
Tþyb`þþþþþþþK�� TþyV�rqþþþþþþþþþm§d�� Tþ§r¶�zþþþþþþþþþ��� Tþþþþ§Cwþhþmþþþþþþþþþ���
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

¨þmlþþþþþþþ`�� ��þþþþþþþþb�� ¤ ¨�Aþþþþþþþþ`�� �þyl`þþþþþþþþþþþþt�� ­C�E¤
Ministry of Higher Education and Scientific Research

Tþþþþþ§� rþþ� T`�Aþþþþþþþþ�
University of Ghardaia

Aþy�wþ�wnkt�� ¤ �wþþl`�� Tþyl�
Faculty of Science and Technology

¨�µ� �®�³� ¤ �AyRA§r�� �s�
Department of Mathematics and Computer Science

THESIS

Presented for the degree of Master

In: Computer Science Specialty: Intelligence System for Knowledge Extraction

By: Azeddine Hadj Kouider

Theme

Cache Management based on
Frequent Patterns

Jury members

M. Slimane Oulad Naoui MCB Univ. Ghardaia President
M. Youcef Mahjoub MAA Univ. Ghardaia Examiner
M. Kerrache Chaker Abdelaziz MCB Univ. Ghardaia Supervisor

College year : 2019/2020

Dedicated to

My Dear Mother

T
h�e �m�o�s��t 	p�r�e�c�i�o�u	s 	p�e�r	s��o�n� �t�o �m�e,w�h�o �a�l�w�a�y
s 	s��u	p	p�o�r�t�e�d� �m�e �a�n�d� �t�o�o�k� �a�r�e �o�f �m�e
�w�h�e�n� �i� �w�a	s �d�o�w�n� �a�n�d� �n�e�a�r�l�y �g�i�v�i�n�g �u	p�, �t
h�a�n�k	s �m�o�m� �f�o�r� �b�e�i�n�g �b�y �m�y 	s��i�d�e �a�n�d�

�h�o�p�e �y�o�u� �w�i�l�l �l�i�v�e �l�o�n�g �a�n�d� �k�e�e
p� �b�l�e
s�	s��i�n�g �m�e �w�i�t
h� �y�o�u�r� �k�i�n�d�n�e
s�	s...
My Father

T
h�e 	p�e�r	s��o�n� �w�h�o �a�l�w�a�y
s �g�o�t �m�y �b�a�c
k� �a�n�d� 	p�u	s��h�e�d� �m�e �t�o �g�o �f�u�r�t
h�e�r� �h�e �a�l�w�a�y
s
	p�u	s��h�e�d� �m�e �t�o �n�o�t �g�i�v�i�n�g �u	p� �a�n�d� �m�a�d�e 	s��u�r�e �t
h�a�t �i� �n�e�v�e�r� �n�e�e�d�e�d� �a�n�y�t
h�i�n�g �m�y

�w�h�o�l�e �l�i�f�e �t
h�a�n�k	s �a� �l�o�t �d�a�d� �f�o�r� �b�e�i�n�g �b�y �m�y 	s��i�d�e �a�n�d� �i� 	p�r�a�y A�l�l�a�h� �t�o �k�e�e
p� �y�o�u�
	s��a�f�e �a�n�d� �h�e�a�l�t
h�y �a	s �l�o�n�g �a	s �y�o�u� �l�i�v�e.

My Family

�m�y �g�r�a�n�d	p�a�r�e�n�t
s �w�h�o 	p�r�a�y�e�d� �f�o�r� �m�e �a�n�d� �g�u�i�d�e�d� �m�e �w�i�t
h� �t
h�e�i�r� �w�i	s��d�o�m� �a�n�d�
�b�l�e
s�	s��i�n�g �i� �w�i	s��h� �u� �a�l�o�n�g �l�i�f�e 	s��o �u� �c�o�u�l�d� 	s��e�e �t
h�e �w�o�r�k� �y�o�u� 	p�u�t�t�e�d� �i�n� �m�e �f�l�o�u�r�i	s��h�
�a�n�d� �t�o �m�y �u�n�c�l�e
s �a�n�d� �a�u�n�t�i�e �w�h�o �c
h�e�c
k�e�d� �o�n� �m�e �a�l�l �t
h�e �t�i�m�e �a�n�d� �m�a�d�e 	s��u�r�e �a�m�
�d�o�i�n�g �o�k�a�y �a�n�d� 	s�	p�e�c�i�a�l �a�u�n�t�i�e �a�i�c
h�a� �w�h�o �c�a�r�e�d� �a�b�o�u�t �m�e �a� �l�o�t �a�n�d� �o�f�f�e�r�e�d� �m�e �a�
�l�o�t �o�f 	s��u	p	p�o�r�t �m�a�y �g�o�d� �b�l�e
s�	s �w�i�t
h� �w�h�a�t �e�v�e�r� �y�o�u� �d�e
s��i�r�e
s �a�n�d� �l�a	s��t �b�u�t �n�o�t �l�e�a	s��t

�m�y �c�o�u	s��i�n	s �a�n�d� 	s�	p�e�c�i�a�l�l�y �a�b�d�e�l
h�a�k� �w�h�o �g�o�t �m�y �b�a�c
k� �i�n� �w�h�a�t �e�v�e�r� �i� �d�i�d� �a�n�d�
	s��u	p	p�o�r�t�e�d� �m�y �d�e�c�i	s��i�o�n	s .
My Sisters and Brother

L�i�n�a�, N�o�u�r� �a�n�d� F�a�r�e
s �t
h�e �g�r�e�a�t�e
s��t �g�i�f�t �m�y 	p�a�r�e�n�t
s �g�a�v�e �m�e �a�n�d� �a� �t�r�u�e �b�l�e
s�	s��i�n�g
�f�r�o�m� �g�o�d� �t
h�a�n�k	s �f�o�r� �k�e�e
p�i�n�g �m�e �l�a�u�g
h�i�n�g �a�n�d� �l�o�v�i�n�g �m�e �a�l�l �t
h�i	s �y�e�a�r	s.

My dear brother from another mother

A�b�d�e�r�r�a�h�i�m� S�e
h�i�l, �t
h�e �o�n�e �a�n�d� �o�n�l�y, �w�h�o 	s��u	p	p�o�r�t�e�d� �m�e �a�n�d� �m�a�d�e �m�e �g�o �c�r�a�z�y,
�t
h�e �o�n�e �w�h�o �f�o�l�l�o�w�e�d� �m�e �t
h�r�o�u�g
h� �a�l�l �t
h�e �i�n	s��a�n�e �t
h�i�n�g
s �i� �d�i�d� �t
h�r�o�u�g
h� �t
h�e �y�e�a�r	s �w�e
	s�	p�e�n�t �t�o�g�e�t
h�e�r�, �a�n�d� �t
h�a�n�k	s �f�o�r� �h�i	s 	p�a�r�e�n�t �w�h�o �t�o�o�k� �c�a�r�e �o�f �m�e �a	s �t
h�e�i�r� �o�w�n� 	s��o�n�
�a�n�d� �m�a�y�b�e �m�o�r�e. �t
h�a�n�k	s �u�n�c�l�e A�z�e�d�d�i�n�e �f�o�r� �a�l�w�a�y
s �c
h�e�e�r�i�n�g �m�e �u	p� �a�n�d� �k�e�e
p�i�n�g
�m�e �c�l�o�s��e �t�o A�l�l�a�h� �a�n�d� �f�o�r� �t
h�e �g�r�e�a�t �l�e
s�	s��o�n� �t�o �a�l�w�a�y
s �b�e �c�a�l�m� �a�n�d� �t
h�i�n�k� �b�e�f�o�r�e
�y�o�u� 	s��a�y �a�n�y�t
h�i�n�g, �a�n�d� �t�o �h�i	s �m�o�t
h�e�r� �w�h�o �a�l�w�a�y
s 	p�r�a�y�e�d� �f�o�r� �m�e �a�n�d� �m�a�d�e �g�o�o�d�

�f�o�o�d� �a�n�d� 	s��w�e�e�t
s �w�h�e�n�e�v�e�r� �i� �a�m� �a�r�o�u�n�d�.
My Special Friends

C
h�a�r�a�f , D�e�r�b�a�l�i� , S�a�f�i�-�e�d�d�i�n�e , M�o�h�a�m�e�d� �a�n�d� S�o�u�h�i�r�, �t
h�a�n�k	s �f�o�r� �a�l�l �t
h�e �t�i�m�e �w�e
	s�	p�e�n�t �t�o�g�e�t
h�e�r� �a�n�d� �a�l�l �t
h�e �f�u�n� �w�e �h�a�d� �y�o�u� �g�u�y
s �t�o�o�k� �a�w�a�y �t
h�e 	s��t�r�e
s�	s �a�n�d� 	p�a�i�n�

�o�f �t
h�i	s 	j�o�u�r�n�e�y, �m�u�c
h� �l�o�v�e �a�n�d� �m�u�c
h� �a	p	p�r�e�c�i�a�t�i�o�n� !!
and

I �t
h�a�n�k� �y�o�u� �a�l�l, �c�a�u	s��e �w�i�t
h�o�u�t �y�o�u� �t
h�i	s �w�o�r�k� �w�o�u�l�d�n�'�t �b�e 	p�o�s�	s��i�b�l�e.
Cordially

Azeddine.

