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Abstract

Video processing is becoming increasingly important for several applications. A great
progress has been made in the field using Machine Learning (ML), especially the Deep
Learning (DL) which is the subfield that mimics the human brain by modeling the
biological neural networks using a tool called Artificial Neural Networks (ANNs) . The Two
most important ANNs are Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN). Long Short-Term Memory (LSTM) is one of the most commonly used
RNN architecture that have achieved great success in processing sequential multimedia
data like video. The aims of this work is to find a combination of the most suitable ANNs
for building a model that is able to classify videos into their respective categories. In this
perspective, we have experimented two different approaches. The first one uses only a CNN,
and the second one uses both CNN and LSTM in order to perform a video classification on
three splits of training/test data from the UCF-101 dataset. The experiments confirm that
using RNN combined with CNN achieved impressive performance compared to using CNN
alone, which has difficulties with videos considering their dynamic structure.

Keywords: Machine Learning (ML), Deep Learning (DL), Video classification,
Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Recurrent
Neural Network (RNN), Long Short-Term Memory (LSTM), UCF-101.



Résumé

Le traitement des vidéos prend de plus en plus d’importance dans de nombreuse ap-
plications. De grand progrès ont été réalisé dans ce domaine grace a l’Apprentissage
Automatique (AA), en particulier l’Apprentissage Profond (AP), qui est le sous-domaine
qui imite le cerveau humain en modélisant les réseaux de neurones biologiques à l’aide d’un
outil appelé Réseaux de Neurones Artificiels (RNA). Les deux RNA les plus importants
sont les Réseaux de Neurones Convolutives (RNCs) et les Réseaux de Neurones Récurrents
(RNRs). La Mémoire Court et Long Terme (MCLT) est l’une des architectures RNR la plus
fréquemment utilisées grâce à son grand succès dans le traitement de donnée séquentielles
comme la vidéo. L’objectif de ce travail est de trouver une combinaison de RNA la plus
appropriée pour construire un modèle capable de classer les vidéos dans leurs catégories
respectives. Dans cette perspective, nous avons expérimenté deux approches différentes. La
premiere utilise uniquement un RNC, et la deuxieme utilise à la fois un RNC et une MCLT
afin d’effectuer une classification vidéo sur trois distribustions de données entraînement /
test provenant de l’ensemble de données UCF-101. Les experimentations confirment que
l’utilisation d’un RNR combinée avec un RNC donnait des résultats impressionnants par
rapport à l’utilisation de l’RNC seul, qui a des difficultés avec les vidéos compte tenu de
leur structure dynamique.

Mots-clés: Apprentissage Automatique (AA), Apprentissage Profond (AP), Clas-
sification des vidéos, Réseau de Neurones Artificiel (RNA), Réseau de Neurones Convolutive
(RNC), Réseau de Neurones Récurrent (RNR), Long Short-Term Memory (LSTM),
UCF-101.



ملخص

تحديدا الآلي, التعلم بإستخدام المجال هذا في كبير تقدم إحراز تم التطبيقات. من للعديد متزايدة أهمية ذات الفيديو معالجة أصبحت
تسمى أداة باستخدام البيولوجية العصبية الشبكات نمذجة خلال من البشري الدماغ يحاكي فرعي كمجال يعرف الذي العميق التعلم
العصبية الشبكات و التلافيفية العصبية الشبكات هما الأهم الاصطناعيتين العصبيتين الشبكتين الاصطناعية. العصبية الشبكات
بفضل استخدامًا الأكثر الهندسات من واحدة هي المتكررة العصبية بالشبكات الخاصة المدى طويلة­قصيرة الذاكرة المتكررة.

الشبكات تركيبة على العثور الى العمل هذا يهدف الفيديو. مثل المتسلسلة المتعددة الوسائط بيانات معالجة في حققته الذي النجاح
الأولى مختلفتين. طريقتين جربنا المنظور، هذا من المناسبة. أصنافها الى الفيديو مقاطع يصنف نموذج لبناء الملائمة العصبية
بهدف المدى, طويلة­قصيرة ذاكرة إلى إضافة تلافيفية عصبية شبكة على تعتمد الثانية و معزولة, تلافيفية عصبية شبكة تستخدم
الشبكة دمج أن التجارب .أكدت UCF­101 بيانات مجموعة من الاختبار / التدريب توزيعات ثلاثة على الفيديو مقاطع تصنيف
التي و معزولة, التلافيفية العصبية الشبكة باستخدام مقارنةً مذهلاً أداءً حقق تلافيفية عصبية شبكة إلى إضافة التكرارية العصبية

الديناميكية. بنيتها بإعتبار الفيديو مقاطع مع صعوبات واجهت

التلاففية, العصبية الشبكة الاصطناعية, العصبية الشبكة الفيديو, مقاطع تصنيف العميق, التعلم الآلة, تعلم مفتاحية: كلمات
.UCF­101 , المدى طويلة­قصيرة لذاكرة التكرارية, العصبية الشبكة

.
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Introduction
In recent years, the advancement in technology promoted the rapid growth of data

volume, the variety and size of this data requires efficient processing using new algorithms.
Modern Artificial Intelligence (AI), more specifically Machine Learning (ML) is able to uti-
lizes this data along with the available computational power for good, solving very complex
problems, and automating tasks which are relevant to us daily.

AI researchers also included the human brain in theirs studies after being inspired by
it and that gave birth to a sub field in ML called Deep Learning (DL) which had a huge
contribution in the success achieved by ML in many fields. For instance, Computer Vision
(CV) which is the field that studies and improves the ability of computers to visualize and
understand the content of images and videos and harness the knowledge contained in them.

One of the problems treated by CV is video classification. It is a supervised learning
problem where a set of videos is classified as one of a number of predefined classes based on
the features learned from a training set.

Achieving efficient video classification opens a lot of doors to several applications, includ-
ing video surveillance systems, robotics, data organization, etc. That is why it is considered
a huge milestone in the road of building intelligent systems that make use of the massive
volumes of video data available nowadays. Many researchers worked hard on this prob-
lem either by classifying the frames of a video separately disregarding their relation, or by
considering that relation and using it as a booster for classification.

In this document, we investigate and study the most convenient DL tools for video
classification. Those being Convolutional Neural Networks (CNN), and Recurrent Neural
Networks (RNN). We explore two different approaches for building a video classification
model on the UCF-101 dataset and compare and discuss their performances.

Our document is structured as follows:

• In the first chapter we talk about AI, ML and DL and their relationship. In addition,
we go through DL in more details outlining its origins, inspirations, challenges, the
resources it utilizes as well as a quick rundown of the mathematics behind it.

• In the second chapter, we first talk about Computer Vision (CV) and highlight the
contribution of DL to it. Moreover, we mention some of the tasks involving videos as
data for training in addition to the video data availability nowadays. Next, we define
video classification and explain the different challenges encountered with it. Finally
we clarify the different approaches made by the AI community to solve it.

• In the third and final chapter, we present the implementation of two different
models for video classification including a brief explanation of the software, hardware
and the dataset used for the experiment (UCF-101) and finally, a discussion of the
results reported by each model.
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Chapter 1

Artificial Intelligence, Machine
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CHAPTER 1. ARTIFICIAL INTELLIGENCE, MACHINE LEARNING AND DEEP
LEARNING

1.1 Introduction
Nowadays, AI became among the most interesting fields of computer science, due to its

efficiency in solving very complex problems and automating day to day tasks that were once
considered hard, rather impossible for a machine to comprehend. A lot of the credit for that
goes to ML and DL.
In this chapter, we will present definitions and concepts about ML and its divisions. More-
over, we will explain DL and some of its tools and techniques in a more profound manner.

1.2 Artificial Intelligence
AI is a trending branch in computer science. It is defined by Bellman as:

“The automation of activities that we associate with human thinking, activities such as
decision-making, problem solving, learning”[8].
AI’s significance is growing in parallel with the data explosion caused by the internet, and
the rise of powerful computers. In the meantime, the enormous shift from Expert Systems
to ML exploited massive amounts of data by putting the available powerful computers to
good use aiming to get a step closer to real AI.

Since Alan Turing proposed the Turing Test[9] concept, which was a huge milestone for
AI. The field has evolved remarkably thanks to ML.

1.3 Machine Learning
ML is a sub-field of AI, which uses several techniques to enable computers to learn from

data and predict results. The term machine learning was popularized by Arthur Samuel in
1959 as:
“... the field of study that gives computers the ability to learn without being explicitly
programmed”[10].
Moreover, a widely quoted definition was proposed by Tom Mitchell who stated that:
“A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T, as measured by P, improves
with experience E”[11].

ML introduced a whole new paradigm of programming for solving problems. Unlike
classical programming where we feed the program rules and data expecting answers (e.g.,
the sum of two integers), ML algorithms receive data and answers as labeled data1, and they
figure out the rules using statistical methods based on the data (Figure 1.1). Additionally,
the algorithm is tested to judge its performance using the answers provided earlier.

Along with the rise of Big Data2. Humans need a tool to extract and take advantage of
1There are cases where the model does not receive answers with the data. Because the goal is to find out

how the data is structured so there is no exact answers to be defined. This will be discussed in subsection
1.3.1.

2Refer to this article for a good and brief explanation of Big Data: https://medium.com/swlh/
big-data-explained-38656c70d15d.

4

https://medium.com/swlh/big-data-explained-38656c70d15d
https://medium.com/swlh/big-data-explained-38656c70d15d


CHAPTER 1. ARTIFICIAL INTELLIGENCE, MACHINE LEARNING AND DEEP
LEARNING

Figure 1.1: The difference between ML and classical programming.

the knowledge within that data, and this is where the importance of ML manifests. In fact,
ML is continuously being used to create smart systems that function with minimum human
intervention.

1.3.1 Types Of Machine Learning
Supervised Learning In supervised learning, an algorithm outputs a predicted label for

an input, based on the rules extracted from labeled training data. Theoretically, it is
approximating a target function that maps some inputs to an output label3. For ex-
ample, the target function could map the features of a house to a price, or an Magnetic
Resonance Imaging (MRI) scan to one of two classes: malignant tumor/begnin tumor.
The algorithm starts by some random function and tries to mimic the behavior of
the target function iteratively, by comparing the predictions to the real corresponding
outputs and adjusting the function at hand consequently.

Unsupervised Learning Unsupervised learning consists of deducing a function to repre-
sent a hidden structure from unlabeled training data. We only have a collection of input
examples and the model tries to find any correlations between instances and detect
outliers, aiming to cluster the data set instances in groups which behave similarly.

Reinforcement Learning In Reinforcement Learning (RL), the learning system, which is a
software-defined agent, interacts with a dynamic environment in which it must attain a
certain goal. There is no direct access to the correct output. However, we can get some
measure of the quality of an output following a certain input. The program is provided
with rewards and punishments as it navigates its problem space. RL algorithms were
able to create models with astounding performance such as Deepmind’s AlphaGo4,
which is an algorithm that beat the world champion of the Go board game. Other RL
models excelled at several other more complex games[12, 13].
Figure 1.2 shows some algorithms included in each type of machine learning.

3If the label is a continuous value we call it regression, but if it belongs to a finite number of values (For
example 0 or 1) its called classification.

4https://deepmind.com/blog/article/alphago-zero-starting-scratch
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Figure 1.2: Some of the algorithms for each type of ML

1.4 Deep Learning
DL is the sub field of ML that caused a huge improvement in resolving tasks such as

speech recognition[14], image recognition[15], topic classification, sentiment analysis, ques-
tion answering[16] and language translation[17, 18].

DL uses representation-learning methods that exploit multiple levels of data representa-
tions. For classification tasks, deeper layers of data representation emphasis aspects of the
input that are important for discriminating specific classes, and also suppresses irrelevant
aspects that have little effect on the classification. For example, in image classification we
start by simple two dimensional arrays. The features learned by the early layers of repre-
sentation could be simple edges and arrangements of these edges. Deeper layers may gather
fragments of familiar objects, and so on. Therefore, the deeper we go, the more features we
learn. One of the advantages of DL is that features that define an object or a class are not
calculated by humans. Instead, they are learned from data using a general purpose learning
procedure.

1.5 Difference between Machine Learning and Deep
Learning

Both ML and DL produce meaningful representations starting with the input data. A
data representation is a way to interpret or encode the data. For example, color schemes are
used to encode images.
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On one hand, ML algorithms tend to extract appropriate representations to only complete
the task at hand reliably. For example, a ML algorithm might explore only one or two
layers of data representation to reach ideal results and that is all. On the other hand,
DL is considered a sub field of ML, and it emphasizes on extracting successive layers of
meaningful representations. Modern DL can reach tens or even hundreds of successive layers
of representations using tools called artificial neural networks which are inspired by the
structure of the human brain.

1.6 Biological Neural Network
Biological Neural Networks are the reason why we get to experience the world around us.

They are composed of billions of connected biological neurons. Very complex computations
can be performed by combining the simple computations made by each neuron.

1.6.1 Biological Neurons
They are cells found in the cerebral cortex. As shown in figure 1.3, dendrites receive

electrical signals as weighted inputs. The inputs are used to compute an output signal by
the cell body. Once the output signal reaches a specific value, it passes through the axon
wire which is connected to other neurons using the synaptic terminal.

Figure 1.3: The structure of a Biological Neuron

1.6.2 Artificial Neurons
The artificial neuron is the model for the biological neuron. It takes a set of inputs,

it multiplies each input by a weight, computes the sum of all these weighted inputs plus a
constant value called a Bias. The weighted sum is then fed to a function called an Activation
Function, which forwards its output to a another neuron as input. Figure 1.4 illustrates the
structure of an artificial neuron.

