals of
a function f with respect to another function ψ on [a,b] are defined by

Iα,ψ
a+ f (t) =

1
Γ(α)

∫ t

a
ψ
′(s)(ψ(t)−ψ(s))α−1 f (s)ds (1.3)

Example 1.12. The fractional integral of the power function f (t) = (ψ(t)−ψ(a))β ,α >
0,β > 0 with respect to another function ψ is defined by,

Iα,ψ
a+ (ψ(t)−ψ(a))β =

1
Γ(α)

∫ t

a
ψ
′(s)(ψ(t)−ψ(s))α−1(ψ(s)−ψ(a))β ds.

Using the change of variables ψ(s) = ψ(a)+(ψ(t)−ψ(a))ψ(τ), τ ∈ [0,1], we get,

Iα,ψ
a+ (ψ(t)−ψ(a))β =

(ψ(t)−ψ(a))α+β

Γ(α)

∫ 1

0
ψ
′(τ)(1−ψ(τ))α−1

ψ(τ)β dτ

=
(ψ(t)−ψ(a))α+β

Γ(α)
B(α,β +1)

=
Γ(β +1)

Γ(α +β +1)
(ψ(t)−ψ(a))α+β .

Lemma 1.13 ([89, 129]). The following basic properties of the fractional integral with res-
pect to another function ψ hold :

1. The integral operator Iα,ψ
a+ is linear ;

2. The semi-group property of the fractional integration operator Iα,ψ
a+ is given by the

following result
Iα;ψ
a+ Iβ ;ψ

a+ f (t) = Iα+β ;ψ
a+ f (t), α,β > 0,

holds at every point if f ∈Cγ;ψ([a,b]) and holds almost everywhere if f ∈ L1([a,b]),

3. Commutativity
Iα,ψ
a+ (Iβ ,ψ

a+ f (t)) = Iβ ,ψ
a+ (Iα,ψ

a+ f (t)), α,β > 0;

4. The fractional integration operator Iα,ψ
a+ is bounded from Cγ,ψ [a,b] into Cγ,ψ [a,b].

On some class of fractional integrals

In the previous few decades, the area of fractional calculus over time has become an
important tool for the development of new mathematical concepts in the theoretical sense
and practical sense. So far, there are a variety of fractional operators, in the integral sense or
in the differential sense. However, natural problems become increasingly complex and certain
fractional operators presented with the specific kernel are restricted to certain problems. So
[89, 117] it was proposed a fractional integral operator with respect to another function, that
is, to a function ψ , making such a general operator, in the sense that it is enough to choose a
function ψ and obtain an existing fractional integral operator. In this subsection, we present
a class of fractional integrals, based on the choice of the arbitrary ψ function.

For the class of integrals that will be presented next, we suggest [89, 117, 86, 20, 67]
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1.3. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

1. If we consider ψ(t) = t in Eq. (1.3), we have

Iα,t
a+ f (t) =

1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds = RLIα

a+ f (t)

the Riemann-Liouville fractional integral.
2. Choosing ψ(t) = ln t and substituting in Eq. (1.3), we have

Iα,ln t
a+ f (t) =

1
Γ(α)

∫ t

a

1
s
(ln t− lns)α−1 f (s)ds

=
1

Γ(α)

∫ t

a

Å
ln

t
s

ãα−1
f (s)

ds
s

= HIα

a+ f (t)

the Hadamard fractional integral.
3. If we consider ψ(t) = tσ ,g(t) = taη f (t) and substituting in Eq. (1.3), we get

t−σ(α+η)Iα;tσ

a+ g(t) = t−σ(α+η)Iα;tσ

a+ (tση f (t))

=
σt−σ(α+η)

Γ(α)

∫ t

a
sση+σ−1 (tσ − sσ )α−1 f (s)ds

= EKIη ,α
a+,σ f (t)

the Erdélyi-Kober fractional integral.
4. Choosing ψ(t) = tρ and substituting in Eq. (1.3). we have

1
ρα

Iα;tρ

a+ f (t) =
ρ1−α

Γ(α)

∫ t

a
sρ−1 (tρ − sρ)α−1 f (s)ds

= ρ Iα

a+ f (t)

the Katugampola fractional integral.

1.3.3 Fractional ψ-Derivative
In what follows, we begin to evoke two definitions of fractional derivatives with respect

to another function, both definitions being motivated by the fractional derivative of Riemann-
Liouville and Caputo, in that order, choosing a specific function ψ .

Definition 1.14. Let ψ ′(t) 6= 0(−∞ ≤ a < t < b ≤ ∞) and α > 0,n ∈ N. The Riemann-
Liouville derivatives of a function f with respect to ψ of order α correspondent to the
Riemann-Liouville, are defined by

Dα;ψ
a+ f (t) =

Ç
1

ψ ′(t)
d
dt

ån
In−α;ψ
a+ f (t)

=
1

Γ(n−α)

Ç
1

ψ ′(t)
d
dt

å∫ t

a
ψ
′(s)(ψ(t)−ψ(s))n−α−1 f (s)ds

(1.4)

Definition 1.15. Let α > 0,n∈N, I =| a,b] is the interval−∞≤ a< b≤∞, f ,ψ ∈Cn(|a,b|,R)
two functions such that ψ is increasing and ψ ′(t) 6= 0, for all t ∈ I. The left ψ–Caputo frac-
tional derivative of f of order α is given by

cDα;ψ
a+ f (t) = In−α;ψ

a+

Ç
1

ψ ′(t)
d
dt

ån
f (t) (1.5)
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1.3. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

1.3.4 Fractional ψ–Hilfer derivative
From the definition of fractional derivative in the Riemann-Liouville sense and the Caputo

sense [89], was introduce the Hilfer fractional derivative [76], which unifies both derivatives.
Motivated by the definition of Hilfer, we define a new generalized fractional operator so-
called ψ–Hilfer fractional derivative of a function f with respect to another function. From
the fractional derivative ψ–Hilfer, we present some essential lemma, properties and some
relations between the ψ–fractional integral and the fractional derivative ψ–Hilfer.

Definition 1.16. [129] Let n−1<α < n with n∈N,J= [a,b] is the interval such that −∞≤
a < b≤∞ and f ,ψ ∈Cn ((a,b],R) two functions such that ψ is increasing and ψ ′(t) 6= 0, for
all t ∈ J. The ψ–Hilfer fractional derivative (left-sided and right-sided) HDα,β ;ψ

a+ (·) of function
of order α and type 0≤ β ≤ 1, are defined by

HDα,β ;ψ
a+ f (t) = Iβ (n−α):ψ

a+

Ç
1

ψ ′(t)
d
dt

ån
I(1−β )(n−α):ψ
a+ f (t) (1.6)

The ψ–Hilfer fractional derivative as above defined, can be written in the following form

HDα,βiψ
a+ f (t) = Iγ−αiψ

a+ Dγiψ
a+ f (t)

with γ = α +β (n−α) and Iγ−α;ψ
a+ (·), Dγ;ψ

a+ (·) as defined in Eq. (1.4) and Eq. (1.5).

Lemma 1.17. Given β ∈ R, consider the functions

f (t) = (ψ(t)−ψ(a))δ−1

where β > n. Then, for α > 0

HDα,β ;ψ
a+ f (t) =

Γ(δ )

Γ(δ −α)
(ψ(t)−ψ(a))δ−α−1

Proof. Using the [129, Lemma 2 and Lemma 3], we obtain

HDα,β ;ψ
+ f (x) = Iγ−α;ψ

a+ Dγ;ψ
a+ f (x)

= Iγ−α;ψ
a+ Dγ;ψ

a+ (ψ(x)−ψ(a))δ−1

= Iγ−α;ψ
a+

Ç
Γ(δ )

Γ(δ − γ)
(ψ(x)−ψ(a))δ−γ−1

å
=

Γ(δ )

Γ(δ − γ)
Iγ−α;ψ
a+

(
(ψ(x)−ψ(a))δ−γ−1

)
=

Γ(δ )

Γ(δ −α)
(ψ(x)−ψ(a))δ−α−1

Remark 1.18. [129] In particular, given n≤ k ∈ N and as δ > n, we have

HDα,β ;ψ
a+ (ψ(t)−ψ(a))k =

k!
Γ(k+1−α)

(ψ(t)−ψ(a))k−α

On the other hand, for n > k ∈ N0, we have

HDα,β ;ψ
a+ (ψ(t)−ψ(a))k = 0

15



1.3. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

Theorem 1.19. [129] If f ∈Cn|a,b|,n−1 < α < n and 0≤ β ≤ 1, then

Iα;ψ
a+

HDα,β ;ψ
a+ f (t) = f (t)−

n∑
k=1

(ψ(t)−ψ(a))γ−k

Γ(γ− k+1)
f [n−k]
ψ I(1−β )(n−α);ψ

a+ f (a)

Theorem 1.20. [129] Let f ,g ∈Cn[a,b],α > 0 and 0≤ β ≤ 1. Then

HDα,β ;ψ
a+ f (t) = HDα,β :ψ

a+ g(t)⇔ f (t) = g(t)+
n∑

k=1
ck(ψ(t)−ψ(a))γ−k

where ck(k = 1, ...,n) are arbitrary constants.

Lemma 1.21. [129] Let γ = α +β −αβ where α ∈ (0,1),β ∈ [0,1], and f ∈Cγ

1−γ;ψ [a,b].
Then

Iγ;ψ
a+

HDγ;ψ
a+ f = Iα;ψ

a+
HDα,β ;ψ

a+ f

and
HDγ;ψ

a+ Iα;ψ
a+ f = HDβ (1−α):ψ

a+ f

Lemma 1.22. [129] If f ∈C1[a,b],α > 0 and 0≤ β ≤ 1, then the following equalities

HDα,β ;ψ
a+ Iα;ψ

a+ f (t) = f (t)

hold almost everywhere on [a,b].

Theorem 1.23. The ψ–Hilfer fractional derivatives are bounded operators for all n− 1 <
α < n and 0≤ β ≤ 1, given by ∥∥∥∥HDα,β ;ψ

a+ f
∥∥∥∥

Cγ,ψ

≤ K ‖ f‖Cn
γ,ψ

(1.7)

and

K =
(ψ(b)−ψ(a))n−α

Γ(n− γ +1)Γ(γ−α +1)
(1.8)

Lemma 1.24. [129] Let α > 0, 0≤ γ < α and f ∈Cγ,ψ [a,b](0 < a < b < ∞). If γ < α, then
Iα,ψ
a+ : Cγ;ψ [a,b]→Cγ;ψ [a,b] is continuous on [a,b] and satisfies

Iα,ψ
a+ f (a) = lim

s→a+
Iα,ψ
a+ f (s) = 0

On some class of fractional derivative

On the other hand, using the ψ–Hilfer fractional derivative operator Eq. (1.6). This de-
rivative is quite general give rise to many cases by assigning different values to ψ , a, b and
taking the limit of the parameters α and β .

For this large class of fractional derivatives that will be presented next, we suggest [89,
117, 86, 71, 20, 83]
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1.4. QUANTUM CALCULUS (Q-DIFFERENCE)

1. Consider the ψ(t) = t and taking the limit β → 1 on both sides of Eq. (1.6), we get

HDα,1;t
a+ f (t) = In−α;t

a+

Ç
d
dt

ån
f (t)

=
1

Γ(n−α)

∫ t

a
(t− s)n−α−1

Ç
d
dt

ån
f (s)ds

= CDα

a+ f (t)

the Caputo fractional derivative.

2. For ψ(t) = t and taking the limit β → 0 on both sides of Eq. (1.6), we have

HDα,0;t
a+ f (t) =

Ç
t

d
dt

ån
In−α;t
a+ f (t)

=

Ç
t

d
dt

ån 1
Γ(n−α)

∫ t

a
(t− s)n−α−1 f (s)ds

= RLDα

a+ f (t)

the Riemann-Liouville fractional derivative.

3. For ψ(t) = t and substituting in Eq. (1.6), we get

HDα,β ;t
a+ f (t) = Iγ−α

a+

Ç
d
dt

ån
I(1−β )(n−α)
a+ f (t)

= Dα,β
a+ f (t)

the Hilfer fractional derivative.

4. For ψ(t) = ln t and taking the limit β → 1 on both sides of Eq. (1.6), we have

HDα,1;ln t
a+ f (t) = In−α;ln t

a+

Ç
t

d
dt

ån
f (t)

=
1

Γ(n−α)

∫ t

a

Å
ln

t
s

ãn−α−1Ç
s

d
ds

ån
f (s)

ds
s

= C
HDα

a+ f (t)

the Caputo-Hadamard fractional derivative.

For more details and proof. The reader can find the ψ–Hilfer and ψ–integral in the papers
[129, 20].

1.4 Quantum Calculus (q-Difference)

1.4.1 Introduction
Fractional q-difference equations initiated at the beginning of the nineteenth century,

exactly, In 1910 Jackson [82], the first researcher to develop q-calculus in a systematic way
introduced the notion of the definite q-integral and some classical concepts. After that, at the
beginning of the last century, studies on the q-difference equation appeared in much works,
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especially in [97, 2, 3, 128]. The fractional q-difference calculus was initially proposed by
Al-Salam [25] and Agarwal [9], and one can find more details in [113, 27, 12]. whereas the
preliminary concepts on q-fractional calculus can be found in [27].

In what follow, we recall some elementary definitions and properties related to the frac-
tional q-calculus.

For a ∈ R, we put

[a]q =
1−qa

1−q
.

Let 0 < q < 1. The q-analogue of the power (a−b)n is expressed by

(a−b)(0) = 1, (a−b)(n) =
n−1∏
k=0

Ä
a−bqkä, a,b ∈ R,n ∈ N.

In general,

(a−b)(α) = aα
∞∏

k=0

Ç
a−bqk

a−bqk+α

å
, a,b,α ∈ R.

Definition 1.25. [84] The q-gamma function is given by

Γq(α) =
(1−q)(α−1)

(1−q)α−1 , α ∈ R−{0,−1,−2, . . .}.

The q-gamma function satisfies the classical recurrence relationship

Γq(1+α) = [α]qΓq(α)

Definition 1.26. [84] For any α,β > 0, the q-beta function is defined by

Bq(α,β ) =
∫ 1

0
f (α−1)(1−q f )(β−1)dq f , q ∈ (0,1)

where the expression of q-beta function in terms of the q-gamma function is

Bq(α,β ) =
Γq(α)Γq(β )

Γq(α +β )

Definition 1.27. [84] Let f : J→R be a suitable function. We define the q-derivative of order
n ∈ N of the function by D0

q f (t) = f (t),

Dq f (t) := D1
q f (t) =

f (t)− f (qt)
(1−q)t

, t 6= 0, Dq f (0) = lim
t→0

Dq f (t),

and
Dn

q f (t) = DqDn−1
q f (t), t ∈ I,n ∈ {1,2, . . .}.

Set It := {tqn : n ∈ N}∪{0}.
Definition 1.28. [84] For a given function f : It → R, the expression defined by

Iq f (t) =
∫ t

0
f (s)dqs =

∞∑
n=0

t(1−q)qn f
Ä
tqnä,

is called q-integral, provided that the series converges.
We note that DqIq f (t) = f (t), while if f is continuous at 0, then

IqDq f (t) = f (t)− f (0).
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1.4.2 Fractional q-Integral
q-Riemann-Liouville Integral

Definition 1.29. [112] Let α ≥ 0 and f be a function defined on [a,b]. The fractional q-
integral of the Riemann-Liouville type is I0

q f (t) = f (t), and

Iα
q f (t) =

1
Γq(α)

∫ t

0
(t−qs)(α−1) f (s)dqs, α ≥ 0, t ∈ [a,b].

Example 1.30. [112] The Riemann-Liouville fractional integral of the power function (t−
a)β , α ∈ R+ and β ∈ (−1,∞). By definition,

Iα
q (t−a)β =

Γq(β +1)
Γq(α +β +1)

(t−a)α+β , β ∈ (−1,∞), α > 0, t > 0

In particular, for λ = 0,a = 0, we have f ≡ 1, then

Iα
q 1(t) =

1
Γq(α +1)

tα , for all t > 0.

In conclusion, we obtain ∫ t

0
(t−qs)(α−1)dqs = Γq(α)Iα

q (1)(t)

=
1

[α]q
tα

Lemma 1.31. [24] Let f be a function defined on J and suppose that α,β are two real
nonegative numbers. Then the following hold :

1. The integral operator Iα
q is linear ;

2. The semi-group property of the fractional integration operator Iα
q is given by the follo-

wing result
Iα
q Iβ

q f (t) = Iα+β
q f (t),

holds at every point if f ∈C([a,b]) and holds almost everywhere if f ∈ L1([a,b]),

3. Commutativity
Iα
q Iβ

q f (t) = Iβ
q Iα

q f (t),

4. The fractional integration operator Iα
q is bounded in Lp[a,b] (1≤ p≤ ∞) ;

‖Iα
q f‖Lp ≤ (b−qa)α

Γq(α +1)
‖ f‖Lp.
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1.4.3 Fractional q-Derivative
q-Riemman-Liouville Derivative

Definition 1.32. [114] The Riemann-Liouville fractional q-derivative of order α ∈ R+ of a
function f : J→ R is defined by D0

q f (t) = f (t) and

Dα
q f (t) = D[α]

q I[α]−α
q f (t)

=
1

Γq(n−α)

∫ t

0

f (s)
(t−qs)α−n+1 dqs.

where [α] is the integer part of α .

Example 1.33. Riemann-Liouville fractional derivative the power function (t − a)β ,α >
0,β >−1

RLD
α

q (t−a)β = Dn
qIn−α

q (t−a)β =
dn

dtn

ñ
Γq(β +1)

Γq(β +1+n−α)
(t−a)β+n−α

ô
=

Γq(β +1)
Γq(β +1+n−α)

dn

dtn (t−a)β+n−α

=
Γq(β +1)

Γq(β +1+n−α)

Γq(β +n−α +1)
Γq(β −α +1)

(t−a)β−α

=
Γq(β +1)

Γq(β −α +1)
(t−a)β−α .

Remark 1.34. If we let β = 0 in the previous example, we see that the q–Riemann-Liouville
fractional derivative of a constant is not 0. In fact,

RLD
α

q 1(t) =
(t−a)−α

Γq(1−α)
.

Remark 1.35. On the other hand, for j = 1,2, · · · , [α]+1,

RLD
α

q (t−a)α− j(t) = 0.

We could say that (t− a)α− j plays the same role in Riemann-Liouville fractional diffe-
rentiation as a constant does in classical integer-ordered differentiation.

As a result, we have the following fact :

Lemma 1.36 ([89, 109]). α > 0, and n = [α]+1 then

RLD
α

q f (t) = 0⇔ f (t) =
n∑

j=1
c j(t−a)α− j,

where c j ( j = 1, . . . ,n) are arbitrary constants.

Lemma 1.37. [68] Let α > 0 and n ∈ N where [α] denotes the integer part of α . Then, the
following fundamental identity holds

RLIα
q RLDn

q f (t) = RLDn
qRLIα

q f (t)−
α−1∑
k=0

tα−n+k

Γq(α + k−n+1)
(Dk

qh)(0).

20



1.4. QUANTUM CALCULUS (Q-DIFFERENCE)

The following lemma shows that the fractional differentiation is an operation inverse to
the fractional integration from the left.

Lemma 1.38 ([89, 109]). If α > 0 and f ∈ Lp([a,b]) (1≤ p≤ ∞), then the following equa-
lities

RLD
α

q Iα
q f (t) = f (t), (1.9)

hold almost everywhere on [a,b].

Caputo q-Derivative

Definition 1.39. [114] The Caputo fractional q-derivative of order α ∈ R+ of a function
f : J→ R is defined byÄcDα

q f
ä
(t) =

(
I[α]−α
q

(
D[α]

q f
))

(t)

=
1

Γq([α]−α)

∫ t

0
(t−qs)[[α]−α−1)

(
D[α]

q f
)
(s)dqs

We put by convention
cD0

q f (t) = f (t).

Example 1.40. The Caputo derivative of the power function (t − a)β ,α > 0,β > 1, n =
[α]+1, then the following relation hold

cDα

q (t−a)β =


Γq(β+1)

Γq(β−α+1)(t−a)β−α , (β ∈ N and β ≥ n or β /∈ N and β > n−1),

0, β ∈ {0, . . . ,n−1}.
(1.10)

Remark 1.41. We see that consistent with classical integer-ordered derivatives, for any constant
C

cDα

q C = 0.

We also recognize from (1.10) that :

Lemma 1.42 ([89, 109]). Let α > 0 and n = [α]+1 then the differential equation

cDα

a+ f (t) = 0

has solutions

f (t) =
n−1∑
j=0

c j(t−a) j, c j ∈ R, j = 0 · · ·n−1.

Lemma 1.43. [114] Let α ∈ R+. Then the following equality holds :

Iα
q

cDα
q f (t) = f (t)−

[α]−1∑
k=0

tk

Γq(1+ k)
Dk

q f (0).

In particular, if α ∈ (0,1), then

Iα
q

cDα
q f (t) = f (t)− f (0).
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Lemma 1.44. Let α > β > 0, and f ∈ L1([a,b]). Then we have :

1. The Caputo fractional q–derivative is linear ;

2. cDα
q Iα

q f (t) = f (t) ;

3. cDβ
q Iα

q f (t) = Iα−β
q f (t).

1.5 On the measures of non-compactness
In this section, we present some definitions and we give several examples measures of

noncompactness in certain specific spaces that will be used in the sequel

1.5.1 The general notion of a measure of noncompactness
Firstly, we need to fix the notation. In what follows, (E,d) will be a metric space, and

(X ,‖ · ‖) a Banach space. By B(x,r) we denote the closed ball centered at x with radius r.
By Br we denote the ball B(0,r). If Q is non-empty subset of X , then Q and ConvQ denote
the closure and the closed convex closure of Q, respectively. When Q is a bounded subset,
Diam(Q) denotes the diameter of Q. Also, we denote by BE (resp. BX ) the class of non-
empty and bounded subsets of E (resp. of X),

We begin with the following general definition.

Definition 1.45 ([30, 33]). A mapping µ : BE −→ R+ = [0,∞) will be called a measure of
noncompactness in E if it satisfies the following conditions :

(1) Regularity : µ(Q) = 0 if, and only if, Q is a precompact set.

(2) Invariant under closure : µ(Q) = µ(Q), for all Q ∈BE .

(3) Semi-additivity : µ(Q1∪Q2) = max{µ(Q1),µ(Q2)}, for all Q1,Q2 ∈BE .
To have a MNC in a Banach space X we need to add the two following additional pro-
perties :

(4) Semi-homogeneity : µ(λQ) = |λ |µ(Q) for λ ∈ R and Q ∈BX .

(5) Invariant under translations : µ(x+Q) = µ(Q), for all x ∈ X and Q ∈BX .

We note here that en literature, then are three main and most frequently used MNCs
are the Kuratowski MNC κ , the Hausdorff MNC χ , and the De Blasi Measure of Weak
Noncompactness β .

1.5.2 The Kuratowski and Hausdorff measure of noncompactness
we present a list of three important examples of measures of noncompactness which arise

over and over in applications. The first example is the Kuratowski measure of noncompact-
ness (or set measure of noncompactness).

Definition 1.46 ([91, 92]). Let (E,d) be a metric space and Q be a bounded subset of E.
Then the Kuratowski measure of noncompactness (the set-measure of noncompactness, κ-
measure) of Q, denoted by κ(Q), is the infimum of the set of all numbers ε > 0 such that Q
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can be covered by a finite number of sets with diameters< ε , i.e.,

κ(Q) = inf

ε > 0 : Q⊂
n⋃

i=1
Si, Si ⊂ E,diam(Si)< ε, i = 1,2, . . . ,n,n ∈ N

 .

In general, the computation of the exact value of κ(Q) is difficult. Another measure of
noncompactness, which seems to be more applicable, is so-called Hausdorff measure of non-
compactness (or ball measure of noncompactness). It is defined as follows.

Definition 1.47. Let (E,d) be a complete metric space. The Hausdorff measure of noncom-
pactness of a nonempty and bounded subset Q of E, denoted by χ(Q), is the infimum of all
numbers ε > 0 such that Q can be covered by a finite number of balls with radius < ε , i.e.,

χ(Q) = inf

ε > 0 : Q⊂
n⋃

i=1
B(xi,ri), xi ∈ E,ri < ε, i = 1,2, . . . ,n,n ∈ N

 .

If (X ,‖ · ‖) is a Banach space, we have the following equivalent definition.

Definition 1.48. Let (X ,‖·‖) be a Banach space. The Hausdorff measure of noncompactness
of a nonempty and bounded subset Q of X , denoted by χ(Q), is the infimum of all numbers
ε > 0 such that Q has a finite ε-net in X , i.e.,

χ(Q) = inf{ε > 0 : Q⊂ S+ εB(0,1),S⊂ X ,S is finite} .

We list below some properties are common to κ and χ and so we are going to use φ to
denote either of them. These properties follow immediately from the definitions and show
that both mappings are measures of noncompactness in the sense of Definition 1.45.

Properties 1. ([30, 91]) Let φ denote κ or χ . Then the following properties are satisfied in
any complete metric space E :

(a) Regularity : φ(Q) = 0 if, and only if, Q is a precompact set.

(b) Invariant under passage to the closure : φ(Q) = φ(Q), for all Q ∈BE .

(c) Semi-additivity : φ(Q1∪Q2) = max{φ(Q1),φ(Q2)}, for all Q1,Q2 ∈BE .

(d) Monotonicity :Q1 ⊂ Q2⇒ φ(Q1)≤ φ(Q2).

(e) φ(Q1∩Q2)≤min{φ(Q1),φ(Q2)}, for all Q1,Q2 ∈BE .

(f) Non-singularity : If Q is a finite set, then φ(Q) = 0.

(g) Generalized Cantor’s intersection. If {Qn}∞
n=1 is a decreasing sequence of bounded and

closed nonempty subsets of E and limn→∞ φ(Qn) = 0 then
⋂∞

n=1 Qn is nonempty and
compact in E. If X is a Banach space, then we also have :

(h) Semi-homogeneity : φ(λQ) = |λ |φ(Q) for λ ∈ R and Q ∈BX .

(i) Algebraic semi-additivity : φ(Q1 +Q2)≤ φ(Q1)+φ(Q2), for all Q1,Q2 ∈BX .

(j) Invariant under translations : φ(x+Q) = φ(Q), for all x ∈ X and Q ∈BX .

(k) invariant under passage to the convex hull : φ(A) = φ(conv(A)),

(l) Lipschitzianity : |φ(Q1)−φ(Q2)| ≤ Lφ dH(Q1,Q2), where Lχ = 1, Lκ = 2 and dH denotes
the Hausdorff semi-metric.
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(m) Continuity : For every Q∈BX and for all ε > 0, there is δ > 0 such that |φ(Q)−φ(Q1)| ≤
ε for all Q1satisfying dH(Q,Q1)< δ .

Theorem 1.49 ([70, 103]). Let B(0,1) be the unit ball in a Banach space X. Then κ(B(0,1))=
χ(B(0,1)) = 0 if X is finite dimensional, and κ(B(0,1)) = 2,χ(B(0,1)) = 1 otherwise.

The next result shows the equivalence between the Kuratowski’s measure of noncompact-
ness and the Hausdorff measure of noncompactness.

Theorem 1.50 ([34]). Let (E,d) be a complete metric space and B be a nonempty and boun-
ded subset of E. Then

χ(Q)≤ κ(Q)≤ 2χ(Q).