Acknowledgment

“Words fly away, writings remain”

In the name of "ALLAH", The most beneficent and merciful who gave as strength and
knowledge to complete this thesis.

Firstly, I would like to express my sincere sense of gratitude to my supervisor Mister
Kerrache Chaker Abdleaziz who offered his continuous advice and encouragement
throughout the course of this thesis. I thank him for the guidance and great effort he
puts into training me in the scientific field.

I am deeply grateful to all members of the jury for agreeing to read this manuscript
and to participate in the defense of this thesis.

I thank all the teachers who taught me in the five past years for the vast amounts of
information.

For all those who participated in the development of this work.

4

Abstract

Cache management is a classic field of study where scientists and scholars tend to create
or improve new caching schemes. Cache management algorithms tend to anticipate the
requests and make it possible to bring the requested resources closer to the requesting sites
and thus reduce latency times. Data Mining (DM)consists of many techniques extract sig-
nificant knowledge from large datasets. Among data mining techniques association rules
mining algorithms attempts to find interesting associations and relationships hidden in
large amounts of data. Apriori algorithm is one of these methods which is used mostly for
search optimization. Our work studies cache management using frequent patterns where
we try to improve the LFU(least frequently used) replacement algorithm using frequent
itemsets extracted using apriori algorithm. The results shows improvement in the hit and
miss rate ratio by 4 % to 10%.

Keywords:
Data Mining (DM), Cache management, Frequent patterns, Apriori , LFU.

5

Résumé

La gestion du cache est un domaine d’étude classique où les scientifiques et les chercheurs
ont tendance à créer ou à améliorer de nouveaux schémas de mise en cache,Les algorithmes
de gestion du cache ont tendance à anticiper les requêtes et permettre de rapprocher les
ressources demandées des sites demandeurs et réduire ainsi les temps des latences. La
fouille de données (FD)se compose de nombreuses techniques pour extraire des connais-
sance utiles à partir de grands ensembles de données. Parmi les techniques d’exploration
de données, les algorithmes d’extraction de règles d’association tentent de trouver des
associations et des relations intéressantes cachées dans de grandes quantités de données,
l’algorithme apriori est l’un de ceux qui a été principalement utilisé pour l’optimisation
de la recherche. Notre travail étudie la gestion du cache en utilisant des modèles fréquents
où nous essayons d’améliorer l’algorithme de remplacement LFU en utilisant des règles
d’association extraites par l’algorithme apriori, nous avons amélioré le taux de réussite et
d’échec de 4 % à 10 % .

Mots-clés:
Fouille de données, Gestion du cache, Motifs frquents, Apriori, LFU.

6

P�l�

�ym§ �y� TF�Cdl� TykyF®k�� �¯A�m�� d��
�¥m�� �§z�t�� ­r��Ð ­C� � d`�
�ym� ,­d§d���
�¥m�� �§z�t�� �AWW�� �ys�� ¤� ºAK�� Y�� w��Ab�� ¤ ºAml`��
	§rq� �kmm�� �� �`�¤ �AblW�� ��w� Y��
�¥m�� �§z�t�� ­r��Ð ­C� � �Ay�EC�w�
�A�Ayb�� �� 	yqnt�� .T�A�tF¯� �A�¤� �ylq� ¨�At�A�¤ Tb�AW�� ���wm�� �� T�wlWm�� C�wm��
�A�Ayb�� �A�wm�� �� Tmhm�� �CA`m�� ��r�tF� �Aynqt�� �� d§d`�� �� wkt§ (DM)

	yqnt�� �Ay�EC�w� �¤A�� , �A�Ayb�� �� 	yqnt�� �Aynq� �y� �� .­rybk�� ��w�±� ��Ð
, �A�Ayb�� �� ­ryb� �Aym� ¨� Tyf�� �Amt¡®� ­ry�� �A�®�¤ �AVAb�C� Yl� Cw�`��
.��b�� �ys�t� 	�A��� ¨� Ah��d�tF� �� ¨t�� �l� �� ­d��¤ ¨¡ apriori Ty�EC�w�¤
�ys�� �¤A�� �y� ­Crkt� ªAm�� ��d�tFA�
�¥m�� �§z�t�� ­r��Ð ­C� � Anlm� xCd§
Ty�EC�w� TWF�w� T�r�tsm�� ªAb�C¯� d��w� ��d�tFA�LFU ��dbtF� Ty�EC�w�

. 01 Y�� 4 Tbsn� �Kf��¤ T�A}³� Tbs� �ys�� �yb� �¶Atn�� ,apriori

: Ty�Atfm�� �Amlk��

(LFU) , (Apriori) ,­Crktm�� ªAm�¯� ,
�¥m�� �§z�t�� ­r��Ð ­C� � ,�A�Ayb�� ¨� 	yqnt��

Contents

Introduction 1

1 Cache Management 2
1.1 Introduction . 2
1.2 Cache Definition . 2
1.3 Cache Placement . 3

1.3.1 Coordinated Schemes . 3
1.3.1.1 Explicit Schemes . 3
1.3.1.2 Implicit schemes . 4

1.3.2 probabilistic schemes . 6
1.3.2.1 Leave Copy Everywhere (LCE) Caching Scheme 6
1.3.2.2 Age based Probabilistic Caching Scheme 7

1.4 Cache Replacement . 7
1.4.1 LRU(Least Recently Used) . 7
1.4.2 FIFO(First In First Out) . 8
1.4.3 LFU(Least Frequently used) . 9

1.5 Conclusion . 11

2 Data Mining 12
2.1 Introduction . 12
2.2 Artificial intelligence . 12
2.3 Machine learning . 12

2.3.1 Types of machine learning . 13
2.3.1.1 Supervised machine learning 13
2.3.1.2 Unsupervised machine learning 14
2.3.1.3 Semi-supervised machine learning 14
2.3.1.4 Reinforcement machine learning 14

2.3.2 Deep learning . 15
2.4 Data mining tasks . 15

2.4.1 Classification Analysis . 16
2.4.2 Regression Analysis . 18
2.4.3 Clustering . 18
2.4.4 Association rules . 20

2.5 Apriori algorithm . 20
2.5.1 Theory behind the Apriori algorithm 20

2.5.1.1 Support . 21
2.5.1.2 Confidence . 22
2.5.1.3 Lift . 22

i

2.5.2 Apriori algorithm steps . 23
2.6 Conclusion . 27

3 Design and implementation 28
3.1 Introduction . 28
3.2 Improving LFU using apriori algorithm : 28
3.3 Softwares and tools . 30

3.3.1 Python . 30
3.3.2 Hardware . 30
3.3.3 Dataset . 30

3.4 Implementation of the apriori algorithm 31
3.4.1 Importing the libraries . 31
3.4.2 Importing the Dataset . 31
3.4.3 Pre-processing the Dataset . 31
3.4.4 Applying Apriori . 31
3.4.5 Viewing the Results . 32

3.5 Implementing LFU algorithm . 32
3.5.1 Creating the data structure . 32
3.5.2 The get() function . 33
3.5.3 The put() function . 33
3.5.4 Compilation . 34
3.5.5 Results . 34

3.6 Improving LFU cache scheme results . 35
3.7 Discussing the results . 36

3.7.1 LFU size10 test results: . 36
3.7.2 LFU size 18 test results: . 37
3.7.3 LFU size 24 test results . 38
3.7.4 Discussion . 39
3.7.5 Conclusion . 39

Conclusion 40

ii

List of Figures

1.1 In-network cache taxonomy.[1] . 3
1.2 (a) En-Route Web Caching (b) Sub-trees Corresponding to Cached File

Copies.[2] . 4
1.3 Iimplicit Coordination Approaches. [3] . 5
1.4 Design Topology [4] . 6
1.5 Leave copy everywhere . 7
1.6 Table representing an example of the LRU algorithm 8
1.7 LRU example results chart . 8
1.8 Table representing an example of FIFO algorithm 9
1.9 FIFO example result chart . 9
1.10 Tables representing the steps taken the LFU algorithm and the frequency

changes during these steps . 10
1.11 LFU example results chart . 11

2.1 Machine Learning subcategories . 13
2.2 Algorithms of supervised machine learning 13
2.3 The relation between AI, machine learning and deep learning 15
2.4 Data Mining Techniques . 15
2.5 Data Mining Techniques Graph[5] . 16
2.6 the Classification Techniques[6] . 17
2.7 General Approach to Solve Problem Using the Classification Technique[6] . 17
2.8 Regression techniques . 18
2.9 the major fundamental clustering techniques[7] 19
2.10 IF-THEN relationship . 20
2.11 Basic terminologies . 21
2.12 Example DATASET . 23
2.13 Iteration 2: sets of item of size 1 . 23
2.14 Table C1 after deleting the itemsset4 . 24
2.15 Creation of item sets of size 2 from the combinations in F1 24
2.16 Subsets of the itemset . 24
2.17 Item sets after iteration 3 . 25
2.18 Item sets after iteration 3 . 25

3.1 LFU with itemsets example . 29
3.2 LFU with itemsets result chart . 29
3.3 Screen shot of the dataset . 30
3.4 Chart representing of the size 10 table . 37
3.5 Chart representing of the size 18 table . 38
3.6 Chart representing of the size 18 table . 39

iii

List of Tables

3.1 The hardware used to run the tests . 30
3.2 Size 10 test table . 36
3.3 Size 18 test table . 37
3.4 Size 24 test table . 38

iv

Listings

3.1 Importing the libraries . 31
3.2 Pre-processing the Dataset . 31
3.3 Applying Apriori . 32
3.4 Viewing the Results . 32
3.5 Creating the data structure . 32
3.6 The get() function . 33
3.7 The put() function . 33
3.8 Compilation . 34
3.9 Improving LFU cache scheme results . 35

v

Introduction

Today’s world is characterized by the availability of enormous amounts of information
and data, by processing this data using data mining, scientists discovered a lot of more
useful information that could help improve marketing fraud detection and many others.