1.7 Artificial Neural Network
The first ANN was called the Perceptron[19]. It was developed by Rosenblatt Frank

in 1957 who was inspired by Warren McCulloch and Walter Pitts[20]. Perceptrons used
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Figure 1.4: The structure of an artificial neuron

an artificial neuron called a linear threshold unit (LTU), in which the activation function
returns a value only if the weighted sum of the inputs exceeds a certain threshold. A single
perceptron was useful for simple linear binary classification but incapable of learning to
separate non linear data (XOR logical function). Later research showed that multi-layered
perceptrons were able to implement such functions and even more complex ones. Creating
what is now known as Deep Neural Networks.
In the next section, we will present some of the mostly used activation functions in DL.

1.8 Activation Functions
Different neurons require different activation functions in order to perform their task the

best. In the next subsections, we will discuss some of the most common activation functions
in DL and their characteristics and some of the tasks they are best suited for.

1.8.1 Rectified Linear Unit
The Rectified Linear Unit (ReLU) is defined by the equation 1.1:

y = f(z) = max(0, z) (1.1)

Where the function outputs 0 if the input is negative, and it outputs the input its self if it
was positive. Nowadays, ReLU is widely used, especially in CNNs. Some of its advantages is
eliminating the vanishing gradients problems, not to mention its cheap computational cost
and low training time5. Figure 1.5 shows the plot for the ReLU function.

5There exists some variations for ReLU such as the Exponential Linear Unit (ELU)[21] , Concatenated
ReLU (CReLU)[22] , etc.
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Figure 1.5: The ReLU function plot

1.8.2 Sigmoid
Sigmoid, also known as the Logistic Activation Function. It is often used in models that

output a probability, which is a value between 0 and 1. For example a cat/dog classifier,
where we have to classify an image as being either a cat (class 1) or a dog (class 0). So
as an answer, our model outputs a single value, which is the probability that the image is
classified as a cat. Keeping the ability to compute the other probability (of the image being
a dog) which is equal to 1− ŷ, where ŷ is the prediction.
The Sigmoid function is defined mathematically by equation 1.2 and figure 1.6 represents its
plot:

y = f(z) =
1

1 + e−z
(1.2)

Figure 1.6: The Sigmoid function plot

One of its benefits is that its is non linear, thus it can be used to classify non linear data
properly. However, In areas where z is very large or very low, the y value barley reacts to
changes of z, this causes the gradient to be very small, leading to the vanishing gradient
problem which makes training slower and more complicated. Despite that, Sigmoid is still
very popular in classification problems.
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1.8.3 Tanh
Tanh is a a nonlinear function similar to Sigmoid. The difference between them is that

the Tanh function ranges between -1 and 1, unlike Sigmoid who’s values range between 0 and
1. One of the pros tanh has over sigmoid is that its gradients are stronger and the derivatives
are steeper and that makes it less prone to cause the vanishing gradients problem. Therefore,
it is widely used in RNNs nowadays.
Tanh is defined mathematically by equation 1.3 and figure 1.7 represents its plot:

y = f(z) =
2

1 + e−2z
− 1 (1.3)

Figure 1.7: The Tanh function plot

1.8.4 Softmax
This function is widely used in the output layer in ANNs that perform multi class classi-

fication. It takes a vector of activations and outputs a vector that represents the probability
distribution of all possible input classifications. The Softmax function is defined by equation
1.4:

y = f(xi) =
exi∑
j e

xj
(1.4)

This function basically takes the input vector x and calculates a sum of the exponentials
of its components

∑
j e

xj . Then, to compute the first value of the output vector x1 it just
divides the exponential of x1 by the first sum, and so on(equation 1.4). The final output
is a vector of normalized probabilities that all add up to 1. This vector represents a trivial
tool to determine the highly favorable class according to the model, as a trained model will
output a vector in which the target class has the highest probability.
In the next section we will discuss some of the famous neural network types, starting with
Feed-Forward Networks.
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1.9 Types of Artificial Neural Networks

1.9.1 Feed-Forward Neural Network
Regardless of its structure, a single neuron cannot classify images or differentiate hand-

written digits, and that is why billions of neurons in the brain are stacked in layers. Feed-
Forward Neural Networks (FFNN) are constructed by connecting two or more layers of
neurons, in a way that every neuron’s inputs are the outputs of neurons from the previous
layer (Figure 1.8). The first layer in the network is called an input layer, and it contains
basic neurons that return whatever input they are fed. The last layer is the output layer,
and it outputs the prediction of the network, whereas layers in the middle are hidden layers
and their number represents the network’s depth. The weights of the inputs for each neuron
in a layer form a matrix called the weights matrix.

Figure 1.8: A FFNN with four layers: An input layer, an output layer and two hidden layers.
Notice how the inputs of each neuron are the outputs of the neurons from the previous layer
plus a bias unit.

These networks are called feed-forward because there is no connections between neurons
in the same layer. As a result, the information flows one way only.[23, 24].

1.9.2 Radial Basis Function Neural Network
Radial Basis Function Neural Networks (RBFNN) are 3 layered FFNNs. They are limited

to having only one hidden layer plus an input and an output layer. The hidden layer contains
neurons that use an activation function called a Radial Basis Function (RBF). RBFNNs map
non linearly separable data, to feature vectors in another space, causing the projected data to
be linearly separable. Only then, feature vectors are fed to the output layer for classification.
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The RBF neurons compute the distance between an input vector and a set of stored vectors.
For example: In the RBFNN presented in figure 1.9, if the distance between an input vector
x⃗ and µ⃗1 is big, the output of the upper neuron will be close to 0. Reversely, if the distance
is small, the output of the neuron will be close to 1. The output neurons are linear and they
serve as summation units[25]. Here are some of the most famous RBF functions:

• The multi-quadratic RBF: h(x) =
√
(d2 + c2)

• The thin plate spline function: h(x) = d2ln(d)

• The popular Gaussian RBF: h(x) = exp(−d2

2
)

Figure 1.9: A Radial Basis Function Network.

1.9.3 Kohonen Self Organizing Map
The Kohonen Self Organizing Map (K-SOM)[26] is a special type of ANN. It is trained

on unlabeled data for clustering purposes, and also used for Dimensionality Reduction. It
consists of an input layer connected to a grid of neurons called a Kohonen layer (Figure 1.10).
In training, the map starts by initializing the weights connecting the Kohonen layer with
the input neurons. A random input vector is selected from the data to trigger a competition
between the output nodes. Only the node whose weight vector is most similar to the input
vector will be activated and declared as the winner. The similarity is measured with a
certain distance (Manhattan, Euclidean, etc.). Next, The weight vectors of the winner and
its neighbors gets updated while considering a learning rate and a neighborhood size. Once
the weights are updated, a new data instance is chosen and the cycle repeats[27].
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Figure 1.10: A Kohonen Self Organizing Neural Network architecture.

1.9.4 Restricted Boltzman Machine
The Restricted Boltzman Machine (RBM) was originally invented by Geoffrey Hinton[28].

RBMs are ANNs with only two fully connected layers6 (A visible layer and a hidden layer).
RBMs can learn to reconstruct data in an unsupervised fashion, throughout several forward
and backward passes between the visible layer and the hidden layer. In the forward pass, the
visible layer receives a vector of inputs. Each node in the hidden layer receives a weighted
sum of the input values then adds a specific bias to them, then passes the results through
a sigmoid activation function. In the backward pass, the same procedure is repeated in the
opposite direction, using the same weights and a new bias for every weighted sum.
The weights of an RBM are initialized randomly, which causes the reconstructed data and
the original input to be different7. During training, this difference is backpropagated with
respect to weights iteratively until an error minimum is reached.
Figure 1.11 illustrates the training process of an RBM .

Figure 1.11: An illustration of the forward pass (left) and backward pass (right) in training
an RBM.

6The two layers of an RBM are fully connected. However the connections between neurons in the same
layer are restricted. This restriction makes an RBM a special class of Boltzman machines[29]

7This different is referred to as the reconstruction error
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1.9.5 Deep Belief Network
Deep Belief Networks (DBNs) emerged when Geoffery Hinton proved that RBMs can be

stacked and trained in a greedy manner[30]. Accordingly, DBNs can be defined as graphical
models with the ability to learn to extract deep hierarchical representations of the training
data. Technically, in a DBN, the hidden layer of each stacked RBM is the visible layer of
the next hidden layer. Thus, the training of a DBN consists of:

1. Training the first layer as an RBM that models a raw input vector as its visible layer.

2. Then, using that first layer to obtain a representation of the input.

3. Next, using the obtained representation as training examples for the next layer, con-
sidering the first hidden layer a visible layer in the next RBM.

4. Iterating steps 1, 2 and 3 for the desired number of layers.

Figure 1.12 illustrates the structure of an DBN.

Figure 1.12: The architecture of an DBN

1.9.6 Convolutional Neural Networks
CNNs are FFNNs adapted to data in the form of a grid. CNNs were first introduced in

the 1990s by Yann LeCun et al.[31], after being inspired by the studies of the brain’s visuel
cortex by Dr. Kunihiko Fukushima in the 1980s[32]8, and they have been widely used since
then.

A CNN uses a mathematical operation called convolution at least once in its early layers,
along with another operation called pooling. In other words, CNNs introduce convolutional
and pooling layers in the early stages of a FFNN. In order to explain convolutional and
pooling layers we must first talk about the convolution operation mathematically.

8Dr. Fukushima himself followed the work of David Hubel and Torsten Wiesel who performed a series of
experiments on animals [33, 34], giving crucial insights on the structure of the visual cortex
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Convolution Convolution is a mathematical operation denoted by (*), and it is defined
as follows: The convolution of two signals x and w with respect to time t is a signal
calculated by equation 1.5:

s(t) = (x ∗ w)(t) =
∫

x(a)w(t− a)da (1.5)

Realistically, computers cannot process time in a continuous from, therefore, it is
discretized. Thus, assuming that time t can then take on only integer values, we can
define the discrete convolution using equation 1.6:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a) (1.6)

In equation 1.6, the signal x is the input, the signal w is called the convolution kernel
whereas the output s(t) is referred to as the feature map.
In CNNs, the input and the kernel are usually multi-dimensional arrays containing a
finite number of integer values. That is why we usually assume that their signals (x
and w) are zero everywhere but the finite set of points for which we store the values.
As a result, we can transform the infinite summation into a finite summation. Finally,
we use convolutions over more than one axis at a time depending on the dimensions
of the input. For example, a two-dimensional input image I, is convolved using a
two-dimensional kernel K according to equation 1.7:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (1.7)

Because convolution is commutative, we can equivalently write equation 1.7 as:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (1.8)

However, many DL libraries don’t use this function precisely, instead they use an
operation called cross-correlation, which is considered the same as convolution but
it uses a slightly edited function defined by equation 1.9:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (1.9)

Many libraries implement cross-correlation but call it convolution[23].

Convolutional Layer Convolutional layers are the most important building block for
CNNs. Unlike fully connected layers, a neuron in a convolutional layer is not con-
nected to every neuron from the previous layer. Instead, it is connected to only a
group of neurons called the receptive field (Figure 1.13).
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Figure 1.13: An iluustration of how convolutional layers are connected: Each neuron in a
convolutional layer is connected to a rectangular small receptive field from the previous layer.

This structure allows the network to focus on low level features, and combine them
into high-level features going deeper in the network.
The use of fully connected layers for image recognition tasks will increase the number of
learnable parameters exponentially. For example, a 100 by 100 pixel image is flattened
to become an input layer with 10,000 neurons. Supposing that the first layer has just
1000 neurons, this implies 10 million connections for just the first layer. CNNs solve
this problem by following the sparse interactions principle illustrated in figure 1.14.

Figure 1.14: The difference between the presence of the sparse interaction principle (top)
and its absence (bottom) in a CNN: (Top) s3 is formed by convolution with a kernel of width
3. (Bottom) s3 is formed by matrix multiplication.

The second principle that CNNs follow is parameter sharing, which refers to different
locations sharing the same weights, rather then learning different sets of weights for
each location of the input array. In other words, the weights connecting a receptive
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field to a neuron, are the same as the weights connecting another receptive field to
another neuron in some other area of the array[23, 24]. Figure 1.15 illustrates the
difference between the presence of the parameter sharing principle and its absence.

Figure 1.15: The difference between the presence of the parameter sharing principle (top)
and its absence (bottom) in a CNN: The black arrows in the top figure indicate the shared
uses of the central value of the kernel in a CNN. Whereas the single black arrow in the
bottom figure indicates the use of the central element of the weight matrix in a FFNN.

Finally, the last principle that CNNs employ is pooling. It will be explained later.
First, we will explain some additional concepts which are substantial to convolution:

1. Filter: A filter or a convolution kernel is formed by the weights connecting a
receptive field to a neuron. Filters can also be seen as small arrays the size of
the receptive field9. The choice of these weights controls what kind of features
to extract from an input image. The reason is that convolution on an image
produces a feature map which enhances the areas in the image that are most
similar to the filter used. However, during training, a CNN finds the most useful
filters automatically, and combines them to get deeper relevant representations of
the input layer in order to do the job[23, 24]. Figure 1.16 shows the feature map
(right) resulting from convolution using a filter that looks for horizontal edges.
The filter emphasizes on areas where there is a sudden change of pixel intensity.

9Generally, filters of small sizes (3 by 3 or 5 by 5) are used. Less commonly, larger sizes are used (7 by 7)
but only in the first convolutional layer. Small filters achieve high representational power while also keeping
the number of parameters to learn small.