1.5.3 The De Blasi Measure of Weak Noncompactness
The measure of weak noncompactness is an MNC in the sense of the general definition

provided X is endowed with the weak topology. The important example of a measure of weak
noncompactness was defined by De Blasi [64] in 1977 and it is the map β : B(X)−→ [0,∞)
defined by

β (Q) = inf
¶

ε > 0 : there exists W ∈K w(X) with Q⊂W + εB1
©
.

for every Q ∈B(X). Here, B(X) means the collection of all nonempty bounded subsets of
X and K w(X) is the subset of B(X) consisting of all weakly compact subsets of X . Now,
we are going to recall some basic properties of β (·).

Properties 2. Let Q1,Q2 be two elements of B(X). Then De Blasi measure of noncom-
pactness has the following properties. For more details and the proof of these properties see
[64]
(a) Q1 ⊂ Q2⇒ β (Q1)≤ β (Q2),
(b) β (Q) = 0⇔ Q is relatively weakly compact,
(c) β (Q1∪Q2) = max{β (Q1),β (Q2)},
(d) β (Qw

) = β (Q), where Qw denotes the weak closure of Q,
(e) β (Q1 +Q2)≤ β (Q1)+β (Q2),

(f) β (λQ)≤ |λ |β (Q),λ ∈ R
(g) β (conv(Q)) = β (Q),

(h) β (∪|λ |≤hλQ) = hβ (Q).

The next lemma due to Ambrosetti has an important role in this work.

Lemma 1.51 ([74]). Let V ⊂ C(J,X) be a bounded and equicontinuous subset. Then the
function t→ β (V (t)) is continuous on J,

βC(V ) = max
t∈J

β (V (t)),

and
β

Å∫
J
u(s)ds

ã
≤
∫

J
β (V (s))ds,

where V (s) = {u(s) : u ∈V},s ∈ J and βC is the De Blasi measure of weak noncompactness
defined on the bounded sets of C(J,X).
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1.5. ON THE MEASURES OF NON-COMPACTNESS

On the other hand, the use of the Hausdorff measure χ in practice requires expressing of
χ with the help of a handy formula associated with the structure of the underlying Banach
space X in which the measure χ is considered. Unfortunately, it turns out that such formulas
are known only in a few Banach spaces such as the classical space C([a,b]) of real func-
tions defined and continuous on the interval [a,b] or Banach sequence spaces c0 and `p. We
illustrate this assertion by a few examples.

1.5.4 Measures of Noncompactness in Some Spaces
The Hausdorff MNC in the Spaces C[a,b]

Let C[a,b] denote the classical Banach space consisting of all real functions defined and
continuous on the interval [a,b]. We consider C[a,b] furnished with the standard maximum
norm, i.e.,

‖x‖= max
t∈[a,b]

|x(t)|.

Keeping in mind the Arzelà-Ascoli criterion for compactness in C[a,b] we can express the
Hausdorff measure of noncompactness in the below described manner.

Namely, for x ∈C[a,b] denote by ω(x,ε) the modulus of continuity of the function x :

ω(x,ε) = sup{|x(t)− x(s)| : t,s ∈ [a,b], |t− s| ≤ ε}.

Next, for an arbitrary set Q ∈BC[a,b] let us put :

ω(Q,ε) = sup{ω(x,ε) : x ∈ Q},

and
ω0(Q) = lim

ε→0
ω(Q,ε). (1.11)

It can be shown [33] that for Q ∈BC[a,b] the following equality holds :

χ(Q) =
1
2

ω0(Q).

This equality is very useful in applications.

The Hausdorff MNC in the Space c0

Let c0 denote the space of all real sequences x = {xn} converging to zero and endowed
with the maximum norm, i.e.,

‖x‖= ‖{xn}‖= max{|xn| : n = 1,2,3, . . .}.

To describe the formula expressing the Hausdorff measure χ in the space c0 fix arbitrarily a
set Q ∈Bc0 . Then, it can be shown that the following equality holds (cf. [33]) :

χ(Q) = lim
n→∞

{
sup
x∈Q

Ç
max
i≥n
|xi|
å}

.

The formula expressing the Hausdorff measure of noncompactness is also known in the space
`p for 1 ≤ p < ∞ [33]. On the other hand in the classical Banach spaces Lp(a,b) and `∞ we
only know some estimates of the Hausdorff measure of noncompactness with the help of
formulas that define measures of noncompactness in those spaces. Refer to [33] for details.
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1.6 Basic results from nonlinear functional analysis and Fixed
points theory

Fixed point theorems are the basic mathematical tools that help establish the existence
and uniqueness of solutions of various kinds of equations. The fixed point method consists of
transforming a given problem into a fixed point problem. The fixed points of the transformed
problem are thus the solutions of the given problem. In this section, we recall the famous
fixed point theorems that we will use to obtain varied existence results. We start with the
definition of a fixed point.

Definition 1.52. Let f be an application of a set E in itself. We call fixed point of f any point
u ∈ E such that

f (u) = u.

1.6.1 Some Classical Fixed-Point Theorem
Banach’s contraction principle, which guarantees the existence of a single fixed point of

a contraction of a complete metric space with values in itself, is certainly the best known of
the fixed point theorems. This theorem proved in 1922 by Stefan Banach is based essentially
on the notions of Lipschitzian application and of contracting application.

Theorem 1.53. [89, 126](Banach contraction principle)
Let E be a complete metric space and let F : E→ E be a contracting application, then F has
a unique fixed point.

Definition 1.54. [54](Boyd-Wong Nonlinear Contraction) Assume that E is a Banach space
and T :E→E is a mapping. If there exists a continuous nondecreasing function ψ :R+→R+

such that ψ(0) = 0 and ψ(ε)< ε for all ε > 0 with the property :

‖T x−Ty‖ ≤ ψ(‖x− y‖),∀x,y ∈ E.

then, we say that T is a nonlinear contraction.

Theorem 1.55. (Boyd-Wong Contraction Principle)[54]
Suppose that E is a Banach space and T : E→ E is a nonlinear contraction. Then T has a
unique fixed point in E.

Lemma 1.56. [89, 126](Schaefer’s Fixed-Point Theorem) Let E be a Banach space. Assume
that T : X → X is completely continuous operator and the set

Ω = {x ∈ E : x = µT x,0 < µ < 1}

is bounded, Then T has a fixed point in E.

Theorem 1.57. [8] (Leray-Schauder nonlinear alternative) Let K be a convex subset of a
Banach space, and let U be an open subset of K with 0∈U. Then every completely continuous
map N : U → K has at least one of the following two properties :

1. N has a fixed point in U ;
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2. there is an x ∈ ∂U and λ ∈ (0,1) with x = λNx.

Let us now recall Mönch’s fixed point theorem and an important lemma.

Theorem 1.58. ([99, 125])(Mönch’s Fixed-Point Theorem) Let D be a bounded, closed and
convex subset of a Banach space such that 0 ∈ D, and let N be a continuous mapping of D
into itself. If the implication

V = conv N (V ) or V = N (V )∪{0}⇒ µ(V ) = 0 (1.12)

holds for every subset V of D, such that µ is the measure of noncompactness of Kuratowski,
then N has a fixed point.

Lemma 1.59. ([125]) Let D be a bounded, closed and convex subset of the Banach space
C(J,E), G a continuous function on J× J and f a function from J×E −→ E which satisfies
the Caratheodory conditions, and suppose there exists p ∈ L1(J,R+) such that, for each t ∈ J
and each bounded set B⊂ E, we have

lim
h→0+

µ( f (Jt,h×B))≤ p(t)µ(B); here Jt,h = [t−h, t]∩ J.

If V is an equicontinuous subset of D, then

µ

Åß∫
J
G(s, t) f (s,y(s))ds : y ∈V

™ã
≤
∫

J
‖G(t,s)‖p(s)µ(V (s))ds.

1.6.2 A Fixed Point Result in a Banach Algebra
In this section, we recall some definitions and we give some results that we will need in

the sequel.

Definition 1.60. An algebra X is a vector space endowed with an internal composition law
noted by (·) that is, X ×X −→X

(x,y) −→ x · y,

which is associative and bilinear.
A normed algebra is an algebra endowed with a norm satisfying the following property

for all x,y ∈X ‖x · y‖ ≤ ‖x‖‖y‖.
A complete normed algebra is called a Banach algebra.

The following hybrid fixed point theorem for three operators in a Banach algebra X
due to Dhage [63] will be used to prove the existence result for the nonlocal boundary value
problem.

Lemma 1.61. Let S be a closed convex , bounded and nonempty subset of a Banach algebra
X , and let A ,C : X −→X and B : S−→X be three operators such that
(a) A and C are Lipschitzian with Lipschitz constants δ and ξ , respectively ;
(b) B is compact and continuous ;
(c) x = A xBy+C x⇒ x ∈ S for all y ∈ S,

(d) δM+ξ < 1 where M =
∥∥∥B(S)

∥∥∥.
Then the operator equation A xBx+C x = x has a solution in S.
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1.6.3 Topological Degree Theory For Condensing Maps
We start this subsection by introducing some necessary definitions, proposition of Isaia

degree topology (See [6, 62]).

Definition 1.62. (Linear operator) Let U and V are two linear spaces over the same scalar
field F . Then a function T with domain D(T ) in U and range R(T ) in V is called linear
operator if

T (αu+βv) = αT (u)+βT (v) , for all u,v ∈U

Definition 1.63. Let T : A −→U be a continuous bounded map and A ⊂U . The operator
T is said to be κ-Lipschitz if we can find a constant `≥ 0 satisfying the following condition,

κ(T (B))≤ `κ(B), for every B⊂ A.

Moreover, T is called strict κ-contraction if ` < 1.

Definition 1.64. The function T is called κ-condensing if

κ(T (B))< κ(B),

for every bounded and nonprecompact subset B of A.
In other words,

κ(T (B))≥ κ(B), implies κ(B) = 0.

Further we have T : A−→U is Lipschitz if we can find ` > 0 such that

‖T (u)−T (v)‖ ≤ `‖u− v‖, for all u,v ∈ A,

if ` < 1, T is said to be strict contraction.

For the following results, we refer to [81].

Proposition 1.65. If T ,S : A −→ U are κ-Lipschitz mapping with constants `1 and `2
respectively, then T +S : A−→U are κ-Lipschitz with constants `1 + `2.

Proposition 1.66. If T : A−→U is compact, then T is κ-Lipschitz with constant `= 0.

Proposition 1.67. If T : A −→ U is Lipschitz with constant `, then T is κ-Lipschitz with
the same constant `.

Isaia [81] present the following results using topological degree theory.

Theorem 1.68. Let K : A−→U be κ-condensing and

Θ = {u ∈U : there exist ξ ∈ [0,1] such that x = ξK u} .

If Θ is a bounded set in U , so there exists r > 0 such that Θ⊂ Br(0), then the degree

deg(I−ξK ,Br(0),0) = 1, for all ξ ∈ [0,1].

Consequently, K has at least one fixed point and the set of the fixed points of K lies in
Br(0).

28



Chapitre 2
Caputo-Hadamard Fractional Differential
Equations with Hadamard Integral
Boundary Conditions

2.1 Introduction
In this chapter, we are concerned with the existence and uniqueness of solutions for cer-

tain classes of nonlinear fractional differential equations via Caputo-Hadamard fractional
derivative. Sufficient and necessary conditions will be presented for the existence and unique-
ness of the solution of fractional boundary value problem, First, we investigate the problem of
existence and uniqueness for a boundary value problem for fractional differential equations
with fractional integral boundary conditions. By applying some standard fixed point theo-
rems. Next, we extend the study of the existence of solutions on an arbitrary Banach space.
by applying the Mönch’s fixed point theorem combined with the technique of measures of
noncompactness. examples are given to illustrate our results. The boundary conditions intro-
duced in this work are of quite general nature and reduce to many special cases by fixing the
parameters involved in the conditions.

In this chapter, we concentrate on the following boundary value problem,of nonlinear
fractional differential equation with fractional integral as well as integer and fractional deri-
vative :

C
HDr

1+x(t) = f (t,x(t)), t ∈ J := [1,T ], 0 < r ≤ 1. (2.1)

with fractional boundary conditions :

αx(1)+βx(T ) = λ HIq
1+x(η)+δ , q ∈ (0,1] (2.2)

where C
HDr

1+ denote the Caputo-Hadamard fractional derivative and HIq
1+ denotes the standard

Hadamard fractional integral. Throughout this work, we always assume that 0 < r,q ≤ 1,
f : [1,T ]×E→ E is continuous. α,β ,λ are real constants, and η ∈ (1,T ), δ ∈ E.
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2.2. EXISTENCE OF SOLUTIONS

2.2 Existence of solutions
First, we prove a preparatory lemma for boundary value problem of linear fractional dif-

ferential equations with Caputo-Hadamard derivative.

Definition 2.1. A function x(t)∈AC1
δ
(J,E) is said to be a solution of (2.1)−(2.2) if x satisfies

the equation C
HDr

1+x(t) = f (t,x(t)) on J , and conditions (2.2).

For the existence of solutions for the problem (2.1)− (2.2), we need the following auxi-
liary lemma.

Lemma 2.2. Let h : [1,T ]→ E be a continuous function. A function x is a solution of the
fractional integral equation

x(t) = HIr
1+h(t)+

1
Λ

¶
λ HIr+q

1+ h(η)−β HIr
1+h(T )+δ

©
, Λ 6= 0. (2.3)

where

Λ =

Ç
α +β − λ (logη)q

Γ(q+1)

å
,

if and only if x is a solution of the fractional BVP

C
HDr

1+x(t) = h(t), t ∈ J, r ∈ (0,1] (2.4)

αx(1)+βx(T ) = λ HIq
1+x(η)+δ , q ∈ (0,1] (2.5)

Proof. Assume that x satisfies (2.4). Then

x(t) = HIr
1+h(t)+ c1. (2.6)

By applying the boundary conditions (2.5) in (2.6), we obtain

αc1 +β HIr
1+h(T )+βc1 = λ HIr+q

1+ h(η))+ c1
λ (logη)q

Γ(q+1)
+δ

Thus,

c1

Ç
α +β − λ (logη)q

Γ(q+1)

å
= λ HIr+q

1+ h(η))−β HIr
1+h(T )+δ .

Consequently,

c1 =
1
Λ

¶
λ HIr+q

1+ h(η))−β HIr
1+h(T )+δ

©
.

Where,

Λ =

Ç
α +β − λ (logη)q

Γ(q+1)

å
Finally ,we obtain the solution (2.3)

x(t) = HIr
1+h(t)+

1
Λ

¶
λ HIr+q

1+ h(η)−β HIr
1+h(T )+δ

©
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2.3 Caputo-Hadamard Fractional Differential Equations with Ha-
damard Integral Boundary Conditions

2.3.1 First result 1

In the following subsections, we prove the existence and uniqueness results, for the boun-
dary value problem (2.1)− (2.2) with E= R by using a variety of fixed point theorems.

Existence and uniqueness result via Banach’s fixed point theorem :

Theorem 2.3. Assume the following hypothesis :
(H1) There exists a constant L > 0 such that

| f (t,x)− f (t,y)| ≤ L|x− y|,

then the problem (2.1)-(2.2) has a unique solution on J if

LM < 1, (2.7)

with

M :=
®
(logT )r

Γ(r+1)
+
|λ |(logη)r+q

|Λ|Γ(r+q+1)
+
|β |(logT )r

|Λ|Γ(r+1)

´
.

.

Proof. Transform the problem (2.1)-(2.2) into a fixed point problem for the operator F
defined by

Fx(t) = HIr
1+h(t)+

1
Λ

¶
λ HIr+q

1+ h(η)−β HIr
1+h(T )+δ

©
(2.8)

Applying the Banach contraction mapping principle, we shall show that F is a contraction.
Now let x,y ∈C(J,R). Then, for t ∈ J, we have

|(Fx)(t)− (Fy)(t)| ≤ 1
Γ(r)

∫ t

1
(log

t
s
)r−1‖ f (s,x(s))− f (s,y(s))‖ds

s

+
|λ |

|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1‖ f (s,x(s))− f (s,y(s))‖ds

s

+
|β |
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1‖ f (s,x(s))− f (s,y(s))‖ds

s

≤ L|x− y|
®
(logT )r

Γ(r+1)
+
|λ |(logη)r+q

|Λ|Γ(r+q+1)
+
|β |(logT )r

|Λ|Γ(r+1)

´
:= LM‖x− y‖

Thus
‖(Fx)− (Fy)‖∞ ≤ LM‖x− y‖∞.

We deduce that F is a contraction mapping. As a consequence of the Banach contraction
principle. the problem (2.1)-(2.2) has a unique solution on J. This completes the proof.

1. A. Boutiara,M. Benbachir, K. Guerbati, Caputo-Hadamard fractional differential equations with Hada-
mard integral boundary conditions, Facta Universitatis 2020 (2020).
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Existence result via Schaefer’s fixed point theorem :

Theorem 2.4. Assume the hypothesis :
(H2) : The function f : [1,T ]×R→ R is continuous.
Then, the problem (2.1)-(2.2) has at least one solution in J.

Proof. We shall use Schaefer’s fixed point theorem to prove that F defined by (2.8) has a
fixed point. The proof will be given in several steps.
Step 1 : F is continuous Let xn be a sequence such that xn→ x in C(J,R). Then for each t ∈ J,

‖(Fxn)(t)− (Fx)(t)‖ ≤ 1
Γ(r)

∫ t

1
(log

t
s
)r−1‖ f (s,xn(s))− f (s,x(s))‖ds

s

+
|λ |

|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1‖ f (s,xn(s))− f (s,x(s))‖ds

s

+
|β |
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1‖ f (s,xn(s))− f (s,x(s))‖ds

s

≤
®
(logT )r

Γ(r+1)
+
|λ |(logη)r+q

|Λ|Γ(r+q+1)
+
|β |(logT )r

|Λ|Γ(r+1)

´
‖ f (s,xn(s))− f (s,x(s))‖.

Since f is continuous, we have ‖(Fxn)− (Fx)‖∞→ 0 as n→ ∞.
Step 2 : F maps bounded sets into bounded sets in C(J,R)
Indeed, it is enough to show that for any r > 0, we take

u ∈ Br = {x ∈C(J,R),‖x‖∞ ≤ r}.

From (H1), Then we have

| f (s,x(s))| ≤ | f (s,x(s))− f (t,0)|+ | f (t,0)| ≤ Lr+K, K = sup
t∈J
| f (t,0)|.

For x ∈ Br and for each t ∈ [1,T ], we have

|(Fx)(t)| ≤ 1
Γ(r)

∫ t

1
(log

t
s
)r−1| f (s,x(s))|ds

s
+

|λ |
|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1| f (s,x(s))|ds

s

+
|β |
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1| f (s,x(s))|ds

s
+
|δ |
|Λ|

≤ Lr+K
Γ(r)

∫ t

1
(log

t
s
)r−1 ds

s
+
|λ |(Lr+K)

|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1 ds

s

+
|β |(Lr+K)

|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1 ds

s
+
|δ |
|Λ|

≤ (Lr+K)

®
(logT )r

Γ(r+1)
+
|λ |(logη)r+q

|Λ|Γ(r+q+1)
+
|β |(logT )r

|Λ|Γ(r+1)

´
+
|δ |
|Λ|

≤ (Lr+K)M+
|δ |
|Λ|

Thus,

‖Fx‖ ≤ (Lr+K)M+
|δ |
|Λ|
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Step 3 : F maps bounded sets into equicontinuous sets of C(J,R).
Let t1, t2 ∈ J, t1 < t2, Br be a bounded set of C(J,R) as in Step 2, and let x ∈ Br. Then

‖Fx(t2)−Fx(t1)‖ ≤
1

Γ(r)

∫ t1

1

ï
(log

t2
s
)r−1− (log

t1
s
)r−1

ò
‖ f (s,x(s))‖ds

s

+
1

Γ(r)

∫ t2

t1
(log

t2
s
)r−1‖ f (s,x(s))‖ds

s

≤ Lr+K
Γ(r)

∫ t1

1

ï
(log

t2
s
)r−1− (log

t1
s
)r−1

ò ds
s
+

K
Γ(r)

∫ t2

t1
(log

t2
s
)r−1 ds

s

≤ Lr+K
Γ(r+1)

[(log t2)r− (log t1)r] .

which implies ‖Fx(t2)−Fx(t1)‖∞→ 0 as t1→ t2, As consequence of Step1 to Step 3, to-
gether with the Arzela-Ascoli theorem, we can conclude that F is continuous and completely
continuous.

Step 4 : A priori bounds.
Now it remains to show that the set

Λ = {x ∈C(J,R) : x = ρF(x) for some 0 < ρ < 1}

is bounded.

For such a x ∈ Λ. Thus, for each t ∈ J, we have

|x(t)| ≤ ρ

®
1

Γ(r)

∫ t

1
(log

t
s
)r−1 f (s,x(s))

ds
s
+

|λ |
|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1 f (s,x(s))

ds
s

+
|β |
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1 f (s,x(s))

ds
s
+
|δ |
|Λ|

´
For ρ ∈ [0,1], let x be such that for each t ∈ J

‖Fx(t)‖ ≤ 1
Γ(r)

∫ t

1
(log

t
s
)r−1| f (s,x(s))|ds

s
+

|λ |
|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1| f (s,x(s))|ds

s

+
|β |
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1| f (s,x(s))|ds

s
+
|δ |
|Λ|

≤ (Lr+K)M+
|δ |
|Λ|

Thus
‖Fx‖< ∞

This implies that the set Λ is bounded. As a consequence of Schaefer’s fixed point theo-
rem, we deduce that F has a fixed point which is a solution on J of the problem (2.1)-(2.2).
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Existence via the Leray-Schauder nonlinear alternative :

Theorem 2.5. Assume the following hypotheses :
(H4) There exist ω ∈ L1(J,R+) and ψ : [0,∞)→ (0,∞) continuous and nondecreasing such
that

| f (t,x)| ≤ ω(t)ψ(|x|), for each t ∈ J and each x ∈ R.
(H5) There exists a constant ε > 0 such that

ε

‖ω‖ψ(ε)M+ |δ ||Λ|
> 1.

Then the boundary value problem (2.1)-(2.2) has at least one solution on J.

Proof. We shall use the Leray-Schauder theorem to prove that F defined by (2.8) has a
fixed point. It’s shown in Theorem 2.4, we see that the operator F is continuous, uniformly
bounded, and maps bounded sets into equicontinuous sets. So by the Arzela-Ascoli theorem
F is completely continuous.
Let x be such that for each t ∈ J, we take the equation x = λℑx for λ ∈ (0,1) and let x be a
solution and following the similar computations as in the first step, we have that

|x(t)| ≤ 1
Γ(r)

∫ t

1
(log

t
s
)r−1

ω(t)ψ(‖x‖)ds
s
+

|λ |
|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1

ω(t)ψ(‖x‖)ds
s

+
|β |
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1

ω(t)ψ(‖x‖)ds
s
+
|δ |
|Λ|

≤ ‖ω‖ψ(‖x‖)M+
|δ |
|Λ|

.

and consequently
‖x‖∞

‖ω‖ψ(‖x‖∞)M+ |δ ||Λ|
≤ 1.

Then by condition (H5), there exists ε such that ‖x‖∞ 6= ε . Let us set

κ = {x ∈C(J,R) : ‖x‖< ε}.

Obviously, the operator ℑ : κ → C(J,R) is completely continuous. From the choice of κ ,
there is no x ∈ ∂κ such that x = λℑ(x) for some λ ∈ (0,1) . As a result, by the Leray-
Schauder’s nonlinear alternative theorem, F has a fixed point x ∈ κ which is a solution of the
(2.1)-(2.2). The proof is completed.

Now we present another variant of existence-uniqueness result.

Existence and uniqueness result via Boyd-Wong nonlinear contraction :

Theorem 2.6. Assume that f : [1,T ]×R→R are continuous functions and H > 0 satisfying
the condition

| f (t,x)− f (t,y)| ≤ |x− y|
H + |x− y|

, for t ∈ J,x,y ∈ R. (2.9)

Then the fractional BVP (2.1)-(2.2) has a unique solution on J .
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Proof. We define an operator F : χ→ χ as in (2.8) and a continuous nondecreasing function
ψ : R+→ R+ by

ψ(ε) =
Hε

H + ε
,∀ε > 0,

where M ≤ H . We notice that the function ψ satisfies ψ(0) = 0 and ψ(ε)< ε for all ε > 0.
For any x,y ∈ χ , and for each t ∈ J , we obtain

|(Fx)(t)− (Fy)(t)| ≤ 1
Γ(r)

∫ t

1
(log

t
s
)r−1‖ f (s,x(s))− f (s,y(s))‖ds

s

+
|λ |

|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1‖ f (s,x(s))− f (s,y(s))‖ds

s

+
|β |
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1‖ f (s,x(s))− f (s,y(s))‖ds

s

≤ |x− y|
H + |x− y|

®
(logT )r

Γ(r+1)
+
|λ |(logη)r+q

|Λ|Γ(r+q+1)
+
|β |(logT )r

|Λ|Γ(r+1)

´
:= M

|x− y|
H + |x− y|

≤ ψ(‖x− y‖).

Then, we get ‖Fx−Fy‖≤ψ(‖x−y‖). Hence, F is a nonlinear contraction. Thus, by Theorem
1.55 (Boyd-Wong Contraction Principle) the operator F has a unique fixed point which is the
unique solution of the fractional BVP (2.1)-(2.2). The proof is completed.

2.3.2 Example
We consider the problem for Caputo-Hadamard fractional differential equations of the

form : 
C
HD

2
3
1+x(t) = f (t,x(t)),(t,x) ∈ ([1,e],R+),

x(1)+ x(e) = 1
2

Å
HI

1
2
1+x(2)

ã
+ 3

4 .

(2.10)

Here

r =
2
3
, q =

1
2
, α = 1, β = 1,

δ =
3
4
, λ =

1
2
, η = 2, T = e.

With
f (t,x(t)) =

1
t2 +4

(cos(x)+
1
4
), t ∈ [1,e]

Clearly, the function f is continuous.
For each x ∈ R+ and t ∈ [1,e], we have

| f (t,x(t))− f (t,y(t))| ≤ 1
4
|x− y|
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Hence, the hypothesis (H1) is satisfied with L = 1
4 .

Further,

M :=
(logT )r

Γ(r+1)
+
|λ |(logη)r+q

|Λ|Γ(r+q+1)
+
|β |(logT )r

|Λ|Γ(r+1)
' 2.0286

and
LM ' 0.5071 < 1.

Therefore, by the conclusion of Theorem 2.3, It follows that the problem (2.10) has a unique
solution defined on [1,e].

2.4 Caputo-Hadamard Fractional Differential Equation with Three-
Point Boundary Conditions in Banach Spaces

2.4.1 Second result 2

This section is devoted to the study of the existence of solutions for problem (2.1)-(2.2),
in which The function f is defined by f : [1,T ]×E→ E such that (E,‖.‖) Banach space
and δ ∈ E. In what follows, we present existence results for the problem (2.1)-(2.2) using a
method involving a measure of noncompactness and a fixed point theorem of Mönch type.

In the following,we prove existence results, for the boundary value problem (2.1)-(2.2)
by using a Mönch fixed point theorem.
(H1) f : J×E→ E satisfies the Caratheodory conditions ;
(H2) There exists p ∈C(J,R+), such that,

‖ f (t,x)‖ ≤ p(t)‖x‖, for t ∈ J and each x ∈ E;

(H3) For each t ∈ J and each bounded set B⊂ E, we have

lim
h→0+

µ( f (Jt,h×B))≤ p(t)µ(B); here Jt,h = [t−h, t]∩ J.