Data Mining (DM) is a science that, by exploring and analyzing huge amounts of
information, aims to extract meaningful trends and patterns.

In this document, we are interested in Data Mining and more specifically frequent
patterns that could be used to give or improve results.

Among the problems encountered when handling large amounts of data is the search-
ing and delivering data, therefore the use of cache management can help reduce the size
of these problems. Cache management, makes sure to get the data closer to the user and
reduce data serving time and redundancy of the data.

Cache management came into existence for decreasing the gap between requesting the
information and getting it.
in this thesis, we are exploring the study of cache management using frequent patterns,
focusing mainly on using the apriori algorithm to extract frequent patterns then applying
these frequent patterns on improving a certain scheme of cache replacement, after that I
will try to test the improved version with different parameters (cache size, amount data
passing through the cache) to understand the impact of each of them on the final result.

I have structured my manuscript in three main chapters:

• The first chapter begins with a definition of cache and cache management and its
types. Then, it introduces the basics cache management schemes.

• The second chapter is devoted to the description of artificial intelligence, its
different types, machine learning data mining, as well as the different properties
that characterize each one of them, we also talked about frequent patterns, the
apriori algorithm and its characteristics.

• The third and last chapter shows the experimental part of our work, it contains
the various tools and software used, the dataset, the different parts of the code we
used in this implementation and then the results.

1

Chapter 1

Cache Management

1.1 Introduction
This chapter is dedicated to cache, where we are going to introduce the notion of cache
and cache management then some basic cache management schemes, we decided to focus
on the cache placement schemes and then we list some algorithms with examples.

1.2 Cache Definition
Cache memories are intermediaries storage spaces associated with management architec-
tures and algorithms, so the data when requested would be fast delivered, it saves a copy
of the original data that remain in the main memory(database, hard disk, etc..) where
its stored permanently.
When data is requested and found in the cache it is called a cache hit, otherwise, it is
called cache miss. When there is a cache miss, the content requested is added to the cache
so the next time when another request for a similar content will be satisfied.
Adding a cache node to a network as if the selected node has become a free storing place
by adding it directly to the network.
”Caching is a mechanism for providing temporary storage to reduce bandwidth, server
load, and response time”[8].
To select the node where the content is saved and used when needed with efficiency. We
need schemes called cache placement schemes which are made to place content in a way
that makes getting the content fast and not over-burden the network, in case the content
is larger than the free space in the node some other scheme come in hand these are called
cache replacement schemes, this schemes are responsible for finding the best content to
remove and replace it with the newly requested content without effecting the network
efficiency.

2

CHAPTER 1. CACHE MANAGEMENT

1.3 Cache Placement
Cache placement policy assigns where a particular copy of a memory bloc or item should
be stored along the network path. cache placement algorithm are devised to coordinated
and non-coordinated schemes

Figure 1.1: In-network cache taxonomy.[1]

1.3.1 Coordinated Schemes
Coordinated schemes are based on node coordination to minimize redundancy and improve
cache diversity as [1] mentioned, these schemes use mobile cluster head or a road side
unit to coordinate and incur control over the network, based on that we can divide these
schemes into implicit and explicit as suggested by [1]. Coordinated caching helps for two
reasons. First, coordination allows a busy cache to utilize a nearby idle cache Second,
coordination balances the improved hit time achieved by increasing the replication of
popular objects against the improved hit rate achieved by reducing replication and storing
more unique objects. also it is efficient in reducing cache redundancy and improve the
diversity of the cache and reduces cache traffic though it introduces high computational
cost as concluded

1.3.1.1 Explicit Schemes

In this scheme it is well said that mobile cluster head or a road side unit are equipped
with the prerequisite information of the network, cluster heads are defined by [9] as a
selected node from a cluster of nodes, this nodes contain information about the cluster
for example cache’s state users access frequency and network topology, it also exchange a
lot of information’s in the same line.

Coordinated En Route Web Caching (CERWC) The coordinated en-route web
caching scheme is novelisation of the En-Route Caching proposed by [12] as an optimiza-
tion for the file placement along the path from the cache or server to the client as it
requires moderately more coordinating among the en route caches.
To model the caching and file placement of this scheme we are going to use the network

3

CHAPTER 1. CACHE MANAGEMENT

model in Figure 1.2 the graph is modeled as G = (V ; E),where V is the caches that con-
tains an en-route cache and E is the network links and both server and client are attached
to a node V .
We take for example one server only and clients requesting files contained in the server,
when a request is made the request goes along the path to the server and is satisfied
by the first cache node along the path that contains the requested file, the file is than
transmitted down stream back to the client.

Figure 1.2: (a) En-Route Web Caching (b) Sub-trees Corresponding to Cached File
Copies.[2]

Figure 1.2(a) is an a example for such tree topology where v0 is the node associated
with the server, while all other nodes are associated with en-route caches,every cache (or
server)node that satisfied a request for any web file F , these set of nodes satisfies every
request for the web file F from the sub-tree, in Figure1.2(b) there are three sub-trees
where three nodes contains the requested web file F , in every sub-tree only one node
contains the file F and its the node closest to the server.

1.3.1.2 Implicit schemes

These schemes uses small information exchange between cache routers to make the last
decision about where to cache the content, these schemes doesn’t need prerequisite infor-
mation s such as cache network topology. example we take ProbCache.

ProbCache Every node cache probability varies because of the inversely corresponding
to the distance from the cache to the node that made the request to model this scheme,
[4] approached the problem from that caching capability point of view, ProbCache cache
scheme is based on two value factors:

• TimesIn: is the content that a delivery path has to cache.

• CacheWeight: is the balancing factor that’s based on TimesIn factor and the dis-
tance between the server and user

4

CHAPTER 1. CACHE MANAGEMENT

Figure 1.3: Iimplicit Coordination Approaches. [3]

Times In Factor To better understand it, we consider the two users in figure 1.4,
the total cache capacity of a path is ∑n

i Ni, from Figure1.4the distance between the server
and user1 is 5 nodes n1 = 5 for request1 and 4 nodes from user2 n2 = 4 for request2
gray nodes represent the nodes that are going to be shared by both users and white nodes
are the one are exclusive to user1 and black ones are exclusive for user2, TimesIn factor
represent the number of times the path can afford to cache the file, TimesIn factor can
be calculated as follows:

TimesIn(x) =
∑c=x−1

i=1 Ni

TtwNx

CacheWeight: To decide the number of times that the path can afford to cache the
packet that TimesIn indicated we use the following formula:

CacheWeight(x) = x

c

where x is the of TSB the header and c is the TSI value.

ProbCache: Probabilistic In-Network Caching The product of TimesIn and
CacheWeight is called ProbCache and it represents the caching probability of each node
along the path from the server to the users depending depending on their TSI and TSB
values.

ProbCache(x) =
∑c=x−1

i=1 Ni

TtwNx

∗ x

c

[H] table of Model notation[4]
Symbol Meaning
n Number of caches on the path
Ni Cache memory in ri that holds 1− sec worth of traffic
Ttw Target Time Window (set to 10 secs here)

TSI, Time since Inception (Header field - Request Message):Hop-Distance
from Client, Value range: 1 to n

TSB,
x

Time since Birth (Header field - Content Message):Hop-Distance from
Server, Value range: 1 to n

5

CHAPTER 1. CACHE MANAGEMENT

Figure 1.4: Design Topology [4]

1.3.2 probabilistic schemes
In this cache schemes, every node is independent and calculate its own feasibility to store
a content,the decisions to cache and maintain their own policies and every node runs
her canonical caching policy respectively which is usually based on historical usage or
requesting frequency.

1.3.2.1 Leave Copy Everywhere (LCE) Caching Scheme

LCE is The default caching strategy in NDN 1/CCN2, leave copy everywhere as its name
implies leaves a copy of the content all the way along the path from the server to user,
to explain it more we take figure 1.5 from there we have the nodes from R1 to R5 that
separates the user and server, when the request is sent from the user it traverse each node,
from figure1.5 the request traverse each nodes until it get a hit than its copy’s the content
from the request from R5 to all the other nodes down the path to the user.

1Named Data Networking is an architectural realization of the broad Information Centric Networking
(ICN) vision that enables communications by named, secured data at the network layer[13]

2Content Centric Networking: is a novel architecture that is shifting host-centric communication to a
content-centric infrastructure[14].

6

CHAPTER 1. CACHE MANAGEMENT

Figure 1.5: Leave copy everywhere

1.3.2.2 Age based Probabilistic Caching Scheme

To better understand it we are going to use the LeaveCopyEverywhere(LCE) which is
the original caching scheme of CCN that leaves a copy of the content in all the interme-
diate caches along the reverse path, this scheme increases the user quality of experience
and content availability, by removing data redundancy and reducing delays resource inef-
ficiency we can bypass this scheme only limitation, here [15] they proposed another type
of (LCE), the age-based cooperative cache, in this type they added an age to every piece
of content so that when it reach a certain age the content is automatically removed or
replaced from the node cache, the age is assigned based on the popularity of the content
within the network and the Distance between the node and the server, so the longer the
distance and the more popular the content is the longer age it has.