17



CHAPTER 1. ARTIFICIAL INTELLIGENCE, MACHINE LEARNING AND DEEP
LEARNING

Figure 1.16: The effect of a convolution using a filter that enhances horizontal edges

2. Valid Convolution: Using a filter of an odd size causes the feature map to be
smaller then the input image. This particular kind of convolution is called valid
convolution.

3. Same Convolution: In order for a feature map to have the same height and
width as the input layer, it is common to add zeros around the input image. It
is called zero padding and the operation becomes same convolution[24].

4. Strides: In order to make the connections between two layers more sparse, we
could use larger strides. A stride is the distance between two receptive fields of
two consecutive neurons in a convolutional layer. Hence, it is possible to connect
a large input layer to a much smaller layer by using a larger stride, which means
spacing out the receptive fields[24].
If we convolve an N by N image padded with P pixels using an F by F filter and
with a stride of S the resulting feature map will be of height

⌊
N+2P−F

S

⌋
+ 1 and

of width
⌊
N+2P−F

S

⌋
+ 1. Figure 1.17 illustrates the difference between a stride of

1 and a stride of 2.

Figure 1.17: An illustration of the sparsity of two strides: Connections between two layers
using a stride of 1 (Left), and using a stride of 2 (Right).
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Pooling Layer CNNs employ another type of layers called pooling layers. They perform
a pooling operation which reduces the size of a feature map given as input, aiming to
lower the computational load, memory usage and the number of parameters to learn.
Moreover, pooling makes the detected features more robust as it returns a condensed
version of the input, plus it introduces the location invariance concept to the network,
which means that the network becomes tolerant to small shifts in pixel values, because
the values of the pooled output do not change if the input values shifted a little.
Unlike convolutional layers, pooling layers do not have parameters to learn because
they apply an aggregation function to the outputs of a small set of units from the
previous layer without weighing them. Therefore, pooling summaries the outputs over
a small neighborhood which leads to a compact representation with robust features[24].
Different types of pooling layers exist, each one uses a different pooling function:

Max Pooling Returns the maximum within a rectangular neighborhood.
Average Pooling Returns the average of a rectangular neighborhood.
L2 Norm Pooling Returns the L2 norm of a rectangular neighborhood.
Weighted Average Pooling Returns the weighted average based on the distance

from the central pixel.

Figure 1.18 shows the effect of a max pooling layer. It is the most common type of
pooling layers. This example uses a pooling kernel of size 2 by 2, a stride of 2, and
no padding. Note that only the max input value in each kernel makes it to the next
layer. The other inputs are dropped.

Figure 1.18: The effect of a max pooling layer on an image

Convolutions Over Volumes Nowadays, images are represented using color schemes.
The most commonly used one is the Red, Green and Blue (RGB) scheme. Conse-
quently, CNNs use 3D filters to convolve RGB input images and produce one layered
feature maps. The filters must have the same depth as the input image, so that the
red channel’s receptive fields are weighed using the first layer of the filter, the green
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channel’s receptive fields are weighed using the second layer of the filter and so on.
A neuron sums up of all three weighted receptive fields from the previous layer, and
does some further calculations. In order diversify features, CNNs use several filters
in order to produce an output volume that consists of slices as shown in figure 1.19.
The depth of the output volume is equivalent to the number of filters used, and that
volume can be the input to another convolutional layer for extracting even higher-level
features [35]. In the next subsection, we will explain how did the previously mentioned
components were gathered to form famous stat of the art CNN architectures.

Figure 1.19: A 3D visualization of the convolution of an RGB image with 6 different filters

Convolutional Neural Network Architectures

1. LeNet-5: The LeNet-5 is the first CNN architecture designed. It was created by Yann
LeCun in 1998 for handwritten digit recognition and it was trained on the MNIST
dataset[31]. It contains a total of 7 layers. Three convolutional layers, two pooling
layers followed by two fully connected layers.
The pooling operation used originally in the paper had the four inputs to a unit in
the pooling layers, summed then multiplied by a trainable coefficient and added to a
trainable bias. Therefore, pooling layers had parameter to learn. The output layer
consisted of 10 neurons with a radial basis activation function.
Figure 1.20 illustrate the architecture of the LeNet-5 network, and table 1.1 summarizes
further details about architecture.

Figure 1.20: The architecture of the LeNet-5 CNN
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Table 1.1: Summary of the LeNet-5 architecture

Layer Type
Output
Depth Size

Kernel
Size Stride Activation

Number Of
Parameters

In Image 1 32x32 - - -
C1 Convolution 6 28x28 5x5 1 tanh 156
S2 Average Pooling 6 14x14 2x2 2 tanh 12
C3 Convolution 16 10x10 5x5 1 tanh 1,516
S4 Average Pooling 16 5x5 2x2 2 tanh 32
C5 Convolution 120 1x1 5x5 1 tanh 48,120
F6 Fully Connected - 84 - - tanh 10,164
Out Fully Connected - 10 - - RBF -

2. AlexNet: The AlexNet architecture was developed in 2012, by Alex Krizhevsky, Ilya
Sutskever and Geoffrey Hinton[15] as a contribution in the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) challenge that year. This model achieved state
of the art classification accuracy when compared to all the existing machine learning
approaches10. Figure 1.21 and table 1.2 illustrate the AlexNet architecture and its
layers. To reduce overfitting, the authors utilized regularization techniques, such as
dropouts and data augmentation. They also used a technique called Local Response
Normalization (LRN) in order to improve generalization.
A modified version of AlexNet called ZFNet[36] was developed by Matthew Zeiler and
Rob Fergus. It is the same as AlexNet with a few altered hyperparameters (num-
ber of feature maps, kernel size, stride, etc.). ZFNet was not strictly the winner of
ILSVLC 2013. Instead, Clarifai which had only small improvement over ZFNet, was
the winner11.

Figure 1.21: The architecture of the AlexNet CNN
10http://image-net.org/challenges/LSVRC/2012/results.html
11http://www.image-net.org/challenges/LSVRC/2013/results.php
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Table 1.2: Summary of the AlexNet network architecture.

Layer Type
Output
Depth

Output
Size

Kernel
Size Stride Padding Activation

Number Of
Parameters

In Input 3 224x224 - - - - 0
C1 Convolution 96 55x55 11x11 4 Same RELU 34,944
S2 Max Pooling 96 27x27 3x3 2 Valid - 0
C3 Convolution 256 27x27 5x5 1 Same RELU 614,656
S4 Max Pooling 256 13x13 3x3 2 Valid - 0
C5 Convolution 384 13x13 3x3 1 Same RELU 885,120
C6 Convolution 384 13x13 3x3 1 Same RELU 1,327,488
C7 Convolution 256 13x13 3x3 1 Same RELU 884,992
S8 Max Pooling 256 6x6 3x3 2 Valid RELU 0
F9 Fully Connected - 4,096 - - - RELU 37,752,832
F10 Fully Connected - 4,096 - - - RELU 16,781,312
Out Fully Connected - 1,000 - - - SOFTMAX 4,097,000

3. VGG-16: In 2014, Karen Simonyan and Andrew Zisserman introduced a deeper net-
work called VGG-16[37]. It improved the AlexNet architecture by replacing the large
kernel sized filters (in layers C1 and C3) with multiple consecutive 3x3 kernel-sized fil-
ters. VGG16 was trained for weeks using NVIDIA Titan Black GPU’s. The VGG-16
architecture is depicted in figure 1.22.

Figure 1.22: The architecture of the VGG-16 CNN
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4. GoogLeNet (Inception): In the same year as VGG-16, Google researcher team
Christian Szegedy et al. released a model called GoogLeNet[38], and it was the first
of the series Inception (Inception V1). Incepetion V1, was the winner of the ILSVRC
2014, with a top-5 error rate of 6.67%12.
GoogLeNet introduces the use of 1x1 convolutions for reducing input dimensions, plus,
it applies convolutions with multiple sized filters on one input then stacks the output
feature maps together, and that is all done thanks to Inception Modules.
Here is an example that shows how does 1x1 convolution reduces computations. If we
have an input volume of dimensions 10x10x256 and we need to perform 5x5 convolution
with 20 filters, we have two choices:

Without 1x1 convolution The total number of operations = (5 ∗ 5 ∗ 256) ∗ (10 ∗
10) ∗ 20 = 12, 800, 000.

With 1x1 convolution we apply 1x1 then 5x5 convolution:
• The operations for the 1x1 convolution = (1∗1∗256)∗(10∗10)∗20 = 512, 000

• The operations for the 5x5 convolution = (5∗5∗20)∗(10∗10)∗20 = 1, 000, 000

• The total number of operations = 512, 000 + 1, 000, 000 = 1, 512, 000 which
is way better then 12,800,000.

Figure 1.23 Shows the difference between a naive Inception module without 1x1 con-
volution (a) and an Inception module with 1x1 convolution(b).
Inception V1 consists of a 22 layers (Figure 1.24), with about 4 million parameters to
train.

Figure 1.23: The naive Inception module and the Inception module with dimension reduction
12http://www.image-net.org/challenges/LSVRC/2014/results
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Figure 1.24: The architecture of the GoogLeNet (Inception) model

5. ResNets: ResNet was developed in 2015 by Kaiming He et al. It is one of the state of
the art models for being the winner of ILSVRC 2015 in image classification, detection,
and localization13, as well as the winner of Microsoft Common Objects in Context (MS
COCO) 2015 detection, and segmentation 14.
Judging by the previous models, its intuitive to think that adding more layers to a
network will improve its performance. However, this idea turned out to be wrong.
Adding more layers causes the Vanishing/Exploding Gradients problem which leads
to accuracy degradation as shown in Figure 1.25. ResNets overcame this challenge
by introducing Skip/Shortcut Connection inside what is called a residual block. The
original paper states that:
“Formally, denoting the desired underlying mapping as H(x), we let the stacked non-
linear layers fit another mapping of F(x) := H(x)-x. The original mapping is recast
into F(x)+x. We hypothesize that it is easier to optimize the residual mapping than to
optimize the original, unreferenced mapping. To the extreme, if an identity mapping
were optimal, it would be easier to push the residual to zero than to fit an identity
mapping by a stack of nonlinear layers”[39]. These skip connections allowed the the
implementation of very deep networks, without any vanishing gradients. In fact the au-
thors of the paper increased the network depth to 152 layers, as a result, a 5.71% top-5
error rate is obtained which is much better than VGG-16, GoogLeNet (Inception-v1).
Figure 1.26 illustrates the architecture of a residual block, while figure 1.27 shows a 34
layer ResNet side by side with a plain 34 layer network and the VGG-19 network.

13http://image-net.org/challenges/LSVRC/2015/results
14http://cocodataset.org/#detection-2015
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Figure 1.25: The training error (left) and test error (right) on CIFAR-10 with 20-layer and
56-layer “plain” networks.

Figure 1.26: The structure of a basic residual block
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Figure 1.27: A residual network with 34 layers, a plain 34 layer network and the VGG-19
network 26
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Training A Convolutional Neural Network Network training is the procedure of
searching for the optimal set of weights for the network. Ideally, the network searches
for the set of weights that leads to a correct prediction whenever a new data instance
is passed through.
Before we discuss the training of an artificial neural network in detail, we must talk
about the image preprocessing phase that takes place before the training.
Image Preprocessing: Image preprocessing consists of editing the dataset images
to make them more convenient for training and testing. Here are some of the usual
modifications applied before training:

Normalizing Pixel Values Pixel values in RGB images are between 0 and 255, and
we usually normalize them to become between 0 and 1 by dividing each pixel by
255. This makes the network’s weights converge faster towards the optimal values
during training.

Rescaling Images Images in the dataset may be of different sizes, therefore they need
to be reshaped in order to have uniform dimensions assuming that the subject of
interest is in the middle.

Data Augmentation This technique aims to eliminate a problem called Overfitting.
Logically, if we have small training data, our model has a low probability of
getting accurate predictions for data that it hasn’t yet seen, this is overfitting.
To put it simply, if we are training a model to spot cats, and the model has
never seen what a cat looks like when lying down, it might not recognize that in
future. Data augmentation addresses this problem by applying transformations
like rotation, skew, mirroring, ect. on the original dataset images, extending it
to beyond what we already have.

All FFNNs including CNNs follow the same training procedure. They start by ini-
tializing the weights of the network randomly. At first, the network starts with bad
accuracy and it tries to enhance it. Data instances are forward propagated through the
network one by one and predictions are made. Then, these predictions are compared
to the labels to compute a loss. A higher loss indicates bad accuracy. Of course our
goal is to decrease the loss to a minimum value by the end of training. To do that, the
weights get altered starting by the output layer and going back in the network. How-
ever, instead of editing the weights randomly, they are modified following a specific
optimization algorithm, also known as an optimizer. This works because the problem
of training a network is equivalent to the problem of minimizing the loss function with
respect to the weights. The weights that minimize the loss function are the same as
ones that give right predictions.
There are several loss function as well as optimizers. In the next section we will mention
and explain some of the well known loss functions in DL.

1.9.7 Recurrent Neural Networks
RNNs are a class of neural networks adapted to processing sequences of inputs thanks

to a temporal memory they possess. A memory is useful for tasks like predicting the next
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word of a sentence, where previous inputs are important for predicting the next output.The
first form of RNNs was popularized by John Hopfield in 1982 and they were called Hopfield
Networks[40].

The most basic component of an RNN is the recurrent neuron. At each time step, the
neuron receives an input scalar in addition to the output from the previous time step. It
passes their weighted sum through a Tanh activation function producing an output. Joining
several recurrent neurons produces a basic memory cell which interacts with vectors instead
of scalars. An RNN can be represented against the time axis by performing an operation
called unrolling, which is a substantial concept for handling RNNs. Figure 1.28 represents a
basic RNN unrolled through 3 time steps.