Theorem 2.7. Assume that conditions (H1)-(H3) hold. Let p∗ = supt∈J p(t). If

p∗M < 1, (2.11)

With

M :=
®
(logT )r

Γ(r+1)
+
|λ |(logη)r+q

|Λ|Γ(r+q+1)
+
|β |(logT )r

|Λ|Γ(r+1)

´
.

Then the BVP (2.1)-(2.2) has at least one solution.

Proof. Transform the problem (2.1)-(2.2) into a fixed point problem. Consider the operator
F : C(J,E)→C(J,E) defined by

Fx(t) = HIr
1+h(t)+

1
Λ

¶
λ HIr+q

1+ h(η)−β HIr
1+h(T )+δ

©
(2.12)

2. A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-
point boundary conditions in Banach spaces, AIMS Mathematics, 2020 (2020) , 5(1) : 259–272.
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Clearly, the fixed points of the operator F are solutions of the problem (2.1)-(2.2). Let

R≥ |δ |
|Λ|(1− p∗M)

. (2.13)

and consider
D = {x ∈C(J,E) : ‖x‖ ≤ R}.

Clearly, the subset D is closed, bounded and convex. We shall show that F satisfies the as-
sumptions of Mönch’s fixed point theorem. The proof will be given in three steps.

Step 1 : First we show that F is continuous :
Let xn be a sequence such that xn→ x in C(J,E). Then for each t ∈ J ,

‖(Fxn)(t)− (Fx)(t)‖ ≤ 1
Γ(r)

∫ t

1
(log

t
s
)r−1‖ f (s,xn(s))− f (s,x(s))‖ds

s

+
|λ |

|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1‖ f (s,xn(s))− f (s,x(s))‖ds

s

+
|β |
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1‖ f (s,xn(s))− f (s,x(s))‖ds

s

≤
®
(logT )r

Γ(r+1)
+
|λ |(logη)r+q

|Λ|Γ(r+q+1)
+
|β |(logT )r

|Λ|Γ(r+1)

´
‖ f (s,xn(s))− f (s,x(s))‖

Since f is of Caratheodory type, then by the Lebesgue dominated convergence theorem we
have

‖F(xn)−F(x)‖∞→ 0 as n→ ∞.

Step 2 : Second we show that F maps D into itself :
Take x ∈ D, by (H2), we have, for each t ∈ J and assume that Fx(t) 6= 0.

‖(Fx)(t)‖ ≤ 1
Γ(r)

∫ t

1
(log

t
s
)r−1‖ f (s,x(s))‖ds

s
+

|λ |
|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1‖ f (s,x(s))‖ds

s

+
|β |
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1‖ f (s,x(s))‖ds

s
+
|δ |
|Λ|

≤ 1
Γ(r)

∫ t

1
(log

t
s
)r−1 p(s)‖x(s)‖ds

s
+

|λ |
|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1 p(s)‖x(s)‖ds

s

+
|β |
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1 p(s)‖x(s)‖ds

s
+
|δ |
|Λ|

≤ P∗R
Γ(r)

∫ t

1
(log

t
s
)r−1 ds

s
+
|λ |P∗R
|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1 ds

s

+
|β |P∗R
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1 ds

s
+
|δ |
|Λ|

≤ P∗R
®
(logT )r

Γ(r+1)
+
|λ |(logη)r+q

|Λ|Γ(r+q+1)
+
|β |(logT )r

|Λ|Γ(r+1)

´
+
|δ |
|Λ|

≤ P∗RM+
|δ |
|Λ|

≤ R.
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Step 3 : we show that F(D) is equicontinuous :
By Step 2, it is obvious that F(D) ⊂C(J,E) is bounded. For the equicontinuity of F(D), let
t1, t2 ∈ J , t1 < t2 and x ∈ D, so Fx(t2)−Fx(t1) 6= 0. Then

‖Fx(t2)−Fx(t1)‖ ≤
1

Γ(r)

∫ t1

1

ï
(log

t2
s
)r−1− (log

t1
s
)r−1

ò
‖ f (s,x(s))‖ds

s

+
1

Γ(r)

∫ t2

t1
(log

t2
s
)r−1‖ f (s,x(s))‖ds

s

≤ R
Γ(r)

∫ t1

1

ï
(log

t2
s
)r−1− (log

t1
s
)r−1

ò
p(s)

ds
s
+

R
Γ(r)

∫ t2

t1
(log

t2
s
)r−1 p(s)

ds
s

≤ Rp∗

Γ(r+1)
[(log t2)r− (log t1)r] .

As t1→ t2, the right hand side of the above inequality tends to zero.
Hence N(D)⊂ D.

Finally we show that the implication holds :
Let V ⊂ D such that V = conv(F(V )∪{0}). Since V is bounded and equicontinuous, and
therefore the function t → v(t) = µ(V (t)) is continuous on J. By assumption (H2), and the
properties of the measure µ we have for each t ∈ J.

v(t)≤ µ(F(V )(t)∪{0}))≤ µ((FV )(t))

≤ 1
Γ(r)

∫ t

1
(log

t
s
)r−1 p(s)µ(V (s))

ds
s
+

|λ |
|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1 p(s)µ(V (s))

ds
s

+
|β |
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1 p(s)µ(V (s))

ds
s

≤ ‖v‖
Γ(r)

∫ t

1
(log

t
s
)r−1 p(s)

ds
s
+
|λ |‖v‖
|Λ|Γ(r+q)

∫
η

1
(log

η

s
)r+q−1 p(s)

ds
s

+
|β |‖v‖
|Λ|Γ(r)

∫ T

1
(log

T
s
)r−1 p(s)

ds
s

≤ p∗‖v‖
®
(logT )r

Γ(r+1)
+
|λ |(logη)r+q

|Λ|Γ(r+q+1)
+
|β |(logT )r

|Λ|Γ(r+1)

´
:= p∗‖v‖M.

This means that
‖v‖(1− p∗M)≤ 0

By (2.11) it follows that ‖v‖ = 0, that is v(t) = 0 for each t ∈ J , and then V (t) is relatively
compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact in D. Applying
now Theorem 1.58, we conclude that F has a fixed point which is a solution of the problem
(2.1)-(2.2).

2.4.2 Example
Let

E= l1 =

x = (x1,x2, ...,xn, ...) :
∞∑

n=1
|xn|< ∞


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with the norm

‖x‖E =
∞∑

n=1
|xn|

We consider the problem for Caputo-Hadamard fractional differential equations of the
form : 

C
HD

2
3
1+x(t) = f (t,x(t)),(t,x) ∈ ([1,e],E),

x(1)+ x(e) = 1
2

Å
HI

1
2
1+x(2)

ã
+ 3

4 .

(2.14)

Here r = 2
3 , q = 1

2 , δ = 3
4 , λ = 1

2 , η = 2, T = e.
With

f (t,y(t)) =
t
√

π−1
16

(x(t)+1), t ∈ [1,e]

Clearly, the function f is continuous. For each x ∈ R+ and t ∈ [1,e], we have

| f (t,x(t))| ≤ t
√

π

16
|x|

Hence, the hypothesis (H2) is satisfied with p∗ = t
√

π

16 . We shall show that condition (6.12)
holds with T = e. Indeed,

p∗
®
(logT )r

Γ(r+1)
+
|λ |(logη)r+q

|Λ|Γ(r+q+1)
+
|β |(logT )r

|Λ|Γ(r+1)

´
' 0.6109 < 1

Simple computations show that all conditions of Theorem 2.7 are satisfied. It follows that the
problem (2.14) has at least solution defined on [1,e].

2.5 Conclusion
In this work, we obtained some existence results of nonlinear Caputo-Hadamard fractio-

nal differential equations with three-point boundary conditions by using a method involving a
measure of noncompactness and a fixed point theorem of Mönch type. Though the technique
applied to establish the existence results for the problem at hand is a standard one, yet its
exposition in the present framework is new. An illustration to the present work is also given
by presenting some examples. Our results are quite general give rise to many new cases by
assigning different values to the parameters involved in the problem. For an explanation, we
enlist some special cases.

• We remark that when λ = 0, problem (2.1)-(2.2), the boundary conditions take the form :
αx(1) + βx(T ) = δ and the resulting problem corresponds to the one considered in
[40, 41].

• If we take α = q = 1, β = 0, in (2.2), then our results correspond to the case integral
boundary conditions take the form : x(1) = λ

∫ e
1 x(s)ds+δ considered in [29].

• By fixing α = 1, β = λ = 0, in (2.2), our results correspond to the ones for initial value
problem take the form :x(1) = δ .
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• In case we choose α = β = 1, λ = δ = 0, in (2.2), our results correspond to periodic/anti-
periodic type boundary conditions take the form : x(1) = −(β/α)x(T ). In particular,
we have the results for anti-periodic type boundary conditions when (β/α) = 1. For
more details on anti-periodic fractional order boundary value problems, see [7].

• Letting α = 1, β = δ = 0, in (2.2), then our results correspond to the case fractional integral
boundary conditions take the form :x(1) = λ Iqx(η).

• When, α = β = 1, δ = 0, in (2.2), our results correspond to fractional integral and anti-
periodic type boundary conditions.

In the nutshell, the boundary value problem studied in this section is of fairly general
nature and covers a variety of special cases.
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Chapitre 3
Fractional Differential Equations in Banach
Algebras Spaces

3.1 Introduction
The objective of this chapter is to prove the existence of solutions for a class of hybrid

fractional differential equations with boundary hybrid conditions in the Banach algebra of
all continuous functions on a bounded interval. Our approach mainly depends on a hybrid
fixed point theorem for three operators in a Banach algebra due to Dhage [63]. Moreover,
We present an example to show the validity of conditions and efficiency of our results. The
chapter is inspired in the paper [48].

3.2 On the solvability of a system of Caputo-Hadamard frac-
tional hybrid differential equations subject to some hybrid
boundary conditions

3.2.1 Introduction
In the last few years, hybrid fractional differential equations have attracted many resear-

chers and achieved a great deal of interest. By hybrid differential equations, we mean that the
terms in the equation are perturbed either linearly or quadratically or through the combination
of first and second types. Perturbation taking place in the form of the sum or difference of
terms in an equation is called linear. On the other hand, if the equation is perturbed through
the product or quotient of the terms in it, then it is called quadratic perturbation. So the study
of the hybrid differential equation is more general and covers several dynamic systems for
some developments on the existence results of hybrid fractional differential equations, we
can refer to [63, 132, 59, 48] and the references therein.

This section deals with the existence of solutions on a bounded interval J = [0,T ] for the
following hybrid differential equation with boundary hybrid conditions
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3.2. ON THE SOLVABILITY OF A SYSTEM OF CAPUTO-HADAMARD FRACTIONAL HYBRID DIFFERENTIAL
EQUATIONS SUBJECT TO SOME HYBRID BOUNDARY CONDITIONS



C
HDr

1+

ï
x(t)−

∑m
i=1 H Iqi fi(t,x(t))
g(t,x(t))

ò
= h(t,x(t)), t ∈ J := [1,T ], 1 < r ≤ 2,

α1

ï
x(t)−

∑m
i=1 H Iqi fi(t,x(t))
g(t,x(t))

ò
t=1

+β1
C
HDp

1+

ï
x(t)−

∑m
i=1 H Iqi fi(t,x(t))
g(t,x(t))

ò
t=1

= γ1,

α2

ï
x(t)−

∑m
i=1 H Iqi fi(t,x(t))
g(t,x(t))

ò
t=T

+β2
C
HDp

1+

ï
x(t)−

∑m
i=1 H Iqi fi(t,x(t))
g(t,x(t))

ò
t=T

= γ2

(3.1)

where C
HDε and HIqi

1+ denotes the Caputo-Hadamard fractional derivatives of orders ε , ε ∈
{r, p}, 0 < p ≤ 1 and Hadamard integral of order qi,respectively, αi,βi,γi, i = 1,2, are real
constants, g ∈C(J×R,R−{0}), and f ,h ∈C(J×R,R).

3.2.2 Existence of solutions 1

By Ê =C(J,R) we denote the Banach space of all continuous functions from J := [0,T ]
into R with the norm

‖x‖= sup
t∈J
|x(t)|,

and a multiplication in Ê by
(xy)(t) = x(t)y(t).

Clearly, Ê is a Banach algebra with respect to the above supremum norm and the multiplica-
tion in it. In this section, we give our main existence result for problem (3.1). Before stating
Let us define what we mean by a solution to the problem (3.1).

Definition 3.1. A function x ∈ C(J,R), is said to be a solution of (3.1) if it satisfies the

equation C
HDr

1+

ñ
x(t)−

∑m
i=1 H Iqi

1+
fi(t,x(t))

g(t,x(t))

ô
= h(t,x(t)) on J, and the condition

α1

[
x(t)−∑m

i=1 HIqi
1+ fi(t,x(t))

g(t,x(t))

]
t=1

+β1
C
HD

p
1+

[
x(t)−∑m

i=1 HIqi
1+ fi(t,x(t))

g(t,x(t))

]
t=1

= γ1,

α2

[
x(t)−∑m

i=1 HIqi
1+ fi(t,x(t))

g(t,x(t))

]
t=T

+β2
C
HD

p
1+

[
x(t)−∑m

i=1 HIqi
1+ fi(t,x(t))

g(t,x(t))

]
t=T

= γ2

The integral form that is equivalent to problem (3.1) is given by the following. In this
section, we prove the existence results for the boundary value problems for hybrid differential
equations with fractional order on the closed bounded interval J.

Lemma 3.2. Let h be continuous function on J. Then the solution of the boundary value
problem

C
HD

r
1+

[
x(t)−∑m

i=1 HIqi
1+ fi(t,x(t))

g(t,x(t))

]
= h(t,x(t)), t ∈ J, 1 < r ≤ 2, (3.2)

1. A. Boutiara, M. Benbachir, K. Guerbati, On the solvability of a system of Caputo-Hadamard fractional
hybrid differential equations subject to some hybrid boundary conditions, Mathematica, (to appear).
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with boundary conditions

α1

[
x(t)−∑m

i=1 HIqi
1+ fi(t,x(t))

g(t,x(t))

]
t=1

+β1
C
HD

p
1+

[
x(t)−∑m

i=1 HIqi
1+ fi(t,x(t))

g(t,x(t))

]
t=1

= γ1,

α2

[
x(t)−∑m

i=1 HIqi
1+ fi(t,x(t))

g(t,x(t))

]
t=T

+β2
C
HD

p
1+

[
x(t)−∑m

i=1 HIqi
1+ fi(t,x(t))

g(t,x(t))

]
t=T

= γ2

(3.3)

satisfies the equation

x(t) = g(t,x(t))
ñ

HIr
1+h(t)− (log t)

v1

¶
α2HIr

1+h(T )+β2HIr−p
1+ h(T )

©
+

α1v2(log t)+ γ1v1

α1v1

ô
+

m∑
i=1

HIqi
1+ fi(t,x(t)). (3.4)

where

v1 =

(
α2(logT )+β2

(logT )1−p

Γ(2− p)

)
, v2 =

γ2α1− γ1α2

α1

Proof. Applying the Hadamard fractional integral operator of order r to both sides of (3.2)
and using Lemma 1.21,we have[

x(t)−∑m
i=1 HIqi

1+ fi(t,x(t))
g(t,x(t))

]
= HIr

1+h(t)+ c1 + c2(log t), c1,c2 ∈ R. (3.5)

Consequently, the general solution of (3.2)is

x(t) = g(t,x(t))(HIr
1+h(t)+ c1 + c2(log t))+

m∑
i=1

HIqi
1+ fi(t,x(t)), c1,c2 ∈ R. (3.6)

Applying the boundary conditions (3.3) in (3.5), a simple calculation gives

c1 =
γ1

α1
,

c2 =
1
v1

®
γ2−

α2γ1

α1
−α2HIr

1+h(T )−β2 HIr−p
1+ h(T )

´
.

Substituting the values of c1,c2 into (3.6), we get (3.4).

Now we list the following hypotheses.
(H1) The functions g : J×R→ R\{0} and h, f : J×R→ R are continuous.
(H2) There exist two positive functions ω0,ϖ1 with bounds ‖ω0‖ and ‖ϖ1‖,respectively, such
that

|g(t,x)−g(t,y)| ≤ ω0(t)|x− y|, (3.7)

and
| fi(t,x)− fi(t,y)| ≤ ϖi(t)|x− y|. (3.8)
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for all (t,x,y) ∈ J×R×R.
(H3) There exist a function p ∈ L∞(J,R+) and a continuous nondecreasing function ϕ :
[0,∞)→ (0,∞) such that

|h(t,x)| ≤ p(t)ϕ (|x|) , for all t ∈ J and x ∈ R. (3.9)

(H4) There exists R > 0 such that

R≥ Mg0 +M1

1−M‖ω0‖−M2
, (3.10)

and

‖ω0‖M+
m∑

i=1

‖ϖi‖
Γ(qi +1)

< 1. (3.11)

where g0 = supt∈J |g(t,0)|, fi = supt∈J | fi(t,0)|, i = 1, ...,m, and

M = ‖p‖ϕ(R)
{
(logT )r

Γ(r+1)
+
|α2|
|v1|

(logT )r+1

Γ(r+1)
+
|β2|
|v1|

(logT )r−p+1

Γ(r− p+1)

}
+
|α1v2|(log t)
|α1v1|

+
|γ1|
|α1|

.

M1 =
m∑

i=1

fi

Γ(qi +1)
, M2 =

m∑
i=1

‖ϖi‖
Γ(qi +1)

. (3.12)

Theorem 3.3. Assume that conditions (H1)-(H4) holds.Then problem (3.1) has at least one
solution defined on J.

Proof. Define the set
S =

¶
x ∈ Ê : ‖x‖Ê ≤ R

©
.

Clearly, S is a closed convex bounded subset of the Banach space Ê. By Lemma 3.2 the
boundary value problem (3.1) is equivalent to the equation

x(t) =
m∑

i=1
HIqi

1+ fi(t,x(t))+g(t,x(t)) [ HIr
1+h(s,x(s))(t)

−(log t)
v1

¶
α2 HIr

1+h(s,x(s))(T )+β2 HIr−p
1+ h(s,x(s))(T )

©
+

α1v2(log t)+ γ1v1

α1v1

ô (3.13)

Define three operators A,C : Ê→ Ê and B : S→ Ê by

Ax(t) = g(t,x(t)), t ∈ J,

Bx(t) = HIr
1+h(s,x(s))(t)

− (log t)
v1

¶
α2 HIr

1+h(s,x(s))(T )+β2 HIr−p
1+ h(s,x(s))(T )

©
+

α1v2(log t)+ γ1v1

α1v1
, t ∈ J,

and

Cx(t) =
m∑

i=1
HIqi

1+ fi(t,x(t)), t ∈ J.
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Then the integral equation (3.13) can be written in the operator form as

x(t) = Ax(t)Bx(t)+Cx(t), t ∈ J.

We will show that the operators A,B,and C satisfy all the conditions of Lemma 1.61. This
will be achieved in the following series of steps.
Step1 : First, we show that A and C are Lipschitzian on Ê.
Let x,y ∈ Ê. Then by (H2), for t ∈ J, we have

|Ax(t)−Ay(t)|= |g(t,x(t))−g(t,y(t))| ≤ ω0(t)|x(t)− y(t)|.

for all t ∈ J. Taking the supremum over t, we obtain

‖Ax−Ay‖ ≤ ‖ω0‖‖x− y‖.

for all x,y→ Ê. Therefore A is Lipschitzian on Ê with Lipschitz constant ‖ω0‖.
Analogously, for C : Ê→ Ê, x,y ∈ Ê, we have

|Cx(t)−Cy(t)|=
∣∣∣∣∣∣

m∑
i=1

HIqi
1+ fi(t,x(t))−

m∑
i=1

HIqi
1+ fi(t,y(t))

∣∣∣∣∣∣
≤

m∑
i=1

1
Γ(qi)

∫ t

1

Å
log

t
s

ã
ϖi(s)|x(s)− y(s)|ds

s

≤ ‖x(t)− y(t)‖
m∑

i=1

‖ϖi‖
Γ(qi +1)

.

which implies that
‖Cx−Cy‖ ≤M2‖x(t)− y(t)‖.

Hence C : Ê→ Ê is Lipschitzian on Ê with Lipschitz constant M2.
Step 2 : The operator B is completely continuous on S. We first show that the operator B is
continuous on Ê. Let xn be a sequence in S converging to a point x ∈ S. Then by Lebesgue
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dominated convergence theorem, for all t ∈ J, we obtain

lim
n→∞

Bxn(t) =
1

Γ(r)
lim
n→∞

∫ t

1

Å
log

t
s

ã
h(s,xn(s))

ds
s

− (log t)
v1

®
α2

Γ(r)
lim
n→∞

∫ T

1

Ç
log

T
s

å
h(s,xn(s))

ds
s

+
β2

Γ(r− p)
lim
n→∞

∫ T

1

Ç
log

T
s

å
h(s,xn(s))

ds
s

´
+

α1v2(log t)+ γ1v1

α1v1

=
1

Γ(r)

∫ t

1

Å
log

t
s

ã
lim
n→∞

h(s,xn(s))
ds
s

− (log t)
v1

®
α2

Γ(r)

∫ T

1

Ç
log

T
s

å
lim
n→∞

h(s,xn(s))
ds
s

+
β2

Γ(r− p)

∫ T

1

Ç
log

T
s

å
lim
n→∞

h(s,xn(s))
ds
s

´
+

α1v2(log t)+ γ1v1

α1v1

= Irh(s,x(s))(t)− (log t)
v1

¶
α2Irh(s,x(s))(T )+β2Ir−ph(s,x(s))(T )

©
+

α1v2(log t)+ γ1v1

α1v1

= Bx(t).

for all t ∈ J. This shows that B is a continuous operator on S.

Next, we will prove that the set B(S) is a uniformly bounded in S. For any x ∈ S,we have

|Bx(t)| ≤ 1
Γ(r)

∫ t

1

Å
log

t
s

ã
|h(s,x(s))|ds

s

+
(log t)
|v1|

® |α2|
Γ(r)

∫ T

1

Ç
log

T
s

å
|h(s,x(s))|ds

s

+
|β2|

Γ(r− p)

∫ T

1

Ç
log

T
s

å
|h(s,x(s))|ds

s

´
+
|α1v2|(log t)+ |γ1v1|

|α1v1|

Using (3.9), we can write

|Bx(t)| ≤ 1
Γ(r)

∫ t

1

Å
log

t
s

ã
p(s)ϕ (|x|) ds

s
− (log t)
|v1|

® |α2|
Γ(r)

∫ T

1

Ç
log

T
s

å
p(s)ϕ (|x|) ds

s

+
|β2|

Γ(r− p)

∫ T

1

Ç
log

T
s

å
p(s)ϕ (|x|) ds

s

´
+
|α1v2|(log t)+ |γ1v1|

|α1v1|

≤ ‖p‖ϕ(R)
{
(logT )r

Γ(r+1)
+
|α2|
|v1|

(logT )r+1

Γ(r+1)
+
|β2|
|v1|

(logT )r−p+1

Γ(r− p+1)

}
+
|α1v2|(log t)+ |γ1v1|

|α1v1|

Thus ‖Bx‖ ≤M for all x ∈ S with M given in (3.12). This shows that B is uniformly bounded
on S.
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Let t1, t2 ∈ J. Then for any x ∈ S, by (3.9) we get

|Bx(t2)−Bx(t1)| ≤
1

Γ(r)

∣∣∣∣∣
∫ t2

1

Å
log

t2
s

ãr−1
h(s)

ds
s
−
∫ t1

1

Å
log

t1
s

ãr−1
h(s)

ds
s

∣∣∣∣∣ (3.14)

+
|(log t2)− (log t1)|

|v1|
¶
|α2|Irh(T )+ |β2|Ir−ph(T )

©
+
|α1v2|
|α1v1|

|(log t2)− (log t1)|

≤ ϕ(R)‖p‖
Γ(r)

∫ t1

1

ñÅ
log

t2
s

ãr−1
−
Å

log
t1
s

ãr−1ô ds
s
+

ϕ(R)‖p‖
Γ(r)

∫ t2

t1

Å
log

t2
s

ãr−1 ds
s

+
|(log t2)− (log t1)|

|v1|
¶
|α2|Irh(T )+ |β2|Ir−ph(T )

©
+
|α1v2|
|α1v1|

|(log t2)− (log t1)|.

Obviously, the right-hand side of inequality (3.14) tends to zero independently of x ∈ S as
t2→ t1. As a consequence of the Ascoli-Arzela theorem, B is a completely continuous ope-
rator on S.
Step 3 : Hypothesis (c) of Lemma 1.61 is satisfied.
Let x ∈ Ê and y ∈ S be arbitrary elements such that x = AxBy+Cx. Then we have

|x(t)| ≤ |Ax(t)||By(t)|+ |Cx(t)|

≤
m∑

i=1
HIqi| fi(t,x(t))|

+ |g(t,x(t))|
ñ

1
Γ(r)

∫ t

1

Å
log

t
s

ã
|h(s,x(s))|ds

s

+
(log t)
|v1|

® |α2|
Γ(r)

∫ T

1

Ç
log

T
s

å
|h(s,x(s))|ds

s

+
|β2|

Γ(r− p)

∫ T

1

Ç
log

T
s

å
|h(s,x(s))|ds

s

´
+
|α1v2|(log t)+ |γ1v1|

|α1v1|

ô
≤

m∑
i=1

1
Γ(qi)

∫ t

1

Å
log

t
s

ãqi+1
(| fi(s,x(s))− fi(s,0)|+ | fi(s,0)|)

ds
s

+(|g(s,x(s))−g(s,0)|+ |g(s,0)|)
ñ

1
Γ(r)

∫ t

1

Å
log

t
s

ã
ϕ(R)p(s)

ds
s

+
(log t)
|v1|

® |α2|
Γ(r)

∫ T

1

Ç
log

T
s

å
ϕ(R)p(s)

ds
s

+
|β2|

Γ(r− p)

∫ T

1

Ç
log

T
s

å
ϕ(R)p(s)

ds
s

´
+
|α1v2|(log t)+ |γ1v1|

|α1v1|

ô
≤ (‖ω0‖|x(t)|+g0)M+

m∑
i=1

‖ϖi‖
Γ(qi +1)

|x(t)|+
m∑

i=1

fi

Γ(qi +1)

≤ (‖ω0‖|x(t)|+g0)M+M2|x(t)|+M1

Thus

|x(t)| ≤ Mg0 +M1

1−M‖ω0‖−M2
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Taking the supremum over t,we get

‖x‖ ≤ Mg0 +M1

1−M‖ω0‖−M2
≤ R

Step4 : Finally, we show that δN +ρ < 1, that is, (d) of Lemma 1.61 holds.
Since

N = ‖B(S)‖= sup
x∈S

®
sup
t∈J
|Bx(t)|

´
≤M,

we have

‖ω0‖N +M2 ≤ ‖ω0‖M+M2 < 1

with δ = ‖ω0‖ and ρ = M2 Thus all the conditions of Lemma 1.61 are satisfied, and hence
the operator equation x = AxBx+Cx has a solution in S. As a result, problem (6.2) has a
solution on J.