1.4 Cache Replacement
When a cache node is chosen by the placement scheme to cache the new content the node
checks if the content size is equal or higher than the content size. If its equal or higher
than the content can be cached in that node if its lower than the node need to free some
space for the new content to be cached. To free space the node need to decided what
content to delete and replace by the new content, there are many algorithms that deals
with this kind of situation and in this part we are going to talk about the three of them.

1.4.1 LRU(Least Recently Used)
LRU is a cache eviction policy which in case we have a full cache memory gives the ability
to remove items in a certain order or restricted order.
The LRU cache policy removes the least recently used element of its order if the cache
structure is over capacity. For us to be able to add a new element if an element inside
the cache is accessed this element moves to the top of the list and becomes the most
recently used as an example we are going to use a two dimension array with three lines
that represent the size of our cache and a number of cases that represent the item we want

7

CHAPTER 1. CACHE MANAGEMENT

to store on the cache successively, when a new item is added to the cache and the item
wasn’t there already we call it a cache miss because the point of having cache is to find
item we need on it not saving data on it so the more cache miss we find the less effective
this cache replacement scheme is when you want to add an element but its already this
is called a cache hit and the element becomes the most recently used item.
after testing the algorithm on the following list of numbers list of Numbers:

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2

we got the results expressed in Figure1.7.

Figure 1.6: Table representing an example of the LRU algorithm

Figure 1.7: LRU example results chart

1.4.2 FIFO(First In First Out)
In this cache scheme to free space we will do as the name signify and it deleting the first
item in which mean that the first item added to the table will be deleted the following

8

CHAPTER 1. CACHE MANAGEMENT

example will present with the red the cache miss and the cache hits in green.
after testing the algorithm on the following list of Numbers:

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2

we got the results expressed in Figure1.9..

Figure 1.8: Table representing an example of FIFO algorithm

Figure 1.9: FIFO example result chart

1.4.3 LFU(Least Frequently used)
In this algorithm each item cached in the node have frequency field, when a new item is
added he item gets a frequency of zero and with each call or demand for the item the item
frequency is increased by one. when the cache is full, the item with the least frequency is

9

CHAPTER 1. CACHE MANAGEMENT

replaced, in case of two items having the same frequency the LFU algorithm uses either
FIFO or LRU to choose which content to replace with new content which in its turn gets
a frequency of zero.
after testing the algorithm on the following list of Numbers:

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2

We got the results expressed in Figure1.11.

Figure 1.10: Tables representing the steps taken the LFU algorithm and the frequency
changes during these steps

10

CHAPTER 1. CACHE MANAGEMENT

Figure 1.11: LFU example results chart

1.5 Conclusion
In this chapter, we talked about the different cache management schemes and deducted
the difference between cache placement and replacement, we also mentioned some basic
cache placement schemes examples.

11

Chapter 2

Data Mining

2.1 Introduction
In this chapter we are going to talk about Artificial intelligence and its types and branches,
our focus will be directed to data mining and specially association itemsets mining pre-
cisely the apriori algorithm which we will explain its steps.

2.2 Artificial intelligence
Artificial intelligence (AI) is the science to make machines smart using algorithm to allow
computers to solve problems which use to be solved only by humans, AI is a science with
multiple approaches but made huge advancement in machine learning and deep learning,
Among the fields of AI there is data mining field which is highly used in data extraction
fields

2.3 Machine learning
Machine Learning is a sub field of artificial intelligence, it’s a quite vast field that is
expanding rapidly, being continually partitioned and sub-partitioned into different sub
specialties and types of machine learning.
There are some basic common threads, however, and the overarching theme is best
summed up by this oft-quoted statement made by Arthur Samuel way back in 1959:
“Machine Learning is the field of study that gives computers the ability to learn without
being explicitly programmed.“
“And more recently, in 1997, Tom Mitchell gave a “well-posed ” definition that has proven
more useful to engineering types”
“A computer program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as measured by P, improves with
experience E.”[16]

12

CHAPTER 2. DATA MINING

2.3.1 Types of machine learning
Machine Learning solves problems that cannot be solved by numerical means alone. Two
of the most widely adopted machine learning methods are supervised ML and unsuper-
vised ML, but there are also other methods of machine learning. Here’s an overview of
the most popular types

Figure 2.1: Machine Learning subcategories

2.3.1.1 Supervised machine learning

These algorithms are trained using labeled examples. For example, a piece of equipment
could have data points labeled either “F” (failed) or “R” (runs). The learning algorithm
receives a set of inputs along with the corresponding correct outputs, and the algorithm
learns by comparing its actual output with correct outputs to find errors. It then modifies
the model accordingly. Through methods like classification, regression and prediction
(check figure 1.2), supervised learning uses patterns to predict the values of the label on
additional unlabeled data. Supervised learning is commonly used in applications where
historical data predicts likely future events.

Figure 2.2: Algorithms of supervised machine learning

13

CHAPTER 2. DATA MINING

2.3.1.2 Unsupervised machine learning

This type of machine learning is used against data that has no historical labels. The
system is not told the "right answer". The algorithm must figure out what is being
shown. The goal is to explore the data and find some structure within. Unsupervised
learning works well on transitional data. Popular techniques include self-organizing maps,
nearest-neighbor mapping, k-means clustering and singular value decomposition. These
algorithms are also used to segment text topics, recommend items and identify data
outlets[17]

2.3.1.3 Semi-supervised machine learning

This subcategory is used for the same applications as supervised learning. But it uses
both labeled and unlabeled data for training, typically a small amount of labeled data
with a large amount of unlabeled data (because unlabeled data is less expensive and
takes less effort to acquire). This type of learning can be used with methods such as
classification, regression and prediction. Semi-supervised machine learning is useful when
the cost associated with labeling is too high to allow for a fully labeled training process.
Early examples of this include identifying a person’s face on a webcam[17]

2.3.1.4 Reinforcement machine learning

It’s often used for robotics, gaming and navigation. With reinforcement learning, the
algorithm discovers through trial and error which actions yield the greatest rewards. This
type of learning has three primary components: the agent (the learner or decision maker),
the environment (everything the agent interacts with) and actions (what the agent can
do). The objective is for the agent to choose actions that maximize the expected reward
over a given amount of time. The agent will reach the goal much faster by following a
good policy. So, the goal in reinforcement machine learning is to learn the best policy.[17]

14

CHAPTER 2. DATA MINING

2.3.2 Deep learning
Deep learning is a sub-field of machine learning dealing with algorithms inspired by the
structure and function of the brain called artificial neural networks (check figure 2.1).
In other words, it mirrors the functioning of our brains. Deep learning algorithms are
similar too how nervous system structured where each neuron connected each other and
passing information.

Figure 2.3: The relation between AI, machine learning and deep learning

2.4 Data mining tasks
Data Mining is the computer-assisted process of data sets sorting for pattern identification
and relationship establishment, data mining solve problems through the extraction of
knowledge from large amount of data and data sets through some data mining techniques.

”Data mining is the process of discovering interesting patterns and knowledge from
large amounts of data. The data sources can include databases, data warehouses, the Web,
other information repositories, or data that are streamed into the system dynamically.”[18]

Figure 2.4: Data Mining Techniques

15

CHAPTER 2. DATA MINING

There are many techniques each has its own characteristics and goals depending on
your source for example figure2.4. these techniques can be classified into two types:

Predictive.

• Classification

• Regression

• Time series Analysis

• Prediction

Descriptive:.

• clustering

• Summarization

• Association Rules

• Sequence Discovery

Figure 2.5: Data Mining Techniques Graph[5]

2.4.1 Classification Analysis
Classification is a data mining technique that assign a class or category to an item or
a collection of items, the classification goal is to accurately predict for each target in a
data set. it is also defined as ” a process of assigning new entities to existing defined class
by examining the entities features. Classification makes decision from unseen cases by
building of past decisions”[6] .for example Classification Analysis can be used to organize
houses into categories like crime size rate, view......

16

CHAPTER 2. DATA MINING

Requirements of the Classification Techniques. ”The basic requirements of clas-
sification techniques includes the construction of the model and the model usage. These
requirements are defined explicitly”[6].

Figure 2.6: the Classification Techniques[6]

Construction of the model. ”Every sample of an object is assigned to a predefined
class label. These objects or subset data are also known as training data set. Constructed
models are always based on the training sets which represents as classification rule or de-
cision trees. The building of models with good generalization capability is a key objective
of the learning algorithm, for instance models that accurately predict the class labels of
previously unknown records.”[6].
Figure2.7: illustrate the general approach to solving problems using classification.

Figure 2.7: General Approach to Solve Problem Using the Classification Technique[6]

17

CHAPTER 2. DATA MINING

Model Usage.

• Classification of unknown objects is performed based on the constructed model.

• Resultant class label compare with the class label of test sample.

• Calculate the percentage of test sample and accuracy of model should be compare
with training sample.

• There are always differences between the test sample data and training sample data.

2.4.2 Regression Analysis
Regression is a data mining technique used for numeric values prediction of a given data
set. ”Regression is a data mining (machine learning) technique used to fit an equation to
a dataset.”[19] Given other values Regression can predict the value of a product or service,
multiple industries use Regression Analysis for marketing planning, financial forecasting,
environmental modeling and analysis of trends.