Figure 1.28: A basic unrolled recurrent neural network

ht signifies the hidden state of the network at time step t and it is computed by equation
1.10:

ht = ϕ(Xt · U + ht−1 · V + bh) (1.10)

Ot is the output of the network at time step t, it is calculated by equation 1.11:

Ot = ϕ(ht ·W + bo) (1.11)

As shown in figure 1.28, at time step t, the network receives two input vectors:

• The input vector of the current time step Xt multiplied by a weight matrix U .

• The hidden state from the previous time step ht−1 multiplied by a weight matrix V .

These two vectors are summed up along with a bias vector bh, and passed through an
activation function ϕ to produce ht.
Finally, to get the output Ot we multiply the hidden state vector ht with a weight matrix
W then add a bias vector bo and pass the result to an activation function ϕ.

In this basic architecture, the output is just a weighted version of the state plus a bias15.
However that is not always the case as there are more complicated architectures, where the
output and the state of the network are computed using complex operations.

15In some sources, this simple architecture is refereed to as a Vanilla RNN
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The mechanism presented in figure 1.28 allows the network to function in different ways,
depending on the size of the sequence we provide as input, and the size of the output sequence
we expect. Figure 1.29 summarizes some of the ways RNNs are used.

Figure 1.29: The applications of an RNN

The red rectangles in figure 1.29 represent input sequences with different lengths, and the
green ones are the RNN unfolded throughout several time steps. Lastly, the blue rectangles
resemble the output given by the network in each case. For example, In the one to many
model, we can give a trained RNN a sequence of length 1 (an image), and it will output a
sequence for each time step (sequence of words or a caption). In the next subsection we will
explain how RNN are trained.
Training A Recurrent Neural Network Training an RNN properly requires data to be

compatible with the task at hand. For example, if we are training a many to many
model (Figure 1.29), the output for each time step must be predefined within the data
because it is crucial for computing the loss. The training takes place after unrolling
the network through time.
According to the backpropagation algorithm, we initialize the weights, apply the for-
ward pass and get some predictions. Then, we compute the loss depending on the
number of outputs we received. The next step is the backward pass in which we up-
date the weights according to the gradients computed at each time step. The version of
back propagation for RNN training is called Back Propagation Through Time (BPTT)
.
In the backward pass, the algorithm updates the weights of the network by computing
the gradients of the loss function with respect to the weights. In a vanilla RNN
architecture, the gradients tend to get smaller as we back off to earlier steps, and that
is because a gradient is mathematically computed by the product of a set of small
factors. Since these gradients contribute dramatically in the weights update. The
weights start to alter very slowly to a point where the update is nearly null, therefore
the best solution for optimizing the loss function will never be reached. This is called
the Vanishing Gradients problem.
There are other scenarios where the gradient gets very high, because the factors that
influence it are high, and their product causes an explosion in value. As a result, the
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weight update will be exaggerated and the weights will diverge from the minimum.
This is the Exploding Gradients problem. These problems were explored in depth by
Hochreiter in[41], and by Bengio, et al. in[42].
Another downside of vanilla RNNs is their incapability of modeling the long term
dependencies in the data which results from the vaniching gradients. For example, if
we are trying to predict the next word in a sentence, and we see an important word in
the beginning of the sentence. The model will not be able to use the semantic value
of that word to make correct predictions as the sequence gets longer.
Razvan Pascanu et al[43]. proposed Gradient Clipping as a solution for Exploding
Gradients, while brand new architectures were invented to cope with the Vanishing
Gradients problem.

Long Short Term Memory Long Short Term Memory (LSTM) is an architecture for
RNNs introduced by Sepp Hochreiter and Jürgen Schmidhuber in 1997[44]. It was the
solution for the vanishing gradients problem encountered by vanilla RNNs. LSTMs
also solved the long-term dependency problem as they succeeded to easily capture
relevant information throughout very long sequences.
LSTM memory cells keep track of two separate states. The long term cell state denoted
by Ct, and the short term cell state denoted by ht. Furthermore, LSTMs introduce the
concept of gates which are sigmoid neural network layers, who’s job is to control the
flow of the information by outputting numbers between zero and one, deciding how
much of the input should be let through and how much should be excluded.
The general intuition behind LSTMs is to learn what to store in the long-term state,
what to throw away, and what to read from it. Figure 1.30 illustrates the mechanism
behind an LSTM memory cell.

Figure 1.30: The mechanism of an LSTM memory cell

At each time step, the LSTM cell receives an input vector Xt, the short-term cell state
from the previous step ht−1 and the long term cell state Ct−1 from the previous step.
The previous cell state information Ct−1 enters the cell from left. First, it drops some
information under the influence of the forget gate. Next, it receives some informa-
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tion with the help of the input gate. Finally, it is sent straight out with no further
modifications. ht−1 and Xt are fed to four gates:

The Forget Gate This gate is trained to determine which parts of the long term
state should be erased. The output of this gate ft is forwarded to an element wise
multiplication with the long term cell state from the previous time step Ct−1 to
modify it accordingly. The vector ft is calculated by equation 1.12:

ft = σ(Wf · [ht−1, Xt] + bf ) (1.12)

Tanh activation function This is not necessarily a gate but its job is to analyze the
current inputs Xt and the previous short term state ht−1 to produce a vector of
new candidate values for Ct. C̃t is computed by equation 1.13:

C̃t = tanh(WC · [ht−1, Xt] + bC) (1.13)

Input Gate This sigmoid layer decides what information from the previous vector
(candidate values) to add to the cell state. it is computed by equation 1.14:

it = σ(Wi · [ht−1, Xt] + bi) (1.14)

All what is left is to perform the updates to the previous long term state to get
the current cell state Ct according to equation 1.15:

Ct = ft ∗ Ct−1 + it ∗ C̃t (1.15)

Output Gate This gate filters the long term state Ct and decides what should be
read and output at this time step ht. It is calculated by equation 1.16:

ht = ot ∗ tanh(Ct) (1.16)

Where ot is the output of the output gate and its given by equation 1.17:

ot = σ(Wo · [ht−1, Xt] + bo) (1.17)

In the equations 1.12, 1.13, 1.14 and 1.17, [ht−1, Xt] refers to the concatenation of
the two vectors ht−1 and Xt, while Wf , WC , Wi and Wo are weight matrices learned
during training. bf , bC , bi and bo represent the bias vectors which are also learned
during training. Finally the σ refers to the sigmoid activation function.
LSTM is widely used nowadays, thanks to the success it achieved in tasks related to
sequence treatment. However, its is not the only architecture which uses gates, as
there are many others. In the next subsections we will briefly explain some of them.

1. LSTM With Peephole Connections: This variant was proposed by Felix Gers
and Jürgen Schmidhuber in 2000[45]. They add an extra input to the the for-
get gate and the input gate, which is the long term cell state from the previous
time step Ct−1. Peephole connections turned out to be a good modification be-
cause they helped the network generate very stable sequences of highly nonlinear,
precisely timed spikes.
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2. Gated Recurrent Unit: The Gated Recurrent Unit (GRU) cell was proposed
by Kyunghyun Cho et al. in 2014[46]. It is considered a simplified version of the
LSTM, in which the long term state and the short term state are combined as
one state denoted ht. GRUs also merge the forget and input gates into a single
update gate. In addition to a reset gate (see figure 1.31) which also decides how
much past information to forget. GRUs are usually faster in training because of
their simple structure and lower tensor operations.

Figure 1.31: The mechanism of a GRU memory cell

Other variants of RNNs include Depth Gated RNNs[47], Clockwork RNNs[48].
To answer the question of which RNN architecture is best, Greff, et al. performed
a large scale study on variants of the LSTM architecture[49]. They concluded and
none of the investigated modifications significantly improve performance although
some of them effectively reduce the number of parameters and lower the compu-
tational cost of the RNN’s training.

1.10 Loss Functions

1.10.1 Cross Entropy
Entropy is the measure of uncertainty associated with a given probability distribution.

For example, supposing that X is the random variable that describes the class of a randomly
picked image from a dataset. If all dataset images are of the same class then the entropy of
X is 0, because there is no uncertainty about the class of any randomly picked image.

The Cross Entropy (CE) is a measure for estimating the difference between two proba-
bility distributions over a random variable. Usually, the first distribution is a target denoted
as P, and the second is an approximation of the target distribution, and it is denoted Q.
CE can be used as a loss function for ANNs, considering the label of an image, a target
distribution P, and the model’s prediction for that image, an approximated distribution Q.
Given a random image from a dataset, the CE between a prediction vector Q and a label
vector P is given by the formula 1.18:

H(P,Q) = −
C∑
i=1

P (i) log(Q(i)) (1.18)

Where C is the number of classes[50].
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1.10.2 Binary Cross Entropy
This loss function is used in binary decisions, such as a cat/dog classifier. According to

Andrew Ng’s lecture in Coursera[51], the binary CE loss function is given by equation 1.19:

L(y, ŷ) =
1

N

N∑
i=0

Cost(y, ŷ) (1.19)

Where:
Cost(y, ŷ) =

{
−log(y) if ŷ = 1

−log(1− y) if ŷ = 0

}
(1.20)

Where N is the number of images in the dataset, y is the prediction made by the model
and ŷ is the actual label. For each image in the dataset, the loss between the label and the
prediction is calculated with the help of the log function. If the prediction is different from
the label, the model is penalized and the loss for that image is high, on the other hand if the
prediction is right the loss is 0. The final loss is obtained by averaging the losses for each
image from the dataset.

Professor Andrew also stats in [52], that the previous formula can also be written as
equation 1.21:

L(y, ŷ) = − 1

N

N∑
i=0

(yi ∗ log(ŷi)) + (1− yi) ∗ log(1− ŷi) (1.21)

1.10.3 Categorical Cross Entropy
Categorical Cross Entropy is simply the the CE for a multi class classification problem[53],

Where a data instance is one of many predefined classes. For example, the MNIST handwrit-
ten digit recognition where each image belongs to only one out of 10 classes. It is calculated
by equation 1.22:

L(y, ŷ) = −
M∑
i=0

N∑
j=0

(yij ∗ log(ŷij)) (1.22)

This function computes the CE between the prediction (the vector of activations in the
output layer) with the true distribution (The one-hot encoded label vector) for each image in
the dataset. The loss is low when the output vector is close to the label vector. Otherwise,
it is high.

1.10.4 Mean Squared Error
Mean Squared Error (MSE) is more convenient for regression problems, such as predicting

future house pricing. it is calculated by equation 1.23:

L(y, ŷ) =
1

N

N∑
i=0

(yi − ŷi)
2 (1.23)
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This function simply computes the mean of the squared differences between the prediction
and the label for each data instance. Infact the loss increases whenever the Euclidean distance
between the predictions and the targeted label increases[23].

1.10.5 Mean Squared Logarithmic Error
Mean Squared Logarithmic Error (MSLE) is a variation of MSE, and it is also used for

regression problems. There are two differences between MSLE and MSE:

• MSLE treats small differences between small labels and predicted values the same
as big differences between large labels and predicted values. While MSE is sensitive
towards outliers, therefore large errors are significantly more penalized than small ones.

• MSLE penalizes under-estimates more than over-estimates, which means that if the
prediction is bigger then the label, the penalty will be larger then the case when the
prediction is smaller. Which isn’t the case for MSE.

MSLE is given by equation 1.24:

L(y, ŷ) = − 1

N

N∑
i=0

(log(yi + 1)− log(ŷi + 1))2 (1.24)

MSLE can be interpreted as a measure of the ratio between the label and predicted value.
because (Equation 1.25):

log(yi + 1)− log(ŷi + 1) = log(yi + 1

ŷi + 1
) (1.25)

Because both yi and ŷi can be 0, and log(0) is not defined, we add the number 1 to yi and
ŷi[54].

1.10.6 Mean Absolute Error
Mean Absolute Error (MAE) is similar to the two previous loss functions, plus it is also

used for regression. The loss is the mean of the absolute value of the differences between
labels and predicted values, expressed by the formula 1.26:

L(y, ŷ) =
1

N

N∑
i=0

|yi − ŷi| (1.26)

Unlike MSE, MAE is not sensitive towards outliers. A disadvantage of MAE is that
the gradient is harder to compute, and also it can lead to convergence problems due to its
gradient’s magnitude[24, 55]16.

16In the previous subsections the notations are modified and they are not the same as the ones found in
the resources cited above in order to have a unified notation for the whole section
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1.11 Optimizers
An optimizer is an implementation for the algorithm that helps us minimize the loss

function and find the optimal set of weights for the ANN. The most commonly used algorithm
for training a network is Gradient Decent (GD) . If we think of the loss function plot as a
convex multi dimensional surface, GD tries to reach the lowest valley of this surface which
represents the minimum value of the loss, by calculating the derivatives of the loss function
(gradient) along every dimension, and taking steps towards the minimum iteratively.

There are different variations for GD, some of which are explained in the next few sub-
sections.

1.11.1 Batch Gradient Decent
Also known as Vanilla GD. This method calculates the loss for the entire dataset, only

then it updates the parameters θ to minimize the loss function J according to the rule given
by equation 1.27:

θ = θ − η.▽θ J(θ) (1.27)
Because of computing the gradients for the whole dataset only to perform one update, batch
gradient descent tends to be slow in converging. It is also intractable for large datasets that
do not fit in the memory[56].