3.2.3 Example
Consider the following nonlocal hybrid boundary value problem :



C
HDr

0+
[

x(t)− H Iq1 f1(t,x(t))
g(t,x(t))

]
= e−2(log t)
√

9+t
sinx(t), t ∈ J := [1,e],

α1

[
x(t)− H Iq1 f1(t,x(t))

g(t,x(t))

]
t=1

+β2
C
HDp

[
x(t)− H Iq1 f1(t,x(t))

g(t,x(t))

]
t=1

= γ1,

α1

[
x(t)− H Iq1 f1(t,x(t))

g(t,x(t))

]
t=T

+β2
C
HDp

[
x(t)− H Iq1 f1(t,x(t))

g(t,x(t))

]
t=T

= γ1

(3.15)

We take

m = 1, r =
3
2
, p =

1
2
, q1 =

1
5
,

α1 = 5, α2 =
2
5
, β1 =

3
8
, β2 =

2
5
,

γ1 = 1, γ2 = 1, T = e.

f1(t,x(t)) =
(log t)2

100

Ç
1
2

Å
x(t)+

»
x2 +1

ã
+ log t

å
,

g(t,x(t)) =
√

π cos(π log t)
(7π +15t)2

x(t)
1+ x(t)

+
log t
10

,

h(t,x(t)) =
e−2(log t)
√

9+ t
sinx(t).

We can show that

| f1(t,x)− f1(t,y)| ≤
(log t)2

100
|x− y|
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|g(t,x)−g(t,y)| ≤
√

π

(7π +15(log t)2)2 |x− y|

h(t,x(t))≤ p(t)ϕ (|x|)

where
ϕ (|x|) = |x|, p(t) = e−2(log t)

Hence we have

ω0(t) =
(log t)2

100
, ϖ1(t) =

√
π

(7π +15(log t)2)2

Then

‖ω0‖=
1

100
, ‖ϖ1‖=

√
π

(7π +15)2 , ‖p‖= 0.1353

and
g0 = sup

t∈J
|g(t,0)|= 1

10
, f1 = sup

t∈J
| f1(t,0)|=

1
100

Using these values, it follows by (3.10) and (3.11) that the constant R satisfies the inequa-
lity 0.0035 < R < 3.2552. As all the conditions of Theorem 3.3 are satisfied, problem (3.15)
has at least one solution on J.
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Chapitre 4
Hilfer Fractional Differential Equation with
Fractional Integral Boundary Conditions

4.1 Introduction
The aim of this chapter is to prove the existence of solutions for certain classes of nonli-

near fractional differential equations in Banach Spaces via Hilfer fractional derivative. First,
In section 4.2, we investigate the problem of existence and uniqueness for a boundary value
problem for fractional differential equations with Katugampola Fractional Integral and Anti-
Periodic Conditions in Real spaces. By applying some standard fixed point theorem. Next,
In section 4.3, we study the existence of solutions for a boundary value problem for fractio-
nal differential equations involving three-point boundary conditions on an arbitrary Banach
space. The used approach is based on Mönch’s fixed point theorem combined with the tech-
nique of measures of noncompactness. Finally, we provide an illustrative example at the end
of each section in support of our existence theorems.

4.2 Boundary Value Problems for Hilfer Fractional Differential
Equations with Katugampola Fractional Integral and Anti-
Periodic Conditions

4.2.1 Introduction
We study in this section some sufficient conditions for the existence and uniqueness of

solutions to the following boundary value problem of nonlinear Hilfer fractional differential
equation with Katugampola fractional integral and anti-periodic conditions :

Dα,β
0+ x(t) = f (t,x(t)), t ∈ J := [0,T ], (4.1)

supplemented with the boundary conditions of the form :

aI1−γ

0+ x(0)+bx(T ) =
m∑

i=1
ci

ρiIqi
0+x(ηi)+d, (4.2)
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where Dα,β is the Hilfer fractional derivative 0 < α < 1,0 ≤ β ≤ 1, γ = α +β −αβ , ρiIqi
0+

is the Katugampola integral of qi > 0 and I1−γ is the Riemann-Liouville integral of order
1− γ , f : J×R→ R is a continuous function, a,b,d,ci, i = 1, ...,m are real constants, and
0 < ηi < T, i = 1, ...,m.

In the present work we initiate the study of boundary value problems like (4.1)-(4.2), in
which we combine Hilfer fractional differential equations subject to the Katugampola frac-
tional integral boundary conditions.

4.2.2 Existence of solutions 1

Now, we shall present and prove a preparatory lemma for boundary value problem of
linear fractional differential equations with Hilfer derivative.

Definition 4.1. A function x(t)∈C1−γ(J,R) is said to be a solution of (4.1)-(4.2) if x satisfies
the equation Dα,β

0+ x(t) = f (t,x(t)) on J , and the conditions (4.2).

For the existence of solutions for the problem (4.1)-(4.2), we need the following auxiliary
lemma.

Lemma 4.2. Let h : J×R→ R be a continuous function. A function x is a solution of the
fractional integral equation

x(t) = Iα

0+h(t)+
tγ−1

Λ


m∑

i=1
ci

ρiIqi
0+Iα

0+h(ηi)−bIα

0+h(T )+d

 , (4.3)

where

Λ =

Ñ
aΓ(γ)+bT γ−1−

m∑
i=1

ci
Γ( γ+ρi−1

ρi
)

Γ( γ+ρiqi+ρi−1
ρi

)

η
γ+ρiqi−1
i

ρ
qi
i

é
.

if and only if x is a solution of the fractional BVP

Dα,β
0+ x(t) = h(t), t ∈ J, (4.4)

aI1−γ

0+ x(0)+bx(T ) =
m∑

i=1
cρi

i Iqi
0+h(ηi)+d. (4.5)

Proof. Assume x satisfies (4.4). Then Lemma 1.20 implies that

x(t) = Iα

0+h(t)+Atγ−1. (4.6)

By applying the boundary conditions (4.5) in (4.6), we obtain

aAΓ(γ)+bIα

0+h(T )+b A T γ−1 =
m∑

i=1
ci

ρiIqi
0+Iα

0+h(ηi)

+
m∑

i=1
ciA

Γ( γ+ρi−1
ρi

)

Γ( γ+ρiqi+ρi−1
ρi

)

tγ+ρiqi−1

ρ
qi
i

+d.

1. A. Boutiara, M. Benbachir, K. Guerbati, Boundary Value Problems for Hilfer Fractional Differential
Equations with Katugampola Fractional Integral and Anti-Periodic Conditions, Mathematica, (to appear).
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Thus,

A

Ñ
aΓ(γ)+bT γ−1−

m∑
i=1

ci
Γ( γ+ρi−1

ρi
)

Γ( γ+ρiqi+ρi−1
ρi

)

η
γ+ρiqi−1
i

ρ
qi
i

é
=

m∑
i=1

ci
ρiIqi

0+Iα

0+h(ηi)

−bIα

0+h(T )+d.

Consequently,

A =
1
Λ


m∑

i=1
ci

ρiIqi
0+Iα

0+h(ηi)−bIα

0+h(T )+d

 ,

where,

Λ =

Ñ
aΓ(γ)+bT γ−1−

m∑
i=1

ci
Γ( γ+ρi−1

ρi
)

Γ( γ+ρiqi+ρi−1
ρi

)

η
γ+ρiqi−1
i

ρ
qi
i

é
.

Finally, we obtain the desired equation (4.3).

In the following subsections we prove existence, as well as existence and uniqueness re-
sults, for the boundary value problem (4.1)− (4.2) by using a variety of fixed point theorems.

Existence and uniqueness result via Banach’s fixed point theorem

Theorem 4.3. Assume the following hypothesis :
(H1) There exists a constant L > 0 such that

| f (t,x)− f (t,y)| ≤ L|x− y|.

If
LΨ < 1 (4.7)

where

Ψ :=

 T α−γ+1

Γ(α +1)
+

1
|Λ|


m∑

i=1
|ci|

Γ(α+ρi
ρi

)

Γ(α+ρiqi+ρi
ρi

)

η
α+ρiqi
i
ρ

qi
i

+ |b| T α

Γ(α +1)


 .

Then the problem (4.1) has a unique solution on J.

Proof. Transform the problem (4.1)− (4.2) into a fixed point problem for the operator Z
defined by

Zx(t) = Iα

0+h(t)+
tγ−1

Λ


m∑

i=1
ci

ρiIqi
0+Iα

0+h(ηi)−bIα

0+h(T )+d

 (4.8)

Applying the Banach contraction mapping principle, we shall show that Z is a contraction.
We put supt∈[0,T ] | f (t,0)|= M < ∞, and choose

r ≥ MΨ

1−LΨ
.
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To show that ZBr ⊂ Br, where Br =
¶

x ∈C1−γ : ‖x‖ ≤ r
©

, we have for any x ∈ Br

|((Zx)(t))t1−γ | ≤ sup
t∈[0,T ]

®
t1−γ Iα

0+| f (s,x(s))|(t)

+
1
|Λ|

® m∑
i=1

ci
ρiIqi

0+Iα

0+| f (s,x(s))|(ηi)+bIα

0+| f (s,x(s))|(T )+d
´´

≤ T 1−γ Iα

0+(| f (s,x(s))− f (t,0)|+ | f (t,0)|)(T )

+
1
|Λ|

® m∑
i=1
|ci| ρiIqi

0+Iα

0+(| f (s,x(s))− f (t,o)|+ | f (t,0)|)(ηi)

+ |b|Iα

0+(| f (s,x(s))− f (t,0)|+ | f (t,0)|)(T )
´
+
|d|
|Λ|

≤ (Lr+M)

®
T 1−γ Iα

0+(1)(T )+
1
|Λ|

® m∑
i=1
|ci| ρiIqi

0+(1)(ηi)+ |b|Iα

0+(1)(T )
´´

+
|d|
|Λ|

:= (Lr+M)Ψ+
|d|
|Λ|
≤ r.

which implies that ZBr ⊂ Br.
Now let x,y ∈C1−γ(J,R). Then, for t ∈ J, we have

|((Zx)(t)− (Zy)(t))t1−γ | ≤ sup
t∈[0,T ]

®
t1−γ Iα

0+| f (s,x(s))− f (s,y(s))|(t)

+
1
|Λ|

® m∑
i=1

ci
ρiIqi

0+Iα

0+| f (s,x(s))− f (s,y(s))|(ηi)+bIα

0+| f (s,x(s))− f (s,y(s))|(T )
´´

≤ L‖x− y‖
®

T 1−γ Iα

0+(1)(T )+
1
|Λ|

® m∑
i=1
|ci| ρiIqi

0+Iα

0+(1)(ηi)+ |b|Iα

0+(1)(T )
´´

≤ L‖x− y‖
®

T α−γ+1

Γ(α +1)
+

1
|Λ|

® m∑
i=1
|ci|

Γ(α+ρi
ρi

)

Γ(α+ρiqi+ρi
ρi

)

η
α+ρiqi
i
ρ

qi
i

+ |b| T α

Γ(α +1)

´´
:= LΨ‖x− y‖.

Thus
‖((Zx)− (Zy))t1−γ‖∞ ≤ LΨ‖x− y‖∞.

We deduce that Z is a contraction mapping. As a consequence of Banach contraction prin-
ciple. the problem (4.1)-(4.2) has a unique solution on J. This completes the proof.

Existence result via Schaefer’s fixed point theorem

Theorem 4.4. Assume the hypothesis :
(H2) : The function f : [0,T ]×R→ R is continuous.
Then, the problem (4.1)-(4.2) has a least one solution in J.

Proof. We shall use Schaefer’s fixed point theorem to prove that Z defined by (4.8) has a
fixed point. The proof will be given in several steps.
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Step 1 : Z is continuous Let xn be a sequence such that xn→ x in C1−γ(J,R). Then for each
t ∈ J,

|((Zxn)(t)− (Zx)(t))t1−γ | ≤ t1−γ Iα

0+‖ f (s,xn(s))− f (s,x(s))‖(t)

+
1
|Λ|

® m∑
i=1

ci
ρiIqi

0+Iα

0+‖ f (s,xn(s))− f (s,x(s))‖(ηi)+bIα

0+‖ f (s,xn(s))− f (s,x(s))‖(T )
´

≤
®

T 1−γ Iα

0+(1)(T )+
1
|Λ|

® m∑
i=1

ci
ρiIqi

0+Iα

0+(1)(ηi)+bIα

0+(1)(T )
´´
‖ f (s,xn(s))− f (s,x(s))‖

:= Ψ‖ f (s,xn(s))− f (s,x(s))‖.

Since f is continuous, so ‖((Zxn)− (Zx))t1−γ‖∞→ 0 as n→ ∞.

Step 2 : Z maps bounded sets into bounded sets in C1−γ(J,R)
Indeed, it is enough to show that for any r > 0, if we take x ∈ Br = {x ∈C(J,R),‖x‖∞ ≤ r},
such that Zx(t) is bounded. Indeed, from (H3), then for x∈ Br and for each t ∈ [0,T ], we have

|((Zx)(t))t1−γ | ≤ t1−γ Iα

0+| f (s,x(s))|(t)

+
1
|Λ|


m∑

i=1
ci

ρiIqi
0+Iα

0+| f (s,x(s))|(ηi)+bIα

0+| f (s,x(s))|(T )+d


≤ (Lr+M)T 1−γ Iα

0+(1)(T )+
L1

|Λ|


m∑

i=1
|ci| ρiIqi

0+Iα

0+(1)(ηi)+ |b|Iα

0+(1)(T )

+
|d|
|Λ|

≤ (Lr+M)

®
T 1−γ Iα

0+(1)(T )+
1
|Λ|

® m∑
i=1
|ci| ρiIqi

0+Iα

0+(1)(ηi)+ |b|Iα

0+(1)(T )
´´

+
|d|
|Λ|

:= (Lr+M)Ψ+
|d|
|Λ|

.

Thus,

‖((Zx))T 1−γ‖ ≤ L1Ψ+
|d|
|Λ|

.

Step 3 : G maps bounded sets into equicontinuous sets of C1−γ(J,R).
Let t1, t2 ∈ J, t1 < t2, Br be a bounded set of C1−γ(J,R) as in Step 2, and let x ∈ Br. Then

‖(Zx(t2)−Zx(t1))t1−γ‖ ≤ Iα

0+|t
1−γ

2 f (s,x(s))(t2)− t1−γ

1 f (s,x(s))(t1)|

≤ (Lr+M)

Γ(α)

∣∣∣∣t1−γ

2

∫ t1

1
(t2− s)α−1(1)ds− t1−γ

1

∫ t1

1
(t1− s)α−1(1)ds

∣∣∣∣
+

(Lr+M)

Γ(α)

∣∣∣∣∣t1−γ

2

∫ t2

t1
(t2− s)α−1(1)ds

∣∣∣∣∣
≤ (Lr+M)

Γ(α +1)
(tα−γ+1

2 − tα−γ+1
1 ).

which implies ‖Z(t2)−Zx(t1)‖∞→ 0 as t1→ t2, As consequence of Step1 to Step 3, together
with the Arzela-Ascoli theorem, we can conclude that Z is continuous and completely conti-
nuous.
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Step 4 : A priori bounds.
Now it remains to show that the set Ω = {x ∈ C(J,R) : x = µZ(x) for some 0 < µ < 1} is
bounded.
For such x ∈Ω. Thus, for each t ∈ J, we have

x(t)≤ µ

Iα

0+h(t)+
tγ−1

Λ


m∑

i=1
ci

ρiIqi
0+Iα

0+h(ηi)−bIαh(T )+d


 .

For µ ∈ [0,1], let x be such that for each t ∈ J

‖(Zx(t))t1−γ‖ ≤ (Lr+M)

®
T 1−γ Iα

0+(1)(T )+
1
|Λ|

® m∑
i=1
|ci| ρiIqi

0+Iα

0+(1)(ηi)+ |b|Iα

0+(1)(T )
´´

+
|d|
|Λ|

:= (Lr+M)Ψ+
|d|
|Λ|

.

Thus
‖(Zx)t1−γ‖< ∞

This implies that the set Ω is bounded. As a consequence of Schaefer’s fixed point theorem,
we deduce that Z has a fixed point which is a solution on J of the problem (4.1)-(4.2).

Existence result via the Leray-Schauder nonlinear alternative

Theorem 4.5. Assume the following hypotheses :
(H4) There exist ω ∈ L1(J,R+) and Φ : [0,∞)→ (0,∞) continuous and nondecreasing such
that

| f (t,x)| ≤ ω(t)Φ(|x|), for a.e. t ∈ J and each x ∈ R.

(H5) There exists a constant ε > 0 such that

ε− |d||Λ|
‖ω‖Φ(ε)Ψ

> 1.

Then the boundary value problem (4.1)-(4.2) has at least one solution on J.

Proof. We shall use the Leray-Schauder theorem to prove that Z defined by (4.8) has a
fixed point. As shown in Theorem 4.4, we see that the operator Z is continuous, uniformly
bounded, and maps bounded sets into equicontinuous sets. So by the Arzela-Ascoli theorem
Z is completely continuous.
Let x be such that for each t ∈ J, we take the equation x = ρZx for ρ ∈ (0,1) and let x be a
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solution. After that, the following is obtained.

|(x(t))t1−γ |

≤ t1−γ Iα

0+| f (s,x(s))|(t)+
1
|Λ|


m∑

i=1
ci

ρiIqi
0+Iα

0+| f (s,x(s))|(ηi)+bIα | f (s,x(s))|(T )+d


≤Φ(‖x‖)T γ−1Iα

0+ω(s)(T )+
Φ(‖x‖)
|Λ|


m∑

i=1
|ci| ρiIqi

0+Iα

0+ω(s)(ηi)+ |b|Iα

0+ω(s)(T )

+
|d|
|Λ|

≤Φ(‖x‖)‖ω‖
®

Iα

0+(1)(T )+
T γ−1

|Λ|

® m∑
i=1
|ci| ρiIqi

0+Iα

0+(1)(ηi)+ |b|Iα

0+(1)(T )
´´

+
|d|
|Λ|

:= Φ(‖x‖)‖ω‖Ψ+
|d|
|Λ|

,

which leads to
‖x‖− |d||Λ|
‖ω‖Φ(‖x‖)Ψ

≤ 1.

In view of (H5), there exists ε such that ‖x‖ 6= ε . Let us set U = {x ∈C1−γ(J,R) : ‖x‖< ε}.
Obviously, the operator Z : U → C1−γ(J,R) is completely continuous. From the choice of
U , there is no x ∈ ∂U such that x = λZ(x) for some λ ∈ (0,1). As a result, by the Leray-
Schauder’s nonlinear alternative theorem, Z has a fixed point x ∈U which is a solution of the
(4.1)-(4.2). The proof is completed.

Existence and uniqueness result via Boyd-Wong nonlinear contraction

Theorem 4.6. Assume that f : [0,T ]×R→ R is continuous function and suppose that there
exists H > 0 such that :

| f (t,x)− f (t,y)| ≤ z(t)
|x− y|

H + |x− y|
, for t ∈ J,x,y ∈ R, (4.9)

where z : [0,T ]→ R+ is continuous and H the constant defined by

H = Iα

0+z(T )+
T γ−1

Λ


m∑

i=1
|ci| ρiIqi

0+Iα

0+z(ηi)+ |b|Iα

0+z(T )

 .

Then the fractional BVP (4.1)-(4.2) has a unique solution on J .

Proof. The operator Z is as defined in (4.8) and consider a continuous nondecreasing func-
tion ψ : R+→ R+ such that

ψ(ε) =
Hε

H + ε
,∀ε > 0.

notice that the function ψ satisfies ψ(0) = 0 and ψ(ε)< ε for all ε > 0. For any x,y ∈ τ , and
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for each t ∈ J, we obtain

|((Zx)(t)− (Zy)(t))t1−γ | ≤ sup
t∈[0,T ]

®
t1−γ Iα

0+| f (s,x(s))− f (s,y(s))|(t)

+
1
|Λ|

® m∑
i=1

ci
ρiIqi

0+Iα

0+| f (s,x(s))− f (s,y(s))|(ηi)+bIα

0+| f (s,x(s))− f (s,y(s))|(T )
´´

≤ T 1−γ Iα

0+(z(t)
|x− y|

H + |x− y|
)(T )

+
1
Λ


m∑

i=1
|ci| ρiIqi

0+Iα

0+(z(t)
|x− y|

H + |x− y|
)(ηi)+ |b|Iα

0+(z(t)
|x− y|

H + |x− y|
)(T )


≤ ψ(‖x− y‖)

H

®
T 1−γ Iα

0+z(T )+
1
Λ

® m∑
i=1
|ci| ρiIqi

0+Iα

0+z(ηi)+ |b|Iα

0+z(T )
´´

:= ψ(‖x− y‖).

Then, we get ‖Zx−Zy‖ ≤ ψ(‖x− y‖). Hence, Z is a nonlinear contraction. Thus, by Boyd-
Wong nonlinear contraction theorem, the operator Z has a unique fixed point which is the
unique solution of the fractional BVP (4.1)-(4.2). The proof is completed.

4.2.3 Example
Example 4.7. We consider the problem for Hilfer fractional differential equations of the form

D
2
3 ,

1
2

0+ x(t) = f (t,x(t)),(t,x) ∈ ([0,π],R),

I
2
6
0+x(0)+ x(π) =

Å
1
6 I

1
4
0+x(1)

ã
.

(4.10)

Here

a = 1, b = 1, c = 1, d = 0,

α =
2
3
, β =

1
2
, γ =

4
6
, q =

1
4
,

ρ =
1
6
, η = 1, T = π, m = 1.

With

f (t,x) =
(

sin2(πt)
(et +10)

)Ç |x|
|x|+1

+1
å
+

(√
3

4

)
, t ∈ [0,π].

Clearly, the function f is continuous.
For each x ∈ R+ and t ∈ [0,π], we have

| f (t,x(t))− f (t,y(t))| ≤ 1
10
|x− y|.

57



4.2. BOUNDARY VALUE PROBLEMS FOR HILFER FRACTIONAL DIFFERENTIAL EQUATIONS WITH
KATUGAMPOLA FRACTIONAL INTEGRAL AND ANTI-PERIODIC CONDITIONS

Hence, the hypothesis (H1) is satisfied with L = 1
10 . Further,

Ψ :=

 T α−γ+1

Γ(α +1)
+

1
|Λ|


m∑

i=1
|ci|

Γ(α+ρi
ρi

)

Γ(α+ρiqi+ρi
ρi

)

η
α+ρiqi
i
ρ

qi
i

+ |b| T α

Γ(α +1)


' 5.003

and
LΨ' 0.5003 < 1.

Therefore, by the conclusion of Theorem (4.3), It follows that the problem (4.10) has a unique
solution defined on [0,π].

4.2.4 Conclusion
In this work, we have obtained some existence results for nonlinear Hilfer fractional diffe-

rential equations with Katugampola integral boundary conditions by means of some standard
fixed point theorems and nonlinear alternative of Leray-Schauder type. Though the technique
applied to establish the existence results for the problem at hand is a standard one, yet its ex-
position in the present framework is new. Our results are new and generalize some available
results on the topic.
In all this cases we choose m = ρi = 1 ;

X We remark that when a = 1, b = c1 = d = 0, problem (4.1)-(4.2) reduces to the case initial
value problem considered in [133].

X We remark that when β = 1, c1 = 0, problem (4.1)-(4.2) reduces to the case initial value
problem considered in [38].

X If we take a = b = β = q = 1, d = 0, in (4.1)-(4.2), then our results correspond to the case
integral boundary conditions considered in [39].

X If we take a = β = q = 1, b = 0 , in (4.1)-(4.2), then our results correspond to the case
integral boundary conditions considered in [1].

X If we take α = 1, β = δ = 0, in (4.2), then our results correspond to the case Fractional
integral boundary conditions considered in [15].

X By fixing (a = 0, b = 1) or (a = 1, b = 0) and c1 = 0, β = 1 in (4.2), our results correspond
to the ones for initial value problem take the form : x(T ) = d or x(0) = d.

X By fixing a = 1, b = c1 = 0, in (4.2), our results correspond to the ones for initial value
problem take the form : I1−γ

0+ x(0) = d considered in [52].

X In case we choose a = b = β = 1, d = c1 = 0, in (4.2), our results correspond to anti-
periodic type boundary conditions take the form : x(0) =−x(T ).

X When, a = b = β = 1, d = 0, the (4.2), our results correspond to Fractional integral and
anti-periodic type boundary conditions.

In other hand, if m≥ 1 and ρ = 1, we have the case :

X When, a = d = 0, the (4.2), our results correspond to a initial value problem with m-point
Fractional integral conditions.
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4.3 Measure Of Noncompactness for Nonlinear Hilfer Fractional
Differential Equation in Banach Spaces

4.3.1 Introduction
In this section, we will prove the existence of solutions of the following boundary va-

lue problem for a nonlinear fractional differential equation with fractional integral boundary
conditions :

Dα,β
0+ y(t) = f (t,y(t)), t ∈ J := [0,T ]. (4.11)

with the fractional boundary conditions

I1−γ

0+ y(0) = y0, I
3−γ−2β

0+ y′(0) = y1,

I1−γ

0+ y(η) = λ (I1−γ

0+ y(T )),γ = α +β −αβ .
(4.12)

where Dα,β
0+ is the Hilfer fractional derivative, 0 < α < 1, 0≤ β ≤ 1, 0 < λ < 1, 0 < η < T

and let E be a Banach space space with norm ‖.‖, f : J×E→ E is given continuous function.
We will present the existence results for the problem (4.11)-(4.12) which rely on Mönchs

fixed point theorem combined with the technique of Kuratowski measure of noncompactness.
We recall that when we analyze a problem involving functional operator, one of the best
ways consists on the use of the technique of measure of noncompactness, see for instance
[33, 42, 36, 8, 99, 125].

4.3.2 Existance Result 2

First of all, we define what we mean by a solution of the BVP (4.11)-(4.12).

Definition 4.8. A function y ∈ C1−γ(J,E) is said to be a solution of the problem (4.11)-
(4.12) if y satisfies the equation Dα,β

0+ y(t) = f (t,y(t)) on J , and the conditions I1−γ

0+ y(0) =

y0, I
3−γ−2β

0+ y′(0) = y1, and I1−γ

0+ y(η) = λ (I1−γ

0+ y(T )).

Lemma 4.9. Let f : J×E→ E be a function such that f ∈C1−γ(J,E) for any y ∈C1−γ(J,E).
A function y ∈Cγ

1−γ
(J,E) is a solution of the integral equation

y(t) = Iα

0+ f (t,y(t))+
y0

Γ(γ)
tγ−1 +

y1

Γ(γ +2β −1)
tγ+2β−2 +ζ (β ,γ,η ,λ ){

y0(λ −1)+
λT 2β−1−η2β−1

Γ(2β )
y1 +λ Iα−γ+1

0+ f (T,y(T ))− Iα−γ+1
0+ f (η ,y(η))

}
tγ+4β−3

(4.13)

if and only if y is a solution of the Hilfer fractional BVP

Dα,β
0+ y(t) = f (t,y(t)), t ∈ J := [0,T ], (4.14)

I1−γ

0+ y(0) = y0, I
3−γ−2β

0+ y′(0) = y1, I
1−γ

0+ y(η) = λ (I1−γ

0+ y(T )),γ = α +β −αβ . (4.15)

2. A. Boutiara, M. Benbachir, K. Guerbati, Measure Of Noncompactness for Nonlinear Hilfer Fractional
Differential Equation in Banach Spaces, Ikonion Journal of Mathematics, 2019, 1(2).
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Proof. Assume y satisfies (4.13). Then Lemma (1.20) implies that

y(t) = c0tγ−1 + c1tγ+2β−2 + c2tγ+4β−3 +
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,y(s))ds.

for some constants c0,c1,c2 ∈ R.
From (4.15), we have
I1−γ

0+ y(0) = y0 implies that c0 =
y0

Γ(γ)

I3−γ−2β

0+ y′(0) = y1 implies that c1 =
y1

Γ(γ+2β−1)

I1−γ

0+ y(1) = λ (I1−γ

0+ y(T )) implies that

(
I1−γ

0+ y
)
(η) =

Ç
I1−γ

0+
y0

Γ(γ)
tγ−1

å
(η)+

Ç
I1−γ

0+
y1

Γ(γ)
tγ+2β−2

å
(η)

+ c2

(
I1−γ

0+ tγ+2(2β )−3
)
(η)+ Iα−γ+1

0+ f (η ,y(η))

= y0 +
y1

Γ(2β )
η

2β−1 + c2
Γ(γ +2(2β )−2)

Γ(4β −1)
η

4β−2 + Iα−γ+1
0+ f (η ,y(η))

(
I1−γ

0+ y
)
(T ) =

Ç
I1−γ

0+
y0

Γ(γ)
tγ−1

å
(T )+

Ç
I1−γ

0+
y1

Γ(γ +2β −1)
tγ+2β−2

å
(T )

+ c2

(
I1−γ

0+ tγ+2(2β )−3
)
(T )+ Iα−γ+1

0+ f (T,y(T ))

= y0 +
y1

Γ(2β )
T 2β−1 + c2

Γ(γ +2(2β )−2)
Γ(4β −1)

T 4β−2 + Iα−γ+1
0+ f (T,y(T ))

λ

(
I1−γ

0+ y
)
(T ) = λy0 +

λy1

Γ(2β )
T 2β−1 + c2

λΓ(γ +2(2β )−2)
Γ(4β −1)

T 4β−2 +λ Iα−γ+1
0+ f (T,y(T ))

that is,

c2 = Λ

{
y0(λ −1)+

λT 2β−1−η2β−1

Γ(2β )
y1 +λ Iα−γ+1

0+ f (T,y(T ))− Iα−γ+1
0+ f (η ,y(η))

}

In the sequel, we set the following notations for the sake of computational convenience.