Types of Regression Techniques.

• Simple Linear Regression

• Standard multiple regression.

• Stepwise multiple regression.

• Hierarchical regression.

• Setwise regression.

Figure 2.8: Regression techniques

2.4.3 Clustering
Clustering is the process of grouping a set of data objects that have high similarity into
multiple groups or clusters, but are very dissimilar to objects in other clusters. The
attribute values describing the objects are assessed based on dissimilarities and similar-
ities of the attribute, values describing the objects and often involve distance measures.
Clustering as a data mining tool has its roots in many application areas such as biology,
security, business intelligence, and Web search.[18].

18

CHAPTER 2. DATA MINING

2.4.3.0.1 Requirements for Cluster Analysis these are some of the requirements
for clustering as a data mining tool,

• Scalability:Highly scalable clustering algorithms are needed in order to avoid biased
results from clustering sample of a given large data, clustering algorithms work well
on small data sets containing fewer than several hundred data objects. [18]

• Ability to deal with different types of attributes:Clustering all types of
data types became a requirement to clustering algorithm who are initially assigned
to cluster numeric (interval-based) data. since applications are more and more
improving new complex data types appeared thee for an all type clustering algorithm
is a must.[18]

• Discovery of clusters with arbitrary shape:The basic methods tends to find
spherical clusters, how ever in many cases and phenomena clustering to find the
frontier are not spherical and there for. It is important to develop algorithms that
can detect clusters of arbitrary shape.[18]

• Requirements for domain knowledge to determine input parameters:The
quality of clustering difficult to control when the Parameters are hard to determine
specially for high-dimensionality data sets where users have yet to grasp a deep
understanding of their data.[18]

• Ability to deal with noisy data:Clustering methods can be sensitive to such
noise and may produce poor-quality clusters, specially that most of the real-world
data sets contain outliers and/or missing, unknown, or erroneous data. Therefore,
we need clustering methods that are robust to noise.[18]

Clustring Techniques. The major fundamental clustering methods can be classified
into the following categories:

Figure 2.9: the major fundamental clustering techniques[7]

19

CHAPTER 2. DATA MINING

2.4.4 Association rules
Association Rule learning is a rule based data mining technique,this technique attempts to
find interesting associations and relationships hidden in large data-sets,the most commune
example of Association itemsets mining is the market basket analysis where they used the
clients item baskets to determine the items frequently bought together, with a set of
transaction we can find itemsets that can predict the occurrence of an item based on the
occurrence of another item.

The main thought around the Association Rule mining is the IF-THEN relationship,
where IF an item A is chosen than the chances of an item B is chosen are higher.

Figure 2.10: IF-THEN relationship

There are two elements of these itemsets:

1. Antecedent (IF): This is an item/group of items that are typically found in the
Itemsets or Datasets.

2. Consequent (THEN): This comes along as an item with an Antecedent/group of
Antecedents.

There are many algorithms that can implement association rule mining,one of them is
Apriori algorithm.

2.5 Apriori algorithm
The Apriori algorithm was introduced for the first time in 1994 by [20] and got its name
due to the use of prior knowledge of frequent item-set.

”Apriori algorithm is a data mining method which outputs all frequent item-sets and
association itemsets from given data.”[21]

The apriori is a classic algorithm useful for mining frequent item-sets and relevant
association itemsets, it operates on data-sets containing large numbers of transactions
where transactions are the items bought or requested by a user successively.

The apriori algorithm helps client ease their item search processes and sales perfor-
mance of the departmental store, in the healthcare and medical field the apriori algorithm
can detect the adverse drug reactions (ADR) by indicating combination of medications
and patient characteristics that could lead to ADR.

2.5.1 Theory behind the Apriori algorithm
Let Σ be an alphabet of n item I⊆Ti → I={a1, a2}
Σ= {a1, a2, a3..an}
A transaction is an itemset of Σ
T ⊆Σ Ti→I={a1, a2, a3}
An itemset I is a subset of Ti

20

CHAPTER 2. DATA MINING

I⊆Ti → I={a1, a2}
A transaction Dataset D is a set of n transactions and N is the number of transactions
in D
D={T1, T2, T3, T4,Tn} →N =| D |
The Apriori algorithm has three significant components that gives it strength, these com-
ponents are as follow:

• Support

• Confidence

• Lift

For example in the a supermarket lets suppose we have 4000 transaction and we want
to find the Support, Confidence, and Lift for two items lets say bread and jam because
people tend to buy this two item together frequently.

lets say that out of 4000 transaction 400 contains jam an 500 contains bread, from
those numbers there 100 transaction containing both jam and bread, using this data we
can calculate the Support, Confidence, and Lift of these two items using these formulas:

Figure 2.11: Basic terminologies

2.5.1.1 Support

Support refers to the default popularity of any item,support is calculated as the quotient
of transactions containing a particular item divided by the total number of transactions
to calculate the support of an item B we go as follow:

Support(B) = (Transactions_containing(B))
(Total_Transactions)

to make a better example we are going to calculate the support of jam out of 4000
transaction

Support(jam) = (Transactions_containing_jam)
(Total_Transactions)

Support(jam) = 400
4000

Support(jam) = 10%

21

CHAPTER 2. DATA MINING

2.5.1.2 Confidence

Confidence is the likelihood that an item B is also bought when an item A is bought, in
our example of bread and jam there is more likely chance to buy beard when you buy
jam, to mathematically calculate it we divide the number of transactions containing both
A and B items by the total number of transaction containing A:

Confidence(A→ B) = (Transactions_containingboth(AandB))
(Transactions_containingA)

Coming back to our to our example we have 100 transaction containing both jam and
bread and 400 transaction containing only jam, by dividing these two numbers we get the
likelihood of buying bread when jam is bought:

Confidence(jam→ bread) = (Transactions_containing_both(jam_and_bread))
(Transactions_containing_jam)

Confidence(jam→ bread) = 100
400

= 25%

2.5.1.3 Lift

Lift is the increase in the ratio of the sale of an item B when A is sold it is also a measure
of how A an B are really related to each other rather than happening accidentally , lift can
be calculated by dividing the the confidence of between an item A and B by the support
of an item B:

Lift(A→ B) = (Confidence(A→ B))
(Support(B))

Coming back to our to our example of bread and jam we have a the confidence between
jam and bread and the support of bread and by these we get the following result:

Lift(jam→ Bread) = (Confidence(jam→ Bread))
(Support(Bread))

Lift(jam→ Bread) = 25
12.5

Lift(jam→ Bread) = 2

lift result explains the strength of a rule and these results are separated in three kind
of result lift=1 and lift>1 and lift<1 each result has its representation as follow:

• lift=1: means that the article And B are statically independent

• lift>1: means that the article A and B have a strong relation ship between them
and the lift value means that if u buy the item A there lift chances of buying the
item B in our example we buy jam than the chances of buying Bread is raised to
two times 2

• lift<1: means that there is no relationship between the two articles and it is unlikely
to buy item A if item B is bought.

22

CHAPTER 2. DATA MINING

2.5.2 Apriori algorithm steps
Apriori algorithm uses frequent itemsets to generate association itemsets,the basic con-
cept of this algorithm is that every subset of a frequent itemset must be frequenht itemset,
a frequent itemset is an item set that has support value higher than the minimum support
value.
To explain the algorithm in much sufficient way we are going use the following that dataset
as an example:

Figure 2.12: Example DATASET

step 1

• Iteration 1: for this iteration we are going set our minimal support value to 2 and
create the list of item set of size 1 and calculate their support:

Figure 2.13: Iteration 2: sets of item of size 1

as we notice from Figure:2.13 the support value of the itemset 4 is less than the min-
imal support value, so the next step is to remove this itemset from the table.

23

CHAPTER 2. DATA MINING

Figure 2.14: Table C1 after deleting the itemsset4

• Iteration 2: for this iteration we are going create the list of item set of size 2
and calculate their support, All the items set combinations of F1 are used in this
iteration.

Figure 2.15: Creation of item sets of size 2 from the combinations in F1

The itemsets that have support values less than 2 are removed and in our case the item
set 1,2 as in figure 2.15, the next step is the pruning and its the part that give the apriori
algorithm its strength and makes it one of the best algorithm for association rule mining
pruning:the pruning is dividing/// the itemset into subsets than eliminating the subsets
that have support values less than 2

Figure 2.16: Subsets of the itemset

24

CHAPTER 2. DATA MINING

Iteration 3:1,2,3 and 1,2,5 are discarded as they both contain 1,2, this iteration is
considered the high light of the apriori algorithm

Figure 2.17: Item sets after iteration 3

Iteration 4:Using sets of F3 we will create C4.