η is refereed to as the Learning Rate (LR), it determines the size of the step we take
when trying to reach a minimum. This parameter is fixed in some implementations and
modified in others. Anyways, it can not be too large because that will cause the algorithm
to take huge steps and overshoot, but it also can not be too small because it will slow down
the training procedure.

1.11.2 Stochastic Gradient Decent
Stochastic Gradient Decent (SGD) is a variation of GD in which the parameters are

updated for each training example x(i) and label y(i). It follows the update rule given by
equation 1.28:

θ = θ − η.▽θ J(θ;x
(i); y(i)) (1.28)

Although SGD is way faster then batch gradient decent, the frequent updates usually
cause heavy fluctuations when heading towards the minimum. These fluctuations lower the
probability of getting stuck in a local minimum and enables the algorithm to jump to new
and potentially better local minimums. However, it has been shown that when we slowly
decrease the learning rate, SGD convergences somewhat smoothly, nearly the same as batch
gradient descent[56].

1.11.3 Mini-batch Gradient Descent
Mini-batch GD is considered a compromise between the previously mentioned variants.

It performs an update for every mini-batch of n training examples, according to the rule
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given by equation 1.29:
θ = θ − η.▽θ J(θ;x

(i:i+n); y(i:i+n)) (1.29)
This approach leads to a more stable convergence and better efficiency in computing the

gradients. Mini-batch gradient descent is typically the algorithm of choice when training a
neural network with common mini-batch sizes of 50 to 256[56].

1.11.4 Adagrad
Adagrad is a gradient-based optimization algorithm proposed by John Duchi et al in [57].

Instead of updating all the parameters θ using the same LR η, Adagrad uses different LRs
for every parameter θi at every time step t.
For simplicity, we will set gt,i to be the gradient of the loss function with respect to the
parameter θi at time step t. The update rule for Adagrad is given by equation 1.30:

θt+1,i = θt,i −
η√

Gt,ii + ϵ
.gt,i (1.30)

Where:

• θt+1,i refers to the parameter θi at time step t+ 1, or the new parameter value.

• θt,i refers to the parameter θi at time step t, or the old parameter value.

• Gt here is a diagonal matrix where each diagonal element Gt,ii is the sum of the squares
of the gradients with respect to θi up to time step t.

• ϵ is a very small positive number that eliminates the division by zero just in case
(usually ϵ is in the order of 10−8).

• η is an initial value for the learning rate, usually 0.01.

Using Adagrad eliminates the need to manually set the LR. However, the growth of the
accumulated squared gradients may cause it to shrink, and become very small to a point
where the algorithm cannot reach better solutions[56].
A vectorized implementation for the update rule where ⊙ refers to matrix vector multipli-
cation is given by equation 1.31:

θt+1 = θt −
η√

Gt + ϵ
⊙ gt (1.31)

1.11.5 AdaDelta
AdaDelta[58] aims to reduces the aggressive decreasing of the LR performed by Adagrad.

Instead of accumulating all squared gradients from previous time steps, this method defines
a recursive decaying average of all past squared gradients. This value at time t is denoted
E[g2]t, and it is called the running average. E[g2]t depends only on the previous average
E[g2]t−1 and the current gradient and its calculated by equation 1.32:

E[g2]t = γE[g2]t−1 + (1− γ).g2t (1.32)
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Where γ is set to a small value, usually 0.9.
The term Gt is replaced with the running averageE[g2]t in the update rule from AdaGrad
so we get equation 1.33:

θt+1 = θt −
η√

E[g2]t + ϵ
gt (1.33)

As a result, the growth of the average is restricted, plus all the past gradients are con-
tributing in the learning rate of time t thanks to the recursive formula[56].

1.11.6 RMSProp
This method was proposed by Geoffery Hinton in a lecture in one of his Coursera

Classes17. It shares the concept idea with AdaDelta as they both emerged from trying
to resolve Adagrad’s radically diminishing LR problem. In fact RMSProp uses the same
update rule (equation 1.33). Moreover Hinton suggests γ to be set to 0.9, with a default
value of 0.001 for the LR[56].

1.11.7 Adam
Adaptive Moment Estimation (Adam)[59] is another method of gradient optimization.

It keeps a decaying average of past squared gradients vt just like RMS Prop And AdaDelta,
but also another decaying average of past gradients mt that plays the role of a Momentum18.
mt and vt are given by equations 1.34 and 1.35 respectively:

mt = β1mt−1 + (1− β1)gt (1.34)

vt = β2vt−1 + (1− β2)g
2
t (1.35)

Because the authors observed that these averages were biased towards zero, they applied
bias correction, so they proposed m̂t and v̂t which are calculated using equations 1.36 and
1.37 respectively:

m̂t =
mt

1− βt
1

(1.36)

v̂t =
vt

1− βt
2

(1.37)

The update rule is slightly different then AdaDelta and RMSProp and is given by equation
1.38:

θt+1 = θt −
η√

v̂t + ϵ
m̂t (1.38)

The authors recommend a β1 of 0.9, a β2 of 0.999 and an ϵ of 10−8, because they show
empirical improvements in practice and better performance in comparison with to other
algorithms[56].

17http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
18Momentum is also a method that helps accelerate SGD in the direction of the best minimum. For

detailed explanation refer to the original paper [60]
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1.12 Regularization
One of the main challenges encountered by ML is overfitting. we say that a model is

overfitting when it is performing good in the training data while failing to classify the test
data. Moreover, the model is learning the details and noise in the training data to a point
where it can not recognize new data, because the noise learned from the training data does
not apply to new data. As a result, the model starts loosing his ability to generalize.
In order to overcome this problem, we use what is called regularization techniques. The next
subsections summarize some of the regularization techniques for tackling CNN’s overfitting:

1.12.1 Dataset Augmentation
It is intuitive to think that training a model on larger datasets gives the model better

performance. Based on this idea, data augmentation aims to extend the data to provide more
training examples using only the data at hand. It involves performing some modifications to
the dataset images before training, modifications such as flipping the image horizontally or
vertically, rotating, rescaling the image by cutting out a section from it, cropping, applying
noise to the image making the scene a bit distorted, mirroring, etc(Figure 1.32). The edited
images will be inserted in the dataset and treated the same as every other training example.
As a result, the model is exposed to more data hopefully reducing overfitting.

Data augmentation is implemented in Keras as the ImageDataGenerator19 class, such
that it happens inside the random access memory and not even effect the original data on
the hard disk, we just have to choose what modifications to make and tweak their parameters.

Figure 1.32: An illustration of the data augmentation in action

1.12.2 Early Stopping
Training the model for too long can also be considered a motive for overfitting, as there

are many scenarios where the training accuracy and the test accuracy start diverging from
each other after an excessive number of epochs, as shown in figure 1.33. Therefore, we could
definitely use a tool that halts the training when the model starts overfitting.

This trick is called Early Stopping. It consists of measuring both training and test
accuracy at the end of each epoch. The model either stops when the training accuracy reaches
a certain value, when the test accuracy reaches a certain value, or when no improvement is
observed, hence, further training is meaningless.

19https://keras.io/preprocessing/image/#imagedatagenerator-methods
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Early stopping is implemented through several methods inside the Callback20 class In Keras.

Figure 1.33: Overfitting after an excessive number of epochs

1.12.3 Dropout
Another reason for overfitting in ANNs is units getting dependent on only specific inputs,

inputs that usually have larger weights over the others. Dropout, which was first proposed by
Geoffrey Hinton et al.[61] addresses this problem by randomly dropping a percentage of units
from the layers(Figure 1.34). Dropping out a unit means temporarily erasing it from the
network during training along with all its connections. This causes the units in the next layer
to not rely on any specific inputs as all inputs have equal chances of being present as well as
being absent. This also causes the network to gain uniform weight distributions, hence, no
connections are biased with larger training weights. During testing, froward propagation is
performed by using the trained uniform weights, and this can be considered an approximation
of averaging the predictions of all the thinned networks formed each time a units is dropped
during training[62].

Dropout is implemented in Keras by adding a Dropout layer from the Core Layers21,
which takes the percentage of how many nodes should be dropped as a parameter.

1.12.4 Dense-Sparse-Dense Training
Dense-Sparse-Dense (DSD) training is a method for regularizing deep ANNs and improv-

ing their performance. It was proposed by Song Han et al[63].
This method consists of three separate training stages (illustrated in figure 1.35):

• First, we train a dense ANN to learn connection weights and determine the important
connections for the network. This is the the first Dense training stage.

20https://keras.io/callbacks/
21https://keras.io/layers/core/
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Figure 1.34: The difference between a the presence (right) of dropout and its absence (left).

• In the second Sparse training stage, we regularize the network by pruning the con-
nections with small weights, and train the network again, introducing the sparsity
constraint this time.

• The final Dense training stage increases the model’s capacity by eliminating the spar-
sity constraint, re-initializing the pruned parameters to zero and training the dense
network again.

During training, DSD introduces only one extra hyper-parameter which is the sparsity ratio
in the Sparse training step.

DSD training improved the performance for a wide variety of ANNs, including already
state of the art models. For example, on ImageNet, DSD improved the Top 1 accuracy
of GoogLeNet by 1.1%, VGG-16 by 4.3%, ResNet-18 by 1.2% and ResNet-50 by 1.1%,
respectively22. DSD training’s performance didn’t stop there as it improved even RNNs and
LSTMs for caption generation and speech recognition[63].

22The authors made DSD pretrained models available to download online at https://songhan.github.
io/DSD/.
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Figure 1.35: The Dense-Sparse-Dense Training Flow.

1.13 Transfer Learning
It is a known fact that powerful models require huge amounts of training data, machines

with high computational power and a lot of training time to reach their maximum ability.
Nevertheless they give remarkable accuracy. Transfer learning takes advantage of the knowl-
edge acquired by these large scale models, by using it for solving a similar but more specific
problems.

Generally, transfer learning refers to the trick of using a model trained on one problem,
in some way on a another related problem. It is explained briefly by Jason Yosinski et al.
as follows:
“In transfer learning, we first train a base network on a base dataset and task, and then we
repurpose the learned features, or transfer them, to a second target network to be trained
on a target dataset and task. This process will tend to work if the features are general,
meaning suitable to both base and target tasks, instead of specific to the base task”[64].
Precisely, what we are actually doing is copying over some parameters from the first model
to our model then adding some layers and training them while locking (freezing) the copied
parameters. It means that the backward pass in training will edit only the weights of the
last layers, not including the copied weights. The resulting model will be somewhat specified
for our task by using the features extracted by the copied parameters. This form of transfer
learning is referred to as inductive learning.

For image classification problems, it is common to use one of the state of the art mod-
els such as the AlexNet, GoogleNet, etc. These models are available online and can be
incorporated directly into new models that expect image data as input. For example:

• Oxford VGG Model23.

• Google Inception Model24

• Microsoft ResNet Model25

23http://www.robots.ox.ac.uk/~vgg/research/very_deep/
24https://github.com/tensorflow/models/tree/master/research/inception
25https://github.com/KaimingHe/deep-residual-networks
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Transfer learning can be considered a shortcut to saving time and getting better perfor-
mance. We can rely on it if we have less data and unworthy hardware, as it can enable us to
develop skillful models that are usually out of our reach because we don’t have the adequate
GPUs that offer great computational power.

1.14 Conclusion
In this chapter, we introduced AI, ML and DL and highlighted their relationship. Fur-

thermore, we went through DL in more depth explaining its origins, its inspirations, its
challenges, the tools it employs and a short recap of the maths behind it. Until now, we’ve
successfully layed down all the preliminary knowledge that the reader needs to progress
further in this report.

The next chapter will be dedicated to the main problem which is video classification.
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2.1 Introduction
The tremendous increase in the internet bandwidth and storage space, has made images

and videos two of the most consumed data types. Consequently, the AI community took an
interest in these two data types. Images might have been considered more than videos, but
that is only because of the lack of organized video data for video processing, and the cost
that comes with it. However, many experiments and studies were conducted lately trying to
exploit videos and take advantage of their dynamic nature.

In this chapter we will first talk about CV and give a historical brief about how DL
improved some of its related tasks. Next, we will mention some of the tasks involving
videos as data for training and testing as well as the video datasets availability nowadays.
Our interest is mainly on the video classification task, so we will define it and explain the
different challenges encountered with it. Finally we will explain the different approaches
made by the AI community to solve it.

2.2 Computer Vision
CV is a trending research field within AI. According to Ballard and Brown, CV is:

“The construction of explicit, meaningful descriptions of physical objects from images”[65].
However, Trucco and Verri defined CV as:
“Computing properties of the 3D world from one or more digital images”[66]. Another
definition made by Sockman and Shapiro was:
“To make useful decisions about real physical objects and scenes based on sensed images”[67].
CV treats several problems:

Object Detection It is the task of recognizing an object and its location within an image.
The algorithm usually surrounds all the detected objects with labeled tight rectangular
boxes. To achieve that, the first developed architecture used Region based Convolu-
tional Neural Networks (R-CNN)[68] .The detection speed was later improved by the
model Fast R-CNN[69]. However, in the same year, the model Faster R-CNN[70]
was invented and even though it achieved much better speeds and higher accuracy,
it wasn’t the best. More efficient detection systems emerged, like You Only Look
Once (YOLO)[71], Single Shot multibox Detector (SSD)[72] and Region-Based Fully
Convolutional Networks (R-FCN)[73].

Semantic Segmentation The idea of this task is to not just classify the objects in an
image, but to classify each pixel as the object it contributes in. In other words, to
understand the semantic role of each pixel in the image. The first approach was patch
classification and it involved feeding patches of different sizes to a trained CNN, but
this method turned out to be inefficient and computationally expensive. Therefore
several papers shifted towards Fully Convolutional Networks (FCNs)[74, 75, 76, 77] as
an alternative, because they accepted images of any size and were also much faster
compared to the patch classification approach.