Λ =
Γ(4β −1)

Γ(γ +4β −2)(η4β−2−λT 4β−2)
(4.16)

∆ =

{
T α−γ+1

Γ(α +1)
+

Λ

Γ(α− γ +2)

î
λT α−γ+1 +η

α−γ+1óT 2(2β )−2
}

(4.17)

Λ1 =
p∗T α−γ+1

Γ(α +1)
+ |Λ|

[
λ p∗T α−γ+4β−1

Γ(α− γ +2)
+

p∗ηα−γ+1T 4β−2

Γ(α− γ +2)

]
(4.18)

Λ2 =
‖y0‖
Γ(γ)

+
‖y1‖T 2β−1

Γ(γ +2β −1)
+ |Λ|

[
‖y0‖(λ −1)+

λT 2β−1−η2β−1

Γ(2β )
‖y1‖

]
T 4β−2(4.19)

The following hypotheses will be used in the sequel.
(H1) f : J×E→ E satisfies the Caratheodory conditions,
(H2) There exists p ∈C(J,R+), such that,
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‖ f (t,y)‖ ≤ p(t)‖y‖, for t ∈ J and each y ∈ E;

(H3) For each t ∈ J and each bounded set B⊂ E, we have

limh→0+ µ( f (Jt,h×B))≤ t1−γ p(t)µ(B) ; here Jt,h = [t−h, t]∩ J.

Theorem 4.10. Assume that conditions (H1)-(H3) hold. Let

p∗ = sup
t∈J

p(t).

If
p∗∆ < 1 (4.20)

then the BVP (4.11)-(4.12) has at least one solution.

Proof. Transform the problem (4.11)-(4.12) into a fixed point problem. Consider the ope-
rator N : C1−γ(J,E)→C1−γ(J,E) defined by

N (y)(t) = Iα

0+ f (t,y(t))+
y0

Γ(γ)
tγ−1 +

y1

Γ(γ +2β −1)
tγ+2β−2 +Λ[

y0(λ −1)+
λT 2β−1−η2β−1

Γ(2β )
y1 +λ Iα−γ+1

0+ f (T,y(T ))− Iα−γ+1
0+ f (η ,y(η))

]
tγ+2(2β )−3

Clearly, the fixed points of the operator N are solutions of the problem (4.11)-(4.12). Let

R≥ Λ2

1−Λ1
(4.21)

and consider
D = {y ∈C1−γ(J,E) : ‖y‖ ≤ R}.

Clearly, the subset D is closed, bounded and convex. We shall show that the assumptions of
Mönch’s fixed point theorem. The proof will be given in three steps.

Step1 : we show that N is continuous :
Let yn be a sequence such that yn→ y in C1−γ(J,E). Then for each t ∈ J ,

‖t1−γ(N (yn)(t)−N (y)(t))‖

≤ t1−γ

Γ(α)

∫ t

0
(t− s)α−1‖ f (s,yn(s))− f (s,y(s))‖ds+

|Λ|t4β−2

Γ(α− γ +1)

×
®

λ

∫ T

0
(T − s)α−γ‖ f (s,yn(s))− f (s,y(s))‖ds+

∫
η

0
(η− s)α−γ‖ f (s,yn(s))− f (s,y(s))‖ds

´
≤
(

tα−γ+1

Γ(α +1)
+
|Λ|t4β−2

Γ(α− γ +2)
(λT α−γ+1 +η

α−γ+1)

)
‖ f (s,yn(s))− f (s,y(s))‖

≤
(

T α−γ+1

Γ(α +1)
+
|Λ|T 4β−2

Γ(α− γ +2)
(λT α−γ+1 +η

α−γ+1)

)
‖ f (s,yn(s))− f (s,y(s))‖

Since f is of Caratheodory type, then by the Lebesgue dominated convergence theorem we
have
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‖N (yn)−N (y)‖∞→ 0 as n→ ∞.

Step2 : we show that N maps D into itself :
Take y ∈ D, by (H2), we have, for each t ∈ J and assume that Ny(t) 6= 0.

‖t1−γN (y)(t)‖ ≤ t1−γ Iα+1
0+ | f (t,y(t))|+

|y0|
Γ(γ)

+
|y1|

Γ(γ +2β −1)
t2β−1 + |Λ|t4β−2

×
{
|y0|(λ −1)+

λT 2β−1−η2β−1

Γ(2β )
|y1|+λ Iα−γ+1

0+ | f (T,y(T ))|+ Iα−γ+1
0+ | f (η ,y(η))|

}

≤ t1−γ Iα+1
0+ p(t)|y|+ |y0|

Γ(γ)
+

|y1|
Γ(γ +2β −1)

t2β−1 + |Λ|t4β−2

×
{
|y0|(λ −1)+

λT 2β−1−η2β−1

Γ(2β )
|y1|+λ Iα−γ+1

0+ p(T )|y|+ Iα−γ+1
0+ p(η)|y|

}

≤ T 1−γRp∗Iα+1
0+ (1)(T )+

|y0|
Γ(γ)

+
|y1|

Γ(γ +2β −1)
T 2β−1 + |Λ|T 4β−2

×
{
|y0|(λ −1)+

λT 2β−1−η2β−1

Γ(2β )
|y1|+Rp∗

{
λ Iα−γ+1

0+ (1)(T )+ Iα−γ+1
0+ (1)(η)

}}

≤ Rp∗T α−γ+1

Γ(α +1)
+ |Λ|

[
λRp∗T α−γ+4β−1

Γ(α− γ +2)
+

Rp∗ηα−γ+1T 4β−2

Γ(α− γ +2)

]

+
|y0|
Γ(γ)

+
|y1|T 2β−1

Γ(γ +2β −1)
+ |Λ|

[
|y0|(λ −1)+

λT 2β−1−η2β−1

Γ(2β )
|y1|

]
T 4β−2

= RΛ1 +Λ2 ≤ R.

Step3 : we show that N (D) is equicontinuous :
By Step 2, it is obvious that N (D)⊂C1−γ(J,E) is bounded. For the equicontinuity of N (D),
let t1, t2 ∈ J, t1 < t2 and y ∈ D, so t1−γ

2 Ny(t2)− t1−γ

1 Ny(t1) 6= 0. Then

‖ t1−γ

2 Ny(t2)− t1−γ

1 Ny(t1)‖ ≤ Iα

0+|t
1−γ

2 f (s,y(s))(t2)− t1−γ

1 f (s,y(s))(t1)|

+
1

Γ(γ +2β −1)

∣∣∣∣y1t2β−1
2 − y1t2β−1

1

∣∣∣∣+ |Λ|Åt2(2β )−2)
2 − t2(2β )−2)

1

ã
×


∣∣∣∣∣∣y0(λ −1)+

λT 2β−1−η2β−1

Γ(2β )
y1 +λ Iα−γ+1

0+ f (T,y(T ))− Iα−γ+1
0+ f (η ,y(η))

∣∣∣∣∣∣


≤ 1
Γ(α)

ï
t1−γ

2

∫ t1

0
(t2− s)α−1| f (s,y(s))|ds− t1−γ

1

∫ t1

0
(t1− s)α−1| f (s,y(s))|ds

+ t1−γ

2

∫ t2

t1
(t2− s)α−1| f (s,y(s))|ds

ô
+

|y1|
Γ(γ +2β −1)

(
t2β−1
2 − t2β−1

1

)
+ |Λ|

(
t4β−2
2 − t4β−2

1

)
×

{
|y0(λ −1)|+ |λ |T

2β−1−η2β−1

Γ(2β )
|y1|+ |λ |Iα−γ+1

0+ | f (T,y(T ))|− Iα−γ+1
0+ | f (η ,y(η))|

}
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≤ 1
Γ(α)

ß
t1−γ

2

∫ t1

0
(t2− s)α−1|y|p(s)ds− t1−γ

1

∫ t1

0
(t1− s)α−1|y|p(s)ds

+t1−γ

2

∫ t2

t1
(t2− s)α−1|y|p(s)ds

´
+

|y1|
Γ(γ +2β −1)

(
t2β−1
2 − t2β−1

1

)
+ |Λ|

(
t4β−2
2 − t4β−2

1

)
×

{
|y0(λ −1)|+ |λ |T

2β−1−η2β−1

Γ(2β )
|y1|+ |λ |Iα−γ+1

0+ |y|p(s)(T )− Iα−γ+1
0+ |y|p(s)(η)

}

≤ Rp∗

Γ(α +1)

(
tα−γ+1
2 − tα−γ+1

1

)
+

|y1|
Γ(γ +2β −1)

(
t2β−1
2 − t2β−1

1

)
+ |Λ|

(
t4β−2
2 − t4β−2

1

)
×

{
|y0|(λ −1)+

λT 2β−1−η2β−1

Γ(2β )
|y1|+

Rp∗(λT α−γ+1 +ηα−γ+1)

Γ(α− γ +2)

}

As t1→ t2, the right hand side of the above inequality tends to zero.
Hence N (D)⊂ D.

Finally, we show that the implication holds :
Let V ⊂ D such that V = conv(N (V )∪{0}).
We have V (t)⊂ conv(N (V )∪{0}) for all t ∈ J. NV (t)⊂ ND(t), t ∈ J is bounded in E.

By assumption (H2), and the properties of the measure µ we have for each t ∈ J.

t1−γv(t)≤µ(t1−γN (V )(t)∪{0}))≤ µ(t1−γ(N V )(t))

≤ µ
Ä
t1−γ Iα

0+ f (s,V (s))(t)

+|Λ|t4β−2
{
|λ |Iα−γ+1

0+ f (s,V (s))(T )+ Iα−γ+1
0+ f (s,V (s))(η)

})
≤ t1−γ Iα

0+µ ( f (s,V (s)))(t)

+ |Λ|t4β−2
{
|λ |Iα−γ+1

0+ µ ( f (s,V (s)))(T )+ Iα−γ+1
0+ µ ( f (s,V (s)))(η)

}
≤ t1−γ Iα

0+ (p(s)µ(V (s)))(t)

+ |Λ|t4β−2
{
|λ |Iα−γ+1

0+ (p(s)µ(V (s)))(T )+ Iα−γ+1
0+ (p(s)µ(V (s)))(η)

}
≤ p∗‖v‖

(
T 1−γ Iα

0+ (1)(T )+ |Λ|T
4β−2

{
|λ |Iα−γ+1

0+ (1)(T )+ Iα−γ+1
0+ (1)(η)

})
≤ p∗‖v‖

[
T α−γ+1

Γ(α +1)
+

|Λ|
Γ(α− γ +2)

Ä
|λ |T α−γ+1 +η

α−γ+1äT 4β−2
]

This means that

‖v‖ ≤ p∗∆‖v‖

By p∗∆ < 1 it follows that ‖v‖ = 0, that is v(t) = 0 for each t ∈ J , and then V (t) is
relatively compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact in D.
Applying now Theorem 1.58, we conclude that N has a fixed point which is a solution of
the problem (4.11)-(4.12).
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4.4 Example
Example 4.11. :
Let E= l1 = {y = (y1,y2, ...,yn, ...) :

∑∞
n=1 |yn|< ∞} with the norm

‖y‖E =
∞∑

n=1
|yn|

We consider the problem for Hilfer fractional differential equations of the form :


Dα,β

0+ y(t) = f (t,y(t)),(t,y) ∈ ([0,1],R),

I1−γ

0+ y(0) = y0, I
3−γ−2β

0+ y′(0) = y1, I
1−γ

0+ y(η) = λ

(
I1−γ

0+ y(T )
) (4.22)

Here α = 1
2 , β = 1

2 , γ = 3
4 , λ = 1

2 , T = 1.
With

f (t,y(t)) =
1
4
+

ct2

et+4 (|y(t)|+1), t ∈ [0,1]

and

c =
e3

10
√

π

Clearly, the function f is continuous. For each y ∈ E and t ∈ [0,1], we have

‖ f (t,y(t))‖ ≤ ct2

et+4‖y‖

Hence, the hypothesis (H2) is satisfied with p∗ = ce−3. We shall show that condition (4.20)
holds with T = 1. Indeed,

p∗
[

T α−γ+1

Γ(α +1)
+

Λ

Γ(α− γ +2)

î
λT α−γ+1 +η

α−γ+1óT 2(2β )−2
]
' 0.6 < 1

Simple computations show that all conditions of Theorem 4.10 are satisfied. It follows that
the problem (4.22) has at least solution defined on [0,1].
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Chapitre 5
Caputo type Fractional Differential
Equation with Fractional Integral Boundary
Conditions

5.1 Introduction
Boundary value problems with integral boundary conditions constitute a very interesting

and important class of problems. They include two, three, multi-point, and nonlocal boun-
dary value problems as special cases. Integral boundary conditions are often encountered
in various applications, it is worthwhile mentioning the applications of those conditions in
the study of population dynamics [53] and cellular systems [5]. Moreover, boundary value
problems with integral boundary conditions have been studied by a number of authors such
as, for instance, Ahmad and Ntouyas [11, 14] Arara and Benchohra [28], Benchohra et al.
[37, 38], Infante [80] and the references therein.

In this chapter, we introduce a new approach to study a class of fractional differential
equations called : differential equations of fractional orders with integral boundary condi-
tions. More precisely we study the existence and the uniqueness of a solution of a fractional
problem involving the Caputo fractional-order with fractional integral boundary conditions
in Banach space. The techniques we are going to use consist in showing the existence and
uniqueness of the solution on a bounded interval of type [0,T ], T ∈N∗, by the standard fixed
point theorems and Mönch’s fixed point theorem combined with the technique of measures
of noncompactness.

5.2 Caputo type Fractional Differential Equation with Katugam-
pola Fractional Integral Conditions

In this section, we study the existence and uniqueness of solutions for a boundary value
problem, posed in a given Banach space. More specifically, we pose the following boundary
value problem, of nonlinear fractional differential equation with fractional integral boundary
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conditions :
CDα

0+x(t) = f (t,x(t)), t ∈ J := [0,T ], (5.1)

With the following boundary conditions

x(0) = 0, Iβ

0+x(ε) = δ
ρJγ

0+x(T ). (5.2)

where CDα

0+ denote the Caputo fractional derivative 1 < α ≤ 2, Iβ

0+ denotes the standard
Riemann-Liouville fractional integral and ρJγ

0+ Katugampola fractional integral γ > 0, ρ > 0,
ε ∈ (0,T ), and let E is a reflexive Banach space with norm ‖.‖, f : J×R→R is a continuous
function, δ are real constants.

5.2.1 Existence of solutions 1

First, we prove a preparatory lemma for boundary value problem of linear fractional dif-
ferential equations with Caputo derivative.

Definition 5.1. A function x(t)∈AC1
δ
(J,R) is said to be a solution of (5.1)−(5.2) if x satisfies

the equation CDα

0+x(t) = f (t,x(t)) on J, and the conditions (5.2).

For the existence of solutions for the problem (5.1)− (5.2), we need the following auxi-
liary lemma.

Lemma 5.2. Let h : J→ R be a continuous function . A function x is a solution of the frac-
tional integral equation

x(t) = Iα

0+h(t)+
1
Λ

{
δ

ρJ0+
γ Iα

0+h(T )− Iα+β

0+ h(ε)
}
, Λ 6= 0, (5.3)

where

Λ =

Ñ
Γ(2)

Γ(2+β )
ε

β+1−δ
Γ(1+ρ

ρ
)

Γ(1+ργ+ρ

ρ
)

T ργ+1

ργ

é
. (5.4)

If and only if x is a solution of the fractional BVP

CDα

0+x(t) = f (t,x(t)), for a.e. t ∈ J := [0,T ],1 < α ≤ 2. (5.5)

{
x(0) = 0,
Iβ

0+x(ε) = δ ρJγ

0+x(T ).
(5.6)

Proof. Assume x satisfies (5.5). Then Lemma 1.20 implies that

x(t) = Ir
0+h(t)+ c1 + c2t. (5.7)

By applying the boundary conditions (5.6) in (5.7), we obtain
From the condition x(0) = 0, we deduce that c1 = 0. Therefore, differentiating (5.7) gives

x(t) = Ir
0+h(t)+ c2t. (5.8)

1. A. Boutiara, M. Benbachir and K. Guerbati, "Caputo type Fractional Differential Equation with Ka-
tugampola fractional integral conditions," 2020 2nd International Conference on Mathematics and Information
Technology (ICMIT), Adrar, Algeria, 2020, pp. 25-31.
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moreover we have

Iβ

0+x(ε) = Iα+β

0+ (ε))+ c2
Γ(2)

Γ(2+β )
ε

β+1

and

ρJγ

0+x(T ) =ρ Jγ

0+Iα

0+(T ))+ c2
Γ(1+ρ

ρ
)

Γ(1+ργ+ρ

ρ
)

T ργ+1

ργ

Thus,

c2

Ñ
Γ(2)

Γ(2+β )
ε

β+1−δ
Γ(1+ρ

ρ
)

Γ(1+ργ+ρ

ρ
)

T ργ+1

ργ

é
= δ

ρJγ

0+Iα

0+(T ))− Iα+β

0+ (ε))

Consequently,

c2 =
1
Λ

{
δ

ρJγ

0+Iα

0+(T ))− Iα+β

0+ (ε))
}
.

Where,

Λ =

Ñ
Γ(2)

Γ(2+β )
ε

β+1−δ
Γ(1+ρ

ρ
)

Γ(1+ργ+ρ

ρ
)

T ργ+1

ργ

é
, and Λ 6= 0

Finally ,we obtain the solution (5.3)

In the following subsections, we prove existence (uniqueness) results for the boundary
value problem (5.1)-(5.2) by using Banach’s fixed point theorem, Schaefer’s fixed point theo-
rem, the Leray-Schauder nonlinear alternative, and Boyd-Wong Contraction Principle.

Existence and uniqueness result via Banach’s fixed point theorem :

Theorem 5.3. Assume the following hypotheses :
(H1) There exists a constant L > 0 such that

| f (t,x)− f (t,y)| ≤ L|x− y|

(H2) LM < 1, where M is defined by

M :=
T α

Γ(α +1)
+

T
|Λ|

|δ | Γ(α+ρ

ρ
)

Γ(α+αρ+ρ

ρ
)

T α+ργ

Γ(α +1)ργ
+

εα+β

Γ(α +β +1)

 ,

where Λ given by (5.4). Then the problem (5.1)-(5.2) has a unique solution on J.

Proof. Transform the problem (5.1)-(5.2) into a fixed point problem for the operator G
defined by

G x(t) = Iα

0+h(t)+
1
Λ

{
δ

ρJγ

0+Iα

0+h(T )− Iα+β

0+ h(ε)
}

(5.9)

Applying the Banach contraction mapping principle, we shall show that G is a contraction.
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Now let x,y ∈C(J,R). Then, for t ∈ J, we have

|(G x)(t)− (G y)(t)| ≤ sup
t∈J
{Iα

0+| f (s,x(s))− f (s,y(s))|(t)

+
t
|Λ|

{
|δ |ρJγ

0+Iα

0+| f (s,x(s))− f (s,y(s))|(T )+ Iα+β

0+ | f (s,x(s))− f (s,y(s))|(ε)
}´

≤ L‖x− y‖Iα

0+(1)(T )+
L‖x− y‖T
|Λ|

{
|δ |ρJγ

0+Iα

0+|(1)(T )+ Iα+β

0+ (1)(ε)
}

≤ L‖x− y‖ T α

Γ(α +1)
+

L‖x− y‖T
|Λ|

|δ | Γ(α+ρ

ρ
)

Γ(α+αρ+ρ

ρ
)

T α+ργ

Γ(α +1)ργ
+

εα+β

Γ(α +β +1)


≤ L‖x− y‖

 T α

Γ(α +1)
+

T
|Λ|

|δ | Γ(α+ρ

ρ
)

Γ(α+αρ+ρ

ρ
)

T α+ργ

Γ(α +1)ργ
+

εα+β

Γ(α +β +1)




:= LM‖x− y‖

Thus
‖(G x)− (G y)‖∞ ≤ LM‖x− y‖∞.

We deduce that G is a contraction mapping. As a consequence of Banach contraction prin-
ciple. the problem (5.1)-(5.2) has a unique solution on J. This completes the proof.

Existence result via Schaefer’s fixed point theorem :

Theorem 5.4. Assume the hypothesis :
(H2) : The function f : [0,T ]×R→ R is continuous.
Then, the problem (5.1)-(5.2) has at least one solution in J.

Proof. We shall use Schaefer’s fixed point theorem to prove that G defined by (5.9) has a
fixed point. The proof will be given in several steps.
Step 1 : G is continuous Let xn be a sequence such that xn→ x in C(J,R). Then for each t ∈ J
,

|(G xn)(t)− (G x)(t)| ≤ Iα

0+‖ f (s,xn(s))− f (s,x(s))‖(t)

+
t
|Λ|

{
|δ |ρJγ Iα

0+‖ f (s,xn(s))− f (s,x(s))‖(T )+ Iα+β

0+ ‖ f (s,xn(s))− f (s,x(s))‖(ε)
}

≤
®

Iα

0+(1)(T )+
L‖x− y‖T
|Λ|

{
|δ |ρ Iγ

0+|(1)(T )+ Iα+β

0+ (1)(ε)
}´
‖ f (s,xn(s))− f (s,x(s))‖

≤

 T α

Γ(α +1)
+

T
|Λ|

|δ | Γ(α+ρ

ρ
)

Γ(α+αρ+ρ

ρ
)

T α+ργ

Γ(α +1)ργ
+

εα+β

Γ(α +β +1)




×‖ f (s,xn(s))− f (s,x(s))‖
:= M‖ f (s,xn(s))− f (s,x(s))‖
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Since f is continuous, we have ‖(G xn)− (G x)‖∞→ 0 as n→ ∞.
Step 2 : G maps bounded sets into bounded sets in C(J,R)

Indeed, it is enough to show that for any r > 0, we take

u ∈ Br = {x ∈C(J,R),‖x‖∞ ≤ r}.

From (H1), Then we have

| f (s,x(s))| ≤ | f (s,x(s))− f (t,0)|+ | f (t,0)| ≤ Lr+K, K = sup
t∈J
| f (t,0)|.

For x ∈ Br and for each t ∈ [1,T ], we have

|(G x)(t)| ≤ Iα

0+| f (s,x(s))|(t)+
t
|Λ|

{
|δ |ρJγ

0+Iα

0+| f (s,x(s))|(T )+ Iα+β

0+ | f (s,x(s))|(ε)
}

≤ (Lr+K)Iα

0+(1)(T )+
L1T
|Λ|

{
|δ |ρJγ

0+Iα

0+|(1)(T )+ Iα+β

0+ (1)(ε)
}

≤ (Lr+K)

 T α

Γ(α +1)
+

T
|Λ|

|δ | Γ(α+ρ

ρ
)

Γ(α+αρ+ρ

ρ
)

T α+ργ

Γ(α +1)ργ
+

εα+β

Γ(α +β +1)




:= (Lr+K)M

Thus,
‖(G x)‖ ≤ (Lr+K)M

Step 3 : G maps bounded sets into equicontinuous sets of C(J,R).
Let t1, t2 ∈ J, t1 < t2, Br be a bounded set of C(J,R) as in Step 2, and let x ∈ Br. Then

|G x(t2)−G x(t1)| ≤ |Iα

0+ f (s,x(s))(t2)− Iα

0+ f (s,x(s))(t1)|

+
|t2− t1|
|Λ|

{
|δ |ρJγ

0+Iα

0+| f (s,x(s))|(T )+ Iα+β

0+ | f (s,x(s))|(ε)
}

≤ 1
Γ(α)

∣∣∣∣∫ t1

1

î
(t2− s)α−1− (t1− s)α−1ó f (s,x(s))ds

∣∣∣∣
+

1
Γ(α)

∣∣∣∣∣
∫ t2

t1
(t2− s)α−1 f (s,x(s))ds

∣∣∣∣∣
+
|t2− t1|
|Λ|

{
|δ |ρJγ

0+Iα

0+| f (s,x(s))|(T )+ Iα+β

0+ | f (s,x(s))|(ε)
}

≤ (Lr+K)

Γ(α)

∣∣∣∣∫ t1

1

î
(t2− s)α−1− (t1− s)α−1óds

∣∣∣∣+ (Lr+K)

Γ(α)

∣∣∣∣∣
∫ t2

t1
(t2− s)α−1ds

∣∣∣∣∣
+

(Lr+K)|t2− t1|
|Λ|

{
|δ |ρJγ

0+Iα

0+| f (s,x(s))|(T )+ Iα+β

0+ | f (s,x(s))|(ε)
}

≤ (Lr+K)|tα
2 − tα

1 |
Γ(α +1)

+
(Lr+K)|t2− t1|

|Λ|

|δ | Γ(α+ρ

ρ
)

Γ(α+αρ+ρ

ρ
)

T α+ργ

Γ(α +1)ργ
+

εα+β

Γ(α +β +1)


which implies ‖G (t2)−G x(t1)‖∞→ 0 as t1→ t2, As consequence of Step1 to Step 3, toge-
ther with the Arzela-Ascoli theorem, we can conclude that G is continuous and completely
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continuous.
Step 4 : A priori bounds.
Now it remains to show that the set

Ω = {x ∈C(J,R) : x = µG (x) for some 0 < ρ < 1}

is bounded.
For such a x ∈Ω. Thus, for each t ∈ J, we have

x(t)≤ µ

ß
Iα

0+ f (s,x(s))(t)+
t
Λ

{
δ

ρJγ

0+Iα

0+ f (s,x(s))(T )+ Iα+β

0+ f (s,x(s))(ε)
}™

For µ ∈ [0,1], let x be such that for each t ∈ J

‖G x(t)‖ ≤ (Lr+K)Iα

0+(1)(T )+
(Lr+K)T
|Λ|

{
|δ |ρJγ

0+Iα

0+(1)(T )+ Iα+β

0+ (1)(ε)
}

≤ (Lr+K)

 T α

Γ(α +1)
+

T
|Λ|

|δ | Γ(α+ρ

ρ
)

Γ(α+αρ+ρ

ρ
)

T α+ργ

Γ(α +1)ργ
+

εα+β

Γ(α +β +1)




:= (Lr+K)M

Thus
‖G x‖< ∞

This implies that the set Ω is bounded. As a consequence of Schaefer’s fixed point theorem,
we deduce that G has a fixed point which is a solution on J of the problem (5.1)-(5.2).