Figure 2.18: Item sets after iteration 3

Since the Support of this itemset is less than 2, we will stop here and the final itemset
we will have is F3.
from F3 we are going to extract the following itemsets:
For I = 1,3,5, subsets are 1,3, 1,5, 3,5, 1, 3, 5
For I = 2,3,5, subsets are 2,3, 2,5, 3,5, 2, 3, 5

step 2 Applying and creating itemsets: now we are going to create itemsets and
apply them on the F3 itemsets and define the minimum confidence to 60For every subsets
S of I, you output the rule

• S -> (I-S) (means S recommends I-S)

• if support(I) / support(S) >= min_conf value

From1,3,5
Rule 1: 1,3 -> (1,3,5 — 1,3) means 1 & 3 -> 5

Confidence = support(1,3,5)/support(1,3) = 2/3 = 66.66 > 60

25

CHAPTER 2. DATA MINING

Rule 1 is Selected

Rule 2: 1,5 -> (1,3,5 — 1,5) means 1 5 -> 3
Confidence = support(1,3,5)/support(1,5) = 2/2 = 100 > 60
Rule 3 is Selected

Rule 4: 1 -> (1,3,5 — 1) means 1 -> 3 5
Confidence = support(1,3,5)/support(1) = 2/3 = 66.66 > 60
Rule 4 is Selected

Rule 5: 3 -> (1,3,5 — 3) means 3 -> 1 5
Confidence = support(1,3,5)/support(3) = 2/4 = 50 <60
Rule 5 is Rejected

Rule 6: 5 -> (1,3,5 — 5) means 5 -> 1 3
Confidence = support(1,3,5)/support(5) = 2/4 = 50 < 60
Rule 6 is Rejected

From2,3,5
Rule 1: 2,3 -> (2,3,5 — 2,3) means 2 3 -> 5
Confidence = support(2,3,5)/support(2,3) =2/2 = 100 > 60
Rule 1 is Selected

Rule 2: 2,5 -> (2,3,5 — 2,5) means 2 5 -> 3
Confidence = support(2,3,5)/support(2,5) = 2/3 = 66.66 > 60
Rule 2 is Selected
Rule 3: 3,5 -> (2,3,5 — 3,5) means 3 5 -> 2
Confidence = support(2,3,5)/support(3,5) = 2/3 = 66.66 > 60

Rule 3 is Selected

Rule 4: 2 -> (2,3,5 — 2) means 1 -> 3 5
Confidence = support(2,3,5)/support(2) = 2/3 = 66.66 > 60
Rule 4 is Selected

Rule 5: 3 -> (2,3,5 — 3) means 3 -> 2 5
Confidence = support(2,3,5)/support(3) = 2/4 = 50 <60
Rule 5 is Rejected

Rule 6: 5 -> (2,3,5 — 5) means 5 -> 2 3
Confidence = support(2,3,5)/support(5) = 2/4 = 50 < 60
Rule 6 is Rejected

step 3 the third and last step we are going to calculate the lift and define a minimum
lift of 1, lift is calculate the following way:

• S -> (I-S) (means S relate I-S)

26

CHAPTER 2. DATA MINING

• if support(I-S) /support(I)* support(S) >= min_lift value

2.6 Conclusion
In this chapter we talked and explained some of the most important part of the Artificial
intelligence, we talked about it’s different branches and focused on the data mining branch
specially the association rule mining, and also talked and explained the apriori algorithm
which we are going use later on this paper to extract some itemsets out of a dataset.

27

Chapter 3

Design and implementation

3.1 Introduction
In this chapter we are going to follow the steps to implement the apriori algorithm and
extract itemsets from a dataset, than we are going to use the itemsets extracted from
the dataset to improve the results of the LFU algorithm and than do some tests in this
implementation to compare between the LFU before and after adding the itemsets.

3.2 Improving LFU using apriori algorithm :
After extracting the itemsets out of the given dataset which represent the item use fre-
quency habits of users (in this case the items are sold to customers by a French retail
store), to better understand it we are going to use a list of numbers that we want to
successively store in the cache numbers and a cache size of 3 as represented in the first
table 1 in 3.1.
We also have a dictionary that contain the itemsets extracted by the apriori algorithm
which we need for this study and in this example we are going to use only one rule due
to the size of the dataset and just as an example. In the second table, the rows are the
variant numbers contained on the list and the lines are the list. this table is used to follow
up the change on the frequency of each item while we put the list into the cache, our
work here was if an item about to be put() in the cache is present in the dictionary as
key. We also add (put()) its value with it, if the value is not in the cache than it will be
added and its frequency is set to one if not than its frequency will increase.
After testing the algorithm on the same list as the one we used for the LFU and LRU and
FIFO algorithms in section 1.4 we got the following results as the table 1.10 shows, the
amount of hit increased compared to the other algorithms while the miss rate decreased
the results are expressed in chart3.2.

28

CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.1: LFU with itemsets example

Figure 3.2: LFU with itemsets result chart

29

CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3 Softwares and tools

3.3.1 Python
Python 1 is an interpreted, object-oriented, high-level programming language with dy-
namic semantics. is an interpreted, object-oriented, high-level programming language
with dynamic semantics. Its high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid Application Development,
as well as for use as a scripting or glue language to connect existing components together.
Python’s simple, easy to learn syntax emphasizes readability and therefore reduces the
cost of program maintenance. Python supports modules and packages, which encourages
program modularity and code reuse. The Python interpreter and the extensive standard
library are available in source or binary form without charge for all major platforms, and
can be freely distributed [22].

3.3.2 Hardware
the following table represent the hardware materiel used for this implementation.

CPU i5-4200H (2.8Ghz)
GPU Nvedia GTX850M 4 Gb
Ram 8GB
OS Windows 8.1 Pro

Table 3.1: The hardware used to run the tests

3.3.3 Dataset
the dataset 2 used in this thesis is 7500 transaction dataset of over a week at a French
retail store, here is a screen shot of the dataset:

Figure 3.3: Screen shot of the dataset
1https://www.python.org/doc/essays/blurb/
2https://drive.google.com/file/d/1y5DYn0dGoSbC22xowBq2d4po6h1JxcTQ/view?usp=sharing

30

CHAPTER 3. DESIGN AND IMPLEMENTATION

3.4 Implementation of the apriori algorithm
The following steps were used to implement the apriori algorithm:

3.4.1 Importing the libraries
First we downloaded the libraries we need for this implementation, the libraries are: apyori
which is the main library for this implementation. There is also pandas to manipulate
and analyse the dataset and numpy to manipulate mathematical fonctions and to Provide
a MATLAB-like plotting framework of our dataset

1 import numpy as np
2 import matplotlib . pyplot as plt
3 import pandas as pd
4 from apyori import apriori

Listing 3.1: Importing the libraries

3.4.2 Importing the Dataset
Now we import the dataset by using pandas like the following:

1 store_data = pd. read_csv (’store_data .csv ’, header =None)

to have a look at it we call this function:
1 s tore_data .head ()

Each row the dataset represent a transaction and each column represents an item, the
NaN means that the item wasn’t bought in that transaction. Since there is no header in
this dataset the first row will be the header by default and to get rid of this problem we
use the following command

1 header =None

3.4.3 Pre-processing the Dataset
In this phase we convert our pandas data-frame into a list of lists, because the Apriori
library requires the dataset to be in form of list of lists, where each transaction in an inner
list of the large list which is the new form of the dataset:

1 records = []
2 for i in range (0, 7501):
3 records . append ([str(store_data . values [i,j]) for j in range (0, 20)])

Listing 3.2: Pre-processing the Dataset

3.4.4 Applying Apriori
In this step we use the apriori class that we imported from the apyori library to apply
the apriori algorithm to our dataset.
The apriori class requires some parameters to work, the first parameter is the list which
is the new form of our dataset who we are going to extract the itemsets from, second
parameter is min_support which is used to select the items with higher support value
than the parameter the same way goes for the min_confidence and its selecting the item

31

CHAPTER 3. DESIGN AND IMPLEMENTATION

with greater confidence value than the parameter, and we use min_lift to specify the
minimum value of lift for the short list left of rule, the last parameter is min_length
which specify the number of items u want in your itemsets, we use it as follow:

1 association_itemsets = apriori (records , min_support =0.0045 ,
min_confidence =0.2 , min_lift =3, min_length =2)

2 association_results = list(association_itemsets)

Listing 3.3: Applying Apriori

The second line convert the result of the function to a list for easier view and manipulation

3.4.5 Viewing the Results
The following script represent the numbers of itemsets got from the apriori algorithm
where each item represent a rule:

1 print(len(association_itemsets))

This past code should result a 48 item means 48 rule, and in the next script we will show
the first item in the association_itemsets list:

1 print(association_itemsets [0])

The result should be the following:
1 RelationRecord (items= frozenset ({’light cream ’, ’chicken ’}), support

=0.004532728969470737 , ordered_statistics [OrderedStatistic (items_base
= frozenset ({’light cream ’}), items_add = frozenset ({’chicken ’}),
confidence =0.29059829059829057 , lift =4.84395061728395)])

Listing 3.4: Viewing the Results

3.5 Implementing LFU algorithm
This are the following steps too to implement the LFU caching scheme algorithm

3.5.1 Creating the data structure
The data structure we are using for this implementation is a list of dictionaries, the
function to create this data structure takes one argument which is the capacity of the
cache used for this implementation, this function create three dictionaries the first one
is cache dictionaries which contains the items added or the values the second one is the
count dictionary which represent the count of each item or value or as we called it before
the frequency of each item in the cache, the third dictionary is the grouping dictionary
to keep track of the grouping of the item on the list where the items are grouped to make
it easy to extract the least frequent item of the cache

1 def __init__ (self , capacity : int):
2 self.cache = dict ()
3 self. countDict = dict ()
4 self. grouping = dict ()
5 self. capacity = capacity