44



CHAPTER 2. VIDEO CLASSIFICATION USING DEEP LEARNING

Image Classification For image classification, we are given a set of images, each one is
labeled, and belongs to a specific class. Our goal is to classify another set of never
seen images, and measure the accuracy of the classification. For humans, this task is
considered trivial. However, it remains a challenge for computers. Image classification
has been approached using hand-engineered features like in Scale-Invariant Feature
Transform (SIFT)[78], and Histograms of Oriented Gradients (HoG)[79]. But their
results were incomparable with the first CNN architecture AlexNet[15] for image clas-
sification. Later, CNNs became the best fitting tool for this task among various others
in CV.
In the next section, we will dive into the video classification problem starting with a
proper definition for video data.

2.3 Video Analytics Tasks
Video data is just as important as image data, judging by the amount of content and

information videos can acquire thanks to the temporal aspect they add to images. Granted,
massive amounts of video data is being produced nowadays. Under those circumstances, the
need to structure and analyze this data grows and a lot of research exists to achieve that.
Here are some of the tasks that involve videos as training/testing data:

Action Recognition is the problem of identifying events performed by humans given a
video[80].

Video Captioning is the process of summarizing the content of a video into a short textual
form[81].

Video Segmentation consists of dividing a video into separated collections of consecutive
frames that are homogeneous according to a predefined criteria[82].

Video Classification is the problem of classifying a set of videos as being one of several
predefined classes.

2.4 Video Definition
Suppose that we have a set of white pages, each page has an image drawn in it. If we

flip through the pages at high speed, the scene would appear animated and the shapes in
the pages would appear moving. That is the intuition behind videos.

A video is defined as a series of still images that, when viewed successively at a high
speed, gives the appearance of motion.

Moreover, videos are a powerful data source because they can provide us with valuable
information in any field. Especially with the evolution of video capturing devices such as
cameras, cellphones, drones, ect.
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2.5 Video Classification
Video Classification is basically the same task as image classification, but instead of

images we classify videos. We want to build a model that can predict the class of a video,
based on the knowledge extracted from a dataset of videos. Each video belongs to a different
predefined class. Of course the model will be trained on a training set and later tested on a
validations set.

In the next few sections, we will explain the motives behind this task, the challenges and
the data availability for it.

2.5.1 Video Classification Motivations and Challenges
Because of their dynamics structure, Videos are considered way more expressive then

images, as they add an additional property which is time. Moreover, video data is continu-
ously being generated, published and spread nowadays, becoming an element of great value
for data hungry deep learning algorithms. All things considered, videos are nothing but a
set of images. That implies that video classification is an extension of image classification,
as the former usually builds up the success made in the latter. As a result, it’s expected that
during implementing the two tasks, the same difficulties are encountered.

First there’s the computational cost of training. It is known that the image classification
state-of-the-art models took weeks of training on powerful machines. Therefore training a
video classifier will definitely be more expensive and time-consuming. Because we are not
only trying to classify one RGB image at a time. Instead, for every video there are thousands
of images to classify.

The second challenge encountered while classifying videos, is the lack of large video
datasets, and this has been the case for image classification in its early stages. This problem
is mainly related to the storage size of videos. A video allocates more memory than an
image, and the size of one second of footage is equivalent to the size of 30 images for a
regular video. That means that image datasets are very small when compared to video
datasets. That doesn’t mean that there is no video datasets whatsoever, but this problem
is still an obstacle worth mentioning. In the next section we will discuss some of the most
famous available datasets for video classification.

2.5.2 Video Classification Datasets
YouTube Sports-1M The YouTube Sports-1M is an academic dataset, that accompanied

the paper ”Large-scale Video Classification with Convolutional Neural Networks”[2] by
Andrej Karpathy et al. It was constructed in 2014 and it included 1,133,158 youtube
videos annotated with 487 sports labels. The creators put together this dataset by
gathering URLs of youtube videos of different sport activities and the labeling was
done using the YouTube Topics API1. To make the dataset available for every one the

1The YouTube Topics API is used to search for videos matching specific search terms, topics, locations,
publication dates, etc. For more details refer to the official website https://developers.google.com/
youtube/v3/docs/search/list
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creators uploaded a github repository2, which contains all the related files including a
text file named ”sports_mids.txt” with all the machine IDs needed to retrieve videos
from youtube using the topics search API mentioned above.

YouTube-8M YouTube-8M is a large-scale labeled video dataset. In fact, it is considered
the largest multi-label video classification dataset ever. It was announced by Google
Research in 2016[83] consisting of about 8 million videos accumulated to 500 thousand
hours of footage from 4,800 classes3. For the labeling , the creators used Knowledge
Graph entities to describe the main theme of each video. For example, a video of
biking on dirt roads and cliffs would have a central topic/theme of Mountain Biking,
not Dirt, Road, Person, Sky, and so on. Therefore, the aim of the dataset is not only
to understand what is present in each frame of the video, but also to identify the few
key topics that best describe what the video is about.

UCF-101 Another widely used dataset is the UCF-101 dataset. It was originally put to-
gether for the experiment performed by Somorro et al. in 2012[84]. Although it was
meant for action recognition tasks, a lot of researchers use it nowadays for video classi-
fication. UCF-101 consists of 13320 unconstrained videos downloaded from Youtube,
and divided into 101 action classes. The videos belong to five general categories:
Human-Object Interaction, Body-Motion Only, Human- Human Interaction, Playing
Musical Instruments and Sports. At the time, UCF-101 was claimed to be the most
challenging dataset of actions due to its large number of classes, large number of clips
and also unconstrained nature of such clips.
In the next section we will discuss the different approaches made by the DL community
to tackle this problem.

2.6 Video Classification State of The Art
Most researchers often treated video classification using one of three approaches: Image

based video classification, Advanced CNN architectures or Modeling the long term temporal
dependencies using an RNN. In the next subsection, we will explain each approach and
highlight some of the famous papers that followed it.

2.6.1 Image-Based Video Classification
The first approach relies on the fact that a video is just a collection of images. There-

fore, feature representations are extracted separately for each frame, then these features are
aggregated to produce video-level representations, which will be input for a classic classifier
such as an SVM or an ANN.

Many classical hand engineered image features have been generalized to videos. Fea-
tures like 3D Scale Invariant Feature Transforms (3D-SIFT)[85], extended SURF[86], 3D

2The repository is available at https://github.com/gtoderici/sports-1m-dataset
3The YouTube-8M can be explored online via this link. https://research.google.com/youtube8m/

explore.html
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Histograms Of Optical Gradients (HOG3D)[87]. However, one of the most referenced works
involving hand designed features is proposed by Wang et al. in [88, 89].

In 2012, Wang et al. proposed a video representation based on dense trajectories and
motion boundary descriptors[88]. Their idea was to sample feature points on a dense grid in
each frame. Then, track these feature points using a dense optical flow algorithm to create
dense trajectories which are useful for capturing the local motion information of the video4.
Furthermore, they obtained video level representations by extracting hand designed descrip-
tors such as Motion Boundary Histograms (MBH) along the trajectories, then encoding them
as Bag Of Features (BoF) representations. Video level representations were later classified
using a non-linear SVM classifier.

In 2013, Wang et al. enhanced the dense trajectories method by explicitly estimating
camera motion. The paper [89] shows that the performance can be significantly improved
by removing background trajectories and only focusing on more relevant feature points.
The methods used in [88, 89] can be classified as image based video classification because
the order of frames was not considered due to the BoF encoding.

Zha et al. studied image based video classification and proposed [1] in 2015. Their goal
was to test the performance of CNNs trained for image classification on video classification.
Thus, they experimented on frame level features extracted from different hidden layers of
AlexNet[15] and VGG[37] networks. These features were aggregated with spatio-temporal
pooling and normalization to get video level features which were fed to a trained linear SVM
classifier(Figure 2.1).

Figure 2.1: An overview of the proposed video classification pipeline by Zha et al. in [1].

Zha et al. also extracted frame level features using the standard SIFT descriptors[78], and
the more sophisticated motion-based Improved Dense Trajectories (IDT)[89], then encoded
these low-level feature descriptors as a fixed-length video-level FVs.
Fernando et al.[91] followed a similar pipeline as [1] in 2016, when they applied Rank Pooling
on frame level features extracted from a CNN and demonstrated that such a model can be

4Wang et al. used the algorithm in [90] to extract the dense optical flow fields for each fea-
ture point. For more explanation about Optical Flow refer to https://opencv-python-tutroals.
readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.html#
dense-optical-flow-in-opencv
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trained in an end-to-end fashion. Other orderless aggregation techniques have been widely
used. For example, in [92], NetVLAD[93] which is an altered version of Vectors Of Locally
Aggregated Descriptors (VLAD)[94] is used for for aggregating video and audio features
from the Youtube-8M dataset, along with Context Gating for modeling inter dependencies
between network activations.

Recently, many researches followed a different path in which they build video represen-
tations like Deep Features Video Matrices [95] or Semantic Streams[96] based on the visual
objects present in video frames.

2.6.2 Advanced CNN Architectures
The success that CNNs achieved in learning deep features from raw image data was

inspiring, and researchers started thinking of training CNNs on video data instead of images
with the objective of learning hidden spatio-temporal patterns.

In 2014, Andrej Karpathy et al. performed a large-scale video classification[2] on the
Sports-1M dataset which was first introduced with this work. The experiment was based on
CNN architectures extended in time domain. The team empirically tested four techniques
for fusing temporal information extracted from video frames. The idea is to divide the video
into equal time windows, and sample frames in various ways, then feed these frames to several
CNN architectures aiming to reach an architecture that extracts the best spacio-temporal
features for video classification. Figure 2.2 shows the architectures proposed in the paper.

Figure 2.2: The proposed CNN architectures for fusing time information by Karpathy et al.
in [2]. Red, green and blue boxes indicate convolutional, normalization and pooling layers
respectively.

Karpathy et al. also worked on speeding up the training time. To do that they proposed
a multi resolution architecture in which two networks are presented with two input streams
(Figure 2.3). A Contex Stream which receives the frames at a downsampled lower resolution,
and a Fovea Stream which receives the center region of the frames at the original resolution.
Finally, the activations from both streams are concatenated and fed into the a fully connected
layer with dense connections.
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Figure 2.3: The proposed multi-resolution CNN architecture by Karpathy et al. in [2].

In the same year, Tran et al. worked on deep 3D CNNs, as feature extractors for several
video analysis tasks in general[97]. Their network succeed to extract generic spatio-temporal
features via 3D convolutions and 3D pooling operations instead of plain 2D convolutions. In
2019, Channel-Separated Convolutional Networks [98] was introduced as a way of factorizing
3D convolutions, reducing computations and improving accuracy.

Another interesting approach was adopted by Karen Simonyan and Andrew Zisserman
in 2014, and it was called the Two-Stream Convolutional Network[3]. Although it was aimed
for action recognition but we had to mention it because the next work on video classification
relies entirely on it. In this method, spatial features are extracted from frames separately
using a spatial CNN. Whereas the temporal features are extracted from stacks of multi-
frame optical flow images5. Both spatial clues and temporal clues are extracted from the
two streams and the soft max scores are combined using fusion methods.
Figure 2.4 illustrates the proposed two-stream architecture by Simonyan and Zisserman.

Figure 2.4: The proposed two-stream architecture for video classification by Simonyan and
Zisserman in [3].

In 2015, Hao Ye et al.[99] conducted a study based on [3] to investigate important imple-
mentation options that may affect the performance of deep networks on video classification.

5Multi-frame optical flow image explicitly describes the motion between video frames.
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They tested several implementation options such as network architectures, fusion strategies,
learning parameters, prediction options to reveal the effect of each option on the model’s
performance. Finally, they concluded that deeper models are definitely better as long as the
training data is sufficient. Plus, combining predictions from the spatial and the temporal
streams is useful.

The two stream CNN inspired many other works such as [100] in which Xie et al. recently
proposed a similar architecture, where spatial information is modeled with a spatial network,
and temporal information is modeled with a temporal network that receives differential
images instead of optical flow images. Moreover, instead of plain CNNs, Xie et al. used a
Multi-scale Pyramid Attention (MPA) layer to capture multi-scale features from different
stages of the spatial network and the temporal network, and then combined these multi-scale
information into new video representations.

2.6.3 Modeling Long-Term Temporal Dependencies
Image based video classification[1] was efficient to an extent. However, the features

gathered from single frames are treated as a BoF for which the order is not considered.
This means that the semantic relation between frames isn’t exploited at all. On the other
hand, using advanced CNN architectures also had this drawback, because CNNs captured
the semantic relation between only adjacent frames. The two stream CNNs[3] used optical
flow images which only depicts movements within a short time window. While neither 3D
CNNs[97], nor extended CNNs[2] could take a large number of stacked frame as input because
that will be computationally very expensive.

Motivated by the fact that multiple important actions for classification happen in sep-
arated moments throughout videos. Researchers tried to leverage RNNs, for modeling the
temporal relations between video frames. Specifically, LSTMs were the best fit for the task,
judging by their ability to capture the long term dependencies without suffering from any
vanishing gradients problems.