Existence via the Leray-Schauder nonlinear alternative :

Theorem 5.5. Assume the following hypotheses :
(H4) There exist ω ∈ L1(J,R+) and Φ : [0,∞)→ (0,∞) continuous and nondecreasing such
that

| f (t,x)| ≤ ω(t)Φ(|x|), for a.e. t ∈ J and each x ∈ R.

(H5) There exists a constant ε > 0 such that

ε

‖ω‖Φ(ε)M
> 1.

Then the boundary value problem (5.1)-(5.2) has at least one solution on J.

Proof. We shall use the Leray-Schauder theorem to prove that G defined by (5.9) has a
fixed point. As shown in Theorem 5.4, we see that the operator G is continuous, uniformly
bounded, and maps bounded sets into equicontinuous sets. So by the Arzela-Ascoli theorem
G is completely continuous.

Let x be such that for each t ∈ J, we take the equation x = λG x for λ ∈ (0,1) and let x be
a solution. After that, the following is obtained.
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|x(t)| ≤ Iα

0+| f (s,x(s))|(t)+
t
|Λ|

{
|δ |ρJγ

0+Iα

0+| f (s,x(s))|(T )+ Iα+β

0+ | f (s,x(s))|(ε)
}

≤Φ(‖x‖)Iα

0+ω(s)(T )+
Φ(‖x‖)T
|Λ|

{
|δ |ρJγ

0+Iα

0+|ω(s)(T )+ Iα+β

0+ ω(s)(ε)
}

≤ ‖ω‖Φ(‖x‖)
®

Iα

0+(1)(T )+
T
|Λ|

{
|δ |ρJγ

0+Iα

0+|(1)(T )+ Iα+β

0+ (1)(ε)
}´

≤ ‖ω‖Φ(‖x‖)

 T α

Γ(α +1)
+

T
|Λ|

|δ | Γ(α+ρ

ρ
)

Γ(α+αρ+ρ

ρ
)

T α+ργ

Γ(α +1)ργ
+

εα+β

Γ(α +β +1)




≤ ‖ω‖Φ(‖x‖)M.

and consequently
‖x‖∞

‖ω‖ψ(‖x‖)M
≤ 1.

Then by condition (H5), there exists ε such that ‖x‖∞ 6= ε . Let us set

κ = {x ∈C(J,R) : ‖x‖< ε}.

Obviously, the operator G : κ → C(J,R) is completely continuous. From the choice of κ

, there is no x ∈ ∂κ such that x = λG (x) for some λ ∈ (0,1) . As a result, by the Leray-
Schauder’s nonlinear alternative theorem, G has a fixed point x ∈ κ which is a solution of the
(5.1)-(5.2). The proof is completed.

Existence and uniqueness result via Boyd-Wong nonlinear contraction :

Theorem 5.6. Assume that f : [0,T ]×R→R are continuous functions and H > 0 satisfying
the condition

| f (t,x)− f (t,y)| ≤ |x− y|
H + |x− y|

, for t ∈ J,x,y ∈ R. (5.10)

Then the fractional BVP (5.1)-(5.2) has a unique solution on J .

Proof. We define an operator G : τ→ τ as in (5.9) and a continuous nondecreasing function
ψ : R+→ R+ by

ψ(ε) =
Hε

H + ε
,∀ε > 0,

where M ≤ H . We notice that the function ψ satisfies ψ(0) = 0 and ψ(ε)< ε for all ε > 0.
For any x,y ∈ χ , and for each t ∈ J , we obtain

|(G x)(t)− (G y)(t)| ≤ sup
t∈J
{Iα

0+| f (s,x(s))− f (s,y(s))|(t)

+
t
|Λ|

{
|δ |ρJγ

0+Iα

0+| f (s,x(s))− f (s,y(s))|(T )+ Iα+β

0+ | f (s,x(s))− f (s,y(s))|(ε)
}´

≤ |x− y|
H + |x− y|

Iα

0+(1)(T )+
|x− y|

H + |x− y|
T
|Λ|

{
|δ |ρJγ

0+Iα

0+|(1)(T )+ Iα+β

0+ (1)(ε)
}
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≤ |x− y|
H + |x− y|

 T α

Γ(α +1)
+

T
|Λ|

|δ | Γ(α+ρ

ρ
)

Γ(α+αρ+ρ

ρ
)

T α+ργ

Γ(α +1)ργ
+

εα+β

Γ(α +β +1)




:= M
|x− y|

H + |x− y|
≤ ψ(‖x− y‖).

Then, we get ‖G x−G y‖ ≤ ψ(‖x− y‖). Hence, G is a nonlinear contraction. Thus, by
Theorem 1.55 the operator G has a unique fixed point which is the unique solution of the
fractional BVP (5.1)-(5.2). The proof is completed.

5.2.2 Example
We consider the problem for Caputo fractional differential equations of the form :


CD

3
2
0+x(t) = f (t,x(t)), (t,x) ∈ ([0,π],R),

x(0) = 0, I1/2
0+ x(2) = 1

2
5J1/2

0+ x(2)+ 3
4 .

(5.11)

Here

α =
3
2
, β =

1
2
, γ =

1
2
,

ρ = 5, δ =
1
2
, ε = 2,

T = π

With
f (t,y(t)) =

1
(t +5)2 (tan−1(x)+

π

5
), t ∈ [0,π]

Clearly, the function f is continuous. For each x ∈ R+ and t ∈ [0,π], we have

| f (t,x(t))− f (t,y(t))| ≤ 1
25
|x− y|

Hence, the hypothesis (H1) is satisfied with

L =
1

25
. Further,

M : =

 T α

Γ(α +1)
+

T
|Λ|

|δ | Γ(α+ρ

ρ
)

Γ(α+αρ+ρ

ρ
)

T α+ργ

Γ(α +1)ργ
+

εα+β

Γ(α +β +1)




and
LM < 1.

Therefore, by the conclusion of Theorem 5.3, It follows that the problem (5.11) has a unique
solution defined on [0,π].
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5.3 Caputo Type Fractional Differential Dquation with Nonlo-
cal Erdélyi-Kober Type Integral Boundary Conditions in Ba-
nach Spaces
Introduction

In this section, we give conditions for the existence of solution for a class of fractional
differential equations with fractional integral boundary conditions of the type :

CDα

0+x(t) = f (t,x(t)), t ∈ J := [0,T ], (5.12)

associated with the following Erdélyi-Kober fractional integral boundary conditions :

x(T ) =
m∑

i=1
aiJ

γi,δi
ηi x(βi), 0 < βi < T,

x′(T ) =
m∑

i=1
biJ

γi,δi
ηi x′(σi), 0 < σi < T,

x′′(T ) =
m∑

i=1
diJ

γi,δi
ηi x′′(εi), 0 < εi < T,

(5.13)

where CDα

0+ is the Caputo fractional derivative of order 2 < α ≤ 3 and Jγi,δi
ηi denote Erdélyi-

Kober fractional integral of order δi > 0, ηi > 0, γi ∈ R and f : J×E→ E is a continuous
function, ai,bi,di, i = 1,2, ...,m are real constants. Recall that Erdélyi-Kober fractional in-
tegral operators play an important role especially in engineering, for more details on the
Erdélyi-Kober fractional integrals, see [90, 67].

In the present paper, we initiate the study of boundary value problems like (5.12)-(5.13),
in which Caputo fractional differential equations are matched to Erdélyi-Kober fractional
integral boundary conditions. We will present the existence results for the problem (5.12)-
(5.13) which rely on Mönchs fixed point theorem combined with the technique of Kuratowski
measure of noncompactness. that technique turns out to be a very useful tool in existence for
several kinds of integral equations and subsequently developed and used in many papers, see,
for instance. The strong measure of noncompactness was considered first by Banas̀ et al. [33],
for more details see, [10, 16, 26, 99, 125, 36, 38, 37, 34, 32].

5.3.1 Existence of solutions 2

For the existence of solutions for the problem (5.12)-(5.13), we need the following auxi-
liary lemma.

Lemma 5.7. Let f : [0,T )×E→ E be a continuous function. Then,for any x ∈ C(J,E), x
is a solution of the following nonlinear fractional differential equation with Erdélyi-Kober

2. A. Boutiara, M. Benbachir and K. Guerbati, "Caputo type fractional differential equation with nonlocal
Erdélyi-Kober type integral boundary conditions in Banach spaces," Surveys in Mathematics and its Applica-
tions, Volume 15 (2020), 399-418.
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fractional integral conditions :

CDα

0+x(t) = f (t,x(t)), t ∈ J,
x(T ) =

∑m
i=1 aiJ

γi,δi
ηi x(βi)

x′(T ) =
∑m

i=1 biJ
γi,δi
ηi x′(σi)

x′′(T ) =
∑m

i=1 diJ
γi,δi
ηi x′′(εi).

(5.14)

if and only if

x(t) = Iα

0+ f (t,x(t))+
1

v0(ai,βi)


m∑

i=1
aiJ

γi,δi
ηi Iα

0+ f (βi,x(βi))− Iα

0+ f (T,x(T ))


+

1
v0(bi,σi)

Ç
t− v1(ai,βi)

v0(ai,βi)

å m∑
i=1

biJ
γi,δi
ηi Iα−1

0+ f (σi,x(σi))− Iα−1
0+ f (T,x(T ))


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)t

v0(bi,σi)
+

t2

2

)

×


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ f (εi,x(εi))− Iα−2
0+ f (T,x(T ))



(5.15)

where

v0(ai,βi) =

Ñ
1−

m∑
i=1

ai
Γ(γi +1)

Γ(γi +δi +1)

é
(5.16)

v1(ai,βi) =

Ñ
T −

m∑
i=1

ai
Γ(γi +

1
ηi
+1)βi

Γ(γi +
1
ηi
+δi +1)

é
(5.17)

v2(ai,βi) =

Ñ
T 2−

m∑
i=1

ai
Γ(γi +

2
ηi
+1)β 2

i

Γ(γi +
2
ηi
+δi +1)

é
(5.18)

Proof. Using Lemma (1.20), the general solution of the nonlinear fractional differential
equation in (5.14) can be represented as

x(t) = c0 + c1t + c2t2 + Iα

0+h(t),c0,c1,c2 ∈ R. (5.19)

By using the first integral condition of problem (5.14) and applying the Erdélyi-Kober integral
on (5.19), we get

c0 + c1T + c2T 2 + Iα

0+h(T ) =
m∑

i=1
aiJ

γi,δi
ηi Iα

0+h(βi)+ c0

m∑
i=1

ai
Γ(γi +1)

Γ(γi +δi +1)

+ c1

m∑
i=1

ai
Γ(γi +

1
ηi
+1)βi

Γ(γi +
1
ηi
+δi +1)

+ c2

m∑
i=1

ai
Γ(γi +

2
ηi
+1)β 2

i

Γ(γi +
2
ηi
+δi +1)

.
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After collecting the similar terms in one part, we get the following equation :

c0

Ñ
1−

m∑
i=1

ai
Γ(γi +1)

Γ(γi +δi +1)

é
+ c1

Ñ
T −

m∑
i=1

ai
Γ(γi +

1
ηi
+1)βi

Γ(γi +
1
ηi
+δi +1)

é
+ c2

Ñ
T 2−

m∑
i=1

ai
Γ(γi +

2
ηi
+1)β 2

i

Γ(γi +
2
ηi
+δi +1)

é
=

m∑
i=1

aiJ
γi,δi
ηi Iα

0+h(βi)− Iα

0+h(T ).

(5.20)

Rewriting equation (5.20) by using (5.16), (5.17), and (5.18), we obtain

c0v0(ai,βi)+ c1v1(ai,βi)+ c2v2(ai,βi) =
m∑

i=1
aiJ

γi,δi
ηi Iα

0+h(βi)− Iα

0+h(T ). (5.21)

Then, taking the derivative of (5.19) and using the second integral condition of (5.14),
one has

x′(T ) = c1 + c2T + Iα−1
0+ h(T ). (5.22)

Now, applying the Erdélyi-Kober integral on (5.22), we have

c1 +2c2T + Iα−1
0+ h(T ) =

m∑
i=1

biJ
γi,δi
ηi Iα−1

0+ h(σi)+ c1

m∑
i=1

bi
Γ(γi +1)

Γ(γi +δi +1)

+2c2

m∑
i=1

bi
Γ(γi +

1
ηi
+1)σi

Γ(γi +
1
ηi
+δi +1)

.

(5.23)

The above equation (5.23) implies that

c1

Ñ
1−

m∑
i=1

bi
Γ(γi +1)

Γ(γi +δi +1)

é
+2c2

Ñ
T −

m∑
i=1

bi
Γ(γi +

1
ηi
+1)σi

Γ(γi +
1
ηi
+δi +1)

é
=

m∑
i=1

aiJ
γi,δi
ηi Iα−1

0+ h(σi)− Iα−1
0+ h(T ),

(5.24)

also, by using (5.16) and (5.17), equation (5.24) can be written as

c1v0(bi,σi)+ c2v1(bi,σi) =
m∑

i=1
biJ

γi,δi
ηi Iα−1

0+ h(σi)− Iα−1
0+ h(T ). (5.25)

By using the last integral condition of (5.14) and applying Erdélyi-Kober integral operator
on the second derivative of (5.22), we have

2c2 + Iα−2
0+ h(T ) =

m∑
i=1

diJ
γi,δi
ηi Iα−2

0+ h(εi)+2c2

m∑
i=1

di
Γ(γi +1)

Γ(γi +δi +1)
. (5.26)

Hence, we obtain the following equation :

2c2

Ñ
1−

m∑
i=1

di
Γ(γi +1)

Γ(γi +δi +1)

é
=

m∑
i=1

diJ
γi,δi
ηi Iα−2

0+ h(σi)− Iα−2
0+ h(T ), (5.27)
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by using (5.16), equation (5.27) can be written as

2c2v0(di,εi) =
m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ h(εi)− Iα−2
0+ h(T ). (5.28)

Moreover, equation (5.28) implies that

c2 =
1

2v0(di,εi)


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ h(εi)− Iα−2
0+ h(T ),

 (5.29)

substituting the values of (5.29) in (5.25), we obtain

c1 =
1

v0(bi,σi)


m∑

i=1
biJ

γi,δi
ηi Iα−1

0+ h(σi)− Iα−1
0+ h(T )


− v1(bi,σi)

v0(bi,σi)v0(di,εi)


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ h(εi)− Iα−2
0+ h(T )

 .

(5.30)

Now, substituting the values of (5.29) and (5.29) in (5.25), we have

c0 =
1

v0(ai,βi)


m∑

i=1
aiJ

γi,δi
ηi Iα

0+h(βi)− Iα

0+h(T )


− v1(ai,βi)

v0(ai,βi)v0(bi,σi)


m∑

i=1
biJ

γi,δi
ηi Iα−1

0+ h(σi)− Iα−1
0+ h(T )


+

v1(bi,σi)v1(ai,βi)

v0(ai,βi)v0(bi,σi)v0(di,εi)


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ h(εi)− Iα−2
0+ h(T )


− v2(ai,βi)

2v0(di,εi)v0(ai,βi)


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ h(εi)− Iα−2
0+ h(T )

 .

(5.31)

Finally, substituting the values of (5.31), (5.30), and (5.29) in equation (5.19), we obtain the
general solution of problem (5.14) which is (5.15). Converse is also true by using the direct
computation.

In the following,we prove existence results, for the boundary value problem (5.12)-(5.13)
by using a Mönch fixed point theorem.
(H1) f : J×E→ E satisfies the Caratheodory conditions ;
(H2) There exists P ∈C(J,R+), such that,

‖ f (t,x)‖ ≤ P(t)‖x‖, for t ∈ J and each x ∈ E;

(H3) For each t ∈ J and each bounded set B⊂ E, we have

lim
h→0+

µ( f (Jt,h×B))≤ P(t)µ(B); here Jt,h = [t−h, t]∩ J.
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Theorem 5.8. Assume that conditions (H1)-(H3) hold. Let P∗ = supt∈J P(t). If

p∗M < 1 (5.32)

With

M :=

 T α

Γ(α +1)
+

1
v0(ai,βi)


m∑

i=1
ai

Γ(γi +
α

ηi
+1)β α

i

Γ(α +1)Γ(γi +
α

ηi
+δi +1)

− T α

Γ(α +1)


+

1
v0(bi,σi)

Ç
T − v1(ai,βi)

v0(ai,βi)

å m∑
i=1

bi
Γ(γi +

α−1
ηi

+1)σα−1
i

Γ(α)Γ(γi +
α−1

ηi
+δi +1)

− T α−1

Γ(α)


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)T

v0(bi,σi)
+

T 2

2

)

×


m∑

i=1
di

Γ(γi +
α−2

ηi
+1)εα−2

i

Γ(α−1)Γ(γi +
α−2

ηi
+δi +1)

− T α−2

Γ(α−1)


 ,

then the BVP (5.12)-(5.13) has at least one solution.

Proof. Transform the problem (5.12)-(5.13) into a fixed point problem. Consider the ope-
rator F : C(J,E)→C(J,E) defined by

Fx(t) = Iα

0+ f (t,x(t))+
1

v0(ai,βi)


m∑

i=1
aiJ

γi,δi
ηi Iα

0+ f (βi,x(βi))− Iα

0+ f (T,x(T ))


+

1
v0(bi,σi)

Ç
t− v1(ai,βi)

v0(ai,βi)

å m∑
i=1

biJ
γi,δi
ηi Iα−1

0+ f (σi,x(σi))− Iα−1
0+ f (T,x(T ))


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)t

v0(bi,σi)
+

t2

2

)

×


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ f (εi,x(εi))− Iα−2
0+ f (T,x(T ))

 .

(5.33)

Clearly, the fixed points of the operator F are solutions of the problem (5.12)-(5.13). We
consider

D = {x ∈C(J,E) : ‖x‖ ≤ R}.
where R satisfies inequality (5.32), Clearly, the subset D is closed, bounded and convex. We
shall show that F satisfies the assumptions of Mönch’s fixed point theorem. The proof will be
given in three steps.

Step 1 : First we show that F is continuous :
Let xn be a sequence such that xn→ x in C(J,E). Then for each t ∈ J ,

‖(Fxn)(t)− (Fx)(t)‖ ≤ Iα

0+‖ f (s,xn(s))− f (s,x(s))‖(t)+ 1
v0(ai,βi)

×


m∑

i=1
aiJ

γi,δi
ηi Iα

0+(1)(βi)− Iα

0+(1)(T )

‖ f (s,xn(s))− f (s,x(s))‖
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+
1

v0(bi,σi)

Ç
t− v1(ai,βi)

v0(ai,βi)

å
×


m∑

i=1
biJ

γi,δi
ηi Iα−1

0+ (1)(σi)− Iα−1
0+ (1)(T )

‖ f (s,xn(s))− f (s,x(s))‖

+
1

v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)t

v0(bi,σi)
+

t2

2

)

×


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ (1)(εi)− Iα−2
0+ (1)(T )

‖ f (s,xn(s))− f (s,x(s))‖

≤
®

T α

Γ(α +1)
+

1
v0(ai,βi)

×


m∑

i=1
ai

Γ(γi +
α

ηi
+1)β α

i

Γ(α +1)Γ(γi +
α

ηi
+δi +1)

− T α

Γ(α +1)

+
1

v0(bi,σi)

×
Ç

t− v1(ai,βi)

v0(ai,βi)

å m∑
i=1

bi
Γ(γi +

α−1
ηi

+1)σα−1
i

Γ(α)Γ(γi +
α−1

ηi
+δi +1)

− T α−1

Γ(α)


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)T

v0(bi,σi)
+

T 2

2

)

×


m∑

i=1
di

Γ(γi +
α−2

ηi
+1)εα−2

i

Γ(α−1)Γ(γi +
α−2

ηi
+δi +1)

− T α−2

Γ(α−1)




× ‖ f (s,xn(s))− f (s,x(s))‖

Since f is of Caratheodory type, then by the Lebesgue dominated convergence theorem we
have

‖F(xn)−F(x)‖∞→ 0 as n→ ∞.

Step 2 : Second we show that F maps D into itself :
Take x ∈ D, by (H2), we have, for each t ∈ J and assume that Fx(t) 6= 0.

‖(Fx)(t)‖ ≤ Iα

0+‖ f (s,x(s))‖(t)

+
1

v0(ai,βi)


m∑

i=1
aiJ

γi,δi
ηi Iα

0+‖ f (s,x(s))‖(βi)− Iα

0+‖ f (s,x(s))‖(T )


+

1
v0(bi,σi)

Ç
t− v1(ai,βi)

v0(ai,βi)

å
×


m∑

i=1
biJ

γi,δi
ηi Iα−1

0+ ‖ f (s,x(s))‖(σi)− Iα−1
0+ ‖ f (s,x(s))‖(T )


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)t

v0(bi,σi)
+

t2

2

)

×


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ ‖ f (s,x(s))‖(εi)− Iα−2
0+ ‖ f (s,x(s))‖(T )


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≤ Iα

0+ p(s)‖x(s)‖(t)

+
1

v0(ai,βi)


m∑

i=1
aiJ

γi,δi
ηi Iα

0+ p(s)‖x(s)‖(βi)− Iα

0+ p(s)‖x(s)‖(T )


+

1
v0(bi,σi)

Ç
t− v1(ai,βi)

v0(ai,βi)

å
×


m∑

i=1
biJ

γi,δi
ηi Iα−1

0+ p(s)‖x(s)‖(σi)− Iα−1
0+ p(s)‖x(s)‖(T )


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)t

v0(bi,σi)
+

t2

2

)

×


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ p(s)‖x(s)‖(εi)− Iα−2
0+ p(s)‖x(s)‖(T )


≤ p∗RIα(1)(T )+

p∗R
v0(ai,βi)


m∑

i=1
aiJ

γi,δi
ηi Iα

0+(1)(βi)− Iα

0+(1)(T )


+

p∗R
v0(bi,σi)

Ç
t− v1(ai,βi)

v0(ai,βi)

å m∑
i=1

biJ
γi,δi
ηi Iα−1

0+ (1)(σi)− Iα−1
0+ (1)(T )


+

p∗R
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)T

v0(bi,σi)
+

T 2

2

)

×


m∑

i=1
diJ.

γi,δi
ηi Iα−2

0+ (1)(εi)− Iα−2
0+ (1)(T )


Consequently

‖(Fx)(t)‖ ≤ P∗R

 T α

Γ(α +1)
+

1
v0(ai,βi)


m∑

i=1
ai

Γ(γi +
α

ηi
+1)β α

i

Γ(α +1)Γ(γi +
α

ηi
+δi +1)

− T α

Γ(α +1)


+

1
v0(bi,σi)

Ç
t− v1(ai,βi)

v0(ai,βi)

å m∑
i=1

bi
Γ(γi +

α−1
ηi

+1)σα−1
i

Γ(α)Γ(γi +
α−1

ηi
+δi +1)

− T α−1

Γ(α)


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)T

v0(bi,σi)
+

T 2

2

)

×


m∑

i=1
di

Γ(γi +
α−2

ηi
+1)εα−2

i

Γ(α−1)Γ(γi +
α−2

ηi
+δi +1)

− T α−2

Γ(α−1)




:= P∗RM ≤ R.

Step 3 : we show that F(D) is equicontinuous :
By Step 2, it is obvious that F(D) ⊂C(J,E) is bounded. For the equicontinuity of F(D), let
t1, t2 ∈ J , t1 < t2 and x ∈ D, so Fx(t2)−Fx(t1) 6= 0. Then

‖Fx(t2)−Fx(t1)‖ ≤ |Iα

0+ f (s,x(s))(t2)− Iα

0+ f (s,x(s))(t1)|+
Ç
(t2− t1)−

v1(ai,βi)

v0(ai,βi)

å
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× 1
v0(bi,σi)


m∑

i=1
biJ

γi,δi
ηi Iα−1

0+ | f (s,x(s))|(σi)− Iα−1
0+ | f (s,x(s))|(T )


+

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)(t2− t1)

v0(bi,σi)
+

(t2
2 − t2

1)

2

)

× 1
v0(di,εi)


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ | f (s,x(s))|(εi)− Iα−2
0+ | f (s,x(s))|(T )


≤ Rp∗

Γ(α +1)
{(tα

2 − tα
1 )+2(t2− t1)α}+

Ç
(t2− t1)−

v1(ai,βi)

v0(ai,βi)

å
× 1

v0(bi,σi)


m∑

i=1
biJ

γi,δi
ηi Iα−1

0+ | f (s,x(s))|(σi)− Iα−1
0+ | f (s,x(s))|(T )


+

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)(t2− t1)

v0(bi,σi)
+

(t2
2 − t2

1)

2

)

× 1
v0(di,εi)


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ | f (s,x(s))|(εi)− Iα−2
0+ | f (s,x(s))|(T )

 .

As t1→ t2, the right hand side of the above inequality tends to zero. Hence N(D)⊂ D.

Finally we show that the implication holds :
Let V ⊂ D such that V = conv(F(V )∪{0}). Since V is bounded and equicontinuous, and
therefore the function t→ v(t) = µ(V (t)) is continuous on J.
By assumption (H2) and the properties of the measure µ we have for each t ∈ J.

v(t)≤ µ(F(V )(t)∪{0}))≤ µ((FV )(t))

≤ µ

Iα

0+ f (s,x(s))(t)+
1

v0(ai,βi)


m∑

i=1
aiJ

γi,δi
ηi Iα

0+ f (s,V (s))(βi)− Iα

0+ f (s,V (s))(T )


+

1
v0(bi,σi)

Ç
t− v1(ai,βi)

v0(ai,βi)

å m∑
i=1

biJ
γi,δi
ηi Iα−1

0+ f (s,V (s))(σi)− Iα−1
0+ f (s,V (s))(T )


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)t

v0(bi,σi)
+

t2

2

)

×


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ f (s,V (s))(εi)− Iα−2
0+ f (s,V (s))(T )




≤ Iα

0+ p(s)µ(V (s))(t)+
1

v0(ai,βi)


m∑

i=1
aiJ

γi,δi
ηi Iα

0+ p(s)µ(V (s))(βi)− Iα

0+ p(s)µ(V (s))(T )


+

1
v0(bi,σi)

Ç
t− v1(ai,βi)

v0(ai,βi)

å m∑
i=1

biJ
γi,δi
ηi Iα−1

0+ p(s)µ(V (s))(σi)− Iα−1
0+ p(s)µ(V (s))(T )


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)t

v0(bi,σi)
+

t2

2

)
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×


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ p(s)µ(V (s))(εi)− Iα−2
0+ p(s)µ(V (s))(T )


≤ Iα

0+ p(s)v(s)(t)+
1

v0(ai,βi)


m∑

i=1
aiJ

γi,δi
ηi Iα

0+ p(s)v(s)(βi)− Iα

0+ p(s)v(s)(T )


+

1
v0(bi,σi)

Ç
t− v1(ai,βi)

v0(ai,βi)

å m∑
i=1

biJ
γi,δi
ηi Iα−1

0+ p(s)v(s)(σi)− Iα−1
0+ p(s)v(s)(T )


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)t

v0(bi,σi)
+

t2

2

)

×


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ p(s)v(s)(εi)− Iα−2
0+ p(s)v(s)(T )


≤ P∗‖v‖

Iα

0+(1)(T )+
1

v0(ai,βi)


m∑

i=1
aiJ

γi,δi
ηi Iα

0+(1)(βi)− Iα

0+(1)(T )


+

1
v0(bi,σi)

Ç
T − v1(ai,βi)

v0(ai,βi)

å m∑
i=1

biJ
γi,δi
ηi Iα−1

0+ (1)(σi)− Iα−1
0+ (1)(T )


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)T

v0(bi,σi)
+

T 2

2

)

×


m∑

i=1
diJ

γi,δi
ηi Iα−2

0+ (1)(εi)− Iα−2
0+ (1)(T )




≤ P∗‖v‖

 T α

Γ(α +1)
+

1
v0(ai,βi)


m∑

i=1
ai

Γ(γi +
α

ηi
+1)β α

i

Γ(α +1)Γ(γi +
α

ηi
+δi +1)

− T α

Γ(α +1)


+

1
v0(bi,σi)

Ç
T − v1(ai,βi)

v0(ai,βi)

å m∑
i=1

bi
Γ(γi +

α−1
ηi

+1)σα−1
i

Γ(α)Γ(γi +
α−1

ηi
+δi +1)

− T α−1

Γ(α)


+

1
v0(di,εi)

(
v2(ai,βi)

2v0(ai,βi)
)+

v1(ai,βi)v1(bi,σi)

v0(bi,σi)v0(ai,βi)
− v1(bi,σi)T

v0(bi,σi)
+

T 2

2

)

×


m∑

i=1
di

Γ(γi +
α−2

ηi
+1)εα−2

i

Γ(α−1)Γ(γi +
α−2

ηi
+δi +1)

− T α−2

Γ(α−1)




:= p∗‖v‖M.