Listing 3.5: Creating the data structure

32

CHAPTER 3. DESIGN AND IMPLEMENTATION

3.5.2 The get() function
In short the get() function is a function to get an item from the cache, when the function
get is called if the element is in the cache the function get() return the item and raise
his frequency value by 1 if it is not in the cache the function returns −1

1 def get(self , key: int) -> int:
2 if key in self.cache:
3 currentCount = self. countDict [key]
4 self. countDict [key] = currentCount +1
5 self. grouping [currentCount]. remove (key)
6 if len(self. grouping [currentCount]) == 0:
7 del self. grouping [currentCount]
8 if currentCount +1 in self. grouping :
9 self. grouping [currentCount +1]. append (key)

10 else:
11 self. grouping [currentCount +1] = [key]
12 return self.cache[key]
13 else:
14 return -1

Listing 3.6: The get() function

3.5.3 The put() function
The Put() function is the one responsible of filling the cache where when an item is not
found in the cache memory the Put() function add the item to the cache and give it
a frequency of 1 if the cache is full the Put() function removes the item with the less
frequency, if the item is already exist his frequency is increased by 1

1 def put(self , key: int , value: int) -> None:
2

3 if self. capacity <= 0:
4 return
5 if key in self.cache:
6

7 self.cache[key] = value
8 currentCount = self. countDict [key]
9 self. countDict [key] = currentCount +1

10 self. grouping [currentCount]. remove (key)
11 if len(self. grouping [currentCount]) == 0:
12 del self. grouping [currentCount]
13 if currentCount +1 in self. grouping :
14 self. grouping [currentCount +1]. append (key)
15 else:
16 self. grouping [currentCount +1] = [key]
17 else:
18

19 if len(self. countDict) >= self. capacity :
20 lfuCount = min(self. grouping .keys ())
21 lfuKey = self. grouping [lfuCount]. pop (0)
22 print(self. grouping [lfuCount])
23

24 if len(self. grouping [lfuCount]) == 0:
25 del self. grouping [lfuCount]
26 del self.cache[lfuKey]
27 del self. countDict [lfuKey]
28 self.cache[key] = value

33

CHAPTER 3. DESIGN AND IMPLEMENTATION

29 if 1 in self. grouping :
30 self. grouping [1]. append (key)
31 else:
32 self. grouping [1] = [key]
33 self. countDict [key] = 1

Listing 3.7: The put() function

3.5.4 Compilation
First of all we created the object Lfucache and gave it a size of 24 item which is 20% of
the items used in these dataset transactions

1 lfuCache = LFUCache (24)
2 i teration =1000

Listing 3.8: Compilation

Than we made a for loop that will move the variable i from zero to the size our dataset
list while using Put() to fill the cache, when the item is found a variable names hit will
increase and when the its not found a variable names miss is incremented, when the loop
is over we print out the result which are the content of the cache and the number of hit
and miss we got along the way:

1 hit =0
2 miss =0
3 for i in range(iteration):
4 if store_data [i] in lfuCache .cache:
5 hit=hit +1
6 else:
7 lfuCache .put(store_data [i], store_data [i])
8 miss=miss +1
9 print("hit rate:",hit)

10 print("miss rate:",miss)

3.5.5 Results
The results should be the following where Cache contain the keys and values inside the
cache and Count Dict contain each item and his frequency andGrouping Dict contains
grouped items cache based on their frequency:

1 Capacity : 36
2 Cache: {’avocado ’: ’avocado ’, ’low fat yogurt ’: ’low fat yogurt ’, ’green

tea ’: ’green tea ’, ’honey ’: ’honey ’, ’mineral water ’: ’mineral water
’, ’spaghetti ’: ’spaghetti ’, ’salmon ’: ’salmon ’, ’olive oil ’: ’olive
oil ’, ’burgers ’: ’burgers ’, ’meatballs ’: ’meatballs ’, ’eggs ’: ’eggs ’,

’turkey ’: ’turkey ’, ’milk ’: ’milk ’, ’french fries ’: ’french fries ’,
’chicken ’: ’chicken ’, ’frozen vegetables ’: ’frozen vegetables ’, ’
cooking oil ’: ’cooking oil ’, ’cookies ’: ’cookies ’, ’shrimp ’: ’shrimp
’, ’pasta ’: ’pasta ’, ’chocolate ’: ’chocolate ’, ’ground beef ’: ’ground

beef ’, ’energy bar ’: ’energy bar ’, ’escalope ’: ’escalope ’, ’mushroom
cream sauce ’: ’mushroom cream sauce ’, ’soup ’: ’soup ’, ’hot dogs ’: ’

hot dogs ’, ’brownies ’: ’brownies ’, ’muffins ’: ’muffins ’, ’fresh tuna
’: ’fresh tuna ’, ’energy drink ’: ’energy drink ’, ’herb & pepper ’: ’
herb & pepper ’, ’champagne ’: ’champagne ’, ’ham ’: ’ham ’, ’pancakes ’: ’
pancakes ’, ’yogurt cake ’: ’yogurt cake ’}

34

CHAPTER 3. DESIGN AND IMPLEMENTATION

3 Count Dict: {’avocado ’: 628, ’low fat yogurt ’: 1421 , ’green tea ’: 2507 ,
’honey ’: 880, ’mineral water ’: 4700 , ’spaghetti ’: 5072 , ’salmon ’:
803, ’olive oil ’: 2045 , ’burgers ’: 1624 , ’meatballs ’: 394, ’eggs ’:
3388 , ’turkey ’: 1173 , ’milk ’: 2432 , ’french fries ’: 3202 , ’chicken ’:
1313 , ’frozen vegetables ’: 2413 , ’cooking oil ’: 1633 , ’cookies ’:
1508 , ’shrimp ’: 1354 , ’pasta ’: 577, ’chocolate ’: 3097 , ’ground beef ’:

2175 , ’energy bar ’: 505, ’escalope ’: 1479 , ’mushroom cream sauce ’:
651, ’soup ’: 958, ’hot dogs ’: 614, ’brownies ’: 632, ’muffins ’: 451, ’
fresh tuna ’: 420, ’energy drink ’: 498, ’herb & pepper ’: 918, ’
champagne ’: 870, ’ham ’: 504, ’pancakes ’: 1754 , ’yogurt cake ’: 1}

4 Grouping Dict: {614: [’hot dogs ’], 628: [’avocado ’], 505: [’ energy bar
’], 394: [’meatballs ’], 504: [’ham ’], 880: [’honey ’], 651: [’ mushroom

cream sauce ’], 451: [’muffins ’], 1633: [’ cooking oil ’], 4700: [’
mineral water ’], 420: [’fresh tuna ’], 1508: [’cookies ’], 498: [’
energy drink ’], 870: [’champagne ’], 2175: [’ ground beef ’], 2045: [’
olive oil ’], 958: [’soup ’], 632: [’brownies ’], 5072: [’spaghetti ’],
918: [’herb & pepper ’], 3097: [’chocolate ’], 803: [’salmon ’], 1173:
[’turkey ’], 1354: [’shrimp ’], 577: [’pasta ’], 2432: [’milk ’], 1754:
[’pancakes ’], 1624: [’burgers ’], 2413: [’ frozen vegetables ’], 3202:
[’ french fries ’], 1313: [’chicken ’], 1479: [’escalope ’], 2507: [’
green tea ’], 3388: [’eggs ’], 1: [’ yogurt cake ’], 1421: [’low fat
yogurt ’]}

5

6 hit rate: 19865
7 miss rate: 9498

3.6 Improving LFU cache scheme results
To improve the result of the LFU cache scheme we are going to use the results of the
apriori algorithm and try to minimize the number of miss which also the number of times
the cache is getting modified, and to do that we are going to do the following steps, before
adding any item to the cache using Put we check if the item is a key in the dictionary
containing the mining itemsets we got from the apriori algorithm if it is, than we add
both the key and value to the cache. The idea is presented in the following code:

1 hit =0
2 miss =0
3 for i in range(iteration):
4 if store_data [i] in lfuCache .cache:
5 if store_data [i] in d:
6 lfuCache .put2(d[store_data [i]],d[store_data [i]])
7 hit=hit +1
8 else:
9 lfuCache .put(store_data [i], store_data [i])

10 hit=hit +1
11 else:
12 if store_data [i] in d:
13 lfuCache .put(store_data [i], store_data [i])
14 lfuCache .put2(d[store_data [i]],d[store_data [i]])
15 miss=miss +1
16 else:
17 lfuCache .put(store_data [i], store_data [i])
18 miss=miss +1
19

20 print("hit rate:",hit)

35

CHAPTER 3. DESIGN AND IMPLEMENTATION

21 print("miss rate:",miss)

Listing 3.9: Improving LFU cache scheme results

3.7 Discussing the results
In this implementation we used cache sizes that varies from 4% – 20% of the Σ alphabet
size, we adopted this sizing from [14] simulation setup

3.7.1 LFU size10 test results:
The 10 size cache represent 8.33% of the number of different item on the dataset, which
means that after running the modified LFU using itemsets algorithm most of that space
will be taken by the item set extracted using the apriori algorithm, the itemsets from the
apriori algorithm don’t have the same frequency because some of them are more popular
than the other which means they have a higher chance to stay in cache. The result in
table 3.2 are represented in chart3.4.