In 2015, Wu et al, used two-stream CNNs[3] to develop a hybrid learning framework[4]
that can model several important aspects of the video data. They divided the videos into
spatial and motion streams modeled by two CNNs separately. The spatial stream is sampled
individual frames, which are useful for capturing the static information in videos like scene
backgrounds and basic objects. Whereas, the motion stream is a set of stacked optical flow
images that help capture short term temporal clues. The feature maps from both streams
are forwarded to an RNN that uses LSTM memory cells to capture long-term temporal
dependencies between frames. The same feature maps are also fused using Average pooling
to generate video-level features. Finally, the outputs of the LSTM networks and video-level
features are combined as the final predictions. Figure 2.5 illustrates the proposed hybrid
framework.
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Figure 2.5: The proposed hybrid framework for video classification by Wu et al. in [4].

In the same year, Ng et al. also experimented on LSTMs in [5]. They proposed two
approaches capable of handling full length videos, rather then just small clips.
In the first approach, they explored various temporal feature pooling neural network archi-
tectures. Applying temporal pooling directly as a layer enabled them to experiment with
different locations of the pooling layer with respect to the network architecture.
In the second approach, they connected an RNN to the outputs of a GoogLeNet and an
AlexNet networks which were fine tuned on video frames and optical flow images as well
(Figure 2.6). The models where trained on the Youtube-1M and the UCF-101 datasets with
up to two minute videos6.
Ng et al. concluded from this work that incorporating information across longer video se-
quences enables better video classification. In addition they confirmed the necessity of optical
flow images for obtaining good classification results.

Figure 2.6: The proposed approach for video classification by Ng et al. in [5].
6Single frames from each minute of footage were sampled. Therefore a two minute video will give 120

frames. This trick helps with processing long videos.
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In 2016, Wu et al. added auditory clues to the mix[101]. They applied the Short-Time
Fourier Transformation to convert 1D soundtracks into 2D images (namely spectrograms),
then trained standard CNNs on these audio spectrograms along with the other video aspects
explored in [4]. Moreover, they proposed an effective fusion method to combine the outputs
of individual networks which led to promising results. Multi modal feature extraction was
also adopted recently in [102].

One year later, Yang et al. presented an interesting contribution[6]. They proposed to
train RNNs on raw video frames from scratch, without any feature extractors being involved,
aiming to take fully advantage of the RNN’s ability to handle sequences of variable length.
Training such a model turned out to be impractical due to the large input-to-hidden weight
matrix that the input frames require.
To overcome this challenge, Yang et al. resorted to factorizing the matrix with the Tensor-
Train Decomposition (TTD) technique7 first introduced in [103]. The approach was inspired
by [104] in which Tensor Train was applied to fully connected feed forward layers, so that
they could consume raw image pixels8. In essence, Yang et al. used the Tensor-Train
Factorization to formulate a so called Tensor-Train Layer[104]. Then, they replaced the
weight matrix mapping from the input vector to the hidden layer in RNN models with the
Tensor-Train Layer. This model was called the Tensor-Train Recurrent Neural Network
(TT-RNN) . Figure 2.7 shows an overview of the approach throughout only 6 frames for
illustrative purposes.

Figure 2.7: The Architecture of the proposed model based on TT-RNN by Yang et al. in
[6].

The computational cost of video classification was an element of interest for Zhu et
al. in 2019. They claimed that using the same feature extractor for all sampled clips9 is
computationally expensive. Thus, they proposed the FASTER framework[7], which aims

7Tensor-Train Decomposition is a method for representing a tensor compactly as factors and it allows to
work with the tensor via its factors without materializing the tensor itself.

8[104] showed that a fully connected layer can be reshaped into a high-dimensional tensor and then
factorized using Tensor-Train. This was applied to compress very large weight matrices in deep neural
networks where the entire model was trained from scratch.

9Videos are usually divided to small clips, and the predictions for these small clips are aggregated to give
the video classification
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to leverage the redundancy between neighboring clips10 and reduce the computational cost
by learning to aggregate the representations from models of different complexities using an
innovative recurrent unit called FAST-GRU(see figure 2.8).

Figure 2.8: The difference between other video classification models (left) and the FASTER
framework proposed in [7] (right): FASTER (right) exploits the combination of expensive
and cheap networks and aggregates their results with the FAST-GRU unit.

In the same year, Bhardwaj et al. worked on efficient low cost video classification[105] by
implementing two models. A Teacher model which computes a representation for the video
by processing all frames in the video. And a Student model which is trained to process only
a few frames but produce a similar representation to the one computed by the teacher. In
other words, their goal was to process fewer frames and hence perform a lower number of
Float Operations (FLOPs), all while maintaining the same performance.

2.7 Conclusion
In this chapter, We introduced the CV branch and highlighted the contribution of DL

to it. Most importantly, we explored the details of the video classification task starting
with its definition, challenges, motivations as well as the data availability for it. Finally we
investigated and presented the biggest stat of the art methods tried by the CV community
to tackle this problem.

In the next chapter we will experiment with DL based methods for video classification.

10Because adjacent clips tend to be semantically similar, Zhu et al. argued that it is computationally
inefficient to process many clips close in time with a computationally expensive video model. So they used
cheap models to cover scene changes and expensive models to capture subtle motion information.
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3.1 Introduction
In this chapter, we will present the implementation of two different deep learning based

models for video classification on the UCF-101 dataset. We will discuss the two approaches
and briefly explain the software, hardware and the dataset we used for the experiment.

3.2 Architecture
Aiming to implement an adequate video classification model, we adopted two different

methods. The first one is image based, meaning it classifies the frames captured from the
video, each one separately. Only then, it predicts the general video class disregarding the
temporal dependencies between frames. However the second method exploits these temporal
dependencies using the learning ability of RNNs.
In the next subsections, we will explain each method in detail.

3.2.1 First Approach: CNN Frames Classification with Predic-
tions Aggregation

The model implemented in the first approach was simple. It predicts the class of a video
by capturing a collection of its frames, then passing them one by one through a trained
CNN. The general class for the video is the class that was most repeated among the frames
predictions.

Training the Video Classification Model In the training phase of the first model we
went through three main steps. The first step is to extract some frames from every
training video using the OpenCv 1 library, and save them to the disk along with their
labels. In the second step we extract some frames from the testing set so we can use
them as a validation set, while training the CNN. Finally, we design a CNN and train
it on the labeled frames extracted earlier.

Sampled Training/Testing Frames From the training videos, and knowing that
the frame rate for all videos is 25 FPS[84]. We sampled 8 frames from each 25
frames, which is equals to 8 sampled frames per each second of footage. This
extraction rate was convenient enough to gather a reasonable number of training
frames for the CNN2, we were also limited by the storage space offered by Google
Collab. For the testing videos we used the same frame extraction rate, and the
frames extracted from the testing videos were used as validation data.

CNN’s Architecture The CNN is the most important element in this model. There-
fore it needs to be reliable at extracting distinct features that boost the classifi-
cation quality. To acquire such a network, we had to use transfer learning. We

1https://opencv.org/
2Its important to note that the videos of the dataset cannot produce the same number of frames, as they

are not of the same length. Thus some videos will produce more frames then others. Sampling 8 frames per
second will enable the short videos to contribute to the training of the CNN more.
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deployed an InceptionV3 network with weights pre-trained on ImageNet3 as the
base model, with excluding its last softmax layer. We appended the three layered
FFNN shown in figure 3.1 and fine tuned its layers while freezing the InceptionV3
layers aiming to make the overall network more specific to our dataset.
The InceptionV3 network was sufficient at extracting features from the training
frames so we weren’t obliged to append a deeper FFNN. All we did was add a
flattening layer to flatten the InceptionV3 feature maps, then add one fully con-
nected layer to reduce the size of the flat feature maps and finally, add a softmax
layer with 101 units.
Last but not least, in order to reduce overfitting we added two dropout layers
between the three layers of the appended FFNN with a rate of 50%.
Figure 3.1 describes the architecture of the CNN used, Table 3.1 summarizes the
details for the training process of the CNN, and figures 3.2, 3.3 and 3.4 display
the plot of training accuracy/loss and validation accuracy/loss on splits 01, 02
and 03 respectively.

Figure 3.1: The architecture of the CNN used in the first approach

Table 3.1: Summary of the details for training the CNN in the first approach.
Total number of parameters 74,336,133

Number of trainable parameters 52,533,349
Number of non trainable parameters 21,802,784

Loss function Categorical crossentropy

Optimizer SGD(learning rate=0.001,
momentum=0.6, nesterov=False)

Number of training frames (Splits 01, 02, 03) 598363, 599335, 597730
Number of validation frames (Splits 01, 02, 03) 233597, 232625, 234230

Number of epochs (Splits 01, 02, 03) 223, 226, 224
Total training duration in minutes (Splits 01, 02, 03) 96.68, 95.61, 96.24
Average epoch duration in seconds (Splits 01, 02, 03) 26.02, 25.38, 25.78

3http://www.image-net.org/
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Figure 3.2: The training and validation accuracy plots (left) and the training and validation
loss plots (right) while training the CNN on frames extracted from split 01

Figure 3.3: The training and validation accuracy plots (left) and the training and validation
loss plots (right) while training the CNN on frames extracted from split 02

Figure 3.4: The training and validation accuracy plots (left) and the training and validation
loss plots (right) while training the CNN on frames extracted from split 03

Testing the Video Classification Model Until this point, all we did was design a tool
for image classification on the extracted frames, which is considered the first component
of the video classification model. The second component is the aggregation function
that determines the general class of the video starting with the predicted classes for
its frames (Most repeated prediction).
Much like any other ML model, ours need to be tested. However, in order to truly
evaluate the performance of our model we need to test it on two sets: Training videos
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and testing videos. Because the training and testing videos were only involved in the
training of the CNN and the accuracy achieved by the CNN on the frames does not
reflect the video classifier’s performance. It needs to be tested all over again as one
unified block (CNN plus the aggregation function) on the training and testing videos.

Evaluate the Video Classifier on the Training Videos Measuring the video
classifier’s performance on the training video involved creating two empty lists,
one is for real video labels and the other is for predicted video labels. We
populated these lists by iterating through the training videos, and predicting
the class of each video4 along with saving its actual label, then appending each
information to its corresponding list. Finally we computed the accuracy of the
video classifier on the training set.

Evaluate the Video Classifier on the Testing Videos Measuring the video clas-
sifier’s performance on the testing video followed the exact same procedure as the
training set. Moreover, we saved the confusion matrix in addition to the testing
accuracy.

3.2.2 Second Approach: CNN Feature Extraction with LSTM
Prediction

For the second approach, we employed two DL tools, a CNN and an RNN. It predicts
the class of a video by capturing some of its frames. Then, it uses a trained CNN to extract
a feature vector from each sampled frame, and maintains their chronological order intact.
The video becomes represented by a sequence of feature vectors. A sequence which is pre-
processed and fed to a trained RNN that predicts its class.

Training the Video Classification Model Training such a model can be summarized in
four steps. The first step is training a good CNN on the frames captured from the
training videos. The second step is to prepare a training set for the RNN used later.
This involves using the CNN to generate sequences of feature vectors from all training
videos then pre-processing and labeling them as well. The last remaining step is to
design and train an RNN on the prepared sequences.

CNN’s Architecture Since we already implemented a CNN and trained it on the
frames of the training videos, it would be pointless to repeat the process again.
Therefore we rebuilt the same CNN used in the first approach and loaded its
optimized weights. Moreover, we removed its last softmax and dropout layers,
because we need the new CNN to output feature vectors, and not probability
distributions. The architecture of the CNN used in this approach is described by
the figure 3.5.

4We used the same frame extraction rate as in the training process, 8 sampled frames per each second of
footage.
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Figure 3.5: The architecture of the CNN used in the second approach

RNN’s Training Data In order to gather proper training data for the RNN, from
each video in the training set, we captured a number of frames (8 frames per sec-
ond) and kept them in chronological order. Next, we extracted a feature vector
from each captured frame using the edited CNN. This gave us a labeled sequence
of feature vectors for each training video.
The fact that the training videos are not uniform in length[84], caused the training
data for the RNN to have sequences of different time steps for different videos5.
As a solution, we proposed a fixed number of times steps for all sequences. Ac-
cordingly, all the sequences in the training data for the RNN were either padded
with vectors of zeros, or truncated to respect the uniform sequence length which
was set to 80 feature vectors per sequence. By the end of this procedure, we had
a training set composed of labeled sequences of length 80 time steps. Each time
step is a feature vector which contains 1024 features.
Note that we used all the sequences extracted from the training videos as training
data and no validation data was included during the RNN’s training because the
dataset comes with three training/test splits and doesn’t include validation data.
If we take away any percentage from the training split to use as validation data,
that will severely effect the performance of our model because we are already
dealing with a lack of training data problem. Plus we will not be able to compare
our model to other models because the data used for training is not the same.

RNN’s Architecture The used RNN is simple but yet very efficient (Figure 3.6).
It is a two layered sequential network with an input shape of (80x1024). The
first layer contains 1024 LSTM cells with the dropout parameter set to 20%. The
output layer is a softmax layer with 101 units. A dropout of rate of 50% was
applied between layers to reduce overfitting. Table 3.2 summarizes more details
about the RNN training process, and figures 3.7, 3.8 and 3.9 display the plot of
training accuracy/loss on splits 01, 02 and 03 respectively.