This means that
‖v‖(1− p∗M)≤ 0.

By (5.32) it follows that ‖v‖ = 0, that is v(t) = 0 for each t ∈ J and then V (t) is relatively
compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact in D. Applying
now Theorem (1.58), we conclude that F has a fixed point which is a solution of the problem
(5.12)-(5.13).
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5.3.2 Example
Let

E= l1 = {x = (x1,x2, ...,xn, ...) :
∞∑

n=1
|xn|< ∞}

with the norm

‖x‖E =
∞∑

n=1
|xn|

Let us consider problem (5.12)-(5.13) with specific data :

T = 1, m = 1, α = 5/2, β1 = 1/2
σ1 = 3/2, ε1 = 5/7, η1 = 7/5, γ1 = 2/3
δ1 = 3/2, a1 = 3/2, b1 = 1/2, d1 = 3/4.

(5.34)

Using the given values of the parameters in (5.16)-(5.17) and (5.18), we find that

v0(a1,β1) = 0.4226, v0(b1,σ1) = 0.8075, v0(d1,ε1) = 0.7113
v1(a1,β1) = 0.6445, v1(b1,σ1) = 0.8815
v2(a1,β1) = 0.7531

(5.35)

In order to illustrate Theorem (5.8),we take

f (t,x(t)) =
t
√

π−1
73

x(t)
x(t)+1

, t ∈ [0,1]

Clearly, the function f is continuous, we have

| f (t,x(t))| ≤
√

π

73 |x|

Hence, the hypothesis (H2) is satisfied with p∗ =
√

π

73 . We shall show that condition (5.32)
holds with T = 1. Indeed,

p∗M ' 0.3817 < 1

Simple computations show that all conditions of Theorem (5.8) are satisfied. It follows that
the problem (5.12)-(5.13) with data (5.34) and (5.35) has at least solution defined on [0,1].
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Chapitre 6
Existence Theory for a Langevin Fractional
q-Difference Equations in Banach Space

6.1 Introduction
In this chapter, we are concerned with the existence of solutions for certain classes of

Langevin Fractional q-Difference Equations in Banach Space. First, we investigate the pro-
blem of Existence Theory for a Nonlinear Langevin Fractional q-Difference Equations with
Dirichlet conditions on an arbitrary Banach Space. Next, we give a similar result to the cou-
pled fractional Langevin q-difference system extends the first problem. The used approach is
based on Mönch’s fixed point theorem combined with the technique of measures of noncom-
pactness. We also provide some illustrative examples in support of our existence theorems.

In particular, Fractional Langevin differential equations have been one of the important
subject in physics, chemistry and electrical engineering. The Langevin equation (first for-
mulated by Langevin in 1908) is found to be an effective tool to describe the evolution
of physical phenomena in fluctuating environments [93]. For instance, Brownian motion is
well described by the Langevin equation when the random fluctuation force is assumed to
be white noise. Another possible extension requires the replacement of ordinary derivative
by a fractional derivative in the Langevin equation to give the fractional Langevin equation
[13, 58, 69, 35, 127].

Firstly, in Section 6.3 we are interested in the existence of solutions for the following
Langevin fractional q-difference equation{

Dβ
q (Dα

q +λ )x(t) = f (t,x(t)), t ∈ J = [0,1],0 < α,β ≤ 1,
x(0) = γ, x(1) = η ,

(6.1)

where Dq is the fractional q−derivative of the Caputo type. f : J×E→ E is a given
function satisfying some assumptions that will be specified later and E is a Banach space
with norm ‖x‖, λ is any real number.

Next, In Section 6.4, we give similar result to the following coupled fractional Langevin
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q-difference system 
Dβ1

q (Dα1
q +λ1)x1(t) = f1(t,x1(t),x2(t)),

t ∈ J,
Dβ2

q (Dα2
q +λ2)x2(t) = f2(t,x1(t),x2(t)),

(6.2)

with the Dirichlet boundary conditions®
x1(0) = γ1 ,x1(1) = η1
x2(0) = γ2 ,x2(1) = η2.

(6.3)

where J := [0,1], 0 < α,β ≤ 1, and Dq is the fractional q−derivative of the Caputo type.
fi : J×E2→ E are given functions satisfying some assumptions that will be specified later,
and E is a Banach space with norm ‖ · ‖, λi,i = 1,2, is any real number.

In the present paper, we initiate the study of boundary value problems like (6.2). We will
present the existence results for the problem (6.2) which rely on Mönchs fixed point theorem
combined with the technique of Kuratowski measure of noncompactness. that technique turns
out to be a very useful tool in existence of solutions for several kinds of integral equations
and subsequently developed and used in many papers, see, for instance. The strong measure
of noncompactness was considered first by Banas̀ et al. [33], for more details are found in A.
Boutiara et al. [42], Akhmerov et al. [16], Alvàrez [26], Mönch [99], Szufla [125], Benchohra
et al. [36, 37]. Finally, to illustrate the theoretical results, an example is given at the end of
each section.

6.2 Existence of solutions
For the existence of solutions for the problem (6.1), the following definition and Lemma

will be needed.

Definition 6.1. A function x∈C(J,E) is said to be a solution of the problem (6.1) if x satisfies
the equation Dβ

q (Dα
q +λ )x(t) = f (t,x(t)) on J and the conditions x(0) = γ, x(1) = η .

Lemma 6.2. Let h : J→E be a continuous function. A function x is a solution of the fractional
integral equation

x(t) = Iα+β
q h(t)−λ Iα

q h(t)+ t(α)
{

η− γ− Iα+β
q h(1)+λ Iα

q h(1)
}
+ γ, (6.4)

if and only if x is a solution of the fractional boundary-value problem

Dβ
q (D

α
q +λ )x(t) = f (t,x(t)), t ∈ J, (6.5)

x(0) = γ, x(1) = η . (6.6)

Proof. Assume that x satisfies (6.5). Then by applying Lemmas 1.30, 1.31 and 1.43, we can
transform the problem (6.5)-(6.6) to an equivalent integral equation

x(t) = Iα+β
q h(t)−λ Iα

q h(t)+ c0
tα

Γq(α +1)
+ c1. (6.7)
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Applying the boundary conditions (6.6), we get

x(0) = c1,

x(1) = Iα+β
q h(1)−λ Iα

q h(1)+
c0

Γq(α +1)
+ c1.

So, we have
c1 = γ,

Iα+β
q h(1)−λ Iα

q h(1)+
c0

Γq(α +1)
+ γ = η .

Consequently
c1 = γ,

c0 = Γq(α +1)
{

η− γ− Iα+β
q h(1)+λ Iα

q h(1)
}
.

Finally, we obtain

x(t) = Iα+β
q h(t)−λ Iα

q h(t)+ t(α)
{

η− γ− Iα+β
q h(1)+λ Iα

q h(1)
}
+ γ.

Which completes the proof.

6.3 Existence Theory for a Langevin Fractional q-Difference
Equations in Banach Space.

6.3.1 First Result 1

In the following, we prove existence results, for the boundary value problem (6.1) by
using Mönch fixed point theorem, under the following hypotheses.
(H1) f : J×E→ E satisfies the Caratheodory conditions.
(H2) There exists P ∈C(J,R+), such that,

‖ f (t,x)‖ ≤ P(t)‖x‖, for t ∈ J and each x ∈ E.

(H3) For each t ∈ J and each bounded set B⊂ E, we have

lim
h→0+

µ( f (Jt,h×B))≤ P(t)µ(B); here Jt,h = [t−h, t]∩ J.

Theorem 6.3. Assume that conditions (H1)-(H3) hold. Let P∗ = supt∈J P(t).
If

P∗M+N < 1, (6.8)

with
M :=

®
2

Γq(α +β +1)

´
,

1. A. Boutiara, M. Benbachir, K. Guerbati, Existence Theory for a Langevin Fractional q-Difference
Equations in Banach Space, (submitted).

85
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and
N := |λ |

®
2

Γq(α +1)

´
.

Then the problem (6.1) has at least one solution on J.

Proof. Using Lemma 6.7, it is sufficient to prove existence of solutions to the integral equa-
tion (6.4). For this, we rewrite the problem (6.1) as a fixed point problem. Indeed let us
consider the operator F : C(J,E)→C(J,E) defined by

Fx(t) = Iα+β
q h(t)−λ Iα

q h(t)+ t(α)
{

η− γ− Iα+β
q h(1)+λ Iα

q h(1)
}
+ γ. (6.9)

It is obvious that fixed points of the operator F are solutions of the problem (6.1).
Let

R≥ γ

1− (p∗M+N)
, (6.10)

and consider
DR = {x ∈C(J,E) : ‖x‖ ≤ R}.

We can check, without difficulty, that the subset DR is closed, bounded and convex. We shall
show that F satisfies the assumptions of Mönch’s fixed point theorem. The proof will be given
in three steps.

Step 1 : First we show that F is continuous :
Let xn be a sequence such that xn→ x in C(J,E). Then for each t ∈ J,

‖(Fxn)(t)− (Fx)(t)‖ ≤ Iα+β
q ‖ f (s,xn(s))− f (s,x(s))‖(t)+ |λ |Iα

q ‖xn(s)− x(s)‖(t)

+ t(α)Iα+β
q ‖ f (s,xn(s))− f (s,x(s))‖(1)+ t(α)|λ |Iα

q ‖xn(s)− x(s)‖(1),

≤
{

Iα+β
q (1)(t)+ t(α)Iα+β

q (1)(1)
}
‖ f (s,xn(s))− f (s,x(s))‖

+
{
|λ |Iα

q (1)(t)+ t(α)|λ |Iα
q (1)(1)

}
‖xn(s)− x(s)‖.

Thanks to assumption (H1), the sequence f (t,xn(t)) converges uniformly to f (t,x(t)).
Lebesgue dominated convergence theorem guarantee that

‖F(xn)−F(x)‖∞→ 0 as n→ ∞.

Then F : DR→ DR is sequentially continuous.
Step 2 : Second, we show that F maps D into itself
Take x ∈ D, by (H2), we have, for each t ∈ J and assume that Fx(t) 6= 0.

‖(Fx)(t)‖ ≤ Iα+β
q ‖ f (s,x(s))‖(t)−λ Iα

q ‖x‖(t)

+ t(α)
{

η− γ− Iα+β
q ‖ f (s,x(s))‖(1)+λ Iα

q ‖x‖(1)
}
+ γ,

≤ Iα+β
q ‖x‖P(s)(t)−λ Iα

q ‖x‖(t)

+ t(α)
{

η− γ− Iα+β
q ‖x‖P(s)(1)+λ Iα

q ‖x‖(1)
}
+ γ,
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≤ P∗R
{

Iα+β
q (1)(t)+ t(α)Iα+β

q (1)(1)
}

+R
{
|λ |Iα

q (1)(t)+ t(α)|λ |Iα
q (1)(1)

}
+T (α)(η− γ)+ γ

≤ P∗R
®

2
Γq(α +β +1)

´
+ |λ |R

®
2

Γq(α +1)

´
+η ,

≤ P∗RM+RN +η ,

≤ R.

Step 3 : we show that F(DR) is equicontinuous
By Step 2, it is obvious that F(DR) ⊂C(J,E) is bounded. For the equicontinuity of F(DR),
let t1, t2 ∈ J, t1 < t2 and x ∈ DR, so Fx(t2)−Fx(t1) 6= 0. Then,

‖Fx(t2)−Fx(t1)‖ ≤ Iα+β
q | f (s,x(s))(t2)− f (s,x(s))(t1)|+ |λ |Iα

q (|x(s)|(t2)−|x(s)|(t2))

+(t(α)
2 − t(α)

2 )
{

η− γ− Iα+β
q | f (s,x(s))|(1)+λ Iα

q |x|(1)
}
,

≤ P∗R|Iα+β
q (1)(t2)− Iα+β

q (1)(t1)|+R|λ |(Iα
q |(1)|(t2)− Iα

q |(1)|(t1))

+(t(α)
2 − t(α)

1 )
{

η− γ− Iα+β
q | f (s,x(s))|(1)+λ Iα

q |x|(1)
}
,

≤ R(P∗+ |λ |)
Γq(α +1)

{(tα
2 − tα

1 )+2(t2− t1)α}

+(t(α)
2 − t(α)

1 )
{

η− γ− Iα+β
q | f (s,x(s))|(1)+λ Iα

q |x|(1)
}
.

As t1→ t2, the right hand side of the above inequality tends to zero.
This means that F(DR)⊂ DR.

Finally we show that the implication holds
Let V ⊂ DR such that V = conv(F(V )∪{0}). Since V is bounded and equicontinuous, and
therefore the function t → v(t) = µ(V (t)) is continuous on J. By assumption (H2) and the
properties of the measure µ we have for each t ∈ J.

v(t)≤ µ(F(V )(t)∪{0}))≤ µ((FV )(t))

≤ Iα+β
q P(s)µ(V (s))(t)+ |λ |Iα

q µ(V (s))(t)

+ t(α)
{

Iα+β
q P(s)µ(V (s))(1)+ |λ |Iα

q µ(V (s))(1)
}
,

≤ Iα+β
q P(s)µ(V (s))(t)+ |λ |Iα

q µ(V (s))(t)

+ t(α)
{

Iα+β
q P(s)µ(V (s))(1)+ |λ |Iα

q µ(V (s))(1)
}
,

≤ P∗‖v‖
{

Iα+β
q (1)(t)+ t(α)Iα+β

q (1)(1)
}

+‖v‖
{
|λ |Iα

q (1)(t)+ t(α)|λ |Iα
q (1)(1)

}
,

≤ P∗‖v‖
®

2
Γq(α +β +1)

´
+ |λ |‖v‖

®
2

Γq(α +1)

´
,

≤ P∗‖v‖M+‖v‖N.
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This means that
‖v‖(1− p∗M−N)≤ 0.

By (6.8) it follows that ‖v‖ = 0, that is v(t) = 0 for each t ∈ J and then V (t) is relatively
compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact in DR. Applying
now Theorem 1.58, we conclude that F has a fixed point which is a solution of the problem
(6.1).

6.3.2 Example
In this section, we present an example to illustrate the main result.

Let E= l1 = {x = (x1,x2, ...,xn, ...) :
∑∞

n=1 |xn|< ∞} with the norm

‖x‖E =
∞∑

n=1
|xn|

Consider the following nonlinear Langevin 1
4 -fractional equation :


D1/2

1/4

(
D1/3

1/4−
5

27

)
x(t) = (sin t+1)e−t

24

Å
x2(t)

1+|x(t)|

ã
, t ∈ J = [0,1],

x(0) = γ ,x(1) = η .

(6.11)

Here

α = 1/2, β = 1/3, q = 1/4,
γ = 3/4, η = 1/4, λ = 5/27,

with
f (t,x) = (((sin t +1)e−t)/24)(x2/(1+ |x|)).

Clearly, the function f is continuous. For each x ∈ E and t ∈ [0,1], we have

| f (t,x)| ≤ 1
12
|x|,

and
p∗ =

1
12

.

Hence, the hypothesis (H2) is satisfied with p∗ = 1
12 . We shall show that condition (6.8) holds

with J = [0,1]. Indeed,

p∗M+N ' 0.6785 < 1.

Therefore, we deduce from the conclusion of Theorem 1.58 that the problem (6.11) has a
solution on [0,1].
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6.4 Existence Theory for a Nonlinear Langevin Fractional q-Difference
System in Banach Space

6.4.1 Second Result 2

Let U =C([0,1],E) denotes the Banach space of all continuous functions from u : J→ E
with

‖u‖∞ = sup{|u(t)| : t ∈ J}.

Then the product space C :=U ×V defined by C = {(u,v) : u∈U ,v∈ V } is Banach space
under the norm

‖(u,v)‖C = ‖u‖∞ +‖v‖∞.

We further will use the following hypotheses.
(H1) For any i = 1,2, fi : J×E2→ E satisfie the Caratheodory conditions.
(H2) There exist pi,qi ∈C(J,R+), such that,

‖ f (t,x)‖ ≤ pi(t)‖x1‖+qi(t)‖x1‖, for t ∈ J and each xi ∈ E, i = 1,2.

(H3) For any t ∈ J and each bounded measurable sets Bi ⊂ E, i=1,2, we have

lim
h→0+

µ( f (Jt,h×B1,B2),0)≤ p1(t)µ(B1)+q1(t)µ(B2)

and
lim

h→0+
µ(0, f (Jt,h×B1,B2))≤ p2(t)µ(B1)+q2(t)µ(B2)

where µ is the Kuratowski measure of compactness and Jt,h = [t−h, t]∩ J.
Set

p∗i = sup
t∈J

pi(t) and q∗i = sup
t∈J

qi(t), i = 1,2.

Theorem 6.4. Assume that conditions (H1)-(H3) hold. If

M < 1 (6.12)

With
M : =

∑2
i=1 (Mi)

=
∑2

i=1

ß
2(p∗i +q∗i )R

Γq(αi+βi+1) +
2|λi|R

Γq(αi+1)

™
then the problem (6.2) has at least one solution on J.

Proof. Transform the problem (6.2) into a fixed point problem. Consider the operator F :
C → C defined by the formula

Fxi(t) = Iαi+βi
q h(t)−λiIαi

q h(t)+ t(αi)
{

ηi− γi− Iαi+βi
q h(1)+λiIαi

q h(1)
}
+ γi (6.13)

2. A. Boutiara, M. Benbachir, K. Guerbati, Existence Theory for a Langevin Fractional q-Difference
System in Banach Space, (submitted).
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Clearly, the fixed points of the operator F are solutions of the problem (6.2). Let

R≥ ηi

1−M
, i = 1,2. (6.14)

and consider
DR = {xi ∈ C , i = 1,2 : ‖(x1,x2)‖ ≤ R}.

Clearly, the subset DR is closed, bounded and convex. We shall show that F satisfies the
assumptions of Mönch’s fixed point theorem. The proof will be given in three steps.

Step 1 : First we show that Fi is sequentially continuous :
Let {x1,n,x2,n}n be a sequence such that (x1,n,x2,n)→ (x1,x2) in C . Then for any t ∈ J ,

‖(Fixi,n)(t)− (Fixi)(t)‖ ≤ Iαi+βi
q ‖ f (s,x1,n(s),x2,n(s))− f (s,x1(s),x2(s))‖(t)

+ |λi|Iαi
q ‖xi,n(s)− xi(s)‖(t)

+ t(αi)Iαi+βi
q ‖ f (s,x1,n(s),x2,n(s))− f (s,x1(s),x2(s))‖(1)

+ t(αi)|λi|Iαi
q ‖xi,n(s)− xi(s)‖(1)

≤
{

2Iαi+βi
q (1)(t)

}
‖ f (s,x1,n(s),x2,n(s))− f (s,x1(s),x2(s))‖

+
¶

2|λi|Iαi
q (1)(t)

©
‖xi,n(s)− xi(s)‖.

Since for any i = 1,2, the function fi satisfies assumptions (H1), we have fi(t,x1,n(t),x2,n(t))
converge uniformly to fi(t,x1(t),x2(t)).
Hence, the Lebesgue dominated convergence theorem implies that (Fi(x1,n,x2,n))(t) converges
uniformly to (Fi(x1,x2,))(t) Thus (F(x1,n,x2,n))→ (F(x1,x2,)). Hence F : DR→DR is sequen-
tially continuous.
Step 2 : Second we show that Fi maps DR into itself :
Take xi ∈ DR, i=1,2, by (H2), we have, for each t ∈ J and assume that (Fi(xi))(t) 6= 0, i=1,2.

‖(Fixi)(t)‖ ≤ Iαi+βi
q ‖ f (s,x1(s),x2(s))‖(t)−λ Iα

q ‖xi‖(t)

+ t(αi)
{

ηi− γi− Iαi+βi
q ‖ f (s,x1(s),x2(s))‖(1)+λiIα

q ‖xi‖(1)
}
+ γi

≤ Iαi+βi
q [‖x1‖pi(s)+‖x2‖qi(s)] (t)−λiIαi

q ‖xi‖(t)

+ t(αi)
{

ηi− γi− Iαi+βi
q [‖x1‖pi(s)+‖x2‖qi(s)] (1)+λiIαi

q ‖xi‖(1)
}
+ γi

≤ (p∗i +q∗i )R
{

Iαi+βi
q (1)(t)+ t(αi)Iαi+βi

q (1)(1)
}

+R
{
|λi|Iαi

q (1)(t)+ t(αi)|λi|Iαi
q (1)(1)

}
+ t(αi)(ηi− γi)+ γi

≤
®

2(p∗i +q∗i )R
Γq(αi +βi +1)

´
+

®
2|λi|R

Γq(αi +1)

´
+ηi

= RMi +ηi.

Hence we get

‖(F(x1,x2))‖C ≤
2∑

i=1
(RMi +ηi)≤ R. (6.15)
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Step 3 : we show that Fi(DR) is equicontinuous :
By Step 2, it is obvious that F(DR) ⊂ C is bounded. For the equicontinuity of F(DR), let
t1, t2 ∈ J , t1 < t2 and x ∈ DR, so Fx(t2)−Fx(t1) 6= 0. Then

‖Fxi(t2)−Fxi(t1)‖ ≤ |Iαi+βi
q f (s,x1(s),x2(s))(t2)− Iαi+βi

q f (s,x1(s),x2(s))(t1)|
+ |λi|(Iαi

q |xi(s)|(t2)− Iαi
q |xi(s)|(t2))

+(t(αi)
2 − t(αi)

2 )
{

ηi− γi− Iαi+βi
q | f (s,x1(s),x2(s))|(1)+λiIαi

q |xi|(1)
}

≤ (p∗i +q∗i )R|Iαi+βi
q (1)(t2)− Iαi+βi

q (1)(t1)|+R|λi|(Iα
q |(1)|(t2)− Iα

q |(1)|(t1))

+(t(αi)
2 − t(αi)

1 )
{

ηi− γi− Iαi+βi
q | f (s,x1(s),x2(s))|(1)+λiIαi

q |xi|(1)
}

≤ R(p∗i +q∗i )
Γq(αi +βi +1)

{
(tαi+βi

2 − tαiv
1 )+2(t2− t1)αi+βi

}
+

R|λi|
Γq(αi +1)

¶
(tαi

2 − tαi
1 )+2(t2− t1)αi

©
+(t(αi)

2 − t(αi)
1 )

{
ηi− γi− Iαi+βi

q | f (s,x1(s),x2(s))|(1)+λiIαi
q |xi|(1)

}
As t1→ t2, the right hand side of the above inequality tends to zero.
This means that F(DR)⊂ DR. Finally we show that the implication (1.12) holds :
Let V ⊂ DR such that V = conv(F(V )∪{(0,0)}). Since V is bounded and equicontinuous,
and therefore the function t → v(t) = µ(V (t)) is continuous on J. By assumption (H2), and
the properties of the measure µ , for any t ∈ J we get.

v(t)≤ µ(F(V )(t)∪{(0,0)}))≤ µ((FV )(t))
≤ µ ({((N1v1)(t),(N2v2)(t) : (v1,v2) ∈V})
≤ 2Iα1+β1 µ ({({( f1 (s,v1(s),v2(s))(t)) ;0) : (v1,v2) ∈V})
+2|λ1|Iα1 µ ({(v1(s),0) : (v1,0) ∈V})
+2Iα2+β2 µ ({(0, f2 (s,v1(s),v2(s))) : (v1,v2) ∈V})
+2|λ2|Iα2 µ ({(0,v2(s)) : (0,v2) ∈V})
≤ 2Iα1+β1 [p1(s)µ ({(v1(s),0) : (v1,0) ∈V})
+q1(s)µ ({(0,v2(s)) : (0,v2) ∈V})]
+2|λ1|Iα1 µ ({(v1(s),0) : (v1,0) ∈V})

+2Iα2+β2 [p2(s)µ ({(v1(s),0) : (v1,0) ∈V})
+q2(s)µ ({(0,v2(s)) : (0,v2) ∈V})]
+2|λ2|Iα2 µ ({(0,v2(s)) : (0,v2) ∈V})

Thus
µ (V (t))≤2Iα1+β1 (p1(s)+q1(s))×µ (V (s))

2|λ1|Iα1 ((1)(s))×µ (V (s))

+2Iα2+β2 (p2(s)+q2(s))×µ (V (s))
2|λ2|Iα2 ((1)(s))×µ (V (s))
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Hence

µ (V (t))≤
®

2(p∗1 +q∗2)
Γq(α1 +β1 +1)

+
2|λ1|

Γq(α1 +1)

´
sup
t∈I

µ (V (t))

+

®
2(p∗2 +q∗2)

Γq(α2 +β2 +1)
+

2|λ2|
Γq(α2 +1)

´
sup
t∈I

µ (V (t))

This means that
sup
t∈I

µ (V (t))≤M sup
t∈I

µ (V (t))

By (6.12) it follows that supt∈J µ((V (t)) = 0, that is µ(V (t)) = 0 for each t ∈ J , and then
V (t) is relatively compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact
in DR. Applying now Theorem 1.58, we conclude that F has a fixed point, which is a solution
of the problem (6.2)-(6.3).

6.4.2 Example
In this section, we present some examples to illustrate our results.

Let E= l1 = {x = (x1,x2, ...,xn, ...) :
∑∞

n=1 |xn|< ∞} with the norm

‖x‖E =
∞∑

n=1
|xn|

Consider the following nonlinear Langevin 1
4 -fractional equation :

D1/4
1/4

(
D1/3

1/4−
1
27

)
x(t) =

√
3|x|cos2(2πt)

3(27−t) +
√

2π|y|
(7π−t)2

( |y|
|y|+3 +1

)
t ∈ J = [0,1],

D1/2
1/4

(
D2/3

1/4−
2
37

)
x(t) =

√
2π|x|

4(4π−t)2

( |x|
|x|+3 +1

)
+ |y|sin2(2πt)

(10−t)2

t ∈ J = [0,1],

x(0) = 3
4 , x(1) = 1

4 , x(0) = 2
3 , x(1) = 5

2 .