Table 3.2: Size 10 test table
size 10

lfu lfu modified
iteration hit miss hit miss

1000 166 834 232 768
3100 554 2546 732 2368
7200 1196 6004 1509 5691
58678 9934 48744 12239 46439
117357 19873 97484 24501 24501

36

CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.4: Chart representing of the size 10 table

3.7.2 LFU size 18 test results:
The 18 size cache represent 15% of the number of different item on the dataset, since
the size of the cache increased the amount of popular itemsets inside the cache increased.
The result in table 3.3 are represented in chart3.5.

Table 3.3: Size 18 test table
size 18

lfu lfu modified
iteration hit miss hit miss

1000 303 697 385 615
3100 994 2106 1243 1857
7200 2250 4950 2723 4477
58678 18380 40298 22024 36654
117357 36770 80587 44089 73268

37

CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.5: Chart representing of the size 18 table

3.7.3 LFU size 24 test results
The 24 size cache represent 20% of the number of different item on the dataset, since
the size of the cache increased the amount of popular itemsets inside the cache increased.
The result in table 3.4 are represented in chart3.6.

Table 3.4: Size 24 test table
size 24

lfu lfu modified
iteration hit miss hit miss

1000 385 615 423 577
3100 1265 1835 1389 1711
7200 2911 4289 3149 4051
58678 23458 35220 25936 32742
117357 46927 70430 51916 65441

38

CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.6: Chart representing of the size 18 table

3.7.4 Discussion
In this implementation we used itemsets of two due to the lack of time and resource to
improve our implementation, and by doing so we neglected other possible itemsets. For
example let fp ⊆T and i ⊆fp. Lets say fp is a frequent pattern of three items:
fp={a1, a2, a3} from fp we get the following subsets:

• i1 = {a1, a2}

• i2 = {a1, a3}

• i3 = {a2, a3}

In this implementation instead of using the three subsets we only used two which
affected the results of our implementation. so instead of using items sets of two we could
use the whole frequent pattern to get better results.

3.7.5 Conclusion
As a conclusion to this chapter we would like to mention that the itemsets based LFU
depends on the number of itemsets and size of each node, so that it can improve its result
highly and make it more sufficient.
The results we got from this implementation are about 4% to 11% increase in the hit rate
and decrease of the miss rate.
By using frequent patterns instead of itemsets of two items we suppose it can increase
the the results to 20% or more depending on the size and iterations The items contained
in the itemsets are the ones with highest frequency.
the best results comes from when the cache size is equal or higher to the number of
itemsets.

39

Conclusion

We have presented in this work the basics of frequent pattern mining and used it in
cache management. we have also introduced the apriori algorithm which we used to ex-
tract frequent patterns from a dataset, we also explained some basic cache placement and
replacement schemes.

To save computational time and to reduce the miss rate and raise hit rate the frequent
patterns were used to get the data that the user needs before he request it.

After spending much time looking for a dataset to study we tried generating one us-
ing the random function, the results were not promising because the item sets where
randomly created so they don’t describe the users habits, we used the retail dataset to
generate some itemsets and tested them on the same dataset and got some good results
even though the dataset size was small and the amount of generated itemsets was not
that much.

The learning dataset is also a critical element cause it represent the habits of the users
we are going to study to extract their frequent patter, so that we could improve their
future requests.

In order to achieve this work, we spent a lot of time reading and studying the docu-
ments, doing test and trying theories. This work allowed us to put our knowledge of Data
mining into practice and to acquire other knowledge, and the time spent reading articles
served as a good introduction to research.

As perspectives I am planning to study my experiments on other datasets with bigger
size and prove that this results are not random.

40

Bibliography

[1] Sheneela Naz, Rao Naveed Bin Rais, and Amir Qayyum. A resource efficient multi-
dimensional cache management strategy in content centric networks. Journal of
Computational and Theoretical Nanoscience, 15:1137–1152, 04 2018.

[2] Anxiao Jiang and Jehoshua Bruck. Optimal content placement for en-route web
caching. Second IEEE International Symposium on Network Computing and Appli-
cations, 2003. NCA 2003., pages 9–16, 2003.

[3] Chih Yen Chang and Ming Sang Chang. A hybrid coordination approach of in-
network caching for named data networking. International Journal of Future Gen-
eration Communication and Networking, 9(4):285–300, 2016.

[4] Ioannis Psaras, Wei Koong Chai, and George Pavlou. Probabilistic in-network
caching for information-centric networks. In Proceedings of the second edition of
the ICN workshop on Information-centric networking, pages 55–60. ACM, 2012.

[5] bigdatanerd. Introduction to data mining – Types of data mining techniques, June
2011. Library Catalog: bigdatanerd.wordpress.com.

[6] Adelaja Oluwaseun and Mani Chaubey. Data mining classification techniques on the
analysis of student’s performance. 7:17, 04 2019.

[7] Piyush Tyagi. Clustering, December 2018. Library Catalog: medium.com.

[8] Yusung Kim and Ikjun Yeom. Performance analysis of in-network caching for content-
centric networking. Computer Networks, 57(13):2465 – 2482, 2013.

[9] G. Prabaharan and S. Jayashri. Mobile cluster head selection using soft computing
technique in wireless sensor network. Soft Computing, 23(18):8525–8538, September
2019.

[10] Rick-Anderson. Distributed caching in ASP.NET Core. Library Catalog:
docs.microsoft.com.

[11] Hierarchical Caching — Apache Traffic Server 10.0.0 documentation.

[12] Xueyan Tang and S. T. Chanson. Coordinated en-route web caching. IEEE Trans-
actions on Computers, 51(6):595–607, June 2002.

[13] Named Data Networking (NDN) - A Future Internet Architecture. Library Catalog:
named-data.net.

41

BIBLIOGRAPHY

[14] Faiza Qazi, Osman Khalid, Rao Naveed Bin Rais, Imran Ali Khan, et al. Optimal
content caching in content-centric networks. Wireless Communications and Mobile
Computing, 2019, 2019.

[15] Zhongxing Ming, Mingwei Xu, and Dan Wang. Age-based cooperative caching in
information-centric networks. In 2012 Proceedings IEEE INFOCOM Workshops,
pages 268–273. IEEE, 2012.

[16] T.M. Mitchell. Machine Learning. McGraw-Hill International Editions. McGraw-Hill,
1997.

[17] Thomas H. Davenport. Machine learning. https://www.sas.com/en_us/insights/
analytics/machine-learning.html, 2019.

[18] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques.
01 2012.

[19] Swati Gupta. A Regression Modeling Technique on Data Mining. International
Journal of Computer Applications, 116(9):27–29, April 2015.

[20] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining association
rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–
499, 1994.

[21] Hannu Toivonen. Apriori Algorithm, pages 39–40. Springer US, Boston, MA, 2010.

[22] What is Python? Executive Summary. Library Catalog: www.python.org.

[23] Z. Li and G. Simon. Time-shifted tv in content centric networks: The case for
cooperative in-network caching. In 2011 IEEE International Conference on Commu-
nications (ICC), pages 1–6, June 2011.

[24] Nikolaos Laoutaris, Hao Che, and Ioannis Stavrakakis. The lcd interconnection of
lru caches and its analysis. Performance Evaluation, 63(7):609–634, 2006.

[25] Michael Dahlin, Randolph Y. Wang, Thomas E. Anderson, and David A. Patterson.
Cooperative caching: using remote client memory to improve file system performance.
In OSDI ’94, 1994.

[26] M. J. Feeley, W. E. Morgan, E. P. Pighin, A. R. Karlin, H. M. Levy, and C. A.
Thekkath. Implementing global memory management in a workstation cluster.
SIGOPS Oper. Syst. Rev., 29(5):201–212, December 1995.

[27] Tutorials Point. Artificial intelligence neural networks.
https : / / www.tutorialspoint.com / artificial_intelligence /
artificial_intelligence_neural_networks.htm, May 2019.

[28] Aish Warya. Introduction to recurrent neural network. https : / /
www.geeksforgeeks.org/introduction-to-recurrent-neural-network/.

42

https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.htm
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.htm
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

	Introduction
	Cache Management
	Introduction
	Cache Definition
	Cache Placement
	Coordinated Schemes
	Explicit Schemes
	Implicit schemes

	probabilistic schemes
	Leave Copy Everywhere (LCE) Caching Scheme
	Age based Probabilistic Caching Scheme

	Cache Replacement
	LRU(Least Recently Used)
	FIFO(First In First Out)
	LFU(Least Frequently used)

	Conclusion

	Data Mining
	Introduction
	Artificial intelligence
	Machine learning
	Types of machine learning
	Supervised machine learning
	Unsupervised machine learning
	Semi-supervised machine learning
	Reinforcement machine learning

	Deep learning

	Data mining tasks
	Classification Analysis
	Regression Analysis
	Clustering
	Association rules

	Apriori algorithm
	Theory behind the Apriori algorithm
	Support
	Confidence
	Lift

	Apriori algorithm steps

	Conclusion

	 Design and implementation
	Introduction
	Improving LFU using apriori algorithm :
	Softwares and tools
	Python
	Hardware
	Dataset

	Implementation of the apriori algorithm
	Importing the libraries
	Importing the Dataset
	Pre-processing the Dataset
	Applying Apriori
	Viewing the Results

	Implementing LFU algorithm
	Creating the data structure
	The get() function
	The put() function
	Compilation
	Results

	Improving LFU cache scheme results
	Discussing the results
	LFU size10 test results:
	LFU size 18 test results:
	LFU size 24 test results
	Discussion
	Conclusion

	Conclusion