5This problem occurs because longer videos produce higher numbers of frames. Hence, longer sequences
of feature vectors and vice versa.
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Figure 3.6: The architecture of the RNN used in the second approach for predicting the
video class

Table 3.2: Summary of the details for training the RNN in the second approach.
Total number of parameters/trainable parameters 8,496,229

Loss function Categorical crossentropy
Optimizer Adam()

Number of training examples (Splits 01, 02, 03) 9537, 9586, 9624
Number of validation examples (Splits 01, 02, 03) 0, 0, 0

Number of epochs (Splits 01, 02, 03) 20, 21, 18
Total training duration in minutes (Splits 01, 02, 03) 10.47, 10.94, 07.27
Average epoch duration in seconds (Splits 01, 02, 03) 31,40, 31,27, 24,22

Figure 3.7: The training accuracy plot (left) and the training loss plot (right) while training
the RNN on sequences from split 01
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Figure 3.8: The training accuracy plot (left) and the training loss plot (right) while training
the RNN on sequences from split 02

Figure 3.9: The training accuracy plot (left) and the training loss plot (right) while training
the RNN on sequences from split 03

Testing the Video Classification Model Testing this model follows a simple procedure.
First, we create two empty lists to keep track of the ground truth labels and the
predicted labels. Next, we iterate through all the videos in the test set and encode
each video as a sequence of feature vectors and set its length to 80 time steps either
by padding or truncating it. We predict the class of the sequence by feeding it to the
trained RNN. The two lists that we created are used to compute the accuracy of the
classifier on the test set, compute the confusion matrix, and the classification report.
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3.3 Software

3.3.1 Python
Python6 is an interpreted, object-oriented, high-level programming language launched in

december 1989 by Guido Van Rossum. Python is used in several domains like web develop-
ment and creating software prototypes. But most importantly, the vast majority of AI and
ML practitioners use it to implement their models due to its simplicity and consistency, plus
the access to a great number of pre-implmented libraries and frameworks. These libraries
make the coding part much easier for the developer. Granted, Python offers a platform
independence which allows the developer to implement projects and run them on different
platforms regardless of their type7.

3.3.2 Tensorflow
TensorFlow8 is an open source platform for machine learning, that consists of a myriad

of tools, libraries and resources that enable researchers to push the state-of-the-art in ML
and helps developers to easily build and deploy ML applications.
TensorFlow offers multiple levels of abstraction through high level APIs (Keras) as well as
the lower-level library (Tensorflow) which provides more flexibility allowing developers to
customize the operations implemented across the ML model. The high level APIs provided
by Tensorflow make it so easy to implement ML models. Thus, any one can get familiar
with implementing complex ML model very fast.
Tensorflow can be used on different platforms meaning you get to use ML in servers, edge
devices, or the web not to mention its compatibility with other programming languages like
Javascript.

Tensorflow was developed by the Google Brain team for internal Google use only. How-
ever, On November 2015 It was released as an open-source package under the Apache 2.0
license and made available online[106].

3.3.3 Keras
Keras9 is a high-level API, which represents a simple interface, that minimizes the number

of user actions required for common use cases.
Keras is easy to use and focused on user experience. It also makes it easier to run experiments,
as it can easily scale up to large clusters of GPUs or entire TPU pods. One of its advantages
is having the low-level flexibility to implement arbitrary research ideas but at the same time,
it offers optional high-level convenient features to speed up experiment deployment, meaning

6https://www.python.org
7To read more about why is Python considered the best programming language for ML an

DL, refer to the following web article: https://medium.com/towards-artificial-intelligence/
why-is-pythons-programming-language-ideal-for-ai-and-data-science-e3f75a5d0e2b

8https://www.tensorflow.org
9https://keras.io
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that all the tools that you might need are modules that can be called and fine tuned very
easily with minimum amount of coding.

3.3.4 Google Colab
Google Colaboratory10, or Colab for short, is a free cloud service offered by Google, for

students, data scientists and AI researchers to write, run and share code, using executable
documents called notebooks. In other words, it’s a Jupyter notebook11 environment that
requires no setup to use and runs entirely in the cloud.
Colab provides a powerful virtual machine in which all the modules and libraries needed for
ML and DL are already installed. Moreover, the machine comes with a reasonable package of
hardware for free including a CPU, a RAM, a hard disk, and most importantly, the Graphical
Processing Unit (GPU) and the Tensor Processing Units (TPU). Colab offers outstanding
GPUs like the Nvidia Tesla K80, the NVIDIA Tesla P100 PCIe 16 GB and the NVIDIA
Tesla T4 for the user to deploy and train ML models at ease. Furthermore the user can
take advantage of the TPU technology for distributed training with 8 units available for
implementing even more complex models and accelerating their training. That’s not all, for
more storage space the user gets to mount a google drive account to the virtual machine
allocated. Therefore, the progress can be saved and this is a very useful feature for DL
practitioners, considering the need to save the weights of a model for later use. Last but not
least, Colab employs cells which contain either Python code, or formatted text. This feature
enables the AI community to share ideas and experiences easily, because the code becomes
well organized and comprehensible to anyone thanks to these text cells.
Figure 3.10 shows the Google Colab interface.

Figure 3.10: The interface of Google Colab.
10https://colab.research.google.com/notebooks/intro.ipynb
11https://jupyter.org/
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3.4 Hardware
Throughout the whole implementation process, we used Google Colab to take advantage

of the hardware it offers for free. The hardware we used is summarized in table 3.3

Table 3.3: The hardware used for the implementation.
CPU Intel(R) Xeon(R) CPU @ 2.00GHz
GPU Tesla P100-PCIE-16GB
RAM 25.51 GB
Disk 68.40 GB

3.5 Dataset
UCF-10112 is a large dataset of human actions assembled and organized by Sommoro et

al.[84] in 2012. It consists of 13320 labeled videos that belong to 101 action classes, making a
total of 27 hours of video data. The dataset consists of realistic user-uploaded videos which
contain obvious camera motion and cluttered backgrounds.
UCF-101 includes action classes which are divided into five types:

• Human-Object Interaction.

• Body-Motion Only.

• Human Human Interaction.

• Playing Musical Instruments.

• Sports.

More specifically, all UCF-101 videos are one of the classes shown in figure 3.11.
The clips from one action class are divided into 25 groups which contain 4 to 7 clips each.

The clips in one group share some common features, such as the background or actors.
The dataset comes with three predefined training/test splits. However, if the user wants
to create his own training/test splits, it is very important to keep the videos belonging to
the same group separated in training and testing. Because the videos used for training that
belong to the same group are similar and using them again for testing will yield a misleading
high performance.

The zipped file of the dataset13 includes 101 folders each containing the clips of one ac-
tion class. The name of each clip has the following form: v_X_g Y_cZ.avi, where X, Y
and Z represent the action class label, group and clip number respectively. For example,
v_ApplyEyeMakeup_g03_c04.avi corresponds to the clip 4 of group 3 of action class Ap-
plyEyeMakeup.

12https://www.crcv.ucf.edu/data/UCF101.php
13https://www.crcv.ucf.edu/data/UCF101/UCF101.rar
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Figure 3.11 shows sampled frames from the 101 action classes in UCF-101, while table 3.4
summarizes the characteristics of the UCF-101 dataset.

Table 3.4: The characteristics of the UCF-101 dataset.
Actions 101
Clips 13320

Groups per action 25
Clips per group 4-7
Mean clip length 7.21 sec
Total duration 1600 min
Min clip length 1.06 sec
Max clip length 71.04 sec

Frame rate 25 fps
Resolution 320x240
Format .avi
Audio yes (51 action classes)
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Figure 3.11: One sampled frame from each of the 101 action classes in UCF-101
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3.5.1 Results And Discussion
1. First Approach’s Results: First, let us lay down the best results achieved by the

CNN during its training on frames classification. The whole training process on splits
01, 02 and 03 was already described earlier by the figures 3.2, 3.3 and 3.4 respectively.
Table 3.5 summarizes the best accuracies/losses reached by the CNN during training
(on splits 01, 02 and 03).

Table 3.5: The best results reached by the CNN during training on frames classification.
Image classification accuracy/loss Split 01 Split 02 Split 03
Maximum training accuracy (%) 90.07 90.01 90.07

Minimum training loss 0.352 0.362 0.362
Maximum validation accuracy (%) 60.93 62.26 59.74

Minimum validation loss 1.124 1.047 0.867

The next result to be presented is the accuracy of the video classifier on the training
set and the testing set of videos (splits 01, 02 and 03). It will be summarized by the
table 3.6.

Table 3.6: The accuracy of the video classifier on the training set and the testing set of
videos (splits 01, 02 and 03).

Video classification accuracy Split 01 Split 02 Split 03
Accuracy on training videos (%) 78.60 79.19 79.60
Accuracy on testing videos (%) 57.41 56.08 57.01

We also saved the confusion matrix for the performance of the video classifier on the
test set of each split, since it summarizes the prediction results of the model. It also
helps us figure out if our model is confused between classes and gives us insight about
the types of errors that are being made. Figures 3.12, 3.13 and 3.14 represent the
confusion matrices for the video classifier’s performance on the testing videos from
splits 01, 02 and 03 respectively.
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Figure 3.12: The confusion matrix for the first classifier’s performance on the testing videos
from split 01
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Figure 3.13: The confusion matrix for the first classifier’s performance on the testing videos
from split 02
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Figure 3.14: The confusion matrix for the first classifier’s performance on the testing videos
from split 03

2. Second Approach’s Results: The first result to be presented is the best accu-
racy/loss that the RNN achieved while training on the feature sequences obtained
from the training videos (on three splits). Table 3.7 summarizes that.

71



CHAPTER 3. IMPLEMENTATION

Table 3.7: The best training accuracy/loss reached by the RNN during training on the
sequences encoded from the training videos.

Video classification accuracy/loss (training) Split 01 Split 02 Split 03
Maximum training accuracy (%) 95.40 95.27 95.50

Minimum training loss 0.156 0.159 0.150

The accuracy of the video classifier on the testing set of videos (on splits 01, 02 and
03) is presented by the table 3.8.

Table 3.8: The accuracy of the video classifier on the testing set of videos (splits 01, 02 and
03)

Video classification accuracy (testing) Split 01 Split 02 Split 03
Accuracy on testing videos (%) 66.27 66.87 65.40

Figures 3.15, 3.16 and 3.17 represent the confusion matrices for the classifier’s perfor-
mance on the testing videos on splits 01, 02 and 03 respectively.
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Figure 3.15: The confusion matrix for the second classifier’s performance on the testing
videos from split 01

73



CHAPTER 3. IMPLEMENTATION

Figure 3.16: The confusion matrix for the second classifier’s performance on the testing
videos from split 02
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Figure 3.17: The confusion matrix for the second classifier’s performance on the testing
videos from split 03

In the first method, the CNN used for frame classification reached 90% accuracy on
the training frames. However, on the testing frames it settled at 62% accuracy in the best
scenario (split02). The CNN clearly overfitted, and that is mainly because the testing videos
are somewhat different then the training videos when it comes to backgrounds, actors, camera
motion etc, making it harder for the CNN to generalize the features learned from the training
frames to the testing frames.
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The video classification task using the first approach was achieved with an accuracy of
79% on the training videos and 57% on the testing videos. This performance was reasonable
judging by the results reported by the used CNN for frame classification. This method
also turned out to be a bit naive in the sense that the video classification quality is strictly
dependent on the CNN’s ability to learn from the frames, and that is a downside.

On the other hand, the model from the second approach achieved the best video classifi-
cation accuracy on the training videos with 95%. Not only that, it improved the classification
on the testing videos to become 66% accuracy. The reason behind this improvement is the
use of the RNN who was able to learn the temporal dependencies present in the feature
vectors extracted from the training videos. Furthermore, it used that knowledge on top of
the CNN’s experience to improve the accuracy of the classification on the testing videos.
Table 3.9 represents a comparison between the results of our two experiments with other
similar approachs.

Table 3.9: A comparison between the results of our two experiments with other similar
approach.

Author Technique Testing accuracy

Sommoro et al.[84] Harris3D corners/HOG/HOF descriptors
+ SVM 43.9%

Pulkit Sharma[107]. VGG16 + FFNN for frame classification
+ Frame voting 44.80%

HHTseng[108]. 2D CNN (Trained from scratch)
+ LSTM 54.62%

Ours (first model) InceptionV3 + FFNN for frame classification
+ Frame voting 57.41%

Ours (second model) InceptionV3 feature extraction + LSTM 66.78%

Gokhan Cagrici[109]. InceptionV3 feature extraction + LSTM 72% - 73%

Matt Harvey[110]. InceptionV3 feature extraction + LSTM 74%

3.6 Conclusion
In this chapter, we implemented two DL based models for video classification. The best

results were reported by the second model which took advantage of the CNN’s ability to
learn spatial features from the frames of a video in addition to the RNN’s ability to capture
the temporal features present in those frames. On the other hand the CNN alone, struggled
with the video classification on the data at hand.

76



Conclusion

77



Conclusion
This research aims to explore the most convenient ANN types to implement a video

classification model with the best performance possible. Accordingly, we presented the best
candidate deep learning tools for the task, those being CNNs and RNNs. Furthermore, we
explained video classification in detail and mentioned the state of the art methods for it.

Based on the experiments presented in the third chapter, we conclude that using a CNN
for extracting spatial features from the frames of a video, along with capturing the temporal
dependencies using an LTSM is best for the classification. On the other hand, neglecting
the relationship between frames and treating the video as a collection of separate frames is
a naive idea and it doesn’t report the best results.
We also conclude that sufficient training data is definitely a key factor for executing efficient
video classification.

Much like any other task in CV, training time was a bit long. However, that was a
problem we could work around thanks the hardware offered by Google Collab. Besides that
challenge, there is a lot of data pre-processing that goes into training a video classifier,
combined with the need for reasonable storage space.

As perspectives, it will be important for our future works to test the approaches imple-
mented here on bigger datasets like the Youtube-1M dataset and see what kind of improve-
ments would it have on the model’s performance.
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