(6.16)

Here

α1 = 1/4, α2 = 1/2, β1 = 1/3, β2 = 2/3
γ1 = 3/4, γ2 = 1/4, λ1 = 1/27, λ2 = 2/37,
η1 = 2/3, η2 = 5/2, q = 1/4.

with
f (t,x) = (((sin t +1)e−t)/24)(x2/(1+ |x|))

Clearly, the function f is continuous. For each x ∈ E and t ∈ [0,1], we have

| f (t,x1,x2)| ≤
√

3
81
|x1|+

√
2

49π
|x2|
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and

|g(t,x1,x2)| ≤
√

2
64π
|x1|+

1
100
|x2|

Hence, the hypothesis (H2) is satisfied with p∗1 =
√

3
81 , q∗1 =

√
2

49π
, p∗2 =

√
2

64π
and q∗2 =

1
100 .

We shall show that condition (6.12) holds with J = [0,1]. Indeed,®
2(p∗1 +q∗1)

Γq(α1 +β1 +1)
+

2|λ1|
Γq(α1 +1)

´
+

®
2(p∗2 +q∗2)

Γq(α2 +β2 +1)
+

2|λ2|
Γq(α2 +1)

´
' 0.6758 < 1

Simple computations show that all conditions of Theorem 6.4 are satisfied. It follows that
the coupled system (6.16) has at least one weak solution defined on J.

6.5 Conclusion
We have provided sufficient conditions for the existence of the solutions of a new class

of nonlinear Langevin fractional q-difference system with Dirichlet boundary conditions in
Banach space. by using a method involving a measure of noncompactness and a fixed point
theorem of Mönch type. Though the technique applied to establish the existence results for
the problem at hand is a standard one, yet its exposition in the present framework is new. An
illustration to the present work is also given by presenting an example.
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Chapitre 7
Existence and Uniqueness Results to a
Fractional q-Difference Coupled System
with Integral Boundary Conditions via
Topological Degree Theory

7.1 Introduction
At the present day, there are many results on the existence of solutions for fractional dif-

ferential equations. In this study, we focus on which that uses the topological degree. This
method is a powerful tool for the existence of solutions to BVPs of many mathematical mo-
dels that arise in applied nonlinear analysis. Very recently F. Isaia [81] proved a new fixed
theorem that was obtained via coincidence degree theory for condensing maps. To see more
applications about the usefulness of coincidence degree theory approach for condensing maps
in the study for the existence of solutions of certain integral equations, the reader can be re-
ferred to [18, 19, 132, 81, 87, 120, 121, 122, 123, 124, 130].

Let U =C([0,1],R) the Banach space of all continuous functions from u : J→ R with

‖u‖∞ = sup{|u(t)| : t ∈ J}.

Then the product space C :=U ×V defined by C = {(u,v) : u∈U ,v∈ V } is Banach space
under the norm

‖(u,v)‖C = ‖u‖∞ +‖v‖∞.

This section is mainly concerned with the existence results for the following fractional
q-difference system of the form

Dq1
q u1(τ) = F1(τ,u1(τ),u2(τ)),

,τ ∈ J := [0,1],
Dq2

q u2(τ) = F2(τ,u1(τ),u2(τ)),
(7.1)
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with the fractional boundary conditions

u1(0) = a1 Iβ1
q u(η1), 0 < η1 < 1, β1 > 0,

u1(1) = b1 Iα2
q u(σ1), 0 < σ1 < 1, α1 > 0,

u2(0) = a2 Iβ2
q u(η2), 0 < η2 < 1, β2 > 0,

u2(1) = b2 Iα2
q u(σ2), 0 < σ2 < 1, α2 > 0.

(7.2)

For all i = 1,2, Dqi
q is the fractional q-derivative of the Caputo type of order 1 < qi ≤ 2,

and F : J×R2 −→ R is a given continuous function, ai,bi, i = 1,2 are suitably chosen real
constants.

7.2 Existance Result 1

For the existence of solutions for the problem (7.1)-(7.15), we need the following auxi-
liary lemmas.

Lemma 7.1. Let Fi : J×R2→ R be a continuous function for each i = 1,2. Then problem
(7.1)-(7.15) is equivalent to the problem of obtaining the solutions of the integral equation

ui(τ) = Iqi
q Fui(τ)+(Λ1,i−Λ4,iτ) Iqi+βi

q Fui(ηi)+(Λ2,i +Λ3i,τ)
Ä
biIqi+αi

q Fui(σi)− Iqi
q Fui(1)

ä
(7.3)

if and only if ui, i = 1,2 is a solution of the fractional boundary-value problem
Dq1

q u1(τ) = Fu1,
,τ ∈ J := [0,1],

Dq2
q u2(τ) = Fu2,

(7.4)

subject with 

u1(0) = a1 Iβ1
q u(η1), 0 < η1 < 1, β1 > 0,

u1(1) = b1 Iα2
q u(σ1), 0 < σ1 < 1, α1 > 0,

u2(0) = a2 Iβ2
q u(η2), 0 < η2 < 1, β2 > 0,

u2(1) = b2 Iα2
q u(σ2), 0 < σ2 < 1, α2 > 0,

(7.5)

where

Λ1,i =
ai

Λi

Ñ
1− biσ

αi+1
i

Γ(αi +2)

é
, Λ2,i =

aiη
βi+1
i

ΛiΓ(βi +2)
,

Λ3,i =
1
Λi

Ñ
1− aiη

βi
i

Γ(βi +1)

é
, Λ4,i =

ai

Λi

(
1− biσ

αi
i

Γ(αi +1)

)
, (7.6)

Λi =

Ñ
1− aiη

βi
i

Γ(βi +1)

éÑ
1− biσ

αi+1
i

Γ(αi +2)

é
+

aiη
βi+1
i

Γ(βi +2)

(
1− biσ

αi
i

Γ(αi +1)

)
.

1. A. Boutiara, M. Benbachir, K. Guerbati, Existence and Uniqueness Results to a Fractional q-Difference
Coupled System with integral Boundary conditions via Topological Degree Theory, (submitted).
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Proof. For some constants c0,i, c1,i ∈ R and 1 < qi ≤ 2, the general solution of Dqi
q ui(τ) =

Fui(τ) can be written as

ui(τ) = Iqi
q Fui(τ)+ c0,i + c1,i τ. (7.7)

Using the boundary conditions (7.5) in (7.7) we may obtainÑ
1− aiη

βi
i

Γ(βi +1)

é
c0,i−

aiη
βi+1
i

Γ(βi +2)
c1,i = aiIqi+βi

q Fui(ηi),

(
1− biσ

αi
i

Γ(αi +1)

)
c0,i +

Ñ
1− biσ

αi+1
i

Γ(αi +2)

é
c1,i = biIqi+αi

q Fui(σi)− Iqi
q Fui(1). (7.8)

which, on solving, yields

c0,i =
1
Λi

ai

Ñ
1− biσ

αi+1
i

Γ(αi +2)

é
Iqi+βi
q Fui(ηi)+

aiη
βi+1
i

Γ(βi +2)

Ä
biIqi+αi

q Fui(σi)− Iqi
q Fui(1)

ä ,

and

c1,i =
1
Λi

ai

(
biσ

αi
i

Γ(αi +1)
−1

)
Iqi+βi
q Fui(ηi)+

Ñ
1− aiη

βi
i

Γ(βi +1)

éÄ
biIqi+αi

q Fui(σi)− Iqi
q Fui(1)

ä .

Substituting the value of c0,i,c1,i in (7.7) we get (7.3), which completes the proof.

We use the following sufficient assumptions in the proofs of our main results.
(H1) There exist constants Li > 0, i = 1,2 such that for τ ∈ J and each ui,vi ∈ C , i = 1,2.

|F1(τ,u1,u2)−F (τ,v1,v2)| ≤L1

2∑
i=1

(|ui− vi|) ,

|F2(τ,u1,u2)−F (τ,v1,v2)| ≤L2

2∑
i=1

(|ui− vi|) . (7.9)

(H2) For arbitrary τ ∈ J and each u1,u2 ∈ C there exist constants Ki,Mi,Ni > 0, i = 1,2 , and
p ∈ (0,1) such that

|F1(τ,u1(s),u2(s))| ≤ K1‖u1‖p +M1‖u2‖p +N1,

|F2(τ,u1(s),u2(s))| ≤ K2‖u1‖p +M2‖u2‖p +N2. (7.10)

In the following, we set an abbreviated notation for the fractional q-integral of the Caputo
type of order qi > 0, for a function with two variables as

Iqi
q Fui(τ) =

1
Γ(qi)

∫
τ

0
(τ−qs)α−1 F (s,u1(s),u2(s))ds.

Moreover, for computational convenience we put

ωi =

(|Λ1,i|+ |Λ4,i|)
η

qi+βi
i

Γ(qi +βi +1)
+(|Λ2,i|+ |Λ3,i|)

(
|bi|σqi+αi

i
Γ(qi +αi +1)

+
1

Γ(qi +1)

) ,

(7.11)

96
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and

ω̄i =

|Λ4,i|
η

qi+βi
i

Γ(qi +βi +1)
+ |Λ3,i|

(
|bi|σqi+αi

i
Γ(qi +αi +1)

+
1

Γ(qi +1)

) . (7.12)

By Lemma 7.1, we consider two operators T ,S : C −→ C as follows :

T ui(τ) = Iqi
q Fui(τ), τ ∈ J,

and

S ui(τ) = (Λ1,i−Λ4,i τ) Iqi+βi
q Fui(ηi)+(Λ2,i +Λ3,i τ)

Ä
biIqi+αi

q Fui(σi)− Iqi
q Fui(1)

ä
, τ ∈ J.

Then the integral equation (7.3) in Lemma 7.1 can be written as an operator equation

K ui(τ) = T ui(τ)+S ui(τ), τ ∈ J.

The continuity of Fi, i=1,2, shows that the operator K : C → C is well define and fixed
points of the operator equation are solutions of the integral equations (7.3) in Lemma 7.1.

Lemma 7.2. The operator T : C → C is Lipschitz with constant
∑2

i=1 `Fi =
∑2

i=1
Li

Γ(qi+1) .
Moreover, T satisfies the growth condition given below

‖T (u1,u2)‖ ≤
2∑

i=1

1
Γ(α +1)

(Ki‖u1‖p +Mi‖u2‖p +Ni),

for every ui ∈ C .

Proof.
To show that the operator T is Lipschitz. Let ui,vi ∈ C ,i=1,2, then we have

|T ui(τ)−T vi(τ)|=
∣∣∣Iqi

q Fi,ui− Iqi
q Fi,vi

∣∣∣
≤ Iqi

q |Fi,ui−Fi,vi|(τ)

≤ Iqi
q (1) Li

2∑
i=1

(‖ui− vi‖)

=
Li

Γ(qi +1)

2∑
i=1

(‖ui− vi‖) .

For all τ ∈ J, we obtain

‖T ui−T vi‖ ≤
Li

Γ(qi +1)

2∑
i=1

(‖ui− vi‖) .

Hence, T : C −→ C is a Lipschitzian on C with Lipschitz constant `Fi =
Li

Γ(qi+1) . By Pro-
position 1.67, T is κ–Lipschitz with constant `Fi . Moreover, for growth condition, we have

|T ui(τ)| ≤ Iqi
q |Fui|(τ)

≤ (Ki‖u1‖p +Mi‖u2‖p +Ni) Iα
q (1)

=
1

Γ(qi +1)
(Ki‖u1‖p +Mi‖u2‖p +Ni).
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Hence it follows that

‖T ui‖ ≤
1

Γ(qi +1)
(Ki‖u1‖p +Mi‖u2‖p +Ni),

which implies that

‖T (u1,u2)‖ ≤
2∑

i=1

1
Γ(α +1)

(Ki‖u1‖p +Mi‖u2‖p +Ni).

Lemma 7.3. S is continuous and satisfies the growth condition given as below,

‖S ui‖ ≤ (Ki‖u1‖p +Mi‖u2‖p +Ni)ωi, for every ui ∈ C ,

where ωi is given by (7.11).

Proof. Choose a bounded subset Dr = {(u1,u2) ∈ C : ‖(u1,u2)‖ ≤ r} ⊂ C and consider
a sequence

¶
zn = (u1,n,u2,n)

©
∈ Dr such that zn→ z = (u1,u2) as n→ ∞ in Dr. We need to

show that ‖S zn−S z| → 0,n→∞. From the continuity of Fi,u, it follows that Fi,un→Fi,u,
as n→ ∞. In view of (H2) , we obtain the following relations :

(τ− sq)qi−1 ‖Fi,un−Fi,u‖ ≤ (Ki‖u1‖p +Mi‖u2‖p +Ni)(τ− sq)qi−1 , i = 1,2.

(ηi− sq)qi+βi−1 7→ (Ki‖u1‖p +Mi‖u2‖p +Ni)(ηi− sq)qi+βi−1 , i = 1,2,

(σi− sq)qi+αi−1 7→ (Ki‖u1‖p +Mi‖u2‖p +Ni)(σi− sq)qi+αi−1 , i = 1,2,

(1− sq)qi−1 7→ (Ki‖u1‖p +Mi‖u2‖p +Ni)(1− sq)qi−1 , i = 1,2,

which implies that each term on the left is integrable. By Lebesgue Dominated convergent
theorem, we obtain

Iqi+βi
q |Fi,un−Fi,u|(ηi)→ 0 as n→+∞,

Iqi+αi
q |Fi,un−Fi,u|(σi)→ 0 as n→+∞,

Iqi
q |Fi,un−Fi,u|(1)→ 0 as n→+∞.

It follows that ‖S zn−S z‖→ 0 as n→+∞. Which implies the continuity of the operator
S .

For the growth condition, using the assumption (H2) we have

|S ui(τ)| ≤ (|Λ1,i|+ |Λ4i|) Iqi+βi
q Fui(ηi)+(|Λ2,i|+ |Λ3,i|)

Ä
|b|Iqi+αi

q Fui(σi)+ Iqi
q Fui(1)

ä
,

≤ (Ki‖u1‖p +Mi‖u2‖p +Ni)(|Λ1,i|+ |Λ4i|) Iqi+βi
q (1)(ηi)

+(Ki‖u1‖p +Mi‖u2‖p +Ni)(|Λ2,i|+ |Λ3,i|)
Ä
|bi|Iqi+αi

q (1)(σi)+ Iqi
q (1)

ä
≤ (Ki‖u1‖p +Mi‖u2‖p +Ni)

(|Λ1,i|+ |Λ4i|)
η

qi+βi
i

Γ(qi +βi +1)

+(|Λ2,i|+ |Λ3,i|)
(
|bi|

σ
qi+αi
i

Γ(qi +αi +1)
+

1
Γ(qi +1)

)}
= (Ki‖u1‖p +Mi‖u2‖p +Ni)ωi.
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Which implies that,

‖S (u1,u2)‖ ≤
2∑

i=1
(Ki‖u1‖p +Mi‖u2‖p +Ni)ωi, i = 1,2. (7.13)

where ωi, i=1,2 is given by (7.11). This completes the proof of Lemma 7.3.

Lemma 7.4. The operator S : C −→ C is compact. Consequently, S is κ-Lipschitz with
zero constant.

Proof. In order to show that S is compact. Let us take a bounded set Ω ⊂Br, i=1,2. We
are required to show that S (Ω) is relatively compact in C . For arbitrary ui ∈ Ω ⊂Br, then
with the help of the estimates (7.13) we can obtain

‖S u‖ ≤ (Kirp +Mirp +Ni)ωi,

where ωi is given by (7.11), which shows that S (Ω) is uniformly bounded.
Now, for equi-continuity of S take τ1,τ2 ∈ J with τ1 < τ2, and let ui ∈Ω. Thus, we get

|S ui(τ2)−S ui(τ1)| ≤ |Λ4,i|(τ2− τ1) Iqi+βi
q Fui(ηi)

+ |Λ3,i|(τ2− τ1)
Ä
biIqi+αi

q Fui(σi)− Iqi
q Fui(1)

ä
≤ ω̄i (Ki‖ui‖p +Mi‖vi‖p +Ni)(τ2− τ1).

Which implies that,

|S (u1,u2)(τ2)−S (u1,u2)(τ1)| ≤
2∑

i=1
ω̄i (Ki‖ui‖p +Mi‖vi‖p +Ni)(τ2− τ1).

where ω̄i is given by (7.12). From the last estimate, we deduce that

‖S (u1,u2)(τ2)−S (u1,u2)(τ1)‖→ 0 when τ2→ τ1.

Therefore, S is equicontinuous. Thus, by Ascoli–Arzelà theorem, the operator S is compact
and hence by Proposition 1.66. S is κ–Lipschitz with zero constant.

Theorem 7.5. Suppose that (H1)–(H2) are satisfied, then the BVP (7.1) has at least one
solution (u1,u2) ∈ C , provided that

∑2
i=1 `Fi < 1, i = 1,2, and the set of the solutions is

bounded in C .

Proof. Let T ,S ,K are the operators defined in the start of this section. These operators
are continuous and bounded. Moreover, by Lemma 7.2, T is κ–Lipschitz and by Lemma 7.4,
S is κ–Lipschitz with constant 0. Thus, K is κ–Lipschitz with constant `Fi . Hence K is
strict κ–contraction with constant `Fi . Since

∑2
i=1 `Fi < 1, so K is κ-condensing.

Now consider the following set

Θ = {(u1,u2) ∈ C : there exist ξ ∈ [0,1] such that ui = ξK ui, i = 1,2} .
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We will show that the set Θ is bounded. For ui ∈Θ, we have ui = ξK ui = ξ (T (ui)+S(ui)),
which implies that

‖ui‖ ≤ ξ (‖T ui‖+‖S ui‖)

≤
ñ

1
Γ(qi +1)

+ωi

ô
(Ki‖u1‖p +Mi‖u2‖p +Ni) ,

hence we get

‖(u1,u2)‖ ≤ ξ (‖T (u1,u2)‖+‖S (u1,u2)‖)

≤
2∑

i=1

ñ
1

Γ(qi +1)
+ωi

ô
(Ki‖u1‖p +Mi‖u2‖p +Ni) ,

where ωi is given by (7.11). From the above inequalities, we conclude that Θ is bounded in
C . If it is not bounded, then dividing the above inequality by a := ‖ui‖ and letting a→∞, we
arrive at

1≤
2∑

i=1

ñ
1

Γ(qi +1)
+ωi

ô
lim
a→∞

Kiap +Miap +Ni

a
= 0,

which is a contradiction. Thus the set Θ is bounded in C and the operator K has at least one
fixed point which represent the solution of BVP (7.1).

To end this section, we give an existence and uniqueness result.

Theorem 7.6. Under assumption (H1) the BVP (7.1) has a unique solution if

2∑
i=1

ñ
1

Γ(qi +1)
+ωi

ô
Li < 1. (7.14)

Proof. Let ui,vi ∈ C and τ ∈ J, then we have

|K ui(τ)−K vi(τ)| ≤ HI
qi
q |Fui−Fvi|(τ)+(|Λ1,i|+ |Λ4,i|) Iqi+βi

q |Fui−Fvi|(ηi)

+(|Λ2,i|+ |Λ3,i|)
¶
|bi|Iqi+αi

q |Fui−Fvi|(σi)+ Iqi
q |Fui−Fvi|(1)

©
≤Li

2∑
i=1

(‖ui− vi‖)
{

Iqi
q (1)(1)+(|Λ1,i|+ |Λ4,i|) Iqi+βi

q (1)(ηi)

+(|Λ2,i|+ |Λ3,i|) |bi|Iqi+αi
q (1)(σi)+(|Λ2,i|+ |Λ3,i|) Iqi

q (1)
©

≤Li

2∑
i=1

(‖ui− vi‖)

Ñ
1

Γ(qi +1)
+

(|Λ1,i|+ |Λ4,i|)
η

qi+βi
i

Γ(qi +βi +1)

+(|Λ2,i|+ |Λ3,i|)
(
|bi|

σ
qi+αi
i

Γ(qi +αi +1)
+

1
Γ(qi +1)

)})

=

ñ
1

Γ(qi +1)
+ωi

ô
Li

2∑
i=1

(‖ui− vi‖).
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Hence K is contraction as
∑2

i=1

[
1

Γ(qi+1) +ωi

]
Li < 1 and by Banach contraction prin-

ciple K has a unique fixed point which is a unique solution of problem (7.1). This completes
the proof.

Remark 7.7. If the growth condition (H2) is formulated for p = 1, then the conclusions of
Theorem 7.5 remain valid provided that

2∑
i=1

ñ
1

Γ(qi +1)
+ωi

ô
(Ki +Mi)< 1.

7.3 Examples
In this section, in order to illustrate the main result, we consider two examples.

Example 7.8. Consider the following boundary value problem of a fractional differential
equation :

D
4
3
1
4
u1(τ) =

1
e(τ)+9

( |u1(τ)|
1+|u1(τ)|

)
+
√

3+τ2|u1(τ)|
20 + τ, τ ∈ J := [0,1],

Dq2
1
4

u2(τ) =
sin
Ä√
|u2(τ)|

ä
16 +

Å
e−πτ |u2(τ)|
16+|u2(τ)|

ã
+(1+ τ2),

u1(0) = a1 I
5
2
1
4

u(1
4), u1(1) = b1 I

1
4
1
4

u(1
5),

u2(0) = a2 I
4
5
1
4

u(2
5), u2(1) = b2 I

4
5
1
4

u(2
5).

(7.15)

Note that, this problem is a particular case of BVP (7.1), where

q1 =
4
3
,q2 =

7
5
,q =

1
4
,σ1 =

1
5
,

a1 = b2 =
1
2

;a2 = b1 =
1
5

;η2 = σ2 =
2
5
,β1 =

5
2
, (7.16)

α1 = η1 =
1
4
,β2 =

1
3
,α2 =

4
5
.

Using the given values of the parameters in (7.6) and (7.11), by the Matlab program, we find
that

2∑
i=1

ñ
1

Γ(qi +1)
+ωi

ô
= 2.332,

In order to illustrate Theorem 7.5, we take

F1(τ,u1(τ),u2(τ)) =
1

e(τ−1)+9

Ç |u1(τ)|
1+ |u1(τ)|

å
+

√
3+ τ2|u2(τ)|

20
+ τ,

F2(τ,u1(τ),u2(τ)) =
sin
(»
|u1(τ)|

)
16

+

Ç
e−πτ |u2(τ)|
16+ |u2(τ)|

å
+(1+ τ

2).

(7.17)
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We can easily show that

|F1(τ,u1,u2)−F (τ,v1,v2)| ≤
1

10

2∑
i=1

[|ui− vi|],

|F2(τ,u1,u2)−g(τ,v1,v2)| ≤
1

16

2∑
i=1

[|ui− vi|].
(7.18)

Hence the condition (H1) holds with L1 =
1

10 , L2 =
1
16 . Further from the above given data it

is easy to calculate
2∑

i=1
`Fi =

2∑
i=1

ñ
1

Γ(qi +1)

ô
Li = 1.8703,

On the other hand, for any τ ∈ J,u ∈ R we have

|F (τ,u1,u2)| ≤
1

10
|u1|+

1
10
|u2|+1,

|F (τ,u1,u2)| ≤
1

16
|u1|+

1
16
|u2|+2,

Hence condition (H2) holds with M1 = K1 =
1

10 , M2 = K2 =
1
16 , p = N1 = 1 and N2 = 2. In

view of Theorem 7.5

Θ = {(u1,u2) ∈ C : there exist ξ ∈ [0,1] such that ui = ξK ui, i = 1,2} ,

is the solution set ; then

‖(u1,u2)‖ ≤ ξ (‖T (u1,u2)‖+‖S (u1,u2)‖)

≤
2∑

i=1

ñ
1

Γ(qi +1)
+ωi

ô
((Ki +Mi)(‖u1‖+‖u2‖)+Ni).

From which, we have

‖(u1,u2)‖ ≤
∑2

i=1

[
1

Γ(qi+1) +ωi

]
Ni

1−∑2
i=1

[
1

Γ(qi+1) +ωi

]
(Mi +Ki)

= 19.8124.

By Theorem 7.5, the BVP (7.1) with the data (7.19) and (7.17) has at least a solution u in
C(J×R,R). Furthermore

∑2
i=1

[
1

Γ(qi+1) +ωi

]
Li = 0.1854,< 1. Hence by Theorem 7.6 the

boundary value problem (7.1) with the data (7.19) and (7.17) has a unique solution.

Example 7.9. Let us consider coupled system (7.1) with specific data :

q1 =
3
2
,q2 =

5
4
,q=

1
2
,σ1 =

1
3
,

a1 = b1 = a2 = b2 = 1;β1 = η2 = σ2 =
1
2
, (7.19)

α1 = η1 =
3
4
,β2 =

2
3
,α2 =

2
5
.
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In order to illustrate Theorem 7.5, we take

F1(τ,u1,u2) =
1
4 +

e−πτ
√
|u1(τ)|

16+
√
|u1(τ)|

+
cos
√
|u2(τ)|

16

F2(τ,u1,u2) =
1
8 +

sin
√
|u1(τ)|

24 +

√
|u2(τ)|
24

(7.20)

One has

|F1(τ,u1,u2)−F (τ,v1,v2)| ≤
1

16

2∑
i=1

[|ui− vi|],

|F2(τ,u1,u2)−g(τ,v1,v2)| ≤
1

24

2∑
i=1

[|ui− vi|].
(7.21)

Hence the condition (H1) holds with L1 = 1
16 and L1 = 1

24 . Further from the above given
data it is easy to calculate

2∑
i=1

`Fi =
2∑

i=1

Li

Γ(α +1)
= 0.1446.

Using the given values of the parameters in (7.6) and (7.11), by the Matlab program, we find
that

2∑
i=1

1
Γ(qi +1)

+ωi = 4.6588. (7.22)

Hence condition (H1) holds with L1 =
1

16 , L2 =
1

24 . We shall check that condition (7.14)
is satisfied. Indeed using the Matlab program, we can find

2∑
i=1

ñ
1

Γ(qi +1)
+ωi

ô
Li = 0.2332 < 1.

Hence by Theorem 7.6 the boundary value problem (7.1)-(7.15) has a unique solution.
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Conclusion and Perspective

In this thesis research, our main scientific contributions focused on the existence and uni-
queness of solutions for various classes of initial value problem and boundary value problem
for nonlinear fractional differential equations involving different types of fractional deriva-
tives and integrals. As well as we studied different classes of fractional differential equations.
We have shown the interest of a new fractional derivative with respect to another function ψ ,
in the sense of the Hilfer fractional derivative so-called ψ-Hilfer for which, it can be consi-
dered as an interpolant between the derivatives of ψ-Riemann-Liouville and of ψ-Caputo
because it is a generalization of all fractional derivatives and also fractional integrals used
in this thesis. The results are based on the argument of the fixed points theorems Some ap-
propriate fixed point theorems have been used, in particular ; Banach contraction, Schaefer’s
fixed point theorem, Boyd and Wong fixed point theorem, Leray-Schauder nonlinear alterna-
tive fixed point theorem, Dhage fixed point theorem and Mönch’s fixed points combined with
the technique of measures of noncompactness. Also using Isaia topological degree theory.

For the perspective and the possible generalization, it would be interesting to extend the
results of the present thesis by considering differential inclusions and extend the problems
studied on Banach and Fréchet spaces with another technique, other fixed point theorem
and determine the conditions that befit closer to obtain the best results. As another proposal,
considering some type of fractional derivatives and integrals have been presented recently
with respect to another function (namely, ψ-Hilfer). We will use the numerical method to
solve these problems. Also, we will study the problem of stability for a class of boundary va-
lue problem for nonlinear fractional differential equations. These suggestions will be treated
in the future.
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